
PerfVisS� A Performance Visualizer for High

Performance Fortran Programs on Workstation

Farms
Gudrun J� Klinker

Cambridge Research Lab� Digital Equipment Corporation

I�Yu Chen

Mercury Computer
Digital Equipment Corporation

Cambridge Research Lab

CRL ���� June ��� ����

Abstract

Writing e�cient code for parallel processors is still a rather complex and little
understood task� Tools to gather and analyze performance information during
program execution are essential for understanding the reasons for ine�cient
executions� Current performance visualization systems provide only a limited
set of capabilities� hardwired into huge� monolithic programs� Programmers
need a very 	exible environment in which they can mix and match di
erent
performance visualization tools�

Research in scienti�c visualization has developed several environments to
visualize� explore and analyze large quantities of data� Reusing these capabilities
to visualize MIMD performance data signi�cantly helps in the development of
a performance pro�ler� However� scienti�c visualization methods have to be
altered appropriately to address the non�geometric nature of performance data�

This paper presents a pro�ler� PerfVisS� which builds upon existing Telecol�
laborative Data Exploration
TDE� technology� PerfVisS provides several linked
views of the performance data� both for gaining a general overview of the pro�
gram performance and for detailed data and code inspection� It also allows
users to adapt the system to their own viewing preferences� using the AVS vi�
sual programming interface� Furthermore� it provides tools for telecollaborative
performance tuning� allowing programmers to share their views with colleagues
at remote sites� PerfVisS runs on Alpha AXPTM workstation farms but could
be used as well on other similar MIMD architectures such as symmetric multi�
processors
SMPs��

c�Digital Equipment Corporation ����� All rights reserved�

� INTRODUCTION �

� Introduction

Writing e�cient code for parallel processors is still a rather complex and little
understood task� On MIMD architectures� programmers have to decide how
to design a collection of computationally balanced programs that optimize the
use of computing resources across all processors� Tools to gather and analyze
performance information during or after program execution are essential for
understanding the reasons for ine�cient executions� But� performance gathering
tools generate large amounts of data� requiring sophisticated data visualization
tools�

��� Existing performance visualization systems

Several performance visualization systems� such as MulTVision ���� ParaGraph
��� ��� Upshot ���� and DIVIDE ���� have recently emerged� They use event�based
trace data� helping programmers analyze speci�c aspects of their programs� such
as the average and variance of the communication bu
er length ����� process
state changes over time ��� �� ��� and user�selectable events ���� Many di
erent
data display metaphors have been explored� some provide static views of the
data ��� �� while others present dynamically changing views� indicating the event�
based information changing over time ��� �� ����

While these systems are quite sophisticated� they provide only limited ca�
pabilities� hardwired into huge� monolithic visualization programs� Since it is
still unclear what constitutes an optimal set of performance visualization tools�
programmers need a very 	exible environment in which they can mix and match
di
erent performance visualization tools� Furthermore� performance visualiza�
tion also needs to help programmers analyze the data� using appropriate data
�ltering tools� as suggested by Waheed and Rover �����

��� Use of scienti�c visualization packages for performance
visualization

Several scienti�c visualization environments o
er a large degree of 	exibility�
as well as a growing collection of data presentation and data analysis tools
for large quantities of � typically geometric � data ��� ��� ��� ���� Reusing
these capabilities to visualize MIMD performance data signi�cantly helps in the
development of a performance pro�ler�

Yet� several problems have to be addressed� How can performance pro�les
be represented in data formats supported by scienti�c visualization tools� How
can visualization tools be extended to appropriately manipulate non�geometric
information for which the horizontal and vertical dimensions no longer adhere to
the conventional Eucledian interpretation but rather represent dimensions like
time� permutable lists of processors� or lines of source code� Another question
is adequate data reduction for generation of suitable overviews of the data�

� INTRODUCTION �

Typical geometric schemes� such as subsampling or linear interpolation� are
no longer applicable because the semantic relationships between neighboring
measurements have to be taken into account�

��� PerfVisS

We have developed a performance pro�ling system� PerfVisS� for visualizing
and exploring parallel executions of programs on workstation farms� PerfVisS
provides several views of the data at di
erent levels of granularity� It shows
overviews of the data which allow programmers to navigate through the vast
amount of information from a higher�level perspective� while providing some
guidance for �nding critical code segments� PerfVisS also provides several de�
tailed views of selected segments of the data� programmers can see image�based
and geometric data renditions� as well as text�based presentations� including
print outs of individual performance data values� lists of source code and as�
sembler code� and ranked performance information� All views are aligned and
linked such that user interaction with one window automatically updates the
views in all other windows�

PerfVisS uses existing scienti�c visualization and data exploration technol�
ogy� namely AVS ���� and TDE ���� Due to the visual programming interface
of AVS� new views can be integrated easily� making this an ideal prototyping
and research environment for determining suitable visualization metaphors for
performance data�

PerfVisS especially bene�ts from the telecollaborative data exploration ca�
pabilities of TDE� allowing programmers to discuss their performance data with
remote colleagues or application centers of computer vendors� each being able
to interact with the data� For today�s international corporations� we consider
telecollaboration to become an essential component of program development ef�
forts� blurring the distinctions between collaborating programmers working in
separate o�ces� sites� states� or countries�

��� Application domain� pc�sampled High Performance
Fortran �HPF	 programs on workstation farms

PerfVisS is designed to help programmers understand executions of High Per�
formance Fortran programs running on Alpha AXPTM workstation farms� It
could also be used for other similar MIMD architectures� such as symmetric
multiprocessors
SMPs��

Most of today�s workstation farms or clusters run single�threaded batch jobs�
A greater pay o
 can be expected by farms used as �degenerate MPPs�� with
parallel processing being the technical underpinning� Because farms reach a
wider audience than MPP systems� the need for a portable� high level� and
stable programming paradigm is crucial� High Performance Fortran
HPF��

� PRESENTATION OF PERFORMANCE PROFILES �

coupled with compilers� debuggers� performance pro�lers and visualizers� has
the potential to o
er such a programming paradigm ����

HPF ��� ��� ��� provides language features allowing application programmers
	exibility in developing or migrating computationally intensive applications to
high performance computing environments while at the same time allowing ef�
�cient implementation on a wide variety of platforms� HPF is Fortran ��� aug�
mented by a small number of de facto industry standard extensions in four
areas�

� Data layout and placement directives� such as the DISTRIBUTE directive
applied to arrays�

� Parallel statements and directives� such as the FORALL construct� which
is an element�at�a�time generalization of data parallel array operations�

� Intrinsic and library procedures�

� The EXTRINSIC capability� EXTRINSIC procedures de�ne an explicit
interface to procedures written in other paradigms� such as SPMD with
explicit message�passing�

In our applications� the same HPF�code executes on all processors� operating
on di
erent parts of large arrays� Performance data is collected by sampling the
program counters of all processors at regular intervals� After program execution�
the collected data is projected into histograms� indicating how much time each
processor spent executing each instruction� PerfVisS allows programmers to
explore these histograms�

� Presentation of performance pro�les

Figures � through � show the performance pro�les generated by PerfVisS� In
a pro�ling session� the windows are displayed on a workstation screen in a
prede�ned layout� Users can change the layout by resizing and repositioning
windows� They can also duplicate and redisplay windows on other screens to
discuss the data with colleagues� This section describes the data presentations�
The next section describes how PerfVisS is implemented in TDE� our AVS�based
Telecollaborative Data Exploration environment�

��� Data mapping

When users develop and run programs� a lot of general program information�
as well as execution�speci�c performance information� is generated in many
di
erent �les� In particular� the HPF performance pro�ler for Alpha AXPTM

workstation farms generates a pro�le� describing the execution frequency
�tick
count�� of every line� l� of source code on every processor� c�

� PRESENTATION OF PERFORMANCE PROFILES �

����� A detailed view of the performance data

PerfVisS begins by loading the performance pro�le into a two�dimensional array�
Along the horizontal axis� it enumerates all processors� c� The vertical axis
represents all lines� l� of source code� The result is a long� slim array� representing
the performance data per line and per processor� Figure �a shows a short
segment of the array for the execution of a program running on � processors�

In order to help programmers quickly determine the busiest �hot spots�
in a program segment� we have color�encoded the performance data using a
heat map� Inactive
cold� code segments are shown in blue and green�� busy

hot� code segments in red� The colors help programmers �nd the hot spots
quickly� as well as visualize the performance di
erence between the processors�
Overlaid on the color picture are the actual tick counts� These printed numbers
allow programmers to inspect the performance data in detail when necessary�
Programmers can display the information normalized
i�e�� only the hottest spot
is shown in bright red� or unnormalized�

����� Viewing the source code and the assembler code

Aligned with the detailed view of the performance data� PerfVisS shows a win�
dow with the source code
Figure �b�� Optionally� programmers can also inspect
the assembler code by selecting a source line in the detailed view
Figure �a�
with the mouse� The assembler code from a user�speci�ed number of lines is
then shown in a separate window
Figure ���

����� Slowest and fastest processor performance

When many parallel processors are used for the computation� programmers
need to visualize the performance variation across all processors� PerfVisS sorts
processor performance per line of code and computes the average and variance
values� Figure �c shows the minimal and maximal tick counts� The dark hori�
zontal bars indicate minimal tick counts per source line� the light bars indicate
the di
erence between minimal and maximal tick counts� The counts and the
associated processor numbers are also printed next to the bars�

����� An alternate view� performance data as a three�dimensional

pro�le

In addition to rendering the performance data as a heat map� we display it as a
three�dimensional surface� as shown in Figure �� In this presentation style� the
busiest source lines stand out as high peaks in a mountainous terrain� When the
surface is rotated upwards and sidewards� it resembles sets of two�dimensional

�As a special case� we display comments and other non�operative lines with zero tick counts

in black�

� PRESENTATION OF PERFORMANCE PROFILES �

performance pro�le plots programmers may already be familiar with� Further�
more� it may be the only understandable presentation for color blind people�
On the other hand� it cannot be aligned as succinctly with printed tick counts
and listings of source code� a vertically aligned projection of the pro�le
similar
to the sorted performance data of Figure �c� needs a lot of space to adequately
lay out all printed tick counts�

In conclusion� the color�encoded heat map and the three�dimensional pro�le
complement each other� aiding programmers through di
erent viewing metaphors�
Our telecollaborative data exploration environment� TDE� allows us to easily
generate such alternate views of information� We expect this to be an impor�
tant component in study of the suitability of di
erent tools for performance
visualization�

��� Data reduction for non�scienti�c data

The displays shown so far allow programmers to study performance data in great
detail� Yet� they do not help gain a general overview of the collected information�
Programmers need additional visual aids to determine quickly which program
areas are most critical so that they can dive into a detailed investigation of such
trouble spots� Systems like DIVIDE ���� provide sophisticated slider widgets�

mimicking the jog�shuttle metaphor of VCRs to help users �nd the view they
need� These widgets do not help get an overview of the data content� they merely
provide movement control� asking users to �blindly� �nd the most relevant data
sections�

Scienti�c visualization applications� on the other hand� do provide overviews�
The overviews are typically generated by subsampling or interpolating between
several elements of large arrays� generating data pyramids with varying resolu�
tion� These techniques cannot be applied directly in the performance visualiza�
tion context because the performance information is not geometrically coherent�
we might easily miss important hot spots� Furthermore� the performance array
is disproportionately long� requiring that data compression along the horizontal
and vertical dimension be treated separately�

We provide programmers with two tools to gain an overall impression of
their performance data�

����� Generating an overview

We exploit several properties of performance data when we reduce its size to
generate an overview�

First� blank lines can be removed without distorting the overall information
content� Our system thus skips code segments with more than a user�speci�ed
number of consecutive empty lines
i�e�� tick counts � ���

�along the time axis rather than source line numbers

� PRESENTATION OF PERFORMANCE PROFILES �

Second� pro�le peaks are much more important than pro�le minima� We can
adequately represent bins of consecutive source lines by a single one� if we main�
tain the maximal tick counts� In the compressed representation� programmers
are still alerted to the hot spots� and they can determine the exact structure
by generating a detailed view of the area around the hot spot� However� this
compressed view does not maintain an adequate presentation of the extent of a
hot spot over several consecutive lines� such as the body of a loop� Another com�
pression technique would be to accumulate the tick counts across several source
lines� This rendering� however� reduces the visibility of small� high peaks� Our
system allows programmers to switch between these data compression schemes�

Third� we exploit the slim nature of the performance array� cutting it into
several shorter strips which we then display side�by�side � in analogy to page
breaks in printed source code� This heuristic works very well for performance
data from a small number of parallel processors�

We have not yet provided means to also compress the horizontal dimension�
should the number of processors become large� Tools could use the ranked
performance data per source line� as described in section �����
Figure �c�� to
show only a selected number of ranks�

Figure � shows an overview of the performance data gathered from a �spike�
program designed to test the functionality of an HPF compiler under develop�
ment� The code initially consists of ����� source lines
including linked�in li�
braries�� To generate the overview picture� we have skipped code segments with
more than �� consecutive empty lines�� We have compressed bins of � source
lines into one line� cut the array into �� strips of �� lines each� and used the
heat map encoding scheme� Overlaid on the data are a yellow rectangle
eighth
strip� surrounding the code segment of the busiest procedure
see below�� and
a golden rectangle
leftmost strip� indicating the selected data for the detailed
view� Programmers select a detailed view in the overview window with the
mouse to dive into a detailed analysis of a hot spot� Our system then automat�
ically focuses all detailed data displays on the selected code segment
Figures �
and ���

����� Ranked procedure performance

From traditional� text�based pro�ling tools� programmers are used to work with
lists of ranked procedure performance� To ease programmers into understanding
the color�encoded views� and to impose more structure on such views� we also
provide a ranked list of the top n procedures
Figure ���

When one of the routines is selected with the mouse� the corresponding code
segment in the overview window is automatically surrounded with a yellow rect�
angle� Programmers can also request to see the outlines of all listed procedures
by clicking on the title row�

�Many linked�in library routines are not executed at all and can thus be skipped

� PROTOTYPE IMPLEMENTATION �

Conversely� programmers can determine for any code segment in the overview
window what the associated procedure name is� When a source line is selected
in the overview window� the corresponding procedure name is highlighted in the
ranked procedure listing� If the procedure is not among the top n procedures�
it is listed at the bottom of the window�

� Prototype Implementation

We have implemented our performance pro�ling system using TDE� a Telecol�
laborative Data Exploration environment ����

��� TDE

TDE uses the visual programming interface and the runtime data 	ow executive
of AVS ����� TDE extends AVS with very sophisticated data exploration and
telecollaboration capabilities� It also provides the tools to register geometric
data with array�based information� overlaying text or drawings on images�

We use the following capabilities of TDE for PerfVisS�

� Flexible data presentations
Figures � through � have shown several di
erent presentations of the per�
formance data� including color�encoded heat maps� three�dimensional pro�
�les� and printed data values� Ranked processor performance per source
line was shown as bar graphs
Figure �c�� Geometric drawings� such as
rectangles and text� are overlaid on the color�encoded performance data
to amplify the visual expressiveness of each display�

� Data probing
TDE provides data probing capabilities� allowing users to determine and
select regions of interest in the overview window
Figure �� and the ranked
procedure window
Figure ��� The three�dimensional pro�le
Figure �� can
be rotated interactively� Assembler instruction code can be obtained by
probing a line of the source code in the detailed window
Figure �a��

� Cursor linking
When users interact with one of the windows� all other windows are auto�
matically updated accordingly� To maintain linked cursors between sev�
eral� semantically related windows� TDE provides a log record ��� ��� The
log record establishes geometric consistency between several views even
when they have been geometrically transformed� Using the log record�
performance visualization modules provide the semantic translation be�
tween di
erent views�

� Geographically distributed windows
Exploiting the client�server capabilities of X� TDE provides a window mi�

� PROTOTYPE IMPLEMENTATION �

gration capability to send windows to any display ���� Accordingly� users
are not limited to a single screen but can use all screen space at their
disposition�

Users can also send windows to colleagues or to application centers of
computer vendors to discuss alternate program parallelization approaches�
During such telecollaboration� users can duplicate windows and link cur�
sors� using the visual programming interface of AVS� The duplicates can
then be forwarded to consultants at remote sites� due to TDE�s window
migration tools� The result is a fully duplicated performance visualization
environment� providing full explorative capabilities to each viewer� while
ensuring consistent views between all sites� The remote display sites do
not require any special purpose hardware or software installations� such
as TDE or AVS � just an X�server�

� Customization
Since PerfVisS uses the visual programming interface of AVS� we are able
to quickly prototype various potential performance visualization inter�
faces� studying their suitability for optimizing parallel programs� The
visual programming interface enforces a high degree of modularity� We
are able to reuse many modules originally developed for scienti�c visual�
ization applications� Most of the modules that were developed speci�cally
for the performance visualization application read in �les in speci�c data
formats or reduce the performance data to generate overviews�

The embedded data 	ow scheme allows us � as well as users � to spon�
taneously include new visualizations and data analysis modules ���� into
PerfVisS� merely by de�ning data 	ow connections to new modules� We
can establish links to such new� semantically related� presentations by
providing the appropriate semantic cursor translation algorithms�

��� Use of TDE for performance visualization

Figure � shows the AVS data 	ow network for PerfVisS� constructed out of TDE
modules and a few PSE modules developed speci�cally for the HPF Parallel
Software Environment to read and process the performance data� The data 	ow
network consists of seven major blocks of modules� as shown in the schematic
overview of Figure �� Each block� except for A� corresponds to a displayed
window of the pro�ler�

When the performance data is read into the network
block A�� it 	ows to
block C� Several non�geometric transformation are applied to the data� blank
lines are skipped� the data is reduced by maximizing tick counts across several
lines of code per bin� and the data is then cut into parallel vertical strips� The
data then is normalized and color�encoded� before it is �nally displayed�

Geometric descriptions of rectangles coming from the ranked procedure win�
dow
block B� and the detailed view
block D� are overlaid on the color�encoded

� SUMMARY �

overview image to outline selected code segments� Blocks B and D provide the
rectangles in the original coordinate frame� Module PSE Wrap Rectangles of
block C applies the same non�geometric transformations to the rectangles that
are applied to the performance data� compressing the rectangles and cutting
them into several pieces� if the outlined code segments spread across several
strips� Module PSE Unwrap Reduced Line Pos performs the inverse transfor�
mation on a cursor position from the overview window� mapping it back to the
original coordinate frame�

The selected and transformed cursor position 	ows from block C to B where
it is used to highlight the corresponding procedure name in yellow� The correct
procedure is determined by reading through a �le of procedure descriptions�
determining which procedure includes the selected source line� A rectangle
outlining the associated code segment is generated and sent back to block C�

Block D uses the selected and transformed cursor position from the overview
window to crop a code segment from the performance data� generating a new�
much shorter array� Users can specify interactively how many source lines to
crop� The code segment is displayed as a heat map with overlaid printed num�
bers� generated by the TDE draw numbers module and the TDE change color

module� Should we decide to present more information about the code seg�
ment or to render it di
erently we merely have to include the appropriate new
modules at this place into the data 	ow network�

The cropped code segment 	ows to several other blocks� E� F� and G� These
blocks display the source code� the three�dimensional pro�le� and the sorted
processor view�

Figure � shows the data 	ow network of Figure �� adjusted for telecollabo�
rative use between two sites� All TDE display data modules have been dupli�
cated� with identical input 	owing into each pair� The output from each pair is
multiplexed so that user input from either window is forwarded to subsequent
modules for further interpretation� The result is a fully duplicated performance
visualization environment� providing full explorative capabilities to two viewers�
while ensuring consistent views at both sites� The remote display site does not
require any special purpose hardware or software � just an X�server�

� Summary

In this paper� we have presented PerfVisS� a performance visualization system
for pc�sampled HPF programs running on Alpha AXPTM workstation farms or
similar MIMD architectures such as SMPs�

The system builds upon the power of existing scienti�c visualization soft�
ware� AVS and TDE� As a consequence� we were able to rapidly develop a
prototype� Due to the data exploration capabilities of TDE� we are able to
provide many di
erent views of the data� including image�based heat maps� ge�
ometric three�dimensional pro�les� and text�based presentations� Information

REFERENCES ��

is shown at several levels of granularity� allowing users to gain both a general
overview and a detailed look� Since TDE provides a framework to establish
linked cursors between several� semantically related windows� all views in Per�
fVisS are linked so that user interaction with one window automatically updates
all other windows� Due to TDE�s telecollaborative capabilities� PerfVisS users
can include colleagues at remote sites into their performance tuning tasks�

Applying scienti�c visualization software to non�geometric data was a valu�
able learning experience� Visualization concepts had to be carefully evaluated
and extended to warrant their proper use on data where array elements can be
permuted along some feature axes� and where the relationships between neigh�
boring array elements are non�geometric�

PerfVisS is a stepping stone towards very general performance visualization
environments� Future plans cover a variety of extensions� We intend to in�
tegrate the system seamlessly with the HPF Parallel Software Environment by
connecting pro�ling� debugging� and editing tools� We also plan to provide visu�
alizations of event�based performance data� Finally� we are developing a cascade
of views at many di
erent levels of granularity so that very large performance
data sets can be presented with varying amounts of detail�

Due to the rapid prototyping facilities and the large collection of data ex�
ploration tools in TDE and AVS� we have been able to develop the PerfVisS
prototype easily and quickly� In its current form� PerfVisS has already proven
to be an invaluable tool in testing a variety of methaphors for performance visu�
alization� We thus expect it to lead us towards sophisticated� tele�collaborative
performance exploration environments�

Acknowledgments

Many people have helped develop PerfVisS� During many discussions and live
demonstrations of PerfVisS� Chuck Wan� John Clark� David LaFrance Linden�
Tom Stones� and Brendan Smith of Digital�s High Performance Computing
Group
HPCG� have provided valuable insights regarding suitable data pre�
sentation formats for HPF�programms� Bert Halstead from the Cambridge
Research Lab
CRL� and Marco Annaratone from HPCG were instrumental
in establishing the link between research in scienti�c visualization and perfor�
mance visualization� We are also grateful to Mark Brown� the director of CRL�
and Ingrid Carlbom� the director of visualization research at CRL� for their
support�

References

��� M� Annaratone� D� Loveman� and C� O
ner� High performance fortran on
workstation farms� In Proc� IPPS� Cancun� Mexico� April ����� IEEE�

REFERENCES ��

��� R� Halstead� D� Kranz� and P� Sobalvarro� MulTVision� A tool for vi�
sualizing parallel program executions� In R� Halstead and T� Ito� editors�
Parallel Symbolic Computing� Languages� Systems� and Applications� pages
�������� Springer�Verlag Lecture Notes in Computer Science ���� �����

��� M� Heath and J� Etheridge� Visualizing the performance of parallel pro�
grams� IEEE Software� �
��������� September �����

��� M� Heath and J� Etheridge� Visualizing the performance of parallel pro�
grams� Technical Report ORNL�TM������� Oak Ridge National Labora�
tory� Oak Ridge� Tennessee� �����

��� V� Herrarte and E� Lusk� Studying parallel program behavior with Upshot�
Technical Report ANL������� Argonne National Laboratory� Argonne� Illi�
nois� �����

��� High Performance Fortran Forum� High Performance Fortran language
speci�cation� version ����� Technical Report CRPC�TR������ Center for
Research on Parallel Computation� Rice University� Houston� TX� May

revised� ����� Also appeared in a special issue of Scienti�c Programming�
vol �
� and ��� John Wiley � Sons� Spring and Summer �����

��� G�J� Klinker� An environment for telecollaborative data exploration� In
Proc� Visualization ���� pages �������� San Jose� CA� Oct ����� IEEE
Computer Society Press�

��� G�J� Klinker� Interactive data exploration and telecollaboration in
biomedicine using AVS� In Proc� of the �nd Int� AVS User Group Con�

ference� Walt Disney World Dolphin� FL� May ����� �����

��� G�J� Klinker� I� Carlbom� W� Hsu� and D� Terzopoulos� Scienti�c data
exploration meets telecollaboration� In Submitted to the �� ACM Inter�

national Conference on Multimedia� San Francisco� CA� Oct� ����� �����
ACM Press�

���� C�H� Koelbel� D�B� Loveman� R�S� Schreiber� G�L Steele� and M�E� Zosel�
The High Performance Fortran Handbook� MIT Press� �����

���� D�B� Loveman� High performance fortran� IEEE Parallel � Distributed

Technology� �
��� February �����

���� B� Lucas� G�D� Abram� D�A� Epstein� D�L Gresh� and K�P� McAuli
e� An
architecture for a scienti�c visualization system� In Proc� of Visualization

���� pages �������� Boston� MA� October ����� IEEE Computer Society
Press�

���� P�J� Mercurio� Khoros� PIXEL� �
��������� �����

REFERENCES ��

���� T�M� Morrow and S� Ghosh� DIVIDE� Distributed visual display of the ex�
ecution of asynchronous� distributed algorithms on loosely�coupled parallel
processors� In Proc� Visualization ���� pages �������� San Jose� CA� Oct
����� IEEE Computer Society Press�

���� C� Upson� T� Faulhaber Jr�� D� Kamins� D� Laidlaw� D� Schlegel� J� Vroom�
R� Gurwitz� and A� van Dam� The Application Visualization System� A
computational environment for scienti�c visualization� IEEE Computer

Graphics and Applications� �
��������� July �����

���� A�Waheed and D�T� Rover� Performance visualization of parallel programs�
In Proc� Visualization ���� pages �������� San Jose� CA� Oct ����� IEEE
Computer Society Press�

REFERENCES ��

Figure �� Detailed view
column a�� with additional windows to show source
code
column b�� and sorted performance data per source line
column c��

REFERENCES ��

Figure �� Assembler instructions of a selected area�

Figure �� Three�dimensional performance pro�le�

REFERENCES ��

Figure �� Overview window�

Figure �� Ranked procedure window�

REFERENCES ��

Figure �� TDE�AVS data 	ow network of the performance pro�ler�

REFERENCES ��

A: Read performance
profiles

D: Crop +
display color-
encoded details

B: Generate + display
ranked procedure list

C: Generate + display
color-encoded
overview

E: Generate + display
3D profile

G: Sort + display
processor performance

F: Display Source
Code

profile array

mouse position

rectangles

cropped
profile

rectangle

Figure �� Schematic overview�

REFERENCES ��

Figure �� TDE�AVS data 	ow network for telecollaborative performance visu�
alization�

