
MACRO-9 ASSEMBLER

Programmer's Reference Manual
PDP-9 ADVANCED SOFTWARE SYSTEM

Order No. DEC-9A-AMZA-D from the Program Library, Digital Equipment Corporation, Price $2.00

Maynard, Mass. Direct comment concerning this manual to Software Quality Control, Maynard, Mass.

DIGITAL EQUIPMENT CORPORATION 0 MAYNARD J MASSACHUSETTS

1st Edition August 1967
2nd Edition Revised Decembelr 1967
3rd Edition Revised Novembeli 196:3

Copyright © 1968 by Digital Equipment Corporation

The following are registered trademarks of Digital
Equipment Corporation, Maynard, Massachusetts:

DEC
FLIP CHIP
DIGITAL

PDP
FOCAL
COMPUTER LAB

PREFACE

It is assumed that the reader is fami liar with the PDP-9 User's Handbook and

Supplement (F-95), and with the Monitors manua I (DEC-9A-MADO-D). In this

manual, frequent references are made to the Linking Loader, which is described

in Utility Programs manual (DEC-9A-GUBA-D).

iii

CONTENTS

Page

CHAPTER 1
INTRODUCTION

1.1 Hardware Requirements and Options 1-2

1.2 Assembler Processing 1-2

CHAPTER 2
ASSEMBL Y LANGUAGE ELEMENTS

2. 1 Program Statements 2-1

2.2 Symbols 2-2

2.2. 1 Evaluation of Symbols 2-3

2.2.2 Variables 2-5

2.2.3 Direct Assignment Statements 2-5

2.2.4 Undefined Symbols 2-6

2.3 Numbers 2-7

2.3. 1 Integer Values 2-7

2.3.2 Expressions 2-8

2.4 Address Assignments 2-10

2.4. 1 Referencing the Location Counter 2-10

2.4.2 Indirect Addressing 2-10

2.4.3 Literals 2-11

2.5 Statement Fields 2-12

2.5. 1 Label Field 2-12

2.5.2 Operation Field 2-14

2.5.3 Address Field 2-15

2.5.4 Comments Field 2-16

2.6 Statement Eva luation 2-17

2.6. 1 Numbers 2-17

2.6.2 Word Evaluation 2-18

CHAPTER 3
PSEUDO OPERATIONS

3. 1 Program Identification (. TITLE) 3-1

3.2 Object Program Output (.ABS and. FULL) 3-1

3.2. 1 • ABS Pseudo-op 3-1

v

CONTENTS (Cont)

Page

3.2.2 • FULL Pseudo-op 3-2

3.3 Setting the Location Counter (. LOC) 3-3

3.4 Radix Control (.OCT and .DEC) 3-4

3.5 Reserving Blocks of Storage (. BLOCK) 3-5

3.6 Program Termination (. END) 3-5

3.7 Program Segments (. EOT) 3-6

3.8 Text Handling (.ASCII and. SIXBT) 3-6

3.8. 1 • ASCII Pseudo-op 3-6

3.8.2 • SIXBT Pseudo-op 3-7

3.8.3 T ext Statement Formal 3-7

3.8.4 Text Delimiter 3-7

3.8.5 Non-Printing Characters 3-7

3.9 Loader Control (. GLOBL) 3-8

3. 10 Requesting I/O Devices (. 10D EV) 3-9

3. 11 Defining a Symbolic Address (.DSA) 3-9

3. 12 Repeating Object Coding (.REPT) 3-10

3. 13 Conditional Assembly (. IF xxx and. ENDC) 3-11

3. 14 Listing Control (. EJECT) 3-13

3. 15 Program Size (.SIZE) 3-13

3. 16 Defining Macros (.DEFIN, • ETC, and. ENDM) 3-13

CHAPTER 4
MACROS

4. 1 Defining a Macro 4-1

4.2 Macro Body 4-2

4.3 Macro Calls 4-3

4.3. 1 Argument Del i miters 4-4

4.3.2 Created Symbols 4-5

4.4 Nesting of Macros 4-6

4.5 Redefinition of Macros 4-8

4.6 Macro Calls Within Macro Definitions 4-9

4.7 Recursive Calls 4-9

vi

5. 1

5.2

5.3

5.4

5.5

Operating Procedures

Assembly Listings

Symbo I Tab I e Output

Error Detection

Program Relocation

CONTENTS (Cont)

CHAPTER 5
ASSEMBLER OPERATION

APPENDIX A
CHARACTER SET

APPENDIX B
PERMANENT SYMBOL TABLE

APPENDIX C
MACRO-9 CHARACTER INTERPRETATION

APPENDIX D
SUMMARY OF MACRO-9 PSEUDO-OPS

APPENDIX E
SUMMARY OF SYSTEM MACROS

APPENDIX F
SOURCE LISTING OF THE ABSOLUTE BINARY LOADER

APPENDIX G
ABBREVIATED MACRO-9 FOR 8K SYSTEMS

APPENDIX H
SYMBOL TABLE SIZES

APPENDIX I
SUMMARY OF OPERATING PROCEDURES WITH KEYBOARD MONITOR

vii

Page

5-1

5-1

5-2

5-3

5-4

,p

MACHO

MD 00101;00102
H 00107

PASS 1 COMPLETED
,p,p

SAMPLE PAGE

000013
00000 R 000144
00001 R 000310

000011
00002 R 000100
00003 11. 000200
00004 11. 200010
00005 H.
00017 R
00017 R 200106
00020 R 000000
00021 R 000000
00022 R 000000
00023 R 406050
00024 R 300000
00025 R 010203
00026 R LJ06050
00027 R 342214
00030 R LJ34000
00031 R 000000
00032 R 406041
00033 11. 100000

U 00034 R 200107

00073 R
00073 R 040400
00074 R OLJ0401

00075 R 200100
00076 R 120110
00077 R 120111

00100 11. 000026
M 00101 11. 200075
DM 00102 R 200101

00103 R 200010
00104 R 200011
00105 11. 200012

000004
00110 R 000110
00111 h 000111

SAMPLE PAGE 2

A 000011 A
ADDRES 00026 11.
BUFF 00005 R
C 00017 11.
D 00020 R
DEP 00073 R
DEPT 00074 R
H 00107 R
MD 00101 R
START 00004 R
TAG 00023 k
TEMP 00106 k
X 00075 R
y 00110 E
Z 00111 E

A
A
A

A
A
A
A
A
A
R
A
A
A
A
A
A
A
A
A
A
A

A

R

A
A

A
E
E

11.
11.
R

A
A *RPT
A *hPT
11.
E *ETV
E *ETV

This is a complete sample Program Listing. The last
column {comments} contains the paragraph number in
this manual where full explanations may be found.

• TITLE SAMPLE /3.1
• DEC /3.4

A=II; 100; 200 /2.2.3

.OCT 3.4
A=11 ; 100; 200

STAIn LAC 10
BUFF .BLOCK 12 /3.5
C .BLOCK 0

LAC TEMP# /2.2.2
D 0; 0: 0; /2.2.3

TAG .ASC I I 'ABC' /3. (3

.SIXBT 'ABC' 3.8
ADDRES • ASCI I 'ABCD'EFGE

.ASCII 'AB'<11>

.IFDEF A /3.13
LAC H
.mDC
.LOC TAG+50

DEP DAC 400
DEPT DAC 401

.GLOBL X6Y6Z /3.9
X LAC 100

JMS* Y
JMS* Z
• IODEV 1626-36-465 /3.10
• DSA ADDRES /3.11

MD LAC X
MD LAC MD

.HEPT 361 /3.12
LAC 10

• END START /3.6

THERE ARE 3 EhHOH LINES

SAMPLE PAGE 3

START 00004 R
BUFF' 00005 h
A 000011 A
C 00017 R
D 00020 R
TAG 00023 11.
ADDRES 00026 R
DEP 00073 R
DEPT 00074 R
X 00075 R
MD 00101 R
TEMP 00106 R
H 00107 R
y 00110 E
Z 00111 E

viii

CHAPTER 1

INTRODUCTION

MACRO-9 is the symbolic assembly program for the PDP-9 ADVANCED Software System.

Operating under control of one of the Monitor systems, which handles I/O functions, the MACRO-9

Assembler processes input source programs in two passes, and requires less than 6K* of core memory.

MACRO-9 makes machine language programming on the PDP-9 much easier, faster and more

efficient. It permits the programmer to use mnemonic symbols to represent instruction operation codes,

locations, and numeric quantities. By using symbols to identify instructions and data in his program,

the programmer can easily refer to any point in his program, without knowing actual machine locations.

The standard output of the Assembler is a relocatable binary object program that can be

loaded for debugging or execution by the Linking Loader. MACRO-9 prepares the object program for

relocation, and the Linking Loader sets up linkages to external subroutines. Optionally, the binary

program may be output either with absolute addresses (non-relocatable) or in the full binary mode.

The programmer may direct MACRO-9 processing by using a powerful set of pseudo-operation

(pseudo-op) instructions. These pseudo-ops are used to set the radix for numerica I interpretation by

the Assembler, to reserve blocks of storage locations, to repeat object code, to handle strings of text

characters in 7-bit ASCII code, or a special 6-bit code, to assemble certain coding elements if specific

conditions are met, and other functions which are explained in detail in Chapter 3.

The most advanced feature of MACRO-9 is its powerful macro instruction generator. This

permits easy handl ing of recursive sequences, changing only the arguments. Programmers can use

macro instructions to create new language elements, adapting the Assembler to their specific program

ming applications. Macro instructions may be called up to three levels, nested to n levels, and rede

fined within the program. The technique of defining and ca II ing macro instructions is discussed in

Chapter 4.

An output listing, showing both the programmer1s source coding and the object program

produced by MACRO-9, is printed if desired. This listing includes all the symbols used by the pro

grammer with their assigned va lues. If assembly errors are detected, erroneous I ines are marked with

specific letter error codes, which may be interpreted by referring to the error list in Chapter 5 of this

manua I.

Operating procedures for MACRO-9 are contained in the I/O Monitor Guide (DEC-9A

MIPA-D) for paper tape systems, and in "the Keyboard Monitor Guide (DEC-9A-MKFA-D) for bulk

storage systems.

*An abbreviated version, called MACROA, described in Appendix G, is available for 8K PDP-9
systems with DECtape.

1-1

1.1 HARDWARE REQUIREMENTS AND OPTIONS

MACRO-9 operates in PDP-9 systems with the I/O Monitor and the following minimum

hardware configurations:

8K core memory

Console Teletype {KSR33 or KSR35}

Paper tape reader and paper tape punch

With the addition of bulk storage (such as 2 DECtapes, 2 magnetic tapes, a drum I or a disk)

to the hardware configuration, MACRO-9 operates with the Keyboard Monitor, which allows the user

flexibi lity in assigning I/O devices at assembly time and provides true device independence.

With the addition of bulk storage, 8K of memory, the memory protection option, and ()ne

external Teletype, MACRO-9 operates with the Background/Foreground Monitor where assembly may

be accomplished as a normal BACKGROUND job.

1.2 ASSEMBLER PROCESSING

The MACRO-9 Assembler processes source programs in two passes; that is, it reads the same

source code twice, outputting the object code (and producing printed listing, if requested) durin~J the

second pass. The two passes are resident in memory at the same time. PASSl and PASS2 are almost

identical in their operations, but object code is produced only during PASS2. The main function of

PASS 1 is to resolve locations that are to be assigned to symbols and to bui Id up a symbol table. PASS2

uses the information computed by PASSl {and left in memory} to produce the final output.

The standard object code produced by MACRO-9 is in a relocatable format which is accept··

able to the PDP-9 Linking Loader. Relocatable programs that are assembled separately and use identi-·

cal globa I symbols* where appl icable, can be combined by the Linking Loader into an executable

object program.

Some of the advantages of having programs in relocatable format are as follows.

a. Reassembly of one program, which at object time was combined with other programs,
does not necessitate a reassembly of the entire system.

b. Library routines {in relocatable object code} can be requested from the system device
or user library devi ceo

c. Only global symbol definitions must be unique in a group of programs that operate
together.

*Symbols which are referenced in one program and defined in another.

1-2

CHAPTER 2

ASSEMBLY LANGUAGE ELEMENTS

2.1 PROGRAM STATEMENTS

A single statement may be written on a 72-character Teletype line, in which case the

carriage-return line-feed sequence characters del imit the statement. Such a statement actua lIy begins

with a line-feed character and is terminated by a carriage-return character. Since these form-control

characters are not printed, they are represented as ~ (carriage return) and + (line feed). In the examples

of statements in this manual, only the carriage return is shown:

STATEMENT ~

Several statements may be written on a single line, separated by semicolons:

STATEMENT;STATEMENT;STATEMENT ~

In this case, the statement line begins with a line-feed character and ends with a carriage-return

character, but semicolons are used as internal statement delimiters. Thus, if a statement is followed by

another statement on the same line, it ends with a semicolon.

A statement may contain up 1'0 four fie Ids that are separated by a space, spaces, or a tab

character. These four fie Ids are the labe I (or tag) fie Id, the operation fie Id, the address field, and

the comments field. Because the space and tab characters are not printed, the space is represented by

LJ, and the tab by ..., in this manual. Tabs are normally set 10 spaces apart on most Teletype machines,

and used to line up the fields in columns in the source program listing.

This is the basic statement format:

LABEL ~ OPERATION +I ADDRESS" /COMMENTS ~

where each field is de I imited by a tab or space, and each statement is terminated by a semicolon or

carriage-return. The comments fie Id is preceded by a tab (or space) and a slash (/).

Note that a combination of a space and a tab wi II be interpreted by the MACRO-9 assembler

as two fie Id del imiters.

Example:

TAG.., OP u -+lADR_
TAG U +I OP ..,ADR ~ } both are

incorrect

These errors wi II not show on the listing because the space is hidden in the tab.

A MACRO-9 statement may have an entry in each of the four fields, or three, or two, or

only one field. The following forms are acceptable:

TAG~

TAG +I OP ~

TAG -.I OP +I ADDR ~

2-1

TAG +I OP +I ADDR 1......1 (s) / comments)

TAG -11'\ OP (s) / comments ~

TAG -+I -t-I ADDR J
TAG ~ -t-I ADDR u (s) / comments J
TAG +I (s) / comments ~

-t-IOP~

+I OP +I ADDR ~

+I OP +I ADDR -+I (s) / comments ~

-IJII OP +I (s) / comments ~

+I +I ADDR~

-+I ~ ADDR -+I (s) / comments ~

/ comments ~

+I (s) / comments ~

Note that when a label field is not used, its delimiting tab is written, except for IUnes containing only

comments. When the operation field is not used, its delimiting tab is written if an address field follows,

except in label only and comments only statements.

A label (or tag) is a symbolic address created by the programmer to identify the statement.

When a label is processed by the Assembler, it is said to be defined. A label can be defined only

once. The operation code field may contain a machine mnemonic instruction code, a MACRO-9

pseudo-op code, a macro name, a number, or a symbol. The address field may contain a symbol,

number, or expression which is evaluated by the assembler to form the address portion of a machine!

instruction. In some pseudo-operations, and in macro instructions, this field is used for other purposes,

as will be explained in this manual. Comments are usually short explanatory notes which the program

mer adds to a statement as an aid in analysis and debugging. Comments do not affect the object pro

gram or assembly processing. They are merely printed in the program listing. Comments must be

preceded by a slash (/). The slash must be preceded by:

a. Space

b. Tab

c. Semicolon

d. First character of line

2.2 SYMBOLS

The programmer creates symbols for use in statements I to represent addresses I operation

codes and numeric va lues. A symbol contains one to six characters from the following set:

2-2

The letters A through Z

The digits 0 through 9

Two specia I characters, period (.) and the percent sign (%).

The first character of a symbol must be a letter, a period, or percent sign. A period may

not be used alone as a symbol. If the first character is a period, it cannot be followed immediately

by a digit. The first character of a symbol must not be a digit.

The following symbols are lega I:

MARK 1 •• 1234 .A

P9.3

0/050.99

INPUT

The following symbols are i II ega I:

TAG:l L@Bl

5ABC

.5A

.%

:and @ are illega I characters.

First character may not be a digit.

If first character is a period, it cannot be
followed by a digit.

Only the first six characters of a symbol are meaningful to the Assembler, but the programmer

may use more for his own information. If he writes,

SYMBOLl

SYMBOL2

SYMBOL3

as the symbolic labels on three different statements in his program, the Assembler wi II recognize only

SYMBOL and type error flags on the I ines containing SYMBOL 1, SYMBOL2 and SYMBOL3 because to

the Assembler they are dupl icates of SYMBOL.

2.2. 1 Evaluation of Symbols

When the Assembler encounters a symbol during processing of a source language statement,

it eva luates the symbol by reference to two tables: the user's Symbol Table and the Permanent Symbol

Table. The user's Symbol Table contains all symbols defined by the user. The user defines symbols

by using them as labels, as variables, as macro names, and by direct assignment statements. A label

is defined when first used '. and cannot be redefined. (When a label is defined by the user, it is given

the current value of the Location Counter, as wi II be explained later in this chapter.)

All permanently defined system symbols, including Monitor commands and all Assembler

pseudo-instructions use a period (.) as their first character. (In some cases the II. II may be used as the

last character of a Monitor I/O symbol). The Assembler has, in its Permanent Symbol Table, definitions

of the symbols for a II of the PDP-9 memory reference instructions, operate instructions, EAE instructions,

and some input/output transfer instructions. (See Appendix A for a complete I ist of these instructions.)

2-3

PDP-9 instruction mnemonic symbols may be used in the operation field of a statement

without prior definition by the user.

Example

-IItI LAC ~ A~ LAC is a symbol whose appearance in the opemtion

field of a statement causes the Assembler to tre!at it

as an op code rather than a symbol ic address. It

has a va lue of 200000
8

wh ich is taken from the opera

tion code definition in the Permanent Symbol Table '.

The user can use instruction menmonics or the pseudo-instruction mnemonics code as symbol

labels. For example,

DZM ~ DZML-l Y ~

where the label DZM is entered in the Symbol Table and given the current value of the Location

Counter, and the op code DZM is given the value 140000 from the Permanent Symbol Table. The

user must be careful, however, in using these dual purpose (field dependent) symbols. Symbols in the

operation field are interpreted as either instruction codes or pseudo-ops, not as a symbolic label, if

they are in the Permanent Symbol Table. Monitor command op-code symbols cannot be duplicated by

the user. In the following example, severa I symbols with values have been entered in the user's Symbol

Table and the Permanent Symbol Table. The sample coding shows how the Assembler uses these talbles

to form object program storage words.

User Symbol Table

Symbol

TAG1

TAG2

DAC

Value

100

200

300

If the following statements
are written 1

TAG1 -+I DAC ~ TAG2

TAG2 -+I LAC ~ DAC

DAC -+I JMP -+t TAG1

~ TAG1

2-4

Permanent Symbol Table

Symbol

LAC

DAC

JMP

Value

200000

040000

600000

the following code is generated
by the Assembler.

040200

200300

600100

000100

2.2.2 Variables

A variable is a symbol that is defined in the Symbol Table by using it in an address field or

operation field, with the number sign (#). A variable reserves a single storage word, which may be

referenced by using the symbol at other points in the program, with or without the number sign. If

the variable duplicates a user defined label, the variable is flagged as an error during assembly.

Variables are assigned memory locations at the end of the program. The initia I contents of

variable locations are unspecified.

Examples

Location
Source Statements

Generated
Counter Code

+I . LOC 100

100 +I LAC TA#G1 200105

101 +I DAC TAG3 040107

102 ., LAC TAG2# 200106

103 ~ DAC TAG3# 040107

104 -+I LAC #TAG2 200106

+I .END

Storage words can be set to zero as follows:

~A~Oi~Oi+O •

In this way, three words are set to zero starting at A. Storage words can a Iso be set to zero by state

ments containing only labels

Ai Bi Ci Di E ~

When the programmer defines a macro instruction, the macro name is entered in the Symbol

Tab Ie. Macros are fu Ily described in Chapter 4.

2.2.3 Direct Assignment Statements

The programmer may define a symbol directly in the Symbol Table by means of a direct as

signment statement, written in the form:

SYMBOL=n
or

SYM1=SYM2

where n is any number or expression. There should be no spaces between the symbol and the equa I sign,

or between the equal sign and the assigned value, or symbol. MACRO-9 enters the symbol in the

2-5

Symbol Table, along with the assigned value. Symbols entered in this way may redefined. These

are legal direct assignment statements:

X=28; A=l; B=2~

A symbol can also be assigned a symbol ic value:

A=4

B=A

The symbol B is given the value 4. Direct assignment statements do not generate storage words in the

object program.

In general, it is good programming practice to define symbols before using them in statements

wh ich generate storage words. The Assembler wi II interpret the following sequence without trouble.

Z=5

Y=Z

X=Y

-+I LAC u Xu/SAME AS LAC 5 ~

A symbol may be defined after use. For example,

LAC Y"

Y=l,/

This is called a forward reference, and is resolved properly in PASS2. When first encCluntered

in PASS 1, the LAC Y statement is incomplete because Y is not yet defined. Later in PASS 1, Y is given

the value 1. In PASS2, the Assembler finds that Y = 1 in the Symbol Table, and forms the complete

storage word.

Since MACRO-9 operates in two passes, only one-step forward references are allowed. The

following forward reference is illegal:

LAC Y J
Y=Z "

Z=l II
In the listing, during PASS 1, the line which contains Y = Z will be printed as a warning.

2.2.4 Undefined Symbols

If any symbols, except global symbols, remain undefined at the end of PASSl of assembly,

they are automatically defined as the addresses of successive registers following the block reserved for

variables at the end of the program. All statements that referenced the undefined symbol are fla!gged

as undefined. One memory location is reserved for each undefined symbol with the initial contents

of the reserved location being unspec ified.

2-6

Location
Source Statements

Generated
Comments Counter Code

-+I . LaC 100 _

100 -+I LAC -.. UNDEFl _ 200106 Flagged as an error

101 -+I LAC...., TAG# _ 200104

102 -+I LAC TAG# 1 Ii 200105

103 -+I LAC UNDEF2 • 200107 Flagged as an error

+I.END~

2.3 NUMBERS

The initia I radix (base) used in a II number interpretation by the Assembler is octa I (base 8).

In order to a lIow the user to express decima I va lues, and then restore to octa I va lues, two radix-setting

pseudo-ops (.OCT and • DEC) are provided. These pseudo-ops, described in Chapter 3, must be coded

in the operation field of a statement. If any other information is written in the same statement, the

Assembler treats it as a comment. All numbers are decoded in the current radix unti I a new radix

control pseudo-op is encountered. The programmer may change the radix at any point in a program.

Examples

Source Program Generated Value (Octal) Radix in Effect

+I LAC -+I 100 200100 8 } initial value is

+125 000025 8 assumed to be oc ta I

+I .DEC

+I LAC --+I 100 200144 10

+1275 000423 10

+I.OCT

+176 000076 8

2.3. 1 Integer Va lues

An integer is a string of digits, with or without a leading sign. Negative numbers are

represented in two's complement form. The range of integers is as follows.

Unsigned

Signed

0 262143
10

±0 131071
10

2-7

18 (777777
8

) or 2 -1
17

(377777 8) or ±2 - 1

An octa I integer* is a string of digits (0-7) I signed or unsigned. If a non-octa I digit i's en-'

countered (8 or 9) the string of digits wi II be assembled as if the decimal radix was in effect and it wi II

be flagged as a possible error.

2.3.2

Examples

Coded Value Generated Value (Octal) Comment

-5 777773 two's complement

3347 003347

3779 007303 possible error I decimal

assumed

A decima I integer** is a string of digits (0-9) I signed or unsigned.

Examples

Coded Value Generated Value (Octal) Comment

-8 777770 two's complement

+256 000400

-136098 000000 17
Error I greater than -2 -1

Express ions

Expressions are strings of symbols and numbers separated by arithmetic or Boolean operators.

Expressions represent unsigned numeric values ranging from 0 to 2
18

-1. All arithmetic is performed in

unsigned integer arithmetic (two's complement) I modulo 2
18

• Division by zero is regarded as division

by one and results in the origina I dividend. Fractiona I remainders are ignored; this condition is not

regarded as an error. The value of an expression is calculated by substituting the numeric values for

each element (symbol) of the expression and performing the specified operations.

The following are the allowable operators to be used with expressions:

*Initiated by •. OCT pseudo-op and is a Iso the initio I assumption if no radix control pseudo-op wa!;
encountered.

**Initiated by • DEC pseudo-op.

2-8

Character Function

Name Symbol

Plus + Addition (two·s complement)

Minus

Asterisk *

Subtraction (convert to two·s complement and add)

Multiplication (unsigned)

Slash

Ampersand

Exc lamation point

Back slash

I
&

\

Division (unsigned)

Logical AND

Inc lusive OR

Exc lusive OR
) Boolean

Operations are performed from left to right (i .e. I in the order in which they are encountered).

For example I the assembly language statement A+B*C+O/E-F*G is equiva lent to the follow

ing a Igebraic expression (((((A+B)*C)+D)/E)·-F)*G.

Examples

Assume the following symbol va lues:

Symbol Value (Octal)

A 000002

B 000010

C 000003

D 000005

The following expressions would be eva luated.

Expression Evaluation (Octal)

A+B-C 000007

AlB + A * C 000006

BI A -2* A -1 000003

A&B 000000

2-9

(The remainder of AlB
is lost)

Expression Evaluation (Octal)

C+A&D 000005

B * D/A 000024

B*C/ A*D 000074

2.4 ADDRESS ASSIGNMENTS

As source program statements are processed I the Assembler assigns consecutive memory lo

cations to the storage words of the object program. This is done by reference to the Location C:>unter I

which is initially set to zero I and incremented by one each time a storage word is formed in the object

program. Some statements I such as machine instructions I cause only one storage word to be generated I

incrementing the Location Counter by one. Other statements, such as those used to enter data I:>r text,

or to reserve blocks of storage words, cause the Location Counter to be incremented by i'he number of

storage words generated.

2.4.1 Referencing the Location Counter

The programmer may directly reference the Location Counter by using the symbol, period (.),

in the address field. He can write,

-II-lJMP -1

which wi II cause the program to jump to the storage word whose address was previously assigned by the

Location Counter. The Location Counter may be set to another va lue by using the • LOC pseudo-op I

described in Chapter 3.

2.4.2 Indirect Addressing

To specify an indirect address, which may be used in memory reference instructions, the

programmer writes an asterisk immediate Iy fo lIowing the operation fi e Id symbol. This sets the Defer bit

(Bit 4) of the storage word.

If an asterisk suffixes either a non-memory reference instruction, or appears with a symbol

in the address field, an error wi II resu It.

Two examples of lega I indirect addressing follow.

~ TAD* ~ A

-+I LAC* -+I B

2-10

2.4.3

The following examples are illegal.

.., LAC -+I TAD*

.., CLA*~

Litera Is

The asterisk is not a I lowed in an address field •

Indirect addressing may not be specified in non

memory reference instructions.

Symbolic data references in the operation and address fields may be replaced with direct

representation of the data enclosed in parentheses*. This inserted data is called a I iteral. The

Assembler sets up the address I ink, so one less statement is needed in the source program. The follow

ing examples show how literals may be used, and their equivalent statements. The information contained

within the parentheses, whether it be a number, symbol, expression, or machine instruction is assembled

and assigned consecutive memory locations after the locations used by the program. The address of

the generated word will appear in the statement that referenced the literal. Duplicate literals, com

pletely defined when scanned in the source program during PASS1, are stored only once so that many

uses of the same literal in a given program result in only one (1) memory location being allocated for

that I itera I •

Usage of Litera I Equivalent Statements

-til ADD (1) .., ADD ONE

ONE ~ 1

-+I LAC (TAG) -.t LAC L..-' TAGAD

TAGAD -+I TAG

...-.t LAC _ (DAC ~ TAG) ~ LAC L..-' INST

INST ...-.t DAC ~ TAG

-+I LAC (JMP -+I .+2) HERE -+I LAC INST

INST -+I JMP HERE+2

*The opening parenthesis [(] is mandatory while the closing parenthesis [)] is optional.

2-11

The following sample program illustrates how the Assembler handles literals.

~.

Location Counter Source Statement Generated Code

~ .LOC 100

100 TAG 1 -., LAC (l 00) 200110

101 ----t DAC ~ 100 040100

102 -e-t LAC ~ (JMP +5) 200111

103 -e-t LAC (TAG 1) 200110

104 -+I LAC (JMP ~ TAGl) 200112

105 -+I LAC (JMP ~ TAG2) 20011 3

TAG2=TAGl

106, LAC (JMP) 200114

107 DAC -+1 LAC ~ (DAC ~ DAC) 200115

-l1li .END

Generated Literals

110 000100

111 600107

112 600100

113 600100

114 600000

115 040107

2.5 STATEMENT FIE LDS

The follow.ing paragraphs provide a deta i led explanation of statement fie Ids, inc luding how

symbols and numbers may be used in each field.

2 .5. 1 La be I Fie I d

If the user wishes to assign a symbolic label to a statement, to facilitate references to the

storage word generated by the Assembler, he may do so by beginning the source statement with any

desired symbol. The symbol must not duplicate a system or user defined macro symbol and must be termi

nated by a space or tab, or a statement terminating semicolon, or carriage-return/line-feed sequence.

2-12

Examples

TAG any value

TAG '-' (s) any value

TAG -+I u (s) any value

TAG; These examples are equivalent to coding

TAG ~ TAG -+I 0 ~

TAG (s) (no more data on I ine) in that a word of a 1\ Os is output with
the symbol TAG associated with it.

Symbols used as labels are defined in the Symbol Table with a numerical value equal to the

present value of the Location Counter. A label is defined only once. If it was previously defined by

the user, the current definition of the symbol will be flagged in error as a multiple definition. All

references to a multiply defined symbol wi 1\ be converted to the first value encountered by the

Assembler.

Example

Location
Statement

Storage Word
Notes

Counter Generated

100 A -+I LAC -+I B 200103

101 A -ttl LAC -+lC 200104 } error, multiple definition

102 -+I LAC -+I A 200100 first value of A referenced

103 B ~O 000000

104 C -+10 000000

Anything more than a single symbol to the left of the label-field delimiter is an error; it

will be flagged and ignored. The following statements are illegal.

TAG+l ~ LAS.

LOC*2 ~ RAR.

Redefinition of certain symbols can be accomplished by using direct assignments; that is, the

value of a symbol can be modified. If an Assembler permanent symbol or user symbol (which was de

fined by a direct assignment) is redefined, the value of the symbol can be changed without causing an

error message. If a user symbol, which was first defined as a label, is redefined by either a direct as

signment or by using it again in the label field, it will cause an error. Variables also cannot be re

defined by a direct assignment.

2-13

Examples

Coding Generated Value (Octal) Comments

A=3 sets current value of A to 3

--t-I LAC ~A 200003

-+I DAC ~A 040003

A=4 redefines value of A to 4

~ LAC ~A 200004

B -+I DAC ~ A* 040004

B=A illegal usage; a label canno
be redefined

-.t DAC ~ B 040105

PSF=700201 to redefine possibly incorrec
permanent symbol definition

* Assume that th is instruction wi II occupy location 105.

2.5.2 Operation Fie Id

Whether or not a symbol label is associated with the statement, the operation field must be

delimited on its left by a space(s) or tab. If it is not delimited on its left, it will be interpreted OIS the

label field. The operation field may contain any symbol, number, or expression which will be eval

uated as an 18-bit quantity using unsigned arithmetic modulo 2
18

• In the operation field, machine

instruction op codes and pseudo-op mnemonic symbols take precedence over identically named user

defined symbols. The operation field must be terminated by one of the following characters:

Examples

(1) -+i or L...I (5) (field delimiters)
(2) ~ or (statement delimiters)

TAG ~ ISZ

-+I . +3 L...I (s)

u (s)CMA!CML J
-+I TAG/5+TAG2; -Ill TAG3 ~

The asterisk (*) character appended to a memory reference instruction symbol, in the opera

tion field, causes the setting of the Defer bit (Bit 4) of the instruction word; that is, the reference will

2-14

be an indirect reference. If the asterisk (*) is appended on either a non-memory reference instruction

or appended to any symbol in the address field, it will cause an error condition.

Examples

legal

-+I TAD* .., A

-+I LAC* ~ B

illegal

-+I LAC ~ T AD*

~ CLA*

However, the asterisk (*) may be used anywhere as a multiplication operator.

Examples

2.5.3

legal

...., LAC -.t T AG* 5

-+I TAG*TAG 1

Address Field

illegal

~ LAC -+I TAG*4+TAD*

..., A*

The address field, if used in a statement, must be separated from the operation field by a tab,

or space(s). The address field may contain any symbol, number, or expression which will be evaluated

as an l8-bit quantity using unsigned arithmetic, modulo 2
18

. If op code or pseudo-op code symbols

are used in the address field, they must be user defined, otherwise they will be undefined by the Assem

bler and cause an error message. The address field must be terminated by one of the following characters:

Examples

(1) -+I or (s)
(2) ~ or i

(field delimiters)
(statement delimiters)

TAG2 -+I DAC ~ .+3

-+I -...! TAG2/5+3 L...I (s)

In the last example, the rest of the line will be automatically treated as a comment and ignored by the

Assembler.

sequence.

Examples

The address field may also be terminated by a semicolon, or a carriage-return/line-feed

-+I JMP -+I BEGIN ~

~ TAD ~ Ai -+I DAC -+I BJ
In the last example, a tab or space(s) is required after the semicolon in order to have the Assembler

interpret DAC as being the operation field rather than the label field.

When the address field is a relocatable expression, an error condition may exist. The size

of a relocatable program is restricted to 8K (8192
10

words) and cannot be loaded across memory banks.

Therefore, any relocatable address field whose value exceeds 177778 is meaningless and will be flagged

in error.

2-15

When the address field is an absolute expression, an error condition will exist if the extende~d

memory bits (3 & 4) of the address do not match the extended memory bits of the bank currently be~ing

assembled into and the extended memory bits of the address are not O.

Examples

Location
Instruction Comments

(octal)

20000 -+I LAC L...I 20100

) 20001 -+t DAC 101 wi II not cause error messages

20002 -+I J MS I-J 250

20005 -+I ISZ 40146 wi II cause an error message

The Linking Loader will not relocate any absolute addresses; thus, absolute addresses within

a relocatable program are relative to that bank in memory in wh ich the program is loaded.

Example

Assume that the following source I ine is part of a relocatable program that was loaded into bank 1

(20000a -+ 37777 a)

Source Statement

-+I LAC I-J 300 ~

Effective Address ~
20300 J

An exception to the above rule is the auto-index registers, which occupy locations lOa - 17a

in memory bank O. The hardware will always ensure that indirect references to lOa - 17a in any bank

will always access lOa - 17 a of bank O.

2.5.4 Comments Field

Comments may appear anywhere in a statement. They must begin with a slash (/) that is

immediately preceded by a

a. I-J (s)

b. -+I

c. ~
d.

space(s)

tab

carriage return/line feed (end of previous line)

semicolon

2-16

Comments are terminated only by a carriage-return/line-feed sequence or when 72
10

characters have

been encountered.

Examples

-. (s)/THI ~ IS A COMMENT (rest of I ine is blank)

TAGl -+I LAC '-' /after the; is still a comment

/THIS IS A COMMENT

-.., RTR '-' /COMMENT ~

-.., RTR;.., RTR;/THI SIS A COMME NT

Observe that;-., A/COMMENT" is not a comment, but rather an operation field expression. A line

that is completely blank; that is, between two sets of •• (s) is treated as a comment by the Assembler.

Example

1-1 (72 blanks)

A statement is terminated as follows:

~. or; or rest of line is completely blank.

Examples

..., LAC ~

..., DAC (the rest of the I ine is blank)

-.., TAG+3

..., RTR; -+I RTR; -.I RTR .l

In the last example, the statement-terminating character, which is a semicolon (;) enables

one source line to represent more than one word of object code. A tab or space is required after the

semicolons in order to have the second and third RTR's interpreted as being in the operation field and

not in the label fie Id.

2.6 STATEMENT EVALUATION

When MACRO-9 eva luates a statement, it checks for symbols or numbers in each of the

three evaluated fields: label, operation, and address. (Comment fields are not evaluated.)

2.6.1 Numbers

Numbers are not field dependent. When the Assembler encounters a number (or expression)

in the operation or address fields (numbers are illegal in the label field), it uses those values to form the

storage word. The following statements are equiva lent:

~ 200000u10~

-+I 10+ LAC ~

-+I LACwlO ~

2-17

All three statements cause the Assembler to generate a storage word containing 200010. A statement

may consist of a number or expression which generates a single la-bit storage word; for example:

~ 23;L.J 45iw357;w62

This group of four statements generates four words interpreted under the current radix. Zero words are

generated by statements containing only labels. For example,

A· B· C' D· E_\ I I I I ..

generates five words set to zero, which may be referenced by the labels defined.

2.6.2 Word Evaluation

When the Assembler encounters a symbol in a statement field, it determines the value olF the

symbol by reference to the user's symbol table and the permanent symbol table, according to the priority

list shown below. The value of a storage word is computed by combining the 18-bit operation field

quantity with the 18-bit address field quantity in the following manner.

UOPERATION FIELD+ADDRESS FIELD)&017777al + fOPERATION FIELD&760000~
l 0 - 17 0 - 17 J L 0 - 17 J

Value
of

Word

The Assembler performs a validity check to verify that meaningful results were produced. As long I:lS

[
ADDRESS FIELD & 76000al = 760000a or 000000

0-17 IJ
then meaningful results were produced.

Examples

-t-t TAD -t-t A Where A can range from 0-+ 777778 and combined

with TAD (340000
a

) results in 340000
a

-.c 357777
a

•

Where - 1 (777777 a) is combi ned with LAW (760000
a

)

cmd results in 777777 a.

If the ADDRESS FIELD & 760000a does not equal 760000
a

or 000000, erroneous results may have bl3en

produced and it wi II be flagged by the Assembler. This va lidity check is performed only if an opel"a

tions field and an address field is present.

If numbers are found in the operation and address fie Ids, they are combined in the same

manner as defined symbols. For example I

..... 2-t-t5 /GENERATES 000007

The value of a symbol depends on whether it is in the label field, the operation field, or the addrE~ss

field. The Assembler attempts to evaluate each symbol by running down a priority list I depending on

the fie Id I as shown be low.

2-18

Label Field Operation Field Address Field

Current Va lue of 1. Pseudo-op 1. User symbol table, (including)
Location Counter 2. User macro in user symbol

direct assignments)

table 2. Undefined

3. System macro table

4. Direct assignment in user
symbol table

5. Permanent symbol table

6. User symbol table

7. Undefined

This means that if a symbol is used in the address fields, it must be defined in the user1s sym

bol table before the word is formed during PASS 1; otherwise, it is undefined.

In the operation field, pseudo-ops take precedence and may not be redefined. Direct assign

ments allow the user to redefine machine op codes, as shown in the example below.

Example:

DAC = DPOSIT

System macros may be redefined as a user macro name, but may not be redefined as a user symbol by

direct assignment or by use as a statement label.

The user may use machine instruction codes and MACRO-9 pseudo-op codes in the label

fie Id and refer to them later in the address field.

2-19

CHAPTER 3

PSEUDO OPERATIONS

In the discussion of symbols in the previous chapter, it was mentioned that the assembler has,

in its permanent symbol table, definitions of the symbols for all the PDP-9memory reference instructions,

operate instructions, EAE instructions, and many lOT instructions which may be used in the operation

field without prior definition by the user. Also contained in the permanent symbol table are a class of

symbols called pseudo-operations (pseudo··ops) which, instead of generating instructions or data, direct

the assembler on how to proceed with the assembly.

By convention, the first character of every pseudo-op symbol is a period (.). Th is conven

tion is used in an attempt to prevent the programmer from inadvertently using, in the operation field, a

pseudo-instruction symbol as one of his own. Pseudo-ops may be used only in the operation field.

3. 1 PROGRAM IDENTIFICATION (. TITLE)

The program name may be written in a • TITLE statement as shown below. The assembler treats

th is statement as a comment.

-+I . TITLE L-I NAME OF PROGRAM

3.2 OBJECT PROGRAM OUTPUT (.ABS and. FULL)

The normal object code produced by MACRO-9 is relocatable binary which is loaded at run

time by the Linking Loader. In addition to relocatable output, the user may specify two other types of

output code to be generated by the Assembler.

The following rules apply to the usage of these optional output codes:

a. The pseudo-op specifying the type of output must appear before any coding appears
(excluding title and comments), otherwise it wi II be ignored.

b. Once an optional output code pseudo-op is specified, the user is not a lIowed to switch
output modes. Any subsequent requests are flagged and ignored.

c. Any options provided for in the address field of the pseudo-ops are useful only if the
output device is paper tape .

3.2. 1 • ABS Pseudo-op

Label Field Operation Field Address Field

Not Used .ABS NLD or L-I

3-1

The. ABS pseudo-op causes absolute, checksummed binary code to be output (no values are reloccttabIE~).

If no value is specified in the address field I the Assembler wi II precede the output with the Absolute

Binary Loader which will load the punched output at object time. The loader is loaded, via hardware

readin, into location 17720 of any memory bank. (This loader loads only paper tape.) If the address

field contains NLD, no loader will precede the output.

NOTE

. ABS output can be written on fi Ie-oriented devices. The
assembler assumes .ABS NLD for all .ABS output to file
oriented devices and appends an extension of .ABS to the
filename. This file can be punched with PIP, using Dump
mode. (There wi II be no absolute loader at the beginning
of the tape.)

A description of the absolute output format follows.

Block Heading - (three binary words)

WORD 1

WORD 2

WORD 3

Starting address to load the block body which follows.

Number of words in the block body (two's complement).

Checksum of block body {two's complement}. Checksum includes Word
and Word 2 of the block heading.

Block Body - (n binary words)

The block body contains the binary data to be loaded under block heading control.

Starting Block - (two binary words)

WORD 1 Location to start execution of program. It is distinguished from the blo,ck
heading by having bit 0 set to 1 (negative).

WORD 2 Dummy word.

If the user requests the Absolute Loader, and the value of the expression of the. END :state-·

ment is equal to 0, the provided loader halts before transferring control to the object program, thereb},

allowing manual intervention by the user.

A I isting of the Absolute Binary Loader is given in Appendix F .

3.2.2 . FU L L Pseudo-op

Label Field Operation Field Address Field

Not Used .FULL Not Used

3-2

{Only useful if out
put is paper tape}

The. FULL pseudo-op causes a full mode output to be produced. The program is assembled as uncheck

summed absolute code and each physical record of output contains nothing other than 18-bit binary

storage words generated by the Assembler. The Assembler will cause the address of the. END statement

to contain a punch in channel 7, thereby allowing the output to be loaded via hardware Readin Mode.

If no address is specified in the. END statement, a halt (rather than a jump) will be outputted as the

last word.

The following specific restrictions apply to programs assembled in . FULL mode output.

• LOC Should be used only at the beginning of the program.

.BLOCK May be used only if no literals appear in the program, and
must immediately precede. END.

Variables and undefined symbols may be used if no literals appear in the program.

Literals may be used only if the program has no variables and undefined symbols.

3.3 SETTING THE LOCATION COUNTER (. LOC)

Label Field Operation Field Address Field

Not Used .LOC Pre-defined symbolic
expression, or number

The. LOC pseudo-op sets or resets the Location Counter to the value of the expression con

tained in the address field. The symbolic elements of the expression must have been defined previously;

otherwise, phase errors might occur in PASS2. The. LOC pseudo-op may be used anywhere and as many

times as required.

ExampJes

Location Counter Instruction

100 -+I .LOC~ 100

100 -+I LAC TAG1

101 -+I DAC~ TAG2

102 -+I . LOC

102 A -+I LAC B

103 -+I DAC C

107 -+I • LOC A+5

3-3

Location Counter Instruction

107 LAC '-' C

110 DAC,-, D

111 LAC...., E

112 DAC...., F

3.4 RADIX CONTROL (.OCT and .DEC)

The initial radix (base) used in all number interpretation by the Assembler is octal (bas,e 8).

In order to allow the user to express decimal values, and then restore to octal values, two radix s,ettin~J

pseudo-ops are provided.

Pseudo-op Code Meaning

.OCT Interpret all succeeding numerical values in base 8 (octal)

.DEC Interpret all succeeding numerica I values in base 10 (decimal)

These pseudo-instructions must be coded in the operation field of a statement. All numbers

are decoded in the current radix unti I a new radix control pseudo-instruction is encountered. Th(~ pro··

grammer may change the radix at any point in a program.

Source Program Generated Value (Octal) Radix in Effect

....... LAC 100 200100 8} initial value is

..... 25 000025 8 assumed to be octal

..... DEC

..... LAC 100 200144 10

..... 275 000423 10

-+I.OCT

-tJf76 000076 8

......... 85 000000 error

3-4

3.5 RESERVING BLOCKS OF STORAGE (.BLOCK)

• BLOCK reserves a block of memory equal to the value of the expression contained in the ad

dress field. If the address field contains a numerical value, it will be evaluated according to the radix

in effect. The symbol ic elements of the expression must have been defined previously; otherwise, phase

errors might occur in PASS2. The expression is evaluated modulo 2
15

(77777
8

). The user may reference

the first location in the block of reserved memory by defining a symbol in the label field. The initial

contents of the reserved locations are unspecified.

Label Field Operation Field Address Fie I d

User Symbol . BLOCK Predefined Expression

Examples

BUFF -+I . BLOCK ,"-.12 ~

-+I . BLOCK A+B+65_

3.6 PROGRAM TERMINATION (.END)

One pseudo-op must be included in every MACRO-9 source program. This is the. END

statement, which must be the last statement in the main program. This statement marks the physical

end of the source program, and also contains the location of the first instruction in the object program

to be executed at run-time.

The. END statement is written in the general form:

-+I. END ~ START J
Where START may be a symbol, number, or expression whose value is the address of the first program

instruction to be executed. In relocatable programs, to be loaded by the Linking Loader, only the

main program requires a starting address; a II other subprogram starting addresses will be ignored.

A starting address must appear in absolute or self-loading programs; otherwise, the program

will halt after being loaded and the user must manually start his program.

These are legal • END statements

--.!. END L....I BEGIN +5~

~.END L....I 200~

3-5

3.7 PROGRAM SEGMENTS (.EOT)

If the input source program is physically segmented, each segment except the last must

terminate with ('In • EOT (end-of-tape) statement. The last segment must terminat'e with an • END statle

mente For example, if the input source program is prepared on three different tapes, the first two are

terminated by . EaT statements, and the last by an • END statement. The. EOT statement is written

without label and address fields, as follows •

...... . EaT,/.

3.8 TEXT HANDLING (.ASCII and .SIXBT)

The two text handling pseudo-ops enable the user to represent the 7-bit ASCII, or 6-bit

trimmed ASCII character sets. The Assembler converts the desired character set to its appropriate nu-'

merical equivalents. (See Appendix A.)

Label Field Operation Field Address Field

SYMBOL {ASCII} Delimiter - character string - delimiter -

. SIXBT < expression>

Only the 64 printing characters (including space) may be used in the text pseudo-insf'ructkms.

See non-printing characters, Section 2.4.5. The numerical values generated by the text pseud()-ops

are left-justified in the storage word(s) they occupy with the unused portion (bits) of a word zero fillod.

3.8. 1 . ASCII Pseudo-op

. ASCII denotes 7 -bit ASCII characters. (It is the character set that is the inp'ut to and out

put from Monitor.) The characters are packed five per two words of memory with the rightmost bit of

every second word set to zero. An even number of words w ill a Iways be outputted.

Basic Form

1 ______________ ~F-ir-s_t-W-o-r-d------~-----~----~------s-e-c-o-n-d-w~or_d _______________ 2~~107 0 6 7 13 14 17 0 2 3 9 10

1 st Char. 2nd Char. 3rd Char. 14th Char. 15th Char.

3-6

3.8.2 • SIXBT Pseudo-op

• SIXBT denotes 6-bit trimmed ASCII characters, which are formed by truncating the leftmost

bit of the corresponding 7-bit character. Characters are packed three per storage word.

Basic Form

0 56 11 12 17

1 st Char. 2nd Char. 3rd Char.

3.8.3 T ext Statement Format

The statement format is the same for both of the text pseudo-ops. The format is as follows.

MYTAG-.I{: ~1~~li } -.II delimiter I character string I delimiter I <expression)

3.8.4 Text Delimiter

Spaces or tabs prior to the first text del imiter or angle bracket «) wi II be ignored; afterwards,

if they are not enclosed by delimiters or angle brackets, they will terminate the pseudo-instruction.

Also, _ wi II terminate the pseudo-instruction.

Any printing character may be used as the text delimiter, except those listed below.

a. < - as it is used to indicate the start of an expression.

b. ,J - as it terminates the pseudo-i nstruction.

(The apostrophe (') is the recommended text delimiting character.) The text delimiter must be present

on both the left-hand and the right-hand sides of the text string, otherwise the user may get more char

acters than desired; however, ~ may be used to terminate the pseudo-instruction.

3.8.5 Non-Printing Characters

The octal codes for non-printing characters may be entered in .ASCII statements by enclosing

them in angle bracket delimiters. In the following statement, five characters are stored in two storage

words.

3-7

Octal numbers enclosed in angle brackets will be truncated to 7 bits (.ASCII) or 6 bits

(. SIXBT).

Source Line

TAG -+I. ASCII iABC'
-til. SIXBT '-' 'ABC'
-+I. SrXBT 'ABC'#'/#

~. ASCII '-' I ABCD' EFGE
-+I. ASCii 'AB'(ll)
-e.I'. ASCii 'AB(ll)

...,. ASCii ~15)~012>'ABC'
-IIi. ASCII '-' 15) 12)ABC u (s)

Recognized Text

ABC
ABC
ABC'/

ABCDFG
AB""
AB(ll)

• +ABC
~ + BC (s)

Comments

The # is used as a delimiter in
that (I) may be interpreted as .

(11) used to represent tab.
There is no del imiter after B,
therefore, (11») is treated a:

A is interpreted as the text de·
I imiter. Also, since _ was n

order
~ext.

; text .

ot
U used to terminate the text, the

(s) are interpreted as text
characters. _.

The following example shows the binary word format which MACRO-9 generates for a given

line of text.

Example:

-+I. ASCII~'ABC'(015)<12>'OEF

Generated Coding

Word Number Octal Binary

Word 1 406050 1 000001 11 00001 01 1 000

Word 2 306424 011 \ 00011 01 \0001 01 0 \ 0

Word 3 422130 1 0001 00 \ 1 0001 01 I 1 000

Word 4 600000 1 1 0 \ 0000000 I 0000000 \ 0

3.9 LOADER CONTROL (.GLOBL)

Label Field Operation Field Address Field

Not Used . GLOBL A, B, C, 0, E

3-8

The standard output of the Assembler is a relocatable object program. The Linking Loader joins

relocatable programs by supplying definitions for global symbols which are referenced in one program

and defined in another. The pseudo-op .GLOBL, followed by a list of symbols, is used to define to

the Assembler those global symbols which are either.

a. internal globals - defined in the current program and referenced by
other programs

b. external symbols - referenced in the current program and defined
in another program

The loader uses this information to load and then link the relocatable programs to each other.

All references to external symbols should be indirect references as memory banks may have

to be crossed.

Examples

-+I. GLOBL-+lA, B, C

A -+I LAC-+l1 00 /A is an internal global

/These two instructions reference

/External symbols indirectly

The. GLOBL statement may appear anywhere within the program.

3.10 REQUESTING I/O DEVICES (.IODEV)

The. IODEV pseudo-op appears anywhere in the program and is used to cause the Assembler

to output code for the Linking Loader which specifies the slots in the Monitor1s Device Assignment Table

(DAT) whose associated device handlers are required by the program (see Monitors manual,

DEC-9A-MADO-D) •

Label Field Operation Field Address Field

Not Used .IODEV 1,2,3 •••

3. 11 DEFINING A SYMBOLIC ADDRESS (.DSA)

. DSA (define symbol address) is used in the operation field when it is desired to create a

word composed of just an address field. It is especially useful when a user symbol is also an instruction

or pseudo-op symbo I .

Label Field Operation Field Address Field

User Symbol . DSA Any Expression

3-9

Examples

JMP ~ LAC ~TAG

-iIII. DSA-fIII JMP

-iIII JMP

Equivalent methods of defining the user symbol JMP

to be in the address field.

3. 12 REPEATING OBJECT CODING (. REPT)

Label Field Operation Field Address Field

Not Used . REPT Count I { Increment
or L....I

The. REPT pseudo causes the object code of the next sequential object code generating

instruction to be repeated Count times. Optiona"y, the object code may be incremented for each timE~

it is repeated by specifying an Increment. The Count and Increment are numerical values (signed or

unsigned) which wi" be evaluated according to the radix in effect. The repeated instruction may con

ta ina I abe I, wh i ch wi" be assoc i ated with the fi rst statement generated.

Examples

Generated
Source Code Object Code

-+I . REPT 5

...,0 000000

000000

000000

000000

000000

~.REPT 4,l

-IloI 1 000001

000002

000003

000004

-IloI .REPT 3, -1

-+15 000005

000004

000003

3-10

Generated
Source Code Object Code

TAG=50

~ .REPT,-, 4,1

~ JMP _ TAG 600050

600051

600052

600053

NOTE

If the statement to be repeated generates more than one
location of code, the • REPT wi II repeat only the last
location. For example,

~. REPT u3

.... ASCII u IAI

will generate the following:

404000 5/7 A
000000
000000 last word is
000000 repeated

3.13 CONDITIONAL ASSEMBLY (.IF xxx and .ENDC)

It is often useful to assemble some parts of the source program on an optional basis. This is

done in MACRO-9 by means of conditional assembly statements, of the form:

~ . IF. •. ~ expression

The pseudo-op may be any of the eight conditional pseudo-ops shown below, and the address field may

contain any number, symbol, or expression. If there is a symbol, or an expression containing symbol ic

elements, such a symbol must have been previously defined in the source program.

If the condition is satisfied, that part of the source program starting with the statement im

mediately following the conditional statement and up to but not including an • ENDC (end conditional)

pseudo-op, is assembled. If the condition is not satisfied, this coding is not assembled.

The eight conditional pseudo-ops (sometimes called IF statements) and their meanings are

shown be low.

3-11

Assemble IF x is:

~ .IFPNZ x Positive and non-zero

~ .IFNEG......, x Negative

-+I .IFZER, x Zero

-+t .IFPOZ x Positive or zero

-+t .IFNOZ x Negative or zero

-+i .IFNZR x Not zero

~ .IFDEF x A defined symbol

-+t . IFUND x An undefined symbol

In the following sequence, the pseudo-op .IFZER is satisfied, and the source program c:odin~~

between.IFZER and. ENDC is assembled.

SUBTOT=48

TOTALL=48

-+t .IFZER SUBTOT -TOT ALL

-+I LAC A

-+I DAC B

-+t .ENDC

Conditional statements may be nested. For each IF statement there must be a terminating

• ENDC statement. If the outermost IF statement is not satisfied, the entire group is not assemb led. If

the first IF is satisfied, the following coding is assembled. If another IF is encountered, however, its

condition is tested, and the following coding is assembled only if the second IF statement is satisfied.

Logica lIy, nested IF statements are I ike AND circu its. If the first, second and third conditions, are

satisfied, then the coding that follows the third nested IF statement is assembled.

Example

~ .IFPOS X

-+t LAC -+i TAG

-+t .IFNZR Y

-+t DAC -+t TAG 1

-+t .ENDC

-+t .IFDEF, Z

-+lDAC -+tTAG2

-+I. ENDC

-+t. ENDC

conditional 1 initiator

conditional 2 initiator

conditional 2 terminator

conditional 3 initiator

conditional 3 terminator

conditional 1 terminator

3-12

Conditional statements can be used in a variety of ways. One of the most useful is in

terminating recursive macro calls (to be described in the next chapter). In general, a counter is changed

each time through the loop, or recursive call, unti I the condition is not satisfied. Th is process con

cludes assembly of the loop or recursive cal I.

3. 14 LISTING CONTROL (. EJECT)

The following Assembler listing controls are effective only when a listing is requested by

Assembler control keyboard request.

Label Field Operation Field Address Field

Not Used . EJECT Not Used

When. EJECT is encountered anywhere in the source program, it causes the listing device that is being

used to skip to head-of-form.

3.15 PROGRAM SIZE (. SIZE)

Label Field Operation Field Address Field

User Symbol • SIZE Not Used

When the Assembler encounters .SIZE, it outputs, at that point, the address of the last location plus

one occupied by the object program. Th is is normally the length of the object program (in octal).

3. 16 DEFINING MACROS (. DEFIN, . ETC, and. ENDM)

The. DEFIN pseudo-op is used to define macros (described in Chapter 4). The address field

in the .DEFIN statement contains the macro name, followed by a list of dummy arguments. If the list

of dummy arguments will not fit on the same line as the .DEFIN pseudo-op, it may be continued by

means of the. ETC pseudo-op in the operation field and additional arguments in the address field of the

next line. The coding that is to constitute the body of the macro follows the .DEFIN statement. The

body of the macro definition is terminated by an . ENDM pseudo-op in the operation field. (See

Chapter 4 for more detai Is on the use of macros.)

3-13

CHAPTER 4

MACROS

When a program is being written, it often happens that certain coding sequences are repeated

several times with only the arguments changed. It would be convenient if the entire repeated sequence

could be generated by a single statement. To accomplish this, it is first necessary to define the coding

sequence with dummy arguments as a macro instruction and then use a single statement referring to the

macro name, along with a list of real arguments which will replace the dummy arguments and generate

the desired sequence.

Consider the following coding sequence.

-.t LAC -.t A

~ TAD-.tB

-.t DAC-.t C

~ LAC --.t D

--.t TAD -+I E

--.t DAC --.t F

The sequence

--.t LAC -.t x

~ TAD--.ty

-+I DAC --.t z

is the model upon which the repeated sequence is based. The characters x, y, and z are called dummy

arguments and are identified as such by being listed immediately after the macro name when the macro

instruction is defined.

4.1 DEFINING A MACRO

Macros must be defined before they are used. The process of defining a macro is as fo"ows.

(Definition Line)
(Macr~ Name) ~Dum~y A~uments}

1
~ ~:rN:: :i~NME'ARGl ,ARG2,ARG3 /comment

(Body)

~DAC ~ ARG3

(Terminating Line) ~. ENDM

The pseudo-op • DFIN in the operation fi eld defines the symbol following it as the name of

the macro. Next, follow the dummy arguments, as required, separated by commas and terminated by

any of the following symbols.

4-1

a. space (L.J)

b. tab (-.t)

c • carriage return (.)

The macro name, as well as the dummy arguments must be legal MACRO-9 symbols. An)'

previous definition of a dummy argument is ignored whi Ie in a macro definition. Comments after th,e

dummy argument list in a definition are legal.

If the list of dummy arguments cannot fit on a single line (that is, if the .DEFIN statement

requires more than 7210 characters) it may be continued on the succeeding line or lines by the usage of

the .ETC pseudo-op, as shown below.

-t-I. DEFIN-t-I MACNME,ARG1, ARG2, ARG3 /comment

-t-I. ETC -t-I ARG4, ARG5 /argument continuation

-t-I. DEFIN -t-I MACNME

..... ETC -t-I ARG1

..... ETC ARG2

~. ETC -Ilol ARG4

-t-I. ETC ARG5

4.2 MACRO BODY

The body of the macro definition follows the .DEFIN statement. Appearances of dummy

arguments are marked, and the character string of the body is stored 5 characters per 2 words in the

macro definition table, unti I the macro terminating pseudo-op .ENDM is encountered. Comments with

in the macro definition are not stored.

Dummy arguments may appear in the definition lines only as symbols or elements of an e><

pression. They may appear in the label field, operation field, or address field. Dummy arguments may

appear within a literal or defined as variables. They will not be recognized if I'hey appear within (:1

comment.

The following restrictions apply to the usage of the 'OEFIN, ·ETC and ·ENDM pseudo-ops:

a. If they appear in other than the operation field within the body of a macro definition,

they wi II cause erroneous results.

b. If ·ENDM or 'ETC appears outside the range of a macro definition, they will be

flagged as undefi ned.

4-2

If .ASCII or .SIXBT is used in the body of a macro, a slash (/) or number (#) must not

appear as part of the text stri ng or as a del i miter (use <57> to represent a slash and <43 > to represent

a number sign). Also a dummy argument name should not inadvertently be used as part of the text string.

Definition Comments

-+I. DEFIN -+I MAC, A, B, C, D, E, F

-.t LAC--.t A#

-+I SPA

--.t J MP -.t B

-+lISZ -+lTMP -+I IE E is not recognized as an argument

-+I LAC-.t (C

-+I DAC-+I D + 1

-+I F

-+I . ASCII -+I E

B=.

-+I. ENDM

4.3 MACRO CALLS

A macro ca II consists of the macro name, whi ch must be in the operation field, followed, if

desired, by a list of real arguments separated by commas and terminated by one of the characters listed

below.

a. space L~)

b. tab (-+I)

c. carriage return (~)

If the real arguments cannot fi't on one I ine of coding, they may be continued on succeeding

I ines by terminating the current line with a dollar sign ($). When they are continued on succeeding

lines they must start in the tag field.

Example:

-+lMAC -+lREALl,REAL2,REAL3,$

REAL4,REAL5

If there are n dummy arguments in the macro definition, all real arguments in the macro call beyond the

nth dummy argument will be ignored. A macro call may have a label associated with it, which will be

assigned to the current value of the locatnon counter.

4-3

Example:

(Definition) -+I • DEFIN -till UPDATE, LOC, AMOUNT

---+I LAC ---+I LOC

---+I TAD ---+I AMO U NT

-+I DAC---tIII LOC

---+I • ENDM

(Call) TAG-+I UPDATE -+I CNTR,(5

(Expansion) TAG -+I LAC ---+I CNTR

-+I TAD -+I (5

-+I DAC -till CNTR

/TAG ENTERED INTO SYMBOL TABLE

/WITH CURRENT VALUE OF LOCATION COUNTER

The prevailing radix will be saved prior to expansion, and restored after expansion takes

place. Default assumption will be octal for the macro call. It is not necessary for the macro definition

to have any dummy arguments associated with it.

Example

(Call)
(Expansion)

---+I • DEFIN '-- TWOS
---+I CMA
---+I T AD '-' (1
-+I .ENDM
---+I TWOS
-+I CMA
--JIll TAD -+I (1

4.3.1 Argument Delimiters

It was stated that the list of arguments is terminated by any of the following symbols.

a. comma (I)

b. space (L-J)

c. tab (-+I)

d. carriage return (I)
These characters may be used within real arguments only by enc losing them in ang Ie bnJckets.

Angle brackets will not be recognized if they appear within a comment.

Example

(Definition) ---+I • DEFI N MAC, A, B, C

-+I LAC......, A

---+I TAD '-' B

---+I DAC,-, C

-+I.ENDM

4-4

(Ca II) ~MAC TAG1,(TAG2 /comment

~TAD '-' (1», TAG3

(Expansion) -+I LAC '-' TAG1

~TAD '-' TAG2

-+I TAD '-' (1)

-+I DAC,-, TAG3

All characters within a matching pair of angle brackets are considered to be one argument,

and the entire argument, with the delimiters « » removed, will be substituted for the dummy argument

in the original definition.

MACRO-9 recognizes the end of an argument only on seeing a terminating character not

enclosed within angle brackets.

If brackets appear within brackets, only the outermost pair is deleted. If angle brackets

are required within a real argument, they must be enclosed by argument delimiter angle brackets.

Example

(Definition)

(Call)

(Expansion

-+I . DEFIN -+I ERRMSG, TEXT

-+I J MS -+I PRI NT

-+I . ASCII -+I TEXT

-+I . ENDM

-+I ERRMSG -..(/ERROR IN L1NE/ (15)>

-+I JMS -+I PRINT

-+I . ASCII -+I /ERROR IN L1NE/ (15)

4.3.2 Created Symbols

Often, it is desirable to attach a symbolic tag to a line of code within a macro definition.

As this tag is defined each time the macro is called, a different symbol must be supplied at each call

to avoid multiply defined tags.

This symbol can be explicitly supplied by the user or the user can implicitly request MACRO-9

to replace the dummy argument with a created symbol which will be unique for each call of the macro.

For example,

-+I. DEFIN -+lMAC, A, ?B

The question mark (?) prefixed to the dummy argument B indicates that it will be supplied

from a created symbol if not explicitly supplied by the user when the macro is called for.

The created symbols are of the form •• 0000+ .. 9999. As they are required they are

entered into the symbol table like any other symbol.

Unsupplied real arguments corresponding to dummy arguments not preceded by a question

mark are substituted in as empty strings; and supplied real arguments corresponding to dummy arguments

preceded by a question mark suppress the generation of a corresponding created symbol.

4-5

Example

(Definition)

(Call)

(Expansion)

~ . DEFIN -+I MAC, A, B, ?C, ?D, ?E

..... LAC-+lA

-+I SZA

-+I JMP -+I D

~ LAC -+I B

.... DAC-+I C#

-+I DAC-+I E

D= .

...... ENDM

-+I MAC-+I X#", I MYTAG

-+I LAC -+lX#

-+I SZA

-..t J MP -+I .. 0000

-+I LAC

..... DAC -+1 •• 0001

-+I DAC -+I MYTAG

.. 0000=.

If one of the elements in a real argument string is not supplied, that element must be re!placed

by a comma, as in the call above. A real argument string may be terminated in several ways as shown

below:

Example

-+I MAC -+I A, B, --

-+I MAC -+I A, B, ,J
-+I MAC -+I A, B '-'

-+I MAC -+I A, B~

-+I MAC -+I A, B,,J

4.4 NESTING OF MACROS

Macros may be nested; that is, macros may be defi ned withi n other macros. For ease of

discussion, levels may be assigned to these nested macros. The outermost macros (those defined directl~/)

will be called first-level macros. Macros defined within first-level macros will be called second-level

macros; macros defined within second-level macros will be called third-level macros, etc. Each

nested macro requires an .ENDM pseudo-op to denote its termination.

4-6

Example:
Levell

-+I . DEFIN -+I LEVEL 1, A, B

-+I LAC -+lA

-+I TAD -+lB
Level 2

-+I . DEFIN -+I LEVEL2, C, D

-+I ISZ -+I C

-+I DAC-+lD Level 3

-+I. DEFIN -+I LEVEL3, E, F

-+lAND -+IE

-+lXOR -+I F

-+I.ENDM LEVEL 3 .ENDM

-+I DAC -+I X

-+I • ENDM
~

LEVEL 2 .ENDM

--.r DAC -+lY

-+I . ENDM - LEVEL 1 .ENDM ..
At the beginning of processing, first-level macros are defined and may be called in the nor

mal manner. Second and higher level macros are not yet defined. When a first-level macro is called,

all its second-level macros are defined. Thereafter, the level of definition is irrevelant and macros

may be called in the normal manner. If the second-level macros contain third-level macros, the third

level macros are not defined until the second-level macros containing them have been called.

Using the example above, the following would occur:

Call Expansion

-+ LEVEL 1 -+I TAG1, TAG2 -+I LAC-+I TAGl

-+I TAD -+I T AG2

-+I DAC-+I Y

-+I LEVEL 2 -+I TAG3, TAG4 -+I ISZ -+I T AG3

-+I DAC -+I T AG4

-+I DAC -+IX
-+I LEVEL 3 -+lTAG5, TAG6 -+I AND -+I TAG5

-+I XOR -+lTAG6

Comments

Causes LEVE L 2
to be defined

Causes LEVEL 3
to be defi ned

If LEVEL 3 is called before LEVEL 2 it would be an error, and the I ine would be flagged as undefined.

When a macro of level n contains another macro of the level n + 1, to call the macro of

level n results in the generation of the body of the macro into the user's program in the normal manner

until the. DEFIN statement of the level n + 1 macro is encountered; the level n + 1 macro is then de-

fined and does not appear in the user's program. When the definition of the level n + 1 is completed

(. ENDM encountered), the Assembler continues to generate the level n body into the user's program

until, or unless, the entire level n macro has been generated.

4-7

4.5 REDEFINITION OF MACROS

If a macro name, which has been previously defined, appears within another definition, the

macro is redefined and the original definition is el iminated. For example,

--IIi. DEFIN -.tINDXSV

--IIi J M S --IIi SA V E

-+I JMP -~ SAVXT

SAVE -+I 0

-+I LAC -+110

-+I DAC -+I TMp#

-+I LAC -+111

-+I DAC -t-I TMP1 #

-+I JMP*-IIoI SAVE

SAVXT=.

-+I. DEFIN -+lINDXSV

-+I JMS -+lSAVE

--IIi. ENDM

-t-I. ENDM

When the macro INDXSV is called for the first time, the subroutine call ing sequence is gener

ated and followed immediately by the subroutine itself. After the subroutine is generated, a . DEFIN

that contains the name INDXSV is encountered. This new macro is defined and takes the place ,::>f the

original macro INDXSV. All subsequent calls to INDXSV cause only the calling sequence to be

generated. The original definition of INDXSV will not be removed until after the expansion is complete.

Call

-t-IINDXSV

.... INDXSV

Expansion

-+I J MS -+I SAVE

-t-I J MP -+I SAVXT

SAVE -+I 0

-+I LAC -+110

-+I DAC -+I TMP #

-t-I LAC-+l11

.... DAC -+I TMP1 #

-t-IJMP*~ SAVE

SAVXT=.

-t-IJ MS --IIi SAVE

4-8

4.6 MACRO CALLS WITHIN MACRO DEFINITIONS

The body of a macro definition may contain calls for other macros which have not yet been

defined. However, the embedded calls must be defined before a call is issued to the macro which

contains the embedded call. Embedded calls are allowed only to three levels.

Example
-+I . DEFIN ~MAC1, A, B, C, D, E

-+I LAC ~A

-+I TAD -+lB

-+I MAC2 -+I C, D /EMBEDDED CALL

-+I DAC -+I E

...-t. ENDM

-+I . DEFI N ...-t MAC2, A, B /DEFINITION OF EMBEDDED CALL

-+I XOR -+lA

-+I AND -+I B

-+I. ENDM

The call

-+I MACl -+lTAG1, TAG2, (400, (777, TAG3

ca uses generati on of

.... LAC ~TAGl

.... TAD TAG2

.... MAC2--.t (400, (777
--.t XOR (400
.... AND -". (777
--.t DAC TAG3

4.7 RECURSIVE CALLS

Although it is legal for a macro definition to contain an embedded call to itself, it must be

avoided because the expansion wi II cause more than three levels to occur.

Example

~. DEFIN ~MAC, A, B, C

-+I LAC -+lA

-+I TAD -+lB

-.t DAC-+I C

-+I MAC -.tA, B, C

-+I. ENDM

/RECURSIVE CALL

When a call for MAC is encountered by the Assembler, it searches memory for the definition

and expands it. Since there is another call for MAC contained within the definition, the assembler

goes back once again to obtain the definition and this process would never cease, if more than three

4-9

levels were allowed. A conditional assembly statement could be used, however, to limit the number

of levels as in the following example.

Example

A =0

B=3

~ .DEFIN~MAC,C,D

~LAC ~c

~DAC ~D

A =A + 1

..... IFNZR-toIB-A

.... MAC ~SAVE,TEMP

~.ENDC

~.ENDM

/RECURSIVE CALL

Names and arguments of nested macros and arguments of imbedded calls may be substi'tuted

and used with perfect genera lity.

Example

-liIi . DEFIN -liliMAC1, A, B, C, D

~ LAC -liIi A

-+I ADD-+! B

-+I DAC-+I C

-+I . DEFIN -+I D, E

-+I AND -liIi A

-+I DAC -+IE

-+I. ENDM

-liIi. ENDM

-liIi. DEFIN -+I MAC2, 'M, N, 0, P, Q, ?R

~ ISZ -+1M

-+I JMP -+I R

-liIi MAC1 -+I N, 0, P, Q

R=.

-+I. ENDM

4-10

The call

~ MAC2 ~COUNT, TAG1, TAG2, TAG3, MAC3

causes the generation of

~ ISZ ~COUNT

~JMP-.t .. 0000

-.t LAC -.t TAGl

~ADD~ TAG2

~DAC~ TAG3

.. 0000=.

It also causes the definition of MAC3

4-11

5. 1 OPERATING PROCEDURES

CHAPTER 5

ASSEMBLER OPERATION

Operating procedvres for MACRO-9 are contained in the Vo Monitor Guide (DEC-9A

MIPA-D) for paper tape systems, and in the Keyboard Monitor Guide (DEC-9A-MKFA-D) for bulk

storage systems.

5.2 ASSEMBLY LISTINGS

If the user requests it, via the Monitor command string, the Assembler wi II produce an

output listing on the requested output device. The top of the first page of the listing will contain

the name of the program as given in the Monitor command string. The body of the listing will be

formatted as fo II ows •

ERROR FLAGS

xxx

where

FLAGS

LOCATION

xxxxx

ADDRESS
MODE

{1}
OBJECT CODE

xxxxxx

ADDRESS
TYPE

IH
Errors encountered by the Assembler (see paragraph 5.5)

SOURCE STATEMENT

x x

LOCATION Relative or absolute location assigned to the source

ADDRESS MODE = Indicates the type of user label address

OBJECT CODE

ADDRESS TYPE

A = Absolute

R = Relocatable

The contents of the location (in octal)

Indicates the classification of the address portion of the object code

A = Absolute

R = Relocatable

E = Externa I symbol

Locations and object codes assigned for literals and external symbols are listed following

the program. The program name may be written in a • TITLE statement, as shown. This is treated as

a comment.

5-1

u
u

MACR09 PAGE

00000 R
00001 R
00002 R
00003 R
00004 R
00005 R
00006 R
00007 R
00010 R
00011 R
00012 R
00013 R
00014 R
00015 R
00016 R
00017 R
00020 R
00021 R
00022 R
00023 R
00024 R

00036 R
00037 R
00040 R
00041 R
00042 R
00043 R
00044 R

200025 R
200002 R
000014 R
000033 R
000002 R
200036 R
000037 R
000037 R
000040 R
000041 R
000042 R
000043 R
200042 R
200043 R
000026 R
000027 R
000030 R
000034 R
000031 R
000035 R
000032 R
000002 R
000001 A *L1T
000002 A *L IT
000003 A * LIT
000004 A * LIT
600002 R *L1T
600014 R *L1T
600014 R *L1T

5.3 SYMBOL TABLE OUTPUT

Sample Listing

~
TAGl

TAG2

TAG3

. TITLE MACR09 TEST PROGRAM

LAC A#
LAC TAG2
TAG3
TAG4#
TAG2
LAC {l
(2
(2
(3
(4
(JMP TAG2
(JMP TAG3
LAC (JMP TAG2
~tc (JMP TAG3

C#
D#
E
F#
G
H#
.END TAG2

After the assembly listing is printed, the Assembler outputs a symbol table, if requested,

which lists all user-defined symbols. There are two symbol lists. The first is an alphabetically ordered

list of the symbols, and the second is a list in order of numerical value. The symbol table listing is

useful in tracing or debugging a program for which the programmer does not have an assembly listing.

The symbol table listing shows which symbols are:

A = Absolute

R = Relocatable

E = Externa I symbol

5-2

5.4 ERROR DETECTION

MACRO-9 examines each source statement for possible errors. The statement which contains

the error will be flagged by one or several letters in the left-hand margin of the line. The following

table shows the error flags and their meanings.

Flag Meaning

A Error in direct Symbol Table assignment, assignment ignored (see paragraph 2.5. 1).

B Memory Ba nk error (progra m segment too large).

D The statement contains a reference to a multiply defined symbol. It is assembled
with the first value defined.

E Erroneous results may have been produced (see paragraph 2.5.3). Wi II also occur
on undefined .END value.

Line ignored. (Redundant Pseudo-op)

L Litera I phasing error. Litera I encountered in PASS2 does not equa I any I itera I
encountered in PASS 1 •

M An attempt is made ,to define a symbol which has already been defined.
The symbol retains its origi na I va lue •

N Error in number usage.

P Phase error. PASS 1 va lue does not equal PASS2 va lue of a symbol.
PASS 1 va I ue wi II be used.

Q Questionable Line.

R Possible relocation error.

S Symbol error. An i II ega I character was encountered and ignored.

U An undefined symbol was encountered.

W Line overflow during macro expansion.

X Illega I usage of macro name.

In addition to flagged lines, there are certain conditions which wi II cause assembly to be

terminated prematurely.

Message

TABLE OVERFLOW

CALL OVERFLOW

Pass

1 or 2

5-3

Cause

Too many symbols and/or macros.

Too many embedded macro calls.

5.5 PROGRAM RE LOCA TION

The normal output from the MACRO-9 Assembler is a relocatable object program, which may

be loaded into any part of memory regardless of which locations are assigned at assembly time. To

accomplish this, theaddress portion of some instructions must have a relocation constant added to it.

This relocation constant, which is added at load time by the Linking Loader, is equal to the difference

between the memory location that an instruction is actua lIy loaded into and the location that was (3S

signed to it at assembly time. The Assembler determines which storage words are relocatable (marking

them with an R in the listing) and which are absolute (marking these non-relocatable words with an A).

The rules that the Assembler follows to determine whether storage word is absolute or reloca

table are as follows.

a. If the address is a number (not a symbol), the instruction is absolute.

b. If an address is a symbol which is defined by a direct assignment statement (i.e. ,=) and
the right-hand side of the assignment is a number; all references to the symbol wi II be abso!ute.

c. If a user label occurs within a block of coding that is absolute, the label is absolute.

d. Variables, undefined symbols, external transfer vectors, and literals get the same relo-
cation as was in effect when oEND was encountered in PASSl •

e. .gets current re locatabi I ity •

f. All others are relocatable.

The following table depicts the manner in which the Assembler handles expressions which

contain both absolute and re locatable elements:

(A = Absolute, R = Relocatable)

A+A=A

A-A=A

A+R=R

A-R=R

R +A = R

R - A = R

R + R = R and flagged as possible error

R - R = A

If multiplication or division is performed on a relocatable symbol, it will be flagged as a

possible error.

5-4

Notes:

Printing 7-bit
Character ASCII

@ 100
A 101
B 102
C 103
D 104
E 105
F 106
G 107
H 110
I 111
J 112
K 113
L 114
M 115
N 116
0 117
P 120
Q 121
R 122
S 123
T 124
U 125
V 126
W 127
X 130
Y 131
Z 132
C* 133
\ 134
J* 135
t * 136

* 137 -
Null 000
Horizontal Tab 011
Line Feed 012
Vertical Tab 013
Form Feed 014
Carriage Return 015
Rubout 177

APPENDIX A

CHARACTER SET

6-bit
Trimmed Printi ng

ASCII Character

00 (Space)
01 I
02 II

03 #
04 $
05 %
06 &
07 I

10 (
11)
12 -*

13 +
14 ,
15 -
16 .
17 /
20 0
21 1
22 2
23 3
24 4
25 5
26 6
27 7
30 8
31 9
32 :*
33 ;
34 <
35 =
36 >
37 ?

6-bit
7-bit Trimmed
ASCII ASCII

040 40
041 41
042 42
043 43
044 44
045 45
046 46
047 47
050 50
051 51
052 52
053 53
054 54
055 55
056 56
057 57
060 60
061 61
062 62
063 63
064 64
065 65
066 66
067 67
070 70
071 71
072 72
073 73
074 74
075 75
076 76
077 77

(l) All other characters are illegal to MACRO-9 and are flagged and ignored.
(2) * = Illegal as source, except in a comment or text.

A-1

APPENDIX B
PERMANENT SYMBOL TABLE

Operate EAE Type KE09A Memory Reference

OPR 740000 EAE 640000 CAL 000000

NOP 740000 OSC 640001 DAC 040000

CMA 740001 OMQ 640002 JMS 100000

CMl 740002 CMQ 640004 DZM 140000

OAS 740004 DIV 640323 LAC 200000

RAl 740010 NORM 640444 XOR 240000

RAR 740020 lRS 640500 ADD 300000

HlT 740040 llS 640600 TAD 340000

XX 740040 AlS 640700 XCT 400000

SMA 740100 LACS 641001 ISZ 440000

SZA 740200 LACQ 641002 AND 400000

SNl 740400 ABS 644000 SAD 540000

SMl 740400 DIVS 644323 JMP 600000

SKP 741000 ClQ 640000

SPA 741100 FRDIV 650323
I/O States

SNA 741200 lMQ 652000 lOT 700000

SZl 741400 MLJl 653122 10RS 700314

SPl 741400 IDIV 653323

RTl 742010 FRDIVS 654323 Automati c Prioritl

RTR 742020 MLJlS 657122
Interrupt Type KF09A

Cll 744000 IDIVS 657323 DBK 703304

STl 744002 NORMS 660444 DBR 703344

CCl 744002 lRSS 660500 SPI 705501

RCl 744010 llSS 660600 ISA 705504

RCR 744020 AlSS 660700

CLA 750000 GSM 664000 Me m0!:l Exte ns i on

ClC 750001
Control Type KE09B

LAS 750004 Interrupt SEM 707701

LAT 750004 IOF 700002
EEM 707702

GlK 750010 ION 700042
lEM 707704

lAW 760000 CAF 703302

B-1

APPENDIX C
MACRO-9 CHARACTER INTERPRETATION

Character

Name

Space

Horizontal tab

Semicolon

Carriage return

Plus

Minus

Asterisk

Slash

Ampersand

Exclamation point

Symbol

+

*
/
&

Back slash \

Openi ng parenthesis (

C losi ng parenthes is)

Equals

Opening angle bracket <
Closing angle bracket >
Comma

Question mark

Quotation marks

Apostrophe

Number sign

Dollar sign

?
II

$

Function

Field delimiter. Designated by L...I in this manual.

Field delimiter. Designated by ~ in this manual.

Statement termi nator

Statement terminator

Addition operator (two1s complement)

Subtraction operator (addition of two1s complement)

Multiplication operator or indirect addressing indicator

Division operator or comment initiator

Logical AND operator

Inclusive OR operator

Exclusive OR operator

Initiate literal

Terminate literal

Direct Assignment

Argument delimiter

Argument delimiter

Argument delimiter

Create symbol designator in macros

Text string indicators

Text stri ng i ndi cator

Variable indicator

Real argument continuation

C-l

Character

Line feed }
Form feed

Vertical tab

Null

Delete

Illegal Characters

Function

Ignored if preceded by a carriage return; otherwise they

are considered as illegal characters.

Blank character. Ignored by the Assembler

Rubout character. Ignored by the Assembler

Only those characters listed on the preceding table are legal in MACRO-9 source programs,

all other characters wi II be ignored and flagged as errors. The following characters, although they are

illegal as source, may be used within comments or in .ASCII and .SIXBT pseudo-ops.

Character Name Symbol

Commercial at @

Opening square bracket C

C losi ng square bracket J

Up arrow +
Left arrow +-

Colon

C-2

Pseudo-op Section

.ABS 3.2.1

.ASCII 3.8. 1

.BLOCK 3.5

• DEC 3.4

.DEFIN 3.16

.DSA 3.11

• EJECT 3.14

.END 3.6

• ENDC 3.13

.ENDM 3.16

.EOT 3.7

.ETC 3.16

.FULL 3.2.2

.GLOBL 3.9

.IFxxx 3.13

.IODEV 3.10

.LOC 3.3

APPENDIX D

SUMMARY OF MACRO-9 PSEUDO-OPS

Format

~ .ABS ~NLD~
or
.... ,

label ~ .ASCII /text/<octal>~

label ~ .BLOCK~exp_

~ .DEC~

~ • DEFI N L...I macro name, args ~

label ~ • DSA exp,

~ .EJECT •

-+I .END START ~

~ .ENDC.

~ .ENDM~

~ .EOT ~

~ • ETC a rgs, a rgs _

-+I .FULL ~

~. GLOBL sym,sym,sym ~

-+I.IFxxx exp ~

-+I.IODEV ~ DAT numbers ~

~.LOC exp ~

D-1

Function

Object program is output in absolute,
blocked, checksummed format for
loading by the Absolute Binary Loader

Input text strings in 7-bit ASCII code,
with the first character serving as
delimiter. Octal codes for nonprint
i ng control characters are enc losed
in angle brackets.

Reserves a block of storage words
equal to the expression. If a label is
used, it references the first word in
the block.

Sets prevailing radix to decimal •

Defines macros.

Defines a user symbol which is to be
used only in the address field.

Skip to head of form on listing device.

Must termi nate every sou rce program.
START is the address of the first in
struction to be executed •

Terminates conditional coding in .IF
statements.

Terminates the body of a macro
definition.

Must terminate physical program seg
ments, except the last, which is ter
minated by .END.

Used in macro definitions to continue
the I ist of dummy arguments on suc
ceeding lines.

Produces absolute, unblocked, un
checksummed binary object programs.
Used on Iy for paper tape output.

Used to declare all internal and ex
ternal symbols which reference other
programs. Needed by Linking Loader.

If a condition is satisfied, the source
coding following the .IF statement,
and terminating with an .ENDC
statement, is assembled.

Specifies. DAT slots and associated
I/O handlers required by this program.

Sets the Location Counter to the value
of the expression.

Pseudo-op Section

.OCT 3.4

.REPT 3.12

.SIXBT 3.8.2

.SIZE 3. 15

• TITLE 3. 1

Format

~ .OCT J

~ .REPT count, n ~

label -t-I.SIXBT /text/<octal> ~

~ .SIZE~

~ • TI TLE any comments ~

D-2

Function

Sets the prevai ling radix to oc:tal.
Assumed at start of every program.

Repeats the object code of the! next'
object code generating instruc:tion
Count times • Optionally, the! gener
ated word may be incremented by n
each time it is repeated.

Input text strings in 6-bit trimmed
ASC II, wi th first character ,as de
limiter. Numbers enclosed in angle
brackets are truncated to one 6-bit
octal character.

MACRO-9 outputs the address of IOlst
location plus one occupied by the
object program.

Optional, typed on listing as a com
ment. (The program name given in
the command string is printed at thE~
top of each listing page, and used by
the Loader.) May be used to (lnnotate
logical sections of a program.

APPENDIX E

SUMMARY OF SYSTEM MACROS

System macros (Monitor commands) are defined in the Monitor manual, and summarized here

for the convenience of the PDP-9 programmers.

System macros are predefined to MACRO-9. To use a system macro, the programmer writes

a macro call statement, consisting of the macro name and a string of real arguments.

To initialize a device and device handler

~ .1 N ITwa, f, r

where a = • DAT slot number in octal

f 0 for input files; 1 for output files

r user restart address*

To read a line of data from a device to a user's buffer

~ .READwa, m,l, w

where a • DAT slot number in octal

m a number, 0 through 4, specifying the data mode:

o lOPS binary
1 = Image binary
2 lOPS ASCII
3 Image a I phanumeri c
4 = Dump mode

Ii ne buffer address

w word count of the line buffer in decimal, induding the
two-word header

To write a line of data from the user's buffer to a device

-+I • WRITE u a, m,l, w

where a • DAT slot number in octal

m = a number, 0 through 4, specifying the data mode:

o lOPS binary
1 Image bi nary
2 lOPS ASCII
3 Image alphanumeric
4 = Dump mode

I = line buffer address

w = word count of line buffer in decimal, including the two
word header

* Meaningful only when device associated with. DAT slot a is the Teletype. Typing CTRLP on the keyboard
wi II force control to location r.

E-l

To detect the avai labi lity of a Ii ne buffer

~.WAITL..Ia

where a = • DAT slot number in octal. After the previous .READ,
• WRITE, or • TRAN command is completed; • WAIT
returns control to the user at LOC+ 2

To detect the avai labi lity of a I ine buffer and transfer control to ADDR if not avai lable.

-+ .WAITRwa, ADDR

where a = DA T slot number {octa I radix}

ADDR = Address to which control is transferred if buffer is not avai lab Ie.

To close a fi Ie

-+I .CLOSE a

where a = • DAT slot number in octal

To set the real-time clock to n and start it

-.t • TIMER n, c

where n = number of clock increments in decimal. Each increment
is 1/60 second {in 60-cycle systems} or 1/50 {in 50-cycle
systems}

c address of subroutine to handle interrupt at end of interval

To return control to Keyboard Monitor, or halt in I/O Monitor environment

-+I .EXIT ~

Mass Storage Commands for DECtape, Magnetic Tape, Disk and Drum only

To search for a file, and position the device for subsequent .READ commands

-.. .SEEK a,d

where a • DA T slot number in octal

d address of user directory entry block

To examine a file directory, find a free directory entry block and transfer the block to the devict3

-+I .ENTER L...I a, d

where a • DAT slot number in octal

d = address of user directory entry block

To c lear a fi Ie directory to zero

~ .CLEAR a

where a • DA T slot number in octal

E-2

To rewind, backspace, skip, write end-of-file, or wrJte blank tape on nonfile-oriented magnetic tape

-.t .MTAPE a, xx

where a

xx

• DAT slot number in octal

a number
r

00 through 07, specifying one of 'the functions
shown be ow

00 Rewind to load point*
02 Backspace one record*
03 Backspace one fi Ie
04 = Wri te end-of-fi Ie
05 Sk i p one record
06 = Skip forward one file
07 = Skip to logical end-of-tape

or a number, 10 through 16, to describe the tape configuration

10 = Even pari ty, 200 BPI
11 Even parity, 556 BPI
12 = Even parity, 800 BPI
14 = Odd parity, 200 BPI
15 = Odd pari ty, 556 BPI
16 = Odd parity, 800 BPI

To read from, or write to any user file-structured mass storage device

-.. • TRAN a,d,b,l,w

To delete a fi Ie

where a = • DAT slot number in octal

b = transfer direction:

o Input forward
1 Input reverse
2 Output forward
3 = Output reverse

b = device address in octal, such as block number for DECtape

= core starti ng address

w = word count in decimal

-.t • DLETE a, d

To rename a fi Ie

where a = • DAT slot number in octal

d starting address of the 3-word block of storage in user area
containing the fi Ie name and extension of fi Ie to be deleted
from the device.

-.. .RENAM a,d

where a • DAT slot number in octal

d = starting address of two three-word blocks of storage in user
area containing the file names and extensions of the fi Ie to
be renamed, and the new name, respectively.

* May be used with any nonfile structured mass storage device.

E-3

To determine whether a fi Ie is present on a device

~ .FSTAT ~ a,d

where a = • DA T s lot number

d = starting address of three-word block in user area con
taining the fi Ie name and extension of the fi Ie whose
status is desired.

Background/Foreground Mon itor System Commands

To read a line of data from a device to a user's buffer in real-time

~ .REALR~a, n, I, w, ADDR, p

where a = DAT slot number in octa I

m = Data mode specification;

o = lOPS binary
1 ~ Image binary
2 = lOPS ASCII
3 = Image Alphanumeric
4 = Dump mode

I = Line buffer address

w = word count of line buffer in decima I, including the two-word leader

ADDR = 15-bit address of closed subroutine that is given control when the relques1"
made by • REA LR is comp I eted •

p = API priority level at which control is to be transferred to ADDR:

o = mainstream
4 = level of .REALR
5 = API software leve I 5
6 = API software leve I 6
7 = API software level 7

To write a line of data from user's buffer to a device in real time

-JII • REALW~a, m, I, w, ADDR, p

where a = DAT slot number in octa I

m = Data mode specification;

o = lOPS binary
1 = Image binary
2 = lOPS ASCII
3 = Image Alphanumeric
4 = Dump mode

I = I ine buffer address

w = word count of I ine buffer in decima I, including the two-word leadel~

ADDR = 15-bit address of closed subroutine that is given control when the
request made by .REALW is completed

p = API priority level at which control is to be transferred to ADDR:

E-4

o = mainstream
4 = level of .REALR
5 = API software leve I 5
6 = API software level 6
7 = API software leve I 7

To indicate, in a FOREGROUND job, that control is to be relinquished to a BACKGROUND job

..... IDLE

To set the real-time clock to n and start it

..... TIMERL-In, c, p

where n = number of clock increments in decimal. Each increment is 1/60 of
of a second (1/50 in 50 Hz systems)

c = address of subroutine to hand Ie interrupt at end of interva I

p = API priority leve I at which control is to be transferred to c:

o = mainstream
4 = leve I of • TIMER
5 = API software level 5
6 = API software level 6
7 = API software level 7

E-5

APPENDIX F
SOURCE LISTING OF THE ABSOLUTE BINARY LOADER

LDSTR T=17720
BINLDR CAF

CLOF
IOF
CLA
ISA
MPLU
EEM
RSB

LDNXBK=17730
DZM LDCKSM
JMS LDREAD
DAC LDSTAD
SPA
JMP LDXFR
TAD LDCKSM
DAC LDCKSM
JMS LDREAD
DAC LDWDCT
TAD LDCKSM
DAC LDCKSM
JMS LDREAD
TAD LDCKSM
DAC LDCKSM

LDNXWD=17746
JMS LDREAD
DAC* LDSTAD
ISZ LDSTAD
TAD LDCKSM
DAC LDCKSM
ISZ LDWDCT
JMP LDNXWD
SZA
HLT
JMP LDNXBK

LDXFR=17760
DAC LDWDCT
ISZ LDWDCT
JMP LDWAIT
HLT

LDREAD=17764
o
RSF
JMP LDREAD+1
RRB
RSB
JMP* LDREAD

LADWAIT=17772
RSF
JMP LDWAIT
JMP* LDSTAD

ENDLDR JMP LDSTRT
LDC KSM=17775
LDSTAD=17776
LDWDCT=17777

/
/***ABSOLUTE BI NARY LOADER ***
/

/C LEAR FLA GS
/CLOCK OFF
/1 NTERRUPT OFF

/TURN OFF API
/TURN OFF MEMORY PROTECT
/SET EXTENDED MEMORY LOAD
/START READER UP

/CHECKSUMMING LOCATION

/GET STARTING ADDRESS
/BLOCK HEADING OR
/START BLOCK
/ACCUMULATE CHECKSUM

/WORD COUNT (2 1S COMPLEMENn

/PROGRAM CHECKSUM (2 1 S COMPLEMENT)
/ADDED TO ACCUMULATED CHECKSUM

/LOAD DATA INTO APPROPRIATE
/MEMORY LOCATIONS

/ADD IN TO CHECKSUM
/FINISHED LOADING
/NO
/LDCKSM SHOULD CONTAI N 0
/CHECKSUM ERROR HALT
/PRESS CONTINUE TO ~GNORE

/WAIT FOR READER
/NO ADDRESS ON .END STATEMENT
/MANUALLY START USER PROGRAM

/.-1

/EXECUTE START ADDRESS
/HARDWARE READIN WORD

F-l

APPENDIX G
ABBREVIATED MACRO-9 FOR 8K SYSTEMS

A shorter version of MACRO-9, called MACROA (for MACRO-9 ~~bbreviated), is available

on the system tape, especially for user's with 8K machines who are using DECtape for input and output.

The following features have been removed in this shorter version:

.ABS

. FULL

Conditional pseudo-ops

.REPT

. DEFIN (User-defined macros are not allowed, but system macro calls are legal.)

This reduces the assembler by about 850 locations, which is about the same number required

by the DECtape I/O service routine. The user's Symbol Table cannot exceed 275 symbols.

If the user of MACROA uses DECtape input and paper tape output, the Symbol Table may

contain up to 550 symbols.

Calling MACROA

In response to

MONITOR

$

the abbreviated assembler is called by typing, after $,

MACROA

Both versions of MACRO-9 are available on the system tape. If macro definition and/or conditional

capabilities are desired, MACRO with DECtape input and paper tape output can be used, allowing up

to 275 user defined symbols.

G-l

APPENDIX H
SYMBOL TABLE SIZES

The following symbol table sizes are for 8K systems with the full cQ,mplement of skip lOT's

in the skip chain.

MACRO

NOTE

Handlers listed are for DAT slots -11, -12, -13, and -10,
respectively.

a. PRB, TTA, PPC, TTA - 317 symbols (decimal)

b. DTC, TTA, PPC, TTA - 189 symbols (decimal)

for .ABS or .FULL output PPB must be used - delete 60 symbols (decimal) from above

counts.

MACROA

a. PRB, TTA, PPC, TTA - 610 symbols (decimal)

b. DTC, TTA, PPC, TTA - 482 symbols (decimal)

c. DTB, TTA, DTB, TTA - 261 symbols (decimal)

H-l

APPENDIX I

SUMMARY OF OPERATING PROCEDURES WITH KEYBOARD MONITOR

These procedures are described in the Monitor Manual and are summarized here for the

convenience of PDP-9 programmers.

To assem bl e a program:

a. Mount the system tape on DECtape 0 (Set selector switch to 8)

b. Load paper tape bootstrap (HRM), which loads the Monitor, which types out

MONITOR
$

c. The user may check the Device Assignment Table by typing:

REQUEST MACRO

after which Monitor types out f'he table showing all current device assignments for

MACRO-9 I s logical assignments:
DAT Slot

1. . Secondary input -10

2. Input source program -11

3. Listing -12

4. Output binary program -13

5. Command string -2

6. Error messages -3

At this point, the user may assign devices, if none are assigned to any of the 6 slots used by

MACRO-9, or he may change assignments, using the ASSIGN command. If the input source

program is on DECtape .1, and he wants to use DECtape handler A, he types,

ASSIGN DTAI -11

To verify this change, he may type REQUEST MACRO again, and Monitor will type out the

specified MACRO-9 DAT, showing that DECtape 1 is now assigned to DAT slot -11 •

d. To obtain typed out operating instructions for MACRO-9, the user may type

INSTRUCT MACRO

e. To load MACRO-9 after Monitor types $, the user types

MACRO

After MACRO-9 is loaded and self-initialized, MACRO-9 types MACRO and the user types;
>

P, B, L, S +program name (or ALT MODE)

1-1

where B requests that MACRO-9 output a binary object program, L requests a listing, and S

requests that the user's symbol table be printed out. These three letters are all optional, and

may be written in any order, but they must be separated by commas. If none of these letters

are written, error messages are output on the Teletype.

Whether or not any letters are written, the reverse arrow (+-) must follow. This is fol-·

lowed by the program name, identifying the source program to be searched for by the loader

on the input fi Ie, and this name is written at the top of the first listing page.

When the input medium is fj Ie-oriented, MACRO-9 expects the fi Ie name extension SRC

(source). The Editor in the PDP-9 Advanced Software System provides SRC to a fi Ie name

automatically if the output medium is file-oriented.

If the SaJ rce is originally on paper tape (or cards), the file name extension SRC must

be included in the command string to PIP, when transferring to a fi Ie-oriented medium.

If another program is to be assembled following this one, the command string is terminai'ed

by a carriage return. At the conclusion of PASS2, control returns to MACRO-9, whi cy tyPt~S

MACRO,
>
and the user may then type another command string for the next program to be assembled.

If the user wishes to return control to the Keyboard Monitor after the program is assemblled,

he terminates the command string by typing ALT MODE.

1-2

READER'S COMMENTS

MACRO-9 PROGRAMMERS
REFERENCE MANUAL

DEC-9A-AMZA-D

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its publications.
To do this effectively, we need user feedback: your critical evaluation of this manual and the DEC products described.

Please comment on this publication. For example, in your judgment, is it complete, accurate, well-organized, well-

written, usable, etc?

Did you find this manual easy to use? _____ . ___________________________ _

~at single feature did you like best in th~ manual?~ __________________________ ~

Did you find errors in this manuan Please describe.~ _______________ ~ __________ ~~

Please describe your position. ____ ~ ________________________________ _

Name _____________________ Organizationl--_________________ _

StreetL _____________________ State. _______________ Zip~ ___ _

... Fold Here

.. Do Not Tear - Fold Here and Staple

FIRST CL.::-J
PERMIT NO. 33

MAYNARD, ::;.

BUSINESS REPLY MAIL ------NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES ------.. _ .. _--------_ .. __ .. _----------_ -
Postage will be paid by:

Digital Equipment Corporation
Software Quality Control
Building 12
146 Main Street
Maynard, Mass. 01754

-----.. _---........ _.------.. _----------------------...... _ ... 1-_____ 1-

	001
	002
	003
	004
	005
	006
	007
	008
	1-1
	1-2
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	5-1
	5-2
	5-3
	5-4
	A-1
	A-2
	B-1
	B-2
	C-1
	C-2
	D-1
	D-2
	E-1
	E-2
	E-3
	E-4
	E-5
	E-6
	F-1
	F-2
	G-1
	G-2
	H-1
	H-2
	I-1
	I-2
	replyA
	replyB

