
LoFi: A TURBOchannel Audio Module

Thomas M. Levergood

Digital Equipment Corporation
Cambridge Research Lab

CRL 93/9 June 17, 1993

Digital Equipment Corporation has four research facilities: the Systems Research Center and the
Western Research Laboratory, both in Palo Alto, California; the Paris Research Laboratory, in
Paris; and the Cambridge Research Laboratory, in Cambridge, Massachusetts.

The Cambridge laboratory became operational in 1988 and is located at One Kendall Square,
near MIT. CRL engages in computing research to extend the state of the computing art in areas
likely to be important to Digital and its customers in future years. CRL’s main focus is
applications technology; that is, the creation of knowledge and tools useful for the preparation of
important classes of applications.

CRL Technical Reports can be ordered by electronic mail. To receive instructions, send a mes-
sage to one of the following addresses, with the word help in the Subject line:

On Digital’s EASYnet: CRL::TECHREPORTS
On the Internet: techreports@crl.dec.com

This work may not be copied or reproduced for any commercial purpose. Permission to copy without payment is
granted for non-profit educational and research purposes provided all such copies include a notice that such copy-
ing is by permission of the Cambridge Research Lab of Digital Equipment Corporation, an acknowledgment of the
authors to the work, and all applicable portions of the copyright notice.

The Digital logo is a trademark of Digital Equipment Corporation.

Cambridge Research Laboratory
One Kendall Square
Cambridge, Massachusetts 02139

TM

LoFi: A TURBOchannel Audio Module

Thomas M. Levergood

Digital Equipment Corporation
Cambridge Research Lab

CRL 93/9 June 17, 1993

Abstract

LoFi is a single-slot TURBOchannel module designed as a research prototype
to interface to a variety of audio sources and sinks. LoFi contains two 8 KHz
CODECs, a digital signal processor with 32K words of static memory, a 44.1 KHz
stereo digital-to-analog converter, and analog and digital telephone line interfaces.
This report is the technical reference for the LoFi module and includes descriptions
of the hardware design and programming interface. A source code kit containing
LoFi support software is available by anonymous FTP.

Keywords: audio hardware, digital signal processor, multimedia, telephone inter-
face
c�Digital Equipment Corporation 1993. All rights reserved.

Touch-Tone is a trademark of AT&T.
UNIX is a trademark of Unix Systems Laboratories.
IOM-2 is a trademark of Siemens AG.
Digital Subscriber Controller is a trademark of Advanced Micro Devices, Inc.
The following are trademarks of Digital Equipment Corporation: Alpha AXP, DEC,
DECaudio, DECstation, DECtalk, TURBOchannel, ULTRIX, XMedia, and the DIGITAL
logo.

CONTENTS i

Contents

1 Introduction 1

2 Hardware Overview 1
2.1 DSP Section� 2
2.2 CODEC Section� 3
2.3 Telephone Line Interface Section� � � � � � � � � � � � � � � � � 4
2.4 I/O Section� 8

3 Programming Interface 11
3.1 TURBOchannel Host Perspective� � � � � � � � � � � � � � � � � 11

3.1.1 Diagnostic ROM� 11
3.1.2 DSP Host Port� 12
3.1.3 Shared RAM� 13
3.1.4 I/O Control Register� 13
3.1.5 I/O Status Register� 15
3.1.6 Remote CODEC� 17
3.1.7 Local CODEC� 17
3.1.8 Interrupts � 18
3.1.9 I/O Transaction Costs� � � � � � � � � � � � � � � � � � � 20

3.2 DSP56001 Perspective� 21
3.2.1 Memory Map � 21
3.2.2 Interrupts � 23
3.2.3 Serial I/O � 23

4 Device Driver 27

5 Diagnostic and Test Software 31

6 Summary 33

A Distribution Box Connectors 35

ii CONTENTS

1

1 Introduction

In 1990, we began to deploy DECstation 5000 Model 200 workstations at Digital’s
Cambridge Research Lab (CRL). Since this workstation did not have audio I/O, I
designed LoFi, a TURBOchannel peripheral, to provide the base hardware capa-
bilities for performing audio experiments and research using the computing power
of these workstations.

Since our interests in audio applications were varied, we needed a flexible device
that would support real-time audio recording and playback, connect to the analog
and digital telephone networks, as well as connect to external devices supporting
high fidelity analog-to-digital and digital-to-analog conversion. The LoFi device
was designed to meet these needs.

During the design phase, a Digital product group became interested in making LoFi
a product. The product group designed the external distribution box for LoFi and
made a few other changes before introducing “DECaudio” to the marketplace in
1991.

We have been using LoFi in DECstation workstations at CRL since 1990 and are
now using LoFi in our Alpha AXP workstations. The original design has met our
desktop audio I/O needs ranging from 8 KHz telephone quality speech to higher
fidelity sampling for continuous speech recognition and music synthesis.

This document includes an overview of the LoFi hardware design and its capabil-
ities, the hardware programming interface, and information specific to the digital
signal processor and kernel device driver. For software above the level of the device
driver and diagnostics, we use AudioFile, a system providing network-transparent,
device-independent audio services[8, 9].

2 Hardware Overview

The DECstation 5000 Model 200 was the first system to use the TURBOchannel
I/O bus [3, 4, 5, 6]. This bus has several nice properties including a simple
interface specification as well as reasonable data transfer rates. The first Alpha
AXP workstations also use the TURBOchannel for their I/O bus.

LoFi could have been designed as an external Ethernet peripheral or as a more
tightly coupled I/O bus module. If LoFi were designed as an Ethernet peripheral
device, then audio I/O could be easily added to systems without the I/O bus.

2 2 HARDWARE OVERVIEW

However, I chose to design LoFi as a TURBOchannel module for two reasons: to
allow for low-latency operations where required and to reduce the hardware and
software design time. This decision constrained the physical design because of the
size of the module and limited the features that could be included.

Figure 1 is a block diagram of LoFi. The major blocks include the digital signal
processor, shared memory, the two 8 KHz CODECs, and the telephone line inter-
face. The major blocks are interconnected via a 24-bit data bus. The I/O section
is grouped into three categories emphasizing the digital audio, analog audio, and
telephony capabilities of the hardware.

DSP
56001

CODEC
 1

CODEC
 0
(remote)

DAA

Hi-Fi
DAC

DSP Port

Loop
Det.

Set/Line

Line/Set

ISDN ’S’

Speaker 2 (monitor)

Shared
RAM

T
U

R
B

O
ch

an
ne

l

Speaker 1 (local)
Line Out
Line In
Mic In

Line Out L/R
Headphone L/R

Disable Switch

I/O
Digital Audio

Analog Audio

Telephony

(local)

DTMF
Det.

Host

Status
Reg.

LoFi Module & Distribution Box

P
o
r
t

A

B

C

24

8

8

8

Figure 1: LoFi block diagram

2.1 DSP Section

LoFi contains a digital signal processor (DSP). I originally included a DSP for
off-loading real-time, compute-intensive activities from the host. We expected
that the DSP might handle such activities as the vocal tract model within text-to-
speech synthesis, the front-end analyzer within speech recognition, speakerphone
echo cancellation, and the data pump and echo canceler within modems. However,
three years later, we have not found a need to use the DSP for anything other than
buffer management — the host CPU is fast enough that we do our signal processing

2.2 CODEC Section 3

in host software [15].

The digital signal processor on LoFi is the Motorola DSP56001[11]. The DSP56001
is clocked by a 27 MHz oscillator and will execute a 24x24 bit multiply/accumulate
instruction in 74 nanoseconds. The DSP56001 has 512 words of on-chip data mem-
ory and 512 words of on-chip program memory. Memory is expanded off-chip
with a 32Kx24 bit static RAM array. The DSP56001 operates with zero wait states
in the external memory. This memory is shared by the DSP56001 and the host
processor.

The DSP56001’s “Port C” contains two serial interfaces that can be used to connect
to an external source and sink of digital audio. The serial port signals are brought
out to a 15 pin connector that is compatible with the NeXT DSP serial port [16].
This DSP port allows LoFi to connect to a variety of third party devices.

LoFi includes an integral stereo DAC, connected to Port C, operating at a 44.1 KHz
sampling frequency. The DAC is a Phillips SAA7323 device [14]. Stereo audio
can be played through the DAC under DSP software control (see Section 3.2.3 for
code examples). The DAC was placed within the distribution box in order to better
control for potential noise sources.

I selected the DSP56001 for several reasons. At that time, this DSP chip had
attractive price/performance and system design attributes. Further, the “DSP
port” appeared to be edging towards an industry standard interface since Ariel
Corporation1 and other companies were introducing products that connected di-
rectly to this interface. Finally, the greater dynamic range supported by the 24-bit
word (and 56-bit accumulator) in the DSP56001 was attractive when compared to
16-bit DSP chips.

2.2 CODEC Section

For telephone-quality audio input and output, LoFi uses two AMD Am79C30A
Digital Subscriber Controllers which are commonly referred to by “CODEC”2

because of their ADC/DAC function. The two CODECs perform distinct functions
on LoFi. The “remote” CODEC is used to interface to the received telephone audio,
the transmitted telephone audio, and a monitor speaker output. The “local” CODEC
is used to interface to a microphone or line level input and a speaker or line level
output.

1Highland Park, NJ, USA.
2CODEC is a contraction of COder and DECoder

4 2 HARDWARE OVERVIEW

The Am79C30A is intended to function as the interface between a telephone
handset and the ISDN S connection within an ISDN telephone. For more details
on this part also see the manufacturer’s data sheet [1].

The Am79C30A contains several sections including those supporting an analog
handset interface, a microprocessor interface, and an ISDN S interface.

The “main audio processor” (MAP) sections within the two Am79C30A devices
are used to support the analog interfaces to the telephone line interface and the
local audio I/O on LoFi. Each MAP can select between two analog inputs and
two analog outputs. The MAP includes programmable gain control and filtering
capabilities. The input stage has a preamplifier with programmable gain between 0
and 24 dB. One of the MAP’s outputs is designed to drive a 50 Ohm loudspeaker.
The other output can be used as a line level driver. The MAP’s CODEC operates at
a fixed 8 KHz sample rate with 8-bit�-law or A-law (logarithmic PCM) encoding
resulting in a 64 Kbps per channel data rate. Refer to CCITT G.711 for a complete
description of the�-law and A-law encodings.

The digital signal processor and the TURBOchannel host communicate with the
Am79C30A via the byte-wide “microprocessor interface” (MPI).

The Am79C30A has an integrated ISDN S “line interface unit” (LIU). The LoFi
hardware contains the necessary external components to connect to an ISDN S
interface.

There is a multiplexer (MUX) internal to the Am79C30A. The MUX is pro-
grammable and can be configured to route data between any two of the MAP, MPI,
and LIU sections. On LoFi, the MAP and MPI sections are generally connected so
the MAP serves as the source and sink of digital audio data from the DSP or host
processor.

The local and remote CODECs are also connected via the Am79C30A IOM-2
interface. The remote CODEC is the IOM-2 bus master and the local CODEC
is the slave. With appropriate software configuration, the 8 KHz frame interrupt
from each CODEC can be synchronized.

2.3 Telephone Line Interface Section

LoFi includes a direct connect interface to the U.S. and Canada public switched
telephone network (PSTN). The interface to the PSTN is known as a data access
arrangement (DAA). The DAA on LoFi is implemented by a plug-in module,
DS2249, manufactured by Dallas Semiconductor [2]. The DS2249 has the follow-

2.3 Telephone Line Interface Section 5

ing features:

� 2 to 4 wire converter hybrid

� typical trans-hybrid loss of 18 db

� ring detect circuitry (sensitivity 38 Vrms)

� hook-switch control relay

� protection circuitry

The product version of LoFi, DECaudio, includes a minor modification to support
the DS2249PH version of the DAA. The most interesting feature of the DS2249PH
is that it includes an automatic gain control circuit limiting the average power level
to the telephone line. Some regulatory agencies require compliance to transmitted
power level limits in order to minimize inter-channel interference in frequency di-
vision multiplexedsystems within the PSTN.3 The gain limitingcircuitry monitors
the signal output to the telephone line and attenuates the gain in its path to prevent
the output power from exceeding -4 dBm. The DS2249PH monotonically adjusts
the attenuation and only restores the circuit to unity gain when the gain control
circuit is disabled. The gain in this stage ranges from 0 to -10.0 dB.

DAA
2-4 Wire
Converter

Loop
Current
Detection

Set

Line

DTMF
Detector

Transmit Audio
(Remote CODEC)

Receive Audio
(Remote CODEC)

Hook Switch Control
Ring Detect

Loop Current State

DTMF State
Gain Control

Figure 2: Analog telephone line interface

There are two modular phone jacks provided for connection to a phone line and
to a phone set (as shown in Figure 4). By convention, the outermost jack is the

3The power in the transmitted signal is governed by the Federal Communications Commission in
the U.S.

6 2 HARDWARE OVERVIEW

“line” jack and the connector between the line jack and the DB60R connector is the
“set” jack. The DAA is directly connected to the line jack, and the two jacks are
connected through a loop-current sensing relay. A desktop phone can be connected
to the same phone line as LoFi and will continue to work when the workstation is
powered off or reset.

The path between the two modular connectors includes a loop-current sensing relay
circuit. The relay closes in response to line current in excess of 20 mA. This circuit
is used to track the state of current flowing in the local loop in order to monitor
hook-switch status and pulse dialing.

Connecting the phone set to the set connector causes the loop-current detector to
assert an interrupt whenever the extension phone goes off-hook. Connecting the
wall jack to the set connector causes the loop-current detection circuit to assert an
interrupt whenever the DAA goes off-hook or the extension phone goes off-hook.

Dual tone multi-frequency (DTMF) detection is necessary for accepting remote
input when connecting to the telephone network. The dual tone multi-frequency
signaling used in the telephone network is also known as Touch-Tone signaling.
Although DTMF detection is a trivial signal processing application, it is a function
that must be present at all times. To reduce the computational overhead and
software complexity on the DSP or host processor, an inexpensive integrated
DTMF detector is used instead. The detector will recognize DTMF signals from
the telephone line when the DAA is off-hook and a call is in progress as well as
from the attached phone set.

The Mitel 8870CS DTMF decoder [10] is used on LoFi. It recognizes the complete
16 key Touch-Tone keypad consisting of the keys 0-9,�, # and the military keys
A, B, C, and D. This decoder uses an external resistor/capacitor network to set its
“guard time”. The LoFi design uses 560K Ohm and 0.1�F components to set a 45
millisecond digit detection time and 45 millisecond interdigit interval.

Module Image

Figure 3 is an image of the top-view of the LoFi module. The module is a single-
slot TURBOchannel form factor (5.675 x 4.6 inches). The TURBOchannel I/O
bus connector is located on the right-hand side of this image. The bulkhead and
I/O connectors are located on the left.

Near the center of module are the DSP and shared memory sections containing the
DSP56001 and three 32Kx8 static RAMs. The CODEC section, containing two
Am79C30A devices, is located along the bottom of this figure. The DAA section
includes the the telephone line interface located on the plug-in card, the DTMF

2.3 Telephone Line Interface Section 7

1

DSP

Shared RAM

I/O

CODECs

DAA

+12V Jumper (ROM)

Figure 3: LoFi module, top view

detector, and the loop-current sense relay.

The remainder of the module includes transceivers for the TURBOchannel inter-
face, programmable logic devices for control, and a flash EEROM for module
diagnostic firmware.

8 2 HARDWARE OVERVIEW

2.4 I/O Section

LoFi has three connectors along its bulkhead opening (see Figure 4). From left
to right, these connectors are the RJ-11 telephone line service connector (line),
the RJ-11 extension phone connector (set), and the 60 pin distribution box cable
connector.

Dist. Box Cable Connector

Phone Jacks
Line Set

Figure 4: Module bulkhead connectors

Because of the limited bulkhead connector space on TURBOchannel options, a
cable is used to connect the module to an external distributionbox. The distribution
box is used to break out to the connectors listed in Table 1. Appendix A contains
information on the pin-outs for the DSP, DC power, and handset I/O connectors.

The microphone jack provides a 2.5 VDC bias for an attached low voltage electret
microphone. An internal speaker is included in the distribution box. Inserting
a 1/8" plug into the speaker jack disconnects the internal speaker. The modular
handset connector is compatible with most telephone handsets/headsets containing
a low voltage electret microphone. We generally use a lightweight headset model.4

The modular power supply used with the distribution box is a 40 W supply with a
detachable line cord. AC input between 90-260 VAC and 47-440 Hz is allowed.
The supply provides 3 DC output voltages; +5 VDC at 3A, +12VDC at 2A, and
-12 VDC at 0.3A. This supply is compatible with the power requirements of the
distribution box and with the power supply connector described in Table 10. The
power supply is needed to supply power to the stereo DAC, the speaker amplifier,
and the DSP port.

Figure 5 is an image showing the LoFi module and the front panel of the distribution
box. The connectors and switches that are needed frequently are located on the
front panel. Figure 6 shows the rear panel of the distribution box. The jacks for
“permanent” connections are located here.

4Digital part number VSXXX-JA, for example.

2.4 I/O Section 9

Connectors Description

Miniature phone jack Mic input
4 pin modular jack Handset interface
Miniature stereo phone Headphone output, stereo DAC
RCA jack Line level input, local CODEC
RCA jack Line level output, local CODEC
RCA jack x 2 Line outputs, stereo DAC
Miniature phone jack 50 Ohm loudspeaker/output with disconnect, local

CODEC (there is a small internal loudspeaker)
Miniature phone jack 50 Ohm output, remote CODEC
5 pin DIN DC power for DSP port and Hi-Fi section
DB60R Accepts distribution cable from module
DA15S DSP port (NeXT Compatible)
8 pin modular jack ISDN S interface

Switches Description

Balance control Left-right balance control for the stereo DAC
Volume control Headphone volume control for the stereo DAC
Mute switch Mutes the mic and handset input signals
Stereo mode switch Selects between the internal stereo DAC and the

external DSP port

Table 1: Distribution box connectors and switches

10 2 HARDWARE OVERVIEW

Figure 5: LoFi module and distribution box

Figure 6: Rear panel of distribution box

11

3 Programming Interface

This section provides the information necessary to write software for LoFi. This
information is organized with a view towards writing TURBOchannel host and
DSP56001 software and is presented separately.

3.1 TURBOchannel Host Perspective

Each TURBOchannel option slot occupies physical address space with a system
dependent size between 4 and 512 MB. A module’s base address is determined by
its TURBOchannel slot and is specific to the host system. LoFi uses 1 MByte of
an option slot’s physical address space for its memory map. Lazy decoding on the
module replicates this memory map at modulo 1 MB boundaries to the top of the
option slot’s address space.

LoFi presents a simple programmed I/O interface to a TURBOchannel host pro-
gram. The ULTRIX and OSF/1 device drivers (described in Section 4) permit a
user process to map a LoFi’s TURBOchannel I/O address space into its virtual
address space. User code only needs to use the module base address returned by
the device driver and the offsets documented below.

Table 2 describes the seven memory regions contained within LoFi’s 1 MB address
space. All offsets contained in Table 2 are relative to the module base address.
The size field in this table represents the range of each region as decoded by the
hardware. The actual size of the mapped hardware within each region may be
smaller. Visible to TURBOchannel host software are the diagnostic ROM, DSP
host port, shared static memory, I/O control and status register, and the CODECs.

LoFi provides 32 bits of data on read cycles and accepts 32 bits of data on write
cycles. LoFi does not support byte write operations. Depending on the memory
region addressed in a read cycle, some fields within the 32-bit word may contain
unpredictable data.

3.1.1 Diagnostic ROM

0xbb+00000: unpredictable ROM dataunpredictable unpredictable

31 24 23 16 15 8 7 0. .

Read/Write

12 3 PROGRAMMING INTERFACE

Offset Size Region
(bytes)

0x000000 256K Diagnostic ROM (2 copies)
0x040000 256K DSP host port
0x080000 256K Shared RAM (2 copies)
0x0FA000 4 I/O control register
0x0FA000 4 I/O status register
0x0FE000 32 Remote CODEC 0 <register index from 4:2>
0x0FE020 32 Local CODEC 1 <register index from 4:2>

Table 2: LoFi TURBOchannel option address map

In accordance with the TURBOchannel specification, LoFi contains a non-volatile
memory. This memory is a 28F256 (32Kx8) flash EEPROM [7].

The ROM appears at0x00000 offset from the module base address (0xbb).
ROM data appears on byte 0 of the TURBOchannel. Read data on the other bytes
are unpredictable. The ROM is indexed by TURBOchannel address bits <16:2>.

The ROM contains an eight character module identifier field [4]. The LoFi pro-
totype ROM contains the eight character string “LoFi ” while the product
module contains “AV01B-AA”.

When re-programming the 28F256, the user must insert a jumper to provide the
+12V (Vpp) programming voltage to the device. Moreover, the 6 microsecond
write recovery time required by the device is not guaranteed by the LoFi module
itself. Software must ensure that the device is not accessed within 6 microseconds
of a previous write. Furthermore, the LoFi hardware does not guarantee the
minimum/maximum write cycle interval specification.

3.1.2 DSP Host Port

0xbb+40000: unpredictable Port B dataunpredictable unpredictable

31 24 23 16 15 8 7 0. .

Read/Write

The DSP56001’s host port is a byte-wide read/write data path between the DSP core
and an external host [11]. This port is memory mapped into the TURBOchannel
I/O space and appears on byte 0 of the TURBOchannel. Read data on the other

3.1 TURBOchannel Host Perspective 13

bytes are unpredictable. The host port is indexed by TURBOchannel address bits
<12:9>. The low three address bits <11:9> specify the host port address. The high
address bit in that field indicates a read or write cycle.5 Read transactions should
set bit <12> to 1. Write transactions should set bit <12> to 0.

For more details on the DSP host port, refer to the DSP56001 User’s Manual [11].

3.1.3 Shared RAM

0xbb+80000: RAM byte 2 unpredictableRAM byte 1 RAM byte 0

31 24 23 16 15 8 7 0. .

Read/Write

The shared memory size is 32Kx24 bits, with the memory appearing on the upper
three bytes on the TURBOchannel data-bus. Read data on the low byte is unpre-
dictable. The shared RAM is indexed by TURBOchannel address bits <16:2>.

Since the DSP56001 has a 24-bit data word, I had to decide how to align the DSP’s
data path (and the shared RAM) with the TURBOchannel’s data bus. If the DSP’s
data bus were aligned with the lower three bytes then the upper byte would be
unpredictable on host read cycles. I could have added hardware to sign extend bit
<23> through bits <24> to <31> but this did not seem reasonable given the limited
space for extra components. Sign extension could be performed in host software,
but I chose instead to align the DSP’s data bus with the upper three bytes of the
TURBOchannel. Host software can clear the low order byte on read data, leaving
a valid 32-bit signed integer without requiring shift operations on the data.

3.1.4 I/O Control Register

0xbb+FA000:

31 24 23 16 15 8 7 0.28 27

Addr. Data SBZ SBZ SBZ

Write

LoFi’s control register can be used to independently address sixteen control register
fields. Each control register field is written by specifying a unique address field and

5An address bit was used to identify the cycle type to overcome a timing mismatch between the
DSP56001 host interface port and the TURBOchannel interface.

14 3 PROGRAMMING INTERFACE

a data field. The supported contents of the address and data fields are documented
in Table 3.

Addr. Data <d3:d0> Name Description

0 <d2:d0> CA CODEC Address
1 d0 HS Hook-Switch
2 d0 EA Enable Audio
3 d0 ED Enable DSP
4 d0 DM DSP Mode
5 <d1:d0> <ET:EF> Interrupt Enable
6 d0 GC Gain Control

7-15 n/a n/a Reserved

Table 3: I/O control register field descriptions

The CODEC Address (CA) field in the control register should not be written by
the host. Use of this field is reserved for DSP firmware and is described in Section
3.2.1.

The Hook-Switch field (HS) is used to control the state of the telephone line
interface’s hook-switch relay. When HS is set, the telephone line interface goes
off-hook. If HS is cleared, the interface goes on-hook. The reset condition is
on-hook.

The Enable Audio field (EA) controls the reset input on the Am79C30A devices.
When EA is set, the Am79C30A CODECs are enabled. The CODECs are disabled
by the TURBOchannel reset.

The Enable DSP field (ED) controls the reset input on the DSP56001 device. When
ED is set, the DSP is enabled. The hardware will not allow the DSP to write this
field. The reset condition is disabled.

The DSP Mode field (DM) is used to control the DSP mode pins [11]. The host
should set this field to the desired mode prior to enabling the DSP. When clear, the
DSP mode is set for normal expanded mode (MODB=1, MODA=0). When set,
the mode is set for single chip mode (MODB=0, MODA=1). The reset condition
is clear. We generally bootstrap the DSP using normal expanded mode.

The Enable Telephone and Enable Frame fields (ET and EF) control the TUR-
BOchannel host interrupt enable. When ET is set, telephone line interrupts to the
host are enabled. When EF is set, the 8KHz frame interrupts are enabled. The reset
condition for both ET and EF is clear, disabling interrupts to the TURBOchannel.

3.1 TURBOchannel Host Perspective 15

Section 3.1.8 provides more detail on LoFi’s interrupt sources.

The GC field controls the “Gain Control” circuit of the DS2249PH on the product
version of LoFi. When this field is set, the gain control circuit is enabled. Clearing
this field disables the gain control circuit. The reset condition is clear. The
hardware will not allow the DSP to write this field.

3.1.5 I/O Status Register

0xbb+FA000: unpredictable

31 0.
Status Register Fields

14 13

Read

The status register (read) contents are described in Tables 4 and 5.

Bit Field Name Description

31 ˜ codec1stat CODEC 1 interrupt state. This bit is 0 when the
interrupt is asserted.

30 ˜ codec0stat CODEC 0 interrupt state. This bit is 0 when the
interrupt is asserted.

29 EF Frame interrupt enable state for the TURBOchannel.
This bit is 1 when the 8 KHz sample interrupt is en-
abled. This bit is a read-only copy of the EF field in
the I/O control register.

28 ET TLI interrupt enable state for the TURBOchannel.
This bit is 1 when the telephone interrupts (ring, loop-
current, DTMF detect) are enabled. This bit is a read-
only copy of the ET field in the I/O control register.

27 ringstat Ring interrupt state. This bit is 1 during the ringing
“on” period. This bit is 0 during the ringing “off”
period.

26 lcdstat Loop-current detect state. This bit is 1 when loop-
current has been detected. If an extension phone is
connected to the set jack, lcdstat indicates that the
extension phone is off-hook.

Table 4: I/O status register fields, read format

16 3 PROGRAMMING INTERFACE

Bit Field Name Description

25 dtmfstat DTMF detection interrupt state. This bit is 1 when a
DTMF key has been detected.

24:21 dtmf<3:0> DTMF key. See Table 6 for the coding of this field.
20 dtmf valid This bit is 1 when the dtmfstat and dtmf<3:0> are

valid. dtmfstat and dtmf<3:0> shouldbe ignored when
this bit is 0.

19 ˜ hoststat DSP host interrupt state. This bit is 0 when the DSP
has interrupted the host.

18 Reserved Unpredictable on read.
17 DM DSP boot mode control state. Indicates the mode of

the DSP56001 when it leaves the reset state. This bit
is a read-only copy of the DM field in the I/O control
register.

16 EA Enable audio state. This bit is 1 when the CODECs
are enabled. This bit is a read-only copy of the EA
field in the I/O control register.

15 HS Hook-switch control. This bit is 1 when the telephone
hook-switch has been commanded off-hook. This bit
is a read-only copy of the HS field in the I/O control
register.

14 ED Enable DSP state. This bit is 1 when the DSP is
enabled. This bit is a read-only copy of the ED field
in the I/O control register.

13:0 Reserved. Unpredictable on read.

Table 5: I/O status register fields, read format

3.1 TURBOchannel Host Perspective 17

1209 Hz 1336 Hz 1477 Hz 1633 Hz

697 Hz 1 0x1 2 0x2 3 0x3 A 0xD

770 Hz 4 0x4 5 0x5 6 0x6 B 0xE

852 Hz 7 0x7 8 0x8 9 0x9 C 0xF

941 Hz * 0xB 0 0xA # 0xC D 0x0

Table 6: DTMF key decoding:Key dtmf<3:0> code.

3.1.6 Remote CODEC

0xbb+FE000: unpredictable unpredictableunpredictable Data

31 24 23 16 15 8 7 0. .

Read/Write

The remote CODEC handles the telephone line audio and the ISDN S interface.
The analog A input is connected to the receive telephone line audio. The Ear output
is connected to the transmit telephone line audio. The loudspeaker output drives
the second loudspeaker output on the distribution box for use as an alternate local
output.

CODEC data appears on byte 1 of the TURBOchannel. Read data on the other
bytes are unpredictable. The CODEC’s registers are indexed by TURBOchannel
address bits <4:2>.

Refer to the Am79C30A Revision E data sheet for further information on program-
ming the CODECs [1].

3.1.7 Local CODEC

0xbb+FE020: unpredictable unpredictableunpredictable Data

31 24 23 16 15 8 7 0. .

Read/Write

The local CODEC handles the local audio input and output. The microphone and
handset mic input are connected to the A input. The line level input is connected
to the B input. The Ear output drives the line level output and the handset ear

18 3 PROGRAMMING INTERFACE

connector. The loudspeaker output drives the distribution box speaker and the
speaker 1 connector.

CODEC data appears on byte 1 of the TURBOchannel. Read data on the other
bytes are unpredictable.The CODEC’s registers are indexed by TURBOchannel
address bits <4:2>.

3.1.8 Interrupts

The TURBOchannel I/O bus supports one hardware interrupt per option module.
The logical OR of several independent interrupt sources can cause LoFi’s TUR-
BOchannel interrupt to assert. The interrupt signal is cleared by reading the I/O
status register.

Host Request Interrupt

The “Host Request” interrupt allows the DSP to alert the TURBOchannel host that
the DSP needs servicing. This interrupt may be used in support of inter-processor
communication in the shared memory. The Host Request interrupt can be enabled
through the host port of the DSP [11].

Real-Time Frame Interrupts

The second source of interrupts are the “real-time” interrupts. Each CODEC has
an interrupt output that can be asserted once every frame (125 microseconds) when
the output is enabled through the microprocessor interface. If the ET field is set in
the I/O control register, then the assertion of either CODEC interrupt output will
cause a TURBOchannel interrupt.

The CODEC interrupts can be synchronized on a frame level so that there will be
no more than 10 microseconds between assertion of the remote and local CODEC
interrupts (the remote CODEC interrupt follows the local CODEC interrupt). This
is achieved using this pseudocode initialization sequence of the remote and local
CODECs:

/* Configure primary vs. slave IOM-2 mode.
* Remote CODEC0 is the master.
* Local CODEC1 is the slave.
*/
codec_write_1(lofi, CODEC_SLAVE, PP_PPCR1, PP_PPCR1_BITS_IOMS);
/*... */
codec_write_1(lofi, CODEC_MASTER, PP_PPCR1, PP_PPCR1_BITS_IOMM

| PP_PPCR1_BITS_ACTIVE);

3.1 TURBOchannel Host Perspective 19

The first statement writes the PPPPCR1 register in the slave CODEC on the
specified LoFi module. The subsequent statement initializes the same register in
the master CODEC on the same LoFi module. The second statement sets the IOM
master bit and IOM active bit for the master CODEC in the PPPPCR1 register.

In general, only the remote CODEC’s interrupt output is enabled after host software
initializes the CODECs as described above. Further, the EF field is never set during
normal operation — the DSP firmware receives the CODEC frame interrupt and
moves audio data between shared memory and the CODECs.

Telephone Interface Interrupts

The third set of interrupts is related to the telephone interface. The ring detection
interrupt, the DTMF detection interrupt, and the loop current detection interrupt
are enabled when the ET field is set in the I/O control register.

Incoming rings are detected by the telephone line interface hardware. An interrupt
is generated for each transition of the ringing state (rings are nominally 2 seconds
on and 4 seconds off).

DTMF interrupts are generated for each transition of the DTMF detection status
indicating the beginning and end of a Touch-Tone key. DTMF interrupts with
dtmf stat set should be ignored if the dtmfvalid bit is not set in the I/O status
register.6

Loop-current interrupts are generated for each transition of the loop-current detec-
tion state. If an extension telephone is connected to the set connector, software
can uniquely determine the state of the extension phone’s hook-switch. The loop-
current status bit in the I/O status register will be asserted if the extension phone is
off-hook. Pulse dialing from the extension phone can be decoded by monitoring
the sequence of changes in the loop-current detector while the DAA is on-hook.

DSP Interrupt

The TURBOchannel host can interrupt the DSP through its host port [11]. This
interrupt may be used in supportof inter-processor communication. The DSP’s host
port interrupt vector capability may also be used to support a DSP debugger/trace
function.

6Empirical evidence has shown that earlier revisions of the DTMF detector may occasionally
generate rogue interrupts immediately after the end of a Touch-Tone key. However, there is an
additional “valid” status bit that can be used to uniquely identify valid tone events.

20 3 PROGRAMMING INTERFACE

3.1.9 I/O Transaction Costs

Table 7 documents the cost of host read and write cycles to the LoFi module. There
are two cycle time specifications on TURBOchannel I/O cycles. The first cycle
time specifies the number of TURBOchannel clock cycles a transaction will last
(including the de-select clock at the end of the transaction) when the DSP is not
enabled. The second specifies the nominal transaction length when the DSP is
enabled.

The DSP is the LoFi module data bus master. TURBOchannel transactions must
request the LoFi bus and have it granted before the actual cycle on LoFi begins.
This overhead is nominally 4 TURBOchannel clocks to synchronize across clock
domains and to permit the DSP to complete its current external cycle. The host
will only experience this delay when the DSP is enabled.

A sequence of TURBOchannel transactions to LoFi will encounter the bus re-
quest/grant overhead on the first transaction only, as long as subsequent transac-
tions occur within two TURBOchannel clocks of the previous transaction. This
host optimization may cause starvation of the DSP if care is not taken in the device
interface code running on the host processor. This is a problem on the Alpha AXP
workstations whose I/O interface can saturate the TURBOchannel with buffered
write cycles. On these systems, the device library code must take special care not
to write large bursts that may lock-out the DSP.

Region R/W w/o DSP Nominal w/DSP

ROM R 9 13
W 8 12

Host Port R 7 11
W 6 10

RAM R 6 10
W 5 9

CSR R 6 10
W 5 9

CODEC R 8 12
W 9 13

Table 7: TURBOchannel read/write access cycles

3.2 DSP56001 Perspective 21

3.2 DSP56001 Perspective

This section contains information specific to writing firmware for the DSP56001
on LoFi.

3.2.1 Memory Map

The DSP56001 uses 16 bits of address (0x0000 through0xFFFF) in three mem-
ory spaces: X-data, Y-data, and program. The LoFi hardware does not distinguish
between these memory spaces except as shown in Figure 7 or as described below.

On-chip I/O

Table ROM

Default
Reset Vector

X RAM Y RAM

Table ROM

0x0000

0x0100

0x0200

0x8000

0xE0000xE800

0xFFFF

0x7FFF

Program
RAM

X Space Y Space Prog. Space

0xFFF0

RAM RAM RAM

RAM
(alias)

RAM
(alias)

RAM
(alias)

CR and SR

CODEC0
CODEC1

0xFFF0

0xFFF8

Figure 7: Default normal expanded memory map with data ROMS enabled

LoFi contains 32K 24-bit words of shared static RAM mapped in the DSP’s address
space at0x0000 and again at0x8000 (e.g., 0x8500 is an alias for address
0x0500). The shared RAM is shown by the shaded regions in Figure 7.

When the DSP is in “normal expanded mode”, the reset vector is located at0xE000
in program space. We generally bootstrap DSP firmware in this mode by placing
the initial DSP code segment at0x60007 in the shared memory and then enabling
the DSP. You can then choose to have the DSP load the internal program memory

7Remember that there are two copies of the RAM array within the DSP’s address space.

22 3 PROGRAMMING INTERFACE

with the critical code segments in order to avoid contention with the host in the
shared memory.

Space:Offset Selection

Y:0xE800 I/O control and status register
Y:0xFFF0 Remote CODEC (index from CR<CA>)
Y:0xFFF8 Local CODEC (index from CR<CA>)

Table 8: Y memory space decoding

Table 8 shows the address decoding for external I/O in the Y memory space. The
region from0xFFC0 to0xFFFF in Y memory space is reserved by the DSP56001
for off-chip peripheral I/O devices. The number of wait states may be separately
programmed for this region through the BCR register. The “External I/O Memory”
field in the BCR register should be set to 6 for LoFi.

The I/O control and status registers described in Sections 3.1.4 and 3.1.5 are mapped
in the Y memory space as shown in Table 8. The DSP sees only the upper 24 bits of
both registers. Therefore, subtract eight from the bit-field positions when referring
to the descriptions of the 32-bit I/O the control and status registers.

The CODECs are mapped into the external I/O peripheral space at the top of the Y
memory. Data from the CODECs appear on data-bus byte 0. The read contents of
data-bus bytes 1 and 2 are unpredictable.

The CODEC address field (CA) in the I/O control register is used by the DSP to load
a private register with the contents of <d2:d0> in the control register data field. The
private register provides the address to the CODECs for all DSP references.8 While
this requires a few extra steps to read or write an arbitrary CODEC register, this
does not impact the overall performance since CODEC cycles occur infrequently.

The following sequence reads the interrupt register in the remote CODEC and the
data registers in the remote and local CODECs.

move #$0<<16,b0 ; Set CODEC’s address index to 0 by
move b0,$E800 ; setting control register CA field.
movep Y:<<$FFF0,b0 ; Then read remote CODEC IR.

move #$5<<16,b0 ; Set CODEC’s address index to 5 by
move b0,$E800 ; setting control register CA field.
movep Y:<<$FFF0,x:(r0)+ ; Save remote CODEC data register.
movep Y:<<$FFF8,x:(r1)+ ; Save local CODEC data register.

8This register is needed to meet the address hold-time requirements of the Am79C30A device.

3.2 DSP56001 Perspective 23

The host port and the diagnostic ROM are not accessible from the DSP since they
are connected to a separate byte-wide bus on LoFi.

3.2.2 Interrupts

The DSP56001 has two external interrupts,IRQA andIRQB. IRQA is asserted by
the logical OR of the CODEC frame interrupts.IRQB is asserted by the logical
OR of all of the telephone line interface interrupts. These interrupt sources are
described in Section 3.1.8.

The TURBOchannel host can interrupt the DSP through the host port.

3.2.3 Serial I/O

This section describes the DSP56001 serial I/O port (port C). This port’s pins are
connected to the DSP port connector on the distributionbox. The port is compatible
with the DSP port on NeXT workstations and can use external devices designed
for that system.

The serial port on LoFi operates in one of two modes, selected by a switch on the
distribution box. In theDSPmode, the serial port pins are connected through to
the DSP port to an external device. In theStereomode, the serial port is connected
to the stereo DAC built into the distribution box.

Serial Port Configuration

The following sequence should be used to configure and initialize the DSP56001’s
serial port (SSI):

1. Set up the SSI control registers A and B.

2. Configure the SSI and parallel port pins.

3. Write a zero to the SSI’s transmit register.

4. Set the SSI’s IPL and enable interrupts.

For proper port initialization, the pin configuration must be done after control
registers A and B are set up. This is the vector code for the SSI transmit data
interrupt:

24 3 PROGRAMMING INTERFACE

section reset
org p:I_SSITD
jsr <ssi_int ; SSI tx data

org p:I_SSITDE
jsr <ssi_int ; SSI tx data w/ error

The following code is a relatively general SSI interrupt handler that copies samples
between the serial port and ring buffers. In this subroutine, the transmit frame
sync TFS flag in the SSI status register SSISR is used to select between the left
(A) channel and the right (B) channel. This bit will be set for the first word in the
frame and clear for the second word.

ssi_int
jclr #m_tfs,x:<<m_sr,ssi_rx_b ; which channel?

For the stereo DAC, the frame sync must be on pinSC1 which is driven from the
Output Flag 1 bit in the SSI’s control register B:

; Channel 0 (A)
bclr #1,x:<<m_crb ; toggle OF1 (SC1)

Finally, data is moved between the serial port and the transmit and receive ring
buffers. Registerr2 points to the current spot in the receive buffer, and(r2+n2)
points to the current transmit data.

movep x:m_rx,a1 ; get receive data
move a1,x:(r2) ; store in buffer

move x:(r2+n2),a1 ; fetch transmit data
movep a1,x:m_tx ; send it

lua (r2)+,r2 ; increment
rti

The code for updating the right (B) channel is nearly identical, except that the sense
of SC1 is inverted:

; Channel 1 (B)

ssi_rx_b
bset #1,x:<<m_crb
movep x:m_rx,a1 ; get receive data
move a1,x:(r3) ; store in buffer

3.2 DSP56001 Perspective 25

move x:(r3+n3),a1 ; fetch transmit data
movep a1,x:m_tx ; loopback

lua (r3)+,r3 ; increment
rti

Using the Stereo DAC

This section describes how to configure the DSP56001’s serial port for use with
the stereo DAC. The following signals are used:

� SCK (serial clock) Provides the serial data bit clock. This signal is generated
within the external distribution box when enabled by the DSP port enable
switch. The clock rate is fixed at 1.4112 MHz (32 * 44.1 KHz).

� STD (transmit data) The digital audio data from the DSP to the stereo DAC.
The data must be transmitted MSB first.

� SC1 (serial control 1) SC1 is used as a channel clock from the DSP to identify
the first bit in each channel for the DAC.

� SC0 (serial control 0) Optional control of attenuation on the DAC output.
When asserted low, the DAC attenuates the audio signal by 12 dB.

The stereo DAC does not use any of the other DSP56001 serial port pins:SRD,
SCLK, TXD, orRXD. The serial port should be configured as follows:

� 16-bit words

� 2 word frames

� Transmit and receive enable

� Transmit interrupt enable

� Network mode

� Continuous (non-gated) data clock

� Synchronous mode

� One bit frame sync

26 3 PROGRAMMING INTERFACE

� Shift MSB first

� External clock

� SC2, SC1, SC0 configured as outputs

� OF1 andOF0 set

This configuration corresponds to control register A and B settings of0x4100 and
0x7b1f, respectively.

Using External Devices

This section describes how to configure the DSP56001’s serial port for use with
external third-party devices, such as the Ariel ProPort. The following serial port
signals are used:

� SCK (serial clock) Provides the serial data bit clock. Usually provided by
the external device at rate of 32 times the sample rate.

� STD (transmit data) The digital audio data from the DSP to the external
device. The data is usually transmitted MSB first.

� STD (receive data) The digital audio data from the external device to the
DSP. The data is usually transmitted MSB first.

� SC2 (serial control 2)SC2 is used as a channel clock from the external
device to the DSP to identify the first bit in each frame.

For some devices, the signalsPC2, PC1, andPC0 are used to set the sample rate.
SC1 andSC0 are usually not used—consult the device’s manual for details.

The port configuration is nearly identical to the configuration for the stereo DAC.
The following configuration should work for most devices:

� 16-bit words

� 2 word frames

� Transmit and receive enable

� Transmit interrupt enable

27

� Network mode

� Continuous (non-gated) data clock

� Synchronous mode

� One bit frame sync

� Shift MSB first

� External clock

� SCKD, SC2, SC1, SC0 configured as inputs

This configuration corresponds to control register A and B settings of0x4100 and
0x7a00, respectively.

For external devices that support different sample rates, the rate may be selected
with the pinsPC2/SCLK, PC1/TXD, andPC0/RXD. These pins must be config-
ured as parallel output bits:

movep #$0001f8,x:m_pcc ; low 3 bits: parallel
movep #$7,x:m_pcddr ; low 3 bits: output

Once configured, the 3-bit data for the desired sample rate can be written to the
Port C data register (PCD) as follows:

movep #mode,x:m_pcd ; set the port C bits to mode

4 Device Driver

We have written UNIX device drivers for LoFi under both ULTRIX/RISC and DEC
OSF/1 for Alpha AXP operating systems. Both drivers are functionally identical
from the perspective of a user space process.

The LoFi device driver has two principal functions in addition to implementing
open() andclose() entry points. First, the device driver manages an event queue;
interrupts from LoFi are serviced by the device interrupt handler and an entry is
posted to the event queue. Second, the LoFi device driver implements anioctl()
operation which maps the event queue and the LoFi device into the caller’s address
space. This enables a user process to read the event queue entries and treat the

28 4 DEVICE DRIVER

shared RAM, I/O control and status register, and all other parts of the LoFi device
memory map as memory.

The following code segment defines theinterrupt event andlofi info structures. The
interrupt event structure describes the format of an entry on the event queue. The
lofi info structure contains the user space addresses of the event queue and module
base.

typedef enum {
DSP = 1,
RT = 2,
TLI_RING = 3,
TLI_DTMF = 4,
TLI_LOOP = 5,
OPTION_INTR = 6,
UNKNOWN = 7

} EventType;

struct interrupt_event{
EventType type; /* event type */
long status; /* value of the status register */
struct timeval time; /* Systems notion of time */
unsigned long dsptime; /* DSP’s notion of time when it occurred */
long seq; /* sequence number of the event */
union { /* Additional data by type. */

unsigned char dsp_data[8];
struct codec_intr {

char master_ir;
char master_rx;
char slave_ir;
char slave_rx;

} codec_data;
} data;

};

struct lofi_info {
int flag; /* Is open (boolean) */
int event_size; /* size of the events themselves */
int event_list_size; /* Size of the event queue */
struct interrupt_event *ks_start; /* Head of queue in kernel space*/
struct interrupt_event *us_start; /* Head of queue in user space */
volatile int head; /* head of circular list */
volatile int tail; /* tail of circular list */
long last_seq; /* last sequence number used */
struct lofi_reg *ks_reg; /* addresses of lofi option space in ks */
struct lofi_reg *us_reg; /* addresses of lofi option space in us */
void *rsel; /* select address */
long old_rd_csr; /* old csr */

};

The event queue and thelofi info data structures are initialized by the driver via

29

theQIOLOFIINFO ioctl(). An example use of thisioctl() is shown in this next code
segment.

#define QIOLOFIINFO _IOR(’a’, 1, struct lofi_info *)
#define QIOLOFITOFFS _IOW(’a’, 2, int)

struct lofi_info *lofiOpen(devp)
char *devp;

{
int fd;
struct lofi_info *lofi;

if ((fd = open(devp, O_RDWR, 0)) < 0) {
fprintf(stderr, "can’t open %s, errno = %d\n", devp, errno);
exit(1);

}
if (ioctl(fd, QIOLOFIINFO, &lofi) < 0) {

fprintf(stderr, "QIOLOFIINFO failed, errno = %d\n", errno);
exit(1);

}
return(lofi);

}

The device driver manages an array ofinterrupt event structures as a circular buffer
containing interrupt events for reading by a user process. The producer of events
on the event queue is the device driver interrupt handler. A user space process is
the consumer of events from the queue. A lock is not needed on this shared data
structure because thehead field is only modified by the consumer process and the
tail field is only updated by the producer.

When an interrupt occurs, the device driver processes the interrupt, determines if it
should cause an event to be posted, checks for an empty entry at the tail of the event
queue, fills in the entry, and updates thetail index in the sharedlofi info structure. If
there is no room in the queue, the event is discarded. The TURBOchannel interrupt
is cleared as a side-effect of the host processor reading the I/O status register while
an interrupt is pending.

The event queue is considered not empty when thehead and tail indices in the
lofi info structure are not equal. When this is true, the consumer process may
remove the entry indexed by thehead field. The consumer process should then
update thehead field.

The following code segment demonstrates how to determine if the queue is empty
and how to remove the entry at the head of the queue.

30 4 DEVICE DRIVER

int GetEvent(info, event)
struct lofi_info *info;
struct interrupt_event *event;
{

struct interrupt_event *e;
int i;

if (info->head == info->tail)
return 0;

i = info->head;
e = (struct interrupt_event *)((int)(info->us_start)

+ info->event_size * i);
*event = *e;
if (i >= info->event_list_size - 1)

i = info->head = 0;
else

i = ++info->head;
return 1;

}

The device driver creates three shared memory segments when theQIOLOFIINFO
ioctl() is invoked. The shared memory segments remain allocated even after the
user space process exits unless the shared memory segments are explicitly detached
by the user process. To properly close the device, these shared memory segments
should be detached. The following code segment demonstrates how to detach the
shared memory segments and close the LoFi device.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/param.h>

void close_lofi(int fd, struct lofi_info *lofi)
{

if(shmdt((int)(lofi->us_start) & ˜(CLBYTES - 1)) != 0)
perror("close_lofi: shmdt failed (us_start).\n");

if(shmdt((int)(lofi->us_reg) & ˜(CLBYTES - 1)) != 0)
perror("close_lofi: shmdt failed (us_reg).\n");

if(shmdt((int)(lofi) & ˜(CLBYTES - 1)) != 0)
perror("close_lofi: shmdt failed (info).\n");

close(fd);
}

31

5 Diagnostic and Test Software

Developing comprehensive and accurate diagnostic software for new hardware
devices is a chore. For a low-volume research prototype like LoFi, it did not seem
worthwhile. Further, there is a tension between go/no-go diagnostics and tools for
the checkout and repair of newly manufactured modules.

Instead, to test and exercise the hardware, I implemented a diagnostic test program
called “hwddt”. hwddt fills both the functions of a general coverage diagnostic
and a focused tool for assisting module repair. General coverage diagnostics are
used to verify that a module is still working, while focused diagnostics are used to
isolate a failure and to assist in its repair.

hwddt has built-in functions to manipulate the hardware, but it is otherwise built
on a simple interpreted scripting language.

The built-in commands support reading and writing LoFi memory regions by
name or by offset, output of formatted text, and a few higher level functions such
as recording or playing sound files. All other operations are built as scripts.

The built-in language supports conditional evaluation of expressions but does not
support any looping constructs other than “repeat count command”. Although we
found the existing language adequate for writing LoFi scripts, the built-in language
should have included a looping construct.

The scripting language is extensible. Commands that are not known to the in-
terpreter are assumed to be file names containinghwddt commands. Complex
test scripts can be written using the built-in scripting language (or other script file
names). I used these facilities when building the general coverage test suite, for
example.

hwddt is implementedusing a lexical analyzer implemented withlex and a grammar
parser implemented inyacc. The language includes hardware access capabilities,
expressions and variables, and statements.

� Hardware access is accomplished through predefined symbols and functions.
Access to the LoFi address spaces and registers is accomplished by reference
to symbolic names. For example,set cr.hs = !cr.hs would toggle the state
of the hook-switch field of the LoFi control register. Some operations that
would be expensive to code as scripts are included as higher level functions.
For example,test ram performs 50 iterations of a random access memory
test for the shared memory on the module.

32 5 DIAGNOSTIC AND TEST SOFTWARE

� Expressions include logical and arithmetic operators, nesting, and numeric
literals in various bases. Scripts can define and use variables by name for
holding temporary values.

� Statements include control flow, repetition, printing, and assertion checking
routines.

The following is an examplehwddt test script used to test the interface between
the host system and the DSP. The first command,memfill, is the name of another
hwddt script file that fills a region of the shared memory with a constant value. All
other commands used in this example are from the built-in command set.

#
Zero the shared memory and load the DSP test program.
#
memfill 0x0000 0x8000 0x0 # index, length, data
load "/usr/local/lib/AF/lodfiles/btest.lod"
#
Enable the DSP.
#
set cr.ed = 1
#
Allow the DSP to initialize itself,
then check that the host flags are set properly.
#
wait 100 # in milliseconds
assert (cr.ed == 1) "dsp not enabled"
set $hflags = (host[2]&0x18)>>3
assert ($hflags == 0x3) "host flags not set"
#
Cause DSP interrupt and check for incrementing count.
#
assert ((ram[0x4001]>>8)==0) "dsp interrupt count not 0"
set host[7]=0xf
assert ((ram[0x4001]>>8)==1) "dsp interrupt count not 1"
set host[7]=0xf
assert ((ram[0x4001]>>8)==2) "dsp interrupt count not 2"
#
The DSP firmware will cause a host interrupt whenever
a magic value is received in the host port.
Use this capability to check DSP to host interrupts.
#
printf "...should see 0 events flushed \n"
flush event
set host[0]=0x1
send3host 0xaabbcc # magic value.
send3host 0xaabbcc # magic value.
get event
assert (evstatus == 1) "get event status false, should be true."
assert (ev.type == 1) "event type not DSP"
assert (ev.host[5]==0xaa) "event host data invalid"

33

set $seqnum = ev.seq
get event
assert (evstatus == 1) "get event status false, should be true."
assert (ev.type == 1) "event type not DSP"
assert (ev.host[6]==0xbb) "event host data invalid"
set $seqnum = $seqnum + 1
assert ($seqnum == ev.seq)
get event
assert (evstatus == 0) "get event status is true and should not be."
#

Thehwddt language evolved as we were debugging the hardware rather than being
designed completely beforehand. This has resulted in some awkward features, but
should not reflect on this method for testing hardware. We have found the use
of a general scripting and expression evaluation language augmented by hardware
specific access routines to be an extremely flexible and powerful technique for
debugging and exercising new hardware. In fact,hwddt was used for an unrelated
TURBOchannel module after modifying the LoFi specific parts of the command
language.

The notionof a general script language augmented by application specific functions
is extremely powerful. In 1990 it was necessary to start from scratch, but now
there are well-designed tools such as Tcl and Tk which are very well suited to this
purpose and which also offer script-driven graphical user interfaces [12, 13].

6 Summary

During the design phase, a DEC product group became interested in making LoFi a
Digital product. The product group designed the external distribution box for LoFi
and made a few other changes before introducing “DECaudio” to the marketplace
in 1991. At the same time, the first version of the product software, XMedia, was
introduced.

We have been using LoFi in DECstation workstations at CRL since 1990 and are
now using LoFi in our Alpha AXP workstations.9 The original design has met
our desktop audio I/O needs ranging from 8 KHz telephony quality speech to
higher fidelity sampling for continuous speech recognition and music synthesis.
We generally use the AudioFile system on top of the LoFi hardware.

In retrospect, there are a few things that could have been done to the design that
would make it even more useful today. First, the design could have supported

9DECaudio is not officially supported on Alpha AXP systems.

34 6 SUMMARY

DMA operations at the cost of one more programmable logic device. Use of DMA
hardware would lessen the cost of moving CD quality audio with programmed I/O.
At the time the module was designed, there was not a clear choice for adding an
integrated stereo ADC/DAC with programmable sampling rates. There are several
devices available today that would be quite suitable.

The LoFi diagnostic software, example device interface library, and device driver
are included in our AudioFile source code kit. This kit also includes the source
code for our LoFi audio server. Interested readers may retrieve this kit via
anonymous FTP fromcrl.dec.com (192.58.206.2). The kit is located in
/pub/DEC/AF/AF2R2.tar.Z.

Acknowledgments

Larry Stewart was the principal instigator behind the design of LoFi as well as a
source of many ideas and comments on my designs. Rich Hyde provided us with
the initial device driver. Jim Gettys assisted with the writing of the initial device
driver and low level play and record code. Andy Payne provided the DSP56001
code examples and explanation for connecting to external DSP port devices. Andy
also added many useful features to the diagnostic software,hwddt.

35

A Distribution Box Connectors

Pin Signal Pin Signal
1 SCK 9 GND
2 SRD 10 GND
3 STD 11 GND
4 SCLK 12 SC2
5 RXD 13 SC1
6 TXD 14 SC0
7 +12 VDC 15 GND
8 -12 VDC

Table 9: DSP port pinout, 15 pin D-subminiature, female

Pin Signal
1 Shield
2 GND
3 +5 VDC
4 -12 VDC
5 +12 VDC

Table 10: Distribution box power supply connector pinout

Pin Signal
1 Handset Mic-
2 Handset Ear-
3 Handset Ear+
4 Handset Mic+

Table 11: Handset connector, 4 pin modular receptacle

36 REFERENCES

References

[1] Advanced Micro Devices, Sunnyvale, CA.AM79C30A Revision E Data Sheet, 1991.

[2] Dallas Semiconductor Corp., Dallas, TX.Teleservicing Design Handbook, March
1990.

[3] Digital Equipment Corporation. DECstation 5000/200 KN02 System Module
Functional Specification, Aug. 27, 1990. Available for anonymous FTP from
gatekeeper.dec.com.

[4] Digital Equipment Corporation.TURBOchannel Firmware Specification, Dec., 1991.
Order No. EK-TCAAD-FS.

[5] Digital Equipment Corporation.TURBOchannel Hardware Specification, Dec., 1991.
Order No. EK-369AA-OD.

[6] Digital Equipment Corporation.TURBOchannel Mechanical Drawings, Dec., 1991.
Order No. EK-TCAAD-OM.

[7] Intel Corp., Literature Sales Mt. Prospect, IL.Memory Databook, 1990.

[8] Thomas M. Levergood, Andrew C. Payne, James Gettys, G. Winfield Treese, and
Lawrence C. Stewart. AudioFile: A network-transparent system for distributed audio
applications. InProceedings of the USENIX Summer Conference, June 1993.

[9] Thomas M. Levergood, Andrew C. Payne, James Gettys, G. Winfield Treese, and
Lawrence C. Stewart. AudioFile: A network-transparent system for distributed audio
applications. Technical Report 93/8, Digital Equipment Corporation, Cambridge
Research Lab, 1993.

[10] Mitel Semiconductor Corp., San Jose, CA.Microelectronics Analog Communications
Handbook, Issue 7, 1990.

[11] Motorola, Inc., Phoenix, AZ.DSP56001 User’s Manual, DSP56000UM/AD Rev. 2,
1991.

[12] John K. Ousterhout. Tcl: An embeddable command language. InProceedings of the
USENIX Winter Conference, January 1990.

[13] John K. Ousterhout. An X11 toolkit based on the Tcl language. InProceedings of the
USENIX Winter Conference, January 1991.

[14] Phillips Components Division.Radio, audio and associated systems, 1990.

[15] Lawrence C. Stewart, Andrew C. Payne, and Thomas M. Levergood. Are DSP chips
obsolete? InProceedings of the International Conference on Signal Processing
Applications and Technology, pages 178–187, Boston, MA, November 1992. Also
available as a Digital CRL technical report, 92/10.

[16] Bruce F. Webster.The NeXT Book. Addison-Wesley, Reading, MA, 1989.

