
POP-all 

FOCAL 
Programming Manual 



FOCAL 
Programming Manual 

for 
PDP-B 

PDP-B/S 
PDP-B/I 
LAB-B 
LINC-B 

o EC-OB-AJA B-D 

For additional copies Order No. DEC-08-AJAB-D from Program Library I 

Digital Equipment Corporation, Maynard, Mass. Price $1.00 

DIGITAL EQUIPMENT CORPORATION. MAYNARD, MASSACHUSETTS 

Printed in U.S.A. 



Copyright 1968 by Digital Equipment Corporation 

ii 



CONTENTS 

CHAPTER 1 
AN INTRODUCTION TO FOCAL 

1.1 Equipment Requirements 1-1 

1.2 Loading Procedure 1-1 

1.3 Restart Procedure 1-3 

1.4 Saving Focal Programs 1-3 

CHAPTER 2 
FOCAL LANGUAGE 

2. 1 Simple Commands 2-1 

2.2 Output Format 2-2 

2.3 Floating-Point Format 2-3 

2.4 Arithmetic Operations 2-4 

2.5 More About Symbols 2-5 

2.6 Subscripted Variables 2-6 

2.7 The ERASE Command 2-6 

2.8 Handl ing Text Output 2-6 

2.9 Indirect Commands 2-7 

2.10 Error Detection 2-9 

2. 11 Corrections 2-9 

CHAPTER 3 
FOCAL COMMANDS 

3. 1 TYPE 3-1 

3.2 ASK 3-2 

3.3 WRITE 3!"'2 

3.4 SET 3-3 

3.5 ERASE 3-3 

3.6 GO 3-4 

3.7 GOTO 3-4 

3.8 DO 3-4 

3.9 IF 3-5 

3. 10 RETURN 3-6 

3.11 QUIT 3-6 . 
3.12 COMMENT 3-6 

iii 



3.13 

3.14 

3.14.1 

3.15 

3.16 

4.1 

4.2 

4.3 

4.4 

4.5 

4.6 

4.7 

1-1 

FOR 

MODIFY 

Caution 

Using the Trace Feature 

Functions 

CONTENTS (cont.) 

CHAPTER 4 
EXAMPLES OF FOCAL PROGRAMS 

Table Generation Using Library Functions 

Formula Evaluation for Circ les and Spheres 

Temperature Conversion 

One-Line Function Plotting 

Extensions to Plotting 

Demonstration Dice Game 

Simultaneous Equations and Matrices 

APPENDIX A 
FOCAL COMMAND SUMMARY 

APPENDIX B 
ERROR DIAGNOSTICS 

APPENDIX C 
ESTIMATING THE LENGTH OF USER'S PROGRAM 

APPENDIX D 
CALCULATING TRIGONOMETRIC FUNCTIONS IN FOCAL 

FOCAL Loading Procedure 

APPENDIX E 
OPERATI NG HI NTS 

APPENDIX F 
LOADERS 

ILLUSTRA lION 

iv 

3-6 

3-8 

3-9 

3-9 

3-10 

4-1 

4-2 

4-4 

4-5 

4-6 

4-7 

4-9 

A-1 

B-1 

C-1 

D-1 

E-1 

F-1 

1-2 



PREFATORY NOTE 

The purpose of this manual is to introduce FOCAL to 

the scientific and engineering, and educational fra

ternities. Later, Digital will publish two specialized 

FOCAL manuals; one for professional scientists and 

engineers, the other for students. 



CHAPTER 1 

AN INTRODUCTION TO FOCAL* 

FOCAL (for !:.ormulating 9n-Line ~alculations in ~Igebraic !:.anguage) is an on-line, 

conversational, service program for the PDP-8 family of computers, designed to help scientists, 

engineers, and students solve numerical problems. The language consists of short imperative Engl ish 

statements which are relatively easy to learn. Mathematical expressions are typed, for the most part, 

in standard notation. The best way to learn the FOCAL language is to sit at the Teletype and try the 

commands, starting with the examples given in this manual. 

FOCAL puts the full calculating power and speed of the computer at your fingertips. FOCAL 

is used for simulating mathematical models, for curve plotting, for handl ing sets of simultaneous 

equations in n-dimensional arrays, and many other kinds of problems. Some of the kinds of problems 

that have been solved by FOCAL are described in Chapter 4, Sample Programs. 

1 .1 EQUI PMENT REQUI REMENTS 

FOCAL operates on a 4K PDP-8/1, PDP-:-8, PDP-8/S, LAB-8, or LlNC-8 computer with 

ASR 33 Teletype. Optional: Analog-to-Digital Converter (AF01A); Oscilloscope Display (VC8/1 or 340) • 

1.2 LOADING PROCEDURE 

The Binary Loader is used to load FOCAL. Check to see if the Binary Loader is in core. If 

location 7777 contains 5301, the Binary Loader is in core; if not, refer to Appendix F. 

The procedure for loading FOCAL is detailed below. 

a. Place the FOCAL binary tape in the tape reader. 

b. Put 7777 (the starting address of the Binary Loader) in the SWI TCH REGI STER. 

c. Press the LOAD ADDress key. 

To use the high speed paper tape reader, set bit 0 of the SWITCH REGISTER to O. 

d. Press the START key. 

e. The tape will stop twice during loading because the program is loaded in three sections 
for additional checksum protection. After each halt, the contents of the accumulator (AC) should be 0; 
if the AC -I 0, reload the previous section of tape. If the AC is 0, press the CONTinue key and the 
tape will continue loading. 

f. Place 200 (the starting address of FOCAL) in the SWITCH REGISTER when the tape is 
completely loaded. 

* FOCAL is a trademark of Digital Equipment Corporation. 

1-1 



g. Press the LOAD ADDress key. 

h. Press the START key. The initial dialogue will begin. This is a question and answer 
sequence, with FOCAL asking questions and the user providing the answers. The first question offers 
an option. If you want a full explanation, press the RETURN key on your Teletype. The present 
version of FOCAL operates in 4K, and so states; future versions will include an option to util ize an 
additional 4K of memory. 

i. FOCAL is correctly loaded and ready for user input when it types an asterisk. If 
FOCAL is incorrectly loaded, reload the FOCAL tape starting with step a above. 

The FOCAL loading procedure is illustrated in the flowchart (Figure 1-1). 

FOCAL IS READY 
FOR USER INPUT 

Figure 1-1 

CHECKSUM ERROR 

FOCAL Loading Procedure 

1-2 



1 .3 RESTART PROCEDURE 

Two methods for restarting the system are outl ined below. 

a. The CTRL/C keys at any time. 1 FOCAL will type ?01 .00 indicating a keyboard 
restart, and an asterisk on next line indicating it is ready for user input. 

b. From the computer console: 

(1) Depress the STOP switch. 

(2) Put 0200 in the SWITCH REGISTER 

(3) Depress the LOAD ADDress switch 

(4) Depress the START switch 

(5) FOCAL will then type *?OO.OO indicating a manual restart, and an asterisk on the 
next I ine indicating it is ready for user input. 

1.4 SAVING FOCAL PROGRAMS 

To save a FOCAL program on-line, the user should 

a. Respond to * by typing WRITE ALL (do not depress the RETURN key). 

b • Turn on tape punch 

c. Type several @ signs to get leader tape (press the Shift, REPEAT, and P keys in that 
order; release in the reverse order). 

d. Depress RETURN key 

When the user1s program has been typed and punched out 

e. Type several more @ signs to get trailer tape. 

f. Turn off tape punch 

The user may now continue with another FOCAL program. The previous FOCAL program is 

still in the computer and waiting to operate on user input. 

1 CTRL/C indicates holding down the Control key whi Ie depressing the C key. This convention is 

used throughout this manual. 

1-3 



CHAPTER 2 

FOCAL LANGUAGE 

After the initial dialogue has been concluded, FOCAL types 

* 
indicating that the program is ready to accept commands from the user. Each time the user completes 

typing a Teletype line, which is terminated by depressing the RETURN key, or after FOCAL has performed 

a command, an asterisk is typed to tell the user that FOCAL is ready for another command. 

2.1 SIMPLE COMMANDS 

One of the most useful commands in the FOCAL language is TYPE. To FOCAL this means 

IItype out the result of the following expression. II If you type (following the asterisk which FOCAL 

typed), 

*TYPE 6.4318+8.1346 

and then press the RETURN key, FOCAL types 

Another usefu I command is SET, which tells FOCAL IIstore this symbol and its numerical 

value. When I use this symbol in an expression, insert the numerical value. II Thus, the user may type, 

*SET A=3.14159; SET B=428.77; SET C=2.71828 

* 

The user may now use these symbols to identify the values defined in the SET command. Symbols may 

consist of one or two alphanumeric characters. The first character must be a letter, but must not be 

the letter F. 

*TYPE A+B+C 
=+ 434.6300 * 

Both the TYPE and SET commands will be explained more fully in the next chapter. 

FOCAL is always checking user input for invalid commands, illegal formats, and many 

other kinds of errors, and types an error message indicating the type of error detected. In the example, 

2-1 



*HELP 
?02.29 
*TYPE 2++4 
?04. ; 9 

* 
HELP is not a val id command and two plus signs (double operators) are illegal. The complete I ist of 

error messages and their meanings is given in Appendix B. 

2.2 OUTPUT FORMAT 

The FOCAL program is originally set to produce results showing up to eight digits, four to 

the left of the decimal point (the integer part) and four to the right of the decimal point (the fractional 

part). Leading zeros are suppressed, and spaces are shown instead. Trailing zeros are included in the 

output, as shown in the examples below. 

*SET A=77.77; SET 8=1111-1111; SET C= 39 
*TYPE A"8,,C 
=+ 77.7700=+1111.1100=+ 39.0000* 

The results are calculated to six signific(:mt digits. Even though a result may show more than 

six digits, only six are significant, as shown above in SET B = 1111.1111, which FOCAL typed as 

=+ 1111.1100. 

The output format may be changed if the user types 

TYPE %x. yz 

where x is the total number of digits to be output and yz is the number of digits to the right of the 

decimal point. x and yz are positive integers, and x cannot exceed 19 digits. When first loaded, 

FOCAL is set to produce output having eight digits,. with four of these to the right of the decimal point 

(%8.04). For example, if the desired output format is mm .nn 

the user may type 

and FOCAL will type 

=+14.59* 

2-2 



Notice that the format operator (%) must be followed by a comma. 

below. 

In the following examples, the number 67823 is typed out in several different formats. 

*SET A=67823 
* T YP E % 6 .0 1, A 
=+67823.0* 

*TYPE %5, A 
=+67823* 

*TYPE %8.03, A 
=+67823.000* 

If the specified output format is too small to contain the number, FOCAL types XiS, as shown 

*TYPE %3, 67823 
=+XXX* 

If the specified format is larger than the number, FOCAL inserts leading spaces: 

*TYPE %7, 67823 
=+ 67823* 

Leading blanks and zeros in integers are always ignored by FOCAL. 

*TYPE %8.04, 0016, 0.016, ., 007 
=+ 16.0000=+ 0.0160=+ 0.0000=+ 

2.3 FLOATING-POINT FORMAT 

To handle much larger and much smaller numbers, the user may request output in exponential 

form, which is called floating-point or E format. This notation is frequently used in scientific compu

tations, and is the format in which FOCAL performs its internal computations. The user requests floating

point format by including a % followed by a comma, in a TYPE command. From that point on, until 

the user again changes the output format, results will by typed out in floating-point format. 

*TYPE %, 11 
= +0 • 1 1 0000 E +02 * 

This is interpreted as .11 times 102 , or simply 11. Exponents can be used to ±619. The largest number 

thct FOCA l can handle is +0.999999 times 10619, and the sma II est is -0.999999 times 10619 • 

2-3 



To demonstrate FOCAL's power to compute large numbers, you can find the value of 300 

factorial by typing the following commands. (The FOR statement, which will be explained later, is 

used to set I equal to each integer from 1 to 300.) 

*SET A=l 
*FOR 1=1,300.; SET A =A* I (wait for FOCAL to type *) 
*TYPE %, A 
= +0 • 30 60 5 1 E + 6 1 5 * 

2.4 ARITHMETIC OPERATIONS 

FOCAL performs the usual arithmetic operations of addition, subtraction, multipl ication, 

division, and exponentiation. These are written by using the following symbols 

Symbol Math Notation FOCAL 

1 Exponentiation 33 
313 (Power must be a 

positive integer) 
* Multipl ication 3·3 3*3 

/ Division 3+3 3/3 

+ Addition 3+3 3+3 

- Subtraction 3-3 3-3 

These operations may be combined into expressions. When FOCAL evaluates an 

expression, which may include several arithmetic operations, the order of precedence is the same as 

that in the list above. That is, exponentiation is done first, followed by multiplication and division, 

followed by addition and subtraction. Expressions with the same precedence are evaluated from left 

to right. 

A+B*C+D is A+(B*C)+D not (A+B)*(C+D) nor (A+B)*C+D 

A*B+C*D is (A*B)+(C*D) not A*(B+C)*D nor (A*B+C)*D 

X/2*Y is~ 
2Y 

Expressions are combinations of arithmetic operations or functions which may' be reduced 

by FOCAL to a single number. Expressions may be enclosed in properly pa ired parentheses, square 

brackets, and angle brackets (use the enclosures of your choice; FOCAL is impartial and treats them 

all merely as enclosures). 

2-4 



For example, 

*SET A1=(A+B)*<C+D>*[E+GJ 

* 

The [ and] enclosures are typed using Shift/K and Shift/M, respectively. 

Expressions may be nested. FOCAL computes the value of nested expressions by doing the 

innermost first and then working outward. 

*TYPE %, [2+(3-<1*1>+5)+2] 
=+0.110000E+02* 

Note that this number is expressed in floating-point format. 

2.5 MORE ABOUT SYMBOLS 

The value of a symbol ic name or identifier can be- changed by retyping the identifier and 

giving it a new value. 

*SET A1=3f2; SET A1=A1+1 
*TYPE %2, Al 
=+10* 

The user may request FOCAL to type out all of the user defined identifiers, in the order of 

definition, by typing a dollar sign ($). 

*TYPE %6.5, $ 

The user's symbol table is typed out I ike this 

A@(00)=+XXXXXX 
B@ (00 ) =+ 1111 .11 
C@ (00) =+39 .0000 
I@ (00) =+301 .000 
Al (00)=+10.0000 
D@(00)=+0.00000 
E@ (00) =+0.00000 
G@ (00) =+0.00000 

* 

2-5 



I f an identifier consists of only one letter, an @ is inserted as a second character in the symbol table 

printout, as shown in the example above. An identifier may be longer than two characters, but only 

the first two will be recognized by FOCAL and thus stored in the symbol table. 

2.6 SUBSCRIPTED VARIABLES 

FOCAL always allows identifiers, or variable symbols, to be further identified by subscripts 

(range ±2047) which are enclosed in parentheses immediate ly following the identifier. A subscript may 

also be an expression: 

*SET Al CI+3*J)=2.71; SET XICS+3*J)=2.79 

* 
The ability of FOCAL to compute subscripts is especially useful in generating arrays for 

complex programming problems. A convenient way to generate I inear subscripts is shown in Section 4.7 • 

2.7 THE ERASE COMMAND 

It is useful at times to delete all of the symbol ic names which you have defined in the symbol 

table. This is done by typing a single command: ERASE. Since FOCAL does not clear the user1s 

symbol table area in core memory when it is first loaded, it is good programming practice to type an 

ERASE command before defining any symbols. 

2.8 HANDLING TEXT OUTPUT 

Text strings are enclosed in quotation marks (" ••• ") and may include most Teletype printing 

characters and spaces. The carriage return, I ine feed, and leader-trailer characters are not allowed 

in text strings. I n order to have FOCAL type an automatic carriage return-I ine feed at the end of a 

text string, the user inserts an exclamation mark <! ) • 

*TYPE "ALPHA"!"BETA"!"OELTA"! 
ALPHA 
BETA 
DELTA 
* 

To get a carriage return without a line feed at the end of a text typeout, the user inserts a 

number sign <U) as shown below. 

2-6 



1

----------==---1 1------- ~ ~::~~S 
r-. ----------------- 3 SPACES 

r-------------- 5 SPACES 

r----------- 2 SPACES 

r------ 8 SPACES 

*TYPE !" x Y Z"#" + ="#" I"! 

X+Y ;t Z 

* 

The number sign operator is useful in formatting output and in plotting another variable along the same 

coordinate (see Section 4.5). 

2.9 INDIRECT COMMANDS 

Up to this point we have discussed commands which are executed immediately by FOCAL. 

Next, we shall see how indirect commands are written. 

If a Teletype line is prefixed by a line number, that line is not executed immediately, instead, 

it is stored by FOCAL for later execution, usually as part of a sequence of commands. Line numbers 

must be in the range 1 .01 to 15.990 The numbers 1 .00, 2. OO,etc., are illegal I ine numbers; they are 

used to indicate the entire group. The number to the left of the point is called the group number; the 

number to the right is called the step number. For example, 

*ERASE 
*1.1 SET A=l 
*1.3 SET 8=2 
* 1 • 5 T YP E % 1, A + 8 

* 
Indirect commands are executed by typing GO, GOTO, or DO commands, which may be 

direct or indirect. 

The GOTO command causes FOCAL to start the program by executing the command at a 

specified I ine number. If the user types 

*GOTO 1.3 
=+2* 

FOCAL started executing the program at the second command in the example above. 

The GO command causes FOCAL to go to the lowest numbered line to begin executing the 

program. If the user types a direct GO command after the indirect commands above, FOCAL will start 

executing at line 1 • 1 • 

2-7 



The DO command is used to transfer control to a specified step, or group of steps, and then 

return automatically to the command following the DO command. 

*ERASE ALL 
*1.1 SET A=1; SET 8=2 
*1.2 TYPE" STARTING" 
* 1.3 DO 3.2 
*2.1 TYPE" FINISHED" 
*3.1 SET A=3; SET 8=4 
*3.2 TYPE %1, A+8 
*GO 

STARTING =+3 FINISHED =+7* 

When the DO command at line 1.3 was reached, the command TYPE %1, A+B was performed and then 

the program returned to line 2. 1 • 

The DO command can.also cause FOCAL to jump to a group of commands and then return 

automatically to the normal sequence, as shown in the example below. 

*ERASE ALL 
* 1 • 1 T Yp E " A " 
* 1 • 2 T YP E " 8 " 
* 1 ~3 TYPE ftC " 
*1 .4 DO 5.0 
* 1 .5 TYPE " END"; 
*5.1 TYPE "0 " 
*5.2 TYPE "E " 
*5.3 TYPE "F " 
*6.1 TYPE " 
*GO 
A 8 C 0 E F END. 

GOTO 6. 1 

* 

When the DO command at line 1.4was reached, FOCAL executed lines 5.1,5.2, and 5.3 and then 

returned to line 1 .5. 

An indirect command can be inserted in a program by using the proper sequential I ine number. 

For example, 

*ERASE ALL 
*4.8 SET A=l; SET 8=2 
*6.3 TYPE %5.4, 8/C+A 
*4.9 SET C=1.31*.29 
*GO 
=+6.2645* 

where line 4.9 will be executed before line 6.3 and after line 4.8. FOCAL arranges and executes 

indirect commands in numerical sequence by I ine number, starting with the smallest I ine number and 

going to the largest. 

2-8 



2.10 ERROR DETECTION 

FOCAL checks for a variety of errors, and if an error is detected, types a question mark 

followed by an error code. A complete list of these error codes is shown in Appendix B. The group 

number of an error message indicates the class or general type: 

?OO Manual restart from console 

?01 Interrupt from keyboard via CTRL/C 

?02 Excessive number or illegal mathematical operation. 

?03 Miscellaneous 

? 04 Format errors 

?05 Function or command not loaded 

The WRITE command without an argument can be used to cause FOCAL to print out the 

entire indirect program so the user can visually check it for errors. 

The trace feature is invaluable in program debugging. Any part of an indirect statement or 

program may be enclosed in question marks, and when that part of the program is executed that portion 

surrounded by question marks will be printed out. If only one question mark is inserted, the trace 

feature becomes operative, and the program is printed out from that point until completion. 

The trace feature may also be used to follow program control and to create special formats 

(see Section 3.15). 

2.11 CORRECTIONS 

If the user types the wrong character, or several wrong characters, he can use the RUB OUT 

key, which echoes a backslash (\) for each RUBOUT typed, to erase one character to the left each 

time the RUBOUT key is depressed. For example, 

*ERASE ALL 
* 1 • 1 P \ T YP E X - Y 
*1.2 SET $=13\\\\X=13 
*WRITE 
C-F'OCAL.:I 1968 

01 • 10 TYPE X - y 
01 .20 SET X= 13 

'" 
The left arrow (+-) erases everything which appears to its left on the same line. 

2-9 



*1.3 TYPE A~ B~ C~ 

*WRITE 
C-FOCAL.~ 1968 

10 1 • 1 10 T YP E X - Y 
101.210 SET X=13 

* 

A I ine can be overwritten by repeating the same I ine number and typing the new command. 

is replaced by typing 

*14.99 SET C9(N+3)=15 

* 

*14.99 TYPE C9/Z5-2 
*WRITE 14.99 
14.99 TYPE C9/Z5-2 

* 

A line or group of lines may be deleted by using the ERASE command with an argument. For 

example, to delete line 2.21-, the user types 

*ERASE 2.21 

* 
To delete all of the I ines in group 2, the user types 

*ERASE 2.10 

* 
Used alone, without an argument, the ERASE command causes FOCAL to erase the user's 

entire symbol table. Since FOCAL does not zero memory when loaded, it is good practice to ERASE 

before defining symbols. The command' ERASE ALL erases all user input. 

The MODIFY command is another valuable feature. It may be used to change any number of 

characters in a particular line, as explained in Section 3.14. 

2-10 



3. 1 TYPE 

CHAPTER 3 

FOCAL COMMANDS 

The TYPE command is used to request that FOCAL compute and type out a text string, the 

result of an expression, or the value of an identifier. For example 

*4.14 TYPE 8.1+3.2-(29.3*5)/2.517 
*4.15 TYPE (2.2+3.5)*(7.2/3)/59.113 

* 

Several expressions may be computed in a single TYPE command, with commas separating 

each expression. 

*ERASE 
* 9 • 1 9 T YP E % 4 • 0 1, A 1 * 2, E + 2 1 5, 2. 5 1 * 8 1 • 1 
*00 9.19 
=+ 0.0=+ 32.0=+ 204* 

The output format may be inc luded in the TYPE statement as shown in the example above and as explained 

in Section 2.6. 

The user may request a typeout of all identifiers which he has defined by typing TYPE $ and 

a carriage return. This causes FOCAL to type out the identifiers with their values, in the order in which 

they were defined. The $ may follow other statements in a TYPE command, but must be the last operation 

on the line. 

*ERASE 
*SET L=33; SET B=87; SET Y=55; SET C9=91 
*TYPE $ 

L@ (00 ) =+ 
B@ (00) =+ 
Y@ (00 ) =+ 
C9 (00) =+ 

* 

33.0 
87.0 
55.0 
91 .0 

A text string enc losed- in quotation marks may be inc luded in a TYPE command. A carriage 

return may replace the terminating quotation mark, as shown below: 

*1.2 TYPE "X SQUARED = 

* 

A text string or any FOCAL command or group of commands may not exceed the capacity of 

a Teletype line, which is 72 characters on the ASR33 Teletype. A line may not be continued on the 

following line. To print out a longer text, each line must start with a TYPE command. 

3-1 



FOCAL does not automatically perform a carriage return after executing a TYPE command. 

The user may insert a carriage return-line feed by typing an exc lamation mark (!). To insert a carriage 

return without a line feed, the user types a number sign (#). Spaces may be inserted by enc losing them 

in quotation marks. These operations are useful in formatting output. 

3.2 ASK 

The ASK command is normally used in indirect commands to allow the user to input data at 

spec ific points during the execution of h is program. The ASK command is written in the general form, 

*11.99 ASK X~ Y~ Z~ 

* 
When step 11 .99 is encountered by FOCAL, it types a colon (i). The user then types a value or ex

pression for the first identifier, followed by a comma or a space. FOCAL then types another colon and 

the user types a value for the second identifier. This continues unti I a II the identifiers or variables in 

the ASK statement have been given values, 

* 1 .02 TYPE "X SQUARED 
*11.99 ASK X~ Y~ Z 
*DO 11.99 
:5~ :4~ :3~* 

where the user typed 5,4, and 3 as the values, respectively, for X, Y, and Z. 

A text string may be inc luded in an ASK statement by enclosing the string in quotation marks. 

*1.10 ASK "HOW MANY APPLES DO YOU HAVE?" APPLES 
*00 1. 10 
HOW MANY APPLES DO YOU HAVE? :25 (user typed 25) 

* 

The identifier AP (FOCAL recognizes the first two characters only) now has the value 25. 

3.3 WRITE 

A WRITE command without an argument causes FOCAL to write out all indirect statements 

wh ich the user has typed. Indirect statements are those preceded by a line number. 

A group of line numbers, or a spec ific line, may be typed out with the WRITE command using 

arguments, as shown below. 

*7.97 WRITE 2.0 
*7.98 WRITE 2.1 
*7.99 WRITE 

* 

3-2 

(FOCAL types all group 2 lines) 
(FOCAL types line 2.1) 
(FOCAL types all numbered lines) 



3.4 SET 

The SET command is used to define identifiers. When FOCAL executes a SET command, the 

identifier and its value is stored in the user's symbol table, and that value wi" be substituted for the 

identifier when the identifier is encountered in the program. 

*ERASE ALL 
*3.4 SET A=2.55; SET 8=8.05 
*3.5 TYPE %, A+8 
*GO 
=+0 .106000 E+02 * 

An identifier may be set equal to previously defined identifiers, which may be used in arith

metic expressions. 

3.5 ERASE 

*3.7 SET G=CA+8)*2.2t5 

* 

An ERASE command without an argument is used to delete all identifiers, with their values, 

from the symbol table. 

If the ERASE command is followed by a group number or a specific line number, a group of 

I ines or a specific line is deleted from the program. 

*ERASE 2.0 
*ERASE 7.11 

* 

(deletes all group 2 lines) 
(deletes line 7. 11) 

The ERASE All command erases all the user's input. 

In the following example, an ERASE command is used to delete line 1.50. 

*ERASE ALL 
*1 .20 SET 8=2 
*1.30 SET C=4 
*1 .40 TYPE 8+C 
*1 .50 TYPE 8-C 
*ERASE 1.50 
*WR ITE ALL 
C-F'OCAL., 1968 

01.20 SET 8=2 
01 .30 SET C=4 
o 1 • 40 T YP E 8 +C 

* 

3-3 



3.6 GO 

The GO command requests that FOCAL execute the program which starts with the lowest 

numbered line. The remainder of the program wi II be executed in I ine number sequence. Line numbers 

must be in the range 1.01 to 15.99. 

3.7 GOTO 

The GOTO command causes FOCAL to transfer control to a specific line in the indirect pro

gram. It must be followed by a specific line number. After executing the command at the specified 

line, FOCAL continues to the next higher line number, executing the program sequentially. 

*ERASE ALL 
* 1 • 1 TYPE "A" 
* 1 .2 TYPE "8" 
*1 .3 TYPE "C" 
*1 .4 TYPE "0" 
*GOTO 1 .2 
BCD* 

3.8 DO 

The DO command transfers control momentarily to a single line, a group of lines, or the entire 

indirect program. If transfer is made to a single line, the statements on that line are executed, and con

trol is transferred back to the statement following the DO command. Thus, the DO command makes a 

subroutine of the commands transferred to, as shown in this example, 

*ERASE ALL 
* 1 • 1 TYPE " X" 
* 1 .2 DO 2.3; TYPE "yu 

*1 .3 TYPE " ZIt 
*2.3 TYPE "A" 

If a DO command transfers control to a group of lines, FOCAL executes the group sequentially 

and returns control to the statement following the DO command. 

If Do is written without an argument, FOCAL execute the entire indirect program. 

DO commands cause specified portions of the indirect program to be executed as closed sub

routines. These subroutines may also be terminated by a RETURN command. 

If a GOTO or IF command is executed within a DO subroutine, two actions are possible: 

3-4 



1. If a GOTO or IF command transfers to a line inside the DO group, the remaining commands 
in that group wi II be executed as in any subroutine before return ing to the command following the DO. 

2. If transfer is to a line outside the DO group, that line is executed and control is returned 
to the command following the DO; un less that line contains another GOTO or IF. 

*ERASE ALL 
* 1 • 1 T YP E " A"; SET X = - 1; DO 3. 1; T YP E " 0"; 0 0 2 
*1.2 DO 2 

* 
*2 • 1 T YP E " G" 
*2.2 IF (X)2.5,2.6,2.7 
*2.5 TYPE "H" 
*2 .6 TYPE "I" 
* 2 • 7 T YP E . "j" 

*2.8 TYPE "1-\" 
*2.9 TYPE %2.01, X; TYPE" "; SET X=X+l 

* 
*3 • 1 

* *5.1 
*5.2 
*5.3 
*GO 

TYPE 

TYPE 
TYPE 
TYPE 

"8"; GOTO 5. 1 ; TYPE "F" 

"C" 
"E" 
" L" 

(FOCAL types the answer) 

ABCDGEIJK=-1.0 GIJK=+0.0 GJK=+1.0 BCEL* 

3.9 IF 

In order to transfer control after a comparison, FOCAL contains a conditional IF statement. 

The normal form of the IF statement consists of the word IF, a space, a parenthesized expression or 

variable, and three line numbers in order, separated by commas. The expression is evaluated, and the 

program transfers control to the first line number if the expression is less than zero, to the second line 

number if the expression has a value of ·zero, or to the third line number if the value of the expression 

is greater than zero. 

The program below transfers control to line number 2.10, 2.30, or 2.50, according to the 

value of the expression in the IF statement. 

*201 TYP E "LESS THt\N ZERO"; QU IT 
*2.3 TYPE "EQUAL TO ZERO"; QUIT 
*2.5 TYPE "GREATER THAN ZERO"; QUIT 
*IF (25-25)2.1,2.3,2.5 
EQ UAL TO ZERO * 

The IF statement may be shortened by terminating it with a semicolon or carriage return after 

the first or second line number. If a semicolon follows the first line number, the expression is tested 

3-5 



and control is transferred to that line if the expression is less than zero. If the expression is not less 

than zero, the program continues with the next statement, 

*2.20 IF (X)1.8; TYPE "Q" 

* 
In the above example, when line 2 .20 is executed, if X is less than zero, control is trans

ferred to line 1.8. If not, Q is typed out. 

*3.19 IF (B)1.8,1.9 
*3.20 TYPE B 

* 
In this example, if B is less than zero, control goes to line 1.8, if B is equal to zero, control 

goes to line 1.9. If B is greater than zero, control goes to the next statement, wh ich in this case is 

line 3.20, and the value of B is typed. 

3. 10 RETURN 

The RETURN command is used to exit from a DO subroutine. When a RETURN command is 

encountered during execution of a DO subroutine, the program exits from its subroutine status and re

turns to the command following the DO command that in itiated the subroutine status. 

3.11 QUIT 

A QUIT command causes the program to halt and return control to the user. FOCAL types 

an asterisk and the user may type another command. 

3.12 COMMENT 

Beginning a command string with the letter C will cause the remainder of that line to be 

ignored so that comments may be inserted into the program. Such lines wi II be skipped over when the 

program is executed, but wi II be typed out by a WRITE command. 

3.13 FOR 

This command is used for convenience in setting up program loops and iterations. The general 

format is 

FOR A=B,C,D;(COMMAND) 

3-6 



The identifier A is initialized to the value B, then the command following the semicolon is executed. 

When the command has been executed, the value of A is incremented by C and compared to the value 

of D. If A is less than or equal to D, the command after the semicolon is executed again. This process 

is repeated until A is greater than D, and FOCAL goes to the next sequential line. 

The identifier A must be a single variable. B, C, and D may be either expressions, variables, 

or numbers. If comma and the value C are omitted, it is assumed that the increment is one. If C, D is 

omitted, it is handled like a SET statement and no iteration is performed. 

Tbe computations involved in the FOR statement are done in floating-point arithmetic, and 

it may be necessary, in some circumstances, to account for this type of arithmetic computation. 

Example 1 below is a simple example of how FOCAL executes a FOR command. Example 2 

shows the FOR command combined with a DO command. 

Example 1: 

Example 2: 

*ERASE ALL 
*1.1 SET A=100 
*1.2 fOR 8=1,1,5; TYPE %5.02, "B IS " 8+A,! 
*GO 
8 IS =+101.00 
8 IS =+102.00 
8 IS =+103.00 
8 IS =+104.00 
8 IS =+105.00 

* 

*1~1 FOR X=I,I,5; DO 2.0 
* 1 .2 GOTO 3. 1 

* * 2 • 1 T YP E ! " " % 3 , "X "X 
*2.2 SET A=X+100.000 
*2.3 TYPE! " " %5.02, "A "A 

* *3.1 QUIT 
*GO 

X =+ 
A =+101.00 
X =+ 2 
A =+102.00 
X =+ 3 
A =+103.00 
X =+ 4 
A =+104.00 
X =+ 5 
A =+ 105.00 * 

3-7 



3.14 MODIFY 

Frequently, only a few characters in a particular line require changes. To facilitate this 

job, and to eliminate the need to replace the entire line, the FOCAL programmer may use the MODIFY 

command. Thus, in order to modify the characters in line 5.41, the user types MODIFY 5.41. This 

command is terminated by a carriage return whereupon the program waits for the user to type that 

character in the position in which he wishes to make changes or additions. This character is not printed. 

After he has typed the search character, the program types out the contents of that line until the search 

character is typed. 

At this point, the user has seven options: 

a. Type in new characters in addition to the ones that have already been typed out. 

b. Type a form-feed (CTRL/L); this will cause the search to proceed to the next occurrence, 
if any, of the search character. 

c. Type a CTRL/BELL; this allows the user to change the search character just as he did 
when first beginning to use the MODIFY command. 

d. Use the RUBOUT key to delete one character to the left each time RUBOUT is depressed. 

e. Type a left arrow (~ ) to de lete the I ine over to the left margin. 

f. Type a carriage return to terminate the line at that point, removing the text to the right. 

g. Type a LINE FEED to save the remainder of the line. 

The ERASE ALL and MODIFY commands are generally used only in immediate mode since they 

return to command mode upon completion. (The reason for this is that internal pointers may be changed 

by these commands.) 

During command input, the left arrow will delete the line numbers as well as the text if the 

left arrow is the right most character on the line. 

Notice the errors in line 7.01 below. 

*7.01 JACK AND BILL W$NT UP THE HALL 
*MODIFY 7.01 

JACK AND B\JILL W$\ENT UP THE HA\ILL 
*1J.:R ITE 7 .01 
07.01 JACK AND JILL WENT UP THE HILL 

* 
To mod i fy lin e 7.01, a B was typed by the user to i nd i cate the c harac ter to be changed. F OCA L stopped 

typing when it encountered the search character, B. The user typed the RUBOUT key to delete the B, 

and then typed the correct letter J. He then typed the CTRL/BE LL keys followed by the $, the next 

character to be changed. The RUBOUT deleted the $ character, and the user typed an E. Again a 

search was made for an A character. This was changed to I. A LINE FEED was typed to save the re

mainder of the line. 

3-8 



3. 14. 1 Caution 

When the MODIFY command is used the values in the user's symbol table are reset to zero. 

Therefore, if the user defines his symbols in direct statements and then uses a MODIFY command, the 

values of his symbols are erased and must be redefined. 

However, if the user defines his symbols by means of indirect statements prior to using a 

MODIFY command, the values will not be erased because these symbols are not entered in the symbol 

table unti I the statements defining them are executed. 

Notice in the example below that the values of A and B were set using direct statements. The 

use of the MODIFY command reset their values to zero and listed them after the defined symbols. 

*ERP.SE ALL 
*SET A=1 
*SET B=2 
*1.1 SET C=3 
*1.2 SET 0=4 
*1.3 TYPE A+B+C+O; TYPE !; TYPE $ 

*MOD I FY 1.1 
SET C=3\5 

*GC 
=+ 9.0fZ 
C@ C0e,) =+ 5.00 
0@C01Z)=+ 4.00 
A@C(0)=+ 0.00 
BG(00)=+ 0.00 

* 

3.15 USING THE TRACE FEATURE 

As stated in Section 2.10, the trace feature is useful in checking an operating program. 

Those parts of the program wh ich the user has enc losed in question marks wi II be printed out as they are 

executed. 

In the following example, parts of 3 I ines are printed. 

*ERASE ALL 
*1.1 SET A=1 
*1.2 SET B=5 
*1.3 SET C=3 
*1.4 TYPE %1, ?A+B-C?,! 
*1.5 TYPE ?B+A/C?,! 
* 1 • 6 T YP E ? B - C I A ? 

*GO 
A+B-C=+3 
B+A/C =+5 
B-C/A.=+2* 

Also GO? Wi \I trace the entire program. 

3-9 



3.16 FUNCTIONS 

The functions are provided to give extended arithmetic capabilities and to give the potential 

for expansion to additional input-output devices. A standard function call always consists of four letters 

beginning with the letter F and followed by a parenthetical expression. 

FSGN(A-B*2) 

There are three basic types of functions; two of which are included in the basic FOCAL pro

gram. The first type contains integer part, sign part, and absolute value functions. 

In the second type, the extended arithmetic functions, are loaded at the option of the user. 

They will consume approximately 800 locations of the users program storage area. These arithmetic 

functions are adapted from the extended arithmetic functions of the PDP-8 three-word floating-point 

package and are fully described with their limitations in the pertinent document. 

The input-output functions are the third type. These inc lude a nonstatistical random number 

generator (FRAN). This function uses the FOCAL program i.tself as a table of random numbers. An ex

panded version could incorporate the random number generator from the DECUS library. Following are 

examples of the functions now avai lable • 

a. The square root function (FSQT) computes the square root of the expression with in 
parentheses. 

?fcTYPE %2, F'SQT(4) 
=+ 2* 

*TYPE F'SQT(9) 
=+ 3* 

~.TYPE F'SQT (144) 
=+12* 

b. The absolute value function (FABS) outputs the absolute or positive value of the number 
in parentheses. 

?fcTYPE F'ABS(-66) 
=+66* 

~TYPE F'ABS (-23) 
=+23* 

*TYPE F'ABS(-99) 
=+99* 

c. The sign part function (FSGN) outputs the sign part (+ or -) of a number and the integer 
part becomes a 1 • 

3-10 



?l=TYPE FSGN(4-6) 
=- 1 * 

*TYPE FSGN(4-4) 
=+ 1* 

?lcTYPE FSGN(-7) 
-- 1 * 

d. The integer part function (FITR) outputs the integer part of a number up to 2046. 

?l=TYPE FITR(5.2) 
=+ 5* 

?l=TYPE FITR(55.66) 
=+55* 

?lcTYPE FITR(77.434) 
=+77* 

?lcTYPE FITR(-4.1 ) 
=- 5* 

e. The random number generator function (FRAN) computes- a nonstatistical pseudo-random 
number between ± 1 • 

*TYPE %" FRAN ( ) 
=-0 .250000E+00 * 

*TYPE FRAN ( ) 
=-0.623535E+00* 

f. The exponential function (FEXP) computes e to the power within parentheses. (e = 2.718281) 

*TYPE FEXP(6.66953E-1) 
=+0 .194829E+01 * 
?lcTYPE FEXP ( .666953) 
=+0 .194829E+01 * 
*TYPE FEXP(l.23456) 
=+0 .343687E+01 * 
* T YP E FE XP ( - 1 • ) 
=+0.36 7879E+00 * 

g. The sine function (FSIN) calculates the sine of an angle in radians. 

*TYPE %" FSIN(3.14159) 
=+0.238419E-05* 

*TYPE FSIN(l.400) 
=+0 .985450 E+00 * 

3-11 



Since FOCAL requires that angles be expressed in radians, to find a function of an angle in degrees, 

the conversion factor, 11/180, must be used. To find the sine of 15 degrees, 

*SET PI=3.14159; TYPE FSIN(15*PI/180) 
=+0.258819E+00* 

*TYPE FSIN(45*3.14159/180) 
=+0.707106E+00* 

h. The cosine function (FCOS) calculates the cosine of an angle in radians. 

*TYPE FCOS(2*3.141592) 
=+0 .100000E+01 * 

*TYPE FCOS(.50000) 
=+0. 877582E+00 * 

*TYPE FCOS(45*3.141592/180) 
= +0 • 707107 E +00 * 

i. The arc tangent function (FATN) calculates the angle in radians whose tangent is the 
argument within parentheses. 

*TYPE FATN(l.) 
=+0.785398E+00* 

*TYPE FATN(.31305) 
=+0.3033 86E+00 * 

*TYPE FATN(3.141592) 
=+0.1262 63E+01 * 

i. The logarithm function (FLOG) computes the natural logarithm (log ) of the number 
• hO h e Wit In parent eses. 

*TYPE FLOG(I.00000) 
=+0.000000E+00* 

*TYPE FLOG(I.98765) 
=+0. 686953E+00 * 

*TYPE %5.03, FLOG(2.065> 
=+ 0.725* 

3-12 



CHAPTER 4 

EXAMPLES OF FOCAL PROGRAMS 

4.1 TABLE GENERATION USING LIBRARY FUNCTIONS 

The ability to evaluate simple arithmetic expressions and to generate values with the aid of 

library functions is one of the first benefits to be obtained from learning the FOCAL language. In this 

example, a table of the sine, cosine, natural logarithm, and exponential values is generated for a series 

of arguments. As one becomes familiar with these and other library functions, it becomes easy to com

bine them with the standard arithmetic operations of addition, subtraction, multiplication, division, and 

exponentiation. The user should then be able to evaluate any given formula for a single value or for a 

range of values as in this example. 

Although FOCAL allows the typing of more than one command per line, each command in this 

example has been typed on a separate line to maintain clarity and because of the length of several of the 

commands. In this example, line 01.05 outputs the desired column headings. Line 01.10 is the loop to 

generate values for I, beginning with the value 1.00000 and continuing in increments of .00001 up 

through the value 1.00010; the DO 2.05 command at the end of this second line causes line 02.05 to be 

executed for each value of I. Line 02.05 is the command to evaluate the various library functions for the 

I arguments; the %7.06 specifies that all output results up to the next % symbol are to appear in flxed

point format with one digit position to the left of the decimal point and six digit positions to the right: 

the second % symbol reverts the output mode back to floating point for the remaining values - FLOG(I) 

and FEXP(I). Line 01 .20 (optional) returns control to the user. 

Several techniques can be noted in line 02.05 of this example. 

a. FOCAL commands can be abbreviated to the first letter of the command followed by a 
space, as shown by the use of T instead of TYPE. This technique can be used to shorten command strings. 

b. Arguments can be enclosed in various ways: ( ), < >, []. This ability is useful in 
matching correctly when a number of such enc losures appear in a command. 

c. Spaces can be inserted in an output format by enclosing the appropriate number of spaces 
within quotation marks. Such use of spacing is recommended to improve the readability of the output 
results. 

d. FOCAL allows accuracy of six significant digits, which makes possible the use of very 
small loop increments (in this example, .00001); this should eliminate the need to interpolate between 
table values of trigonometry functions in most cases. With modifications, FOCAL can give results 
having an accuracy of up to ten significant digits. 

4-1 



o 1 .0 5 T "I SINE 
o 1 • 1 0 FO R I = 1 , .0000 1 , 1 .000 1; DO 2.0 5 
01 ~20 QU IT 

COSINE LOG E"! 

02.05 T %7.06,1," ",FSINCI)," ",FCOS<I>," ",%,FLOG[I]," ",FEXPCI),!! 

* 
* 
* 
*GO 

I SINE COSINE LOG E 
=+1.000000 =+0.841471 =+0.540302 =+0.000000 E+00 =+0.271828E+01 

=+1.000010 =+0.841476 =+0.540294 =+0.97750 8E-0 5 =+0 .271 831 E +01 

=+1.000020 =+0.841481 =+0.540285 =+0.195501 E-04 =+0.271834E+01 

=+ 1 .000030 =+0.841487 =+0.540278 =+0 .2932510 E-104 =+10 .271836E+101 

=+1 .1000040 =+10.841492 =+0.540269 =+0.3910 998E-04 =+0.271839E+101 

=+1.10001050 =+10.841497 =+0.540261 =+10 .488744E-104 =+1O.271841E+101 

=+1 .000060 =+10.8415102 =+0.540252 =+10 .586491E-04 =+0.271844E+101 

=+1 .000070 =+0.841508 =+0.540244 =+10 .68423 6E-104 =+1O.271847E+101 

=+ 1 .000080 =+0.841513 =+0.540236 =+0.78198IOE-104 =+0.271849E+101 

=+1 .1000090 =+10.841518 =+0.540228· =+0.879723E-04 =+0.271852E+101 

=+1.0010100 =+10.841524 =+0.5402210 =+0.977465E-104 =+0.271855E+101 

* 

4.2 FORMULA EVALUATION FOR CIRCLES AND SPHERES 

In this example, FOCAL is used to calculate, label, and output the following values for an 

indefini te number of radii typed in by the user. 

Given: radius{R) 

Program calculates: circle diameter 2R 

c irc Ie area nR
2 

circle circumference 2nR 

sphere volume 4/3nR
3 

2 
sphere surface area 4nR 

Although the American system of inches is used in th is example, conversions to other systems 

(metric, for example) could be very easily incorporated into the program, thus eliminating any need for 

hand-ca Icu lated conversions. 

The program is very straightforward. ASK is used to allow the user to type in the radius value 

to be used in the calculations. SET is used to supply the value of 11' {PI}. TYPE is used for all calculations 

4-2 



and output. Note that if a value (such as PI in this example) is to be entered once and then used in 

repeated calculations, it should be entered by a SET command which is outside the calculation loop, 

otherwise, the variable would be set at the beginning of each pass through the loop. However, if the 

value of the variable changes during each iteration, then it must be calculated either by a SET or TYPE 

command within the loop. 

The use of the GOTO command (line 01 .60) results in an infinite loop of lines 01 .10 through 

.01 .60. This technique is used when the number of desired repetitions is not known. The looping process 

can be terminated at any time by typing CTRL/C. If, however 1 the number of desired repetitions is known 

(e.g., 10), the following method can be used. 

*SET PI=3.14159 
*1.1 AS 1-< • ••• 

*1.6 TYPE 1!!!! 

* *FOR 1=1,10; DO 

(Eliminate GOTO 1 .1) 

(Direct command; causes all 
steps in group 1 to be ex
ecuted 10 times) 

The abi lity to choose between these methods provides great flexibility in actually running 

FOCAL programs. 

01.01 SET PI=3.141592 
01.10 ASK "A RADIUS OF", R, " INCHES" 
01.20 TYPE %8.04, !, " GENERATES A CIRCLE OF:", ! 
01.21 TYPE" DIAMETER", 2*R," INCHES", 
01.30 TYPE" AREA", PI*Rt2," SQUARE INCHES", 
01.35 TYPE" CIRCUMFERENCE", 2*PI*R," INCHES", 
01.40 TYPE !., "AND A SPHERE OF:", ! 
01.49 TYPE" VOLUME", (4/3)*PI*Rt3," CUBIC INCHES", 
01~50 TYPE" AND SURFACE AREA", 4*PI*Rt2," SQUARE INCHES" 
01.60 TYPE !!!!!; GOTO 1.1 

* 
* 
* *GO 
A RADIUS OF: 1 INCHES 

GENERATES A CIRCLE OF: 
DIAMETER =+ 2.0000 INCHES 
AREA=+ 3.1416 SQUARE INCHES 
CIRCUMFERENCE=+ 6.2832 INCHES 

AND A SPHERE OF: 
VOLUME=+ 4.1888 CUBIC INCHES 
AND SURFACE AREA=+ 12.5664 SQUARE INCHES 

4-3 



A RADIUS OF:1.414 INCBES 
GENERATES A CIRCLE OF: 

DIAMETER=+ 2.8280 INCHES 
AREA~+ 6.2813 SQUARE INCHES 
CIRCUMFERENCE=+ 8.8844 INCHES 

AND A SPHERE OF: 
VOLUME=+ 11.8423 CUBIC INCHES 
AND SURFACE AREA=+ 25.1252 SQUARE INCHES 

A RADIUS OF: •••• 

4.3 TEMPERATURE CONVERSION 

Measurement system conversions are time consuming in many lines of'work. A short FOCAL 

program, such as the one illustrated in the following example, eliminates hours of repeated calculations. 

In this particular example, the problem is to convert temperatures from degrees Fahrenheit to degrees 

Centigrade, using the formula: 

This routine is quite similar in structure to the "Table Generation" example. The one basic 

difference is that here the user can input the loop parameters which govern the generation of the output. 

Thus, provision has been made for output of properly labeled requests for starting, ending, and incre

menting values and their input for use by the program. 

The ability for loop parameters to be negative, zero, fractional, or expressions, provides 

power beyond many other similar languages in simplifying the routine's structure. It also reemphasizes 

the flexibility and control over FOCAL programs at the time they are run. 

02.10 ASK "FROM""START,," TO",END,," DEGREES FAHRENHEIT",,! 
02.20 ASK" IN INCREMENTS OF""INCR,," DEGREES",,! 
02.30 TYPE "THE APPROPRIATE FAHRENHEIT TO CENTIGRADE CONVERSIONS ARE:" 
02.40 FOR T=START"INCR,END;TYPE !; DO 2.5 
02.45 QUIT 
02.50 TYPE" ",T,"FAHR. DEG •••••• ",(T-32)*5/9,," CENTIGRADE DEG." 
*00 ~ 
FROM:-40 TO:80 DEGREES FAHRENHEIT 

IN INCREMENTS OF:20 DEGREES 
THE APPROPRIATE FAHRENHEIT TO CENTIGRADE CONVERSIONS ARE: 

=- 40.0000FAHR. DEG •••••• =- 40.0000 CENTIGRADE DEG. 
=- 20.0000FAHR. DEG •••••• =- 28.8889 CENTIGRADE DEG. 
=+ 0.0000FAHR. DEG •••••• =- 17.7778 CENTIGRADE DEG. 
=+ 20.0000FAHR. DEG •••••• =- 6.6667 CENTIGRADE DEG. 
=+ 40.0000FAHR. DEG •••••• =+ 4.4444 CENTIGRADE DEG. 
=+ 60.0000FAHR. DEG •••••• =+ 15.5556 CENTIGRADE DEG. 
=+ 80.0000FAHR.DEG •••••• =+ 26.6667 CENTIGRADE DEG.* 

4-4 



4.4 ONE-LINE FUNCTION PLOTTING 

This example demonstrates the use of FOCAL to present, in graphic form, some given function 

over a range of values. In this example, the function used is 

y = 30 + 15{SIN{x»e 
-.lx 

with x ranging from 0 to 15 in increments of .5. This damped sine wave has many physical applications, 

especially in electronics and mechanics (for example, in designing the shock absorbers of a car). 

In the actual coding of the example, the variables I and J were used in place of x and y, 

respectively; any two variables could have been used. The single line 08.01 contains a set of nested 

loops for I and J. The J loop types spaces horizontally for the y coordinate of the function; the I loop 

prints the * symbol and the carriage return and I ine feeds for the x coordinate. The function itself is used 

as the upper limit of the J loop, again showing the power of FOCAL commands. 

The technique illustrated by th is example can be used to plot any desired function. Although 

the * symbol was used here, any legal FOCAL character is acceptable. 

08.01 F' I=0~.5~15; T "*"~!; F' J=0~30+15*F'SIN(I)*F'EXP<-.1*I>;T 

* 
* 
*DO 8.01 
* 

* 

* 
* 

* 
* 

* 
* 

* 
* 

* 
* 

* 
* 

* 
* 

* 
* 

* 
* 

* 
* 

* 
* 
* 

* 
* 

* 
* 
* 
* 

4-5 



4.5 EXTENSIONS TO PLOTTING 

In this next example, the wave form is the same as that shown under One-Line Function 

Plotting, i.e., a damped sinusoid, however, both the x and y axes hav.e been added to increase the 

readability of the output. Since amplitude and the damping factor can be varied, a series of such plots 

shows their re lative effects and can be used as a learning tool, or for tria I and error solutions. 

Another FOCAL command, IF, is used to position the x axis in the output. Two different 

options are used once the comparison within the parentheses is made. In line 02.10, the statement num

bers separated by commas indicate where to branch if the expression is negative, zero, or positive, 

respectively. However,in line 03.10a branch is made to 3.3 if the expression is negative, or 3.2 if 

the expression is zero, but for the positive case (J is less than 31) the remainder of the line is executed. 

Whereas, in previous examples only single lines were executed as subroutines by DO commands (e.g., 

DO 2.05). This routine contains DO commands which execute a group of lines as a subroutine 

before returning to the statement following the DO (e.g., DO 2, DO 3). 

It is often useful to superimpose one function plot upon another. This .can be accompl ished 

in FOCAL by replacing the exclamation point (representing a carriage return, line feed) with the number 

sign (representing a carrige return only) in certain TYPE commands. A very large number of functions 

using different plot symbols could be superimposed in this way. Often it is useful to follow each line in 

a function plot with the value of the function at that point, thus producing analog and digital output 

together. One can see from the spaci ng of the dots on the x and y axes that the Teletype produces a 

scale with a horizontal to vertical ratio of 5-to-3 (i .e., five horizontal spaces = 3 vertical line feeds). 

This factor must be taken into account when plotting closed curves such as circles. 

It should be noted that FOCAL library functions already provide for output displays on osci 1-

loscopes as well as for analog-to-digital conversions. 

01.03 ASK "SINE WAVE AMPLITUDE"" AMPL" ! 
01.04 ASK "DAMPING fACTOR COEFFICIENT"" T" 
01.05 FOR K=0.,,60; TYPE It." 

01.06 TYPE !; FOR 1=0".5,,15; DO 1.11; TYPE "*"; DO 3 
01 .07 QUIT 
o 1 • 1 1 FOR J =0 " 30 + AMP L * F SIN ( I ) * FE XP ( - T * I ); DO 2; T It It 

02.10 If (J-32) 2.3" 2.2" 2.3 
02.20 TYPE It." 

02.30 RETURN 

o 3 • 1 0 I F ( 3 1 - J ) 3. 3 " 3. 2 ; FOR K = J " 30 ; T YP E " " 
o 3 .20 T Yp E "." 
03.30 TYPE !; RETURN 

* 
*GO 
SINE WAVE AMPLITUDE:15 
DAMPING FACTOR COEFFICIENT:.135 

4-6 



............................................................. 
*. 

* 
* 
* 

* 
* 

* 
* 

* 
* 
* 

* 
* 

* 
* 

* 
* 

* 
* 

* · 
* 

* 
* 
* 
* 
* · 

* 
* · * 

4.6 DEMONSTRATION DICE GAME 

Sooner or later, people who have access to a computer will try to "match brains" with it or 

use it for their own en joyment. Such pastimes are usually keyboard oriented and FOCAL lends itself 

nicely to these ends. The following example uses the random number generator, FRAN( ), to produce 

dice combinations, plus IF logic to check bets and winning combinations. 

Note again the use of initials to abbreviate commands throughout the example (remember that 

each such abbreviation must be followed by a space). Lines beginning with a C indicate that the line 

is to be treated as a comment and is not to be interpreted or executed. If a comments statement is pre

ceded by a statement number, the line is stored as part of the program but does not affect the program 

logic. 

4-7 



The random number generator must be modified for use with statistical or simulation programs 

to achieve true randomness. However, it is sufficiently random for most applications in its present form. 

NOTE 

We naturally cannot assume any responsibility for the use 
of this or any similar routines. 

*01.10 S B=0;T ! !"DICE GAME"! .,"HOUSE LIMIT OF $1000 
*01.13 T" MINIMUM BET IS $1"!! 
*01.20 ASK "YOUR BET IS"A;I (1000-A) 3.1 
*01.22 I (A-l)3.4.,1.26.,1.26 
*01.26 IF (A-FITR(A»3.5.,1.3.,3.5 
*01.30 ASK M;DO 2;SET D=C;DO 2;T " ";SET D=D+C 
*0 1 .32 I (0 -7 ) 1 .42., 3 .2., 1 • 42 
*01 .40 I (0 -2) 1 .5.,3.3., 1 .5 
*0 1 .42 I (D -1 1 ) 1 .4., 3 .2., 1 .4 
*01 .50 I (0 -3) 1.6.,3.3., t • 6 
*01.60 ASK M;DO 2;S E=C;DO 2;T " ";S E=E+C 
*01.72 I (E-7) 1.74.,3.3.,1.74 
*0 1 • 74 I ( E - 0 ) 1 • 6 ., 3 • 2 ., 1 • 6 

* *02.10 SET C=FITR(10*FABSCFRAN(»);IF (C-6)2.2.,2.2.,2.1 
*02.20 I (C-l )2.1;T %1.," "C; RETURN 

* *03.10 T "HOUSE LIMITS ARE $1000"!!; G 1.2 
*03.20 S B=B+A;T %7.,!"YOU WIN. YOUR WINNINGS ARE "B.,!!;G 1.2 
*03.30 S B=B-A;T %7.,!"SORRY., YOU LOSE. YOUR WINNINGS ARE"B.,!!;G 1.2 
*0 3 • 40 T " MIN I MU M BET I S $ 1 "! ! ; G 1. 2 
*03.50 T "NO PENNIES., PLEASE"!! ;GOTO 1.2 

** 
**C-ONCE YOU PLACE A BET., FOLLOW THE OTHER COLONS WITH A 
**C CARRIAGE RETURN TO INDICATE THE COMMAND: "ROLL THE DICE". 

** 
*GO 

DICE GAME 
HOUSE LIMIT OF $1000. MINIMUM BET IS $1 

YOUR BET IS:.50 MINIMUM BET IS $1 

YOUR BET IS;15 :7 
=+6 =+3 
=+1 =+4 : 
=+4 =+5 

YOU WIN. YOUR WINNINGS ARE =+ 15 

YOUR BET IS;5 
=+2 =+2 
=+ 6 =+ 1 

SORRY., YOU LOSE. YOUR WINNINGS ARE=+ 10 

YOUR BET IS:3 
=+6 =+5 

YOU WIN. YOUR WINNINGS ARE =+ 13 

YOUR BET IS: I'LL QUIT WHILE I'M AHEAD. THANKS! 

4-8 



4.7 SIMULTANEOUS EQUATIONS AND MATRICES 

Many disciplines use subscripted variables for vectors in one, two, or more dimensions to 

store and man ipulate data. A common use is the 2-dimensional array or matrix for handling sets of 

simultaneous equations. For example, 

Given: 1 Xl + 2X2 + 3X 3 = 4 

4X 1 + 3X
2 

+ 2X
3 

= 1 

1X
1 

+ 4X
2 

+ 3X
3 

= 2 

Find: The values of Xl' X
2

, and X3 to satisfy all three equations simultaneously. 

The solution can be reduced to simple mathematics between the various elements of the rows 

and columns until correct values of X are found. 

Since FOCAL uses only a single subscript, the handling of two or more dimensions requires 

the generation of a linear subscript which represents the correct position if it were stored in normal 

order; i.e., leftmost subscript moving fastest. 

In one dimension: 

ARRAY( 

In two dimensions: 

A 'E lement D could be represented as ARRA Y(3); 

any element in this array can be represented 

by a subscript in the range 0 through 4. The 

first element in an array always has a sub

script of O. 

ARRAY (row ,column) or A(I,J) 

This must be reduced to the form A(G). Since subscripts are linear, G is a function of I and 

J; that is, A(I, J) = A(G). Consider the diagram 

1=0 

2 

3 

4 

J = 
012 
0 5 10 

1 6 11 

2 7 12 

3 8 13 

4 9 14 

4-9 



This array has five rows and three columns, so two values can be defined: 

IMAX = 5; 
JMAX = 3. 

To generate the number (G) in any box, using the corresponding values of I and J, the formula 

G I + IMAX* J or A(G) A.(I + IMAX* J) 

can be used. Each element in a 2-dimensional array represents an area. The example for solving simul

taneous equations, above, uses this algorithm for subscripts, merely by replacing I, lMAX, and J with 

J, L, and K, respectively, so as to form the equation 

A(J+L*K). 

In three dimensions: 

ARRAY(row,column,plane) = A(I,J,K) = A(G) 

Three dimensions can be illustrated as a cube. 

J. 0 2 

This cube has ~imensions of five rows, three columns, and four planes; thus, IMAX = 5, JMAX = 3, and 

KMAX = 4. Each plane is numbered exactly as in the 2-dimensional example, except with the addition 

of 15 times K (with K = the number of planes back from the first) to each subscript in the first plane. 

Example: 

Upper lefthand square, back one plane from the first = 15 

1=0, J = 0, K = 1; 1+ (I MAX * J)+(IMAX* JMAX* K) = 15 = G 

or 

A(O,O,l) =A(15) 

4-10 



In four dimensions: 

ARRAY(row,column,plane,cube) = A(I,J,K,L) = A(G) 

Assign the values for IMAX, JMAX, KMAXi a method similar to the one used above yields 

G = I+(IMAX* J)+(IMAX* JMAX* K)+(IMAX* JMAX* KMAX* L) 

This process can theoretically be extended indefinitely to n-dimensions. 

01.02 TYPE !"ROUTINE TO SOLVE MATRIX EQ. A'X=B FOR X"! 
01.04 ASK "ENTER DIMENSION OF A, THEN 
01.05 TYPE !"ENTER COEFF'S ACJ,K) ••• ACJ,N) AND BCJ)"! 
01.10 ASK L,!;SET N=L-l;-SET 1=-1 
01'}1 FOR K=0,N; SET RCK)=K+1 
01.12 FOR J=0,N; TYPE !; FOR K=0,L; ASK ACJ+L*K) 
01.14 SET M=IE-6 
01.16 FOR J=0,N; FOR K=0,N; DO 4 
o 1 • 1 7 SET R [P ] =0 • 
01.18 FOR K=0,L; SET A[P+L*K]=A[P+L*K]/M 
01.20 FOR J=0,N; DO 5 
01.22 SET 1=1+1 
01.23 IF CI-N) 1.14, 1.26 , 1.14 
01.26 FOR J=0,N;. FOR K=0,N; DO 7 
o 1 .28 FO R K =0 , N; T YP E ! % 2, " XC" K, " ) " , % 8 .0 5, XC K ) 
01.29 TYPE !!; QUIT 

04.05 IF CR<J» 0, 4.3, 4.1 
04.10 IF CFABSCACJ+L*K)) - FABS[MJ) 4.3; 
04.20 SET M=ACJ+L*K) 
04.22 SET P=J; SET Q=K 
04.30 RETURN 

05.10 IF CJ-P) 5.2,5.4,5.2 
05.20 SET D=ACJ+L*Q) 
05.30 FOR K=0,L; SET A<J+L*K>=A<J+L*K>-A<P+L*K>*D 
05.40 RETURN 

07.10 IF CIE-6-FABS[ACJ+L*K)]) 7.2; RETURN 
07.20 SET XCK)=ACJ+L*L) 

* 
* *GO 

ROUTINE TO SOLVE MATRIX EQ. AX=B FOR X 
ENTER DIMENSION OF A, THEN 
ENTER COEFF'S ACJ,K) ••• ACJ,N) AND BCJ) 
:3 

; 1 ;2 ;3 :4 
;4 _; 3 ;2 ; 1 
: 1 :4 :3 :2 
XC=+ 0) =+ 0.00000 
XC=+ 1 ) 1.00000 
XC=+ 2) =+ 2.00000 

* 

4-11 



Command 

ASK 

COMMEI'-!T 

CONTINUE 

DO 

ERASE 

FOR 

GO 

GOTO 

IF 

MODIFY 

QUIT 

Abbreviation 

A 

C 

C 

D 

E 

F 

G 

G 

M 

Q 

APPENDIX A 

FOCAL COMMAND SUMMARY 

Example of Form 

ASK X, Y, Z 

COMMENT 

C 

DO 4.1 

DO 4.0 
DO ALL 

ERASE 

ERASE 2.0 

ERASE 2.1 

ERASE ALL 

FOR i=x,y,z;(commands) 

FOR i= x, Zi (commands) 

GO 

G 3.4 

I F (X) Ln, Ln, Ln 

IF (X)Ln, Ln;(commands) 

IF (X) Ln; (commands) 

MODIFY 1 .15 

QUIT 

A-1 

Explanation 

FOCAL types a colon for each variable; 
the user types a value to define each 
variable. 

If a line begins with the letter C, the 
remainder of the line wi II be ignored. 

Dummy lines 

Execute line 4. 1 i return to command 
following DO command, 

Execute all group 4 lines; return to com
mand following DO command, or when 
a RETURN is encountered. 

Erases the symbol table. 

Erases a II group 2 lines. 

Deletes line 2. 1 . 

De letes a II user input. 

Where the command following is executed 
at each new value. 

x=initial value of i 

y=va lue added to i unti I i is greater 
than z. 

Starts indirect program at lowest num
bered I ine number. 

Starts indirect program (transfers con
trol to line 3.4). Must have argument. 

Where X is a defined identifier, a va I ue, 
or an expression, followed by three 
I ine numbers. 

If X is less than zero, control is trans
ferred to the first line number 

If X is equal to zero, control is to the 
second I ine number. 

If Xis greater than zero, con tro lis to 
the th ird I ine number. 

Enables editing of any character on line 
1.15 (see below). 

Return s con tro I to th e user. 



Command Abbreviation Example of Form Explanation 

RETURN R RETURN Terminates DO subroutines, returning to 
the original sequence. 

SET S SET A=5/B*C; Defines identifiers in the symbol table. 

TYPE T TYPE A+B-Ci Evaluates expression and types out = 
and result in current output format. 

TYPE A-B, C/E; Computes and types each expression 
separated by commas. 

TYPE "TEXT STRING" Types text. May be followed by ! to 
generate carriage return-I ine feed, or 
# to generate carriage return. 

WRITE W WRITE FOCAL types out the entire indirect 
WRITE ALL program. 

WRITE 1.0 FOCAL types out all group 1 lines. 

WRITE 1. 1 FOCAL types out line 1 . 1 . 

FOCAL Operations 

To set output format, 

To type symbol table, 

Modify Operations 

TYPE %x.y 

TYPE %6.3, 123.456 

TYPE % 

TYPE $ 

where x is the total number of digits, 
and y is the number of digits to the right 
of the decimal point. 

FOCAL types: =+123.456 

Resets output format to floating point. 

Other statements may not follow on this 
line 

After a MODIFY command, the user types a search character, and FOCAL types out the con

tents of that line unti I the search character is typed. The user may then perform any of the following 

optional operations. 

a. Type in new characters. FOCAL wi" add these to the line at the point of insertion. 

b. Type a CTRL/L. FOCAL wi" proceed to the next occurrence of the search character. 

c. Type a CTRL/BELL. After this, the user may change the search character. 

d. Type RUBOUT. This deletes characters to the left, one character for each time the user 
strikes the RUBOUT key. 

e. Type +- • Deletes the line over to the left margin, but not the I ine number. 

f. Type RETURN. Terminates the I ine, deleting characters over to the right margin. 

g. Type LINE FEED. Saves the remainder of the line from the point at which LINE FEED 
is typed over to the right margin. 

A-2 



Summary of Functions 

Square Root 

Absolute Value 

Sign Part 

Integer Part 

Random Number 
Generator 

'k Exponential 
Function (eX) 

* Sine 

* Cosine 

* .Arc Tangen t 

* Logarithm 

Analog-to-Digita I 

S cope Functions 

FSQT (x) 

FABS(x) 

FSGN(x) 

FITR(x) 

FRAN( ) 

FEXP(x) 

FSI f'~ (x) 

FCOS(x) 

FATN(x) 

FLOG(x) 

FADC(n) 

FDIS(y) 

FDXS(x) 

where x is a positive number or expression 
greater than zero. 

FOCAL ignores the sign of x . 

FOCAL evaluates the sign part on Iy I with 
1 . 0000 as in teger. 

FOCAL operates on the integer part of x I 
ignoring any fractional part. 

FOCAL generates a random number. 

FOCAL generates e to the power x. 
(2.71828X ) 

FOCAL generates the sine of x in radians. 

FOCAL generates the cosine of x in radians. 

FOCAL generates the arc tangent of x in 
radians. 

FOCAL generates log (x). e 
FOCAL reads from an analog-to-digital chan
nel, the value of the function is that integer 
reading. 

Displays y coordinate on scope and intensifies 
x-y point. 

Displays x coordinate on scope. 

AS K/TYPE CONTROL CHARACTERS 

% 

II 

# 

$ 

SPACE 

RETURN 

"'These are known as extended functions. 

Format delimiter 

Text del imiter 

Carriage return and line feed 

Carriage return on I y 

Type the symbo I table con tents 

Term inator for names 

Term inator for expressions 

Terminator for commands 

Terminator for lines 

A-3 



Code 

*?OO.OO 
*?01.00 

*?02.07 
*?02.24 
*?02.28 
*?02.29 
* ?02.44 
*? 02.46 

*?02.61 
* ?02 .67 
*? 02 .80 
* ?02 .87 
*?02.;0 
*?02.;3 
*?02.;7 

*?03.10 
*?03.42 
*?03.50 
*?03.79 

*?04.12 
*?04.13 

*?04.18 
*?04.33 
*?04.39 
*?04.45 
*?04.53 
*?04.61 
*?04.93 
* ?04.;0 
*?04.;2 
*?04.;9 

*?05.11 
*?05.28 
*?05.60 
*?05.;6 

APPENDIX B 

ERROR DIAGNOSTICS 

Meaning 

Manual start from console 
Interrupt from keyboard via CTRL/C 

Bad I ine number format 
Keyboard input buffer overflow 
Group number or literal too large 
Illegal command used 
Line number too large 
Imaginary square roots, or nonexistent line 

referenced by DO 
Nonexistent group referenced by DO 
Bad argument for MODIFY 
Division by zero 
Command input buffer exceeded 
Illegal step number 
Number too large to be made an integer 
Illegal or misspelled function name 

Bad argument for ERASE 
Log of zero requested 
Improper step number 
Variable storage exceeded, or exponent not 

a positive integer 

Bad argument in IF command 
Missing operator in an expression, or illegal 

E format on input or literal 
Bad argument in FOR, SET, or ASK 
Operator missing before parenthesis 
Error to left of equal sign 
Parentheses do not match 
Excess right parenthesis 
Illegal character in FOR 
Double periods in a line number 
Function not followed immediately by parens 
Multiple periods in a I ine number 
Double operators in an expression 

No argument in IF command 
Command not available 
Error in FOR command format 
Function not loaded into core 

NOTE 

The above diagnostics apply on Iy to the version of FOCAL, 1968 
issued on tape DEC-08-AJAB-D. 

B-1 



APPENDIX C 

ESTIMATING THE LENGTH OF USER'S PROGRAM 

FOCAL requires five words for each identifier stored in the symbol table, and one word for 

each two characters of stored program. This may be calculated by 

C 
5s + 2" . 1.01 = length of user's program 

where s = Number of identifiers defined 

c = Number of characters in indirect program 

If the total program area of symbol table area becomes too large, FOCAL types the error 

message 

?03.79 

FOCAL occupies core locations 1-33008 and 460°
8

-7576
8

. Th is leaves approximately 100°
10 

locations for the user's program (indirect program, identifiers, and push-down list). The extended func

tions occupy locations 4600-5277. If the user decides not to retain the extended functions at load-time, 

there wi" be space left for approximately 18001 ° ~haracters for the user's program. 

The following routine allows the user to find out how many core locations are left for h is use. 

*FOR I=1~300; SET ACI)=I 
?03 .79 (disregard error code) 
*TYPE %4~ I*5~ " LOCATIONS LEFT" 
=+ 705 LOCATIONS LEFT * 

C-l 



APPENDIX D 

CALCULATING TRIGONOMETRIC FUNCTIONS IN FOCAL 

Function FOCAL Representation 
Argument Function 

Range Range 

Sine FSIN(A) O~IA 1<1014 O~IF 1~1 
Cosine FCOS(A) O~IA 1<1014 O~IF ~1 
Tangent FSIN (A)/FCOS(A) O~IA 1<1014 O~IF 1<1016 

IA 1~(2N+1)1T/2 

Secant l/FCOS(A) O~IA 1<1014 1 :s.1 F 1< 1 016 

1 A 1~(2N+ 1 )1T/2 

Cosecant l/FSIN(A) O~IA 1<1014 l~IF 1<1016 

IA 1~2N1T 

Cotangent FCOS (A)/FSIN (A) O~IA 1<1014 O~ 1 F 1< 101440 

IA If2N1T 

Arc sine FATN(A!FSQT{1-A 12) O~IA 1<1 O~IF 1~1T/2 
Arc cosine FATN(FSQT(1-A12)/A) 0< IA 1~1 o~IF j~1T/2 
Arc tangent FATN(A) 0~S)Ot6 0~<1T/2 

Arc secant FATN(FSQT(A 12-1)) l<A<1016 0~F<1T/2 

Arc cosecan t FATN(1/FSQT(A 12-1) l<A<101300 0<F<1T/2 

Arc cotangent FATN(1/A) 0<A<10t615 0<F<1T/2 

Hyperbolic sine (FEXP(A)-FEXP(-A))/2 O:s.IA ~700 O~I F /<S5* 101300 

Hyperbolic cosine (FEXP(A)+FEXP(-A»/2 0:s.IA/<700 1 <F<5* 1 01300 

Hyperbolic tangent (FEXP(A)-FEXP(-A»/ 
(FEXP(A)+FEXP(-A» 

asiA 1<700 as/F /~1 

Hyperbolic secant 2/(FEXP(A)+FEXP(-A» as/A ~700 O<F<l 

Hyperbolic cosecant 2/ (FEX P (A)-F EX P (-A» 0</A/<700 0< IF 1<10t7 

Hyperbolic cotangent (FEXP(A)+FEXP(-A»/ 0</AI<700 l~/F /<1017 
(FEXP(A)-FEXP(-A» 

Arc hyperbo lic sine F LOG(A+FSQT (A t 2+ 1)) -1015<A<101600 -12<F<1300 

Arc hyperbolic cosine FLOG(A+FSQT(A f 2-1)) 1:s.A<101300 ~F<700 

Arc hyperbo lie tangent (FLOG(l +A)-FLOG(1-A»/2 ~IAI<l ~/F/<8.31777 

Arc hyperbolic secant FLOG«1/ A)+FSQT«1/ A 12)-1» 0< /A /~1 O<F<700 

Arc hyperbo Ii c FLOG«1/A)+FSQT«1/A 1 2)+1)) 0< I A 1<10 1300 ~IF/<1400 
cosecant 

Arc hyperbolic (FLOG(X+1 )-FLOG(X-1)~ 1<A<101616 O<F<8 
cotangent 

D-l 



OVERLOAD RECOVERY 

APPENDIX E 

OPERATING HINTS 
1 

When the program and symbol table areas become too large the error diagnostic ?03.79 will 

be typed out. The user should then do one of the following. 

a. Restart at location 0200. 

b. Restart at location 2216, if ?03.79 follows a legitimate command. This erases all variables. 

c. As a last resort, restart at 2213. This erases the text. 

LOADING PROGRAM TAPES 

When loading a long program tape into FOCAL the user can suppress the echo (printing) 

feature by changing the content of location 2475 to 7000. This will cause only asterisks to be typed as 

the tape is being read; there will not be a carriage return-line feed at the end of the line. 

Entries from the keyboard wi II not echo unless each entry is preceded by a TYPE command. 

Output will be typed'in the normal manner. 

To restore the echo feature, depress the STOP key on the computer console and deposit 4277 

into location 2475. 

1 These hints apply only to FOCAL, 1968, issued on tape DEC-08-AJAB-D • 

E-1 



READ-IN MODE (RIM) LOADER 

APPENDIX F 

LOADERS 

The RIM Loader is a program used to load the Binary Loader. The RIM Loader must be toggled 

into memory using the switches on the computer console. 

To load the RIM Loader, follow the procedure below. 

a. Check to see if the RIM Loader program is in memory correctly by examining the following 
locations for the appropriate instructions (contents). 

Instruction 
Location ASR33 Reader Hig~ Speed Reader 

7756 6032 6014 
7757 6031 6011 
7760 5357 5357 
7761 6036 6016 
7762 7106 7106 
7763 7006 7006 
7764 7510 7510 
7765 5357 5374 
7766 7006 7006 
7767 6031 6011 
7770 5367 5367 
7771 6034 6016 
7772 7420 7420 
7773 3776 3776 
7774 3376 3376 
7775 5356 5356 
7776 0000 0000 

b. If the instruction in any location does not agree with the above list, deposit the correct 
instruction in ~ ,y that location {see User's Handbook, F-85, for detai Is}. 

BINARY FORMAT (BIN) LOADER 

The BIN Loader is a program used to load FOCAL into memory. The BIN Loader tape is loaded 

by the RIM Loader as explained below. 

The BIN Loader is loaded into locations 7612-7616, 7626-7752, and 7777, with its starting 

address at location 7777. A detailed description of the BIN Loader is in the User's Handbook, F-85. 

To load the BIN Loader, follow the procedure below. 

a. Check the RIM Loader for correctness, and correct if necessary. 

b. Put Binary Loader tape in reader (always put leader-trailer code over reader head, never 
blank tape). 

F-1 



c. Turn reader ON. 

d. Set Switch Register (SR) to 7756 (the starting address of the RIM Loader). 

e. Depress LOAD ADDress switch on computer console. 

f. Depress START switch on computer console. 

g. Tape should begin reading in, if not, check the RIM Loader and start again at step a. 

h. After program is read in, depress STOP switch on the computer console. 

F-2 



momoama 

OIGITAL EGUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS 

PRINTED IN U.S.A. 


	000
	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	A-01
	A-02
	A-03
	B-01
	C-01
	D-01
	E-01
	F-01
	F-02
	xBack

