
How the Rdb�VMS Data Sharing
System Became Fast

David Lomet Rick Anderson�

T� K� Rengarajan� Peter Spiro

Digital Equipment Corporation
Cambridge Research Lab

CRL ���� May ��� ����

�

Digital Equipment Corporation has four research facilities: the Systems Research Center and the
Western Research Laboratory, both in Palo Alto, California; the Paris Research Laboratory, in
Paris; and the Cambridge Research Laboratory, in Cambridge, Massachusetts.

The Cambridge laboratory became operational in 1988 and is located at One Kendall Square,
near MIT. CRL engages in computing research to extend the state of the computing art in areas
likely to be important to Digital and its customers in future years. CRL’s main focus is applica-
tions technology; that is, the creation of knowledge and tools useful for the preparation of impor-
tant classes of applications.

CRL Technical Reports can be ordered by electronic mail. To receive instructions, send a mes-
sage to one of the following addresses, with the word help in the Subject line:

On Digital’s EASYnet: CRL::TECHREPORTS
On the Internet: techreports@crl.dec.com

This work may not be copied or reproduced for any commercial purpose. Permission to copy without payment is
granted for non-profit educational and research purposes provided all such copies include a notice that such copy-
ing is by permission of the Cambridge Research Lab of Digital Equipment Corporation, an acknowledgment of the
authors to the work, and all applicable portions of the copyright notice.

The Digital logo is a trademark of Digital Equipment Corporation.

Cambridge Research Laboratory
One Kendall Square
Cambridge, Massachusetts 02139

�

How the Rdb�VMS Data Sharing
System Became Fast

David Lomet Rick Anderson�

T� K� Rengarajan� Peter Spiro �

Digital Equipment Corporation
Cambridge Research Lab

CRL ���� May ��� ����

Abstract

Recent versions of Rdb�VMS have shown dramatic performance increases
compared with earlier versions� Performance enhancements have culminated
in an ��	 improvement between Rdb�VMS V
�� and Rdb�VMS V��� when
executing on the same hardware� This has vaulted Rdb�VMS to an industry
leadership position in ��TPS and to a very competitive position in peak TPS�
While code paths have been shortened� the primary means of achieving this
performance gain has been through reducing I�O accesses and distributed
locks� This paper outlines how this was done�

Keywords� database performance� locking� buering� recovery� commit pro�
cessing
c�Digital Equipment Corporation ����� All rights reserved�

�Digital Equipment Corp�� Database Systems Group� Nashua� NH

�

6

Processor Processor

Figure �� A shared disk system that supports a data sharing database system�

� Introduction

��� Data Sharing Systems

A data sharing database system is one in which multiple servers manipulate
data on disks that all the servers can access simultaneously� Rdb�VMS �

is unusual among database systems in being a data sharing system� It is
designed to execute on a VAXcluster ���� a system con�guration called a
�shared disk� system because multiple processors can access a common set
of disks� Figure � schematically portrays a shared disk system con�guration
that enables data sharing�

Data sharing systems have an interesting blend of advantages and di��
culties� The di�culties include the need to use a distributed lock manager
�DLM� ��� in order to mediate requests for the common resources� The DLM
is usually used to provide cache coherency as well� where the problem is to
ensure that the multiple servers see a consistent view of the database� Ad�
ditional problems involve providing recovery when some but not all servers
for some data fail� a situation that can arise with data sharing but that is
impossible with partitioned systems�

However� data sharing systems provide some substantial advantages�

� Unlike partitioned systems� Rdb�VMS does not need to be carefully

�Rdb�VMS� VMS� VAX� and VAXcluster are trademarks of the Digital Equipment
Corporation�

� � INTRODUCTION

administered so as to balance the work load across multiple servers�
�Careful placement of data on disks remains a problem��

� Users can scale their applications easily by adding new processors or
new disks and controllers� Rdb�VMS �exibly adjusts to the new envi�
ronment�

� Availability is enhanced because servers on any processor can all access
the data� Thus� so long as some VAX in a VAXcluster is in operation�
the database is available�

The above features are highly desired by users executing production appli�
cations� and Rdb�VMS has long made support for such applications a high
priority �
��

��� The Changing Hardware Playing Field

The revolutionary advances in processor performance� coupled with the ever
larger quantities of storage available� have reset user expectations as to the
performance of database systems� Users expect continuous improvement in
the price and performance of the database processing that they are currently
doing� They also expect that new applications that were previously infeasible�
should now become a staple part of their application suite�

Database engineers know that meeting user expectations requires much
more than taking a free ride on hardware improvements� While processor
speeds have improved enormously� and storage costs have plummeted� the
performance balance in today�s systems has changed dramatically� The key
point of this is the following�

POINT� The performance of any system is limited to that which can be
provided by its most performance constrained component� This component
then becomes the system bottleneck�

Today�s systems have less I�O bandwidth per processor MIPS capabil�
ity than their predecessors� Even more dramatically� today�s systems fall
short on their ability to provide I�O accesses�second per MIPS� Consider
the change in disk and processor characteristics as shown in Table � below
for the years ���� and ����� �The numbers have been rounded for easy
comparison��

��� Scaling to High Performance

Single Disk Accesses vs Single Chip Processor Performance

Year Accesses�Sec MIPS �Accesses�sec��MIPS
����
� � �
���� �� ���� �

Table �� Changing I�O to Processor Performance

Thus� in ����� a one chip� one disk system could support no more than
one I�O access for every ���K instructions� In ����� such a system could
support no more than one I�O access per ���K instructions� The result
of executing a database system in ���� that was designed for ���� system
components is a bottleneck on I�O� This can mean processors that are less
than fully utilized� perhaps dramatically so� as they wait for I�O to complete�

��� Scaling to High Performance

Customers seem to need ever larger databases serving an ever larger user
community� The scaling problem for data sharing systems is that code path
tends to increase as more servers are added to the system� This is true
whether the servers are within a single symmetric multiprocessor �SMP�
node or whether they are instantiated on additional nodes in a VAXcluster�
In both cases� there is an increase in the number of remote lock requests
that may have to be serviced because each server becomes a smaller part of
the overall system� Transferring active data from one server to another can
increase as well� which results in added I�O activity� It is important to prune
this locking and I�O activity so as to contain the problem�

��� Adjusting to The New Requirements

When planning for these new requirements� it is not su�cient to simply try
to make everything more e�cient� In particular� simply shortening code path
may have� as its only eect� that the processor utilization declines and overall
performance is unchanged� This is the same eect that arises when a faster
processor replaces a slower one while the system is bottlenecked elsewhere�

� � INTRODUCTION

What is needed is to direct attention to the system bottlenecks� That
is� it is necessary to reduce I�O accesses for the same functionality� In a
data sharing system� reducing messages involves reducing the number of
distributed DLM locks that are needed� This clearly has a direct impact
on user perceptions of response time as there are fewer I�O and message
waits� Perhaps less expected is that the result of this work is shorter code
paths as well�

Concentration on I�O and messages results in shorter execution paths�
This is a consequence of avoiding the substantial processor instruction ex�
ecution costs of I�O and message handling� Typically� I�O and message
instruction costs are multiple thousands of instructions� These instruction
costs can be a substantial fraction of the path length of a TPC�A transaction�

What is unique about much of the work described in the following sections
of this paper is that it was done in the context of a process�based data sharing
system� This work makes Rdb�VMS truly unique in that the advantages of
data sharing are preserved while providing world class performance and price
performance�

��� Paper Organization

In the remaining sections of this paper� the major innovations that we ex�
ploited in order to give Rdb�VMS performance leadership are described�
There are four areas that were attacked�

Lock Handling� The number of locks that need to be acquired per trans�
action were reduced by techniques that involve having each lock cover
more resources �when that is possible� coupled with having locks that
span several transactions�

Global Bu�ers� Rdb�VMS executes in each user�s process� which provides
a very responsive interface to the database� A problem is that each
user had his own buer of database pages� Pages shared by several user
processes then needed to be switched back and forth between processes�
Providing node wide �global� buers greatly reduces this switching�

Recovery� A database system must ensure that a committed transaction
is durable and that uncommitted transactions that fail can be erased�
The goal here was to minimize the I�O accesses needed to store data

�

Acronym De�nition
AIJ After�Image Journal �for redo�
ALG Adjustable Locking Granularity
AST Asynchronous System Trap
DBR Database Recovery Process
DLM Distributed Lock Manager �of VMS�
PSN Page Sequence Number
RUJ Run�Unit Journal �for undo�
SMP Symmetric Multi�Processor

Table �� Glossary of Acronyms

stably� The trick was to reduce the amount of data that needs to be
stably stored� and to exploit mainly sequential I�O for accomplishing
this� Which server recovers which part of the database needed also to
be solved�

Commit Processing� The sequence of steps needed in order to commit
transactions has required the acquisition of multiple DLM locks and the
scheduling of multiple writes� How both locks and I�Os were reduced
is described� Of particular importance is the reduction in the length of
time that locks are held�

Rdb�VMS� like most complex systems� exploits acronyms to describe con�
cepts� components� and features� These are used to shorten the description of
how it works� Table � below contains a summary of all acronyms introduced
in the description of the subsequent sections�

� Lock Handling

��� The Heart of Data Sharing

Rdb�VMS is a data sharing system� in large part� because it exploits the VMS
distributed lock manager �DLM� for concurrency control� The DLM provides
services for naming and locking cluster�wide resources and for performing

� � LOCK HANDLING

cluster�wide synchronization� DLM is a very e�cient lock manager when
lock requests are handled within a single node of a cluster� However� lock
requests across nodes require that messages be sent� making the distributed
functionality expensive to use�

Rdb has always taken measures to minimize its use of distributed locks
���� In particular� it exploits lock de�escalation for this� That is� a process
will acquire a lock on a large granule �e�g� �le� so as to permit it to operate
on pages and records of the �le without needing to make additional lock
requests to the DLM�

Should another process want to access some of the data of a �le� the pro�
cess holding the �le lock is noti�ed� This holding process can de�escalate its
�le lock to tuple or page locks� This permits other processes to acquire locks
on tuples or pages not of current interest to the �rst process� Hence� only if a
con�ict actually occurs is locking at page or tuple granularity performed via
the DLM� Multi�granularity locking and intention locks are used to realize
this� These lock modes are supported by the DLM�

DLM lock owners are processes� not transactions� These owning processes
provide interrupt handlers that respond to DLM interactions outside of the
main thread of the process� The interrupt handler within a process is called
an AST �asynchronous system trap� routine� It responds to the DLM� e�g��
by deciding on a response to DLM reported lock con�icts� The fact that
locking is process based can be viewed as a limitation� but it is also possible
to exploit this DLM characteristic� This is described below�

��� Lock Carry�over

����� Locking Locality in a Data Sharing System

If there are many processes competing for the same lock or small set of locks�
then lock thrashing will rapidly set in� The result is that very substantial
overhead will be incurred responding to lock con�icts within AST routines�
Rdb takes pains to minimize this thrashing� as described above� It is also
possible for Rdb�VMS users to reduce the level of lock contention�

The most common circumstance is that users are simply accessing dif�
ferent resources� e�g� records�tuples� or �les�tables�� Most of the data in a
database is cold data that is rarely accessed� Further� when it is accessed�
there is usually some locality to the reference pattern� For example� a user

��� The Carry�Over Realization �

who completes one ATM transaction subsequently initiates a second trans�
action against the same account�

Even for data that is hot� con�icting lock accesses can be avoided� It is
commonplace for debit�credit style transaction execution to be mediated by
a transaction monitor� e�g� ACMS� The transaction monitor routes the trans�
action to a server that is dedicated to handling some part of the database�
This is called partitioning� Partitioning is very useful for improved perfor�
mance� For example� it helps ensure that a database server has the hot
resources in its cache� For distributed locking� such partitioning results in a
single process handling all requests against some small set of hot resources�

The end result for both cold data and partitioned hot data is that it is
unlikely that another process will access this data concurrently� This makes
locks on the data low�con�ict locks�

����� Exploiting Locality and Low Con�ict

Prior versions of Rdb�VMS did traditional database locking for logical re�
sources �records and �logical areas��� i�e�� database locks were acquired dur�
ing a transaction and held� as prescribed by the strict two phase locking
protocol �strict �PL� until the transaction was completed� Despite the fact
that processes own locks when using the DLM� a process relinquished its
logical locks at end of transaction� Should the next transaction executed
by a process have wanted to lock the same resources� these locks had to be
re�acquired� as if the process had never seen the locks before�

Another strategy is possible� Instead of acquiring and releasing locks
during every transaction� locks acquired in prior transactions can be carried
over to the present transaction� We call these locks carry�over locks� and this
optimization is called the carry�over optimization�

��� The Carry�Over Realization

����� Multi�granularity Locking and Lock Con�icts

If transactions access several �les� etc�� a process executing those transactions
can end up holding a large number of locks� Further� in order to respond
appropriately to con�icting lock requests� it is necessary to distinguish locks
actually in use �by the current transaction� from carry�over locks that are not

� � LOCK HANDLING

used currently� The later category can be released on receipt of a con�ict mes�
sage from the DLM� The former need to be retained until end�of�transaction�
We refer to these former locks as IN�USE locks and mark them appropriately�

The carry�over optimization is applied at the root granule of a tree de�
noting the multi�granularity locking hierarchy� called the ALG �adjustable
locking granularity tree� root� A con�icting request at the ALG root causes
the lock on the root to be de�escalated� That is� explicit locks are posted
for locks below it in the tree that guard resources being used by the current
transaction� Then� the strong mode lock on the ALG is replaced with a
weaker �intention� mode lock�

Which locks are carried over from one transaction to the next depends
on whether the ALG root lock is strong or weak� If strong� it indicates that
no con�icting requests for resources in its resource tree have been received�
If the ALG root lock is weak� that indicates that it has been de�escalated to
satisfy a request for one or more of the resources in the tree� Thus� lock trees
with strong ALG root locks have the locks carried over� Those with weak
ALG root locks are all released�

����� Interactive NOWAIT Transactions

Rdb supports a feature called NOWAIT transactions to enable interactive
users to avoid waiting for locks� That is� should a locking request of the
interactive user threaten to block� because another transaction has the lock
in a con�icting mode� a NOWAIT transaction will not hang� but rather
returns immediately to the user with a lock con�ict message� This permits
interactive users to perform other work� and then perhaps subsequently re�
attempt the previously denied request�

Carry�over locking creates a potential problem for interactive users with
NOWAIT transactions� Carry�over locks may permanently deny such users
access to the data they are guarding� even though there are multiple occasions
in which the data is actually available outside of con�icting transactions�

To preclude permanent exclusion for NOWAIT transactions� a NOWAIT

transaction broadcasts its presence to all processes of the data sharing sys�
tem� This is done via the capability of the DLM to support global locks
and to resolve con�icts on the global locks via noti�cation messages sent to
ASTs� Upon noti�cation� all other processes disable carry�over locking until
such time as there are no more NOWAIT transactions executing�

��� Lock Reduction Achieved �

�� System Con�gurations ��

One Node Two Nodes Three Nodes
��	 ��	 ��	

Figure �� Improvement in Debit�Credit TPS performance by carry�over lock�
ing�

��� Lock Reduction Achieved

An important attribute of our implementation is that applications that are
not partitioned are not adversely impacted by carry�over locking� as such ap�
plications implicitly disable carry�over locks� And for applications for which
accesses are partitioned� the performance gain can be substantial� The TPC�
A �debit�credit� benchmark is one such application�

The TPC�A benchmark was executed both with carry�over locking en�
abled� and with it disabled� The system con�guration varied from all pro�
cesses executing on a single node� to being on two� then three nodes� In
Figure �� we present the percent improvement achieved by the carry�over
optimization for each con�guration� The reduction in locks requested was
over ��	�

� Global Bu�ers

��� Process�Private Local Bu�ers

Prior to V��� of Rdb�VMS� all processes accessing the database managed
database pages in process�private buer pools� This is illustrated in Figure

a� Cache coherency between buer pools was achieved by the use of the
DLM� Essentially� whenever a process� even on the same node� wished to
access a database page held by another process� it needed to

�� read the page from disk� thus wasting disk I�O bandwidth�

�� maintain a separate copy of the page in its private buer� thus wasting
physical memory�

�� � GLOBAL BUFFERS

Database buers can hold a number of database pages� which in turn can
be a number of disk blocks� For the purposes of our discussion� we assume
one page per database buer� To read or update a page� a user gets a DLM
page lock� The DLM maintains version numbers associated with each lock�
These version numbers are contained within what is called the �lock value
block�� The current version number of the page in the lock value block is
compared with the old version number of the page in the buer pool to decide
if the page should be read from disk�

��� Multi�process Global Bu�ers

The global buers feature implemented in Rdb V��� overcomes these disad�
vantages� With global buers� there is only one pool of buers for a database
for each node� which is kept in a global section� The global section is mapped
into a portion of each user process�s virtual memory� Only one copy of any
database page is maintained in the global buer� Additionally� only one pro�
cess reads the page from disk� Other processes simply reference the already
present page in the global buer�

The management of global buers is performed in a distributed fashion
by cooperating database processes� There is no special process that manages
the global buer pool� Buers are managed via a two�level scheme� This
scheme is illustrated in Figure
b�

Level �� Allocate Sets� Every process maintains an �allocate set� of
global buers� The allocate set is the collection of buers that pre�
viously had been the process private buer pool� The allocate set is
locked by the process in the global buer pool �see below��

A process performs intra�node synchronization using local DLM locks
to bring a buer into its allocate set� When many processes read the
same buer� it can be in the allocate sets of all of them� Once a buer is
brought into the allocate set of a process� no other process can remove
the buer from the global buer pool�

The maximum size of an allocate set is statically determined by each
process at bind time� Once an allocate set has grown to the maximum
size� it is necessary to purge buers from the allocate set before other
buers can be brought in� The victim buer to be purged from the
allocate set is determined by an LRU algorithm�

��� Multi�process Global Bu�ers ��

2

Application

Rdb

Private

RunTime

Buffer

Process 1 Process 2 Process 3

Application

Rdb

Private

RunTime

Buffer

Application

Rdb

Private

RunTime

Buffer

3(a)

3

Application

Rdb

Allocate

RunTime

Set

Process 1 Process 2 Process 3

Application

Rdb
RunTime

Application

Rdb
RunTime

3(b)

Allocate
Set

Allocate
Set

Buffer Buffer BufferGlobal
Section

Figure
� �a� Process mapping for private buers� �b� Process mapping for
the global buer feature�

�� � GLOBAL BUFFERS

Level �� Global Bu�er Pool�

The �global buer pool� is the global storage pool that contains all the
allocate sets of all the processes on a node� Searching for a database
page in the global buer pool is made fast by the use of a hash table�
The hash table is an array of queue headers for queues of buers that
have hashed to the same slot in the table� Each queue element stores a
count indicating in how many allocate sets the associated global buer
is included�

Searching for victim buers to be replaced by new buers is determined
by a pseudo�LRU queue of possibly�free buers� A buer that is not
in the allocate set of any user is enqueued� When a victim is needed�
so as to provide a free buer for new data� potential victim buers are
dequeued from this pseudo�LRU queue� The selected victim is the �rst
buer that is not in an allocate set� This queue contains only potential
victims because a global buer may become part of an allocate set after
it has been enqueued�

This two�level buer management has some interesting characteristics�
Each process can request a dierent size allocate set when a session is opened
with a database� based on the application� A process can access buers in
this allocate set without any need for synchronization or process context
switches� It is very easy to lock a set of database buers in the global buer
pool� There is minimal interference between the access patterns of dierent
processes� For example� a process performing a sequential read cannot force
out of cache a set of buers that another process needs� e�g� for a nested�loops
join�

The locking protocol for cache coherency of global buers is very similar
to that used for local buers� A user still gets the same lock and checks
versions� Global buers may not go away with process failures� But page
locks owned by a process are released by the DLM when a process fails� In
order to preserve version coherence �via lock value blocks in a VAXcluster
environment�� system�owned locks are held �in NL mode� on all pages in the
global buer pool�

��� Achieving High Availability �

��� Achieving High Availability

As discussed above� operations like movement of buers into and out of user
allocate sets involves updates of global buer data structures� A process
failure during such operations can leave the global buer data structures
inconsistent and hence unusable� This problem is directly a result of the
distributed buer management by cooperating processes and can adversely
aect system availability when the global buer pool is accessed by a large
number of processes�

To solve this problem� we need to do global buer operations atomically�
We achieve this by a mechanism called global buer transactions� The set of
global buer data structures is considered to be a database and well�known
db locking and logging strategies are employed� We lock the global buer
data structures �using node�private local DLM locks� before updating them�
Then we log the before images to an in�memory log� This log never has to be
�ushed to disk� since its only purpose is to guarantee atomicity of operations
with respect to one global buer pool� In particular� it does not have to
survive system failure�

If a process fails during the update� a recovery process �DBR� undoes
the global buer transaction� As part of recovery for a failed user� DBR
also purges all buers from the allocate set of the failed user� These can be
considered as compensating transactions for previously executed global buer
transactions� Such recovery of global buer transactions happens before the
database transaction recovery is attempted�

��� Performance Impact

The use of global buers helps most when data is shared between dierent
users� The performance improvement depends on the extent of data sharing�
Experiments with simple applications show performance improvements of
about ��	� but the bene�t can be much higher� The overhead of global
buers is in the extra synchronization� This is minimized by the two�level
buer scheme� When there is absolutely no sharing� experiments indicate a
performance overhead of approximately �	 for the same simple applications�
This is the worst case for the performance overhead of global buers�

Note that global buering provides a performance improvement in cases
where carry�over locking cannot be used� These cases are when data is shared

�� � RECOVERY TECHNIQUES

between users� potentially disabling the carry�over lock optimization� Thus�
it provides its performance boost to applications that would not otherwise
see an improvement� This is particularly important when the data sharing
nature of Rdb�VMS is being exploited�

� Recovery Techniques

��� Pure Undo Recovery

In previous releases� Rdb�VMS utilized an undo�no�redo logging technique
���� This required that all modi�ed database pages be �ushed to disk before
a transaction could commit� Because all modi�ed pages were �ushed to
disk at commit time� Rdb�VMS never needed to redo the eects of a failed
transaction� Thus� the previous releases favored fast recovery at the expense
of longer commit processing�

If the commit sequence forces all updates to disk before the transaction
is allowed to commit� then any abnormal termination can be recovered by
performing only undo recovery� So this method is characterized by very fast
recovery processing at the expense of less than optimal commit processing�

��� Redo Logging via AIJ

Rdb�VMS version ��� allows a database to utilize two dierent recovery
strategies� The database can be con�gured to �ush all updated database
pages back to disk during commit as before� or the database can avoid �ush�
ing the database pages to disk and simply log after�image records to a journal�
This second method is called redo logging�

When redo logging is enabled� at commit time a transaction�s dirty pages
are NOT �ushed to the disk� Instead� commit information is submitted and
�ushed to the After Image Journal �AIJ�� The transaction is then marked as
committed� The bene�t of this feature is that frequently accessed database
pages do not need to be written to disk as often�

Even when using redo logging� the undo journal containing before im�
ages �RUJ� is still utilized� This means that if a marked� but uncommit�
ted database page is �ushed to disk before the end of the transaction �for
instance� because of cache over�ow�� the before�image information will be

��� Checkpoints For Bounding Redo Recovery ��

�ushed to the journal� However� transactions that do not �ush uncommitted
marked pages to disk will not have to incur the cost of the before image
journal�

The two recovery methods not only dier in the work required during
commit processing� but they also dier in the recovery processing which
would be necessary in the event of an abnormal transaction termination�

With redo recovery� commit is very e�cient� the only requirement is
that the transaction�s after�image records must be �ushed to the AIJ log�
However since committed updates for database pages have not been �ushed
to disk� a failure requires DBR to perform redo recovery in addition to any
undo recovery that might be necessary� Hence redo recovery is characterized
by very fast commit processing and expensive recovery processing� This is
usually considered to be a desirable trade�o�

After a process completes a number of transactions� more and more up�
dated� committed pages will exist in the process�s buer pool� If the process
dies� the time needed to perform redo recovery is related to the size of the
AIJ �le� and the number of updates the recovery process must redo� For
example� assume a database is processing ��� transactions per second with
each transaction generating �K of AIJ log data� Thus the database is gener�
ating almost a gigabyte of log data every three hours� If a user process had
been running for three hours with redo recovery enabled� and then aborted
abnormally� DBR would have to scan a gigabyte of log data in order to cor�
rectly redo all the transactions for the dead process� In most circumstances
this would be an unacceptable�

��� Checkpoints For Bounding Redo Recovery

����� Checkpoints

In order to bound the recovery time� Rdb�VMS employs checkpoints which
allow DBR to scan a smaller section of the AIJ log� In Rdb�VMS� each
database user individually performs their own checkpoint� which will occur
after the completion of a particular transaction� A checkpoint is a three step
sequence� �rst the process �ushes all its updated committed database pages
back to disk� then the process submits and �ushes a checkpoint record to the
AIJ log� �nally the process records� in the database root �le� the location of
this checkpoint record�

�� � RECOVERY TECHNIQUES

4

T1 T1 T1 T2 T2 T3 T3 T3
data data commit commit commitdata data

ckpt
data

AIJ file growth

.. ...

Recovery begins here

leof

Figure �� Recovery can ignore transaction T� and transaction T� since they
were committed and �ushed to disk before the checkpoint record� Transac�
tion T
 must be redone�

By �ushing all the updates to disk we ensure that the recovery process will
not have to redo any of these updates� Furthermore by writing the checkpoint
record to the AIJ �le� a guaranteed safe starting point is identi�ed for DBR�
In other words� DBR never has to perform redo for any AIJ records that
precede the checkpoint record� Their changes have been �ushed and are
durably recorded in the database pages on disk�

The recovery mechanism will be detailed further in the paper� however
in its simplest description the recovery process has to scan the AIJ �le from
the checkpoint record to the end of �le� possibly redoing transactions for the
aborted process� Thus the time required for the recovery is directly related
to size of the AIJ growth since the database user wrote its last checkpoint
record to the AIJ �le� This is illustrated in Figure � below�

����� Checkpoint methods

As mentioned above� Rdb�VMS does not perform a global checkpoint for
all database users� instead each user completes its own checkpoint when a
certain event dictates a checkpoint is desirable� Since applications can be so
varied� Rdb�VMS has provided three dierent mechanisms for triggering a
user checkpoint�

AIJ File Growth� The DBA can set the AIJ �le growth checkpointing
parameter to be some number of blocks� A database user will �ush a
new checkpoint record whenever the AIJ �le has grown at least this
number of blocks since the user �ushed its last checkpoint record�

��� Logging Requirements for Recovery ��

Transaction count� The transaction count method forces a database user
to checkpoint after it has completed certain number of transactions�
This setting is often useful when the behavior of the application is very
well understood�

Time� The timemethod utilizes the elapsed clock time since the last check�
point� This parameter is often useful as a catch�all to prevent users from
running for a very long time between checkpoints�

The method which is most deterministic in bounding recovery time is
the AIJ �le growth parameter� The duration of recovery is reasonably well
known� the time necessary to scan some set number of blocks of data and
possibly redo some database updates�

��� Logging Requirements for Recovery

Because users checkpoint independently and may abort independently� re�
covery has to proceed in a slightly dierent manner from many other redo
recovery schemes� In Rdb�VMS the recovery process must be able to recover
for an individual user� To solve this problem each AIJ record submitted to
the AIJ �le contains an unique ID which identi�es a dierent database user�

Another factor is that one user�s AIJ records may be �outdated� by another
user�s subsequent data modi�cation and respective AIJ record� For example�
assume user U� updates record R� and commits� Then user U� updates
record R� and also commits� Then user U� aborts� At this point the AIJ �le
is in the state depicted by Figure ��

Since the recovery process is only performing redo for U�� it must be
selective about which updates it must redo� If an AIJ record is made obsolete
by a subsequent AIJ record� the recovery process must not redo the change
as it will produce in an incorrect result� To solve this problem� Rdb�VMS
tags each AIJ record with a page sequence number �PSN� ����

A PSN exists on all live data pages� Whenever an AIJ record is sub�
mitted� it includes the PSN of the page before the transaction made the
data modi�cation� Then the transaction increments the PSN� So the PSN
is an identi�er of the state of the page when the modi�cation occurred� In
addition� it is important to state that whenever a page migrates from one
database user to another� it must �rst be �ushed to disk� This guarantees
that at most one user has unposted updates for a page�

�� � RECOVERY TECHNIQUES

5

AIJ file growth

. . leof. U1
T7

R1- data

U1
T7

commit

U2
T12

R1- data

U2
T12

commit

U1
ckpt

Figure �� Record R� was updated by U� in transaction T�� Subsequently�
R� was updated by U� in transaction T��� If U� aborts� the recovery process
must not redo the update to R� done by T� because it would reverse the
eects of T���

When DBR performs redo� it only redoes an AIJ record� if the PSN in
the AIJ record matches the PSN it �nds on the page it just read o desk�
This is a key point� In other words� if the PSN matches� it means the update
�re�ected in the AIJ �le� did not get propagated to disk and consequently
the operation must be redone� If the PSN does not match� it means the
update must have been �ushed to disk so DBR does not redo the operation�

��� Redo Recovery

When a transaction aborts abnormally� Rdb�VMS automatically starts up a
recovery process� First the recovery process reads the database root �le to
determine the VBN in the AIJ �le of the aborted user�s checkpoint record�
The recovery process now has to scan the AIJ �le from the checkpoint VBN
to the end�of��le� searching for committed AIJ records submitted by the
aborted user�

When the recovery process �nds a candidate AIJ record to redo� it then
checks the PSN from the AIJ record� with the PSN on the database page
in the database� If the PSN from the AIJ record does not match the data
page� the recovery process can avoid the redo� This will occur if another
database user had subsequently modi�ed the page after the aborted user
had submitted its AIJ record� In other words� the update had been �ushed
to disk� However if the PSNs match� the modi�cation never got �ushed to
disk and the recovery process must redo the operation logged on the AIJ

��

record�

After the recovery process has scanned to the end of the AIJ �le� the
redo phase is completed� and the recovery process performs the undo phase
of recovery�

In the event of a system crash� recovery immediately proceeds if the
database is accessed on any existing node in a VAXcluster� In a single�node
system� recovery would begin automatically after the system was rebooted
and the database was accessed� In both scenarios� the actual recovery pro�
ceeds identically to the transaction recovery described above� that is� the
recovery process scans the AIJ �le and performs redo for each failed trans�
action�

� Commit Process

��� Group Commit

	���� Rationale

The purpose of group commit is to batch a series of related� expensive op�
erations such that the cost of processing the serial portion of the operation�
such as I�O� is amortized across many transactions� In the case of journaling
the after�image records� or updating the transaction state information in the
database root �le� this also allows the system to fully utilize the disk device
bandwidth� Version ��� of Rdb�VMS was the �rst version of Rdb�VMS to
support group commit ����

The Rdb�VMS transaction commit operation is actually performed in
two distinct phases� an after�image journal posting phase and a transaction
state information posting phase� Each of these phases is performed using a
separate but similar grouping mechanism� which will be described below�

	���� After�Image Journal Posting

As data records are modi�ed� after�images of the modi�ed records are stored
in a per�process cache� When the transaction commits� or the cache over�
�ows� the contents of the cache are formatted into variable�length records
which are then appended to a �after�image posting queue��

�� � COMMIT PROCESS

When the process cache has been completely submitted to the queue� the
process �sleeps� for a small amount of time� This processing pause allows
other committing processes to �ush their commit information as well to the
same after�image posting queue� The purpose of this pause is to reduce the
use of distributed locks� The expectation is that the locking protocol of the
next paragraph will frequently be avoided�

When the process awakens from the sleep� it checks to see if its records
in the queue have been processed� If the queue entries have been processed�
the transaction commit operation proceeds to the next phase� Otherwise� the
process attempts to acquire an exclusive lock on a special lock resource� If the
lock is immediately granted� the successful process is known as the �group
poster�� The blocked processes know that another process is performing the
group post operation� and they simply wait until their queue entries have
been processed�

The group poster process will format all after�image posting queue records
into a large buer and perform a single write operation to the after�image
journal� appending the buer to the current end�of��le� Once the I�O is
complete� the posting queue entries are removed and the lock is released�

	���� Transaction State Posting

After receiving noti�cation that the group after�image posting operation has
been completed� each transaction submits an entry to the �transaction state�
queue indicating that it has committed successfully� If the transaction sub�
mitted the �rst entry on the queue� that process is designated as the �group
poster�� Otherwise� the process �sleeps� for a small amount of time� this
processing pause allows other committing processes to also submit entries to
the queue� so that the group poster can process multiple queue entries in a
single pass�

The group poster process will update the database on�disk transaction
information with the state information in the �transaction state� queue� and
perform a single write operation to the database root �le� Once the I�O
is complete� the queue entries are marked as having been �ushed to the
database root�

When a sleeping process awakens� it checks its queue entry to see if it
has been processed� If the queue entry is marked as completed� the queue
entry is deleted and the transaction is considered committed and �nal� If

��� New Commit Sequence ��

the queue entry has not yet processed� the queue entry is checked to see if
it is the �rst entry in the queue� if so� this process becomes the next group
poster� Otherwise� the process sleeps for a small amount of time� as before�

This algorithm continues until all �transaction state� queue entries have
been processed�

��� New Commit Sequence

	���� Previous Commit Processing

In previous releases of Rdb�VMS� when an application committed a transac�
tion� the database root and transaction data structures were locked� modi�ed
and �ushed to disk by the group commit process� The following steps were
executed to commit a transaction to the database root�

�� Write the before image journal information to disk�

�� Write the database pages to disk�

� Write the after image journal information to disk�

�� Update the root and transaction data structures�

This strategy was known as commit�to�root because the moment of com�
mit was the updating of transaction information in the database root� This
algorithmwas the bottleneck for high�performance� high transaction�throughput
applications� This algorithm also constrained the maximumtransactions�per�
second throughput that could be obtained by an application� the application
became single�threaded on the root and transaction data structure locks�

With the implementation of redo logging in Rdb�VMS v���� step � has
been minimized and step � has been eliminated� The commit�to�journal
feature �described below� is designed to eliminate step �� Once this is done�
all a transaction needs to do to commit a transaction is to write its after
image journal information to disk �step
��

The sequence of operations used by step four above� which updated the
root and hence actually committed the transaction� is shown in Figure ��

Hence by avoiding this sequence� four lock requests and at least one I�O
are saved per group commit� In addition� the commit sequence is not forced
to be single�threaded�

�� � COMMIT PROCESS

�� Lock the database root information� �processes on other nodes cannot
commit while this lock is held��

�� Lock the transaction information�

� Update the database transaction information�

�� Flush the transaction information to disk�

�� Unlock the transaction information�

�� Update the database root information�

�� Flush the database root information to disk�

�� Unlock the database root lock�

Figure �� The sequence of steps involved in committing to the database root�

	���� Commit�to�Journal Feature

The database root contains a list of all active transactions� Rdb�VMS writes
the database root at commit time to document that its transaction is no
longer active� i�e� the transaction has completed� This is used by the snapshot
facility to support read�only transactions against a transaction consistent re�
cent version of the database� Essentially� a read�only �snapshot� transaction
is given a transaction consistent view of the database AS OF the time that
it begins execution� Historical versions of data are retained� stamped with
the transaction id of the updating transaction that produced them�

The database root indicates to the snapshot transaction which updates it
should see and which are irrelevant� It does this by retaining information as to
which transactions are active when the read�only transaction starts� Updates
for these active transactions are not visible to the read�only transaction� The
root is the cluster�wide place to �nd this commit information� making it
possible for all processes on all nodes of the cluster to realize a consistent
view�

A new option was introduced into Rdb�VMS in order to avoid the need to
write the database root� The commit�to�journal feature reduces the number

�

of I�Os required to commit a transaction to one �the after�image journal��
Note that when combined with group commit� the actual number of I�Os
required to commit a transaction is usually less than one�

The commit�to�journal feature permits a user to turn o the Rdb�VMS
snapshot facility in such a way that all processes accessing a database know
that this feature is turned o� When snapshots are turned o in this way�
Rdb need not keep the active transaction list up�to�date� Normal two phase
locking provides serializability� and only the current database state is of in�
terest� Thus� there is no need to update the database root� In addition to
avoiding a write to the root� the VMS lock needed to synchronize access to
the root is also avoided� In addition� the commit sequence is no longer single
threaded as the root lock need not be held throughout�

� Discussion

The collection of features described here are the primary ones responsible for
the dramatic improvement in the performance of Rdb�VMS when running
the debit�credit benchmark �TPC�A � and TPC�B�� Debit�credit perfor�
mance is largely a measure of database kernel performance� Rdb�VMS per�
formance has improved substantially when executing more complex queries�
which re�ect the quality of join processing and query optimization� The
sources of these improvements have not been reported here� but see ����

The systems whose performance has been reported for the debit�credit
benchmark range from desktop systems to mainframes� Rdb�VMS provides
its industry leadership performance and price�performance across this en�
tire spectrum� Figure ���a� and �b�� chart Rdb�VMS performance and
price�performance on the TPC�A version of the benchmark� The TPC�A
version of the benchmark has the fully loaded system including terminals
and communication� etc� It is how one would normally expect to execute a
debit�credit application� In each system category� Rdb�VMS performance
in transactions�second or TPS� is near the top� In each category� Rdb�VMS
beats its competition in ��TPS� the cost�performance metric�

The performance achieved with such a variety of system con�gurations
clearly demonstrates Rdb�VMS�s performance scalability� This scalability

�TPC�A and TPC�B are trademarks of the Transaction Processing Performance
Council

�� � DISCUSSION

220

200

180

100

 0

Entry Level
Systems

Midrange
Systems

High End
Systems

Symmetric
Multiprocessing
Systems

VAX
6000

 HP VAX HP HP IBM IBM VAX MicroVAX
9000 9000 90006000 4000 9000 RS/6000 AS/400 3100 9000RS/6000 AS/400

HP IBM IBM HP IBM IBM

-640 870S/400 -610 877S 870S/100 560 E70 -500 857S 500 E70 80 807S 520H E35
RS/6000 AS/400

tpsA-Local

TPC-A Benchmark Performance Results

160

140

120

 80

 60

 40

 20

208.8

173.2

91.0

74.9 74.5 72.0

54.9
62.4 60.1

51.0 54.9

27.9 30.4 31.0

14.0

Performance (tpsA-Local)

25000

20000

15000

10000

0

5000

Entry Level
Systems

Midrange
Systems

High End
Systems

Symmetric
Multiprocessing
Systems

VAX
6000

 HP VAX HP HP IBM IBM VAX MicroVAX
9000 9000 90006000 4000 9000 RS/6000 AS/400 3100 9000RS/6000 AS/400

HP IBM IBM HP IBM IBM

-640 870S/400 -610 877S 870S/100 560 E70 -500 857S 500 E70 80 807S 520H E35
RS/6000 AS/400

Price/Performance
($/tpsA-Local)

TPC-A Benchmark Price/Performance Results

Figure �� �a� TPC�A Benchmark Performance Results� �b� TPC�A Bench�
mark Price�Performance Results

��

encompasses processor power� I�O subsystem� disk storage� and database
size� It demonstrates that Rdb�VMS will scale well in a multi�processor
system and when multiple nodes of a cluster form the system con�guration�
The value of scalability such as this is the assurance users are given that
their investment in databases are preserved as their business needs grow�
That� plus its proven system robustness and the high functionality of its
SQL support make Rdb�VMS the clear choice on VMS systems�

� Acknowledgments

In addition to the authors� Annanth Raghavan� Ashok Joshi� and Je Arnold
contributed substantially to the KODA implementation changes that pro�
duced the outstanding performance� Steve Hagan and Jay Banerjee provided
management guidance and support� Improvements of the sort described in
this paper are the result of a team eort� with each member making an essen�
tial contribution� We wish to acknowledge these eorts and to thank those
who have helped�

References

��� Antoshenkov� G� Dynamic Optimization of a Single Table Access� Tech�
nical Report DBS�TR��� DEC�TR����� DEC Data Base Systems Group
�June ������

��� Joshi� A� Adaptive locking strategies in a multi�node data sharing model
environment� Proc� VLDB Conf� �Sept� ����� Barcelona� Spain� ��������

�
� Joshi� A� and Rodwell� K� A relational database management system for
production applications� Digital Technical Journal � �Feb� ����� �������

��� Kronenberg� N�� Levy� H�� Strecker� W� and Merewood� R� The VAX�
cluster concept� an overview of a distributed system� Digital Technical
Journal � �Sept� ����� � ���

��� Lomet� D� Recovery for shared disk systems using multiple redo logs�
Digital Technical Report CRL���� �Oct� ����� Cambridge Research Lab�
Cambridge� MA�

�� REFERENCES

��� Rengarajan� T�� Spiro� P�� and Wright� W� High availability mechanisms
of VAX DBMS software� Digital Technical Journal � �Feb� ����� ������

��� Snaman� W� and Thiel� D� The VAX�VMS distributed lock manager�
Digital Technical Journal � �Sept� ����� ������

��� Spiro� P�� Joshi� A�� and Rengarajan� T� Designing an optimized transac�
tion commit protocol� Digital Technical Journal
�� �Winter� ����� ������

