
Contention in Shared Memory

Algorithms
Cynthia Dwork� Maurice Herlihy�

Orli Waarts�

Digital Equipment Corporation
Cambridge Research Lab

CRL ����� August �� ����

�IBM Almaden Research Center �dwork�almaden�ibm�com�
�herlihy�crl�dec�com
�IBM Almaden Research Center �orli�cs�stanford�edu�� During part of this re�

search the third author was in Stanford University and supported by IBM Gradu�
ate fellowship� U�S� Army Research O�ce Grant DAAL����	
�G��
��� NSF Grant
CCR���
	�
� and ONR Contract N���
����K��
���



Abstract

Most complexitymeasures for concurrent algorithms for asynchronous shared�
memory architectures focus on process steps and memory consumption� In
practice� however� performance of multiprocessor algorithms is heavily in�
	uenced by contention� the extent to which processes access the same loca�
tion at the same time� Nevertheless� even though contention is one of the
principal considerations a
ecting the performance of real algorithms on real
multiprocessors� there are no formal tools for analyzing the contention of
asynchronous shared�memory algorithms�

This paper introduces the �rst formal complexity model for contention
in multiprocessors� We focus on the standard multiprocessor architecture in
which n asynchronous processes communicate by applying read� write� and
read�modify�write operations to a shared memory� We use our model to de�
rive two kinds of results� �� lower bounds on contention for well known
basic problems such as agreement and mutual exclusion� and �� trade�o
s
between latency maximal number of accesses to shared variables performed
by a single process in executing the algorithm� and contention for these
algorithms� Furthermore� we give the �rst formal performance analysis of
counting networks� a class of concurrent data structures implementing shared
counters� Experiments indicate that certain counting networks outperform
conventional single�variable counters at high levels of contention� Our anal�
ysis provides the �rst formal explanation for this phenomenon�

A preliminary version of this work appeared in the ���� ACM Symposium
on Theory of Computing�
c�Digital Equipment Corporation� IBM Corporation� and Orli Waarts �����
All rights reserved�



� INTRODUCTION �

� Introduction

Most complexity measures for concurrent algorithms for the asynchronous
shared�memory model focus on process steps and memory consumption� In
practice� however� performance is heavily in	uenced by contention� the extent
to which processes access the same location simultaneously� Because of lim�
itations on processor�to�memory bandwidth� performance su
ers when too
many processes attempt to access the same memory location simultaneously�
In shared�bus architectures� for example� simultaneous attempts to access the
same shared variable may saturate the bus� resulting in substantial delay ����
In a network�based architecture� simultaneous attempts to access the same
memory module may overload certain network switches� also resulting in de�
lay� The phenomenon of memory contention is well�known to practitioners�
and a variety of ad�hocmechanisms are used in practice to reduce contention��
Nevertheless� even though contention is one of the principal considerations
a
ecting the performance of real algorithms on real multiprocessors� no for�
mal theoretical tools are available to analyze the contention produced by
asynchronous shared�memory algorithms� Consequently� although the stan�
dard shared�memory model is useful for developing concurrent algorithms� it
does not provide a satisfactory performance model�

This paper introduces for the �rst time a formal complexity model for
contention in shared�memory multiprocessors� We use our model to derive
two kinds of results� �� lower bounds on contention for well known com�
mon problems such as agreement and mutual exclusion� and �� trade�o
s
between latency maximal number of accesses to shared variables performed
by a single process in executing the algorithm� and contention for these
problems� Informally� if you want to reduce contention when concurrency is
high� you must pay a certain cost even when concurrency is low� and vice�
versa� Moreover� we give for the �rst time a formal performance analysis of
counting networks� a class of concurrent data structures that provide e�cient
high�concurrency shared counters that has been the subject of much recent
research ��� �� ��� ��� ����

More speci�cally� we focus on a multiple instruction�multipledata MIMD�
architecture in which n asynchronous processes communicate by applying

�Examples include test�and�test�and�set locks ����� exponential backo� �	� �
�� combin�
ing networks ���� ���� and clever algorithms for spin locks and barriers �	� ��� ���



� INTRODUCTION �

read� write� and read�modify�write operations to a shared memory� A read�
modify�write operation atomically reads a value v from a memory location�
writes back fv�� where f is a prede�ned function� and returns v to the
caller� Nearly all modern processor architectures support some form of
read�modify�write for interprocess synchronization� Common read�modify�
write instructions include test�and�set� memory�to�register swap� fetch�and�
add ����� compare�and�swap ����� and load�linked�store�conditional instruc�
tions ���� ���� Asynchrony means that there is no bound on processes� rel�
ative speeds� In real shared�memory multiprocessors� sources of asynchrony
include page faults� cache misses� scheduling preemption� clock skew� varia�
tion in instruction speeds� and perhaps even processor failure�

In our model� simultaneous accesses to a single memory location are seri�
alized� only one operation succeeds at a time� and other pending operations
must stall� Our measure of contention is simply the worst�case number of
stalls that can be induced by an adversary scheduler� This model like all
complexity models� is an abstraction of how real machines actually behave�
Nevertheless� we believe it is accurate enough to make useful comparisons�
and simple enough to be tractable� In particular� this model is well�suited for
comparing alternative algorithms� and for deriving lower and upper bounds�

We analyze contention in several fundamental shared�memory algorithms�
First� we derive tight or� in some cases� nearly tight asymptotic bounds on
the contention produced by several classes of counting networks studied in
the literature� In each case we show that the contention in the counting
network is indeed substantially lower than the contention incurred by the
conventional single�variable implementation of a shared counter� Experi�
ments have shown that certain counting networks outperform conventional
single�variable counters at high levels of concurrency ��� ���� Our results
explain this phenomenon�

The consensus problem ���� is fundamental to synchronization without
mutual exclusion and lies at the heart of the more general problem of con�
structing highly concurrent data structures ����� We give the �rst bounds
on contention in shared�memory algorithms for consensus� The bounds are
tight� �n� stalls per process� where n is the number of processes participat�
ing in the protocol� Bounds for consensus imply lower bounds for a variety
of more complex data structures and protocols� The randomized consensus
problem ��� �� �� �� ��� ��� ��� ��� is a variation of consensus which is required
to terminate in �nite expected time instead of �nite time�� Randomization



� MODEL �

has a surprising e
ect� it allows contention to be traded against latency�
The contention c can vary from �n� to ���� but the latency is at least
n� ���c�

Next we show lower bounds on contention for n�process mutual exclusion�
and we show that this problem also has an inherent latency�contention trade�
o
� In contrast to consensus� mutual exclusion is not required to be non�
blocking� processes are allowed to wait for each other� In fact� any solution
to the mutual exclusion problem necessarily requires waiting� Intuitively� this
will yield a weaker latency�contention trade�o
� We de�ne one�shot mutual
exclusion� a subproblem of mutual exclusion that must be solved by any
mutual exclusion protocol� but that does not a fortiori require waiting� and
show that for any one�shot mutual exclusion algorithm with contention c the
latency is at least �log n�c��

The remainder of the paper is organized as follows� Section � describes our
formal model of contention� Section � presents our performance analysis of
the bitonic� periodic� and linearizable counting networks� and compares their
performance with the na�ive single shared�variable solution� Section � derives
lower bounds for contention and latency�contention trade�o
s inherent in
consensus� Section � analyses the latency�contention trade�o
s inherent in
mutual exclusion� Section � closes with a discussion�

� Model

We consider a multiple instruction�multiple data MIMD� architecture in
which n asynchronous processes communicate by applying read� write� and
read�modify�write operations to a shared memory� A read�modify�write op�
eration atomically reads a value v from a memory location� writes back fv��
where f is a prede�ned function� and returns v to the caller� Asynchrony
means that there is no bound on processes� relative speeds�

Algorithms in this model are often viewed as a game played between a
set of processes and an adversary scheduler� Each process takes two kinds of
steps�

� Invocation� A process may initiate a memory operation� Once initiated� an
operation is pending� A process may have only one pending operation
at a time�



� MODEL �

� Response� A process may receive the response to a pending memory oper�
ation�

An adversary scheduler chooses how steps of di
erent processes are inter�
leaved� At each step� the scheduler selects the next process to run� The
scheduler can take into account the system history and the processes� inter�
nal states�

To model contention� we introduce a third kind of step�

� Stall� A process with a pending operation may be delayed by contention
with other processes simultaneously trying to access the same location�

Although the adversary scheduler can dynamically exploit knowledge of
the processes� algorithms and states� it is nevertheless subject to the following
basic constraint� If process P has an operation pending to a variable v� then
P incurs a stall if and only if a process Q� with an operation pending at v�
receives a response� Informally� the adversary cannot stall everyone� it must
allow one process at a time to succeed� If several processes have operations
pending at v and one of them receives a response� then all the others incur
a stall�

Stall steps are our measure of contention� An adversary scheduler max�
imizes contention by maximizing the number of stalls� More formally� an
n�process algorithm is an algorithm in which up to n concurrent processes
may participate� We de�ne the contention of an n�process algorithm as the
worst case over all executions of the ratio of the number of stalls that can
be induced by an adversary scheduler divided by n� The performance of an
algorithm may also be limited by con	icts at certain widely�shared memory
locations� often called hot spots ����� Thus we de�ne the variable�contention
of an n�process algorithm to be the worst case number of concurrent ac�
cesses to any single variable occurring during an execution of the algorithm�
Variable�contention can also be viewed as the contribution of a single vari�
able to the overall contention of the algorithm� Next� the contention of a
concurrent object with concurrency n is de�ned as the worst case� over all
executions of at most n concurrent processes� of the ratio of the number of
stalls occurring over multiple potentially concurrent� accesses to the object�
divided by the number of accesses to the object� The performance of a con�
current object depends mainly on the amortized contention� de�ned as the



� COUNTING NETWORKS �

limit to which the contention of the object goes when the number of accesses
goes to in�nity�

To illustrate our measures� note that if n processes apply a read�modify�
write operation to variable v at the same time� then the cost of completing all
these operations� measured in stalls� is at least nn������ or On��� With n
pending operations the adversary can charge n�� stalls� but it must allow one
pending operation to return� With the n� � remaining pending operations�
the adversary may then charge n� � stalls� and so on� Performance may be
worse if processes whose operations have responded return to apply additional
operations to v� but the total cost is always On� stalls per access� Clearly
this bound is tight� Therefore� we say that the amortized contention of a
read�modify�write operation is �n�� In other words� our model implies that
the performance of read�modify�write operations degrades linearly with the
degree of concurrency� behavior that has been observed experimentally ����
We assume that concurrent operations applied to the same memory location
are not combined cf� ������ although it is straightforward to adapt our model
to such architectures�

Finally� for any asynchronous algorithm� the latency of the algorithm is
the maximal number of accesses to shared variables performed by a single
process in executing the algorithm�

� Counting Networks

Many fundamental multiprocessor coordination problems can be expressed
as counting problems� processors collectively assign themselves successive
values from a given range� such as addresses in memory or destinations on
an interconnection network� Applications include implementing a shared
counter� load balancing� and barrier synchronization� Counting networks are
a class of concurrent data structures that can be used to count�

In this section� we give a formal performance analysis of several counting
networks� First� we show that the amortized contention of the bitonic count�
ing network ��� is much lower than the conventional solution in which all n
processors increment a single shared variable using a read�modify�write oper�
ation� This result explains why counting networks outperform single�variable
counters in experiments ��� ���� We also give tight bounds for contention in
linearizable counting networks ����� an extension of the standard counting



� COUNTING NETWORKS �

networks in which the order of the values assigned re	ects the real�time or�
der of the assignment operations� and nearly tight bounds for the periodic
counting network ����

��� Brief Review

This section gives a brief informal review of counting networks� For more
details� see ����

A counting network� like a sorting network ����� is a directed graph whose
nodes are simple computing elements called balancers� and whose edges are
called wires� Each token input item� enters on an input wire� traverses
a sequence of balancers� and leaves on an output wire� Unlike a sorting
network� tokens can enter a counting network at arbitrary times� they may
be distributed unevenly among the input wires� and they propagate through
the network asynchronously�

A balancer can be viewed as a computing element with two input wires
and two output wires� referred to as the upper and lower wires� Informally� a
balancer is a toggle� sending input tokens alternately to the upper and lower
wires�

A balancing network of width w is a collection of balancers� where out�
put wires are connected to input wires� having w designated input wires
x�� x�� ��� xw�� which are not connected to output wires of balancers�� w des�
ignated output wires y�� y�� ��� yw�� also unconnected�� and containing no
cycles� The safety and liveness of the network follow naturally from the
above network de�nition and the properties of balancers� namely� that it is
always the case that

Pw��
i�� xi �

Pw��
i�� yi� and for any �nite sequence of m

input tokens� within �nite time the network reaches a quiescent state� i�e�
one in which

Pw��
i�� yi � m�

In a MIMD shared�memory multiprocessor� a balancing network is im�
plemented as a data structure� where balancers are records and wires are
pointers from one record to another� Each of the machine�s n asynchronous
processors runs a program that repeatedly traverses the data structure� each
time shepherding a new token through the network� Tokens generated by
processor P enter the network on input wire P mod w� and a processor can
push at most one token through the network at any time� Thus� the limita�
tion on the number of concurrent processors translates into a limitation on
the number of tokens concurrently traversing the network�



� COUNTING NETWORKS �

Pw��
i�� xi �

Pw��
i�� yi � n�

The depth of a balancing network is the maximal depth of any wire�
where the depth of a wire is de�ned as � for a network input wire� and
��maxi�f���g depth xi� for the output wires of a balancer having input wires
xi� i � f�� �g� A layer of depth d is de�ned as the set of balancers at depth
d�

A counting network of width w is a balancing network whose outputs
y�� ��� yw�� have the step property in quiescent states� � � yi� yj � � for any
i � j�

The bitonic counting network ��� is a speci�c counting network that is iso�
morphic to Batcher�s bitonic sorting network ���� It is constructed recursively
as follows� to construct a bitonic network of width �w� one �rst constructs
two separate bitonic networks of width w each and then merges their two
output sequences using a width �w balancing network called a merger� The
merger is constructed to guarantee the step property on its outputs in a qui�
escent state� provided each of its input sequences has the step property� This
construction gives a network consisting of Olog�w� layers� each consisting
of w�� balancers� Note that a single balancer is both a merger and a counter
of width ��

In experiments� the bitonic counting network substantially outperformed
conventional techniques for implementing a shared counter� such as spin locks
and queue locks on a single shared variable� or software combining trees�
on several di
erent multiprocessor architectures ��� ���� We now present
theoretical analysis of this phenomenon�

��� Contention in the Bitonic Counting Network

In this section we show tight asymptotic bounds for the amortized contention
in the bitonic network� In particular� we show that for a bitonic network of
width w with n concurrent processors� the amortized contention of a layer
is �n�w�� In other words� the worst case number of stalls occurring at this
layer when m tokens traverse the counting network� divided by m� goes to
�n�w� when m goes to in�nity� Since a token traverses exactly �log�w�
layers when it traverses the network� the amortized contention of the network
is at most O n

w
log�w�� That is� the worst case number of stalls occurring

at the network when m tokens traverse the counting network� divided by m�



� COUNTING NETWORKS �

approaches O n
w
log�w� when m goes to in�nity�� In a separate argument�

we show an execution with amortized contention � n
w
log�w�� so the bounds

are tight� By comparison� in a single�variable counter� up to n processes may
be performing concurrent increments� so one increment has contention �n��

Having bounds on the amortized contention� the overall performance of
the bitonic counting network can now be compared with that of the single�
variable solution as follows� The amortized cost of traversing the network
is the sum of the number of shared variables a process has to access and
the amortized contention� In the single�variable solution� where the network
consists of just the one shared variable� this cost is �n�� In the bitonic
counting network� our result on the amortized contention shows that the
overall amortized cost is � n

w
log�w�� This cost is minimized when w � n�

yielding �log� n��
Notice that the temporary contention of a layer may be quite high� It is

always possible to accumulate all n concurrent processors on one balancer�
For example� take a bitonic network with eight input wires and eight proces�
sors� Let eight tokens traverse it� Two of them must arrive at the rightmost
upper balancer� halt them and let the others exit the network� Next re�enter
the other six processors� Two of them will reach the contended balancer� halt
these two and let the others exit� Now we have accumulated four tokens at
one balancer� We can continue in this fashion until all n processors contend
for the same balancer� thereby reaching contention of �n� at that layer� In
fact� temporary contention of �n� can similarly be created for any counting
network� Nevertheless� the amortized contention remains low� The intuition�
which must be proved� is that if the adversary creates locally high contention�
it must have let many tokens traverse the network� yielding a low amortized
contention�

Henceforth� we consider a bitonic network of width w with n concurrent
processors� We will show that the amortized contention of a layer is On�w��
Since the number of layers is Olog�w� the bound of O n

w
log�w� follows�

Recall that on its way through a network of width w� a token �rst passes
through a counting network Cw

�

of width w
�
� and then through a merger Mw

of width w� If we continue to unwind the recursive construction of Cw

�
� and

recall that C� � M� consists of a single balancer� we see that the token
passes sequentially through a series of logw mergers M��M��M�� � � � �Mw� It
therefore su�ces to show that� for any � � k � w� where k is a power of



� COUNTING NETWORKS �

�� and any layer � of Mk� a token encounters �on average� at most On�w�
stalls as it passes through a balancer at layer � of Mk�

More speci�cally� for any merger Mk in the recursive construction� and
any layer � of Mk� we argue as follows� By construction� the number of
balancers in layer � is k��� We de�ne nk � k n

w
� and partition the tokens

arriving at layer �� over the lifetime of the system� into generations of size
k� We will show that as a group� each generation of tokens at layer � causes
Onk� stalls to other tokens� It then follows that an average generation
receivesOnk� stalls� If �� people each throw � balls into the air� and all the
balls are caught� then the average person catches � balls�� Dividing by the
number of tokens in a generation� it follows that the average token passing
through � receives Onk

k
� � On�w� stalls�

A layer l of Mk of Ck has the balancer i�smoothing property if for every
pair of balancers b� b� in l� when Ck is in a quiescent state� the absolute value
of the di
erence between the total number of tokens that have passed through
b and the total number of tokens that have passed through b� is bounded by
i� A layer l of a balancing network has the input wire i�smoothing property
if for any two wires w and w�� inputs to layer l� when the network is in a
quiescent state the total number of tokens that have arrived at level l on wire
w and the total number of tokens that have arrived at level l on wire w� di
er
by at most i� The output wire balancing property is de�ned analogously�

Lemma ��� Fix a network Ck in the recursive construction of Cw� and let
Mk be the merger of Ck� Then every layer l of Mk has the balancer ��
smoothing property�

Proof� We split the proof into two cases� according to whether l is the �rst
layer of Mk or is a later layer�

Claim ��� The �rst layer of Mk has the balancer ��smoothing property�

Proof� Let b and b� be any two balancers of layer l� Since l is the �rst layer
of Mk� both b and b� have one input wire from the upper Ck�� and one from
the lower Ck��� When Ck is in a quiescent state� all the enclosed subnetworks
are quiescent� so in particular both copies of Ck�� are in a quiescent state and
therefore their outputs enjoy the step property� Without loss of generality� let
the upper input wire of b be higher than have smaller index than� the upper



� COUNTING NETWORKS ��

input wire of b�� By the construction of Mk� this means that the lower input
wire of b is lower than has greater index than� the lower input wire of b�� Let
x and y denote the total number of tokens that entered b on its upper and
lower input wires� respectively� Similarly� let z and w denote the number of
tokens that entered b� on its upper and lower input wires� respectively� Since
the upper input wires come from the upper copy of Ck�� we have by the step
property that x � z � x � �� similarly� by the step property of the lower
copy of Ck��� w � y � w � �� The total number of tokens that pass through
b is x� y� while the total passing through b� is z � w� From the inequalities
we get x � y � z � w � � and z � w � x � �� � y� from which we get a
maximum di
erence of �� so the claim holds�

Since the balancers at the �rst layer of Mk have the ��smoothing property�
the output wires at the �rst layer have the output�wire ��smoothing property�
Consider any two balancers b and b�� through which� respectively� c and c��
tokens have passed� Then the number of tokens leaving b on the upper output
wire is dc��e� while the number of tokens that have left on the lower output
wire of b� is bc�����c� which di
er by at most �� Moreover� since the output
wires of the �rst layer are precisely the input wires to the second layer� we
have that layer � of Mk has the input wire ��smoothing property� In general�
if layer l has the input wire ��smoothing property then it has the balancer
��smoothing property� The lemma thus follows from the following claim�

Claim ��� In any balancing network� if layer l has the input wire ��smoothing
property� then so does layer l� ��

Proof� Let b and b� be arbitrary balancers in layer l� Let b receive x� and
x� input tokens on its upper and lower input wires� respectively� Similarly�
let b� receive x�� and x�� tokens on its input wires� The maximum number
of tokens leaving on one of b�s output wires is at most maxfx�� x�g� while
the minimum number of tokens leaving on one of b��s output wires is a least
minfx��� x

�
�g� But since layer l has the input wire ��smoothing property�

maxfx�� x�g �minfx��� x
�
�g � �� so layer l has the output wire ��smoothing

property� Since the output wires of layer l are the input wires of layer l� ��
the claim follows�

This completes the proof of the Lemma�



� COUNTING NETWORKS ��

Let Mk be as in the Lemma� and let b be a balancer in layer l of Mk� We
say that a token belongs to the gth generation of tokens arriving at b if it is
either the �g���th or the �g�th token to arrive at b� The gth generation of
l is the set of gth generation tokens of the balancers in layer l� Note that the
gth generation of l has k tokens� We say that by time t� the gth generation
has completed its arrival at l if for each balancer bi in l� both tokens of the
gth generation have already arrived by that time� Finally� we say that at
time t there are f tokens of the gth generation missing at layer l if by time
t exactly k � f tokens of generation g have arrived at l�

Fact �� Let Ck be in a quiescent state� and let g be the maximum generation
such that some balancer b in layer l of Mk has received at least one generation
g token� Then all balancers in l have received at least one generation g � �
token�

Proof� Let c be the number of tokens that have arrived at b� By Lemma ����
layer l has the balancer ��smoothing property� so every other balancer b�

has received at least c � � tokens� If c � �g then b has received both its
generation g tokens and hence every other balancer b� has received at least
�g � � � �g � �� tokens� and has therefore completed generation g � �� If
c � �g�� then every other balancer in l has received at least c�� � �g�����
tokens� Thus in either case� every balancer in l has received at least one
generation g � � token�

Recall that nk � k n
w
� Note that nk is the maximum number of tokens

that can be traversing Ck at any time�

Fact �� Let t be the time at which the �rst gth generation token arrives at l�
Then the number of tokens of generations strictly less than g � � stuck at l�
plus the number of tokens of generations strictly less than g � � still missing
from layer l� is at most nk�

Proof� Run the network to quiescence from its state at time t� Let g� be
the maximum generation such that some balancer in layer l has received at
least one generation g� token� Clearly� g� � g� By Fact �� every balancer has
received at least one token from generation g��� � g��� Thus� Fact � follows
immediately from the fact that at most nk tokens the maximum number of
tokens in Ck at any time� were involved in moving Ck to a quiescent state�



� COUNTING NETWORKS ��

Recall that the number of tokens in the gth generation at l is exactly
k� As described above� to complete the proof it is enough to show that the
number of stalls caused in layer l of Mk due to the gth generation is Onk��
since from this it follows that the average over all generations� number of
stalls incurred by a generation is Onk�� and therefore that the average token
incurs Onk

k
� � On�w� stalls at each layer because a token passes through

just one balancer at layer l��
First recall that when a token passes through a balancer� it causes stalls

to all tokens that are waiting at this balancer� By stalls caused at layer
l by generation g to generation g� we refer to stalls incurred by tokens of
generation g� when they are waiting at some balancer of layer l and some
token of generation g passes� By stalls caused at layer l between generation
g and generation g� we refer to stalls caused by generation g to generation
g�� and vice versa� To complete the proof we show�

Lemma ��� Consider the gth generation passing through layer l of Mk� The
maximal number of stalls caused between this generation and generations less
than or equal to g at this layer is at most �nk�

Proof� Consider the �rst token of generation g to arrive at l� Say it arrives
at time t� By Fact �� the total number of tokens of generation less than g��
stuck at l or missing from l is at most nk� A generation g token can encounter
and hence cause a stall to or be stalled by� �� these tokens of generation
less than g � �� �� generation g � � tokens� and �� generation g tokens�
There are at most nk tokens of type ��� and at most wk each of types ��
and ��� The number of stalls occurring between each token of generation g
and tokens of generation less than or equal to g� � is at most the number of
tokens of these generations that this token encounters at its balancer� Each
token of generation less than or equal to g � � can be encountered by up to
two tokens of generation g� Each token of generation g can be encountered
by at most one token of generation g� Summing� we get �nk� �wk� and wk for
stalls of types ��� ��� and ��� respectively� for a total of at most �nk stalls�

We have shown that the amortized contention endured by a token at any
layer is On�w�� Amortized contention of �n�w� is easily seen to occur in
an execution where on each balancer we have �n�w tokens proceeding in lock
step� We have therefore proved the following theorem�



� COUNTING NETWORKS ��

Theorem ��� The amortized contention of a layer of bitonic network of
width w and concurrency n is �n�w��

Corollary ��� The amortized contention of the bitonic network of width w
and concurrency n is � n

w
log�w��

��� Contention in Linearizable Counting Networks

In this section� we observe that the amortized contention of the folded lin�
earizable counting network of width w ���� is also � n

w
log�w�� More speci��

cally� a linearizable counting network is a counting network in which the order
of the values assigned to processes is consistent with the real�time order of
the execution� For example� if process P is assigned a value leaves the count�
ing network� before process Q requests one enters the counting network��
then process P �s value must be less than Q�s� Linearizable counting lies
at the heart of a number of basic problems� such as concurrent time�stamp
generation� concurrent implementations of shared counters� FIFO bu
ers�
snapshots� and similar data structures e�g� ���� ��� �����

Certain counting networks are not linearizable� and there is no linearizable
counting network with �nite width ����� Two linearizable counting networks
are constructed in ����� The general idea in their approach is to have tokens
�rst pass through an ordinary non�linearizing� counting network and then
use the resulting value the value returned by the counter� to select an input
wire into an in�nite�width linearizer� Thus� if implemented directly in terms
of balancers� these networks would have in�nite size� However the in�nite
linearizers can be �folded� onto �nite data structures� The folded network
is a width w by depth d array of multibalancers� For this section only� let
us de�ne layer i of the linearizer to be the set of balancers with lower input
wire of depth i� Let ci�j denote a multibalancer in the folded network whose
upper input wire is wire i and whose layer is j� similarly� let bi�j denote
a balancer in the in�nite network whose upper input wire is i and whose
layer is j� Then the folded network simulates the original network by simply
having ci�j simulate balancers bi�j� bi�w�j� bi��w�j and so on� Like a balancer�
a multibalancer can also be represented as a record with toggle� upper� and
lower �elds� The upper and lower �elds are still pointers to the neighboring
multibalancers or counters� but the toggle component is more complex� since
it encodes the toggle states of an in�nite number of balancers�



� COUNTING NETWORKS ��

Note that� since each balancer in the in�nite linearizer is traversed by
only two tokens� the linearizer in the in�nite construction does not have high
contention� However� the folding of the network introduces contention since
tokens passing through di
erent balancers in the original network may end
up passing through the same multibalancer in the folded network� Here we
will argue that this contention is low�

Only two points in the construction of the linearizable counting networks
of ���� are necessary for the contention analysis� First� since the input to
the linearizer is the output of a counting network� each layer of the folded
linearizer has the input wire ��smoothing property� Second� the tokens at
a balancer may be partitioned into generations as follows� Intuitively� we
view each �wave� of tokens leaving the non�linearizable counting network as
a generation of inputs to the in�nite linearizer� Thus� the �rst generation of
tokens to enter layer � of the in�nite linearizer is the set of tokens entering
at wires � to w of the in�nite linearizer� the next generation of tokens to
enter layer � is the set of tokens arriving at wires w � �� � � � � �w� and so
on� In general� the gth generation to enter a layer of the in�nite network is
the set of tokens entering the layer on wires g � ��w � �� � � � � gw� In the
case of the folded network� this translates as follows� a token arriving at
a multibalancer ci�j belongs to generation g of layer j if the multibalancer
simulates balancer b�g��	w�i�j for this token� The above two facts immediately
imply that generation g tokens encounter at most n tokens from previous
generations because the number of tokens of generations at most g � �
missing or stuck at any time can be at most n� the upper bound on the
concurrency�� and at most w tokens from their own generation because a
generation contains at most w tokens by de�nition�� Thus� Lemma ��� can
be employed to show that the amortized contention of one layer of the folded
network is On�w��

Again� amortized contention of �n�w� per layer occurs in an execution
in which all n processors proceed in lock step� and hence the above bound is
tight�

��� Contention in Other Counting Networks

First� observe that the techniques used to analyze the contention in the
bitonic and linearizable counting networks consist of three main ideas�



� CONSENSUS ��

� Determine sequences of balancers in the network such that each se�
quence has the balancer k�smoothing property for some k�

� Partition the tokens entering each substructure into generations�

� Compute the number of stalls caused between a generation and its
previous generations using the fact that at each substructure� tokens
from generation g encounter at mostm tokens from generations smaller
than dg � k��e� where m is the number of concurrent processors that
can enter the substructure�

It turns out that this method is widely applicable� For example� con�
sider the periodic counting network ���� It is isomorphic to the balanced
periodic sorting network ����� In particular� a periodic network of width
w consists of a sequence of logw identical subnetworks each of which is of
depth logw and called Block�w	� An easy induction on the depth of the
layer shows that each block has the output wire logw�smoothing property�
Consequently� Claim ��� implies that each layer of depth greater than logw
has the input wire logw�smoothing property� Almost identical reasoning to
that of Section ��� immediately shows that the amortized contention of each
layer of the periodic counting network is at most On�w � logw�� To com�
pute the above we need to distinguish between the �rst block and the later
blocks�� Hence the amortized contention of the complete periodic network is
O n

w
log�w � log�w� which is minimized when w � n� yielding Olog�w��

Block�w� has the output wire logw�smoothing property� Thus� we can
guarantee that any counting network can be modi�ed to have low contention
by �ltering its inputs through Block�w��

� Consensus

In this section� we give lower bounds for contention and latency�contention
trade�o
s inherent in consensus� Consensus is fundamental to synchroniza�
tion without mutual exclusion and hence lies at the heart of the more general
problem of constructing highly concurrent data structures ����� Thus the
bounds and trade�o
s derived here imply bounds and trade�o
s for a variety
of more complex data structures and protocols�



� CONSENSUS ��

The consensus problem ���� ��� ��� is a decision problem in which each
of n asynchronous processes starts with an input value � or � not known to
the others and runs until it chooses a decision value and halts� The protocol
must be consistent� no two processes choose di
erent decision values� and
valid� the decision value is some process� input value� In addition it should
satisfy some form of wait�freedom� For this matter it is distinguished between
wait�free consensus in which each process decides after a �nite number of its
own steps accesses to shared memory� regardless of other processes� halting
failures or relative speeds� and randomized wait�free consensus in which each
process decides after a �nite expected number of its own steps regardless again
of other processes� halting failures or relative speeds�

It has been shown ���� ��� that on machines that support only reads and
writes but no form of read�modify�write� consensus cannot be solved by a
wait�free protocol but it does have a randomized wait�free solution ��� �� ��
�� ��� ���� However� as pointed out� most real machines do have some form of
read�modify�write� In Section ��� we show that even when read�modify�write
is available� wait�free consensus has high price� its contention and hence its
cost� is inherently high� In Section ��� we show that for randomized wait�free
consensus the contention can be traded o
 against latency�

��� Wait�Free Consensus

In this section we show that wait�free consensus has contention of �n��
Recall that contention of an n�process algorithm is de�ned as the worst
case ratio of the number of stalls that can occur in an execution of the
algorithm divided by n�� In addition� the cost of an n�process algorithm can
be naturally de�ned as the worst case� over all executions of the algorithm�
of the ratio of the sum of the number of stalls and the number of invocations
of read�modify�write occurring in the execution� divided by n� It will follow
that also the cost of wait�free consensus is �n��

As has been observed earlier�

Lemma ��� For n processes to do a concurrent read�modify�write to a single
location has contention and cost �n��

We show that any wait�free consensus protocol in our model has inher�
ently high contention by showing that the adversary can force all n processes



� CONSENSUS ��

to simultaneously access a single shared variable� Intuitively� using a tech�
nique introduced by Fischer� Lynch� and Patterson ����� we construct a con�
�guration of the system from which both � and � are still possible decisions
but from which a step by any single process will determine the outcome�
Symmetry and commutativity conditions then imply that all steps from this
con�guration must in fact access the same shared variable�

Following ����� a protocol state is bivalent if either decision value is still
possible� i�e�� the current execution can be extended to yield di
erent decision
values� Otherwise it is univalent� An x�valent state� for x � f�� �g� is a
univalent state with eventual decision value x� A decision step is an operation
that carries a protocol from a bivalent to a univalent state� The following
lemma was �rst proved in �����

Lemma ��� For every consensus protocol there exists a bivalent initial con�
�guration�

Theorem ��� Consensus among n processes has contention �n��

Proof� For the lower bound� consider the following scenario� By Lemma ����
there exists a bivalent initial con�guration� Beginning with the system in
this con�guration� the adversary repeatedly chooses some process that is not
about to take a decision step� and allows that process to execute a com�
plete operation invocation�response pair�� This execution cannot proceed
forever� since the protocol is wait�free� so eventually the protocol must en�
ter a state where every process is about to execute an operation that will
carry the protocol to a univalent state� Since the protocol is still in a bivalent
state� there must be some process P about to carry the protocol to a ��valent
state� and some process Q about to carry the protocol to a ��valent state�
If P and Q are not about to execute a read�modify�write operation on the
same location� then the ��valent state in which P �s operation precedes Q�s
is indistinguishable from the ��valent state in which Q�s operation precedes
P �s� a contradiction� Therefore P and Q must be about to operate on the
same location� By symmetry� all n processes are about to operate on the
same location� By Lemma ���� the adversary can� by scheduling all these
processes concurrently� force contention �n��

For the upper bound� simply initialize a memory location to the distin�
guished value�� and have each process execute compare�and�swaplocation���input��



� CONSENSUS ��

Observe that in the proof of the above theorem we used the wait�freedom
property to construct the critical bivalent con�guration from which any step
would bring the system to univalence� Randomized consensus is not wait�free�
and thus� the proof of Theorem ��� breaks down� We address randomized
consensus in Section ����

A concurrent object is a data structure shared by concurrent processes�
A concurrent object X solves n�process consensus if there exists a consensus
protocol in which the n processes communicate by applying operations to a
shared X� A wait�free implementation of a concurrent data object is one that
guarantees that any process can complete any operation in a �nite number
of steps� regardless of the execution speeds of the other processes� Theorem
��� implies that any wait�free implementation of an object that solves n�
process consensus has high contention� This implies� for example� that wait�
free implementations of the fetch�and�add� compare�and�swap and the load�
linked�store�conditional operations in terms of any other primitivemust have
high contention�

��� Randomized Wait�Free Consensus

The proof of Theorem ��� also shows that the variable�contention of wait�
free consensus is �n�� Recall that variable�contention of an algorithm was
de�ned as the worst case number of concurrent accesses to any single variable
occurring during the execution of the algorithm�� In this section we show
that this lower bound does not hold for randomized wait�free consensus� In
fact� we can construct randomized consensus protocols with O�� variable�
contention� Nevertheless� we show that there is a trade�o
 between variable�
contention of an algorithm and its latency�

First we show how to construct a randomized consensus algorithm with
low variable�contention� The randomized consensus algorithms in the liter�
ature ��� �� �� �� ��� ��� were designed as a way of coping with the impos�
sibility of consensus in a model without read�modify�write ���� ���� Thus�
these algorithms require a weaker communication primitive abstracted in the
literature as a single�writer multi�reader atomic register� Each such register
can be written only by one process� its owner� but all processes can read it�
The atomicity property says that reads and writes can be viewed as occur�
ring at a single instant of time� Clearly an algorithm that uses multi�reader
atomic registers may have high variable�contention if in some execution all n



� CONSENSUS ��

readers are concurrently accessing the same register� However� there are well
known constructions of single�writer multi�reader registers out of n single�
writer single�reader atomic registers ���� ��� a single�reader register can be
read by at most one process�� Therefore� to achieve randomized consensus
with low variable�contention� simply take one of the algorithms that uses a
multi�reader register and replace each such register by n single�reader regis�
ters� Clearly the resulting algorithm has O�� variable�contention�

Recall that the latency of the algorithm is the maximum number of
steps accesses to shared memory� that a process must take in any exe�
cution� We now show a latency�contention trade�o
 inherent in randomized
consensus� Although randomization was introduced in the literature to re�
place read�modify�write� our latency�contention tradeo
 holds regardless of
whether or not read�modify�write is assumed�

Theorem ��� Consider any randomized consensus algorithm� Let p be any
process� Let � be the minimum number of variables accessed by p in an
execution pre�x E in which p has input value 
 and reaches a decision before
any of the other processes become active� Let c be the variable�contention in
any execution of the algorithm� Then � � n� ���c�

Proof� We actually prove a stronger statement� Let the preferred path of
p be the series of variables accessed by p in E� without repetitions� Thus if
p �rst accesses v then v�� and then v again� the preferred path is just v� v��
Let the preferred path be v�� v�� � � � v�� We show that � � n��

c
� Observe that

p must decide � in E� Now� consider the following execution E� in which p
is initially crashed and all other processes� call them q�� � � � � qn�� have initial
value �� Note that the decision in E� must be �� Run process q� alone until
it accesses the preferred path of p� Note that it must do this� since if not
then q� cannot distinguish between E� and an extension of E� but in any
extension of E it would have had to decide �� Temporarily suspend q� just
before it accesses the preferred path�

Now run process q� until it too is about to access the preferred path�
Note that q� may see variables written by q�� but since these are written by
q� before it can distinguish E� from an extension of E� q� cannot yet make
that distinction either� Moreover� q� cannot wait to see things that q� might
write after q� has accessed the preferred path because q� might have failed�
In this way� we continue constructing E�� until all n� � processes q �� p are



� MUTUAL EXCLUSION ��

poised to access the preferred path� Let ci denote the number of processes
poised to access vi� Then

P�
i�� ci � n � �� Now� let all n � � processes q

access the preferred path together� and the theorem is proved�

Since the latency of an algorithm is no smaller than the worst case number
of variables accessed by any single process when it runs in isolation� Theo�
rem ��� immediately implies that the contention of a randomized consensus
algorithm is at least n� ����� where � is its latency�

A similar argument ���� shows part �� of the following theorem�

Theorem ��� The same trade�o� holds for any linearizable counting net�
work� randomized or not� using any primitive �including primitives more pow�
erful than simple balancers� For linearizable counting networks� the trade�
o�s are tight�

� Mutual Exclusion

In this section we study contention in solutions to the mutual exclusion prob�
lem� In this problem� processes must repeatedly access a critical section in
such a way that at any given time there is at most one process in the crit�
ical section� A solution must satisfy the following liveness property� in any
execution of the protocol in which no process crashes� if any process tries to
enter the critical section then eventually some process succeeds to do so�

Like consensus� mutual exclusion is an abstraction of many synchroniza�
tion problems� The most common example of the need for mutual exclusion
in real systems is resource allocation� In contrast to consensus� however� mu�
tual exclusion is not required to be wait�free nor randomized wait�free� rather
processes may actually wait for failed processes� In this case processes may
not even terminate with probability ��� While this feature may not be very
desirable� it allows more e�cient and simpler implementations� In particu�
lar� observe that the lower bounds on the contention and latency�contention
trade�o
 previously derived for consensus may not hold for mutual exclusion�
a c�ary tournament tree clearly satis�es the liveness condition with at most
logc n accesses to shared variables for any single process in other words� with
contention c and latency logc n�� thereby violating the bounds for consensus
obtained in Theorems ��� and ����



� MUTUAL EXCLUSION ��

More precisely� our results will be for one�shot mutual exclusion� which�
informally� allows exactly one of a number of initially competing processes to
enter the critical section� with no requirements of the other processes� Clearly
such bounds apply for mutual exclusion each time the latter is started from
scratch� An algorithm for the one�shot problem clearly satis�es the liveness
condition� however� unlike the case for the general mutual exclusion problem�
the one�shot problem can be solved through a tournament tree� without
waiting� Thus� a lower bound here is in a sense a lower bound on achieving
the liveness condition for mutual exclusion� allowing us to sidestep issues
such as how waiting is implemented��

First we show� for any one�shot mutual exclusion algorithm of latency �
and variable�contention c� that � � � logn

c
��

Our proof relies on the fact that �log n� is lower bound on the time
required to compute the logical OR of n values on the CREW PRAM� �����
independent of the total number N of processes participating in the com�
putation� The key idea is roughly that a CREW PRAM can simulate an
algorithm whose variable�contention is c so that each time c processes access
the same shared variable in an execution of the original algorithm� they will
access it one by one in c steps in the corresponding execution of the CREW
PRAM�

The structure of the argument is as follows� The �rst step argues that for
a CREW PRAM� any algorithm for one�shot mutual exclusion yields� with
one additional step� an algorithm for OR� In the second step� we show how
to construct a one�shot mutual exclusion algorithm for the CREW PRAM
that takes at most Oc�� rounds� from any asynchronous algorithm for one�
shot mutual exclusion with variable�contention c and latency �� The second
step proceeds as follows� First� we say that a speci�c execution of an asyn�
chronous algorithm is synchronous if it can be viewed as if it takes steps in
synchronous rounds during which each process that has not yet halted ac�
cesses one shared variable and processes accessing the same shared variable
at the same round� succeed receive responses� in increasing order of process
ID� Observe that each input determines exactly one synchronous execution�
To complete the second step� given an asynchronous one�shot mutual exclu�

�Confusion on this point in an earlier version of this paper was brought to our attention
by James Anderson ���

�Concurrent read�exclusive write parallel random access machines Note that PRAM�s
are synchronous



� MUTUAL EXCLUSION ��

sion algorithm A� we show how to construct a CREW PRAM algorithm each
of whose executions simulates the synchronous execution of A that has the
same input� Moreover� each round of the synchronous execution of A will
be simulated by the corresponding execution of the CREW PRAM using no
more than c rounds� Clearly� the resulting CREW PRAM algorithm takes
no more than c�� rounds� where �� is the maximum number of rounds of the
simulated synchronous algorithm� On the other hand� the latter is no larger
than A�s latency because for each synchronous execution of A� some process
must take a step� and hence access a shared variable� in each round�

Combining the two above steps we get that given an algorithm A that
achieves one�shot mutual exclusion among n processes with variable con�
tention c and latency �� we can construct a CREW PRAM algorithm that
computes the OR of n values in Oc�� rounds� Since �log n� rounds are
necessary for a CREW PRAM to compute the OR of n values� we have
� � �log n�c��

De�nition ��� One�shot mutual exclusion on n processes is de�ned as fol�
lows� There are any number N � n of processes� There are n Boolean input
variables x�� � � � � xn� �These variables can be either in shared memory loca�
tions � through n� respectively� or for � � i � n� xi can be local to pi� Our
results apply to either version of the problem� Let S be the set of indices i
such that xi � �� At the end of each execution of the algorithm there is a
unique i � S� such that pi is a winner �that is� pi is in a special win state�
If S is empty then there is no winner�

Theorem ��� Let A be any algorithm for one�shot mutual exclusion� and
let c be its variable�contention and � its latency� Then � � �log n�c��

Proof� The next lemma shows that given a one�shot mutual exclusion al�
gorithm for the CREW PRAM� we can get with one additional step an
algorithm for OR�

Lemma ��� Let S be a CREW PRAM algorithm for one�shot mutual exclu�
sion on n inputs� running in time sn�� We place no bound on the number
of processors� but the mutual exclusion is among p�� � � � � pn� Then there is a
CREW PRAM algorithm for logical OR on n inputs running in time sn����



� MUTUAL EXCLUSION ��

Proof� The algorithm for OR is as follows� Let result be a special memory
cell that is not used by algorithm S on any input and is initialized to zero� On
inputs x�� � � � � xn run Sx�� � � � � xn�� Let process i be the winner� if one exists�
Then at step sn� � � process i writes a ��� into memory location result�
Since by assumption result is initialized to zero we have that result will have
value � if and only if there is a winner to the one�shot mutual exclusion� The
de�nition of one�shot mutual exclusion implies that there is a winner if and
only if at least one process started with � and hence this PRAM algorithm
correctly computes the OR�

Next we show that given an asynchronous one�shot mutual exclusion al�
gorithm with variable�contention c and latency �� we can construct a one�shot
mutual exclusion algorithm for the CREW PRAM that takes Oc�� rounds�

Lemma ��� Let A be any algorithm on n inputs running on an asynchronous
shared�memory machine� with variable�contention at most c� with latency ��
requiring at most N processes� and requiring at most mn� � n shared vari�
ables� Then there exists an algorithm for the synchronous CREW PRAM
that requires at most N �mn�max��i�cf

�
N
i

�
g processors and runs in time

at most Oc���

Proof� We have observed that there is exactly one synchronous execution
of A for each value of the inputs� Therefore� it is enough to construct a
CREW PRAM algorithm S that will simulate executions of A in a step by
step fashion such that each execution of S with inputs I will have as its
corresponding execution of A the synchronous execution of A with inputs I�

For simplicity we �rst describe an algorithm that runs in Oc��� rounds�
S is constructed as follows� It has a special set of simulating processors
P�� � � � � PN whose job is principally to simulate� one for one� the processes
of A� For clarity� the processors of S will always be denoted by upper case
letters� while those of A will be denoted by lower case letters� The additional
mn�max��i�cf

�
N
i

�
g auxiliary processors are dedicated to resolving write

con	icts at the mn� shared variables of A� Hence� the auxiliary processors
are split into mn� groups� one for each of the mn� shared variables v of A
and denote by Gv the group dedicated to location v� The processor in Gv

with the smallest index is the leader of group Gv�
We let M �� � mn�� denote the �rst mn� locations of the PRAM�s shared

memory� After each step s of the simulation� for each � � v � mn��



� MUTUAL EXCLUSION ��

M �v� contains precisely the value of shared variable v after s rounds of the
corresponding synchronous execution of A� We de�ne three additional ar�
rays in the PRAM�s shared memory� LOC�� � N �� INDEX�� � N �� and
FLAG�� � mn��� Roughly speaking� when a simulating processor Pi wishes
to simulate an access by pi to a shared variable v of A� it writes the loca�
tion v into the cell LOC�i�� The INDEX array is used to tell processor Pi

wishing to access M �v� in a given simulated step� its index among the set
of processors that will access M �v� at this step� The FLAG array is used
in determining� for each shared variable v and each step in the synchronous
execution of A� the unique d�tuple of processes� for some � � d � c� that
attempt to access v concurrently in the given step�

All shared variables except possibly the �rst n cells of memory� are ini�
tialized to zero� If the inputs to A are initially in shared memory� then we
assume they are initially in the shared memory of S� If the inputs to A
are initially known to the processes of A� then we assume they are initially
known to the corresponding processors of S�

Each Pi has a special component of its state containing a simulated state
of pi� We prove inductively that for each Pi� � � i � N � this special compo�
nent of the state of Pi is the same after s � � simulation steps as the state of
pi after s rounds of the corresponding synchronous execution of A� and that
for each � � v � mn�� M �v� contains after s simulation steps the contents of
v after s synchronous rounds in the corresponding synchronous execution of
A� By proper initialization the result clearly holds for s � �� We now show
it holds for s� �� assuming it holds for s�

Step s � � is simulated as follows� First� Pi writes into LOC�i�� the
location shared variable� that pi accesses in round s�� of the corresponding
synchronous execution of A� This takes one PRAM step�

Recall that initially LOC is all zeros� If in the simulation of some step� Pi

writes a location into LOC�i�� then at the end of the simulation of this step
Pi will set LOC�i� back to zero� Thus� once the simulated pi has terminated�
Pi can terminate as well� and LOC�i� will have the correct �location� that
is� the null location� for all subsequent steps of the simulation�

Let v be any shared variable� Since A has maximum contention c� at
most c processors have written v into the array LOC� Each of

�
N
c

�
pro�

cessors in Gv is assigned a set of c cells of LOC to examine to see if the
corresponding c processes of A would all attempt to access v in round s� �
of the corresponding synchronous execution of A� If so� then the processor



� MUTUAL EXCLUSION ��

sets FLAG�v� �� � to indicate that the write�set for v has been found� This
takes c� � PRAM steps c reads and � write�� In the next PRAM step� all
the processors in Gv check FLAG�v� to see if the write set has been found�
If so� then they wait until the write sets of all other variables are found this
takes a predetermined number of rounds� computed below�� If not� then each

member of a predetermined subset of Gv of size
�

N
c��

�
examines c � � cells

of LOC to see if the corresponding c � � processes of A would all attempt
to access v in round s� � of the synchronous execution of A� and� if so� sets
FLAG�v� �� v� Again� all the members of Gv check to see if a write�set has
been found� This continues until the write�set is found or is found to be
empty�� The write�set can be found in c����c���� � � ��� PRAM steps�

Once the write�set is found� the leader of Gv sorts the members of the
write�set in increasing order of process id� and writes i�s index in this sorted
list into INDEX�i�� This takes c PRAM steps�

In the next step� for each v the leader of Gv sets FLAG�v� �� �� and for
each i processor Pi resets LOC�i� �� ��

In the last c PRAM steps but one in the simulation of step s��� each Pi

simulates pi�s access to v in order� according to INDEX�i�� Finally� in the
last PRAM step of the simulation each Pi sets INDEX�i� �� ��

Clearly� at most Oc�� steps are required for the simulation� Moreover� it
is not hard to see that a more careful use of the processors allows the write�
set for a shared variable to be determined in Oc� time� making the entire
simulation run in Oc� PRAM steps per simulated round of the synchronous
execution of A�

Combining the two lemmas we get that given an algorithmA that achieves
one�shot mutual exclusion among n processors with variable�contention c
and latency � we can construct a CREW PRAM algorithm that computes
the logical OR of n values in Oc�� rounds� The theorem now follows from
the fact that �log n� rounds are necessary for a CREW PRAM to compute
the logical OR of n values� independent of the number of processes that
participate in the computation �����

We complete our analysis of mutual exclusion by showing that in any
execution of one�shot mutual exclusion there are at least �n� stalls� and
hence the contention is ���� The latter does not follow from the above
trade�o
��



� DISCUSSION ��

Theorem ��� One�shot mutual exclusion among n processes has contention
����

Proof� It is enough to show that for each set of k processes where � � k �
n� there is an execution in which there are at least k�� stalls and exactly one
of the participating processes enters the critical section� The proof proceeds
by induction on k� The base case of k � � is trivial� Assume the claim
holds for k and we will show it holds for k � �� Consider a set of k � �
processes� p�� � � � � pk��� By the inductive hypothesis� there is an execution
E of processes p�� � � � � pk in which they incur k � � stalls and exactly one
of them enters the critical section� Run process pk�� alone until it is about
to access one of the variables� say v� accessed in execution E� Note that it
must do this� since otherwise none of the k � � processes p�� � � � � pk�� can
distinguish between E and execution E� in which pk�� runs in isolation until
completion� But in E�� pk�� enters the critical section� while in E it cannot
do it since one of p�� � � � � pk enters it� Temporarily suspend pk�� just before
it accesses v�

Next run processes p�� � � � � pk as in E and let pk�� try to access v at
the same time that the processes in E are trying to access it� There is an
extension of this execution in which pk�� is stalled and the other processes
proceed the same way as in E� Thus� the number of stalls occuring between
processes p�� � � � � pk is exactly the same as in E� and hence the total number
of stalls increases by one� and we are done�

Since in a binary tournament tree the contention is O��� we have�

Theorem ��� One�shot mutual exclusion among n processes has contention
����

� Discussion

This paper provides the �rst formal tools for analyzing contention in shared�
memory algorithms� Taking contention into account gives a more realistic
model of parallel computation� Similar considerations motivated the recent
work done in ���� ��� ����

In particular� we introduce a formal complexity model for contention in
shared�memory multiprocessors and use it to provide the �rst formal analysis



� ACKNOWLEDGMENTS ��

of the contention versus latency�contention trade�o
s inherent in basic shared
memory problems such as consensus and mutual exclusion� The results match
our intuition� wait�free consensus seems to require more contention than the
easier problem of� randomized consensus� Moreover� restricting our atten�
tion to variable�contention c� randomized consensus� which is non�blocking�
requires provably higher latency than one�shot mutual exclusion� a subprob�
lem not requiring waiting� of the mutual exclusion problem whose solution
must involve waiting�

We also give the �rst formal performance analysis for counting networks�
In particular we show that the amortized contention of the bitonic counting
network is low� Our analysis clari�es experimental results showing that the
bitonic network outperforms the conventional single�variable solution at high
levels of contention� Using the same techniques� similar results are obtained
for linearizable counting networks ���� and the periodic counting network ����

Our work raises many new questions� The contention and hence the
performance� of many well known problems such as reader�writer synchro�
nization� snapshots and approximate agreement is still unknown� Further�
more� the contention of counting networks in general as opposed to speci�c
constructions of counting networks� is also still a mystery� We believe the
techniques developed in this paper can be extended to answer these new
questions� We leave these issues for further research�

� Acknowledgments

The authors are indebted to Serge Plotkin for many helpful discussions� par�
ticularly with regard to the de�nition of the model for contention� We are
also grateful to Butler Lampson� for his input on the same subject� and to
James Anderson and Faith Fich for their comments on Section ��

References

��� K� Abrahamson� On achieving consensus using a shared memory� In
Proceedings of the �th ACM Symposium on Principles of Distributed
Computing� pages ��� ���� August �����



REFERENCES ��

��� E� Aharonson and H� Attiya� Counting networks with arbitrary fan�
out� In Proceedings of the �rd ACM�SIAM Symposium on Discrete Al�
gorithms� January �����

��� J� Anderson� Private Communication� June� �����

��� T�E� Anderson� The performance of spin lock alternatives for shared�
memorymultiprocessors� IEEE Transactions on Parallel and Distributed
Systems� ����� ��� January �����

��� J� Aspnes� Time� and space�e�cient randomized consensus� In Proceed�
ings of the �th ACM Symposium on Principles of Distributed Computing�
pages ��� ���� August �����

��� J� Aspnes and M�P� Herlihy� Fast randomized consensus using shared
memory� Journal of Algorithms� �������� ���� September �����

��� J� Aspnes� M�P� Herlihy� and N� Shavit� Counting networks and multi�
processor coordination� In Proceedings of the ��rd Symposium on Theory
of Computing� pages ��� ���� May �����

��� J� Aspnes and O� Waarts� Randomized consensus in expectedOn log� n�
operations per processor� In Proceedings of the ��rd IEEE Symposium
on Foundations of Computer Science� pages ��� ���� October �����

��� K�E� Batcher� Sorting networks and their applications� In Proceedings
of AFIPS Joint Computer Conference� pages ��� ���� �����

���� M� Ben�Or� Another advantage of free choice� completely asynchronous
agreement protocols� In Proceedings of the �nd Annual ACM Symposium
on Principles of Distributed Computing� pages �� ��� �����

���� B� Chor� A� Israeli� and M� Li� On processor coordination using asyn�
chronous hardware� In Proceedings of the �th ACM Symposium on Prin�
ciples of Distributed Computing� pages �� ��� �����

���� M� Choy and A�K� Singh� Adaptive solutions to the mutual exclusion
problem� Manuscript�

���� MIPS Computer Company� The MIPS RISC architecture�



REFERENCES ��

���� S� Cook� C� Dwork� and R� Reischuk� Upper and lower time bounds for
parallel random access machines without simultaneous writes� SIAM
Journal� ����� February �����

���� T�H� Cormen� C�E� Leiserson� and R� L� Rivest� Introduction to Algo�
rithms� MIT Press� Cambridge MA� �����

���� D�E� Culler� R�M� Karp� D�A� Patterson� A� Sahay� E� Santos� K�E�
Schauser� R�M� Subramonian� and T� von Eicken� LogP� Towards a re�
alistic model of parallel computation� In Proceedings of the �th ACM
SIGPLAN Symposium on Principles and Practices of Parallel Program�
ming� May �����

���� D� Dolev� C� Dwork� and L� Stockmeyer� On the minimal synchronism
needed for distributed consensus� Journal of the ACM� ������� ���
January �����

���� M� Dowd� Y� Perl� L� Rudolph� and M� Saks� The periodic balanced
sorting network� ACM Transactions on Programming Languages and
Systems� �������� ���� October �����

���� C� Dwork� M�P� Herlihy� S�A� Plotkin� and O� Waarts� Time�lapse snap�
shots� In Proceedings of the �st Israel Symposium on the theory of
Computing and Systems� May ����� pages ��� ���� Lecture Notes in
Computer Science !���� Springer�Verlag�

���� C� Dwork� N� Lynch� and L� Stockmeyer� Consensus in the presence of
partial synchrony� Journal of the ACM� �������� ���� April �����

���� C� Dwork and O� Waarts� Randomized snapshot in linear time�
Manuscript�

���� C�S� Ellis and T�J� Olson� Algorithms for parallel memory allocation�
Journal of Parallel programming� �������� ���� August �����

���� M� Fischer� N�A� Lynch� and M�S� Paterson� Impossibility of distributed
commit with one faulty process� Journal of the ACM� ����� April �����

���� P�B� Gibbons� Y� Matias� and V� Ramachandran� QRQW� Account�
ing for concurrency in PRAMs and Asynchronous PRAMs� Technical
Report� AT"T Bell Laboratories� Murray Hill� NJ� March �����



REFERENCES ��

���� A� Gottlieb� R� Grishman� C�P� Kruskal� K�P� McAuli
e� L� Rudolph�
and M� Snir� The NYU ultracomputer � designing an MIMD parallel
computer� IEEE Transactions on Computers� C��������� ���� Febru�
ary �����

���� A� Gottlieb� B�D� Lubachevsky� and L� Rudolph� Basic techniques for
the e�cient coordination of very large numbers of cooperating sequential
processors� ACM Transactions on Programming Languages and Systems�
������� ���� April �����

���� G� Graunke and S� Thakkar� Synchronization algorithms for shared�
memory multiprocessors� IEEE Computer� ������� ��� June �����

���� M�P� Herlihy� Wait�free synchronization� ACM Transactions on Pro�
gramming Languages and Systems� �������� ���� January �����

���� M�P� Herlihy� B�H� Lim� and N� Shavit� Low contention load balancing
on large�scale multiprocessors� In Proceedings of the �rd ACM Sympo�
sium on Parallel Algorithms and Architectures� July �����

���� M�P� Herlihy� N� Shavit� and O� Waarts� Low contention linearizable
counting� In Proceedings of the ��nd IEEE Symposium on Foundations
of Computer Science� pages ��� ���� October �����

���� IBM� System���� principles of operation� Order Number GA��������

���� M� Klugerman and C�G� Plaxton� Small�depth counting networks� In
Proceedings of the ��th ACM Symposium on the Theory of Computing�
pages ��� ���� May �����

���� M� Li� J� Tromp� and P�M�B� Vitanyi� How to share concurrent wait�free
variables� CWI Technical Report CS�R����� �����

���� M�C� Loui and H�H� Abu�Amara� Memory Requirements for Agreement
Among Unreliable Asynchronous Processes� volume �� pages ��� ����
JAI Press� �����

���� J�M� Mellor�Crummey and M�L� Scott� Algorithms for scalable syn�
chronization on shared�memory multiprocessors� Technical Report ����
University of Rochester� Rochester� NY ������ April �����



REFERENCES ��

���� R� Metcalfe and D� Boggs� Ethernet� distributed packet switching for
local computer networks� Communications of the ACM� �������� ����
July �����

���� G�H� P�ster and A� Norton� #Hot spot� contention and combining in
multistage interconnection networks� IEEE Transactions on Computers�
C���������� ���� November �����

���� M� Rabin� Randomized Byzantine generals� In Proceedings of the ��th
Annual Symposium on Foundations of Computer Science� pages ��� 
���� �����

���� L� Rudolph and Z� Segall� Dynamic decentralized cache schemes for
MIMD parallel processors� In ��th Annual International Symposium on
Computer Architecture� pages ��� ���� June �����

���� A�K� Singh� J�H� Anderson� and M�G� Gouda� The elusive atomic regis�
ter revisited� In Proceedings of the �th ACM Symposium on Principles
of Distributed Computing� pages ��� ���� August �����

���� R�L� Sites� Alpha Architecture Reference Manual� Digital Press� May�
nard� MA� �����


