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Abstract

Writing efficient code for parallel processors is still a rather complex and little
understood task. Tools to gather and analyze performance information during
program execution are essential for understanding the reasons for ineflicient
executions. Current performance visualization systems provide only a limited
set of capabilities, hardwired into huge, monolithic programs. Programmers
need a very flexible environment in which they can mix and match different
performance visualization tools.

Research in scientific visualization has developed several environments to
visualize, explore and analyze large quantities of data. Reusing these capabilities
to visualize MIMD performance data significantly helps in the development of
a performance profiler. However, scientific visualization methods have to be
altered appropriately to address the non-geometric nature of performance data.

This paper presents a profiler, PerfVisS, which builds upon existing Telecol-
laborative Data Exploration (TDE) technology. PerfVisS provides several linked
views of the performance data, both for gaining a general overview of the pro-
gram performance and for detailed data and code inspection. It also allows
users to adapt the system to their own viewing preferences, using the AVS vi-
sual programming interface. Furthermore, it provides tools for telecollaborative
performance tuning, allowing programmers to share their views with colleagues
at remote sites. PerfVisS runs on Alpha AXP™ workstation farms but could
be used as well on other similar MIMD architectures such as symmetric multi-
processors (SMPs).
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1 Introduction

Writing efficient code for parallel processors is still a rather complex and little
understood task. On MIMD architectures, programmers have to decide how
to design a collection of computationally balanced programs that optimize the
use of computing resources across all processors. Tools to gather and analyze
performance information during or after program execution are essential for
understanding the reasons for inefficient executions. But, performance gathering
tools generate large amounts of data, requiring sophisticated data visualization
tools.

1.1 Existing performance visualization systems

Several performance visualization systems, such as MulTVision [2], ParaGraph
[3, 4], Upshot [5], and DIVIDE [14] have recently emerged. They use event-based
trace data, helping programmers analyze specific aspects of their programs, such
as the average and variance of the communication buffer length [14], process
state changes over time [2, 3, 4], and user-selectable events [5]. Many different
data display metaphors have been explored; some provide static views of the
data [2, 5] while others present dynamically changing views, indicating the event-
based information changing over time [3, 4, 14].

While these systems are quite sophisticated, they provide only limited ca-
pabilities, hardwired into huge, monolithic visualization programs. Since it is
still unclear what constitutes an optimal set of performance visualization tools,
programmers need a very flexible environment in which they can mix and match
different performance visualization tools. Furthermore, performance visualiza-
tion also needs to help programmers analyze the data, using appropriate data
filtering tools, as suggested by Waheed and Rover [16].

1.2 Use of scientific visualization packages for performance
visualization

Several scientific visualization environments offer a large degree of flexibility,
as well as a growing collection of data presentation and data analysis tools
for large quantities of — typically geometric — data [7, 12, 13, 15]. Reusing
these capabilities to visualize MIMD performance data significantly helps in the
development of a performance profiler.

Yet, several problems have to be addressed. How can performance profiles
be represented in data formats supported by scientific visualization tools? How
can visualization tools be extended to appropriately manipulate non-geometric
information for which the horizontal and vertical dimensions no longer adhere to
the conventional Eucledian interpretation but rather represent dimensions like
time, permutable lists of processors, or lines of source code. Another question
is adequate data reduction for generation of suitable overviews of the data.
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Typical geometric schemes, such as subsampling or linear interpolation, are
no longer applicable because the semantic relationships between neighboring
measurements have to be taken into account.

1.3 PerfVisS

We have developed a performance profiling system, PerfVisS, for visualizing
and exploring parallel executions of programs on workstation farms. PerfVisS
provides several views of the data at different levels of granularity. It shows
overviews of the data which allow programmers to navigate through the vast
amount of information from a higher-level perspective, while providing some
guidance for finding critical code segments. PerfVisS also provides several de-
tailed views of selected segments of the data: programmers can see image-based
and geometric data renditions, as well as text-based presentations, including
print outs of individual performance data values, lists of source code and as-
sembler code, and ranked performance information. All views are aligned and
linked such that user interaction with one window automatically updates the
views in all other windows.

PerfVisS uses existing scientific visualization and data exploration technol-
ogy, namely AVS [15] and TDE [7]. Due to the visual programming interface
of AVS, new views can be integrated easily, making this an ideal prototyping
and research environment for determining suitable visualization metaphors for
performance data.

PerfVisS especially benefits from the telecollaborative data exploration ca-
pabilities of TDE, allowing programmers to discuss their performance data with
remote colleagues or application centers of computer vendors, each being able
to interact with the data. For today’s international corporations, we consider
telecollaboration to become an essential component of program development ef-
forts, blurring the distinctions between collaborating programmers working in
separate offices, sites, states, or countries.

1.4 Application domain: pc-sampled High Performance
Fortran (HPF) programs on workstation farms

PerfVisS is designed to help programmers understand executions of High Per-
formance Fortran programs running on Alpha AXP™ workstation farms. It
could also be used for other similar MIMD architectures, such as symmetric
multiprocessors (SMPs).

Most of today’s workstation farms or clusters run single-threaded batch jobs.
A greater pay off can be expected by farms used as ”"degenerate MPPs,” with
parallel processing being the technical underpinning. Because farms reach a
wider audience than MPP systems, the need for a portable, high level, and
stable programming paradigm is crucial. High Performance Fortran (HPF),
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coupled with compilers, debuggers, performance profilers and visualizers, has
the potential to offer such a programming paradigm [1].

HPF [6, 10, 11] provides language features allowing application programmers
flexibility in developing or migrating computationally intensive applications to
high performance computing environments while at the same time allowing ef-
ficient implementation on a wide variety of platforms. HPF is Fortran 90, aug-
mented by a small number of de facto industry standard extensions in four
areas.

e Data layout and placement directives, such as the DISTRIBUTE directive
applied to arrays.

e Parallel statements and directives, such as the FORALL construct, which
is an element-at-a-time generalization of data parallel array operations.

e Intrinsic and library procedures.

e The EXTRINSIC capability. EXTRINSIC procedures define an explicit
interface to procedures written in other paradigms, such as SPMD with
explicit message-passing.

In our applications, the same HPF-code executes on all processors, operating
on different parts of large arrays. Performance data is collected by sampling the
program counters of all processors at regular intervals. After program execution,
the collected data is projected into histograms, indicating how much time each
processor spent executing each instruction. PerfVisS allows programmers to
explore these histograms.

2 Presentation of performance profiles

Figures 1 through 5 show the performance profiles generated by PerfVisS. In
a profiling session, the windows are displayed on a workstation screen in a
predefined layout. Users can change the layout by resizing and repositioning
windows. They can also duplicate and redisplay windows on other screens to
discuss the data with colleagues. This section describes the data presentations.
The next section describes how PerfVisS is implemented in TDE, our AVS-based
Telecollaborative Data Exploration environment.

2.1 Data mapping

When users develop and run programs, a lot of general program information,
as well as execution-specific performance information, is generated in many
different files. In particular, the HPF performance profiler for Alpha AXP™
workstation farms generates a profile, describing the execution frequency (“tick
count”) of every line, [, of source code on every processor, c.
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2.1.1 A detailed view of the performance data

PerfVisS begins by loading the performance profile into a two-dimensional array.
Along the horizontal axis, it enumerates all processors, ¢. The vertical axis
represents all lines, [, of source code. The result is a long, slim array, representing
the performance data per line and per processor. Figure la shows a short
segment of the array for the execution of a program running on 4 processors.

In order to help programmers quickly determine the busiest “hot spots”
in a program segment, we have color-encoded the performance data using a
heat map. Inactive (cold) code segments are shown in blue and green,! busy
(hot) code segments in red. The colors help programmers find the hot spots
quickly, as well as visualize the performance difference between the processors.
Overlaid on the color picture are the actual tick counts. These printed numbers
allow programmers to inspect the performance data in detail when necessary.
Programmers can display the information normalized (i.e., only the hottest spot
is shown in bright red) or unnormalized.

2.1.2 Viewing the source code and the assembler code

Aligned with the detailed view of the performance data, PerfVisS shows a win-
dow with the source code (Figure 1b). Optionally, programmers can also inspect
the assembler code by selecting a source line in the detailed view (Figure la)
with the mouse. The assembler code from a user-specified number of lines is
then shown in a separate window (Figure 2).

2.1.3 Slowest and fastest processor performance

When many parallel processors are used for the computation, programmers
need to visualize the performance variation across all processors. PerfVisS sorts
processor performance per line of code and computes the average and variance
values. Figure 1c shows the minimal and maximal tick counts. The dark hori-
zontal bars indicate minimal tick counts per source line; the light bars indicate
the difference between minimal and maximal tick counts. The counts and the
associated processor numbers are also printed next to the bars.

2.1.4 An alternate view: performance data as a three-dimensional
profile

In addition to rendering the performance data as a heat map, we display it as a
three-dimensional surface, as shown in Figure 3. In this presentation style, the
busiest source lines stand out as high peaks in a mountainous terrain. When the
surface is rotated upwards and sidewards, it resembles sets of two-dimensional

1 As a special case, we display comments and other non-operative lines with zero tick counts

in black.
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performance profile plots programmers may already be familiar with. Further-
more, it may be the only understandable presentation for color blind people.
On the other hand, it cannot be aligned as succinctly with printed tick counts
and listings of source code: a vertically aligned projection of the profile (similar
to the sorted performance data of Figure 1c) needs a lot of space to adequately
lay out all printed tick counts.

In conclusion, the color-encoded heat map and the three-dimensional profile
complement each other, aiding programmers through different viewing metaphors.
Our telecollaborative data exploration environment, TDE, allows us to easily
generate such alternate views of information. We expect this to be an impor-
tant component in study of the suitability of different tools for performance
visualization.

2.2 Data reduction for non-scientific data

The displays shown so far allow programmers to study performance data in great
detail. Yet, they do not help gain a general overview of the collected information.
Programmers need additional visual aids to determine quickly which program
areas are most critical so that they can dive into a detailed investigation of such
trouble spots. Systems like DIVIDE [14] provide sophisticated slider widgets?
mimicking the jog-shuttle metaphor of VCRs to help users find the view they
need. These widgets do not help get an overview of the data content; they merely
provide movement control, asking users to “blindly” find the most relevant data
sections.

Scientific visualization applications, on the other hand, do provide overviews.
The overviews are typically generated by subsampling or interpolating between
several elements of large arrays, generating data pyramids with varying resolu-
tion. These techniques cannot be applied directly in the performance visualiza-
tion context because the performance information is not geometrically coherent:
we might easily miss important hot spots. Furthermore, the performance array
is disproportionately long, requiring that data compression along the horizontal
and vertical dimension be treated separately.

We provide programmers with two tools to gain an overall impression of
their performance data.

2.2.1 Generating an overview

We exploit several properties of performance data when we reduce its size to
generate an overview.

First, blank lines can be removed without distorting the overall information
content. Our system thus skips code segments with more than a user-specified
number of consecutive empty lines (i.e.: tick counts = 0).

2along the time axis rather than source line numbers
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Second, profile peaks are much more important than profile minima. We can
adequately represent bins of consecutive source lines by a single one, if we main-
tain the maximal tick counts. In the compressed representation, programmers
are still alerted to the hot spots, and they can determine the exact structure
by generating a detailed view of the area around the hot spot. However, this
compressed view does not maintain an adequate presentation of the extent of a
hot spot over several consecutive lines, such as the body of a loop. Another com-
pression technique would be to accumulate the tick counts across several source
lines. This rendering, however, reduces the visibility of small, high peaks. Our
system allows programmers to switch between these data compression schemes.

Third, we exploit the slim nature of the performance array, cutting it into
several shorter strips which we then display side-by-side — in analogy to page
breaks in printed source code. This heuristic works very well for performance
data from a small number of parallel processors.

We have not yet provided means to also compress the horizontal dimension,
should the number of processors become large. Tools could use the ranked
performance data per source line, as described in section 2.1.3 (Figure 1c), to
show only a selected number of ranks.

Figure 4 shows an overview of the performance data gathered from a “spike”
program designed to test the functionality of an HPF compiler under develop-
ment. The code initially consists of 94824 source lines (including linked-in li-
braries). To generate the overview picture, we have skipped code segments with
more than 50 consecutive empty lines>. We have compressed bins of 4 source
lines into one line, cut the array into 14 strips of 80 lines each, and used the
heat map encoding scheme. Overlaid on the data are a yellow rectangle (eighth
strip) surrounding the code segment of the busiest procedure (see below), and
a golden rectangle (leftmost strip) indicating the selected data for the detailed
view. Programmers select a detailed view in the overview window with the
mouse to dive into a detailed analysis of a hot spot. Our system then automat-
ically focuses all detailed data displays on the selected code segment (Figures 1
and 3).

2.2.2 Ranked procedure performance

From traditional, text-based profiling tools, programmers are used to work with
lists of ranked procedure performance. To ease programmers into understanding
the color-encoded views, and to impose more structure on such views, we also
provide a ranked list of the top n procedures (Figure 5).

When one of the routines is selected with the mouse, the corresponding code
segment in the overview window is automatically surrounded with a yellow rect-
angle. Programmers can also request to see the outlines of all listed procedures
by clicking on the title row.

3Many linked-in library routines are not executed at all and can thus be skipped



3 PROTOTYPE IMPLEMENTATION 7

Conversely, programmers can determine for any code segment in the overview
window what the associated procedure name is. When a source line is selected
in the overview window, the corresponding procedure name is highlighted in the
ranked procedure listing. If the procedure is not among the top n procedures,
it is listed at the bottom of the window.

3 Prototype Implementation

We have implemented our performance profiling system using TDE, a Telecol-
laborative Data Exploration environment [7].

3.1 TDE

TDE uses the visual programming interface and the runtime data flow executive
of AVS [15]. TDE extends AVS with very sophisticated data exploration and
telecollaboration capabilities. It also provides the tools to register geometric
data with array-based information, overlaying text or drawings on images.

We use the following capabilities of TDE for PerfVisS:

e Flexible data presentations
Figures 1 through 5 have shown several different presentations of the per-
formance data, including color-encoded heat maps, three-dimensional pro-
files, and printed data values. Ranked processor performance per source
line was shown as bar graphs (Figure 1c). Geometric drawings, such as
rectangles and text, are overlaid on the color-encoded performance data
to amplify the visual expressiveness of each display.

e Data probing
TDE provides data probing capabilities, allowing users to determine and
select regions of interest in the overview window (Figure 4) and the ranked
procedure window (Figure 5). The three-dimensional profile (Figure 3) can
be rotated interactively. Assembler instruction code can be obtained by
probing a line of the source code in the detailed window (Figure 1a).

e Cursor linking

When users interact with one of the windows, all other windows are auto-
matically updated accordingly. To maintain linked cursors between sev-
eral, semantically related windows, TDE provides a log record [7, 8]. The
log record establishes geometric consistency between several views even
when they have been geometrically transformed. Using the log record,
performance visualization modules provide the semantic translation be-
tween different views.

e Geographically distributed windows
Exploiting the client-server capabilities of X, TDE provides a window mi-
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gration capability to send windows to any display [9]. Accordingly, users
are not limited to a single screen but can use all screen space at their
disposition.

Users can also send windows to colleagues or to application centers of
computer vendors to discuss alternate program parallelization approaches.
During such telecollaboration, users can duplicate windows and link cur-
sors, using the visual programming interface of AVS. The duplicates can
then be forwarded to consultants at remote sites, due to TDE’s window
migration tools. The result is a fully duplicated performance visualization
environment, providing full explorative capabilities to each viewer, while
ensuring consistent views between all sites. The remote display sites do
not require any special purpose hardware or software installations, such
as TDE or AVS — just an X-server.

e Customization

Since PerfVisS uses the visual programming interface of AVS, we are able
to quickly prototype various potential performance visualization inter-
faces, studying their suitability for optimizing parallel programs. The
visual programming interface enforces a high degree of modularity. We
are able to reuse many modules originally developed for scientific visual-
ization applications. Most of the modules that were developed specifically
for the performance visualization application read in files in specific data
formats or reduce the performance data to generate overviews.

The embedded data flow scheme allows us — as well as users — to spon-
taneously include new visualizations and data analysis modules [16] into
PerfVisS, merely by defining data flow connections to new modules. We
can establish links to such new, semantically related, presentations by
providing the appropriate semantic cursor translation algorithms.

3.2 Use of TDE for performance visualization

Figure 6 shows the AVS data flow network for PerfVisS, constructed out of TDE
modules and a few PSE modules developed specifically for the HPF Parallel
Software Environment to read and process the performance data. The data flow
network consists of seven major blocks of modules, as shown in the schematic
overview of Figure 7. Each block, except for A, corresponds to a displayed
window of the profiler.

When the performance data is read into the network (block A4), it flows to
block C. Several non-geometric transformation are applied to the data: blank
lines are skipped, the data is reduced by maximizing tick counts across several
lines of code per bin, and the data is then cut into parallel vertical strips. The
data then is normalized and color-encoded, before it is finally displayed.

Geometric descriptions of rectangles coming from the ranked procedure win-
dow (block B) and the detailed view (block D) are overlaid on the color-encoded
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overview image to outline selected code segments. Blocks B and D provide the
rectangles in the original coordinate frame. Module PSE Wrap Rectangles of
block C applies the same non-geometric transformations to the rectangles that
are applied to the performance data, compressing the rectangles and cutting
them into several pieces, if the outlined code segments spread across several
strips. Module PSE Unwrap Reduced Line Pos performs the inverse transfor-
mation on a cursor position from the overview window, mapping it back to the
original coordinate frame.

The selected and transformed cursor position flows from block C to B where
it is used to highlight the corresponding procedure name in yellow. The correct
procedure is determined by reading through a file of procedure descriptions,
determining which procedure includes the selected source line. A rectangle
outlining the associated code segment is generated and sent back to block C.

Block D uses the selected and transformed cursor position from the overview
window to crop a code segment from the performance data, generating a new,
much shorter array. Users can specify interactively how many source lines to
crop. The code segment is displayed as a heat map with overlaid printed num-
bers, generated by the TDE draw numbers module and the TDE change color
module. Should we decide to present more information about the code seg-
ment or to render it differently we merely have to include the appropriate new
modules at this place into the data flow network.

The cropped code segment flows to several other blocks, E, F, and G. These
blocks display the source code, the three-dimensional profile, and the sorted
processor view.

Figure 8 shows the data flow network of Figure 6, adjusted for telecollabo-
rative use between two sites. All TDE display data modules have been dupli-
cated, with identical input flowing into each pair. The output from each pair is
multiplexed so that user input from either window is forwarded to subsequent
modules for further interpretation. The result is a fully duplicated performance
visualization environment, providing full explorative capabilities to two viewers,
while ensuring consistent views at both sites. The remote display site does not
require any special purpose hardware or software — just an X-server.

4 Summary

In this paper, we have presented PerfVisS, a performance visualization system
for pc-sampled HPF programs running on Alpha AXP™ workstation farms or
similar MIMD architectures such as SMPs.

The system builds upon the power of existing scientific visualization soft-
ware, AVS and TDE. As a consequence, we were able to rapidly develop a
prototype. Due to the data exploration capabilities of TDE, we are able to
provide many different views of the data, including image-based heat maps, ge-
ometric three-dimensional profiles, and text-based presentations. Information
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is shown at several levels of granularity, allowing users to gain both a general
overview and a detailed look. Since TDE provides a framework to establish
linked cursors between several, semantically related windows, all views in Per-
fVisS are linked so that user interaction with one window automatically updates
all other windows. Due to TDE’s telecollaborative capabilities, PerfVisS users
can include colleagues at remote sites into their performance tuning tasks.

Applying scientific visualization software to non-geometric data was a valu-
able learning experience. Visualization concepts had to be carefully evaluated
and extended to warrant their proper use on data where array elements can be
permuted along some feature axes, and where the relationships between neigh-
boring array elements are non-geometric.

PerfVisS is a stepping stone towards very general performance visualization
environments. Future plans cover a variety of extensions. We intend to in-
tegrate the system seamlessly with the HPF Parallel Software Environment by
connecting profiling, debugging, and editing tools. We also plan to provide visu-
alizations of event-based performance data. Finally, we are developing a cascade
of views at many different levels of granularity so that very large performance
data sets can be presented with varying amounts of detail.

Due to the rapid prototyping facilities and the large collection of data ex-
ploration tools in TDE and AVS, we have been able to develop the PerfVisS
prototype easily and quickly. In its current form, PerfVisS has already proven
to be an invaluable tool in testing a variety of methaphors for performance visu-
alization. We thus expect it to lead us towards sophisticated, tele-collaborative
performance exploration environments.
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endif
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Figure 1: Detailed view (column a), with additional windows to show source
code (column b), and sorted performance data per source line (column c).
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Figure 2: Assembler instructions of a selected area.
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Figure 3: Three-dimensional performance profile.
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Figure 4: Overview window.

Figure 5: Ranked procedure window.



REFERENCES 16

AVS Hetwork Editor

Figure 6: TDE/AVS data flow network of the performance profiler.
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Figure 7: Schematic overview.
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AVS Hetwork Editor

Figure 8: TDE/AVS data flow network for telecollaborative performance visu-
alization.



