August 1978
The TRAX Support Environment User’s Guide is a combination

tutorial/reference manual directed to programmers with a wide
range of technical background.

TRAX
Support Environment
User’s Guide

AA-D331A-TC

OPERATING SYSTEM AND VERSION: TRAX Version 1.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard. massachusetts

First Printing, August 1978

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Eqmpment Corporation assumes no responsibility

for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used or copied in

accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by

DIGITAL or its affiliated companies.

Copyright © 1978 by Digital Equipment Corporation

The postage-prepaid READER’S COMMENTS form on the last page of this document requests the user’s

critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10
DEC DECtape

PDP DIBOL

DECUS EDUSYSTEM
UNIBUS FLIP CHIP
COMPUTER LABS FOCAL
COMTEX INDAC

DDT LAB-8
DECCOMM DECSYSTEM-20

ASSIST-11 RTS-8

MASSBUS
OMNIBUS
0s/8

PHA

RSTS

RSX
TYPESET-8
TYPESET-11
TMS-11
ITPS-10

PREFACE

CHAPTER 1

DD

e el e B e e S~
Nob bbb
N =

CHAPTER 2

2.1
2.2
2.3
2.3.1
23.2
23.3
234
235
24

CHAPTER 3

3.1
3.2
3.2.1
3.2.2
3.23

INTRODUCTION TO TRAX SUPPORT ENVIRONMENT

WHAT IS TRAX
THE SUPPORT ENVIRONMENT
INTERACTIVE COMMAND PROCESSING
Prompts
Error Messages
BATCH FILE PROCESSING
INDIRECT COMMAND FILE PROCESSING
PROGRAMMING LANGUAGES
BASIC-PLUS-2 Language
COBOL
FILE STORAGE

USING THE TRAX TERMINAL |

THE KEYBOARD ,
A SAMPLE INTERACTIVE SESSION
ACCESSING THE SYSTEM
User Identification Code
The User Name
Password
Logging In = = the LOGIN Command
Terminating a Session == the LOGOUT Command
REQUESTING COMMAND INFORMATION == THE
HELP COMMAND

MANAGING FILES AND VOLUMES

FUNDAMENTAL CONCEPTS

FILE SPECIFICATION CONVENTIONS
Default File Specification Elements
Wildcards
Standard File Types

CONTENTS

Page

[y
)
ot

WW[:)NI—A—-

IN

.—-.—n.—.»—-.—.p;an—a.—ap—ag——
])
WD b b

[\
L)
o

2-1
2-1
2-6
2-6
2-6
2-6
2-6
2-7

3-1

3-1
3-1
3-3
3-3
34

iii

CONTENTS (CONT.)

33
3.3.1
3.3.2
34
34.1
34.1.1
34.1.2
34.13
34.2
343
3.44
34.5
34.6
34.7
3438
349

CHAPTER 4

4.1

41.1
4.1.2
4.1.3
414
4.2

4.2.1
42.2
423
43

43.1
43.2
433

CHAPTER 5

iv

5.1

5.2

53
5.3.1
53.1.1
53.1.2
53.2
5.3.2.1
53.2.2

FILE OWNERSHIP AND SECURITY
The User File Directory
File Security
FILE MANAGEMENT
Creating Files
The RMSDEF Utility
The EDIT Command
The CREATE Command
Copying Files
Appending Records
Merging Records
Renaming Files
Sorting Files
Displaying File Contents
Printing Files
Removing Files from a Directory

MANAGING SYSTEM DEVICES AND VOLUMES

ACCESSING DEVICES
Displaying Device Names and Status
Allocating and Deallocating a Device
Mounting a Volume for File Access
Dismounting a Volume
PREPARING DEVICES
Displaying and Changing Device Characteristics
Initializing a Volume for File Access
Creating a User File Directory (UFD)
ASSIGNING DEVICES
Making and Changing Device Assignments
Displaying Device Assignments
Making and Changing Device Assignments

PROGRAM DEVELOPMENT

INTRODUCTION
CREATING SOURCE FILES
COMPILING SOURCE FILES
Using COBOL
Compiling Source Files
Linking COBOL Object Files
Using BASIC-PLUS-2
Creating BASIC-PLUS-2 Source Files
Invoking BASIC-PLUS-2

Page

34
3-4
3-5
3-7

3-7

3-8

3-8

3-10
3-10
3-11
3-11
3-12
3-12
3-13
3-13

4-1

CONTENTS (CONT.)

Page
53.23 Compiling and Linking a BASIC-PLUS-2 Source Program 5-5
54 TASK EXECUTION AND CONTROL 5-6
54.1 Running a Task: the RUN Command 5-6
54.2 Displaying Task Status: SHOW TASKS 5-7
543 Aborting Either a Task or Command: the ABORT Command 5-7
CHAPTER 6 BATCH PROCESSING 6-1
6.1 FUNDAMENTAL CONCEPTS 6-1
6.2 BATCH COMMAND FORMAT 6-1
6.3 THE BATCH PROCESS COMMAND SET 6-2
6.4 THE BATCH LOG FILE 6-2
6.5 BEGINNING AND ENDING A BATCH JOB 6-3
6.6 BATCH DATA BLOCKS 6-3
6.7 ERROR STATUS AND SEQUENCE CONTROL 6-4
6.7.1 Status Levels 6-5
6.7.2 Conditional Processing 6-5
6.7.3 The $ON Command 6-5
6.7.4 The $Set [NO] ON Command 6-6
6.7.5 The $IF Command 6-6
6.7.6 The $GOTO Command 6-7
6.8 SUBMITTING A BATCH JOB 6-7
CHAPTER 7 INDIRECT COMMAND FILES 7-1
7.1 CREATING AN INDIRECT COMMAND FILE 7-1
7.2 INVOKING INDIRECT COMMAND FILES 7-1
CHAPTER 8 FORMAT CONVENTIONS 8-1
8.1 COMMAND DESCRIPTIONS 8-1
8.2 GENERAL FORMAT NOTATIONS 8-1
8.3 ISSUING COMMANDS : 8-2
8.3.1 Command Structure 8-2
8.3.2 Command Names 8-3
8.3.3 Parameters 8-3
8.3.3.1 Optional Parameters 84
8.3.3.2 Parameter Lists 84
834 Qualifiers 84
8.34.1 Command Qualifiers 8-5
8.34.2 Parameter Qualifiers 8-5
835 Underline Convention 8-5
8.4 TERMINAL KEYBOARD FUNCTIONS 8-5

8.5 CORRECTING INPUT ERRORS 8-8

CONTENTS (CONT.)

8.5.1
8.5.2
8.6

CHAPTER 9

vi

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.13.1
9.13.2
9.14
9.15
9.16
9.17
9.18
9.19
9.20
9.21
9.22
9.23
9.24
9.24.1
9.242
9.243
9.244
9.24.5
9.246
9.24.7
9.25
9.26
9.27
9.28

Deleting Individual Characters
Deleting a Line
ABBREVIATIONS

COMMAND DESCRIPTIONS

ABORT

ALLOCATE

APPEND

ASSIGN

BASIC

COBOL

COPY

CREATE

CREATE/DIRECTORY

SDATA

DEALLOCATE

DEASSIGN

DELETE
DELETE File
DELETE Queued Job

DIRECTORY

DISMOUNT

EDIT

$EOD

$EOJ

$GOTO

HELP

SIF

INITIALIZE

$JOB

LIBRARIAN
LIBRARIAN CREATE
LIBRARY DELETE
LIBRARIAN EXTRACT
LIBRARIAN INSERT
LIBRARIAN LIST
LIBRARIAN REPLACE
LIBRARIAN SQUEEZE

LINK

LOGIN

LOGOUT

MACRO

Page

8-8
8-8
8-9

9-10
9-15
9-16
9-17
9-18
9-18
9-19
9-19
9-20
9-24
9-24
9-25
9-26
9-26
9-27
9-28
9-29
9-32
9-33
9-33
9-35
9-36
9-37
9-38
9-39
9-40
941
948
9-49
9-50

9.29
9.30
9.31
9.32
9.33
9.34
9.35
9.36
9.37
9.37.1
9.37.2
9.37.3
9.37.4
9.37.5
9.37.6
9.38
9.38.1
9.38.2
9.38.3
9.38.4
9.38.5
9.38.6
9.38.7
9.39
9.40
9.41
9.42

APPENDIX A

Al
A2
A3
A4
A4l
AA4.2
A43
A44
A4S
A4.6
A4.7
A48

MERGE

MESSAGE

MOUNT

$ON

PRINT

PURGE

RENAME

RUN

SET
SET DEFAULT
SET DEVICE
$SET [NO] ON
SET PROTECTION
SET QUEUE
SET TERMINAL

SHOW
SHOW ASSIGNMENTS
SHOW TIME
SHOW DEFAULT
SHOW DEVICES
SHOW QUEUE
SHOW TASKS
SHOW TERMINAL

SORT

SUBMIT

TYPE

UNLOCK

THE RMSDEF INTERACTIVE UTILITY

PURPOSE
EFFECT

UTILITY CALL AND TERMINATION

PROCESS
Command File
File Specification
Data Structure
Key Definition
File Structure
Data Allocation
Protection
File Creation

CONTENTS (CONT.)

Page

9-52
9-54
9-55
9-57
9-58
9-61
9-63
9-64
9-65
9-65
9-67
9-68
9-69
9-70
9-73
9-74
9-75
9-76
9-76
9-77
9-78
9-82
9-85
9-86
9-92
9-93
9-94

A-1
A-1
A-3
A4
A4
A-5
A-5
A-7
A-10
A-12
A-12
A-13

vii

CONTENTS (CONT.)

Page

A48.1 Success A-14

A.4.8.2 Error A-14
APPENDIX B TRAX SUPPORT ENVIRONMENT MESSAGES B-1
B.1 ABORT B-1
B.2 ALLOCATE B-2
B.3 APPEND B-2
B.4 ARCHIVE B-5

B.5 COPY B-22

B.6 CREATE B-25

B.7 DCL B-28

B.8 DISMOUNT B-33

B.9 INITIALIZE B-34

B.10 LIBRARIAN B-36

B.11 LINK B-39

B.12 LOGIN B41

B.13 MERGE B-41

B.14 MOUNT B-45

B.15 RENAME B-47

B.16 SET B47

B.17 SORT B-48
APPENDIX C TRAX I/O ERROR CODES C-1
APPENDIX D RMS COMPLETION STATUS CODES D-1
D.1 SUCCESSFUL COMPLETION STATUS CODES D-1

D.3 FATAL ERROR CRASH ROUTINE D-15

D4 FATAL USER CALL ERRORS D-15

D.5 RMS-11 INCONSISTENT INTERNAL CONDITIONS ERRORS D-15

viii

CONTENTS (CONT.)

Page
FIGURE 2-1 LA36/VT52 Keyboard Layout 22
2-2 Sample Terminal Session 2-3
A-1 Interactive DEFINE Processing A-2
TABLE 3-1 Standard Physical Device Names 32
3-2 Standard File Types 34
8-1 Keyboard Functions 8-6
8-2 Control Key Functions 8-7
9-1 Valid Key Parameter Combinations 9-13
B-1 General Error and I/O Error Message Codes B-17
D-1 Successful Completion Status Codes D-2

D-2 Error Completion Status Codes D-2

ix

PREFACE

This manual has two main divisions. Part I is primarily tutorial. You are assumed to have
some experience with programming and interactive terminal operation, but little or no prior
experience with the TRAX Support Environment. Part I consists of seven chapters:

® Chapter 1 explains the purpose and design philosophy of TRAX and the TRAX
Support Environment, including the Digital Command Language (DCL).

Chapter 2 introduces interactive terminal operation in the TRAX Support
Environment, using a simple annotated terminal session.

Chapter 3 introduces file creation and management, including the format of the file
specification used to identify files.

Chapter 4 describes basic device handling in the TRAX Support Environment.
® Chapter 5 describes the process of developing programs into executable tasks.
® Chapter 6 explains the fundamentals of batch processing.

® Chapter 7 explains the use of indirect command files.

Part 11 consists of reference information. It covers in detail many subjects covered only
generally in Part I.

® Chapter 8 explains command syntax.

® Chapter 9 describes the set of TRAX commands available to the general user.
Commands are presented in alphabetical order.

The TRAX Support Environment described herein provides a traditional command language
environment. It is designed to assist you in developing transaction step tasks and tasks that
augment the transaction processing system such as reports. Through it, facilities, such as
source language compilers and assemblers the DEC EDITOR, and the Linker.

This manual does not describe these other software facilities in detail, however. Rather, it
explains in general what they are, what they do, and how to invoke or access them. To use
them effectively, you will need to consult other manuals in the TRAX documentation set.
These manuals include:

1. For language and compiler interface information:

TRAX BASIC-PLUS-2 Language Reference Manual (Order No. AA-D366A-TC)
TRAX BASIC-PLUS-2 Language User’s Guide (Order No. AA-D377A-TC)
TRAX COBOL Language Reference Manual (Order No. AA-D338A-TC)
TRAX COBOL Language User’s Guide (Order No. AA-D339A-TC)

TRAX MACRO Language Reference Manual (Order No. AA-D340A-TC)
TRAX RMS MACRO Programmer’s Guide (Order No. AA-D344A-TC)

2. For file creation and manipulation:

DEC EDITOR Reference Manual (Order No. AA-D347A-TC)
TRAX SORT Reference Manual (Order No. AA-D346A-TC)

3. For linking:

TRAX Linker Reference Manual (Order No. AA-D342A-TC)
TRAX System Manager’s Guide (Order No. AA-D332A-TC)

xi

Xii

PART ONE
USING THE TRAX SUPPORT ENVIRONMENT

— A TUTORIAL —

CHAPTER 1

INTRODUCTION TO TRAX
SUPPORT ENVIRONMENT

1.1 WHAT IS TRAX?
One can regard TRAX as two distinct but complementary operating environments: the Trans-
action Processing Environment and the Support Environment.

The transaction processing environment is oriented to the operation of an established transaction-
processing application by an individual at an application terminal. Such an individual knows the
interactions of the application, but is usually not a programmer.

The Support Environment is intended for program development, for control and monitoring of
transaction processing, and for subsidiary applications that do not use transaction processing
functions, such as the running of routine inventory reports or customer billing. It is a traditional
command-language facility by which you can dévelop and run stand alone support programs, either
interactively or through batch processing.

1.2 THE SUPPORT ENVIRONMENT

As a Support Environment user, you will work by entering commands at a terminal and control
only the terminal at which you log in. You will issue commands usmg a version of DIGITAL Com-
mand Language (DCL) designed specially for TRAX.

The Support Environment is used for the following type_s of processing:

Controlling and supervising of transaction processing, batch processing, and spooling
Running of support programs related to transaction apphcatlons

Editing of source program and data files

Compiling, linking, and debugging of programs

Defining and implementing transaction processors

File backup and recovery

Programs running in the Support Environment are called support prbgrams and a TRAX terminal
logged into the Support Environment is called a support terminal. Such programs and terminals
cannot modify files to which a rurining transaction processor has write access. Support programs
run under control of a support tennmal or a batch processor

The basic unit of executable code is called a task. Each DCL command that you enter and each
program that you run 1s a task.

To qualify as a task, a program ‘must be compiled and linked with all necessary support routines.
Linking a program forms an executable task image and stores it as a permanent file on disk. When
you command the system to run a task, the system retrieves the executable task image from the
file that you specify.

1-1

Introduction To TRAX Support Environment

The system schedules the running of tasks according to the priority of the task and the availability
of system resources. The resources include computer memory and devices needed to perform
input/output. An efficient scheduling technique allows many tasks to be processed simultaneously
on a demand basis.

Every Support Environment user has a unique identification, and each terminal has a unique
device name. These identifiers key the system as to the origin of each command, each task, and
each data input, and also direct output to the proper destination.

The Support Environment offers two general methods of command processing:

® Interactive command processing
® Batch command processing

In either method, you direct the system by means of commands. In interactive processing, you
type commands one at a time in response to a prompt from the system, In batch processing, you
create a file containing commands for each operation you want performed, together with all data
that you expect the system to request while processing the commands. Batch jobs are processed
on virtual terminals created by the system; this frees your terminal for other activity.

You can reference indirect command files during interactive sessions or batch processing jobs. An
indirect command file is a file consisting of one or more interactive commands to be executed as a
unit. If you have a sequence of commands that you use fairly often or a long, complex command,
you can create a file containing this command information. Later you can invoke this indirect
command file by a simple command.

The DCL command language provides the following general capabilities:

1. Beginning and ending an interactive session or batch job
2. Creating, editing, and managing files

3. Allocating and controlling devices

4. Developing and running programs

5. Monitoring and controlling program execution

1.3 INTERACTIVE COMMAND PROCESSING
All communication between user and system occurs during a terminal session. The user initiates a
terminal session by logging in and terminates a session by logging out.

Interactive command processing is conversational in nature. It consists of a two-way communica-
tion between you and the system. You initiate each action with a command, entering commands
one at a time. After entering a command, you wait for the system to perform the requested
action. When the system completes processing of your command or determines that it cannot
comply, it informs you accordingly with prompts or error messages.

1.3.1 Prompts
Various prompts inform you as to when the system expects input and what type of input it
expects. The prompt character () indicates that a DCL command is expected.

Introduction To TRAX Support Environment

If you do not supply all the information necessary to execute a command, the system will prompt
for required items. The COPY command, for example, requires the name of an input file (the

file to be copied) and an output file (the copy). If you do not specify these files, TRAX will
prompt for them.

*>COFY
FROM? NEWFILE.DAT
TO? NEWFILEZ.DAT

Some commands invoke system functions that have prompting modes of their own. EDIT is one
such command.

The following example shows three different types of prompts:

=EDTLT
FILE? MYPROG.CRL
¥

As noted previously, the > symbol is the DCL prompt; this means that whatever is entered next
will be treated as a DCL command. In this example you respond to the prompt by typing an
EDIT command to invoke the DEC EDITOR.

EDIT is one of many DCL commands that can prompt for command parameters. The editor
program needs a file, and the system prompts for a file specification by typing FILE?.

After you specify the file to be edited, the system locates the file and makes it available to the
editor. At this point, the editor is ready to process editing commands and signifies this by display-
ing its own prompt—an asterisk.

1.3.2 Error Messages
An error message can occur for various reasons, and the contents of the message usually gives an
indication of the problem. For example:

*EDIT ARBCXYZ
EDT - FILENAME OR FILETYFE NOT SPECIFIED

The message occurs because required information was omitted. (The EDIT command requires

that you specify both the file name and file type components of the file you want to edit.) On

the next line, the system prints the DCL prompt character (>) allowing you to enter the command
correctly.

1.4 BATCH FILE PROCESSING

Batch processing allows you to execute a terminal session off-line. The batch processor creates a
virtual terminal for the batch job. A virtual terminal is an entity with the logical attributes of an
interactive terminal. By creating a virtual terminal as a processing medium for your batch job,
the system frees your interactive terminal for other use.

Introduction To TRAX Support Environment

Instead of entering commands one at a time and entering data interactively, you create a file con-
taining all information that you would enter during an interactive session. This information
includes commands and any data that you expect the tasks to require during execution. This
file, or series of files, is submitted to the batch processor and is called a batch job.

For the most part, command lines in a batch file are the same as command lines entered interact-
tively, but there are differences:

1. Command lines in a batch file must be identified as such by a dollar sign ($) as the first
character of the command line. Lines that do not begin with a dollar sign are treated as
data for the preceding command.

2. Every batch command file begins with a $JOB command and ends with an $EOJ command.
These are logically parallel to the LOGIN and LOGOUT commands that begin and end an
interactive session.

3. The batch command set includes commands that can specify alternative actions, respon-
sive to processing conditions. This allows monitoring of job execution. Batch commands
can be labeled to facilitate skipping of commands.

Each batch job produces a log file that records its activity. When listed, it provides a hard copy
record of the job similar to information that appears on the terminal during an interactive session.

See Chapter 6 for a detailed description of batch processing.

1.5 INDIRECT COMMAND FILE PROCESSING

An indirect command file is a file containing a fixed sequence of commands. Unlike a batch file,
it cannot contain data, and commands must be in interactive format (no dollar sign prefix, no
labels, and no conditionals). It does not constitute a terminal session, only an adjunct to the
terminal session that calls it.

Certain specific command sequences occur fairly often. Also, some individual commands can be
rather long and complicated. You can create indirect command files containing such command
sequences.

To execute an indirect command file, type an at sign (@) followed by the file specification of the
indirect file. The system then retrieves the indirect command file and executes the commands
contained therein as though they had been entered directly through the terminal keyboard or
included in the batch stream.

One key difference between batch and indirect file processing is in the way data is supplied to
tasks. Tasks initiated by batch jobs obtain input from data blocks in the batch stream, while
tasks initiated by commands in an indirect file expect interactive input, entered at the issuing
terminal.

14

Introduction To TRAX Support Environment

Moreover, an indirect command file is executed immediately, on the same terminal. A batch file
requires the system to create a virtual terminal. Its time of execution is uncertain, because it
competes with other batch jobs for processing by a batch processor.

See Chapter 7 for a detailed description of indirect command file use.

1.6 PROGRAMMING LANGUAGES

Two programming languages—BASIC-PLUS-2 AND COBOL-are supportable in the Support
Environment. Each compiler is called by a DCL command that you can use in both interactive
and batch mode, or can include in indirect files. Chapter 5 explains how these languages are used
in the Support Environment and how source programs are processed into executable tasks, using
the TRAX Linker. For detailed information on a programming language, refer to the language
reference manual and user’s guide for the particular language.

1.6.1 BASIC-PLUS-2 Language

The BASIC language is easy to learn and is widely used in educational, business, and scientific
applications. The BASIC compiler available to the Support Environment is called BASIC-PLUS-2
and includes many advanced features. In this manual the term BASIC generally refers to the
programming language. The term BASIC-PLUS-2 is used only when necessary to emphasize
attributes of the BASIC-PLUS-2 compiler.

1.6.2 COBOL

COBOL (Common Business Oriented Language) is a pseudo-English language designed primarily
for business applications. The TRAX Support Environment uses the PDP-11 COBOL compiler.
This compiler uses a terminal-oriented line format.

TRAX COBOL conforms to the American National Standard Programming Language COBOL,
ANSIX3.23-1974, level 1, and offers many higher level features. Several utility programs are
provided.

1.7 FILE STORAGE
The Support Environment provides a set of commands for storing and maintaining information.
All information is stored in logical units called files.

A file is defined as an ordered collection of information. The maximum size of a file is one disk
volume. A file can be empty and occupy no disk storage space. If a file contains information,
its minimum size is one disk block (512 bytes).

As a Support Environment user, you will encounter may types of files: source program files, data
files, compiled object files, command files, task images, and batch files, to name only a few of the
most common types. The system provides a standard set of mnemonic file type identifiers that
you can use by default, and also allows you to define file types.

Each file is identified by a unique file specification. The file specification contains several details:
the storage device, the directory on which the file existence is recorded, the file name, the file
type, and the version number.

Introduction To TRAX Support Environment

Any file can be protected against unauthorized access by means of a file security facility.
Every user has at least one User File Directory (UFD). This is a special file that lists all the files

belonging to the user. Chapter 3 describes file management techniques in detail, and Chapter 4
describes the techniques of handling the devices and volumes on which files are maintained.

1-6

CHAPTER 2
USING THE TRAX TERMINAL

This chapter introduces terminal operation in the TRAX Support Environment. It describes the
terminal keyboard and illustrates, by means of a sample session at an LA36 terminal, how to
issue various DCL commands.

2.1 THE KEYBOARD

The interactive user enters information into the system from a terminal. Various types of
terminals can be connected to the system. All have a keyboard that is similar to the keyboard
of a typewriter. Number and letter keys are in traditional typewriter format, but punctuation
and special characters may be in different positions from one type of terminal to another. Also,
terminals have special function keys that typewriters do not have; these vary from one terminal
to another and in some cases may have different names. These functions are described in
Chapter 8.

Figure 2-1 shows the keyboard layout for the LA36 and VT52 terminals. These terminals are
supported at TRAX installations. The LA36 is a DECwriter terminal that uses a hard-copy
(that is, character printing) display, and the VT52 uses a video display.

2.2 A SAMPLE INTERACTIVE SESSION
You communicate with the system by typing commands. Each command defines an action for
the system to perform. ‘

This section demonstrates the use of DCL commands in an interactive terminal session. Figure
2-2 shows the actual commands and system response.

NOTE
In this example, as in some other examples later in
the manual, all system output is printed in red, while
all input by the terminal operator is shown in black.
The numbers in the left margin are for reference, and
do not appear in the actual listing.

Every interactive session begins with a LOGIN command (1) to access the system. After you
type the command name LOGIN, the system responds by displaying USERID?; you respond

by typing your User Name, which in this case is SAMPLE. Then the system requests you to enter
your password, a string known only to you and the system. Notice that the password string is
not displayed as you type it.

You complete the LOGIN sequence, and the system responds with an acknowledging message.
When the system displays the prompt (), it is ready to receive command input.

The first word of every command line (that is, the first work you type after the prompt ()
appears) is a command name. As you will see later in this session, some commands require only

2-1

Using The TRAX Terminal

s |4 R HEK IR HIE NRIE=

e | [Q E|IRI[T|IY||u|l{v]||O]|P||2]!|] |wmel pass

CTRL | [sher S| IDI/I|F BéL HllJ ‘}’g ';f Y1 | return
SHIFT X C Vv B NI M < > 3 SHIFT | |REPEAT)

Figure 2-1 LA36/VTS52 Keyboard Layout

M

2

3)

4

(%)

6)

N

Using The TRAX Terminal

*LOGIN
USERID? SAMPLE
FASSWORD
TRAX VERSION 1.0A S8YSTEM

GOOI' AFTERNDON
18-JUL-78 143137 LOGGED ON TERMINAL TT4!

*NIRECTORY
DIRECTORY DNEROILA40y 407
18-JUL~-78 14338

fr.LE5T51 18-JUL~-78 14114

1
AL O0LS L 1. 18-JU.~78 14t14
H.0BJ5 1 2. 18-JUL-78 14114
ALTEK 1 27 ¢ 18-JUl-78 14314
AJCRLS2 1. 18-JUL-78 14315

TOTAL OF 32./732. RBLOCKS IN . FILES

*DIRECTORY TESTZ2
DIR - NO SUCH FILE(S)

EDIT TEST2.B2S

¥1I

100 FRINT ‘THIS IS A SIMFLE BASIC FROGRAM.~
32767 END

a-\z

¥EXIT

2 LINES OUTFUT

=TYPE TEST2.R2S

100 FRINT ‘THIS IS A SIMFLE BASIC FROGRAM.
32767 ENI

+RASIC

Basic Flus 2 VOl ~53

Basic?

Figure 2-2 Sample Terminal Session A

Using The TRAX Terminal

oLn TEST2
Rasicd
COMFILE TEST2
Raesicl
BUILD TEST2
Rasic?

(8) EXIT

(9) #LINK/RASIC TEST2

(10) »RUN TEST2
THIS I8 A SIMPLE RBASIC FROGRAM.

(11) *DIRECTORY TEST2.%

DIRECTORY LDROIL40+40]
18-JUL-78 14247

EST2. 82851
TEST2.0BJ:1
E T2.CM05 1

> T2.00L.51
S5T2. TERS 1

18-JUL~-78 14143
18-dUL-78 14743
18--0UL-78 14745
18-JUL~-78 14745
18-JUL-78 14744

. e e

U‘ U‘ f.x‘J

TOTAL OF 24,732, BLOCKS IN 5. FILES

(12) =COPY
FROM? TESTZ,TSK
TO? [40:411

(13) =COFY [350+2301AMORT . %
TO? 405407

(14) SRENAME AMORT. 3% INTRST. %%
(15) =TYFE AMORT.EB2S

TYP - NO SUCH FILE(S)
SYQIL A0y 403mMORT . B2E

24

Using The TRAX Terminal

(16) = TYFE INTRST.E28
10 ingut Sinterest’” U
20 let Jd=.4/100
30 ineFut ‘amount’ a
4 ingut ‘rumber of wearssn
50 ineut “rauwments rer wear d om
50 let m=rm¥m N d=4/m N bh=1+i
70 let r=agXi (L-1707n)
100 erint amount ser ravment="Fint{(rX1Q0724+.5)/1072
116 rint “total imterest =it (rkn-a2) k107245 /71072
1000 el

(17) =RUN INTRST
interest
To10
amount
T8 1014]
number of gears?
razuments rer wear? 12
amount rer savments 1086824
total interect = 1E374 001

5

(18) *DIRECTORY LXKk

OIRECTORY DEOICI»11
19—-d.-78 11043

DLDCOBL IR OLES 1 217, O7-JUN-78 08211
UMLLTE.OLRs 1 17. ¢ 19-MAY-78 10121
CORRTS . CMIs 1 L 1. 24 JUN-78 09326
SYSLIR. OLEs2 183. 19-MAY~78 10320
HJUN20925 . CDAY 25481 20-JUN-78 09259

(19) BCL=ARORT DIRECTORY
RMSLIR.OLES

ERMINATED
TIVE 0OFR MCR
IO REQUESTS

(20) 11:44:20 TSk "DIRTA * T
ARORTED VIa D
AND WITH PENDING

21) =LoGouT
TRAX
18-JUL-78 14600 TT4: LOGGED OFF

Using The TRAX Terminal

a command name to fully define their action, while other commands require parameters or qual-
ifiers to be meaningful.

The DIRECTORY command-is meaningful as a single-word command, although you can alter
- its function by using parameters to specify files and qualifiers to request different types of
information about the files.

When you enter a DIRECTORY command with no parameter (2), you obtain a listing of all the
files in your directory. For the present, think of a directory as a set of files belonging to a
particular user. Notice the first of the DIRECTORY output; it indicates that your files are on
the disk DBO=, and that your directory is designated [40,40].

You can also enter a DIRECTORY command specifying particular files. If you specify files

that are not in the directory, you receive an error message (3). Every file specification has several
components, as will be explained in Chapter 3; this particular file specification requests a list of
all files in your directory with file name TEST?2.

The asterisk is a wildcard in the file type component and indicates that all files named TEMP2
should be listed, regardless of file type.

In response, the system informs you that no such files exist at present. Thus you can use this
file name without compromising other files.

Next you create a simple BASIC source program, using the DEC EDITOR. You invoke the DEC
EDITOR by entering an EDIT command. The Editor cannot operate until you have indicated
exactly which file you want to edit. If you do not specify a file when you type EDIT, the system
prompts for a file specification by displaying the word, FILE?. Many DCL commands have
similar prompts.

After you have typed the EDIT command (4), specifying TEST?2. B2S as the file, an asterisk
appears. This is the editor’s prompt symbol, indicating that you are expected to enter an editor
command. That is, you have entered editor command mode. The command I is an abbreviation
for INPUT and alerts the file to include whatever you type next in the file.

After entering the BASIC source code (5), you signal the editor that you have completed the
input information by typing CTRL/Z. You do this by holding down the CTRL key while

typing Z. The * prompt reappears, and, because you are finished with the editor, you type EXIT.
This ends editor command mode, and completes the creation of your file.

The TYPE command lists the file, allowing you to check its content (6).

To build the BASIC source file into an executable task, you enter the BASIC-PLUS-2 compiler
facility by entering the BASIC command (7).

Under BASIC control, you use the commands of that facility to identify the source file, compile
it into object code, and prepare the file for linking a command file. Then an EXIT command
returns your terminal to DCL control (8).

Using The TRAX Terminal

NOTE
This manual describes the features of DEC EDITOR and
the programming languages to the extent necessary to ex-
plain their access relationships with DCL. Before attemp-
ting to use any editing or programming language, you
should study the appropriate reference manual or user’s
guide.

A program must be linked with the system before it can be executed; that is, before it constitutes
a task. After linking this simple program (9), you can run it (10).

The string /BASIC appended to the command name LINK is a qualifier.

This particular qualifier informs the Linker program that the command file TEST2.CMD was
produced by the BASIC-PLUS-2 facility and requires special processing. Either a command name
or parameter can be qualified. Qualifiers always begin with a slash character (/) and are system
keywords appended directly to the command name or parameter.

Now that the BASIC program has been processed, the command
DIRECTORY TEST2.*

shows all the files that were generated during the process (11). EDIT generated the file TEST?2.
B2S, and the file types .OBJ, .CMD, and .ODL were generated under BASIC control. The LINK
command generated the task file, TEST2.TSK, and also the map file TEST2. MAP.

You can copy a file into another directory, with the same group number such as [40,41] (12).

You can also copy files from other directories into your own (13), giving them new names if you
wish (14).

After renaming the copies, you can access the files by the name AMORT only if you also specify
the other directory (15).

You use a TYPE command to check the contents of the source file and find that the file
apparently contains a complete program (16). Then you test it by running the task file (17).

You can list directories other than your own. For example, you can enter the command
DIRECTORY [*,*]

This requests a listing of all directories in the system (18). You might do this if, for example, you
know that someone created a new version of a file on a certain date but are not sure which
directory or directories contain it. Once you find the file, there is no need to continue the
directory listing, which can be lengthy.

To abort a command that is producing output, you must type CTRL/C (typing C while pressing
CTRL) (19). This alerts the terminal for command input. Then you type the ABORT command,
specifying the command name DIRECTORY as a parameter, and the directory output stops. A
message acknowledges the premature termination (20).

Using The TRAX Terminal

When you type CTRL/C, the terminal immediately stops whatever it is doing and issues the
special command prompt, DCL>. This is equivalent to the regular command prompt (>),

except that it also reminds you that you have interrupted terminal output. The output continues
after you type carriage return unless you enter a complete ABORT command whose parameter

is the command or task that initiated the output.

The terminal session is then completed with a LOGOUT command (21).

This illustrative session is only an introduction, intended to acquaint you with the TRAX
Support Environment and the command language that you will use to control it. See Chapter 8
for the details of command syntax, and Chapter 9 for a complete description of the DCL
command set.

2.3 ACCESSING THE SYSTEM

As you have seen in the sample session, you must begin a session by logging in and identifying
yourself to the system. The system manager or operation supervisor at your TRAX installation
assigns you a User Identification Code, a User Name, and a password. If you attempt to log

in but the system does not recognize your identification, you will be denied access.

2.3.1 User Identification Code

The User Identification Code (UIC) consists of two octal numbers, separated by commas and
delimited by a set of brackets. This same code identifies the directory associated with the user.
For example, the UIC in the sample session was [40,40], and directories [40,41] and [350,230]
were also accessed.

The installation system manager assigns UICs. The first number is a group number, and the
second is a member number. Group numbers 1 through 10 are reserved for privileged users.
Privileged users have additional capabilities, such as the ability to control other terminals.

The UIC is associated with all of your files and running tasks. It has the same format as a
directory specification, and its value is the default directory in file specifications.

2.3.2 The User Name

The User Name consists of an alphanumeric string, 1 to 12 characters long, that identifies you
to the system. Each User Name has an associated UIC. The purpose of the User Name is to
provide an identification value that is easier to remember than a UIC.

2.3.3 Password

You are assigned a password of your choice as an additional security measure. The password
prevents unauthorized access to your files and should be kept secret. The password consists
of an alphanumeric string one to six characters long.

2.3.4 Logging In = = the LOGIN Command

After receiving the first Support Environment prompt, you initiate an interactive session by
entering a LOGIN command.

*LOGIN

Using The TRAX Terminal

The system responds byvprompting for user identification:
USERID?
To this you must enter either your User Name or UIC. If you enter your User Name, the system

checks its user records to determine the UIC for that User Name. For example, if your User
Name is MYNAME, you type:

USERID? MYNAME

Then the system prompts for the password associated with the UIC and User Name. For example:
FASSWORD:

You then type your chosen password followed by a carriage return. The purpose of the password

is to confirm the user’s identity, and it should be kept secret. Thus the password is not echoed at
the terminal; that is to say, the characters of the password are not displayed.

If the system recognizes your identification and the password matches the UIC, the system
displays an acknowledgement message. This may be followed by a system login message that

describes system conditions and anything else that the system manager believes you should know.
For example:

TRAX VERSION 1.060 SYSTEM

G000 AFTERNOON
20-JUL-78 133159 LOGGED ON TERMINAL TT4:

However, if either identification value is incorrect, the following error message appears:

LOG -~ INVALID ACCOUNT
If you make a mistake during LOGIN, the LOGIN command does not reprompt for either the
User Name or the password; you must reinitiate the LOGIN command when the prompt (&)
appears again.
After you have completed login, you can proceed with the session.

2.3.5 Terminating a Session = = the LOGOUT Command
To terminate the session, issue the LOGOUT command, as follows:

»>L0GOUT

2-9

Using The TRAX Terminal

There are no parameters. The system aborts all uncompleted tasks and dismounts and
deallocates any private devices allocated to your terminal. When the system responds with an
acknowledging message, the session is over.

TRAX
20-JUL-78 13157 TT4: LOGGED OFF

2.4 REQUESTING COMMAND INFORMATION == THE HELP COMMAND
At times you may want to use a command but you do not know its command name, format, or
keywords.

The HELP command provides this information.

If you enter a HELP command with no parameters, you will get a complete list of command
names.

FHELF
THE FOLLOWING COMMANDS ARE AVAILARLE
ABORT ALLOCATE AFFEMND ARCHIVE
ASSIGN BASIC COR0L COFY
CREATE DEALLOCATE DEASSIGN DELETE
DIRECTORY DISMOUNT EDIT INITIALIZE
LIBRARIAN LINK LOGIN LOGOUT
MACRD MERGE MESSAGE MOUNT
FRINT FURGE RENAME FUN
SET SHOW SORT START
STOF TYFE UNLOCK

~~~~~~ FOR MORE INFORMATION TYFE “HELFY FOLLOWETD RY THE COMMAND

To obtain information about a particular command, include the command name as a parameter.
of the HELP command. For example:

FHELF SHOW
SHOW  FUNCTION
ASSIGNMENTSE IGLORBAL

. LOCAL
DEVICES *k
DEFAULT
MEMORY ok
DAY TINME
TASKS ¥k
TERMINAL ¥k
FARTITIONS
QUEUE %k

Notice that some of the keywords are displayed with two asterisks (¥*). These asterisks are not
part of the keyword; rather, they indicate that further information is available regarding the

2-10



Using The TRAX Terminal

keyword. To obtain information about a keyword, enter the HELP command with two
parameters: the command name and the keyword. For example:

+HELF SHOW TERMINAL
SHOW TERMINAL

OFTION
TYFE!INOISCORE
LOWERCASE

UFFERCASE
INOIFRIVILEGED
[NOIREMOTE
CNOISLAVE
[NOIESCAFPE. SEQUENCE
ENOIHOLI-SCREEN
SPEED DEVICENAME

2-11



Using The TRAX Terminal

2-12



CHAPTER33

MANAGING FILES
AND VOLUMES

3.1 FUNDAMENTAL CONCEPTS

All information stored in the Support Environment is maintained in logical units called files. A

file is a named collection of information organized in a coherent manner. Whenever you wish to
store any kind of information—-a source program, a body of data, a body of prose text, or whatever,
you must have a file in which to store it.

You can create a file at any time with a CREATE command. You can use the flexible EDIT
command to create a file and they specify or alter its contents. You can also create files implicitly
when using certain of the system facilities; for example, the process of transforming a source
language program file into an executable task invariably creates several files along the way.

Once information has been stored in a file, all attempts to access, augment, or manipulate the in-
formation must be done in terms of that file. In other words; you must supply a file specification
equivalent to the one used to identify the new file.

You, like every other user, have at least one directory, formally called a User File Directory (UFD).
A UFD is a special file that serves as an index for all files stored under its auspices. It contains
information for each file regarding file identification and the extent to which the file may be
accessed. :

The magnetic media on which files are stored are called volumes; for example, disks and magnetic
tapes. A volume must be mounted (that is, physically positioned, on a device and connected
logically to the file system) before you can access any file contained thereon.

3.2 FILE SPECIFICATION CONVENTIONS
A file specification provides all information necessary to identify a file.

dev:[ufd] name.type; ver
The file specification identifiers are as follows:

dev:  Specifies the device on which the volume containing the file is mounted. It consists of
either a physical device name or a logical device name assigned to a physical device. Either
type of device name contains two alphabetic ASCII characters followed by a one or two
digit octal unit number. In a physical device name, the two alphabetic characters constitute
a standard device mnemonic known to the system. '

A logical device name is defined by an ASSIGN command to be equivalent to a particular

physical device name. Table 3-1 lists the standard physical device names for the various
devices.

3-1



Managing Files and Volumes

[ufd]

name

type

Specifies the user file directory (UFD) under which the file is stored. The directory
specification is of the form [g,m], where g is the group number and m is the member
number. Both g and m are octal numbers in the range 1 to 377. The brackets are required;
they identify the information as a directory specification.

Specifies the name of the file as an alphanumeric string 1 to 9 characters long.

Specifies the file type and may serve to identify some aspect of the file’s contents. It con-
sists of a period followed by an alphanumeric string 1 to 3 characters long. A period that is
not followed by an alphanumeric character constitutes a syntax error. In many cases, files
created by system utilities or language processors are given standard file types. See also

the section entitled *“‘Standard File Types” later in this chapter.

Specifies the version number of the file, an octal integer to differentiate among files stored
in a directory with the same file name and file type. When you create a file, the system
assigns the file a version number of 1. If you edit a file, the system keeps the original file
for backup and stores the edited file with a version number one higher than that of the
original file. If you want to access the latest version of a file but do not know its exact
version number, specify 0 or omit the version number entirely. Similarly, you can access
the earliest version of a file by specifying a version number of -1.

Table 3-1 Standard Physical Device Names

Device Type Device Name
Disk

(RP04/5/6) DBnn:
(RKO7) DMnn:
(RMO02/3) DRnn:
Line printer LPnn:
Magnetic tape unit MMnn:
System default device SYO:
Logical user terminal TIO:
Terminal TTnn:
Virtual terminal VTnn:

3-2



Managing Files and Volumes

3.2.1 Default File Specification Elements
The file name field is required in every file specification.

Other file specification elements are defaultable. If you do not specify these elements, the system
uses the following defaults:

dev:  Set up at login time; the default is the device on which the system volume is mounted.
That is, the current device associated with the logical device name SYO:. To change this use
the SET DEFAULTS command; to display the device, use the SHOW DEFAULTS
command.

[ufd] Set up at login time; this default is equivalent to your UIC. To change this use the SET
DEFAULT command; to display it, use the SHOW DEFAULT command.

type Standard file types are used as defaults in some commands, while other commands
require explicit file type. The command descriptions in Part II show the default file type,
if any, applied to file specifications in each individual command. The leftmost character of
the file type is always a period, which is part of the file type. Thus, if a file name is
followed by a period no default file type is supplied; if the period is not followed by one to
three alphanumeric characters, it constitutes a syntax error.

;ver For input files, the default is the most recent version number; for output files, it is the next
higher version number or 1 if no previous version exists.

3.2.2 Wildcards

A wildcard is a special file specification element to allow you to specify a set of files with common
elements. By specifying a wildcard (denoted by an asterisk) in a file specification, you can

specify more than one file. You may place the asterisk in any file specification field except the
device name field. The wildcard causes the system to ignore the contents of the specific field

and to select all the files that satisfy the remaining fields.

In general, you can use wildcards in any file specification context that allows multiple files.
For example:
SRNELETE FROG.CRLI2yPROG. TSKF2yFROG.ORJF2

deletes the three specified files. Since the files have the same file name and version number,
but different file types, the following command deletes the same files:

*DELETE PROG.X52

Note that if other files exist having the same file name and version number, these will also
be deleted. In the case of an output file specification, the system is instructed to replace the
field with the corresponding field in the input file specification. As with input file
specifications, the device field must not be wild.



Managing Files and Volumes

3.2.3 Standard File Types

Although you may assign your own arbitrary file types, system operations are simplified by
making use of standard file types. The mnemonics listed in Table 3-2 are used by Digital
software to reflect actual file contents.

The file type to which the system defaults depends on the command to which the file specifica-
tion is directed, and on whether it is referring to an input or output file.

Table 3-2 Standard File Types

File Contents Default
Description File Type

Task image file .TSK
Memory allocation file .MAP
Symbol definition file .STB
Object module file .OBJ
Object module library file .OLB
Overlay description file .ODL
Indirect command file .CMD
Cobol source text file .CBL
BASIC-PLUS-2 source fiie .B2S
Line printer listing file .LST
Data file .DAT
System control file .SYS

3.3 FILE OWNERSHIP AND SECURITY

When you create a file, the system stores it with your UIC in the file header to indicate your owner-
ship of the file. The file is stored with a set of protection codes to indicate who may access the

file and for what purpose.

The system also updates a User File Directory (UFD) by adding an entry to reflect the existence
of the new file. This entry includes the filename, file type, and version. The directory listing
also indicates the file size in blocks and the creation date, and, optionally, the protection code
for the file.

3.3.1 The User File Directory

A User File Directory (UFD) is a file that you can create explicitly using a CREATE/DIREC-
TORY command. The UFD specification is of the form:

[g,m]
The brackets are required; gis the group number and m is the member number. Both g and m

are octal integers in the range 1 to 377. You should consult your system manager to learn the
values of g and m that you are allowed to use.

34



Managing Files and Volumes

Notice that the UFD specification has the same format as a UIC. Every UIC known to the
system normally has 2 UFD with the same g and m values. This UFD is the default directory;
in other words, if you dc 10t include an explicit UFD in a file specification, the system will use
the directory associated with your UIC. Thus, if you always default the UFD in your file
specifications, all your files will be reflected on the same directory and will be recorded on the
system default device. You can list the files stored under a UFD by giving the DIRECTORY
command. For example, the following command lists all files stored under the current default
directory:

*DIRECTORY

Besides the information on the directory listing, the directory contains pointers to the header of
each file. The file header contains information identifying the owner of the file and the
location of the file segments. The following lists all files with the file type CBL:

FOIRECTORY X, CRL§¥
See Part II for detailed description of the CREATE/DIRECTORY and DIRECTORY commands.

3.3.2 File Security
TRAX provides data privacy and system security by a facility that restricts access to volumes
and to files contained thereon. The system recognizes four categories of users:

1. System users are those with a system UIC. A system UIC has a group number of 1
through 10 octal.

2. Owner refers to the owner of the file or volume.

3. Group refers to all UIC’s with the same group number as in the UIC of the owner.

4. World refers to all users of the system, regardless of UIC.

Any of these categories may be truncated to a single letter in the specification; SYSTEM
can be written SYS or S, for example.

SYSTEM, OWNER, and GROUP are subsets of WORLD. Any access permission granted at the
WORLD level is implicitly given at the GROUP, OWNER, and SYSTEM level. Similarly,
OWNER is a subset of GROUP. SYSTEM, however, is a subset of WORLD only, not GROUP
or OWNER.

Four types of access are defined: Read, Write, Extend, and Delete. These are specified by the
codes R W, E, and D, respectively.

You can specify file protection codes in any command that includes a /PROTECTION
qualifier or PROTECTION function. There are four such commands: INITIALIZE, MOUNT,
CREATE, and SET PROTECTION. You specify the value of PROTECTION as follows:

(category-code: access-code [ ,...])



Managing Files and Volumes

For example:
*SET PROTECTION ACEBL (SYS!IRWE s OWNER!RWEDyGROUF IR WORLDIR)
The following rules apply:

1. The parentheses are required.

2. Each user category-code follows a colon. Each category-code may be abbreviated to
one or more letters. The colon is immediately followed by the access code.

3. The access-code consists of any or all of the following letters R, W, E, and D, sig-
nifying Read, Write, Extend, and Delete access. The letters are given contiguously in
this order: RWED.

4. Each category named is given the specific types of access named in its access-code and
is denied all types of access not named.

5. Any category not mentioned keeps the access privileges previously assigned to it.

6. Each category-code: access-code string must be followed by a comma or the right
parenthesis.

You can specify protection codes for a volume when you initialize it, using the INITIALIZE
command. This establishes the primary protection default values for each category mentioned.
In the absence of an explicit protection specification, the following default applies:

(SYSTEM:RWED, OWNER:RWED, GROUP:RWED, WORLD:R)

The volume protection specified by the INITIALIZE command can be overridden by a
MOUNT command.

Current volume protection codes constitute the default for all files stored on that volume.
You can override this default for any individual file, using the CREATE or the SET
PROTECTION command.

You can specify file protection when you use the CREATE command to create a file. If you
create a file by some other means (such as the EDIT command or as a product of a compil-
ation of LINK procedure), you can modify the protection codes by using the SET PRO-
TECTION command. If you do not specify a protection code for a newly created file, the
system applies the file’s default code (set at volume initialization).

For example:

SGET PROTECTION NEWFTIL CMI (SYSTEM IRy QOWNER TRWED s GROUF TRED
modifies the protection rights to the file NEWFIL.CMD as follows:

Access rights of Read to the system category

All access rights to the owner category

Access rights of Read and Write to the group category
Access rights to the world category remain unchanged

3-6



Managing Files and Volumes

Consider the following example:

*EET FROTECTION
FILET NEWFIL.CMD
FROTECTIONT (SYSTEMIRW OWNER I RWINy GROUF $R 2 WORLYY S RWET)

In this case WORLD access rights are total. The other three categories are all subsets of WORLD

and therefore have all access rights despite the limited rights specified for the individual
categories.

You can learn the current protection code on any or all of your files by issuing a DIRECTORY
command using the /[FULL qualifiers. For example:

FPIRECTORY/ZFULL AGX

DIRECTORY DROILA40y407
6-JUL~78 16149

ALCRLFL (22653v4) 1./71 21 -JUN-78 13328
L405401 [RWEsRWELDsRyR]

A.ODLF3 (23633+7) Lo/7%, 2L-JUN-78 16218
L40-,401 LURWEDyRWED RWELDR]

A.OBJF3 (23663:5) 2750 21-JUN-78 146318
L40,401 [RWEDyRWEDyRWED-R]

A.TSK$3 {23676+7) 27./27. C 21-JUN-78 16119

L40+,401 T[RWEDsRWEDyRWEDYR'] 21-JUN-78 16319(2.)

TOTAL OF 31./38. BLOCKS IN 4. FILES

3.4 FILE MANAGEMENT
This section describes the TRAX facilities for creating, manipulating, and listing files.

3.4.1 Creating Files
The Support Environment provides the following methods for creating individual files.

® The RMSDEF utility
® The EDIT command
® The CREATE command

3.4.1.1 The RMSDEF Utility - The RMSDEF utility allows you to define and build command
files or define the structure of a data file through an interactive, conversational process. You
invoke this utility by entering the following command

=RUN $RMSDEF

The system responds by asking you a series of questions, prompting for file structure informa-
tion, and indicating defaults where applicable. If a default is indicated, you can select the
default by pressing carriage return. If no default is indicated, you must enter a valid value in
response to the question. The following is a typical file definition using RMSDEF.



Managing Files and Volumes

*RUN $RMSDEF

00 YOU WANT TO GENERATE A COMMAND FILE FOR FUTURE USE(NO)?
ENTER YOUR FILE SFECIFICATIONIRIDFIL.DAT

FILE ORGANIZATION (SEQ):

RECORD FORMAT (VAR)?

MAXIMUM RECORD SIZE (0)1512

WILL YOU ALLOW RECORDS TO CROSS ELOCK BOUNDIARIES (YES)?

D0 YOU WANT CARRIAGE RETURN CONTROL (YES)?

00 YOU WANT PLACEMENT CONTROL (NODT

ALLOCATION (0 -- IT IS SUGGESTED YOU ENTER A VALUE) 1500
DEFAULT EXTENSION QUANTITY (0 - IT IS SUGGESTED YOU ENTER A VALUE):$10
D0 YOU WANT A& CONTIGUOUS FILE (NO)?

SFECIFY FROTECTION RY CLASS

OWNER (RWETN ALLOWETD

GROUF ! (RWED ALLOWED)

SYSTEM: (RWED ALLOWED)

WORLD: (R ALLOWED)

YOUR FILE HAS BEEN CREATED!!) -- 8YI![40,401RDFIL.DATF1
ENTER YOUR FILE SPECIFICATION:"Z

After you have provided all the information needed to create a file, the RMSDEF utility
informs you that the file is ready to receive input.

NOTE
This utility does not include a facility to let you specify
record contents, only the file structure. You write records

into the file by means of an application program or the
MERGE command.

The utility continues to prompt for file structure information until you terminate it by typing
CTRL/Z (" Z). See Appendix A for a detailed description of the RMSDEF utility.

3.4.1.2 The EDIT Command - Issuing the EDIT command invokes the DEC EDITOR. This
editor allows you to create a sequential file and specify its contents.

The EDIT command is especially useful for constructing source program files and text files.

The EDIT command is described in Part I of this manual. Also refer to the DEC EDITOR
Reference Manual (Order Number AA-5789A-TC) for a complete description of the DEC
EDITOR (also known as the EDT Text Editor).

3.4.1.3 The CREATE Command - The CREATE command is a DCL facility provided for
users who prefer to specify file structure in a single command rather than in response to a
series of prompts. Batch users in particular will usually find the CREATE command easier
to use than the RMSDEF facility. The form of the CREATE command is:

> CREATE [/qualifier[s] ] file-specification



Managing Files and Volumes

This creates an entry in the appropriate UFD for the file you have specified.

You can create files with any of three types of file organization: relative, sequential, and
indexed.

1. SEQUENTIAL files are organized so that records are accessed sequentially. Records
are retrieved from a file in the same order in which they were originally written.

2. RELATIVE files are organized so that records of the file may be accessed randomly
based on their position relative to the beginning of the file.

3. INDEXED files are organized so that each record has associated with it at least one key
field. When records are written to such a file, index tables are constructed. Records
are accessed by specifying the part of the record that contains the key.

You specify each by the qualifiers /SEQUENTIAL, /RELATIVE, and /INDEXED respec-
tively. Sequential organization is the default.

The qualifier /[FORMAT specifies the record type of the file. Three types are available:

1. Fixed length records. All records are equal and non-varying in size.
2. Variable length records. At file creation time you specify the size of the largest record
that may be written to the file.

3. Variable length records with a fixed control field. This record format is supported
only for MACRO programmers.

If the created file has indexed or relative organization then you can specify the protection
access rights for that file by using the qualifier /PROTECTION. A sequentially organized

file takes the default protection set at volume initialization.

For example:

FOREATE/RELATIVE/FORMATIFIXED L L20/PROTECTION? (GROUF § RWE » WORLDZRE)
FILEY FILE.DAT

creates the file FILE.DAT with relative organization and the specified protection code.

If the file organization is sequential, you may type input to the new file line by line following
the command string. When a line is terminated, it is sent to the file exactly as formatted at the
terminal. You then close the file by typing CTRL/Z.

If the file organization is not sequential, then only a file skeleton is produced. You fill the
file either explicitly using a program, or by using the MERGE command.

For indexed files, the command qualifier, /INDEXED/ and KEY are required. When you create
an indexed file, you must always specify at least the primary key position and length.



Managing Files and Volumes

3.4.2 Copying Files
The COPY command creates a sequential file copy of either a concatenated series of sequential
files or copies all records from an indexed or relative file.

Copying a disk file to another disk file without specifying file organization (/SEQUENTIAL,
/RELATIVE, or /INDEXED) on the input file always produces an exact copy. If, however,
the file organization of the input file is specified, the output file is always sequential.

When copying any file to magtape, the output file must always be sequential. Thus, you must
always specify the file organization of the input file when copying to magtape. If you copy a
contiguous disk file to magtape, and later recopy the magtape copy to disk, the new disk copy
will be sequential and noncontiguous.

Multiple file specifications and wildcards are permitted on sequential input files. On indexed
or relative input files only one file specification is allowed and wildcards are not permitted.

Since only sequential or identical file copies are created, no file qualifiers on the output file
specification are allowed.

Optional qualifiers /REPLACE and /CONTIGUOUS enable you to specify that any previous
copy of the output file is deleted before creating a new copy, or that the output file is to be
contiguous.

When you copy indexed or relative files, the file structure is not optimized; that is, an exact
copy of the file is made.

For example:

FCOFY ARC IND/INDEXEDZRKEY ENUMBER §3
TO? XYZ.SEQ

will copy all records from the indexed file ABC.COR to the sequential file XYZ.SEQ in the
order specified by the second alternate key.

3.4.3 Appending Records

The APPEND command appends records to an existing sequential file. The records may
originate from a collection of sequential files or they may be all the records from within an
indexed or relative file.

Qualifiers specify the organization of the input file. If you give no qualifier, sequential
organization is assumed.

If you specify (or assume) sequential organization, multiple input file specifications and wild-

cards are permitted. Since you can append records to only one sequential file, no file qualifiers
are necessary (or allowed) on the output file. The same restriction applies to wildcards.

3-10



Managing Files and Volumes

If the originating file is indexed, specify the qualifier /KEY:NUMBER:n and /INDEXED. The
default key is the primary key. This will determine the key of access, which in turn determines
the order in which the records are accessed.

If the originating file is indexed or relative, only one file specification is permitted and wild-
cards are not allowed.

For example:

*APFEND FAYROLL .DAT/INDEXED/KEY :NUMBER 2 MASTER.DAT

will append all records from the indexed file PAYROLL.DAT to the sequential file MASTER.DAT
in the order determined by the first alternate key.

3.4.4 Merging Records
The MERGE command merges records from an input file into an existing output file.

The input file can be either indexed, relative, or sequential (sequential is the default). If the file

is indexed, you specify the order of record extraction by using the qualifier /KEY:NUMBER:n.
The default key is the primary key. Do not specify wildcards in the input file. The output file
must have relative or indexed organization, and must exist before you issue the MERGE command.

The MERGE command can be used to optimize the internal organization of an indexed file. This is
useful because an accumulation of updates and deletions to indexed files can cause a fragmented
and inefficient index structure in the file.

You must specify the organization of the output file; it is either indexed or relative, but not
sequential.

By specifying the optional /LOG, a log of all error messages will be created during the merge
sequence. The error messages detail all records that for any reason could not be merged into the
output file. They will appear on the terminal or be put into a specified file.

For example:

*MERGE FAYROLL1.SEQ FAYROLL2.DAT/INDEXEI

merges all records from the sequential file PAYROLL1.SEQ to the indexed file PAYROLL2.DAT.

3.4.5 Renaming Files

By issuing the RENAME command, you are able to rename existing files. The specifications of
both the original file and the new file must contain both filename and file type. In addition, the
device name must be the same in both specifications. Files can be renamed across UFD’s,
privilege permitting.

3-11



Managing Files and Volumes

For example:

FRENAME OLX. TMF NEW.THMF

renames the file OLD.TMP to NEW.TMP

3.4.6 Sorting Files

The SORT command invokes the SORT command program, allowing you to read an input file,
sort its contents, and write out the sorted data to an output file. Control (or key) fields determine
the sorting sequence.

The SORT command also enables you to extract key information, sort that information and store it
on a permanent file. This file can then be used to access your original file in the order of the key
information on the sorted file.

There are two sorting techniques available:
® Record Sorting produces a re-ordered file by sorting entire records on a specified key.

® Tug Sorting produces a re-ordered file by sorting only the key records to build a sequence
of record pointers.

Specifying the qualifier /PROCESS and the required keyword will invoke one of these sorting
techniques.

Alternatively you may specify the qualifier /SPECIFICATION to control and direct the sort.
This qualifier has the same effect as /PROCESS but is not limited to sorting files of uniform format.

The other qualifiers to the SORT command define file specifications or other parameters associated
with the input and output files.

For full details of the use of the SORT command, read the TRAX SORT Reference Manual. The
SORT command is described in Part II of this manual.

3.4.7 Displaying File Contents
The TYPE command displays the contents of all specified files at the terminal. Both the filename
and file type are mandatory.

For example:

*TYFE MYFROG.CEL»YOURFROG.CREL

This displays the contents of two COBOL source program files.

CAUTION
Displaying binary files, such as object task images, can place your terminal
in unpredictable modes of operation. If this should occur, see your
system manager.

3-12



Managing Files and Volumes

3.4.8 Printing Files ,

The PRINT command causes one or more specified files to be spooled to a line printer. Spooling is
the technique of queuing printer output in the form of jobs; the time a job is actually printed
depends on several variables, including a priority value. If you do not specify the file type, .LST is
assumed. .

The PRINT command has numerous options for controlling the printing of files. See the descrip-
tion of the PRINT command in Part II for further information.

For example:

*PRINT MYFROG1MYFROGZyMYFROG3 . TMF
prints the files MYPROG1.LST, MYPROG2.LST, and MYPROG3.TMP on the line printer.
3.4.9 Removing Files from a Directory
The DELETE and PURGE commands enable removal of unwanted files from the directory, thereby
releasing system resources.
DELETE is oriented to deletion of particular versions of a file, or all versions of a file. Ina
DELETE command, each file specification must include a file name, a file type and a file version
number.
The following command deletes version 3 of the file TEST1.TMP.

*DELETE TEST1.TMFP#3

By specifying version number as a wildcard, you can delete all versions of a file, as in the following
example.

*DELETE TEST2.TMFix ITEMS.DAT:2

All versions of TEST2.TMP are deleted, and version 2 of the file ITEMS.DAT is also deleted.

The PURGE command also deletes specified files from the directory, but saves one or more of
the most recent versions. The following command purges all but the latest version of TEST.TSK.

*PURGE TEST.TSK
If you want to save more than one recent version, use the /KEEP:n qualifier. For example:

*PURGE/KEEF 3 TEST.TSK

3-13



Managing Files and Volumes

Assuming, as an example, that the highest numbered version of TEST.TSK is 7, the /KEEP:3
qualifier causes version 7, 6, and 5 to be retained in the directory while deleting all versions of
TEST.TSK numbered 4 or less. Notice that you will not necessarily have three versions of
TEST.TSK after the purge. If version 6 has been previously deleted, only versions 7 and 5 will
remain. Version numbers are always octal integers.

Although the DELETE command syntax requires a version component in each file specification,
PURGE file specifications must not include file version numbers.

You can direct DELETE and PURGE commands only to files for which you have delete access
rights.

If you specify file names, or versions thereof, that do not exist in the directory, the following error
message appears.

DEL —~~ NO SUCH FILE(S)

This message is followed by a list of files that you specified for deletion but are not present in the
directory. For example:

DELETE TEST.TSKi2ZyTEST.TSK3 4y TEST, TSK# L« TRYOUT . TMF § X
DEL —- NO SUCH FILE(S)
SYQILA0,40ITEST . THK$23

DEL -~ NO SUCH FILE(S)
5Y0IL40-401TEST . TER§ 1
DEL - MO SUCH FILE(S)

SYOILAQs40TTRYOUT . TMP 5 ¥

The error messages indicate that of the files specified in the DELETE command, only TEST.TSK ; 4
was present and was deleted. The system lists each file specification for which no file or files could
be found, along with an error message for each instance.

3-14



CHAPTER 4

MANAGING SYSTEM DEVICES
AND VOLUMES

This chapter describes the commands and procedures for preparing, assigning, and accessing
devices. This chapter describes commands only to the extent needed for you to understand over-
all procedures. See Part II for detailed command descriptions.

A device is any equipment connected to the system for input and output of information. The
most commonly used devices include user terminals, line printers, disk storage units, and magnetic
tape units of various types.

At system generation time, all devices in the system are established with certain characteristics,
such as line width, speed of data transfer, and accessibility. However, these initial device
characteristics are not always suitable for the task at hand, and you may need to make temporary
changes to devices in the system. Also, you may need to initialize volumes.

Devices can be either volume-oriented or nonvolume-oriented. Disk or magnetic tape devices are
volume-oriented; they store information on interchangeable volumes that can be physically
attached or detached from a device. Terminals and line printers are nonvolume-oriented devices;
their purpose is to communicate, not store, information.

The volume-oriented devices are file-structured. Volumes must be initialized and mounted before
they can be accessed. The nonvolume-oriented devices require no initialization or mounting.

4.1 ACCESSING DEVICES

Access to any given device can be shared by all users, or allocated to one user as a private device.
Shared devices are potentially accessible by everyone and are either public or nonpublic. Public
devices are not allocatable. Nonpublic devices are available for allocation; when allocated, they
become private devices.

As a nonprivileged user (that is, one with an octal group number higher than 10 in your UIC),
your file accessing privileges and restrictions are as follows:

. You can access public devices but not reserve them for your exclusive use.

. You can access a nonpublic device that is not allocated as a private device by another user.

. You cannot access a private device allocated to another user.

. You can allocate a nonpublic device for your private use, if it is available.

. You can mount volumes only on your private devices.

. You can learn the status of all devices in the system by entering the SHOW DEVICE
command.

AN AWM -

4-1



Managing System Devices and Volumes

4.1.1 Displaying Device Names and Status

The SHOW DEVICES command displays device names, their status, and the system device
assignments. The display is made on the entering terminal. The device names appear in the left
column while the right column contains information about each device. For example:

=SHOW DEVICES

RO: FURLIC MOUNTED LOADED

DR1: LOADED

ne2: LOADRETD

DE3: FURLIC MOUNTED LOALDED

RGOS LOADED

IR1L: MOUNTED LOADED

MMO § LOADED

MM 2 LOADED

LFO? DRO? SFOOLED LOADED

TTO2 Cis11 - LOGGED ON LOADED
TT1: LOADET

TT2% LOADED

TT3: LOADED

TT42 [40:401 ~ LOGGED ON LOADED
TTSE Cis1l - LOGGED ON I.OATIED
TTé2 LOADRED

TY7: L350y 23271 ~ LOGGED ON L.OADED
TTL1O3 Cle11 - LUOGGED ON LOADED
NL.O3

UToz LOADED

UT1Lz: LOADED

utTZ2: LOADED

TIOZ

COos TTo:

CLOx LFOS

SFOz DRO:

LEBOZ ngo:

8Y01 DEO:

In the previous list, all device names from DBO to the TTn names are physical device names.
The DBn names indicate disks, MMn indicates magtape drives, LPn indicates line printers, and TTn
names indicate physical terminals.

The device names in the left column can be either a physical device name or a logical name. A
logical name uses the same syntax as a physical device name. A device name consists of two alpha-

betic characters and a one or two digit octal number followed by a colon (%),

Beginning with TIO:, the list at the bottom of the SHOW DEVICES example shows the standard
pseudodevice names used by some system tasks. Their typical usage is listed.

4-2



Managing System Devices and Volumes

TIO: for terminal input

C00: for console output

CLO: for system listing

SPQ: for spooling

LBO: for library input device and queue file
SYO0: for system input/output device

VTO is a special device name, indicating a virtual terminal. A virtual terminal is a nonphysical
terminal generated by the system at the commencement of each batch job; it provides a terminal
environment for processing of the batch job without occupying a physical terminal.

Notice in out example that SPO, LBO, and SYO are pseudo devices which, in this case, are associated
with the same disk unit, DBO.

The following notes describe the device status information that can appear in the right column.
More than one message can appear on the same line.

MOUNTED
Indicates that a volume is logically connected to the file system.

PUBLIC
Indicates that the device is a shared device that you can access, but not allocate for private
use.

MARKED FOR DISMOUNT
Indicates that the system will dismount the volume when the system completes current
file accesses on the volume (no new file accesses may be initiated).

OFFLINE
Indicates that the device was included in the system at system generation time, but for some
reason has been removed from the system configuration.

[uic] LOGGED ON
Indicates that the user identified by [uic] is logged onto the system at this terminal.

LOADED ;
Indicates that the access software for the device is loaded, and the device is available for
access.

UNLOADED
Indicates that the access software for the device is loadable, but, is not currently loaded.

SPOOLED

Indicates the device in the left column is a spooled device. When you output files to a
spooled device, the system temporarily stores the files on the device specified in the right
column. The system transfers the files to the spooled device according to the rules discussed

in the Queue Management and Spooling section of the TRAX Manager’s and Operations
Manual.

4-3



Managing System Devices and Volumes

E xcept for spooled devices, a device name in the second column is the physical device for the
corresponding logical name in the first column.

A terminal name in the second column followed by the text “- PRIVATE” indicates that the
device named in the first column is allocated to the user logged onto the terminal in the second
column.

4.1.2 Allocating and Deallocating a Device
Use the ALLOCATE command to establish a specified device as your private device and prohibit
other general users access to the device.

You must allocate a device before mounting a volume. This prevents another user from either
accessing the volume or allocating its device before you can issue the MOUNT command.

You cannot allocate a public device or a device already allocated. A device already allocated is
called a private device.

For efficient resource management, deallocate devices when they are no longer needed. The
system manager or the device’s owner can deallocate a private device using the DEALLOCATE
command. The system automatically deallocates and dismounts your private devices when you
LOGOUT.

4.1.3 Mounting a Volume for File Access

The MOUNT command logically connects a volume to a device. The volume must have been
previously initialized (see the description of the INITIALIZE command). After you mount the
volume, tasks access the volume by specifying the associated device name.

On receipt of a MOUNT command the system verifies that the device is on-line. Also, it checks
the volume label that you specify against the volume label on the volume. If the volume labels
do not match, the MOUNT command fails.

Each task verifies that a volume is mounted before attempting a file access. This ensures that
you access only public devices or your own private devices.

For efficient resource management, you should dismount volumes and deallocate your private
devices when you no longer need them. You can mount volumes only on your private devices.

4.4.4 Dismounting a Volume

Use the DISMOUNT command to logically disconnect a volume from the file system. When you
issue a DISMOUNT, the system immediately inhibits additional file access by marking the volume
for dismount. (As explained in the description of the MOUNT command. the system verifies

that file access is permitted before each access.) The system then suspends dismounting the volume
if any files are being accessed at the time you issue the dismount command. The system issues a
message to your terminal when the dismount operation is complete.

4-4



Managing System Devices and Volumes

12315803 ¥k DROL o~ DNISMOUNT COMPLETE

You can dismount only volumes mounted on your private devices. The system dismounts your
private volumes and deallocates your private devices when you LOGOUT.

4.2 PREPARING DEVICES
You can alter many device features or characteristics. This section describes the commands
required to either initialize, select, display, or change device characteristics.

4.2.1 Displaying and Changing Device Characteristics
The following commands display or change device characteristics:

e SET DEVICES

e SHOW DEVICES
e SET TERMINAL
e SHOW TERMINAL

All devices, such as line printers, terminals, disks, and magnetic tapes, have variable characteristics.
These characteristics are given a default value at system startup. You can specify the SHOW
DEVICE and SHOW TERMINAL commands to display current device characteristics. The SHOW
TERMINAL command displays the terminals’ characteristics, while the SHOW DEVICES
command displays device characteristics that are applicable to all the devices (including terminals).

You can specify the corresponding SET commands, SET TERMINAL and SET DEVICE, to change
characteristics of your private devices.

4.2.2 Initializing a Volume for File Access
The INITTIALIZE command produces a file-structured volume on a disk or magnetic tape device.

The system creates a Master File Directory on disk and creates a volume label on magnetic tape.
You can re-initialize a volume that was used previously, but the system destroys all existing files
on the volume.

After the volume is initialized, you must mount the volume. The volume is then ready for you
to access.

4.2.3 Creating a User File Directory (UFD)
The CREATE/DIRECTORY disk creates a User File Directory on the specified device. You are
restricted to your private file structured devices.

4.3 ASSIGNING DEVICES

A device name can be either a logical name or a physical device name. The system assigns a device
a physical device name during the system generation procedure. A logical name uses the same
format as a physical device name and is initially unassigned. Since some tasks use logical device
names to access devices, logical names must be assigned to physical devices before such tasks can
run. At system start up, the system assigns the system logical names such as SYO: and LBO:. If
your installation uses logical names, it is either the responsibility of the programmers to make local



Managing System Devices and Volumes

assignments or the responsibility of the system manager to make global assignments of logical
names to physical devices before running tasks which depend on such assignments. Using logical
names is especially useful if you are not certain which devices are available when you need them.
For instance, you can choose a logical name that everyone can use for a certain data pack. Then
regardless of where the data pack resides, everyone can access it by using the same logical name.

4.3.1 Making and Changing Device Assignments

Use the ASSIGN command to link a logical name to another logical name or physical device name.
Assignments are made at three levels: local, login, and global. When two or three assignment
levels specify the same device names, the system resolves the conflicting assignments based upon an
established priority. The priority list appears as follows:

1. Local
Tasks recognize local assignments before login and global assignments. Local assignments
apply to tasks executed from the terminal where you made the assignments. You make
local assignments with the ASSIGN/LOCAL command. As a privileged user, you can also
make local assignments for other terminals by using the /TERMINAL qualifier.

When you specify the SET DEFAULT command, the system reassigns the login logical
name, SYO:, to the local device name you specify. The system accesses the login logical
name as the system device, which contains your files.

2. Login
Tasks recognize login assignments before global assignments. Login assignments apply to
tasks executed from the same terminal. The system assigns the login logical name, SYO:,
when you issue the LOGIN command. The system assigns the login logical name, SYO:, to
the default system logical name, SYO:.

The system assigns the system logical name to a physical device name at system startup.

You can request a display of this information by specifying the SHOW DEVICE command.
3. Global

Tasks recognize global assignments if there are no local and login assignments. Global

assignments apply to all tasks running in the system. You make global assignments with the

privileged ASSIGN/GLOBAL command.

Privileged users can assign and deassign any local, login, or global assignment, while nonprivileged
users are restricted to the local assignments that they make. Use the DEASSIGN command to
remove a local, login, or global logical name assignment.

4.3.2 Displaying Device Assignments

The SHOW ASSIGNMENTS command displays the device assignments. When you specify the
command, the system displays your local and login assignments. Assuming that you are logged in
at terminal 4, the following example shows an assignment list before and after a local assignment:



Managing System Devices and Volumes

>*SHOW ASSIGNMENTS
SYO: SYO! LOGIN TI - TT4:
+ASSIGN DE2: DOS! '
*BHOW ASSIGNMENTS
nos: DR23 LOCAL. TI - TT4:
5Y0!? SY0! LOGIN TI -~ TT4:

The first SHOW command lists the login assignment. After the ASSIGN command equates logical
device name DOS: to physical device name DB2:, this local assignment is shown in the second
SHOW command.

4.3.3 Making and Changing Device Assignments

The ASSIGN command equates logical names to physical device names and other logical names
assigned previously. You are responsible for local assignments and deassignments. The system
makes login and global assignments at system setup time.

The DEASSIGN command disassociates a logical name. There is no automatic deassignment for
login assignments when you log off the system. Local assignments can be deassigned explicitly by
command or automatically when you log off the system.



Managing System Devices and Volumes

4-8



CHAPTERS
PROGRAM DEVELOPMENT

5.1 INTRODUCTION

Depending on the nature of your job and the specific requirements of the installation, you may
develop and run your programs in batch or interactive mode. In particular, you might create, edit
and test programs interactively and then, after preliminary testing is complete, build procedures
and do live runs in batch streams.

You can compile (or assemble), link and execute programs in batch mode using most of the same
commands as used interactively; the only difference is that you must add a dollar sign prefix to
each command line. For example, a COPY command must be written $COPY if it is to be executed
in batch mode. Batch commands are stored in a batch command file before submission to the
batch processor using the SUBMIT command. Refer to Chapter 6 for a description of batch
processing.

In either interactive or batch mode you may use an indirect command file that contains commands
to compile (or assemble), link and run one or more source programs. An indirect command file

is a sequential file containing command sequences. To execute the file, in batch or interactive
mode, issue an @ sign, followed by the file specification. For example:

+@COMFIL

The @ sign is used only for invoking indirect command files, and is valid only as the first character
in an interactive command line. In a batch command line, the @ sign must be preceded by the $§
sign, as with any batch command line.

Generally, you must complete four stages to transform a source program into an executable task
and run it. These are:

1. Create one or more source files

2. Translate (compile or assemble) the source file to form an object file
3. Link the object file to form an executable task

4. Run the executable task

The following four sections describe each of the above.

5.2 CREATING SOURCE FILES
In general there are three methods you can adopt to create source files:

1. Invoke the DEC EDITOR facility by issuing the EDIT command. This enables you to create
and edit source files. DEC EDITOR is an interactive editing program that uses editor
commands to create and modify source programs and other files containing ASCII



Program Development

character data. Use of the DEC EDITOR is recommended for creating or modifying any
type of ASCII file.

2. If you intend to write the source program in BASIC, you can invoke the BASIC-PLUS-2
facility by issuing the BASIC command. This facility provides limited editing functions
oriented to the particular needs of BASIC programmers.

3. You can also use the CREATE command, in principle. However, CREATE is designed
primarily for creating skeleton files. It includes no editing functions, and is intended
primarily for batch processing.

4. You may also set up skeleton files, using the COPY command.

In general, you should use the EDITOR to create BASIC and COBOL source files. DEC EDITOR
is an interactive editing program for creating and modifying source programs and other files con-
taining ASCII character data. You can, if you wish, keep skeleton COBOL files containing the
division and section headers common to all COBOL programs. Then you can COPY such a file,
and use the EDITOR to add the operative information.

5.3 COMPILING SOURCE FILES

TRAX can compile source files written in BASIC or COBOL. The specified source file is compiled
or assembled, thus creating an object file. Optional command qualifiers detail the output required.
For example, you may request a listing file to be produced.

The /SWITCH qualifier available with COBOL tailors translation of the source file to your partic-
ular requirements. The relevant language user’s guide contains full details concerning the use of
the switches controlled by this qualifier.

5.3.1 Using COBOL

Before running a COBOL program you must create a source file, submit it to the compiler and
link the object file. This section details how to compile COBOL programs. Linking and execution
is described later in this chapter. For futher details concerning programming in COBOL on TRAX
systems consult:

TRAX COBOL Language Reference Manual
TRAX COBOL User’s Guide

5.3.1.1 Compiling Source Files — After creating the source file (using either the EDIT command
or other suitable facility as described in Section 5.2) issue the COBOL command to compile the
specified COBOL source file. More than one source file can be compiled in one execution of the
COBOL command.

Command qualifiers detail the output you require. For example, /OBJECT [:object-file-spec]
produces an object file named according to object-file-spec. Conversely, INOOBJECT specifies
that an object file will not be produced. /OBJECT is the default.

JLIST [:list-file-spec] produces a listing file named according to list-file-spec. /NOLIST specifies
that a listing file is not to be produced. This is the listing facility default qualifier.

5-2



. Program Development

The COBOL compiler provides switches that enable you to tailor compilation to your particular
requirements. The command qualifier /SWITCHES in conjunction with a particular keyword
specify the required switch. The compiler operates according to defaults if you do not specify
/SWITCHES. For detailed information on these switches see the TRAX COBOL User’s Guide.

For example:

»COROL/0ORJECT{FPROGL.ORS FROG2.CEL

compiles file PROG2.CBL to create the object file PROG1.0BJ. No listing file is generated.

5.3.1.2 Linking COBOL Object Files — After you have compiled or assembled the source program
and obtained an object file, you must perform one additional step to form the object program into
an executable task. This step is called linking.

TRAX is designed to allow routines to access library routines and other user-written routines. All
object modules must be processed by the TRAX linker; thus, object files, whether or not they access
library or other routines, are not in executable condition as produced by the compiler or assembler.

In the TRAX Suppbrt Environment, the task is the fundamental executable unit. A task consists
of one or more routines, each routine having been derived from an object file.

As a simple example, assume that you have just compiled a COBOL source program stored in the
file COBPROG.CBL. Thus your directory contains an object file with the file specification
COBPROG.OBJ. This object file consists of relocatable code; in this conditon, it is called unlinked
object module.

The Linker is a system program that takes object modules and system library modules as input, and
merges this information to form a task image file. All object modules require references to a system
library to determine final storage locations of instructions and data and to establish the required
interfaces with the system hardware and software facilities. The Linker resolves these references.

To link the object module COBPROG.OBJ, you could enter the following command:

*LINK COBFROG.OEJ,[1,1ICOBLIB/LIERARYy[1y 1IRMSLIR/LIBRARY

This is the simplest instance of the LINK command for a COBOL program using RMS I/O. The
name of the task image file defaults to COBPROG.TSK, taking the file name and adding the type
.TSK that is standard for task image files.

In this example, the COBOL source program is assumed to contain no CALL statements. In
COBOL, the CALL statement is used to reference other user-written routines. If the program did
contain a reference to a routine stored in the file EXTMOD.OBJ, that file would also have to be
included in the input file sequence:

5-3



Program Development

=L INK CORFROG.OR.Js EXTMOD,OEJs L1y 11COBLIE/LIRRARY » L1y 1IRMSLIB/LIBRARY

The files COBLIB and RMSLIB are required input file specifications when linkirig a COBOL pro-
gram. These are library modules needed to support the COBOL linking. Notice the file qualifier
appended to each file specification, indicating to the Linker that they are library modules.

The LINK command has many more optional features to meet various processing demands. In
general, command qualifiers further define the action of the Linker and the conditions of the link
operation.

Input file qualifiers tell the Linker that some kind of specialized processing is required on the
associated input file. For example, /LIBRARY (abbreviated to /LIB in the example above)
indicated that the input file contains library modules to be searched before the system library.

The Linker provides an overlay capability as a means of reducing the memory and virtual address
space requirements of a task. A task can be divided into overlay segments that reside on disk until
they are needed. :

The Linker has many optional features and techniques, of which detailed description is beyond
the scope of this manual. Part II of this manual describes the LINK command in some detail,
defining all the qualifiers. However, you should consult the TRAX Linker Reference Manual for
an in-depth description of the Linker.

5.3.2 Using BASIC-PLUS-2
This section provides a general overview of BASIC-PLUS-2 usage; for detailed information regard-
ing the BASIC-PLUS-2 language see the TRAX BASIC-PLUS-2 Language Reference Manual.

The technique of creating executable task images from BASIC source programs is substantially
different from that used for COBOL. Before running a BASIC-PLUS-2 program, you must create
a file that contains a source program in BASIC-PLUS-2 language. Then you must invoke the
BASIC facility to compile the program and prepare it for linking. The BASIC command does not
itself compile the program and create the necessary input for the Linker (as COBOL and MACRO
does). Rather, it places your terminal under control of the BASIC-PLUS-2 compiler and allows
you to direct the compilation. using the command language of BASIC-PLUS-2.

5.3.2.1 Creating BASIC-PLUS-2 Source Files — As mentioned previously, you need not be under

BASIC-PLUS-2 control to prepare BASIC source code. However, you may feel it advantageous

to have the use of the BASIC-PLUS-2 control language and error detection facilities while prepar-

ing BASIC-PLUS-2 source code.

5.3.2.2 Invoking BASIC-PLUS-2 — The following command invokes the BASIC-PLUS-2 compiler:
*RASIC

There are no qualifiers or parameters.

54



Program Development

The system then responds with an identification line followed by the prompt:
Rasicl

This prompt appears whenever the terminal is under BASIC-PLUS-2 control. It follows the
invocation of BASIC, and also follows the completion of every BASIC-PLUS-2 control language
command. Wherever this prompt occurs, the terminal is expecting BASIC-PLUS-2 input — either
BASIC source code or a BASIC control command. It will not accept DCL commands.

5.3.2.3 Compiling and Linking a BASIC-PLUS-2 Source Program — Assume that you have a
BASIC source program file MYPROG.B2S in your directory. Before running this program, you
must do the following:

1. Issue a BASIC command. After an identification line, the BASIC2 prompt appears,
indicating that BASIC-PLUS-2 input is expected.
2. Identify and compile the file you intend to process. For example:

gL.o MYFROG
Racic?
COMFILE

Rasicl

The COMPILE command translates the source file MYPROG into an object module with
default filetype .OBJ. .

3. Issue a BUILD command. This creates an indirect command file (default filetype .CMD)
and an overlay description file (default filetype .ODL). The program is now ready for
linking.

. Issue an EXIT command. The DCL command prompt now appears on the terminal.

. Issue a LINK command to complete the building of the task. The LINK command
(described in more detail in the next section) must include the /BASIC qualifier, and must
specify the name of the program specified in the BUILD.

wn B

FLINK/BASIC MYFRDG
When the > prompt appears the TRAX linking process is completed. LINK generates an
executable task with default filetype .TSK.
The entire display appears as follows:

*RASIC

RBasic Plus 2 Vo1-53



Program Development

Basic?

oL MYFPROG
Basied
COMPILE
Rasic?

RUTLI

-

Begicl
EXIT
*LINK/7RBASIC MYFROG

When this prompt appears, the linked task file MYPROG.TSK is in your directory and
available for use as the parameter of a RUN command.

5.4 TASK EXECUTION AND CONTROL
After you have performed the necessary compilations and linked the object and library modules
into an executable task image, you are ready to execute the task, using the RUN command.

You can obtain information about installed tasks by means of the SHOW TASKS command.

Once a task or command has been started, you can stop it and force an orderly termination, using
the ABORT command.

5.4.1 Running a Task: the RUN Command
The RUN command directs the system to locate a specified task image file, install it, run it, and
remove it from the system following completion. For example:

SRUNZTASKITEST MYFILE.TSK

MYFILE.TSK is the file specification of the task image file; it calls for the latest version of the
file. /TASK:TEST specifies that the task will have the name TEST while it is in the system.

In this example:
*RUN TFILE
the task image file is TFILE.TSK; in a RUN command, the filetype default is .TSK. The command

gives no explicit task name; thus the system assigns the terminal device name TTnn as the default
task name, with nn the unit number of the terminal issuing the RUN command.

5-6



Program Development

5.4.2 Displaying Task Status: SHOW TASKS

The SHOW TASKS command displays information about tasks on your terminal. You can request
information on one task only, on all active tasks only, or on all installed tasks. Moreover, you

can request a simple list of task names, or detailed information about each task.

5.4.3 Aborting Either a Task or Command: the ABORT Command

The ABORT command terminates the execution of either a RUNning task or the command
specified by ‘“‘task-name”. Aborting a task causes the system to force an orderly termination of
the specified task. To effect the termination, the system:

® Performs I/O rundown. I/O for all non-file-structured devices are cancelled, I/O for
file-structured devices is allowed to complete and then the files are deaccessed. All
allocated devices are deallocated.
® Display the abort message.
Upon completion of the ABORT, the task-name is displayed on the originating terminal.

To abort a task started with a RUN command, enter the ABORT command with the command
qualifier /TASK. For example:

*ARORT/TASK TSK1

The task TSK1 is aborted, and a message appears on the terminal when the abort operation is
complete.

If the /TASK qualifier is not present in the ABORT command, the system assumes that you are
attempting to abort a command. The following two ABORT commands are equivalent:

*ARBORT/ZCOMMAND TYFE

*ABORT TYFE
Prior to aborting any command that produces terminal output (such as TYPE, DIRECTORY, or
SHOW) you must type CTRL/C to suspend terminal output. The terminal cannot relay input
to the system while producing output.

You can use the ABORT/COMMAND format instead of ABORT/TASK to abort a running task.
For example:

ARORT RUN
This aborts the RUN command that started the running task, and therefore aborts the task itself.
To abort an indirect command file task, enter the following:

+ARORT/TASK AT.

AT. is the task name applied by the system to all indirect command tasks.



Program Development

5-8



CHAPTER 6
BATCH PROCESSING

The TRAX Support Environment allows execution of commands in either interactive or batch
mode, as described previously. In earlier chapters, this manual has described DCL mostly in terms
of interactive use. This chapter describes the application of DCL to batch processing.

6.1 FUNDAMENTAL CONCEPTS

A batch file consists of commands and data. Every command line in a batch file must have a
dollar sign ($) as its leftmost character and can have a label. Labels allow you to skip commands
in the event of a status error. Lines in the file that are not commands are considered data blocks
to be used as input to the preceding command.

Every batch file must begin with a $JOB command and end with an $EOJ command. A batch job
is structurally similar to an interactive terminal session; the $JOB command is analogous to an
interactive LOGIN, the $EOJ corresponds to the LOGOUT, and the data blocks provide the infor-
mation to the program that you would enter in response to prompts from a running program.

You invoke a batch job by means of a SUBMIT command that specifies an existing batch file in
its parameter field. A SUBMIT command can name one or several batch files, and can be given
either as an interactive command or as a batch command. That is to say, you can invoke a batch
job from another batch job.

Batch jobs are controlled by the Queue Manager. Each batch job is placed in a batch queue, main-
tained by the Queue Manager to await processing by the batch processor. The batch processor
passes individual commands to a command interpreter.

An interactive session is always associated with a physical terminal. Similarly, when you submit a
batch job the batch processor creates a virtual terminal. All interaction between the batch jobs and
the system facilities is identified with the virtual terminal, thereby freeing the physical terminal
(from which the job was submitted) for other use.

6.2 BATCH COMMAND FORMAT
The general format of a batch command is

$[label:] command-string

Every batch command begins with a dollar sign character. Any batch command line can have a
label consisting of 1 to 6 alphanumeric characters followed by a colon. The label allows the
command to be the target of a GOTO command that appears earlier in the batch file. Space and
tab characters between the colon and the command-string are ignored. The command-string



Batch Processing

consists of any DCL command executable by the batch processor. Note that the dollar sign pre-
cedes the label.

Batch commands that do not fit onto one line can be continued. A hyphen appears as the right-
most character on the line to be continued. Continuation lines do not start with dollar signs and
must not be labeled.

6.3 THE BATCH PROCESS COMMAND SET

Most batch commands are identical to interactive commands, except that the batch command must
have a dollar sign prefix and can be labeled. The following interactive commands are not applicable
to batch processing:

ARORT
ALLOCATE
DEALLOCATE
LOGIN
LoGouT

The following batch commands are not used interactively, or in an indirect command file:

$OATA
S$EQD

$EO0J

$G0OTO
$IF

$JOR
$0ON
$SET [NOJON

As mentioned previously, the batch commands $JOB and $EOJ correspond to the LOGIN and
LOGOUT commands used to begin and end an interactive session.

The differences between the interactive and batch command sets are due to intrinsic differences
between interactive and batch processing.

6.4 THE BATCH LOG FILE

The activities of each batch job are recorded in a log file associated with the job. (NOTE: In this
context, ‘“job” means the file or files included in the SUBMIT command that initiated the action.)
This provides a hard-copy record of the job similar to the information that appears on a terminal
during an interactive session. The log file is printed automatically when the entire batch job is
complete unless you specifically ask that it not be printed. You can suppress the log file listing

by including the /NOPRINT qualifier in the SUBMIT command that you issue to submit the job.
If you specify /NOPRINT, the log file will be placed on your account with a file name correspond-
ing to the job name and a file type of .LOG.



Batch Processing

6.5 BEGINNING AND ENDING A BATCH JOB
The $JOB command marks the beginning of a batch job file. It has the following format:

$JOB [/TIME:xx] job-name [uic]

The optional qualifier/TIME:xx gives the maximum number of minutes (in wall clock time, not
CPU time) that the job is allowed to complete its run, beginning from the time the SUBMIT is
issued. Job-name is the name by which the job will be identified in the batch log.

The uic parameter specifies a User Identification Code of the form

[g,m]

The uic is optional. This parameter allows privileged users to log in under another UIC during
the batch job.

The $EOJ command marks the end of the batch job file, and has the following format:
$EOJ
There are no qualifiers and no parameters.

6.6 BATCH DATA BLOCKS

Often you must supply data to programs run under batch control. When you run programs
interactively, you enter data inresponse to prompts from the running task. In batch processmg
you must supply data in the form of a data block.

In the following example, NEWMEM is an application program that requests information on new
members of an organization. It requires the name, address, phone number and dues prepay-
ments for each new member, and uses the information to create new records in a central
membership file. You can supply this information to the program by means of a data block.
When the end of the data block is reached, NEWMEM terminates, and the running of another
application program called MEMLIST supplies a listing of the updated file. The following
sequence runs NEWMEM, supplies the necessary data for these new members, and then runs
MEMLIST.

$RUN NEWMEM

HENRY, SAMUEL

13 OAKLAND AV, SUDBURY
285-9009

20,00

CURRY, JANET

140 LINDENWOOD DR, SUDBURY
287-8123

15.00



Batch Processing

TOWNE, DAVID
NO PERM ABODE -
581-3345

0.00

$RUN MEMLIST

Notice that the data does not include dollar sign characters at the beginning of any line.
Data entered in the form shown above must not include dollar signs as the first nonblank
character of the line, because the system would interpret a dollar sign as the beginning of a
batch command.

To enter program input that contains dollar sign characters as the first nonblank character
on the line, you must precede the input data with the following command:

$DATA/DOLLARS

This alerts the system that the lines of data to follow may possibly begin with dollar signs.
All information that follows this command is treated as data until the following command is
encountered:

$EOD

This command has no qualifiers or parameters; it simply marks the end of the data block.
You can include this command at the end of any: batch data block, but it is only required
when you must terminate data that includes dollar sign characters. ($EOD is also used to
terminate data following a SCREATE/DOLLARS command.)

Normally, all data blocks are included in the log file for the batch job. If you wish to
suppress this copying, you must include a $DATA command that includes the /NOCOPY
qualifier:

$0ATA/NOCOFPY

The log file does not receive the data that follows.

In general, you need only include the $DATA command when you wish to use the
/DOLLARS qualifer, the /NOCOPY qualifier, or both. $EOD is required only when a prior
$SCREATE/DOLLARS or $DATA/DOLLARS command is present.

6.7 ERROR STATUS AND SEQUENCE CONTROL
Commands and tasks return a status on exit, indicating whether an error occurred. In batch
processing you can specify alternative action to be taken in the event of an error.

6-4



Batch Processing

6.7.1 Status Levels
Any of four exit status levels can occur:

SUCCESS
WARNING
ERROR
SEVERE_ERROR

If exit with status is not implemented in the task or command, no status level is returned to the
batch processor and execution continues as if the status had been SUCCESS.

SUCCESS indicates that results should be as expected.

WARNING indicates that the task has succeeded, but with possible irregularities, and that results
may not be as expected.

ERROR is stronger than WARNING:; results are unlikely to be as expected.

SEVERE__ERROR indicates one or more fatal errors and that the command or task may have
been terminated prior to completion.

6.7.2 Conditional Processing

Four batch commands are designed to control the processing sequence in a batch procedure. They
specify alternative action to be taken by the batch processor should an error occur in a command
or task.

6.7.3 The $SON Command

The SON command specifies action to be taken in the event that any subsequent command
returns an exit status with a severity as great or greater than that specified in the command. Its
format is:

$ON status-level THEN action

The status-level must be one of the following:

WARNING
ERROR
SEVERE_ERROR

Then the action must be one of the following:
CONTINUE

STOP
GOTO label



Batch Processing

The arguments of the $ON command are stored in local memory, and referenced whenever a

command or task that returns a status level is executed. $ON is a global command. These argu-
ments remain in force until superseded by another $ON command, until end-of-job, or until the
$ON command actually takes effect. Any individual $ON command can be executed only once.

If no $ON command is in effect, and execution produces an exit status of ERROR or SEVERE-
ERROR, the processing of the batch job stops. That is to say, the initial (or default) setting is
$ON ERROR THEN STOP. The STOP action causes the batch processor to skip all remaining
commands in the batch file. If an $ON command is found, on attempted execution, to be faulty,
the batch processor reverts to the default setting.

Example:

$0N ERROR THEN STOF

$COROL MYFROG
$LINK MYPROG
$RUN MYFROG

If the assembly is completed with a status of success or warning, the job continues with the linking.
If the linking produces no status worse than a warning, the task is run. If however, a status level of
ERROR or SEVERE-ERROR is produced by the SMACRO, $SLINK, or $RUN command, the batch
job is stopped.

6.7.4 The $SET [NO]ON Command
The $SET NOON command suspends the influence of the $ON command currently in effect. Its
format is:

$SET NOON

The $SET ON command reinstates the SON command that was previously negated by a $SET
NOON command. Its format is:

$SET ON

6.7.5 The $IF Command

The $IF command is similar to the $ON command, except that it operates locally, pertaining only
to the last preceding command (excluding other sequence-control commands). Also, it tests only
for status-level actually specified; the THEN action is executed only if the status-level returned by
the preceding command matches exactly the status-evel specified in the $IF command. Its format
is:

$IF status-level THEN action

Status-level must be one of the following:

6-6



Batch Processing

SUCCESS
WARNING
ERROR
SEVERE-ERROR

The action parameter is the same as for the $ON command.

6.7.6 The $GOTO Command

The $GOTO command instructs the batch processor to unconditionally skip all commands up to a
specified label. Execution continues at the command bearing that label. Only forward branching
is allowed. The format is:

$GOTO label

The $GOTO command must appear with a label. The label must appear, followed by a colon, in
front of a later command, or the job is terminated. For example:

$ON WARNING THEN GOTO ELSE
$LINK MYFROG
$RUN MYFROG

$GOTO END
$ELSE! ON WARNING THEN GOTO END

$LINK OLIFROG
$RUN OLDFROG
$END?! EOJ

In this example, MYPROG is linked and run unless the link includes warning errors or worse, in
which case OLDPROG is linked and run. If linking OLDPROG results in an error status, the setting
of ON causes the command processor to look ahead for the label END.

Note that GOTO can be used both as a standalone command and as part of an $IF or SON
command. Both types of usage are depicted in the preceding example.

If no warning status occurs during the linking of MYPROG, MYPROG is run. On completion, the
batch processor skips ahead to the terminating EOJ command.

6.8 SUBMITTING A BATCH JOB
You can submit a batch job during an interactive session or from another batch job with the follow-
ing command:

[$] SUBMIT [/qualifiers] batch-file-spec [,...]

The batch-file-spec is promptable. Each batch-file-spec must refer to a file that consists of batch
commands, the first command being a $JOB command. If no file type is given, the default is .CMD.



Batch Processing

The SUBMIT command places the batch file or files into a batch queue to await processing.

Qualifiers allow you to specify:

The batch queue into which the job is to be placed (/QUEUE)

Whether the job can be restarted from the beginning following an interrupt (/[NO]
RESTART)

The queue priority for the job (/PRIORITY)

Printing or non-printing of the log file for the job (/[NO] PRINT)

A date and time at which the job will become eligible to be dispatched from the batch
queue to the batch processor (/AFTER)

The name of the batch job (/JOB)

Whether to submit original copies of files from a private volume, or to make a temporary
copy ([NO] ORIGINAL)



CHAPTER 7
INDIRECT COMMAND FILES

In using the Support Environment, you may find that you use certain interactive command
sequences (or long single commands) fairly often. Rather than type such commands each time
you want to execute them, you can store them in an indirect command file.

An indirect command file is a sequential file that contains one or more interactive commands. The
commands in an indirect command file are invoked as a unit, and are executed as single commands,
one after another, until you reach the end of the file. Unlike batch files, they execute immediately
at your terminal, and can accept interactive input.

7.1 CREATING AN INDIRECT COMMAND FILE

You can create an indirect command file most easily by calling the DEC EDITOR, using the EDIT
command. (See the TRAX Text Editor Reference Manual for information on the use of the DEC
EDITOR.) The standard .CMD file type is recommended. Then enter commands as text in the
same format as you would enter them on interactive session. For example:

COFY L[350s2301TRANSACT .DAT TRANSERACK.DAT

FURGE TRANSBACK.DAT
FRINT TRANSBACK.DAT

You can, if you wish, create an indirect file for generalized use, omitting the command parameters.
When you invoke the file, the individual commands will prompt for its parameters. For example:

COFY
FURGE
FRINT

This indirect command sequence will prompt for parameters at your terminal on each command,
so that you can use it for any file. This technique is especially useful for creating sequences that
include lengthy commands with fixed qualifiers, but variable parameters.

7.2 INVOKING INDIRECT COMMAND FILES
To execute indirect command files, enter a command consisting of an at sign, @, followed by file
specification of the file containing the commands.

7-1



Indirect Command Files

If the file type is omitted, the default file type .CMD is assumed. Thus the following two com-
mands are equivalent:

RINDSEQ

@INDSER.CMD

You can invoke an indirect command file in either interactive mode or batch mode, but the
indirect command file must contain only interactive commands. To invoke the file INDSEQ from
a batch file, the command is:

$RINDSEQ

Illustrative Applications

1. Suppose you have an indirect command file IND.CMD that contains the following
information:

Cary
FURGE
TYFE

You invoke this file by entering the following interactive command.
FRIND.CHMD

The three commands prompt for parameters and execute as follows:

*@IND.CMD

=COPY

FROM? [350¢230JAMORT.B2S
TO? REVAMFT.B2S

+PURGE

FILE? REVAMFT.X

=TYPE

FILE? REVAMFT.R2S

10 inFut Cinterest’

20 let J=4/7100

30 ineut ‘amount’ a8

40 ireut ‘number of wears’ n

30 inrut ‘ravments rer gear’ iy om

&0 let rm=r¥Xm \ i=4/m \ b=1+1

70 let r=aXi/(1-1/b7mn)

100 erint amount rer sayment="Fint(rX1072+.5)/1072
110 srint “totel interest = 3imt (irkn-2Y%10724.,.5)/1072
1000 end

+@ CEOF:



Indirect Command Files

Note that you enter only the @ command and the responses to the prompts for file speci-
fication. After the last command is executed, the system indicates this by displaying the

following:

@ <EOF:

2. The following sequence deletes all copies of temporary files (with file type .TMP) and
purges all but the most recent copy of all other files prior to logout.

DELETE *.THMPi*
PURGE *. %
LOGOUT

This kind of directory cleanup is often a lengthy procedure. By using an indirect command
file, you can invoke the procedure and allow it to run without attending the terminal. The

terminal listing is as follows:

#BLOGF.CMD
*DELETE *.,THMPi*

*PURGE #.%

*LOGOUT
15:23:28 TASK "AT.T4 " TERMINATED

HAVE A GOOD AFTERNOON
’ ABORTED WIA DIRECTIVE OR MCR

O3-JUN-78 15:23 TT74: LOGGED OFF

You need not leave the terminal power up once you have invoked the indirect command unless

you need the listing.



Indirect Command Files



PART TWO

SUPPORT ENVIRONMENT COMMANDS

— REFERENCE -






CHAPTER 8
FORMAT CONVENTIONS

8.1 COMMAND DESCRIPTIONS
Command descriptions in Chapter 9 include the following information, as required:

1. The name of the command.

2. A brief statement of the command’s purpose or action.

3. The general format of the command, showing all elements of the command. See Section

8.2 for detailed information on command format.

4. The possible prompts that the command can issue to request additional information, such
as file specifications or tasknames omitted from the command.

. Descriptions of the command parameters, such as file specifications.

. Descriptions of the qualifiers for the command. Qualifiers are key words whose first char-
acter is a slash (/). Generally, there are two categories of qualifiers: command qualifiers
and parameter qualifiers.

AN W

Command qualifiers are those which appear immediately after the command name, before
any parameters that the command may contain. They influence the overall command
action. Many commands allow or require multiple qualifiers.

Parameter qualifiers influence only the parameter whose specification they immediately
follow. '

7. Whatever additional notes may be needed to describe the syntax and action of the command.

8.2 GENERAL FORMAT NOTATIONS
In describing general command formats, notation conventions are as follows:

1. Command names are shown in upper-case letters. Batch command names also have a lead-
ing dollar sign ($).

2. Parameters are shown in lower-case letters, and specify the type of information that you
must provide. Parameters used in the descriptions are as follows:

Parameter Information Required

file-spec File specification, as described in Chapter 3.

in-file-spec The parameters in-file-spec and out-file-spec are used only when needed

out-file-spec  to indicate the order of the parameters (as in a COPY command).

task-name The name of an executing task.

function A secondary keyword required in some commands to further define
the action of the command.

8-1



Format Conventions

device-name A device designation; this can be either physical device name or a
logical device name.

logical-name A device designation; this must be a logical device name.

ufd A User File Directory.

user-id A User Identification Code or User Name.

The above list is not complete. Descriptions of some specialized parameters are included
in the description of the command in which they appear or are self-explanatory.
3. Qualifiers are depicted in two forms:

® A slash followed by a string of upper-case letters, indicating the actual characteris-
tics of the qualifiers.
® A slash followed by the lower-case word “qualifier’”, indicating that any of several
qualifiers are valid.
4. Colons, periods, commas, semicolons, dollar signs, and slashes are part of the elements in
which they appear, and are required where shown.
. Square brackets [ ] indicate that the material enclosed within is optional.
6. Ellipses ... indicate that the immediately preceding parameter is repeatable;i.e., multiple
values are allowed for the parameter. Separate multiple values by commas.

w

8.3 ISSUING COMMANDS

You communicate with the system by issuing commands. A command consists of a command
name which describes the action the system is to take (COPY or LOGIN, for example), often
accompanied by one or more parameters. Parameters either describe the items on which the
command is to act or further define the function of the command.

Both command names and parameters can have qualifiers. Qualifiers are appended as a suffix to
modify or further define the command name or parameter.

Commands can be entered at an interactive terminal only when the system is prompting >. Some
commands (EDIT and BASIC, for example) invoke a program that accepts its own set of commands,
valid only while that program is running. In tum, system commands are not valid while that pro-
gram is running; you must first return control to the system. The descriptions of EDIT and BASIC
in Part IT describe how to terminate the invoked program’s execution.

8.3.1 Command Structure

A command consists of a command name followed by a set of parameters. (A batch command
also contains a dollar sign and an optional label.) The command name specifies the type of action
for the system to perform, and the parameters indicate those entities on which the command will
perform the action.

A command name or parameter can include a set of qualifiers that modity or complete its mean-

ing. Qualifiers are appended directly to the command name or parameter with no embedded
spaces.

82



Format Conventions

The general format of a command is as follows:
[$[label:]] command-name [/qualifier...] parameter [/qualifier...] ...

You can either supply the command name followed by the parameters on one line or enter the
parameters in response to prompts. In both batch and interactive mode, when two or more
parameters are on one line, they must be separated by at least one space or tab.

A command may require more than one line A hyphen (-) as the last character on the line contin-
ues the command onto the next line. Following the carriage return, the system prompts:

neL:

An exclamation mark (!) line indicates the start of a comment. The comment text appears after
the exclamation mark, and the rest of the line is treated as commentary.

8.3.2 Command Names

Every command begins with a command name that describes the action the command is to per-
form. You need not enter the complete command name to have it function correctly, only
enough of its leading characters to uniquely identify it. No command name requires more than
four characters for unique identification, and in some cases one character suffices.

For example, DEASSIGN and DEALLOCATE can be abbreviated to DEAS and DEAL respective-
ly, but further abbreviation would make the command ambiguous. However, TYPE can be
abbreviated to T, because no other command begins with that letter.

NOTE
To ensure compatibility with further versions of TRAX (which may include
new commands), you should use at least four characters to identify commands
in batch and indirect command files.

8.3.3 Parameters

A parameter either describes a value that a command uses when executing, or it further defines
the action of the command. At least one space or tab must separate the first parameter from the
command name; parameters are then separated from each other by one or more spaces (and/or
tabs).

If you do not enter all the parameters that the system requires to execute the command, the
system prompts until all required parameters are entered.

As an example, the COPY command is used to make new copies of files. It requires the name of
the file to be copied and the name of the new file to be created. If only the command name,
COPY, is entered, the system prompts for the name of the existing file by typing FROM?. It then
prompts for the name of the file to be created by prompting TO?.



Format Conventions

The COPY command can be entered in any of the following ways.
*COFY OLDFILE.DAT NEWFILE.DAT

*COPY OLDFILE.DAT
TO? NEWFILE.DAT

=COPY
FROM? OLDFILE.DAT
TO? NEWFILE.DAT

8.3.3.1 Optional Parameters - TRAX DCL never prompts for optional parameters. You must
supply optional parameters on the same line with required parameters. This means that you must
respond to each parameter prompt appearing on your terminal. For example:

+~SHOW
FUNCTION? QUEUE ALL
FRINT QUEUES
FRINT .
LFQO
TEST
EBAFO
RATCH QUEUES
BATCH

TRAKIT
SURVEY
CHRIS

8.3.3.2 Parameter Lists - Some commands allow a parameter to be replaced by a list of para-
meters. For example, in a DELETE command, a single file specification can be replaced by a
list of file specifications. When a parameter is a list of items, the items are separated by commas.
Extra spaces are ignored.

Example:

*DELETE ARC.CEBL#Xy AR.OBJF1

8.3.4 Qualifiers

A qualifier consists of a character string, recognizable by the system, with a slash (/) as its first
character. Its purpose is to modify or further specify the meaning of a command name or a
parameter.

Qualifiers are directly appended to the qualified element, so that an element and all of its
qualifiers form a string with no embedded spaces. Any qualifier may be abbreviated if it contains
enough characters to distinguish it from any other possible qualifiers for that command. Any
qualifier can be uniquely abbreviated to four leading characters.

84



Format Conventions

8.3.4.1 Command Qualifiers - Command qualifiers modify the action of a command. For
example, consider the following COBOL command string:

>COROL/NOORJECT COBSRC.CRL1

Normally (i.e., that is, by default) the COBOL command produces an object file. In the example
string, the /NOOBJECT qualifier overrides the default action, and no object file is produced.

Some commands have no qualifiers, while others have many possible qualifiers. Multiple qual-
ifiers are permitted. For example:

>COBROL/NOORJECT/LISTI!CORLST.TMF COBSRC.CELs1

Some command qualifiers include variables; the /LIST qualifer, for example, can specify a file to
receive a listing. There is no prompting for qualifiers or for qualifier variables.

8.3.4.2 Parameter Qualifiers - In some commands, parameters such as file specifications can have
qualifiers. Parameter qualifiers further specify parameters that require special treatment. In the
following APPEND command, the /RELATIVE qualifier informs the system that the input file
DAT.TMP;1 has relative file organization.

+~AFPEND DATA.TMP#1/RELATIVE UFDATE.DAT

8.3.5 Underline Convention
To improve readability, some DCL words include an underline character joining two or more
English words. For example:

CREATE/VOLUME-LABEL = SEVERE-ERROR

When such DCL words are abbreviated the underline is treated the same as an alphabetic
character. Thus the following are all valid abbreviations for the qualifier VOLUME—~LABEL.:

VOLUME L
VOLUME_
VOLU

The following abbreviations are not valid:

VOLUME _ LBL (interior characters omitted)
VOLUME-LAB (hyphen vot valid)

8.4 TERMINAL KEYBOARD FUNCTIONS

You type the input text one line at a time, terminating each line with a carriage return (RETURN).
The system either prints the terminal input on the terminal printer or displays it on the screen

of a display unit.



Format Conventions

Function keys can be used to format a line (Space Bar, TAB), to edit a line (DELETE), or to
access the uppermost of two characters that appear on a key (SHIFT, SHIFT LOCK). Typing a
carriage return (RETURN) causes the system to process the current line.

Table 8-1 describes the function keys, as they appear on the LA36 and VT52 support terminals,
and the effects of their use. :

The CTRL key produces a variety of functions when pressed simultaneously with any one of
several letter keys.

The combination of CTRL and another character key is called a control character. In this manual
a control character is written as “CTRL/x” where x represents a variable character key.

The effect of a control character sometimes depends on the activity that the terminal is
currently supporting.

Table 8-2 lists all the control characters supported under TRAX and their associated functions.

Table 8-1 Keyboard Functions

Key Description
CTRL Used in combination with several 1-key letter keys to produce a variety of
functions.
DELETE Deletes the last character typed at the terminal, and further continuous
characters if the key is pressed repeatedly.
ESC Terminates a line of input without moving the carriage or cursor.
LINE FEED Physically moves the paper or rolls the screen image upward, without

influencing the system in any way.

RETURN Terminates the current input line and enters the line into the system; the
carriage or cursor advances to the first character position of the next line.

SHIFT Prints or displays the uppermost of two characters appearing on a key
typed while SHFFT is held down.

SHIFT LOCK or Alternately locks and unlocks SHIFT' mode on alphabetic characters.

CAPS LOCK This key does not affect nonalphabetic characters.
SPACE BAR Advances carriage or cursor one space at a time.
TAB Causes the carriage or cursor to move to the next tab stop on the line. A

line conventionally contains tab stops every eight character positions.

8-6




Format Conventions

Table 8-2 Control Key Functions

Key

Description

CTRL/C

CTRL/I or TAB

CTRL/K
CTRL/L
CTRL/O

CTRL/Q

CTRL/R

CTRL/S

CTRL/U

CTRL/Z

CTRL/C typed either as the first character in the line or when the terminal
is producing output causes the system to prompt for command input.

If the last character entered at the terminal was CTRL/S, CTRL/C also
performs the function of CTRL/Q.

Advances the carriage or cursor to the next horizontal tab stop on the
line. The system establishes tab stops at every eight characters in the line.

Causes a vertical tab by performing four line feeds.
Performs eight line feeds.

Alternately suppresses and resumes the display of output at the terminal.
The system discards characters directed to a terminal that has disabled the
display of its output.

CTRL/Q typed after a CTRL/S resumes output suspended by the previous
CTRL/S.

Typing CTRL/R before typing a line terminator causes the system to
retype the current line on a new line, omitting any depleted characters. If
the current line is empty, CTRL/R performs a carriage return and line feed

Typing CTRL/S while the terminal is receiving output suspends additional
output until you type CTRL/Q or CTRL/C. The suspended output is
merely delayed, not lost (see the description of CTRL/Q). The combined
functions of CTRL/Q and CTRL/S are convenient when using a display
terminal that transmits faster than you desire.

Typing CTRL/U before typing a line terminator causes the previously
typed characters to be deleted back to the beginning of the line. The
system responds with a carriage return and line-feed so that the line can be
re-typed. CTRL/U is echoed as CU.

Is a break character indicating end-of-file. Use it when the system is
expecting input as a signal to indicate that you are finished typing in data.
Most system utilities will bring all processing to an orderly termination and
exit in response to this function.




Format Conventions

8.5 CORRECTING INPUT ERRORS

Before terminating a line, you can correct typing errors by using the DELETE key or change the
line completely by using CTRL/U. However, once a command has been terminated (and thus
input to the system) it cannot be corrected; the system will perform, or attempt to perform, the
operation you specified. File information can be corrected by editing.

8.5.1 Deleting Individual Characters
The DELETE key deletes the most recent character on the current line for each pressing of the
key. DELETE has no effect when the current line is empty.

On a hard-copy terminal, each deleted character is echoed. The string of deleted characters is
enclosed between an initial and a final backslash (\). These backslashes are generated by the
system for visual reference, and are not included in the data. The final backslash is printed when
a new text character is typed in place of DELETE. Backslashes and deleted characters are
omitted in the case when CTRL/R is used to make a copy of the line as typed so far.

On a video terminal, such as a VT52, each deleted character is removed from the screen, and the
cursor returns to where it was before the character was typed.

For example, to change ACCDE to ABCDE, the user presses DELETE four times to override the
CCDE. On a hard-copy terminal the string now appears as

ACCDE\EDCC

The user then enters the correct sequence BCDE. On the hard-copy terminal, the string now
appears as

ACCDE\EDCC\BCDE
On a display unit the screen will show the string
ABCDE
In both cases ABCDE is the string accepted and sent to the computer when the line is terminated.

8.5.2 Deleting a Line
CTRL/U deletes all characters on the line, prints ~NU, and performs a carriage return. The user can
then enter the text correctly.

For example, if you type ACCDEFGHI, but meant to type B for the first C, pressing the DELETE
key eight times would be tedious and the result confusing on a hard-copy terminal. It would be
easier to press CTRL/U and start again. The latter method would appear as follows:

ACCDEFGHI AU
ABCDEFGHI



Format Conventions

After using the DELETE key to correct a line and before terminating the line, you can ensure
that the final result is what you want by typing CTRL/R before pressing carriage return. This
displays the connected line contents before it becomes computer input.

Further corrections can be made at this point if necessary.

8.6 ABBREVIATIONS

When you type a system keyword (such as a command, or qualifier, or fixed parameter value),
you need only type enough leading letters to uniquely identify it. However, the characters that
you do include must match those of the corresponding characters in the full name. The system
does not attempt to resolve invalid names by dropping characters from the right-hand end. If,
for example, you are typing a COBOL command:

COBOL is a complete command name.

COB is a valid abbreviation of COBOL.

CcO is ambiguous, because COPY begins with the same letters.
CBL is invalid, because no command begins with the letters CBL.

Any keyword can be abbreviated to the first four letters and be recognizable. Some keywords
can be abbreviated to a single letter. Nevertheless, when creating batch procedures or indirect
command files for long-term use, you should consider limiting abbreviations to four characters;
this will ensure compatibility with future enhancements.



Format Conventions

8-10



CHAPTER9
COMMAND DESCRIPTIONS

This chapter describes the set of TRAX commands available to the general user. Commands are
presented in alphabetical order.

9.1 ABORT
The ABORT command terminates the execution of a command or a running task that you have

originated. Aborting a task causes the system to force an orderly termination of the specified
task. To effect the termination, the system:

® Performs I/O rundown. I/O for all nonfile-structured devices is cancelled. I/O for file-
structured devices is allowed to complete and then the files are deaccessed. All attached
devices are detached.

® Displays the abort message.

Upon completion of the ABORT, the task name is displayed on the originating terminal.
Format:

ABORT(/qualifier] task-name

Command Qualifiers: Default:

/COMMAND /COMMAND

/TASK
/DUMP

Prompts:

>ABORT
COMMAND NAME?

or

>ABORT/TASK
TASK NAME?

Command Parameter:
task name The name of either the task or command to be aborted.

If a command name, it may be abbreviated. See the
Command Qualifiers for further information.

9-1



Command Descriptions

Command Qualifiers:

/COMMAND

/TASK

/DUMP

Notes:

Abort a DCL command; such as DIRECTORY or RUN.
The task-name given to an interactive command is
XXXTnn where XXX is the first three characters of
the command and nn is the number of the originating
terminal. If the command is a batch command (orig-
inating from a virtual terminal), a V appears in the
task-name instead of a T.

Abort a user task.

ABORT/TASK “name” is used to abort a task whose

name appears in the active task list for the issuing

terminal or for the system as a whole.

The indirect command file task is aborted by specifying
ABORT/TASK AT.

on the originating terminal.

See the SHOW TASKS command to display active task
names.

Requests a post-mortem dump of the aborted task or
command.

If the command or task that you want to abort is producing output (as in the case of a DIREC-
TORY command, you must type CTRL/C. This causes the system to prompt DCL>. Then
you enter the complete ABORT command, including the command or task-name. If you type
ABORT and then press carriage return, the system will not prompt until it has completed its
current output commitment. If you are issuing the ABORT command to suppress unwanted
terminal output, you must enter the complete command in response to the DCL> prompt.



Command Descriptions
Examples:

This example aborts the currently active user task called TEST.

*RUN/TASK!TEST ENDLES.TSK

DCL>ABORT/TASK TEST

11338135 TASK °*TEST “ TERMINATED
ABORTED VIA DIRECTIVE OR MCR

This example aborts the indirect file processor task from the issuing terminal (TT4:).

»@LOGF

DCL>ARORT/TASK AT.

*DELETE X

11142340 TASK "AT.T4 * TERMINATED

ABORTED VIA DIRECTIVE OR MCR
AND WITH PENDING IO REQUESTS

9.2 ALLOCATE ;
The ALLOCATE command establishes a specified device as a private device and denies other
general users access to the device.,

You must allocate a device before mounting it. For efficient resource management, devices should
be deallocated when they are no longer needed. (Refer to the DEALLOCATE command for its
use.) Only the system manager or the device owner can deallocate a device. The system auto-
matically DEALLOCATE: your private devices when you log off (LOGOUT) the system.
Public devices or other users’ private devices cannot be allocated.
Format:

ALLOCATE device-name
Prompt:

DEVICE? device-name

Command Parameter:

device-name The device name of the device to be allocated. A list
of device types is provided in Chapter 3, Table 3-1.



Command Descriptions

Command Qualifier: None.
Examples:

This example allocates the DB2: disk. Other users are not permitted to use DB2: until you
or the system manager deallocates it.

*ALLOCATE DR2:
9.3 APPEND
The APPEND command copies one or multiple sequential files, or the records of one relative or
indexed file, to the end of an existing sequential file.

Format;

APPEND input-file-spec[/file-qualifier] output-file-spec

File Qualifiers: Default:
/SEQUENTIAL /SEQUENTIAL
/RELATIVE

/INDEXED

/KEY:NUMBER:n
Prompts:

FROM? input-file-spec[/file=qualifier] . ..
TO? output-file-spec

Command Parameters:
input-file-spec, . . . The file specification of the input file or files. If multiple
file specifications are given , the entire set of specifica-

tions must be enclosed in parentheses,

output-file-spec The file specification of a sequential file to which the
records of the input files will be appended.

All file specifications must include a file name and a file
type.

File Qualifiers:

/SEQUENTIAL Specifies that the input file or files has sequential
organization. This is the default.

94



Command Descriptions

/RELATIVE Specifies that the input file has relative organization.

/INDEXED Specifies that the input file is organized as an indexed
file.

/KEY:NUMBER:n Optionally specifies the record access key for an indexed

file. If n=1, it calls for access on the primary key defined
for the input file. If n=2, it specifies access on the first
alternate key; n=3 specifies the second alternate key,

and so on, up to the number of keys defined for the
input file.

Notes:
1. The output file must have sequential organization.

. 2. Wildcards are allowed on input files with sequential organization only. The order of
appending multiple files specified by wildcard is their order of appearance in the direc-
tory and can be seen in advance by issuing a DIRECTORY command using the same
wildcard specification.

3. If the input file is organized indexed or relative, the APPEND command must include
the appropriate qualifier.

Example:
This example appends the contents of FILE 1. DAT to the end of FILE 2. DAT.

»TYPE FILE1.DAT .
THIS IS FILE 1.

>TYPE FILE2.DAT

THIS IS FILE 2.
»APPEND FILE1l.DAT

TO? FILE2.DAT

>*TYPE FILE2.DAT
THIS IS FILE 2.

THIS IS FILE 1.

g

9.4 ASSIGN
The ASSIGN command defines logical device names.

Format:
ASSIGN{/LOCALY}] device-name logical-device-name.
Prompts:

DEVICE? device-name
LOGICAL? logical-device-name



Command Descriptions

Command Parameters:

device-name The physical device name of the device or a previously
assigned logical name.

logical-device-name The logical name to be assigned.
Command Qualifier:
JLOCAL Optional, default
Notes:
1. The logical-device-name consists of a two-character ASCII string followed by a 1- or
2- digit octal number and a mandatory colon.
2. The assignment continues in effect until you either use a DEASSIGN command specifying
the logical name or logout. No automatic deassignment occurs when you dismount the
the physical device.

Example:

When the COPY command is executed, the value of the logical device name, TAS: is
replaced by the actual physical device name MM1:.

SAGBIGN MML1: TAS!
=COFY TASIK.K KoK

9.5 BASIC
The BASIC command invokes the BASIC-PLUS-2 compiler and places the terminal in BASIC-
PLUS-2 control mode.
Format:
BASIC
Notes:
1. The BASIC command has no qualifiers or parameters. After you enter the BASIC
command, the following information appears:

BASIC 2

This indicates that you are in BASIC-PLUS-2 mode and must enter only commands
appropriate to that mode when handling files.

2. To exit BASIC-PLUS-2 and return to TRAX, enter the following command in response
to a BASIC 2 prompt.

EXIT



Command Descriptions

3. See BASIC-PLUS-2 documentation for information about the BASIC-PLUS-2 program-
ming language and control commands.

9.6 COBOL

The COBOL command compiles one or more COBOL source program files.

Format:

COBOL{/qualifiers] file-spec [, ..

Command Qualifiers:

JLIST(:file-spec]

/NOLIST

JOBJECT :file-spec]

/NOOBJECT

/SWITCHES: (values)
Prompt:

FILE? file-spec [,...]

Command Parameter:

file-spec, . .

Command Qualifiers:

JOBJECT[ :object-file-spec]
/NOOBJECT

JLIST[ :list-file-spec]
/NOLIST

/SWITCHES: (/values)

1

Default:
/NOLIST

J/OBJECT

Specifies a COBOL source program to be compiled.

If a file-spec does not include a file type. .CBL. is
assumed.

Specifies that an object file be produced and named as
indicated by object-file-spec. /OBJECT is the default
qualifier. The default file name is the name of the first
source file. The default file type is .OBJ. /NOOBJECT
specifies that no object file is to be produced.

JLIST specifies that the listing be produced and named
according to list-file-spec. The default file name is the
name of the source file. The default extension is .LST.

/NOLIST specifies that no listing file be produced. This
is the listing default qualifier.

Passes optional switches directly to the compiler in
keyword form. The switch values are:



Command Descriptions

ERR:n CREF
ACC:n SYM:n
MAP NORUN
LOD RUN
CVF HELP
USW:n...:m TST

Each switch value must be preceded by a slash. For
details regarding these switches, see the TRAX COBOL
Language User’s Guide.

Example:

This command compiles the source file COBPRG. CBL. The object file name defaults to
COBPRG. OBIJ, and the file OUT. LST contains the listing.

>COBROL/LISTIOUT.LST COBFRG.CEL

9.7 COPY
The COPY command performs any of these functions, depending on the qualifiers used.

1. Copies a single file such that the output file has the same organization as the input file.
2. Creates a sequential file consisting of a concatenated set of sequential files.
3. Copies a set of files to a corresponding set of files. This is called parallel copying.
4. Creates a sequential file copy consisting of the records from a single sequential, indexed,
or relative organized file.
Format:
1. For single or parallel file copying:
COPY [/qualifiers] input-file-spec [/file-qualifier] output-file-spec
Command Qualifiers:
/CONTIGUOUS
/BLOCKSIZE:n
JOWN
File Qualifiers:
/SEQUENTIAL
/RELATIVE
J/INDEXED [/KEY :number:n]

2. For concatenating sequential files into one file:

COPY [/qualifiers] (input-file-spec [/[SEQUENTIAL] [,... 1)
output-file-spec

9-8



Command Descriptions

Command Qualifiers:
J/CONTIGUOUS
/BLOCKSIZE:n
JOWN

Prompts:

FROM? input-file-spec [/file-qualified] [....]
TO? output-file-spec

Command Parameters:

input-file-spec The file specification of the input file. Each file
specification must include a file name and a file type.

output-file-spec The file specification of the output file.
Command Qualifiers:
/CONTIGUOUS Specifies a contiguous output file. If the /CONTIGU—

OUS qualifier is omitted, the output file is not neces-
sarily contiguous.

/BLOCKSIZE:n Specifies a blocksize to be used when copying files to
and from magnetic tape.

/OWN Specifies that the owner of the output file will be the
UFD under which it resides.

File Qualifiers:

/SEQUENTIAL Specifies that the input file has sequential organization.

/RELATIVE Specifies that the input file has relative organization.

/INDEXED Specifies that the iﬁput file has indexed organization.

/KEY:NUMBER:n Optionally specifies the record access key for an in-

dexed file. If n=1, it calls for access on the primary
key defined for the input file. If n=2, it specifies access
on the first alternate key; n=3 specifies the second al-
ternate key, and so on, up to the number of keys de-
fined for the input file.



Command Descriptions

Notes:

1. If copying disk-to-disk to obtain a sequential output file from an /INDEXED or /REL—
ATIVE input file, you must indicate the organization of the input file by means of a file
qualifier. If you omit the /RELATIVE or /INDEXED qualifier, the output file organi-
zation is the same as the input file. When copying files to magtape, you must specify the
organization of the input file.

2. Wildcards are allowed for sequential input files when producing a single, sequential out-
put file. When wildcards appear in the input-file-spec but not in the output-file-spec, the
input files are concatenated in the output file. Order of copying depends solely on the
order of their appearance in the directory.

3. Wildcards are allowed in the output-file-spec when the directories of the input-file-spec
and the output-file-spec are different. Both the file name and file type components of
the output file must be represented as wildcards. In this case, each input file is copied
into a separate output file with identical file name and file type.

Example:

1. Copy the file RANDOM.DAT from the directory [350, 230] into the current default
directory. The copy of the file is unichanged.

*COPY L[350y2301RANDOM.DAT X.X

2. Copy all files with the file type .CBL from the current directory to the directory [40, 41].

*COFY %.CBL [40,411]

This operation requires write permission in directory [40,41].

9.8 CREATE
The CREATE command creates an empty file. If the file has sequential organization, you may
enter text into it as follows:

1. In interactive mode, you enter the formatted command and then type RETURN. On
succeeding lines, type the data that you want to place in the file. Type CTRL/Z to in-
dicate the end of the data.

2. In batch mode, the text to be placed in the file follows the command. Any batch com-
mand terminates the data file unless the CREATE command includes the qualifier
/DOLLARS, in which case only the batch command $EOD can terminate the data.

Files specified as organized /RELATIVE or /INDEXED cannot accept data at the time of
creation.

Format:

CREATE [/qualifiers] file-spec



Command Qualifiers:
/ALLOCATION:n
/BUCKETSIZE:m
/CONTIGUOUS
/DOLLARS
/FORMAT:record-type
FIXED:n
VARIABLE[:n]
CONTROLLED[:n]
/PROCTECTION: code
/RELATIVE
/SEQUENTIAL
/INDEXED/KEY :value
Prompt:
FILE? file-spec
Command Parameter:

file-spec

Command Qualifiers:
/ALLOCATION:n

/BUCKETSIZE:m

/CONTIGUOUS

/DOLLARS

/FORMAT:record type

Command Descriptions

Default:
n-0

m-1

VARIABLE=0

[RWED, RWED, RWED, R]

/SEQUENTIAL

The file specification for the new file must include a file
name and a file type.

Specifies n blocks of initial allocation for the file.
Allowed only with indexed and relative files; specifies a
unit of allocation of m blocks for each bucket. In
TRAX, m may be a maximum of 16.

Specifies contiguous space allocation for the file.
Specifies that the data to be entered into the created file
contains dollar signs in record position 1. The data
entered must be terminated with a $EOD command.
Specifies the record type of the file.

The following record types are available:

FIXED:n Specifies fixed length records n
bytes long; n is required.

9-11



Command Descriptions

9-12

/PROTECTION:code

/RELATIVE
/SEQUENTIAL

/INDEXED

/KEY :value

VARIABLE |:n]

CONTROLLED [:n]

Specifies variable length records.
The n parameter defines the
maximum length of the record; it
is required if /RELATIVE is
specified but is otherwise op-
tional.

Specifies variable length records
with a fixed control field. The n
variable defines the maximum
length of the record, including
the fixed control field; it is re-
quired if /RELATIVE is spec-
ified but is otherwise optional.
In all instances, the size of the
fixed control field defaults to 2
bytes.

Protects the file specified in the code parameter. See
Section 3.3.2 for a detailed description of the pro-

tection code.

Specifies relative organization for the file.

Specifies sequential organization. This is the default.

Specifies indexed organization. A [KEY qualifier is also
required if /INDEXED is used.

Specifies the access information for an indexed file.
The value parameter may contain the following:

NUMBER:n

POSITION:n

SIZE:n

Specifies the level of the key
field. If n=1, it indicates a pri-
mary key, n=2 indicates the first
alternate, and so forth.

Specifies the starting character of
the key field.

Specifies length of the key field.

(NUMBER, POSITION, and SIZE are required for each

key value.)



UPDATE

NOUPDATE

DUPLICATE

NODUPLICATE

Command Descriptions

Specifies that the key field is
subject to change during the up-
date process.

Converse of UPDATE, required
on primary keys.

Specifies that the record may
include duplicate keys. This is
implicit if UPDATE is spec-
ified.

Converse of DUPLICATE.
Illegal with UPDATE.

Table 9-1 shows the legal combinations of UPDATE and DUPLICATE with primary and al-

ternate keys.

Table 9-1 Valid Key Parameter Combinations

UPDATE UPDATE NOUPDATE NOUPDATE
KEY TYPE | DUPLICATE NODUPLICATE DUPLICATE NODUPLICATE
Primary Error Error Not supported Default
Alternate Default Error Allowed Allowed
Notes:

1. The file-spec must contain a file name and a file type. If an existing version number is
not specified, the highest existing version number plus one is used.

2. If sequential organization is specified or defaulted, you can include text in the file as

follows:
Interactive
>CREATE
FILE?

contents of file

CTRL/Z

Batch File
$CREATE/DOLLARS file-spec
file-spec

contents of file, possibly in-
cluding dollar signs.

$EOD

3. If indexed or relative organization is specified, no data is accepted to fill the file.

4. If /INDEXED is specified, a primary key is also required. If any other organization is
specified, /KEY is not permitted.

9-13




Command Descriptions

5. The qualifiers /ALLOCATE, /CONTIGUOUS, and /PROTECTION are only applicable
when creating an.empty file and not when filling the file with data.

6. The code option /PROTECTION specifies up to four categories of protection: SYSTEM,
OWNER, GROUP, and WORLD. Up to four types of access can be specified for each
category: READ (R), WRITE (W), EXTEND (E), and DELETE (D). The order of the
access type codes R, W, E, and D is fixed. For example:

/PROTECTION: (SY!RWED y OWNER IRWED'y GROUF IRE)
See Section 3.3.2 for a detailed explanation.
Examples:

This example creates the file ABC.TXT. and accepts lines from the terminal until you type CTRL/Z.

*CREATE
FILE? ABC.TXT

THIS IS THE CONTENT OF THE NEWLY-CREATED FILE.
~Z

>

This example creates file ACCOUNT.NDX as an indexed file with one key of reference which
appears in the first byte of each record and is 10 bytes long.

*CREATE/INDEXED/KEY $ (NUMBER:1»SIZES10,FOSITIONIL)
FILET ACCOUNT .NDX

In this example of batch usage, the SCREATE command creates a file that contains batch com-
mands. The file created, COMMAND.CMD, begins with a $COBOL command and ends with a
$RUN command. Since the records to be placed in COMMANDS.CMD contain dollar signs in
record position 1, the [DOLLARS qualifier is necessary on SCREATE to identify all information
up to the SEOD command as data.

$JOB

$CREATE/DOLLARS COMMANDS.CMD

$COROL A.CBL

$LINK AJOBJ»C1y11CORLIEB/LIBy L1y 1IRMSLIB/LIR
$RUN A

$EOD

$COPY MYFILE.CEBL NEWFILE.CBL

$EQJ

9-14



9.9 CREATE/DIRECTORY

Command Descriptions

The CREATE/DIRECTORY command creates a User File Directory (UFD) on the specified
disk and enters its name into the Master File Directory (MFD) on the disk. The volume must
be initialized and mounted before the CREATE/DIRECTORY command. You can create a
UFD only on your private allocated device.

Format:

CREATE/DIRECTORY [/qualifier] [device-name] ufd

Command Qualifiers:

/ALLOCATION:n

/PROTECTION:code

/VOLUME.LABEL :volume-id
Prompt:

DEVICE AND/OR DIRECTORY?

Command Parameters:

device-name

ufd

Command Qualifiers:

/ALLOCATION:n

Default:

n=32
[RWED, RWED, RWED, R]

device-name ufd

The device name of the disk device on which the direc-

tory is to be created. A list of device names is provided
in Section 3.2.1. Magnetic tape volumes do not contain
directories.

When no device name is specified, the User File Directory
is created on the current default system disk.

The User File Directory to be created. This parameter is
required.

The ufd is in the following format:

[ggg, mmm]
The group number, ggg, and the member number, mmm,
are octal values from O to 377. The brackets are re-

quired, with no space between the device name and the
left bracket.

Initially allocates “n” directory entries (rounded up
to the next multiple of 32). The value n is a decimal
number.

9-15



Command Descriptions

/PROTECTION:code

/VOLUME.LABEL :volume-id

Example:

Establishes the access rights for the directory file. The
contents of the protection code field are described in
Section 3.2.2.

The volume-id is a name associated with each volume to
verify the correct volume is used. When the incorrect
volume-id is specified, the command is ignored. The
volume-id consists of an alphanumeric string, 1 to 12
characters long.

This example creates the User File Directory [200, 34] on DB1.:.

*CREATE/DIRECTORY DE1:[200,341]

9.10 $DATA

The SDATA command indicates the beginning of a batch data block. A data block is necessary
whenever you must supply data to a task running under batch control.

In a batch file, any line that does not begin with a dollar sign is treated as data. Thus in many
cases you can omit the SDATA command.

The $SDATA command is required only when you need to use one of its qualifiers, as described

below.

Format:
$DATA [/qualifier]
Command Qualifiers:

/DOLLARS
/NOCOPY

Prompt: None.
Command Parameters: None.
Command Qualifiers:

/DOLLARS

9-16

Alerts the system that lines of data may begin with
dollar signs. Without this qualifier, lines that begin with
dollar signs are treated as commands and thus terminate
the data block. When this qualifier is present, all infor-
mation is treated as data until an $SEOD command is
encountered.



Command Descriptions

/NOCOPY Specifies that the data block to follow not be included in
the log file for the batch job.

Note:
In general, you need preface a data block with a $DATA command only if you need to use the
/DOLLARS qualifier, the /NOCOPY qualifier, or both.

Example:

The batch job includes a RUN command that requires input data. The data includes some lines
that begin with dollar signs. The data block is not included in the Log File.

$JOB
$RUN FROCESS

$DATA/NOCOPY/DOLLARS
INCOME

$76.05

$346.55
$5.80

SFENT

$84.00
$4.89

$EOD
$EOJ

9.11 DEALLOCATE
The DEALLOCATE command releases a private device, permitting other users to access the de-
vice. You can deallocate only your private devices. The system automatically deallocates pri-
vate devices when its owner logs off the system.
Format:

DEALLOCATE device-name
Prompt:

DEVICE? device-name

Command Parameter:

device-name The device name of the device to be deallocated. A
list of device names is provided in Section 3.2.1.

Command Qualifier: None.

9-17



Command Descriptions

Example:

This example deallocates the disk DB2:. The system and other private users are now permitted
to allocate DB2:.

*DEALLOCATE DR23
9.12 DEASSIGN
The DEASSIGN command deletes the specified logical device name from the system logical name
table. Nonprivileged users can deassign logical names only at the local level.

Format:

>DEASSIGN [/qualifier] [logical name]

Command Qualifier: Default:

/LOCAL /LOCAL
Prompt:

LOGICAL NAME? logical-name

Command Parameter:

logical-name Specifies a logical device name to be removed from its
current device assignment,

Command Qualifier:

/LOCAL Causes local deassignment. This is the default.
Example:
This command deletes the logical device name US1: from the system at the local level.

*DEASSIGN
LOGICAL NAME? US1:

9.13 DELETE
The DELETE command has two functions:

® Deletes one or more specified files from the Directory.
® Deletes a specified job from a specified queue.

9-18



Command Descriptions

Each form of the command has its own particular format and rules, as described in the ensuing
subsections. See also the description of the PURGE command.

9.13.1 DELETE File
This form of the DELETE command deletes the specified file(s) from the Directory and releases
the occupied space. Before deleting any file, you must have delete access to the file. See the
DIRECTORY/FULL command to display file access rights.
Format:

DELETE file-spec [, . . .]
Prompt:

FILE? file-spec[,...]

Command Parameter:

file-spec The file specification of the file to be deleted. Each
file specification must include a file name, file type, and
version number.

Command Qualifier: None.

Notes:
1. Wild cards are allowed in the directory, file name, file type, or file version components of
the file specification.
2. You may delete only those files for which you have delete (D) access rights.

Example:
This example deletes all versions of TEST. TSK;*
*DELETE TEXT.TSK#x
9.13.2 DELETE Queued Job
This form of the DELETE command deletes a job entry and its associated file entries from a
specified queue. The files themselves are not deleted.
Format:
DELETE/QUEUE queue-id

Prompt:

QUEUE NAME? queue-id

9-19



Command Descriptions

Command Parameter:

queue-id

Command Qualifier:

/QUEUE

Parameter Qualifier:

/JOB: [uic] jobname

Note:

Specifies a queued job in one of two forms:
queue name/JOB: [uic] jobname
or
ENTRY: (m,n)

If you select the first, you must include the qualifier:
[JOB: [uic] jobname. If [uic] is not specified, your
own UIC is the default. Jobname specifies a job cur-
rently in the queue.

The following form specifies an internal job entry
identifier:

ENTRY: (m,n)

The value (m, n) specifies an internal identifier assigned
by the system when the job is originated. You can learn
this identifier by using the SHOW QUEUE command to
obtain a FULL listing. The system queue identifier
ENTRY must not be abbreviated.

Specifies that a job entry will be deleted from a queue;
this qualifier is required to identify the DELETE/
QUEUE function.

Specifies the job to be deleted when the queue-name
parameter is selected. '

If the job is being processed when the DELETE/QUEUE command is entered, the job is
aborted and then deleted from the queue.

9.14 DIRECTORY

The DIRECTORY command displays the directory information of specified files or the contents

of your current default directory.

9-20



Command Descriptions

Format:
>DIRECTORY [/qualifiers] [file-spec [, .. .] ]
Command Qualifiers: Default:

[FULL /BRIEF
/BRIEF

/[SUMMARY

/FREE

/PRINT

JOUTPUT :file-spec

/ATTRIBUTES

Command Parameter:

file-spec Specifies the directory entries to be listed. If omitted,
all directory entries are listed.

Command Qualifiers:
/BRIEF The entry display contains only the file specification,

block count, and creation date. This is the default.
See Example 1.

/FULL A complete directory entry listing is displayed. See
Example 2.

[SUMMARY Only the total number of blocks allocated to all files
in the directory is displayed.

/FREE The free space available either on the system device or
the specified device is displayed.

/ATTRIBUTES Gives a description of the specified files that includes
the full RMS attributes. See Example 3.

[OUTPUT :file-spec Forces the display to be placed in a file according to
the file-specification.

/PRINT Causes the display to appear on the line printer.

Notes:

1. If no files are specified, a directory list of your current default UFD on your default
device is given.

2. One or more file-specs may be given.

9-21



Command Descriptions

3. If no filetype is specified, a wildcard for filetype is assumed. If no file version is given,
the highest version number is assumed.

Example:

The following examples of DIRECTORY commands show the type of information you can ex-
pect in response to different qualifiers. The same file specification is used in each case.

9-22

1. This is a /BRIEF (default) directory listing.

DIRECTORY DBOIC40+401]
18-JUL-78 18125

ALSTS1
A.ODLS1
A.0EJF1
A.TSKs 1
A.CBL32

TOTAL OF 32./32,

1,
1.

e

-~

27, c
1.

RLOCKS IN 3.

2. This is a /FULL directory listing.

*DIRECTORY/FULL A.X

DIRECTORY DEROILC40-401]
18-JUL-78 18126

A.LST51
C40»401
A.ODL51
L40+,401
A.OBJ51
C405401]
A.TSKs51
£40+401
A.CEBLs2
L40»401]

TOTAL OF 32./32.

(14271+6)
CRWEDs RWELIyRWED YR

(15040,23)

CRWEDy RWEDy RWED' YR ]
(15233,56)

CRWEDy RWEDyRWEDYR]

(15432+7)
[CRWEDyRWEDyRWEDYR]

(17211,10)
CRWEDs RWED'y RWED s R]

RLOCKS IN S.

18-JuL-78
18-JuL-78
18-JUL-78
18-JUL-78
18-JUL~-78

FILES

1./1.
1./71.

2./72

FILES

14114
14314
14114
14314
14315

18-JuUL~-78
18-JUL-78
18-JUL~-78
18-JUL~78
18-JuUL-78

14314
14214
14214
14:14
14315



3. This is an /ATTRIBUTES directory listing.

>*DIRECTORY/ATTRIBUTES A.X

SYQ:LA40,401A.LET51 FILE ORGANIZATION?
CREATED?! 18-JUL-1978 14:14

FILE PROTECTION: CRUWEDy RWEDN s RWED YR ]
RECORD FORMAT?: VARIABLE

RECORD ATTRIBUTESS CARRIAGE RETURN

FILE ATTRIRUTES?
ALLOCATION= 1 EXTEND QUANTITY=0

SY0IL40,40JA.0DLF1 FILE ORGANIZATION:
CREATED! 18-JUL-1978 14t14

FILE FROTECTION: CRWEDyRWED y RWED s R ]
RECORD FORMAT? VARIAELE

RECORD ATTRIBUTES? CARRIAGE RETURN

FILE ATTRIBUTES?
ALLOCATION= 1 EXTEND QUANTITY=0

SY0:L40,40JA.0BJ5 1 FILE ORGANIZATION:
CREATED?! 18-JUL-1978 14!14

FILE PROTECTION: CRWED»RWEDy RWELDyR1
RECORD FORMAT? VARIARLE

RECORIN ATTRIRUTES?

FILE ATTRIRUTES?
ALLOCATION= 2 EXTENDI QUANTITY=0

SY0![40,401A.TSKs 1 FILE ORGANIZATION?:
CREATED: 18-JUL-1978 14!14

FILE FROTECTION? CRWED'y RWEDy RWELIYR ]
RECORIN FORMAT? FIXER=512

RECORDY ATTRIRUTES?
FILE ATTRIBUTES?
ALLOCATION= 27 EXTEND QUANTITY=0

CONTIGUOUS
SY0OIL40,401A.CRLF2 FILE ORGANIZATION?
CREATED: 18-JUL-1978 14115
FILE PROTECTION: CRWEDy RWEDyRWEDYR1
RECORD FORMAT: VARIARLE
RECORIN ATTRIBUTES? CARRIAGE RETURN

FILE ATTRIBUTES?
ALLOCATION= 1 EXTEND QUANTITY=0

Command Descriptions

SEQUENTIAL

SEQUENTIAL

SEQUENTIAL

SEQUENTIAL

SEQUENTIAL

9-23



Command Descriptions

9.15 DISMOUNT
The DISMOUNT command logically disconnects the specified volume from the system.

Format:
DISMOUNT device-name [volume-label]

Prompts:

DEVICE? device-name
VOLUME LABEL? [volume-label]

Command Parameters:

device-name The specification of the device containing the volume to
be dismounted.

volume-label An optional parameter, and if present, dismount oper-
ation is executed only if the label matches the volume
label. This parameter is required for magnetic tape
volumes.

Command Qualifiers: None.

Notes:
1. As with the MOUNT command, DISMOUNT may take a logical device name in place of a

physical device name.

2. Volume label is mandatory for magnetic tape volumes and optional for all other volumes.
When volume-label is specified, the system verifies that the correct volume is used. The
command is rejected when an incorrect volume label is specified. Volume label may be
up to 6 alphanumeric characters for magnetic tape volumes, and up to 12 alphanumeric
characters for other volumes.

Example:
This example dismounts the disk DBO and verifies that its volume label is VOLNAME.

>DISMOUNT DRO: VOLNAME

9.16 EDIT
The EDIT command invokes the editor to edit or create the specified file.

Format:

EDIT file-spec

9-24



Command Descriptions

Prompt:
FILE? file-spec
Command Parameters:

file-spec The specification of the file to be edited. The file spec-
' ification must include a file name and a file type.

Command Qualifiers: None

Notes:

1. If you do not provide a version number, the highest exisiting version is used. If a file does
not exist as specified, a new file is created with version number 1.

2. Details of the use of the editor may be found in the DEC EDITOR Reference Manual.
Example:
The following sequence initiates an edit session on the file EASY.CBL.

*EDIT
FILE? EASY.CRL
X

*The asterisk is a prompt for an editor command. When you want to terminate the edit session,
enter the editor command EXIT. The DCL prompt (>>) will appear on the terminal.

9.17 SEOD

The $EOD (End of Data) command terminates a data stream initiated by a $DATA command, or
the input to a file created by a SCREATE/DOLLARS command. The command may only be
given in batch mode. A data stream that is not initiated by a $DATA command does not re-

quire an $EOD command for termination. See the section of Chapter 6 entitiled, “Batch Data
Blocks.”

Format:
$EOD

Note: The command has no parameters or qualifiers.

9-25



Command Descriptions

Example:

This example uses $EOD to terminate a data block. The /DOLLARS qualifier instructs the system
to accept the following lines of text as input to the file rather than batch commands to be
processed.

$CREATE/DOLLARS TRAN.DAT
#UFDATE DATA FOR 27FEER

A601-450
$35.42

$102.99
T79-132
$824,09

$EOD

9.18 $EOJ
The $EOJ (End of Job) command terminates a batch job, dismounting and deallocating any
allocated devices.

Format:
$EOIJ

Notes:
1. The command has no parameters or qualifiers.

2. The $EOJ command is the last command in a batch job command stream. An $EOJ
command is implied at the end of a batch command file if one is not included ex-
plicitly.

Example:

The $EOJ command ends the batch job and is analogous to a LOGOUT command ending an
interactive terminal session.

$JOR
$MOUNT DRO! MARZ27A

$RUN TEST
$DISMOUNT DBO?

$EOJ

9.19 $GOTO
The $GOTO command is used only in batch mode. $GOTO suppresses execution of all commands
up to the first command that is prefixed by a specified label.

9-26



Command Descriptions

Format:

$GOTO label
Prompts: None.
Command Parameter:

LABEL Is an alphanumeric string that must also appear, to-
gether with a colon, at the beginning of a later com-
mand.

Command Qualifier: None.

Notes:
1. $GOTO can be used by itself or as an action in an ON or IF command.

2. When control is transferred, the system scans the file forward, ignoring commands until
it finds a command with a label that matches the $GOTO parameter. If no matching
label is found, no further processing takes place within the batch command file.

3. $GOTO cannot transfer control to an earlier labeled command.
Example:

In this example, the linking and running of MY PROG is halted if an error occurs at any point,
and the task OLDPROG is run instead. OLDPROG is not run if no error occurs. See the
description of the $SON command for further clarification.

$JOB SYSTEM
$ON ERROR THEN GOTO L10

$LINK/BASIC MYPROG
$RUN MYPROG

$60TO0 L20

$L10¢ RUN OLDPROG
$L20¢ RUN TEST

$EOJ

9.20 HELP

The HELP command displays information about the commands and their associated qualifiers.
When no parameters are specified, the system displays a complete list of commands on the re-
questing terminal. When a qualifier or other keyword is displayed with two asterisks (**) in the
HELP output, further information is available on the keyword.

Format:

HELP [command-name [keyword] ]

9-27



Command Descriptions

Prompt: None.
Command Parameters:

command-name

The command and its qualifiers (if any) are displayed.

When a qualifier is displayed with two asterisks (**)
after it, there is further information available on the
qualifier.

keyword

Displays the keywords available for the qualifier as

applied to the command.

Command Qualifier: None.

Examples:

The following examples show the use of HELP with and without a second parameter.

+HELF UNLOCK

UNLOCK FILESPECLsFILESPEC(S)>]

*HELF SHOW QUEUE

SHOW QUEUE GQUEUENAME
ENTRY: (N¥N)

ALL

9.21 SIF

OPTION(S)
JOE:CLUICIIJOBNAME
USERILGyMI]

NUMERER

ALL

BATCH

FRINT
PRIORITYIN

FORMSIN

FULL
BRIEF

The $1F command specifies alternative action if a specified status condition occurs on a command.

It is used only in batch jobs.
Format:
$IF status-level THEN action

Prompts: None.

9-28



Command Descriptions

Command Parameters:

status-level One of the following:

SUCCESS
WARNING
ERROR
SEVERE ERROR

action One of the following:

GOTO label
CONTINUE
STOP

Command Qualifiers: None.

Notes:

1. The status-evel resulting from the execution of the command preceding the $IF
command is checked. If that status-level is equal to the status-level given in the $IF
command, the THEN clause is executed. Otherwise the THEN clause is not executed,
and the batch job continues with the next command in the file.

2. The label of the $GOTO phrase must be the label of a command appearing after the $IF
command.

Example:

The following $IF command causes the batch job to terminate immediately if the preceding
command results in a status of ERROR. Otherwise, the job proceeds sequentially.

$IF ERROR THEN STOP
See Section 6.7.5 for this example.
9.22 INITIALIZE
The INITIALIZE command produces a filestructured volume on disk or magnetic tape. The
command destroys all existing files on the volume. The system creates a Master File Directory
(MFD) on the disk or creates a volume label and dummy file on the magnetic tape.

Format:

INITIALIZE device-name volume label

9-29



Command Descriptions

Command Qualifiers:

/DENSITY:n

/ENTENSION:n

/HEADERS:n
/INDEX:location
/MAXIMUM:p

JOWNER: [ggg, mmm]
/PROTECTION:code

/[NO] VERIFIED

/[VOLUME PROTECTION:code
JWINDOW:a

Prompts:

DEVICE? device-name
VOLUME LABEL? volume-label

Command Parameters:

device-name

volume-label

Command Qualifiers:

/DENSITY:n

/EXTENSION:n

[HEADERS:n

Default:

n=800
n=5

location=MIDDLE

varies with disk type

[1,1]

[RWED, RWED, RWED, R]
/VERIFIED

[RWED, RWED, RWED, R]
a=7

The device name of the device to be initialized.
Device-name can be a physical device name or an
assigned logical device name.

The volume-label is a name associated with each
volume. The volume-label may be up to 6 alpha-
numeric characters for magnetic tape volumes and up
to 12 alphanumeric characters for all other volumes.

The volume-label is requested by other commands,
such as the MOUNT command, to ensure the proper
volume is used.

Specifies the recording density in bits per inch (bpi) of
the magnetic tape to be initialized. Acceptable values
for n are either 800 bpi or 1600 bpi. When not spec-
ified, 800 bypi is used.

Specifies the default number of blocks a disk file shall
be extended, when it exhausts its current space allot-
ment. The value of n is decimal.

Specifies the initial number of allocated file headers in
the index file. The value of n is decimal.



/INDEX:location

/MAXIMUM:p

JOWNER: [ggg, mmm]

/PROTECTION:code

/VERIFIED
/NOVERIFIED

Command Descriptions

Positions the index file, on the volume, at the spec-
ified location. Possible location values are:

BEGINNING Place the index file at the begin-
ning of the volume.

MIDDLE Place the index file at the middle
of the volume.

END Place the index file at the end of
the volume.

BLOCK:n Place the index file at the “n”

block of the volume.

Specifies the maximum number of files that the disk
volume can contain.

Specifies the UIC of the owner of the volume. The
group number, ggg, and the member number, mmm, are
OCTAL values from 0 to 377. The square brackets,

[ ], are required syntax.

Specifies the default protection code that will be
applied to files when they are created on the volume.
See Section 3.3.2 for description of protection code.

Includes bad block processing in the volume initial-
ization. When specifying VERIFIED, the system reads
the bad block file created by the support environment
utility, BAD.

When specifying NOVERIFIED, the system accepts
block specifications from the terminal. The program
prompts for bad blocks with the display:

INI>BAD:

Bad blocks may be entered in two formats:

nnnnn A single block. nnnnn specifies
an octal disk block number.

nnnnn, mmmm A contiguous series of mmmm
blocks beginning at nnnnn.

A null line (carriage return) terminates bad block
input.

9-31



Command Descriptions

[VOLUME PROTECTION:code Specifies task access rights to the volume. The code
format is the same as for the /PROTECTION=code
qualifier.

[WINDOW:a Specifies the decimal number of mapping pointers to
be allocated for file windows.

Notes:
1. The /DENSITY qualifier applies only to magnetic tape volumes.

2. The /[EXTENSION, /HEADERS, /INDEX, /MAXIMUM, /OWNER, /[NO] VERIFIED,
and /WINDOW qualifiers apply to disk volumes only.

3. The [VOLUME PROTECTION qualifier applies to all types of volumes.

4. You can only initialize volumes mounted on your private device; that is, those devices
for which you have issued an ALLOCATE command.

Examples:
This example initializes the disk, DBO: , with the volume-id of VOLLABEL.

>INITIALIZE DBO! VOLLABEL

This example initializes DCLVOL2 on DB1: with the index file located at the end of the volume.
The owner UIC is [40, 40].

SINITIALIZE/INDEXEND/OWNER!LC40,401 DR1: DCLVOL2
9.23 $JOB
The $JOB command is used only in batch mode and marks the beginning of a batch job. It is the
batch mode equivalent of an interactive LOGIN command.
Format:
$JOB [/qualifier] jobname [uic]
Command Qualifier: Default:
J/TIME=xx No time limit
Prompts: None.

Command Parameters:

job-name Specifies the name by which the batch job will be
identified in the batch log.

9-32



Command Descriptions

uic Specifies the User Identification Code. Thisis a
privileged parameter that enables the batch job to log
in under a different account than the one from which
the job was submitted.

Command Qualifier:

/TIME=xx Specifies the maximum number of minutes in wall
clock time that the batch job is allowed to run. This
parameter is optional; if omitted, the system assumes
no time limit.

9.24 LIBRARIAN
The Librarian command allows you to create, delete, and maintain object module libraries and
MACRO-11 source libraries.
Format:
>LIBRARIAN operation
Prompt:
OPERATION? operation
Command Parameter:
Operation Specifies the librarian operation to be performed. It

consists of one of the following keywords, followed by
a set of associate parameters and qualifiers appropriate

for that keyword.
CREATE LIST
DELETE REPLACE
EXTRACT SQUEEZE
INSERT

The keyword is considered an extension of the com-
mand name.

The following subsections describe each of these operations.

9.24.1 LIBRARIAN CREATE
The LIBRARIAN CREATE command creates, and optionally populates, a library file.

Format:

LIBRARIAN CREATE [/qualifiers] lib-spec [input-file-spec]. . .

9-33



Command Descriptions

Command Qualifiers:
[SIZE:n

/EPT:n

/MNT:n
/TYPE:OBJECT

MACRO
/[SELECT_SYMBOLS

/SQUEEZE
/NOENTRY POINTS

Prompts:

LIBRARY? lib-spec
MODULES? [input-file-spec]

Command Parameters:

lib-spec

input-file-spec

Command Qualifiers:

/SIZE:n

[/EPT:n

/MNT:n

/TYPE:library-type

9-34

9 .

Default:

n=100

See Qualifier description
n=256

/TYPE=OBIJECT

Specifies the name of the library file to be created. If
no file type is given, the default is .OLB for object
module libraries and . MLB for MACRO module
libraries.

Optionally specifies one or more files that will con-
stitute input to the new library file. If the parameter
is not present, an empty library file is created. Files
specified in this parameter are called library modules.

Specifies the size of the library file in 512 byte blocks.
Default is 100.

Specified the number of entry points to allocate in
the entry point table (EPT). The default value is 512
for object libraries but the number of entry points for
MACRO libraries is always 0.

Specifies the number of entries to allocate in the
module name table. It must not exceed 4096 and is
rounded up to the nearest multiple of 64. The de-
fault value is 256.

Defines the type of libraries to be created as either
OBJECT or MACRO. The default is OBJECT.



Command Descriptions

/SELECT SYMBOLS Specifies that the LINK command will use the
created library to define required global symbols at
task build time (for object files only).

/SQUEEZE Specifies that the MACRO file should be reduced by
erasing all trailing blanks and tabs, blank lines, and
comments from the source text (for MACRO library
files only).

/NOENTRY POINTS Specifies that the modules specified in input-file-spec
are inserted into the library in lib-spec, but the entry
points in the modules are not entered in the entry
point table (EPT).

Note:
If the qualifiers /SELECT and /SQUEEZE are used with CREATE, the input-file-spec parameter
must appear.

Example:

This example creates an object library file MYLIB.OLB with 100 blocks default size and 512
entry point and 256 module name entries containing the two object modules, OBJ1.0BJ and
OBJ2.0BJ.

>*LIBRARIAN
OFERATION? CREATE/TYFE!ORJECT

LIBRARY? MYLIB.OLE
MODULES? ORJ1.0BJ»OBJZ2.0BJ

9.24.2 LIBRARY DELETE
The LIBRARY DELETE command performs two types of deletions.

® Deletes modules and all their associated entry points from the specified library file.
® Deletes specified entries in the entry point table (EPT).

Format:

LIBRARIAN DELETE [/qualifiers] lib-spec entry-name, . . .

Command Qualifiers: Default:
/MODULES /MODULES
/GLOBAL.SYMBOLS

Prompts:

LIBRARY? lib-spec
ENTRIES? entry-name, . .

9-35



Command Descriptions

Command Parameters:
lib-spec Specifies the library file that contains the modules or
entries to be deleted. If a file type is not expected, the
default is .OLB.

entry-name Specifies the module name(s) or entry name(s).

Command Qualifiers:

/MODULES Deletes the specified modules and is the default
qualifier.
/GLOBAL.SYMBOLS Deletes the specified EPT entries.
Note:

Up to 15 modules may be deleted in one DELETE operation. A deleted module is marked as
deleted but remains physically in the file until a SQUEEZE operation is performed.

Example:

This example deletes the object module NAMEA from the object library MYLIB.OLB.

>LIBRARIAN
OFPERATION? DELETE/MORULES

LIBRARY? MYLIE.OLE
ENTRIES?T NAMEA

9.24.3 LIBRARIAN EXTRACT
The LIBRARIAN EXTRACT command enables the extraction of defined modules from a spec-
ified library and concatenates them in a specified file.

Format:
LIBRARIAN EXTRACT/OUTPUT :file-spec lib-spec modules-spec, . . .
Prompts:
OPERATION? EXTRACT/OUTPUT :file-spec
LIBRARY? lib-spec
MODULES? module-spec
Command Parameters:
file-spec Specifies the file that is to receive the extracted
modules. If a file type is omitted, the default file

type is MAC—if the library is a MACRO library—and
OBI if the library is an object library.

9-36



Command Descriptions

lib-spec Specifies the library that contained the modules to be
extracted.
module-spec Defines the module(s) to be extracted.

Command Qualifiers: None.
Example:

This example extracts modules MODULE1.0OBJ, MODULE2.0BJ from the library file
MYLIB.OLB and concatenates them in file OBJ3.0BJ.

>LIBRARIAN

OFERATION? EXTRACT/0OUTFUT!ORBRJ3.0BJ
LIBRARY? MYLIE.OLB

MODULEST MODULE1ls MODULE2

9.24.4 LIBRARIAN INSERT
The LIBRARIAN INSERT command inserts modules into a specified library file. Any number
of input files are allowed.
Format:
LIBRARIAN INSERT [ qualifier(s)] lib-spec input-file-spec, . ..
Command Qualifiers:
/SELECT.SYMBOLS

/SQUEEZE
/NOENTRYPOINTS

Prompts:

LIBRARY? lib-spec
FILE? input-file-spec, . ..

Command Parameters:

lib-spec Specifies the library file into which modules are to be
inserted.
input-file-spec Specifies the object modules to be inserted.

Command Qualifiers:
/SELECT.SYMBOLS Specifies that the LINK command will use the created

library to define required global symbols at link time
(for object files only).

9-37



Command Descriptions

/SQUEEZE Specifies that a MACRO file should be reduced by
easing all trailing blanks and tabs, blank lines and com-
ments from the source text (for MACRO files only).

/NOENTRYPOINTS Specifies that the modules specified in input-file-spec
are inserted into the library in lib-spec, but the entry
points in the modules are not entered in the entry
point table (EPT).

Example:

This example inserts the MACRO file ONE.MAC into the MACRO library MACLIB.MLB,
stripping off all unnecessary characters.

>*LIBRARIAN
OPERATIONT INSERT/SQUEEZE

LIBRARY? MACLIE.MLE
FILE? ONE.MAC

9.24.5 LIBRARIAN LIST

The LIST operation causes a library file directory to be printed or to be sent to an output file.
The former is the default.

Format:

LIBRARIAN LIST [/qualifiers] lib-spec

Command Qualifiers. Default:
/ENTRIES /ENTRIES
/FULL

J/OUTPUT :list-file-spec
Prompt:

LIBRARY? lib-spec
Command Parameter:

lib-spec | Specifies the library file to be listed.
Command Qualifiers:

JENTRIES Causes a directory of all modules to be listed together
with entry points for each. This list is the default.

9-38



/FULL

JOUTPUT :list-file-spec

Example:

Command Descriptions

Causes a directory of all modules to be listed giving
full module descriptions; size, date of insertion and
version.

Causes the output to be sent to the specified file. The
default file type is .LST.

This example lists at the user’s terminal a directory of all modules and their full descriptions from

the library MYLIB.OLB.

>LIBRARIAN LIST/FULL MYLIB.OLR

9.24.6 LIBRARIAN REPLACE

The LIBRARIAN REPLACE command replaces a module in the library with a new module of
the same name. That is, a new module that has the same name as a module already contained
in the library, replaces the existing module. The old module is deleted.

Format:

LIBRARIAN REPLACE [/qualifiers] library-spec module-spec

Command Qualifiers:
/SELECT.SYMBOL
/SQUEEZE
/NOENTRYPOINTS

Prompts:

LIBRARY? lib-spec
FILE? module-spec

Command Parameters:

library-spec

module-spec-list

Command Qualifiers:

/SELECT.SYMBOL

Specifies the library file containing the module to be
replaced.

Specifies one or more files containing the new modules.

Specifies that the LINK command will use the created
library to define required global symbols at link time
(for object files only).

9-39



Command Descriptions

/SQUEEZE Specifies that the size of a MACRO file should be
reduced by erasing all trailing blanks and tabs, blank
lines, and comments from the source text (for MACRO
files only).

/NOENTRYPOINTS Specifies that the modules specified in module-spec-
list are inserted into the library in lib-spec, but the
entry points in the modules are not entered in the
entry point table (EPT).

Example:
This example replaces the module in MACLIB.MLB with the same name as NEWMOD.MAC.

*LIBRARIAN

OFERATION? REFLACE
LIBRARY? MACLIR.MLE

FILE? NEWMOD.MAC

9.24.7 LIBRARIAN SQUEEZE

The LIBRARIAN SQUEEZE command creates a new library file consisting of all modules from
the old file that have not been logically removed by LIBRARY DELETE and LIBRARY RE-
PLACE operations, omitting all modules that have been deleted or replaced (but are still phys-
ically present). This creates a compressed version of the library file. The old library file is not
automatically deleted after creation of the new file.

Format:

>LIBRARIAN SQUEEZE [/qualifiers] lib-spec [new-lib-spec]

Command Qualifiers: Defaults:
/SIZE:n /SIZE: 100
JEPT:n EPT:512 for object libraries,
0 for macro libraries
/MNT:n MNT:256
Prompts:

LIBRARY? lib-spec
NEW LIBRARY? new-lib-spec

NEW LIBRARY is prompted only if LIBRARY is prompted.
Command Parameters:

lib-spec Specifies the library file to be compressed.

9-40



Command Descriptions

new-lib-spec Specifies the compressed library file. If omitted, a new
version of lib-spec.

Command Qualifiers:

/SIZE:n Specifies the size in 256 word blocks of the compressed
file. Default is 100.

[EPT:n Specifies the number of entry points to allocate in the
entry point table (must not exceed 4096). The de-
fault is 512 for object libraries. n is rounded up to
the nearest multiple of 64.

/MNT:n Specifies the number of entries to allocate in the
module name table. It must not exceed 4096 and is
rounded up to the nearest multiple of 64. The de-
fault value is 256.

Example:

This example compresses the library LIB1.OLB to 150 blocks with (by default) 512 EPT entries
and 256 MNT entries. The compressed file is renamed LIB2.MLB.

>*LIBRARIAN
OPERATION? SQUEEZE/SIZE!150

LIBRARY? LIB1.0LE
NEW LIBRARY? LIRBR2.MLE

9.25 LINK

The LINK command invokes the TRAX linker to convert object modules into executable task
images. It produces output as directed by command qualifiers. For further information, see the
TRAX Linker Reference Manual.

Format:
LINK [/qualifiers] [file-spec [/filequalifiers], . . .]
Command Qualifiers: Default:

/BASIC

JCHECKPOINT:SYSTEM /CHECKPOINT:S
:TASK

/NOCHECKPOINT

/CROSS.REFERENCE

/DEBUG [:debug-file-spec]

/[NO] DUMP /NODUMP

9-41



Command Descriptions

/INO] FULL.SEARCH

/MAP: map-file-spec [/FULL]
/NARROW
/SHORT
/WIDE

/NOMAP

J/OPTIONS{ :file-spec]

JOVERLAY [overlay-file-spec]

/INO] RECEIVE

/SEQUENTIAL

/SYMBOLS [symbol-file-spec]

/INO] SYMBOLS

/TASK: task-file-spec

/NOTASK

File Qualifiers:

/INO] CONCATENATED
/DEFAULT.LIBRARY: file-spec
/LIBRARY [:module-list]

/INO] MAP
/SELECT.SYMBOLS

Prompt:
FILE? file-spec [/file-qualifiers], . . .

Command Parameter:

file-spec

Command Qualifiers:

/BASIC

/NOMAP

/RECEIVE

/NOSYMBOLS
TASK=default-file-spec

Default:

/CONCATENATED

See qualifier description.
See qualifier description.

Specifies an input file containing object modules.
It must not be present if the command qualifier
JOVERLAY is specified.

If the file name is given with no file type, the default
file type of .OBJ is used for an object file and .OLB
for a library. File specifications for symbol table
files must include a file type .STB and specifications
for an overlay description file must include file type
.ODL.

Identifies the input file as a command file produced
by issuing the BUILD command to the BASIC-PLUS-
2 compiler. The Linker decodes the command file and
the task image file according to information supplied
in the command file.



J/CHECKPOINT [:keyword]
/NOCHECKPOINT

JCROSS.REFERENCE

/DEBUG :debug-file-spec]

/DUMP
/NODUMP

/FULL.SEARCH
/NOFULL.SEARCH

Command Descriptions

The /BASIC qualifier is valid only if the input file was
generated this way.

Identifies the Linker task as checkpointable when
J/CHECKPOINT is specified. The optional keyword

is SYSTEM or TASK; this specifies where the check-
point space is allocated. TASK requests checkpoint
space within the task image file, and SYSTEM requests
system checkpoint space. The qualifier /CHECK-
POINT:SYSTEM is the default.

You should avoid specifying /NOCHECKPOINT, as
this option seriously degrades overall system perform-
ance. See Note for explanation.

Requests that a symbol cross-reference listing be
appended to the memory allocation (MAP) file; thus
the /MAP qualifiers must also be present for this
qualifier to be effective.

If /CROSS.REFERENCE is not specified, no cross-
reference listing is produced.

Specifies incorporation of a debugging aid in the
task image file. If debug-file-spec is omitted, the
system standard debugging aid is used. You can
incorporate a different debugging aid by specifying a
debug-file-spec. The user generated debugging aid
must be in object module format.

See the TRAX Linker Reference Manual for further
information including a debugging aid.

/DUMP requests a post-mortem dump if your task is
terminated abnormally.

/NODUMP is the default.

Specifies a full search of all co-tree overlay segments
for a matching definition or reference, when proces-
sing modules from the default object module listing.

NOFULL.SEARCH is the default.

/MAP[ :map-file-spec[ /map-file-qualifier] }

/NOMAP

Instructs the linker to produce a memory allocation
file (with file type .MAP) when linking the task image
file.

9-43



Command Descriptions

9-44

JOPTIONS| : file-spec]

If you specify /MAP without a map-file-spec, the
memory allocation file is spooled directly to the line
printer. It remains on your file directory taking the
task file name and the file type .MAP until it is deleted
after printing. -

If you include the map-file-spec, you may omit the
file type field and the linker will use the file type
.MAP.

/NOMAP is the default if /MAP is not specified.

The following file qualifiers may be applied to the
map-file-spec.

/FULL The Linker will include all modules in
the memory allocation file, even those
which explicitly or by default have the
NOMAP input file qualifier.

/NARROW The Linker produces a map listing 72
characters wide, suitable for printing on
an output terminal.

/SHORT  Tells the Linker to include only the
segment headings in the memory alloca-
tion file.

/WIDE Produces a map 132 characters wide,
suitable for printing on a line printer.
When /MAP is specified, this is the
default file qualifier.

Provides or prompts for Linker option input. See
the TRAX Linker Reference Manual for detailed
information on Linker options.

If no file-spec argument is present, the Linker prompts
for Linker option input lines as follows:

OPTIONS?
This prompt continues after each line of option input

that you enter, until you type a line that ends with
a slash (), as follows:

OPTIONS? /<CR>



JOVERLAY/{:overlay-file-spec]

/INO]RECEIVE

/SEQUENTIAL

/SYMBOLS[symbol-file-spec]
/NOSYMBOLS

JTASK [:task-file-spec]
/NOTASK

Command Descriptions

OPTIONS? : OPTION-input /<cr>

When the file-spec is included, the linker treats that
file as a series of option input lines. Interactive
prompting for options does not occur. The default
file type for the input file is .CMD.

Specifies an Overlay Description Language (ODL)
file that will govern the creation of the task image
file.

Only an overlay description file is allowed with this
qualifier. See the TRAX Linker Reference Manual
for information on overlay descriptions.

Enables the resultant task to receive direct messages
via the executive SEND directive.

/RECEIVE is the default. To disable the feature, the
/NO RECEIVE qualifier is required.

Causes the task image to be constructed from the
object files in the order stated in the Link command
string. If /SEQUENTIAL is not present in the com-
mand string, the Linker records the object program
files alphabetically, not sequentially.

See the TRAX Linker Reference Manual for further
description of task image storage allocation in detail.

/SYMBOLS specifies creation of a symbol table
definition file by the Linker. If symbol-file-spec is
present, the file type is optional; if the type is absent,
it defaults to .STB.

If symbol-file-spec is absent, the first input file name
becomes the file name, with .STB the default file type.

/NOSYMBOLS is the default qualifier.

Specifies the name of the task image file. If task-file-
spec is present, the file type is optional; if file type
is absent, it defaults to .TSK. If file-spec is absent,
the first input file name becomes the file name of the
task image file, with .TSK the default file type.

9-45



Command Descriptions

JTASK is the default. If /NOTASK is used, the linker
processes the input for unresolved symbol references
but does not produce a task image file.

File Qualifiers:
/INO] CONCATENATED J/CONCATENATED specifies processing of all modules
in the input file to form the task image, and is the
default.

/NOCONCATENATED causes the Linker to process
only the first object module, regardless of the number
present.

The /LIBRARY qualifier overrides this qualifier.

/DEFAULT LIBRARY:file-spec Specifies the default library file to be used for
resolving undefined global symbol references. This
overrides the default system library LBO=[1,1]
SYSLIB.OLB.

If the specified library is empty, the default library
reverts to the system library.

/LIBRARY:[(]modulel[, .. .)] Identifies the associated file (that is, the input file
specification modified by this qualifier) as an object
module library file. /LIBRARY is required for any
input library file, and its use is prohibited for any
other type of file.

If no modules are specified, the Linker searches the
library file to resolve undefined global symbol
references. The Linker extracts any and all modules
that resolve undefined references and includes them
in the task image file.

If you specify module names, the file is defined as a
library file (file type .OLB) of relocatable object
modules, and the modules named are copied for
inclusion in the task image.

The module names are defined at assembly time.

You may specify up to eight modules, and only those
specified are included in the task image.

9-46



/[INO] MAP

/SELECT SYMBOLS

Note:
Checkpointing is recommended as good programming practice. If a task (called Task A) is
running and then a task of higher priority (called Task B) enters the system. Task A can be
interrupted if it has been defined as checkpointable. The current state of Task A is recorded in
the selected checkpoint area. When its required system resources become available again, it is
reinstalled and resumed in the state that existed at the time of the interrupt.

Examples:

Command Descriptions

To direct the Linker to search a library file for both
global symbol references and selected modules needed
in the task image, you must include both forms of
the qualifier, using separate file specifications.

Specifies inclusion of this file in the memory
allocation map.

If /NOMAP is specified, no details of modules con-
tained in the file will appear in the memory allocation
map or cross-reference listing. /NOMAP, when
qualifying an input file, is overridden by the command
qualifier FULL SEARCH.

For a system library file, resident libraries, and com-
mon areas, [NOMAP is the default qualifier. For user
supplied object module input files, /MAP is the
default qualifier.

Instructs the Linker to search the file only for those
global symbols for which an undefined reference
exists. The Linker uses only the required symbol
definitions.

This qualifier is useful when an input file is the symbol
table (file type .STB) output of another LINK com-
mand, because it reduces the size of the symbol table
search and improves system performance.

If /SELECT SYMBOLS is absent, all global symbols
from the input file are included in the task image
file; that is the default condition.

If the /LIBRARY or /CONCATENATED qualifier is
in effect, /SELECT SYMBOLS is active for each
module of the input file.

The file specification INTEREST .CMD contains a BASIC-PLUS-2 program. The file type .CMD
is added to the file name by default.

9-47



Command Descriptions

FLINK/BASIC INTEREST

After execution of this LINK command, an executable task image called INTEREST.TSK is
ready.

The following command directs the task OVERLAY.TSK to be created and the map file OVER-
LAY.MAP to be generated and spooled. The optional input specifies that DB0O: will be assigned
to LUN 8. The task will be built from the overlay descriptor file OVERLAY.ODL and will
include the standard debugging aid.

FLINKATERLUGAOVERLAY SOVERLAY Z/O0FTIONS /MAF
OFTIONSTASG=NROIE
OPTIOMS?S

9.26 LOGIN

The LOGIN command initiates a user session at a terminal. A valid user-id must be given to ensure
that an authorized user is accessing the system. The system records information on COOQ: the
operator’s console, about who is logging onto the system and when the login occurred. When

a user created LOGIN.CMD file exists, the system then executes the file from the User File
Directory.

The system grants access to the terminal until a LOGOUT command is issued.
Format:

LOGIN user-id password
Prompts:

USERID? user-id
PASSWORD? password

Command Parameters:

user-id The user-id is either a UIC or the user name associated
with the UIC. Valid forms of user-id are:

name
[ggg,mmn]
ggg.mmm
ggg/mmm

The user-id, ggg/mmm, suppresses the login text

message after the first time a user logs into the
system during any given day.

The group number, ggg, and the member number,
mmm, are octal values from O to 377.

9-48



Command Descriptions

password A 1- to 6- character alphanumeric string. Associated
with each user-id is a secret password. The correct
password must be specified to gain access to the
system. The password is not displayed when typed in
response to the PASSWORD? prompt.

Command Qualifier: None.
Examples:

The user, Jones (with the password, Sam), requests access to the system. The system responds
with an acknowledging message; the content of the message is determined by the system manager.

*LOGIN SAMFLE SESHUN
TRAX VERSION 1.0A SYSTEM

GOOD MORNING
19-JUL~78 08:!55 LOGGED ON TERMINAL TT4:

This login is equivalent to the first example but uses the prompts so that the password does not
show on the terminal.

>LOGIN
USERID? SAMFLE

FASSWORD$
TRAX VERSION 1.0A SYSTEM

GOoOn MORNING
19-JUL-78 08:!57 LOGGED ON TERMINAL TT4:

9.27 LOGOUT
The LOGOUT Command terminates user access to the system. The system aborts tasks and
releases resources. The terminal then becomes available to other users.
Format:
LOGOUT
Prompt: None.

Command Parameter: None.

Command Qualifier: None.

9-49



Command Descriptions

Note:

When a nonprivileged user issues the LOGOUT command, the system aborts active tasks initiated
by the user, dismounts the user’s private volumes, and deallocates the user’s private devices. The
system then issues an acknowledging message whose content is determined by the system manager.

Example:

>LoGOUT
TRAX
19-JUL-78 081535 TT4! LOGGED OFF

9.28 MACRO , .
The MACRO command assembles one or more MACRO source files into a single relocatable binary
object module.

Format:
MACRO [/qualifiers] file-spec [file-qualifiers] +. . .
Command Qualifiers: Default:

JLIST [: list-file-spec]

/NOLIST /NOLIST

J/OBJECT [: object-file-spec]

/NOOBJECT JOBJECT

/[NO} CROSS REFERENCE /NOCROSS REFERENCE
/SWITCHES (: switch-list)

File Qualifiers

/PASS:n
/LIBRARY

Prompts:
FILE? file-spec [/file-qualifiers] +. ..
Command Parameter:

file-spec Specifies a file that contains MACRO source code.
Multiple input file-specifications must be concatenated
with a plus (+) sign. Specifications must include a file
name. If the file type is omitted. MAC is assumed, un-
less [LIBRARY is used, .MLB is assumed. No wild-
cards are allowed.

9-50



Command Qualifiers:

/NOLIST

JLIST [: list-file-spec]

/NOOBJECT

JOBJECT [: object-file-spec]

/INO] CROSS REFERENCE

/SWITCHES (: switch-list)

Command Descriptions

Specifies that an assembly listing is not to be gen-
erated. This is the default.

Specifies that an assembly listing will be generated. If
list-file-spec is given, then that file is not spooled;
otherwise the listing is printed. The default file name
is the name of the source file in the list, and the default
file type is .LST.

Specifies that an object module is not generated.

Specifies that an object module is to be generated.
This is the default. The default name given to the
object module file is taken from the last source file
name in the list and is given the filetype .OBJ. This
default name may be overridden by supplying the
optional object-file-spec.

/Specifies whether a cross reference listing is to be
appended to the listing file. This implies use of the
LIST qualifier. The default is /NOCROSS REF—
ERENCE.

Enables you to pass to MACRO the standard listing
options you wish to use.

Switch-list has the form:
switchl:argl . .. switch:argn

If switch is /LI or /NL, the arguments are:
SEQ LOC BIX BEX SRC COM
MD MC ME MEB CND LD
TOC SYM TTM

If switch is /EN or /DS, the arguments are:

ABS AMA CDR FPT GBL
LC LSB PNC REG

They are defined in the TRAX MACRO Reference
Manual.

9-51



Command Descriptions

File Qualifiers:
The file qualifier may be one or both of these.

/PASS:n Specifies that the file is only to be assembled during
the pass specified (n may be either 1 or 2).

/LIBRARY Specifies that the file is a macro library file. /LI—
- BRARY is not allowed on the last source file in the
list. The default file type is MLB.

Note:
Library files must appear in a fixed order with respect to the source.

Example:

This command assembles the input files B, C, and D.MAC (using the necessary macros defined
in A.MLB), creating the object module OBIMOD.OBIJ and a listing file D.LST which will be
spooled.

~MACRO/LIST/0BJECT {ORJMOD
FILE? A/LIBRARY+EB+C+D

9.29 MERGE
The MERGE command merges records currently in one file with the records of another existing
file; the receiving file must have relative or indexed organization.

Format:

MERGE [/LOG [: log-file-spec] input-file-spec [/qualifier] ]
output-file-spec [/qualifier]

Command Qualifiers: Default:
/LOG [log-file-spec] See qualifier description.
Input-file Qualifier:

/SEQUENTIAL /SEQUENTIAL
/RELATIVE
/INDEXED [/KEY:NUMBER:n]

Output-file Qualifier:

/INDEXED One is required.
/RELATIVE
Prompts:

FILE? Input-file [/qualifier]
INTO? output-file/qualifier

9-52



Command Parameters:
Input-file-spec
Output-file-spec

Command Qualifier:

/LOG [:log-file-spec]

Input-File Qualifier:
/SEQUENTIAL
/RELATIVE

/INDEXED

/KEY:NUMBER:n

Output-File Qualifier:

An output-file qualifier is required.

/INDEXED
/RELATIVE

Note:

Command Descriptions

Specifies the file containing the records to be merged.

Specifies the file that receives the new records.

The qualifier is optional; if specified, a log of all error
messages is created during the merge sequence. An ex-
ample is a listing of all records taken from the input-

file that could not be merged, due to a duplicated key
being detected when duplicate keys are not supported.
If the file specification is omitted, the file name defaults
to T10: and the log is printed in the OUTPUT stream.

Specifies a sequential file. This is the default.
Specifies a relative file.

Specifies an indexed file. If specified, the /KEY qual-
ifier is also required.

The order of the record extraction may be specified by

the use of the KEY qualifier. This is meaningful only
when the /INDEXED qualifier is used.

Specifies an indexed structured file.

Specifies a relative structure file.

Wildcards are not permitted in either file specification parameter.

Example:

This example merges all records from the sequential file PROLL1.SEQ to the indexed file

PROLL2.NDX.

*MERGE

FILE? PROLL1.SEQ
INTO? PROLL2.NDX/INDEXED

9-53



Command Descriptions

9.30 MESSAGE
The message command displays a message at a specified terminal. Two bells are sounded at the
receiving terminal. The message is preceded by the date and the originating terminal number.

Format:
MESSAGE [/qualifier] [message]
Command Qualifiers:
JTERMINAL:TTn

Prompt:

TERMINAL? TTn
MESSAGE? message

Command Parameter:

message The message is any combination of alphanumeric and
control characters. Up to 68 ASCII characters can be
specified. The string is terminated by the carriage re-
turn.

Command Qualifiers:

/TERMINAL:TTn: Sends the message to terminal TTn. The terminal must
be logged into the system for the message to be dis-
played. The system ignores the command when the
terminal is not logged into the system. The /TERMIN-
AL qualifier is required, although the terminal spec-
ification is promptable, that is, the TTn: value.

Examples:
1. >MESSAGE/TERMINAL:TT4: LOAD DISK1 ON DR33!
On the receiving terminal the message appears as:

19-JUL-78 09104 FROM TT3: TO TT4:
L.OAD DISK1 ON DE3:

2. »MESSAGE/TERMINAL

TERMINAL? TT4
MESSAGE?T TIME TO GO HOME

9-54



Command Descriptions

At terminal 4, the message appears as:

19-JUL-78 09105 FROM TT3! TO TT4:
TIME TO GO HOME

9.31 MOUNT

Use the MOUNT command to logically connect a volume to the file system. The system also en-
sures the device is on-line. The system writes information on the volume permitting subsequent
I/O access. Before each file access to the volume, I/O access is verified.

You are allowed to mount volumes on those devices currently allocated to you; that is, your
private devices.

For efficient resource management, volumes should be dismounted when they are no longer
needed. (Refer to the DISMOUNT command for its use.)

Format:

MOUNT [/qualifiers] device-name volume-label

Command Qualifiers:

/EXTENSION:blocks
/PROTECTION:code

Default:

Pack default
See Command Qualifier.

/OVERRIDE:option(s)

/OWNER: [ggg, mmm] See Command Qualifier.
/UNLOCKED
/SHOW
/WINDOW:m m=0
/DENSITY :bpi bpi=800
Prompts:

DEVICE? device-name
VOLUME LABEL? volume-label

Command Parameters:

device-name The device name of the device to mounted. A list of
legal physical device names is presented in Section 3.2.1.
A logical device name that was previously assigned to a
physical device name is permitted.

volume-label The volume-label is a name associated with each volume.
The volume-label is mandatory for magnetic tape and
disk volumes unless the JOVERRIDE qualifier is
specified. When the volume-label is specified, the
system verifies the correct volume-abel used.

9-55



Command Descriptions

Command Qualifiers:

/EXTENSION:n

/PROTECTION:code

/OVERRIDE :option(s)

JOWNER: [ggg, mmm]

JUNLOCKED

/SHOW

9-56

The command is ignored when an incorrect volume-label
is specified. The volume-label may be up to 6 alpha-
numeric characters for magnetic tape volumes and up to
12 alphanumeric character for disk.

Specifies the number of blocks a disk file shall be ex-
tended if it exhausts its current space allotment. The n
value is decimal.

This qualifier overrides the EXTENSION:n specified in
the INITIALIZE command. If not specified, the INI-

TIALIZE/EXT condition is the defauit.
Change the file protection access.

When either /PROTECTION is not specified or specific
classes within the code are not specified, the default
values are taken from the volume. See the INITIAL-
IZE command for the volume default values. Also see
Section 3.3.2 for a detailed description of how to form
the code parameter.

The /OVERRIDE qualifier permits several MOUNT op-
tions to be ignored. The options are separated by
comma and enclosed in parentheses if more than one is
used.

The options and their functions are:

IDENTIFICATION Do not verify the volume ident-
ification. Note that when IDENTIFICATION is spec-
ified, no other J/OVERRIDE option can be given.

LABEL Do not verify the magnetic tape volume label.

EXPIRATION DATE Override the expiration date on
the magnetic tape volume.

Change the User File Directory (UFD) of the owner of
the volume.

The group number, ggg, and the member number, mmm,
are octal values from 0 to 377. The square brackets [ ]
are required syntax.

Permits read/write access to files on the volume. When
the qualifier is not specified, no write access is permitted.

Displays the volume information at the issuing terminal.



Command Descriptions

JWINDOW:m Overrides the number of mapping pointers allocated
for disk file windows set up at the volume initiali-
zation. The range of m is from O to 9. This applies
only to disk volumes.

/DENSITY:bpi Set the magnetic tape density to either 1600 or 800
bits per inch (bpi).

Examples:
This example mounts the disk, DBO:, and verifies that the volume label is VOLNAME.
*MOUNT DERO! VOLNAME
This example mounts disk, DB2: and verifies the volume label is SYS001. Specifies default file
protection for this volume as [RW, RWED, RWED, R]. Permits the system read and write access

and permits the group read, write, extend, and delete access. The owner and world access are un-
changed.

*MOUNT/PROTECTION: (SYSTEMIRWyGROUF IRWED)
DEVICE?T DER2?

VOLUME ID? SYS001
9.32 SON
The $SON command specifies an action to be taken if a subsequent batch command returns an
error status equal to or greater than a specified level.
Format:

SON status-level THEN action
Prompt: None.
Command Parameters:

Status-level is one of the following:

WARNING

ERROR

SEVERE ERROR

Action is one of the following:

CONTINUE

GOTO label (Label is an alphanumeric string and must appear, to-
gether with a colon, in front of a subsequent command.)

STOP

9-57



Command Descriptions

Command Qualifiers: None.

Notes:
1. $ON ERROR STOP is assumed by default at the beginning of a batch job.

2. The THEN action is taken if a subsequent command returns a status level equal to or
greater than the status level specified in the $ON command.

3. An $ON command remains in force until superseded by another $ON command, until an
ON condition is met, or until end-of-job, whichever occurs first.

4. A $ON command can be suspended by a $SET NOON command and can be later rein-
stated by a $SET ON command.

Example:

The $ON and SMACRO commands are executed. If the assembly is completed with nothing worse
than a warning, the job proceeds to SLINK. If the linking is completed with nothing worse than

a warning, the job proceeds to $RUN. If any of these commands produces a status-level of
ERROR or SEVERE.ERROR, the job is stopped; in this case, all remaining commands in the file
are skipped.

$JORB

$0ON ERROR STOF
$MACRO MYFROG
$LINK MYFROG
$RUN MYFROG
$E0J

9.33 PRINT
The PRINT command causes one or more files to be printed on the line printer. It defines a
printing job to be placed in the print queue.

Format:

PRINT [/qualifiers] file-spec [/qualifiers], . . .

Command Qualifiers: Default:

/[NO] DELETE /NODELETE
J/COPIES:n J/COPIES:1
/QUEUE:queue-name /QUEUE:PRINT
JUPPERCASE /UPPERCASE
/LOWERCASE

/INO] ORIGINAL /NOORIGINAL
/INO] WIDE /NOWIDE
/PAGES:n Pages unlimited

9-58



/JOB: jobname
/PRIORITY:n
[FORMS:n
/LENGTH:n
/INO] RESTART
/INO] FLAG PAGE
/AFTER: (dd-mmm-yy hh:mm)
File Qualifiers:
/INO] DELETE
/COPIES:n
/INO] ORIGINAL
Prompt:
FILE? file-spec [/qualifier], ...

Command Parameter:

file-spec

Command Qualifiers:

/INO] DELETE

JCOPIES:n

JUPPERCASE

/LOWERCASE

/QUEUE:queue-name

/INO] WIDE

Command Descriptions

JOB: First six characters of
first filespec

/PRI:50

/FORMS:0

No implied form feeds

/NOFLAG_PAGE
Present time

Specifies a file to be printed. If no file type is in-
cluded in the file specification, the default file type
is .LST.

Instructs the system to delete all files after printing.
The default is NODELETE.

Specifies the number of file copies to be printed. The
value of n is an integer from 1 to 32 (decimal), with a
default of 1.

Specifies that an uppercase-only printer is sufficient
for printing the job.

Specifies that a printer capable of printing both upper
and lower case characters is needed for this job.

Specifies the name of the queue in which the job is
to be placed. If this qualifier is omitted, the job is
placed in the queue named PRINT.

Specifies whether a wide printer is required. A wide
printer has at least 132 characters per line.

9-59



Command Descriptions

/PAGES:n

/JOB:jobname

/PRIORITY :n

/FORMS:n

/LENGTH:n

/[NO] ORIGINAL

/INO} RESTART

9-60

Specifies the maximum number of pages that the job
may produce. Default is unlimited.

Specifies the name of the job to be placed in the
queue. If omitted, the system will assign a job name
based on the first six characters of the first file name.

Specifies the queue priority level of the print job. The
argument n must be an integer in the range 1 to 250,
and 250 is the highest priority.

Specifies the forms attribute of a print job. The
FORM option complements the LENGTH option in
defining the basic vertical boundaries and margins of
an individual form.

The FORMS option indicates, directly or indirectly,
the size of the form. Usually, this is the number of
print lines between perforations. The default forms
attribute is n=0, which indicates that form-feed
processing will be handled by the printer. Values of

n from 1 to 255 indicate that the software will handle
form-feed processing. Values of n from 1 to 66 denote
the actual number of lines by default, although they
can be redefined by the installation. Values of n
greater than 66 require installation definition.

Specifies the number of lines that can be printed on a
form page. If, while processing the print job, form-
feed characters are not found in the file within n lines
of the last form feed, a form feed is generated. Thus,
if the FORMS option indicates a form size of 66 lines,
and LENGTH specifies that no more than 60 lines may
be printed per form page, the combination of options
implies a bottom margin of six lines. By default, the
system generates no form feeds; this is equivalent to
specifying /LENGTH:O0.

Indicates whether or not to make temporary copies
of files that exist on private volumes. /ORIGINAL
requests that no copy be made.

Specifies whether a job can be restarted from the
beginning following an interrupt, such as running out
of paper.



Command Descriptions

/INO] FLAG PAGE /NOFLAG PAGE suppresses the flag page before each
file in the job. /NOFLAG PAGE is the default.

/AFTER: (dd-mmm-yy hh:mm) Specifies the date and the time after which the job
will become eligible for dispatching to some print

processor.
File Qualifiers:
/[NO] DELETE Specifies whether or not the file is to be deleted after
printing.
JCOPIES:n Specifies the number of list copies to be produced for
the file.
/[NO] ORIGINAL Indicates whether or not to use a temporary copy of
. the file. /ORIGINAL directs that no copy be made.
Notes:

1. If /[NO] DELETE, /COPIES:n, or /[NO] ORIGINAL is specified as both a command
qualifier and a file qualifier, the file qualifier overrides the command qualifier for that
file. Any of these qualifiers given at command level sets a default qualifier that applies
to all files unless overridden by a file qualifier.

2. The /QUEUE qualifier is optional. If it is omitted, the job is added to the default print
queue, named PRINT.

Example:

The following command prints two copies each of every file in the directory having the file name
RESULT. It also prints four copies of the file PRIME.DAT. The job is to be queued on the
queue NIGHT.

*PRINT/COFIES!2/QUEINIGHT
FILE? RESULT.¥,PRIME.DAT/COFIES:4

9.34 PURGE
The PURGE command removes older versions of one or more specified files, retaining one or
more latest versions. See also the description of the DELETE command earlier in this chapter.

Format:

PURGE [/qualifier] file-spec [, . . .]

9-61



Command Descriptions

Command Qualifier:

J/KEEP:n

Prompt:

FILE? file-spec [, ...

Command Parameter:

file-spec

Command Qualifier:

JKEEP:n

Notes:

Default:

/KEEP: 1

The file specification of the file whose early versions
are to be deleted from the Directory. Each file spec-
ification must include a file name and a file type, but
not a version number.

Specifies that the n latest versions of the file shall be
retained. The system locates the highest version
number associated with the file specifications and de-
letes all versions of the file with a version number
lower than the highest version number minus n. The
default value of 1 is assigned when n is either not spec-
fied or O.

For example, assume you specify n as 3 and the system
determines that the latest version number of the file is
7. This requests that versions of the file version num-
bers of 4 or less be deleted. The system keeps version
7 and also keeps versions 6 and 5, if they have not
been removed by an earlier PURGE or DELETE oper-
ation.

1. If the /[KEEP qualifier is not specified, it is equivalent to specifying /[KEEP:1.

2. Wildcards are allowed in the directory, file name, and file type components of the file

specification.

3. You may purge only those files for which you have delete access rights.

Examples:

This example purges all versions of TEST.TMP except the highest numbered (latest) version.

*FURGE TEST.TMF

9-62



Command Descriptions

This example purges all but the latest two versions of SRTRT.B2S.

>PURGE/KEEP$2 SRTRT.B2S

9.35 RENAME
The RENAME command renames an existing file.

Format:
RENAME old-file-spec new-file-spec
Prompts:

OLD? old-file-spec
NEW? new-file-spec

Command Parameters:

old-file-spec Specifies an existing file. The file specification must
include a file name and a file type.

new-file-spec Specifies the new name for the existing file. The file
specification must include a file name and a file type.

Command Qualifiers: None.

Notes:

1. Both specifications must have the same device (since files may not be renamed across
devices).

2. Wildcards are allowed in the file type and file version fields of each file specification.
Wildcards appearing in one file specification must appear in the corresponding fields of
the other file specification.

3. If a version number is omitted from new-file-spec, the version number of the old-file-spec
is used by default.

4. You can RENAME a file into another UFD, protection conditions permitting. As a
general rule, if you are authorized to create a file in a UFD, you are also authorized to
rename files stored under that UFD. Also, you can use RENAME to change the UFD of
a file.

9-63



Command Descriptions

Examples:

This example renames the fourth version of the OLD.TMP to NEW.TMP.

*RENAME
OLD? OLD.TMF3 4
NEW? NEW.TMFs1

9.36 RUN
The RUN command permits the system to install a task, run it, and—upon completion—remove

the task from the system. Use the ABORT command to terminate an active task.

Format:

RUN[/TASK:task-name] file-spec

Command Qualifier: Default:
[TASK :task-name ' See Qualifier description.
Prompt:

FILE? file-spec
Command Parameters:

file-spec Specifies a file specification referring to a linked
program, or task. When the file name is preceded by
the dollar sign ($), the system searches the System
File Directory for the file. When the file name is not
preceded by either the dollar sign ($) symbol or a
- UFD, the system searches the default User File
Directory for the file. The default file type is .TSK.

Command Qualifiers:
/TASK :task-name Specifies the task name to assign when installing the
‘ task. The name may be up to 6 characters. The

. default name is TTnn where nn is the unit number
of the requesting terminal.

Examples:
This example immediately loads and executes the latest version of the file TSK1.TSK from the
user’s current default device and directory. The system removes the task when either the task

runs to completion or the user aborts the task.

*RUN TSK1

9-64



Command Descriptions

This example installs and executes the task file DEMO.TSK from the default UFD and names
the task, TEST. The system names tasks initiated through the RUN command, by default, to be
TTnn where nn is the user’s terminal number.

>RUN/TASK!TEST DEMO.TSK

9.37 SET
The SET command enables you to alter dynamically certain characteristics of your terminal,
files, devices, queued job, and operating environment.

Format:
>SET function
Prompt:
FUNCTION? function
Command Parameters:
function Specifies one of the following:

DEFAULT
DEVICE
[NO]JON
PROTECTION
QUEUE
TERMINAL

The use of each of these options is described in ensu-
ing sections.

Command Qualifiers: ‘None.

Notes:
1. The function parameter further defines the SET command. Each SET function has its
own command syntax, as described in the following subsections.

2. The SHOW command complements the SET command. It enables you to ascertain the
current characteristics before you modify them.

9.37.1 SET DEFAULT

The SET DEFAULT command establishes the user default system device or the User File Direc-
tory, or both, at the issuing terminals. These defaults are used when referencing files within
command lines, overriding previous defaults.

9-65



Command Descriptions

Format:
>SET DEFAULT [device-name] [ufd]

Prompts:

FUNCTION? DEFAULT
DEFAULT DEVICE NAME AND/OR DIRECTORY? [device-name] [ufd]

Command Parameters:

device-name Specifies the device name of the device you wish to
use as the default device in subsequent commands.

ufd Specifies the new default User File Directory in the
format:

[ggg,mmm]

The group number, ggg, and the member number,
mmm, are octal values from 0 to 377. The brackets
and comma are required. If the device-name parameter
is present, the UFD must immediately follow the colon
that marks the end of the device-name parameter.

Command Qualifiers: None.

Notes:
1. Changing the default device and UFD does not change your UIC; your UIC is determined
when you log in.
2. If you change the default UFD, you will be accessing files under different protection
access codes. Under normal default protection values, you will have read access to all files
regardless of group number, and full access to files stored under the group number in

your UIC. See the following example for further clarification, and also see the description
of the SET PROTECTION command.

Example:
The following directory listing indicates that several files with file name DEMO are stored in the

UFD [40,40]. This UFD is the current default, determined from the UIC established at log in
time.

9-66



*DIRECTORY DEMO.X

DIRECTORY DRO:L40,40]
19-JUL-78 102326

DEMO.B2S5 1 1.
DEMO.OBJj 1 2,
DEMO.CMD5 1 1.
DEMO.ODL 51 1.
DEMO.TSK#1 15. c
DEMO.MAFS 1 12.

TOTAL OF 32./32. BLOCKS IN 6.

18-JUL-78
18~-JUL~78
18-JuL-78
18-JUL-78
18-JUL~-78
18-JUL-78

FILES

16153
16153

16153

16153
16:53

16153

Command Descriptions

When you change the default UFD to include a different group number, you can read, but can-
not write, files in that UFD. (The UIC is still [40,40].)

*SET DEFAULT DRO:L350,2301
>*COPY LC40y401DEMO.X XX

COF -- OFEN FAILURE ON QUTFUT FILE

DBOIL3S50y230IDEMO.B2S —- HANDLER ERROR CODE -16.

However, when you set the default UFD to a value with the same group number as your UIC,
you can write files in that directory under normal protection conditions. The final DIRECTORY
listing shows that the copy operation was successful.

*SET DEFAULT DEROICA40s411]
»COFY [40y401DEMO.X X.X

>*DIRECTORY DEMO.xX

DIRECTORY DEOIL40s411]
19-JUL-78 10133

DEMO.R2652 i.
DEMO.OBJ; 2 2.
DEMO.CMD3 2 1.
DEMO.ODL $ 2 1.
DEMO.TSK3 2 15. c
DEMO.MAFP S 2 12,

19-JUL~-78
19-JUL-78
19-JUL-78
19-JUL-78
19-JUL-78
19-JUL-78

TOTAL OF 32./32. BLOCKS IN 6. FILES

9.37.2 SET DEVICE

10233
10333
10233
10333
10333
102133

The SET DEVICE command dynamically alters the attributes of a specified device.

Format:

SET DEVICE:device-name option

9-67



Command Descriptions

Prompts:

FUNCTION? DEVICE
DEVICE? device-name
ATTRIBUTE? option

Command Parameters:

device-name Spéciﬁes the device whose characteristics are to be
changed.

option Specifies one of the following:
WIDTH:n Applies to terminals and print-

[NO]WRITECHECK

ers, specifying the character
width of the output medium.
The value of n can be octal or
decimal. Octal values are ex-
pressed as an integer followed
by a space, and decimal values
are expressed as an integer
immediately followed by a
decimal point. For example 72
is octal and 72. is decimal.

Specifying WRITECHECK
requests verification of write
operations by means of an auto-

“matic read after write. NO-

Examples:
1. This sets the line buffer size of the LPO: to 132 characters.

»8ET DEVICE!LFO: WIDTH?:132

WRITECHECK is the default.

2. In this example, each record written on the device DBO: will be read back and verified.

*SET DEVICE:!DEO! WRITECHECK

9.37.3 $SET[NO]JON
The $SET NOON and $SET ON commands are used only in batch

jobs. The $SET NOON com-

mand suspends the influence of an $ON command until a $SET ON command reinstates it.

Format:

$SET [NO]JON

9-68



Command Descriptions

Notes:

1. The command has no parameters or qualifiers.
2. $SET NOON is meaningful only if a $ON command exists earlier in the file.
3. $SET ON is meaningful only if a $SET NOON command has been executed.

9.37.4 SET PROTECTION
The SET PROTECTION command alters the protection access rights for a specified set of files.

Format:
SET PROTECTION [(]file-spec [, ...)] code

Prompts:

FUNCTION? protection
FILE? [(] file-specl, . ..)]
PROTECTION? code

Command Parameters:

file-spec Specifies the file specifications of one or more files
whose access protection rights are to be altered. If
more than one file-spec is given, the set of file-specs
must be enclosed within parentheses and separated by
commas. The files must already exist. Each file-spec
must include a file name and a file type. If a file ver-
sion number is omitted, the highest version is used.

code Specifies the new access protection rights of the files.
See Section 3.3.2 for information on file protection
codes.

Command Qualifiers: None.
Notes:
1. The code parameter must be formed as for the /PROTECTION qualifier of the CREATE
command.
2. Only one code parameter is permitted in any SET PROTECTION command. All files
specified have their own protection set according to the code parameters.

Example:

This alters the system access rights of the file A.TEMP to Read and Write and group access rights
to Read, Write, Extend, and Delete.

*8ET FROTECTION A.TMF (SYSTEM{RWs GROUF :RWED)

9-69



Command Descriptions

This changes the protection of A.TMP and B.TMP as described in the previous example.

+SET PROTECTION
FILE? (A.TMFsE.TMF)
PROTECTIONT (SY!RWsGR:RWED)

9.37.5 SET QUEUE

The SET QUEUE command modifies one or more attributes of a job in a print or batch queue
(that is, attributes assigned to a job by the PRINT or SUBMIT command). You are allowed to
modify only those jobs that you have placed in the queue.

The command is also used to hold a job in a queue and to release it subsequently for normal
processing.

Format:
SET QUEUE queue-id option [, .. . ]
Prompts:

FUNCTION; QUEUE
QUEUE NAME OR ENTRY? queue-id
OPTIONS? option(s)

Command Parameters:

queue-id Identifies the queue to be affected. Two forms are
allowed:
queue-name Specifies a print queue or batch

queue. The command SHOW
QUEUE ALL displays the names
of queues recognized by the
system.

ENTRY: (n,n) Specifies the job entry number, as
internal identification assigned by
the system when you originated
the job. If you specify this, you
need not specify queue-name or
job-name elsewhere in the state-
ment. The SHOW QUEUE com-
mand with the FULL option
displays job entry identifiers.
Both components of the entry
number are octal. The word

9-70



option

Command Descriptions

ENTRY cannot be appreviated.
It is a standard system queue
name, not a DCL keyword.

Specifies one or more of the following:

JOB:job-name

UPPERCASE

LOWERCASE

[NO]WIDE

PAGES:n

PRIORITY:n

FORMS:n

Specifies the name of the job that
you wish to modify. If omitted,
the job name is assigned by the
system, based on your user
identification. When ENTRY is
specified, the JOB option is not
permitted.

Specifies that the print job re-
quires only a printer with an
uppercase character set.

Specifies that the print job re-
quires a printer with upper - and
lower/case characters.

WIDE specifies that a wide line
printer (132 characters) is re-
quired. NOWIDE negates an
outstanding WIDE specification.

Specifies that the print job should
be aborted if it exceeds n pages.

Specifies the queue priority level
of the job.

Specifies the forms attribute of
a print job. The FORM option
complements the LENGTH
option in defining the basic ver-
tical boundaries and margins of
an individual form.

The FORMS option indicates,
directly or indirectly, the size
of the form. Usually, this is the
number of print lines between
perforations. The default forms
attribute is n=0, which indicates
that form-feed processing will

9-71



Command Descriptions

9-72

LENGTH:n

[NOJRESTART

[NO]FLAG.PAGE

AFTER:(DD-MM-
YY HH:MM)

HOLD

be handled by the printer. Values
of n from 1 to 255 indicate that
the software will handle from-feed
processing. Values of n from 1

to 66 denote the actual number
of lines by default, although they
can be redefined by the installa-
tion. Values of n greater than 66
require installation definition.

Specifies the number of lines that
can be printed on a form page.

If, while processing the print job,
form-feed characters are not
found in the file within n lines of
the last form feed, a form feed

is generated. Thus, if the FORMS
option indicates a form size of 66
lines, and LENGTH specifies that
no more than 60 lines may be
printed per form page, the com-
bination of options implies a
bottom margin of six lines. De-
fault produces no implied or
generated form feeds, and is
equivalent to specifying
LENGTH:O.

Specifies whether the job can
restart from the beginning if
stopped.

Enables or disables the printing
of flag pages before files in the
print job.

Specifies the date and time after
which the job may be processed.

Unconditionally holds the job

in the queue, delaying normal
processing until a RELEASE is
given even though other condi-
tions could indicate that it should
be processed.



Command Descriptions

RELEASE This places the job in the waiting
job list. The job is processed
when it reaches the top of the
waiting job list.

Command Qualifier: None.

Examples:

This queued batch job TEST on directory [40, 41] is given a modified priority of 120. BATCH is
the queue-name.

»SET QUEUE BATCH JOEILC40,411TEST,FPRIORITY?!120

The queued entry (112, 223) is changed to accommodate forms of type 1, as defined by the in-
stallation.

+SET QUEUE ENTRY:${(112,223) FORMS:1

9.37.6 SET TERMINAL
The SET TERMINAL command establishes or changes the attributes of your terminal.

Format:
>SET TERMINAL [terminal-name] option
Prompt:

FUNCTION? TERMINAL
ATTRIBUTE? option

Command Parameters:

terminal-name Optional; if entered, it must be TI: (your terminal).
option One of the following:
TYPE.value Specify the type of terminal.

If the terminal is a video dis-
play, specify SCOPE; if a printed
display, specify NOSCOPE.

9-73



Command Descriptions

Command Qualifiers: None.

Example:

This example sets the terminal to a printed output type terminal.

*SET

FUNCTION? TERMINAL
ATTRIRUTE? TYFE:NOSCOFE

9.38 SHOW

LOWERCASE

UPPERCASE

[NO] SLAVE

Recognize lowercase and upper-
case characters on input.

Recognize uppercase characters.
Lowercase characters are con-
verted to uppercase on input.

SLAVE establishes the terminal
as a device that cannot enter un-
solicited input. Only information
requested from a task is recog-
nized. NOSLAVE removes this
restriction.

[NOJHOLD SCREEN Enable/disable hold screen mode

SPEED:(n, m)

[NO] ESCAPE __

SEQUENCE

at the specified terminal. In hold
screen mode the terminal dis-
plays a full screen of data each
time the scroll key is pressed.

Establishes the receive baud rate
(n) and the transmit baud rate
(m) of the terminal. -See your
system manager for the possible
baud rates on your terminal.

Enable/disable the recognition of
escape sequences from the spec-
ified terminal.

The SHOW command complements other commands, such as SET, by displaying at your terminal
all information pertaining to your task, terminal, and devices that you may establish or alter.

9-74



Command Descriptions

Format:

SHOW function

Prompts:

FUNCTION? function

Command Parameters:

Function specifies one of the following:
ASSIGNMENTS [:option]
DAYTIME
DEFAULT
DEVICES
QUEUE
TASKS
TERMINAL

The use of each of these options is described in ensuing sections.

Command Qualifiers: None.

9.38.1 SHOW ASSIGNMENTS

The SHOW ASSIGNMENTS command displays local assignments currently in force at your

terminal.

Format:

SHOW ASSIGNMENTS [:LOCAL]

Prompts:

FUNCTION? ASSIGNMENTS

Command Parameters: None.

Command Qualifiers: None.

Notes:
1. The string : LOCAL may be omitted without altering the effect of the command.

2. SHOW ASSIGNMENTS complements the ASSIGN command, displaying logical name
assignments.

9-75



Command Descriptions.

Example:

The following example shows the device DB1: to have a local assignment of MYO = at terminal 4.
The default log in assignment is also shown.

>SHOW ASSIGNMENTS
MYO? DEL1: LOCAL TI -~ TT4:
SYO0! SYo: LOGIN TI - TT4?

s

9.38.2 SHOW TIME
The SHOW TIME displays the time of day and the date.

Format:

SHOW TIME
Prompt:

FUNCTION? TIME
Command Parameters: None.
Command Qualifiers: None.
Example:

+>SHOW TIME
13117205 19-JUL-78
>

9.38.3 SHOW DEFAULT
The SHOW DEFAULTS command displays your current default device name and directory.

Format:

SHOW DEFAULT
Prompt:

FUNCTION? DEFAULT
Command Parameters: None.

Command Qualifiers: None.

9-76



Command Descriptions

Example:

In this example, the response indicates that DBO = is the current default device, and [350, 230] is
the current directory.

»8HOW DEFAULT
DRO:L3S50,2301

N

9.38.4 SHOW DEVICES
The SHOW DEVICES command displays the symbolic names and status of the devices. The dis-
play is made on the entering terminal.
Format:
SHOW DEVICES [option]
Command Qualifier: Default:
None
Prompt:

FUNCTION? DEVICES

Command Parameter:

option The option can be any of the following words. The
system displays all the options when no option is spec-
ified.

[NO]PUBLIC Display only those devices allocated as either PUBLIC or
NOPUBLIC.

TYPE device-name: Display only the devices specified by the device name,
such as DB:.

[NO] WRITECHECK Display only those devices in either the WRITECHECK
or NOWRITECHECK mode.

WIDTH: device-name Display the buffer size of the specified device.

Command Qualifier: None

9-77



Command Descriptions

Examples:

This example displays the buffer size of LPO: as 132 decimal characters.

>8HOW DEVICE WIDTHILFO!?
RUF=LFO0:00132.

-

This example describes the status of every device on the system.

*SHOW DEVICES

0RQ: FURLIC MOUNTED LOADELD

DR1: LOADED

DR22 L.OADED

DE33: FURBLIC MOUNTED LOADED

RO LOADED

nR1d MOUNTED LOADED

MMO & LOADED

MM : LLOADED

LFO2 DRO2 SFOOLED LOADED

TTO3 [1s11 - LOGGED ON LOADRED
TT1: LOADED

TT2: LOADED

TT3:2 L.OADED

TT43 [40,401 -~ LOGGED ON LOADED
TTYS: Cle17 ~ LOGGED ON LOADED
TT&: LOADETD

TT73 [350,2271 - LOGGED ON LOADED
TT1G3 Lle11 - LOGGED ON LOADED
NL.O3

VTS LOADERD

UT13 L.OADED

(UL R LOADEDR

TIO:

Coos TTO?

CLO: LFO3S

SPO LDRO:

LEO? nRoO:2

5Y0R DRG:

9.38.5 SHOW QUEUE
The SHOW QUEUE command complements the SET QUEUE command. It enables you to dis-
play current information about your print and batch queues entries.

Format:

SHOW QUEUE [queue-id] [option [form-option] ]

9-78



Prompts:
FUNCTION? QUEUE
Command Parameters:

queue-id

option

Command Descriptions

Identifies the queue or queues to be displayed. Three

forms are allowed:

queue-name

ENTRY: (m, n)

ALL

Specifies the name of the queue,
as defined in the SUBMIT and
PRINT command.

Specifies the job entry number,
an internal identifier assigned to
each queue entry when the job
is originated. If you specify this,
you need not specify queue-
name or job name elsewhere in
the command. The word
ENTRY cannot be abbreviated;
it is a standard system queue
name, not a DCL keyword.

Indicates that all existing queues
of a given type are to be dis-
played. ALL may be followed
with the option PRINT or
BATCH, indicating that only
print or batch queues should be
displayed. The word ALL
cannot be abbreviated;itisa
standard system queue name, not
a DCL keyword. -

Further defines the SHOW QUEUE command. Possible

options are:

JOB: [uic] jobname

USER: [uic]

Requests information about a
particular job originated by a
specified user.

Requests information on all
queue entries for a specified user.

9-79



Command Descriptions

form-option

Command Qualifiers: None.

Examples:

NUMBER

ALL

PRIORITY:n

FORMS:n

BATCH

PRINT

Requests the number of entries
in the specified queue or queues.

Requests display of all entries in
the specified queue or queues.

Shows all job entries at the spec-
ified priority level.

Shows all job entries with the
specified forms type.

If used in conjunction with the
queue-name ALL, only BATCH
queues are listed.

If used in conjunction with the
queue-name ALL, only PRINT
queues are listed.

Specifies the form of the information to be listed.

BRIEF

FULL

Specifies a limited listing, con-
sisting only of the names of the
entries. In many cases, this only
confirms the presence of the
entries specified by the com-
mand.

Specifies a complete report on all
queues and entries specified or
implied by the command.

There are many combinations of parameters for this command. The following sequence of ex-
amples illustrates the type of output you can expect for the various forms of SHOW QUEUE:

9-80



Command Descriptions

>8HOW QUEUE ALL
PRINT QUEUES
PRINT
LFQO
TEST
BAFO
BATCH QUEUES
EATCH
TRXKIT STOFFED
SURVEY
CHRIS
+~SHOW QUEUE RATCH ALL ERIEF
BATCH QUEUES
BATCH
»8HOW QUEUE EATCH ALL FULL
RATCH QUEUES
EATCH

ASSIGNED FROCESSORS
BAFO

HELD JORS
1 C[1,11SAMPLE ENTRY:(12220,20663) TI!TT37: FPRI!S0 REST!Y
FRINT?Y
FILES
DBOC1y1ISAMPLEFDF JBLDFZ2 ENTRY$(12300,120664) DELIN
[350,2271TRAXAF ENTRY?1(2140,20011) TI!TT7: PRI!S0 REST?Y
PRINT!Y
FILES
DROIL3TO,227ITRAXAFG.CMDF2 ENTRY:(2160,120012) DELIN
3 [40s401RTST ENTRY$(4640,10604) TI!TT4: FRI!S0 REST?Y
FRINTY
FILES
DROILA40540IRTST.CMIN3 1 ENTRY?$(4660y110605) DELIN
4 [1y11CONT ENTRY?! (6040,7461) TI!TT1! PRIISO RESTI!Y
FRINT N
FILES
DEOIC1»1JCONT.CMIS2 ENTRY!(6060+107462) DELIN
C1+1JCONT ENTRY ! (5020,7455) TI!TT1! FRI!SO REST?Y
FRINTI!N
FILES
DEOIELy1JCONT.CMD31 ENTRY(S55405,107456) DELIN
6 [300y3071BTCHO1 ENTRY:(4500,7167) TITT31: FRI!SO REST!Y
FRINT?!Y
FILES
DRO:L300y307IRTCHOL.BRISFi1 ENTRY?!(45205107170) DELIN
7 L[200,2001DIALOG ENTRY!(5360,6457) TIITT1! PRIISO REST!Y
FRINTIN
FILES
DROIL200,200IDIALOG.CMDF3  ENTRY: (5600,106460) DELIN
8 [200,2001DIALOG ENTRY:(3100,4261) TI!TT37: FRI!SO RESTI!Y
FRINTIN
FILES
DROIL200,200IDIALOG.CMDG2 ENTRY:(3120,104262) DELIN

%

&)

9-81



Command Descriptions

9 [1,11TEST ENTRY ! (2060,1002) TI!TT37: FRIIS0 REST!Y
FRINT!N
FILES®
DROIC1,1ITEST.CHMIFL  ENTRY: (2100+101003) DELIN
DEOIC1y1ITEST.CMDF1 ENTRY$(2120,101004) DELIN
10 [C1y1JTEST ENTRY: (2000,465) TI:TT1i! FRI!SO RESTI!Y

FRINT N
FILES
DEOIC1I,13TEST.CMDF1 ENTRY?(2020,100466) DELIN

DEOIC1,1ITEST.CMIG1  ENTRY$(2040,100467) DELIN

9.38.6 SHOW TASKS
The SHOW TASKS command displays information about installed tasks. The information dis-
played is dependent upon the option selected.

Format:
SHOW TASKS status [display] [task-name]

Prompts:

FUNCTION? TASKS
ACTIVE OR INSTALLED? status

Command Parameters:

status Specify either ACTIVE OR INSTALLED. When IN-
STALLED is specified, both active and dormant tasks
are displayed.

display Either FULL, ALL, or BRIEF can be specified. BRIEF
displays, on your terminal, a list of the task-names.
FULL displays, on your terminal, active task-names
and their status.

When not specifying “display’’, BRIEF is used.

The FULL display contains the following information
for each task:

Task name

Task control block physical address (octal)
Partition name;

Partition control block physical address (octal)
Partition base and limit physical addresses
(octal)

Task’s running priority and default priority;
Task status flags;

® TI terminal physical device name;

9-82



Command Descriptions

® [/O count (decimal);

® Task local event flags, and

® Task registers and Processor Status Word (mem-
ory resident tasks only).

Flags prefixed by a minus (-) sign indicate the com-
plementary status. That is, -CHK indicates that the task

is not checkpointable.

When a task is not in memory (the OUT flag is dis-
played), the contents of the PC, PS, and the registers

are not displayed.
STATUS

 ABO
ACP

AST
BFX
CAF

CAL

CHK
CKD
CKP

CKR
DST

EXE
FXD
HLT
MCR
MSG

NRP
NSD
PMD
ouT
PRV
RDN

REM
ROV

DESCRIPTION

Task is being aborted.

Task is an ancillary control
processor.

Task is processing an AST.

Task is being fixed in memory.
Checkpoint space allocation
failure occurred.

Checkpoint space is allocated in
task image.

Task is checkpointable.

Task checkpointable is disabled.
Task is checkpointed.

Task checkpoint request pending.
Task ASTs are disabled.

Task is in execution.

Task is fixed in memory.

Task is being terminated.

Task was activated by MCR.
Task was aborted and waiting for
TKTN message.

Task is mapped to nonresident
partition.

Task cannot receive data (no send
data allowed). '
Suppress task post mortem dump
abort.

Task is out of memory.

Task is privileged.

Task I/O is being run down.

Task is to be removed on exit.
Task has resident overlays.

9-83



Command Descriptions

SLV Task is slave.

SPN Task is being suspended.

SPNA Task was suspended prior to
AST.

STP Task stopped for terminal in-
put.

STPA Task stopped prior to AST.

TIO Task is waiting for terminal in-
put.

WFR Task is in a “wait-for” state.

WFRA Task was in a “wait-for” state
before AST.

task-name When the task-name is specified, only that task infor-

mation is displayed. When the task-name is omitted,
all tasks are displayed.

Command Qualifiers: None.
Examples:

This example lists the tasks active at your terminal.

+*8HOW TASKS ACTIVE ERIEF
SHOT4

e

This example lists all tasks currently active in the system.

+*SHOW TASKS ACTIVE ALL
+ooLDR
SHOT4
F11ACF
DR3ACF
QMG+ o
LFFO
RAFO
ERIT7
EDIT14
EDIT34
TT6
TRXT6
TTS
EDIT27
ERIT10

9:84



Command Descriptions

9.38.7 SHOW TERMINAL
Complements the SET TERMINAL command; displays a list of terminals for which the specified
attribute is an established feature, or displays an attribute of a specified terminal.

Format:
SHOW TERMINAL option
Prompts:

FUNCTION? TERMINAL
ATTRIBUTES? option

Command Parameter:

option Specifies one of the following items:
TYPE:term Specify the type of terminal,
where “term” can be SCOPE or
NOSCOPE.
LOWERCASE Display those terminals that

recognize lowercase and upper-
case characters.

UPPERCASE Display those terminals that
recognize uppercase characters
only.

[NO] PRIVILEGED Display the terminals in privilege

mode.
[NO] SLAVE Display the terminals in slave
mode.
[NO] REMOTE Display those terminals in REMOTE
mode.
[NO] HOLD._ Display the terminals in hold
SCREEN screen mode. When in hold

screen mode, the terminal dis-
plays a full screen of data each
time the scroll key is pressed. This
is useful when displaying a file on
a scope terminal.

[NO] ESCAPE __ Display those terminals in the
SEQUENCE escape sequence mode.

9-85



Command Descriptions

SPEED:Tnn Display the specified terminals’
receive and transmit baud rates
in the “transmit: receive” for-
mat. The terms “transmit’ and
“receive” are in reference to the
terminal’s ability to transmit and
receive. ‘

When Tnn is not specified, the
speed of the issuing terminal
(T1) is shown.

Command Qualifier: None.
This example displays the transmit and receive rates of terminal 4.

+SHOW TERMINAL SFEEDITT4
SFPEED=TT4:1300:300

This example lists each terminal with a printer rather than a CRT display medium.

>SHOW TERMINAL TYFE:NOSCOFE
NOCRT=TTO3
NOCRT=TT43
NOCRT=TT63
NOCRT=UTO3
NOCRT=VT1 3
NOCRT=VT23

9.39 SORT
The SORT command invokes the SORT utility of TRAX. This utility sorts the contents of an in-
put file into a sequence indicated by the SORT command, and writes the sorted contents into an
output file.

Two types of SORT are allowed, a record sort or a tag sort.

A record sort produces a reordered file by examining the specified control keys and directly
copying entire records to the output file as required.

A tag sort produces a reordered file by extracting the control keys into the proper order. Then the
record pointer associated with each key is used to reaccess the input file randomly to produce the

sorted output file. The tag sort is possible only when the input file resides on a disk.

See the TRAX SORT Reference Manual for further details.

9-86



Format:

SORT [/qualifiers] input-file-spec [/file qualifiers]

Command Qualifiers

/ALLOCATION:n
/BLOCKSIZE:n
/BUCKETSIZE:n

/[NO] CONTIGUOUS
/DEVICE:device-name
J/FILES:n
/FORMAT:type:n
/KEYS:(abm.n)
/PROCESS:process-type
/RELATIVE
/SEQUENTIAL
/SIZE:n
/SPECIFICATION:file-spec
JOUTPUT :file-spec

Input File Qualifier

/FORMAT :type
/INDEXED:n

Prompt:

FILE? input-file-spec [/file-qualifiers]

Command Parameters:

input-file-spec

Command Qualifiers:

/ALLOCATION:n.

/BLOCKSIZE:n

Command Descriptions

Default

See qualifier
/BLOCKSIZE:512
/BUCKETSIZE: 1
/NOCONTIGUOUS
See qualifier
[FILES:5

See qualifier

See qualifier
PROCESS:RECORD

/SEQUENTIAL
See qualifier
See qualifier
See qualifier

Required

Specifies the file whose contents are to be sorted. If
no file type is given, .DAT is the default file type.

Specifies the initial disk space allocation for the output
file. Legal values range from 0 to 65535 (bytes). Out-
put file allocation defaults to the input file size.

Specifies the blocksize in bytes for any magnetic tape
files that may be involved in the sort. This qualifier
is valid for magnetic tapes only. The defaultisa 512
byte block.

9-87



Command Descriptions

9-88

/BUCKETSIZE:n

/INO] CONTIGUOUS

/DEVICE:device-name

/[FILES

/FORMAT:type:n

Specifies the number of 512 byte blocks per bucket in

a disk output file. If this qualifier is used, the block size
is 512 bytes, regardless of any /BLOCKSIZE specific-
cation. If the input and output files have the same
organization, the output file defaults to the same
bucketsize as for the input file. Otherwise the default
bucket size is 1.

Specifies whether the disk output file allocation must
be contiguous or not. In a contiguous file, each suc-
cessive block is physically located between its logical
predecessor and its logical successor with no filler or
extraneous material separating the blocks. /NOCON—
TIGUOUS is the defaulit.

Specifies the device to be associated with the inter-
mediate scratch files of the sort. This qualifier over-
rides device specifications for scratch files resulting from
task build options. :

See also the description of the /FILES qualifier that
follows, and refer to the TRAX SORT Reference
Manual for detailed information about scratch files
and their use.

Specifies the maximum number of intermediate scratch
files. Default is 5. See the TRAX SORT Reference
Manual for detailed information on scratch files.

Specifies the record format and maximum record size
of a file. If /[FORMAT appears in the command prior
to the input file specification, as a command qualifier, it
qualifies the output file specification only.

The [FORMAT qualifier must always be present in the
command as an input file qualifier. If /FORMAT is
omitted as an output file qualifier, the /FORMAT for
the input file applies also to the output file.

Thé type argument can be any of the following:

FIXED
STREAM
VARIABLE
UNKNOWN



/KEYS:(abm.n,...)

Command Descriptions

The record size n is the exact record size in bytes for
FIXED records, and the maximum record size in bytes
for other record formats. Record size may be omitted
for output files.

The output record format defaults to that of the input
file.

Specifies the key fields to control the record sequence
of the output file. Up to 10 key fields, separated by
commas, are allowed. The entire list of key descriptions
must be enclosed in parentheses.

Each field description sequence abm.n breaks down as
follows:

1. Specifies how the data shall be treated. Legal values
of and their interpretations are:

B two’s complement binary
C alphanumeric (this is the default)
D One of the following:

a. if the characters are alphabetic, numeric with
the sign superimposed over the units digit, or
certain slashes (/), use the value of the digits
group. Here are two examples and their values:

A2CD5 = (+) 12345 A/47) = (-) 11471

b. if the characters represent a standard FOR-
TRAN IV number, such as 12, -35, 42.98 or
-0.76E+3, convert the number to binary for
storage or evaluation

F 1- or 4-word floating point binary

I same as D, but with the sign leading and separate,
so that the first byte of the field is a + or -

J same as I but with the sign trailing and separate

K same as D but with the sign leading and over-
punched (54321, for instance, if positive, would
come out as 5432A. The negative 54321 would be

5432]1.)

P packed decimal format
Z ASCII zone

2. Defines the general sort order. The default is N
(ascending order).

N ascending order
O opposite or descending order

9-89



Command Descriptions

9-90

J/OUTPUT :file-spec

{[PROCESS :process-type

/RELATIVE

/SIZE:n

m is a decimal number giving the first byte of the key
field. Number from the first byte of the record
which is byte 1. This item must be present.

n is a decimal number giving the length of the key
field in bytes. This item must be present.

The default abm.n value is

1
Zz 0

a

b
m = first position of the field
n = length of field

Specifies the file that will receive the sorted records.
Default is the input file.

Specifies which sorting process shall be used. This
qualifier is illegal when the /SPECIFICATION qualifier
is present. The process-type argument has two possible
values:

RECORD
TAG

RECORD specifies a record sort. It produces a re-
ordered file by directly transferring the entire record
contents on examination of the record keys. This is
is the default.

TAG specifies a tag sort. It produces a reordered file
in two stages. First, the key fields from the various
records are sorted and given record pointers. Then
the sorted file is created by using the sorted record
pointers to access the input file records and create the
full sorted file.

Specifies the organization of the output file. /SE—
QUENTIAL is the default.

Specifies the size of the retrieval window. The value
n corresponds to the pack default set up by the
J/WINDOW qualifier on the INITIALIZE or MOUNT
command.



/SPECIFICATION:file-spec

Input File Qualifiers:

/FORMAT:type:n

/INDEXED:n

Notes:

Command Descriptions

Specifies a file containing a set of controls for the -
sorting process. The /SPECIFICATION qualifier takes
the place of /KEY and /PROCESS qualifiers, and offers
greater flexibility in sorting files of non-uniform format.

The specification file includes the following controls:

Record selection

Alternative collating sequence
Forced keys

Variable input format
Variable output format
Process selection

The detailed description of the specification file is
beyond the scope of this manual. See the TRAX
SORT Reference Manual for further information.

Specifies the record format and maximum record size
for the input file. This file qualifier is required.

The type argument can be any of the following:

FIXED
VARIABLE
UNKNOWN

The n argument gives the exact record size in bytes for
FIXED files, on the maximum record size for other
record formats.

Specifies indexed sequential file organization for the in-
put file, and gives the number of access keys, n, de-
fined for that file.

1. Either a /[KEYS or /SPECIFICATION is :equifed in the SORT command.

2. The qualifiers /KEYS or /PROCESS must not be used if /SPECIFICATION is used.

Example:

The file DATA.DAT consists of variable length records, with no record longer than 80 bytes. A
RECORD sort is performed, because /PROCESS=RECORD is the default. The sort key begins
in record position 1 and is 4 bytes long. An alphanumeric ascending sort is performed. The
output is placed in the next higher version of DATA.DAT.

*SORT/KEYS:(1.,4) DATA/FORMAT:IVARIARLE 80

991



Command Descriptions

9.40 SUBMIT
The SUBMIT command accumulates one or more specified batch command files into a job and
places the job in a specified batch queue.

Format:

SUBMIT {/qualifiers] filespec [, .. .]

Command Qualifiers: Defaults:
J/QUEUE:queue-name /QUEUE:BATCH
/PRIORITY:n n:50
/[NO] RESTART /RESTART
/[NO] ORIGINAL /NOORIGINAL
/[NO] PRINT /PRINT
/JOB: jobname First six characters of first
file-spec
/AFTER: (dd-mmm-yy hh:mm) Current time
Prompt:

FILE? file-spec(,...]
Command Parameter:

file-spec Specifies the file containing batch commands. If no file
type is included, .CMD is the default.

Command Qualifiers:

/QUEVUE:queue-name Specifies the batch queue into which the job is to be
placed. The default queue-name is BATCH

/PRIORITY:n

Specifies the queue priority of the job.

/INO] RESTART Indicates whether or not the job can be restarted from
the beginning in the event that it is interrupted for some
reason.

/INO] PRINT Specifies whether or not to print the log file for the job.

9-92



Command Descriptions

/[NO] ORIGINAL Specifies whether or not the system should make
temporary copies of files to be submitted from a private
volume. /ORIGINAL indicates no temporary copies
are to be made;i.e., the original copy will be sub-
mitted to the batch or print queue. This allows private
volumes to be dismounted.

/JOB: job-name Specifies a name for the batch jcb.

/AFTER: (dd-mmm-yy hh:mm) Specifies a date and time after which the job shall be
made eligible for submission to a batch processor.

Examples:

This command places a batch job, name BATCHI1 and containing the file BATCH1.CMD into
the queue named BATCH’

>SURMIT
FILE? BATCH1

The job TEST shall be placed in the queue BAT and become eligible for processing after 5:30 p.m.
on January 30, 1978. The files FIRST.CTL and SECOND.CTL contain the batch commands of
which TEST will consist.

+SUBMIT/QUEUE ! RATCH/AFTER: (30-JAN-78 17:30)~
DCL>/JORSTEST -

DCL>FIRST.CTLs SECOND.CTL

.Fs.

941 TYPE
The TYPE command prints or displays the contents of one or more specified files on the issuing
terminal.
Format:
TYPE file-spec [, . ..]

Prompts:

FILE? file-spec[,...]

9-93



Command Descriptions

Command Parameter:

file-spec Specifies a file to be printed or displayed on the terminal

or in the batch log file.

Command Qualifiers: None.

Note:
Each file-spec must include a file name and a file type. Wildcards are permitted in the file name,
file type, and file version components of the file specification.

Example:

The following command displays the contents of the file A.CBL on the terminal from which the
TYPE command is issued.

*TYPE A.CRL
IDENTIFICATION DIVISION.
FROGRAM-ID, SAMFLE.
REMARKS. THIS JUST FRINTS A BRIEF MESSAGE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMFUTER. FDF-11-70.
ORJECT-COMFUTER. FIF-11-70.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 END-MESSAGE FIC X(40) VALUE IS *THE
FROCEDURE DIVISION.
MESSAGE-FRINT.,
BISFLAY END-MESSAGE.
STOF RUN.

9.42 UNLOCK
The UNLOCK command releases a locked file for access.

Format:

UNLOCK file-spec [, . . .]

Prompt:

9-94

FILE? file-spec [, ...]

TASK IS COMFLETED.".



Command Descriptions

Command Parameter:

file-spec Specifies a file to be released from a locked condition for
access. You must specify both a file name and a file
type.

Command Qualifier: None.

Notes:
1. Locked files occur as the result of being stored by the system under abnormal conditions.
If they are open during an ABORT operation, for instance, they are stored without being
normally closed. Locked files may not contain the information you expect, due to the
abnormal closing.

2. Locked files are indicated in the directory listing by an L between the block count and the
storage date.

Example:

The following sequence demonstrates the use of an UNLOCK command to gain access to a locked
file.

+COBOL A.CRL

DCL>ARORT COROL

=

14156125 TASK "CORTA " TERMINATED

ARORTED VIA DIRECTIVE OR MCR
>*DIRECTORY A.X

DIRECTORY DERO:L350,2301
19-JUL~-78 14156

A.TSTi1 0. 02-JUN-78 13156
A.LSTS1 1. 02-JUN-78 13156
A.ODL+1 1. 18-JUL-78 14:01
A.O0BJ1 2. i8-JuUL-78 14:01
A.TSK31 27, C 18-JuUL-78 14:01
A.CBL33 1. 18-JUL-78 14:03
ATHFPF2 0. L 19-JUL-78 14156

TOTAL OF 32./32. BLOCKS IN 7. FILES

FUNLOCK A.TMF
>*DIRECTORY A.TMF

9-95



Command Descriptions

DIRECTORY DRO:LC350,2301
19-JUL-78 14:59

ATMF32 0. 19-JUL-78 14:56
TOTAL OF 0./0. BLOCKS IN 1. FILE

e

996



APPENDIX A

THE RMSDEF INTERACTIVE
UTILITY

A.1 PURPOSE
The interactive RMSDEF utility creates RMS files, allowing you to control all attributes of the
files.

A.2 EFFECT

You specify file attributes by responding to requests for data and questions from the utility. The
method of questioning is outlined in Figure A-1. The figure shows the general flow of processing.
You may also get help from the utility by typing a question mark (?) in response to any question
or request for data.

NOTE
The flowchart in Figure A-1 contains circles with
section numbers in them. These section numbers
flag the different areas of the utility’s processing.
Each numbered section of text expands and explains
the associated portion of the flowchart.

RMSDEF also has the capability of building an indirect command file while you operate it. This
command file may be used thereafter to create file(s) and may be modified to create other similar
files. See Sections A.3 and A.4.1.

RMSDEF, however, does not write records into the file. The creation of the data contents of the
file must occur after the RMSDEF utility has created the file. You can employ either an
application program or the MERGE command to write records into the file.

The following list indicates the information that RMSDEF will always request as well as the
requests that may be made depending on specifications already typed.

1. Command File?
a. If yes, file specification
b. If yes, create only command file or create both RMS and command file?
2. File Specification
3. Data Structure
a. Minimum
(1) File organization
(2) Record format



The RMSDEF Interactive Utility

A-2

YES

A.4.1 |-

COMMAND
FILE

YES

WAS
THE NAME
OF A COMMAND
FILE
ENTERED
?

FILE
SPECIFICATION

KEY
DEFINITION

FILE
STRUCTURE

)

DATA
ALLOCATION

OF A COMMAND

DATA
STRUCTURE
FiLE
STRUCTURE
A.4.7 & '
PROTECTION
A.4.8
FILE
CREATION

Figure A-1 Interactive DEFINE Processing




The RMSDEF Interactive Utility

(3) Maximum record size
(4) CARRIAGE RETURN control?
b. Possible
(1) Size of fixed control area for VFC records
(2) Maximum number of records in a relative file
(3) Block-spanning records in a sequential file?
(4) FORTRAN character control if no CARRIAGE RETURN control?
4. Key Definition (indexed files only)
a. Minimum
(1) Position of key
(2) Size of key
(3) Data type
(4) Name of key
(5) Duplicate keys?
(6) Null key value?
b. Possible
(1) Change keys if duplicatable?
(2) Null key character if null key value
5. File Structure
a. Minimum
(1) Areas? (indexed files only)
(2) Placement control?
(3) Initial allocation quantity
(4) Default extension quantity
(5) Contiguous?
b. Possible
(1) Location if placement control
(2) Exactly if placement control?
(3) Type of alignment, if placement control, and areas
6. Data Allocation (indexed files only)
a. Minimum
(1) Number of bytes in data buckets filled
(2) Number of bytes in index buckets filled
b. Possible
(1) Area containing index level O for each key if areas
(2) Area containing index levels 2+ for each key if areas
(3) Area containing index level 1 if areas
7. Protection

A.3 UTILITY CALL AND TERMINATION
Call the RMSDEF utility with the following command:

RUN $RMSDEF

A-3



The RMSDEF Interactive Utility

The utility prints:
DO YOU WANT TO GENERATE A COMMAND FILE FOR FUTURE USE(NO)?
See Section A.4 for the complete dialog sequence.
You may terminate RMSDEF at any time by typing a CTRL/Z. Control is passed back to DCL.
A.4 PROCESS
A.4.1 Command File
1. The terminal prints:

DO YOU WANT TO GENERATE A COMMAND FILE FOR FUTURE USE(NO)?
Type one of the following:

Y If you want to enter a filespec for an indirect command file and have
RMSDEF write entries into the file as you move through the utility.
Go to step 2.

N or If you do not want to build a command file. Go to Section A.4.2, File
Specification.

filespec If you have already built a command file with RMSDEF and want

RMSDEF to read it now and create the specified file. Go to Section
A.4.8, File Creation.
ID If you want the utility to identify itself with a version number. RMSDEF
prints the following message:
THIS IS THE RMS RMSDEF UTILITY, VERSION n
where n is the revision level of the utility itself.
2. The terminal prints:
ENTER A FILE SPECIFICATION FOR THE INDIRECT FILE YOU WANT:
Type a filespec.
3. The terminal prints:
DO YOU WANT TO CREATE THE FILE YOU WILL BE DESCRIBING(NO)?
Type one of the following:
Y If you want RMSDEF to create the file specified as well as the command
file.
N or If you do not want to create the RMS file, only the command file that may
be used to create the file at a later date.

4. The command file created by RMSDEF takes the following form. The utility follows each
comment with the appropriate sequence of your entries, each on a separate line. Where
the user enters only to accept the default value, RMSDEF places CR/LF on a
separate line in the command file.

A-4



The RMSDEF Interactive Utility

{THE FIRST QUESTION ASKS FOR THE FILE SPECIFICATION

THE NEXT QUESTIONS DEAL WITH FILE ORGANIZATION & RECORD ATTRIBUTES
THE FOLLOWING QUESTIONS DEAL WITH KEYS (for Indexed files only)

{THE NEXT QUESTIONS DEAL WITH ALLOCATION AND PLACEMENT ATTRIBUTES
THE NEXT QUESTIONS ASK ABOUT FILL SIZES FOR KEYS

:THE FOLLOWING QUESTIONS DEAL WITH FILE PROTECTION

A.4.2 File Specification

The terminal prints:

ENTER YOUR FILE SPECIFICATION:
Type one of the following:

filespec If you want to create (or simulate creation, see Section A.4.1, Command
File, step 3) an RMS file. Go to Section A.4.3, Data Structure.
@filespec If you have built a command file (see Section A.4.1, Command File) and

want RMSDEF to use it to create the file specified. Go to Section
A.4.8, File Creation.

A.4.3 Data Structure

1. The terminal prints:
FILE ORGANIZATION (SEQ):
Type one of the following:
SEQ or for sequential organization
REL for relative organization
IDX for indexed organization

NOTE
If you indicated a magnetic tape device in the
filespec, RMSDEF does not request a file organi-
zation. Since a magtape file requires sequential
organization, the utility prints:

SINCE YOU SPECIFIED A NON-DISK DEVICE,
YOUR FILE ORGANIZATION MUST BE
SEQUENTIAL

2. The terminal prints:
RECORD FORMAT (VAR):
Type one of the following:
VAR or If the records in the file will have differing, or variable, lengths.
FIX If the records in the file will have the same, or a fixed, length.



The RMSDEF Interactive Utility

VEC If each record in the file will have a control area with a fixed length and
a data area of no standard length; that is, variable with fixed control.
STM If the records in the file will have no specific format but are delimited

only by record terminator characters. This stream format is permitted
for sequential disk files only.
UDF If there are no records (or you don’t want RMS to recognize records)
in the file; this format is used only for block 1/0 files, such as RMS
backup files.
RMSDEF will reject a format that is illegal with the file organization already specified; for
instance, STM for indexed files.

. If you specified VFC in step 2, the terminal prints the following message; otherwise, go to

step 4.

SIZE OF FIXED CONTROL AREA(2):

Type the decimal number of bytes in the fixed control area of each record in the file. The
minimum size is one byte; the maximum size is 255 bytes; the default is two bytes.

. The terminal prints:

MAXIMUM RECORD SIZE: or MAXIMUM RECORD SIZE (O):

Type a decimal number indicating the maximum number of bytes in any record in the
file. RMS checks this value whenever a record access operation is requested for this file:
if the record specified exceeds the maximum size, RMS returns an error. A size of zero
disables the RMS check, but a nonzero value is required for all relative files and all files
with fixed-length records.

. If you specified REL in step 1, the terminal prints the following message; otherwise, go to

step 6.

MAXIMUM NUMBER OF RECORDS (0):

Type a decimal number indicating the maximum number of records that this relative file
will contain. RMS checks this value whenever a record access operation is requested

for this file: if the relative record number specified exceeds the maximum record number,
RMS returns an error. (®er) sets the number to zero, which disables the RMS check.
The zero allows the file to contain as many records as is physically possible (the technical
maximum is 2.14748 X 10-9).

. If you specified SEQ in step 1, the terminal prints the following message; otherwise, go to

step 7.

WILL YOU ALLOW RECORDS TO CROSS BLOCK BOUNDARIES (YES)?

Type one of the following:

Y or If you want records to cross block boundaries.

N If you do not want records to span blocks. If you specified FIX in
step 2 and a maximum record size greater than 512 in step 4, the
terminal prints:

SINCE YOU SPECIFIED FIXED SIZE RECORDS, YOU MUST HAVE A MAXIMUM

RECORD SIZE LESS THAN 512. (THE SIZE OF 1 BLOCK) OR YOU MUST ALLOW



The RMSDEF Interactive Utility

RECORDS TO CROSS BLOCK BOUNDARIES. HERE’S YOUR CHANCE TO CHANGE
1 OF THESE.
RMSDETF repeats steps 4 and 6. Change either your MRS or the
answer to crossing block boundaries.
7. The terminal prints:

DO YOU WANT CARRIAGE RETURN CONTROL (YES)?

Type one of the following:

Y or Cren) If you want each record to be preceded by a line feed character and
followed by a carriage return character when it is written to a carriage
control device (printer, terminal, and so on). See the note below and go
to appropriate section.

N ' If you do not want carriage return control and/or you do want
FORTRAN character control. Go to step 8.

8. The terminal prints:

DO YOU WANT FORTRAN CHARACTER CONTROL (NO)?

Type one of the following:

Y If you want the first byte of each record to be allocated for a FORTRAN
forms control character. '

Nor Crr) If you do not want FORTRAN character control.

_ NOTE
If you indicated a magtape device in the file
specification, at this point RMSDEF requests:

MAGTAPE BLOCK SIZE (512):

Type a decimal number between 18 and 8192
representing the number of bytes in each tape
block. The number should be a multiple of four;
if it is not, RMS will round it up to the next
multiple of four before writing it as an attribute.
A (&en) sets the size to the default of 512 bytes.

The utility then bypasses all other processing and
immediately requests protection information (see
Section A.4.7).

A.4.4 Key Definition
As indicated by Figure A-1, this section applies only to indexed files.

1. The terminal prints:
IT’S TIME TO DEFINE THE PRIMARY KEY
POSITION OF KEY:
Type a decimal number indicating the position of the first byte of the key within each
record. For instance, if the key starts with the first byte of the record, its position is 0.
The second byte has position 1 and so on.

A position number must be specified for each segment of a segmented key; the numbers
are separated by commas and enclosed in parentheses.



The RMSDEF Interactive Utility

2. The terminal prints:
SIZE OF KEY
Type the decimal number of bytes in the key; that is, its length. Minimum length is 1
byte; maximum is 255 bytes; there is no default.

A length must be specified for each segment of a segmented key; the numbers are

separated by commas and enclosed in parentheses. A length must be typed for each

position number specified in step 1, but the sum of all lengths cannot exceed 255.
3. The terminal prints:

DATA TYPE(STRING):

Type one of the following:

STR or (xe1)  If your key value will be a string of alphanumeric characters.

IN2 If your key value is a 15-bit signed integer.

IN4 If your key value is a 31-bit signed integer.

BN2 If your key value is a 16-bit unsigned binary number.
BN4 If your key value is a 32-bit unsigned binary number.
PKD If your key value is a packed decimal number.

Y or

4. The terminal prints:
ENTER A NAME FOR YOUR KEY, IF YOU SO DESIRE(NONE):
Type one of the following:

If you do not want to specify a name for the key.
name If you want to name the key being defined; up to 32 ASCII characters
are allowed.

5. The terminal prints:

WILL YOU ALLOW DUPLICATE KEYS(dflt)?

Type one of the following:

Y If the file may contain more than one record with the same value for
this key. Keys must be specified as duplicatable before they can be
specified as changeable.

N If each record in the file must have a unique value for this key. RMS
returns an error if duplication is attempted; that is, a write or update
operation will fail for a record that has a value in this key field exactly
like a record already in the file.

Defaults and the values of dflt are:

Primary key - NO
Alternate keys - YES

NOTE
Steps 5, 6, and 7 apply only to alternate keys.

6. If you specified YES in step 5, the terminal prints the following message ; otherwise, go to
step 7.
WILL YOU ALLOW KEYS TO CHANGE(YES)?
Type one of the following:

A-8



The RMSDEF Interactive Utility

Y or It this alternate key may be changed during an update operation; that
is, the record may be read with one value for the key and rewritten
with another value for the same key.

N [t this alternate key must not change after the record is originally
created.

. The terminal prints:

DO YOU WISH TO DEFINE A NULL KEY VALUE(NO)?

Type one of the following:

Y If you want the file to contain some records that cannot be accessed via
this key. When RMS writes a record into an indexed file, it normally
updates all indexes of the file to reflect the values found in the
corresponding key fields of the record. However, if a null key value is
defined for an alternate key, RMS examines the contents of the key
field in the record. If this field consists solely of the null key char-
acter specified, RMS will not make an entry in the associated alternate
index for that particular record. Go to step 7.

N or If you do not want to specify a null value for this key. Go to step 8.

. The terminal prints:

O.X., ENTER YOUR NULL KEY VALUE CHARACTER:

Type one of the following:

C The single character itself, if it is not #, ?, or @.
#43 For the reserved character #.

#77 For the reserved character ?.

#100 For the reserved character @.

#n Any octal byte value (000-377) specified by n.

. The terminal prints:

DO YOU WANT TO DEFINE MORE KEYS(NO)?

Type one of the following:

Y If you want to define more keys for the file. You may define up to 254
alternate keys: however:

° The MERGE command will not read higher than the ninth alternate
key: that is, the NUMBER: n option of the MERGE command must
be less than or equal to nine.

° Your application language may not support that many keys. See
the appropriate user’s guide.

RMSDEF prints:
ALTERNATE KEY n
where n starts with 1 and is incremented each time you answer Y.

RMSDEF then requests this information for each alternate key
indicated; the alternate keys are defined in order, beginning with the
first alternate after the primary key has been defined.

N or If all keys for this file have been defined.



The RMSDEF Interactive Utility

A.4.5 File Structure

1.

A-10

If you specified IDX for file organization, the terminal prints the following message;
otherwise, go to step 2.

DO YOU WANT TO DEFINE AREAS(NO)?

Type one of the following:

Y If you want parts of this file to be logically different, with different
attributes. The questions 2-10 will be asked for each area.
N or If you want this file located in one area. RMSDEF asks you to go to
step 2.
. The terminal prints:

DO YOU WANT PLACEMENT CONTROL (NO)?
Type one of the following:

Y If you want to specify an exact location on disk for this area. Go to
step 3.
N or If you do not want to specifically locate this area. Go to step 6.
. If at least one area has already been defined; that is, you answered YES in step 1 at

least once, the terminal prints the following message. Otherwise, go to step 4.

WHAT TYPE OF ALIGNMENT DO YOU WANT (LBN)?

Type one of the following:

LBN or If the location you will specify in step 4 is a Logical Block Number (LBN)
on the disk volume.

VBN If the location you will specify in step 4 is a Virtual Block Number (VBN)
already established within the file itself; that is, in a previously defined
area.

. The terminal prints:

LOCATION:
Type the decimal number location of the first block for this file area.

. The terminal prints:

EXACTLY (NO)?

Type one of the following:

N or If you will accept the closest approximation of the LBN or VBN
location specified in step 4, if the exact location is not available.

Y If this area must start in the exact LBN location specified in step 4.
If this location is not available, RMSDEF will print an error message
when it tries to create the file and give you another chance to reconsider
this question. Exact VBN locations are already taken. by definition.

. The terminal prints:

ALLOCATION (0 - IT IS SUGGESTED YOU ENTER A VALUE):

Type a decimal number indicating the initial size of the area in blocks. A sets
the value to zero: the area will be created, but it will have to be expanded before any
records can be written into it. Since automatic file extension is a time-consuming pro-
cedure, the file should be fully allocated when it is created.

. If you specified REL or IDX for file organization, the terminal prints the following

message; otherwise, go to step 8.
BUCKET SIZE(1):



10.

11.

The RMSDEF Interactive Utility

Type a decimal number indicating the number ot blocks in a bucket for this area. The
minimum is the number of blocks that will contain one record (according to the size
specified in Section A.4.3, step 4); the maximum is 32 blocks: the default is one. This
number determines the number of blocks read into memory during each file access opera-
tion and therefore affects speed of processing and the amount of memory a program
accessing this file requires.

. The terminal prints:

DEFAULT EXTENSION QUANTITY (0 — IT IS SUGGESTED YOU ENTER A VALUE):
Type a decimal number indicating the number of blocks that should be added to the area
each time RMS must extend it. The Default Extension Quantity (DEQ) should be a
multiple of the bucket size. RMS requests this number of blocks from the operating
system.

A carriage return sets the value to zero: RMS will add only the minimum amount of
space required each time it expands the area. A definite but reasonable extension quantity
speeds up processing.

. The terminal prints:

DO YOU WANT A CONTIGUOUS AREA (NO)?

or

DO YOU WANT A CONTIGUOUS FILE (NO)?

Type one of the following:

Y If you want the disk space for this area allocated in contiguous,
that is, physically adjoining, blocks. If RMS cannot find that much
contiguous space, it will not create the file, even if sufficient non-
contiguous blocks are available.

A contiguous file or area may be extended although the disk space
added will probably not be contiguous with the original allocation.

N or If you do not require contiguous block allocation.

If you answered YES in step 1 (you have an indexed file), the terminal prints the following

messages: otherwise, go to the next appropriate section.

JUST FINISHED WITH AREA NUMBER n

DO YOU WANT TO DEFINE MORE AREAS (NO)Y?

Type one of the following:

Y “If you want to specify attributes for another area of your file. Areas
are numbered sequentially, starting with zero. The areas will be
associated with the index and data portions of the file in the next
section of the utility. Go to step 2.

N or If you have defined enough areas for this file. Go to step 11.

If vou defined one or more areas with a Default Extension Quantity (DEQ) of zero, the

terminal prints the following message; otherwise, go to the next section.

DEFAULT EXTEND QUANTITY FOR YOUR FILE (0):

Type a decimal number indicating the number of blocks that should be added to the file

each time RMS must extend it. The DEQ should be a multiple of the bucket size. A

(D) sets the value to zero: RMS will add only the minimum amount of space required

each time it expands the file. A definite but reasonable extension quantity speeds up

processing.

A-11



The RMSDEF Interactive Utility

A.4.6

Data Allocation

As indicated by Figure A-1, this section applies only to indexed files. RMSDEF begins this
portion of dialogue with the message:

IT IS TIME FOR AREA NUMBERS AND FILL FACTORS FOR KEYS.

The questions are asked for ecach key defined (see Section A.4.4, Key Definition).

1.

A4.7

A-12

The terminal prints:

AREA NUMBER FOR DATA BUCKETS FOR THIS KEY (0):

Type an integer (0-n) indicating the area already defined (see Section A.4.4, Key Defini-
tion) which should contain the data portion (Level 0) of this key.

. The terminal prints:

THE BUCKET SIZE IS nnn

HOW MANY BYTES DO YOU WANT FILLED IN THE DATA BUCKET (0)?

Type a decimal number of bytes in each of this key’s data buckets that should be used
during the original population of the file. This number is honored by the MERGE
command and may be honored by MACRO programs.

A sets the number to zero, indicating that buckets will be completely filled and
that no free space will be available for records added during update operations.

. The terminal prints:

AREA NUMBER FOR INDEX BUCKETS FOR THIS KEY (0):
Type an integer (0-n) indicating the area already defined (see Section A.4.4, Key Defini-
tion) which should contain the upper portions (Levels 2+) of the index for this key.

. The terminal prints:

THE BUCKET SIZE IS nnn

HOW MANY BYTES DO YOU WANT FILLED IN THE INDEX BUCKET (0)?

Type a decimal number of bytes in each of this key’s index buckets that should be used
during the original population of the file.

A sets the number to zero, indicating that buckets will be completely filled and
that no free space will be available for records added during update operations.

. The terminal prints:

AREA NUMBER FOR THE LOWEST INDEX LEVEL FOR THIS KEY (0):

Type an integer (0-n) indicating the area already defined (Section A.4.4, Key Definition)
which should contain the lowest index level portion of this key.

If the area you specified for the upper portions of the index (Levels 2+) and the area you
specified here for Level 1 have different bucket sizes, RMSDEF prints the following
message and returns to step 3:

THE AREA ASSOCIATED WITH THE LOWEST LEVEL INDEX BUCKET HAS A
DIFFERENT BUCKET SIZE THAN THE AREA ASSOCIATED WITH THE HIGHER
INDEX BUCKET. TRY BOTH AGAIN.

Protection

. The terminal prints:

SPECIFY PROTECTION BY CLASS:
OWNER: (RWED ALLOWED)



The RMSDEF Interactive Utility

Type one of the following:

If you want this file completely available to access (Read, Write,
Edit, Delete) by the account current when the file is created.
NONE If you do not want the file owner to have any access to this file

after it is created.

R.W, E,and/or D To specify alevel of protection between none and all. One or more
of the letters representing Read, Write, Edit, and Delete may be
specified, in that order and without separation.

. The terminal prints:

GROUP: (RWED ALLOWED)

Type one of the following:

If you want this file completely available to access (Read, Write,
Edit, Delete) by all accounts with the same group number as the
owner’s account.

NONE If you do not want the group members to have any access to this file
after it is created.

R, W, E, and/or D If you want to specify a level of protection between none and all.
One or more of the letters representing Read, Write, Edit, and
Delete may be specified, in that order and without separation.

3. The terminal prints:
SYSTEM: (RWED ALLOWED)
Type one of the following:

[ 9]

If you want this file completely available to access (Read, Write,
Edit, Delete) by system privileged accounts.
NONE If you do not want privileged accounts to have any access to this

file after it is created.
R, W, E, and/or D If you want to specify alevel of protection between none and all.
One or more of the letters representing Read, Write, Edit, and
Delete may be specified, in that order and without separation.
4. The terminal prints:
WORLD: (R ALLOWED)
Type one of the following:

If you want this file to have Read access only for all accounts,
including those outside the owner, group, and privileged accounts.
NONE If you do not want other accounts to have any access to this file

after it is created.

R, W, E, and/or D If you want to specify a level of protection other than Read. One
or more of the letters representing Read, Write, Edit, and Delete
may be specified in that order and without separation.

A.4.8 File Creation
The RMSDEF utility attempts to create the file.

A-13



The RMSDEF Interactive Utility

A.4.8.1 Success - If RMS does not return an error, the utility prints:
YOUR FILE HAS BEEN CREATED!! — filespec
If you chose to create a command file (see Section A.4.1, Command File), RMSDEF also prints:

YOUR FILE HAS BEEN PROCESSED AND A COMMAND FILE GENERATED!! — filespec
DO YOU WANT TO CLOSE THE INDIRECT FILE (NO)?

Type one of the following:

Y If you are finished specifying files for the command file. The utility returns to
the question about command file generation (see Section A.4.1, Command File).

N or (zer) If you want to specify another RMS file and you want the command file to include
your input. RMSDEF continues to use the command file originally specified and
to obey your answer to the DO YOU WANT TO CREATE THE FILE YOU WILL
BE DESCRIBING? question (see Section A.4.1, step 3). The utility retumns to the
request for a file specification (see Section A.4.2, File Specification).

You may start the process to create another file or type CTRL/Z (TZ) to terminate the utility.

A.4.8.2 Error - RMSDEF allows three types of recoverable creation errors, shown next. All
other errors result in a description of the error and a message that the file as specified cannot be
defined. The utility returns to the file specification request to let you try again (see

Section A.4.2).

1. The terminal prints an error description, followed by:

THIS FILE CANNOT BE CREATED DUE TO AN ERROR IN THE FILE SPECIFICA-

TION. DO YOU WISH TO REENTER THE ENTIRE FILE SPECIFICATION (YES)?

Type one of the following:

Y or If you know how to correct the error and/or want to enter another
filespec. The utility requests the filespec and attempts to create the
file using it.

N If you don’t know how to correct the error and/or want to start
again. RMSDEF returns to the file specification request.

2. The terminal prints:

THE FILE WASN'T CREATED SINCE YOU SPECIFIED A BLOCK WHICH IS IN USE.

WILL YOU NOW ACCEPT AN APPROXIMATION OF THAT LOCATION (YES)?

You requested an exact placement of a file or area (Section A.4.5, File Structure,

step 5).
Type one of the following:
Y or If you now want the best approximation of the location you

specified for your file or one or more areas in your file. RMSDEF
will try to create the file again.

A-14



The RMSDETF Interactive Utility

N If you want the exact location or nothing. RMSDEF returns to the

file specification request since it cannot create the file as specified.
3. The terminal prints:

A FILE WITH THE FILE SPECIFICATION YOU ENTERED ALREADY EXISTS.

DO YOU WANT TO SUPERSEDE THE FILE (NO)?

Type one of the following:

Y If you want to delete the file that already exists and create the file
you have specified through the utility. RMSDEEF deletes the existing
file and attempts to create the specified one.

N or If you do not want to supersede the existing file with the one you
have just specified. RMSDEF returns to the file specification request.

A-15



The RMSDEF Interactive Utility

A-16



APPENDIX B
TRAX SUPPORT ENVIRONMENT MESSAGES

This appendix describes the system messages created by the TRAX Support Environment commands.
All commands that can be issued from the TRAX Support Environment with the exception of the
BASIC, COBOL, and MACRO programming languages and the TRAX Editor error messages are
listed. These error messages are described in their respective user reference manuals.

B.1 ABORT
These are the error messages created by the ABORT command.

ABO — TASK MARKED FOR ABORT
An attempt has been made to abort a task which is already marked for abort.
ABO — TASK NOT ACTIVE
The specified task is not currently active.
Messages from Task Termination Notification Routine (TKTN):

TKTN displays information about task aborts, whether caused by an explicit ABORT command
or some other force. The display has the format:

TASK “<taskname>>’ TERMINATED
<abort cause>

Following the displayed cause for the abort is a list of the task’s registers at the time of the abort.
The possible causes of the abort are described below.

Abort Cause Messages:
ABORTED BY DIRECTIVE OR MCR
Either TRAX or an Executive directive issued by another task caused the task to be aborted.
ABORTED VIA MCR

TRAX aborted the task and requested a post-mortem dump.

B-1



TRAX Support Environment Messages

CHECKPOINT FAILURE. READ ERROR.

The task could not be read back into memory from disk after being checkpointed.
LOAD FAILURE. READ ERROR

The task could not be loaded from disk because of a hardware error.
PARITY ERROR

A parity error occurred while the task was executing. The task was fixed in memory so
that the memory could not be reused by another task.

TASK EXIT WITH OUTSTANDING IO

The task exited with one or more outstanding I/O requests. Tasks should terminate all
I/O operations before exiting. The system does, however, clean up all outstanding 1/O.

B.2 ALLOCATE
These are the error messages created by the ALLOCATE command.

ALL — DEVICE ATTACHED
The specified device cannot be allocated because it is attached to a running task.
ALL — PSEUDO DEVICE ERROR
The specified device is a pseudo device. Pseudo devices cannot be allocated.
ALL — PUBLIC DEVICE
The command attempted to allocated a public device. Public devices cannot be allocated.
ALL — USER LOGGED ON TERMINAL

The command attempted to allocate a terminal that has been logged-in by another user.
Logged-in terminals cannot be allocated.

B.3 APPEND
These are the error messages created by the APPEND command.

B-2



TRAX Support Environment Messages

NOTE
A fatal error in the cnv utility is marked by a preceeding question
mark “?”. If the message has a question mark in brackets [?] the
error may be either fatal or diagnostic. If the error message has no
preceeding question mark the error is diagnostic. The error messages
prefixed with “DSC?” refer to volume archiving. The others refer to
file archiving.
?cnv — DEVICE OFF LINE - device
Description

The indicated device exists on the system but the attempt to access it has been prohibited
for one of the following reasons.

1. The device is not ready.
2. No volume is mounted on the device.
3. The device is currently reserved by another job.
4. The device requires privileges for ownership and the user does not have privilege.
5. The device has been disabled.

Suggested User Action

Determine the nature of the problem and take corrective action.

cnv — DEVICE/FILE IS FULL - device/filename

Description

The utility cannot create an output file on the indicated device because of insufficient space
or the indicated file cannot be extended due to insufficient space.

Suggested User Action
Reenter the command using another device for output files or copy the indicated file to another
device and retry the command. Optionally, delete unneeded files on the indicated device and
reenter the original command line.

?cnv — FILE NOT AVAILABLE - filename
Description
The indicated file is being accessed for exclusive use by another job.

Suggested User Action

Periodically retry the command until the file has been released.



TRAX Support Environment Messages

?cnv—ILLEGAL DEVICE — device

Description |

The indicated device does not exist.

Suggested User Action |

Reenter the command line with a corrected device specification.
?cnv—NO SUCH KEY FOR FILE — value

Description

The specified key of reference value represents a non-existent key in an indexed file.

Suggested User Action

Reenter the command with a correct key of reference value.
?cnv—NOT A DIRECTORY DEVICE — device

Description

The user has issued a directory-oriented command for a device (such as a printer) that does
not have directories (accounts).

Suggested User Action

Reenter the command line without specifying an account.
APP — CANNOT FIND DIRECTORY FILE

Description: UFD specified does not exist on this volume.

Suggested User Response: Reenter the command line, specifying the correct UFD or the
correct volume.

APP — CANNOT FIND FILE(S)
Description: The file(s) specified in the command were not found in the designated directory.

Suggested User Response: Check the file specifier and reenter the command linie.

APP — I/O ERROR ON INPUT FILE

or



TRAX Support Environment Messages

APP — I/O ERROR ON OUTPUT FILE
Description: One of the following conditions may exist:

® The device is not on-line.

® The device is not mounted.

® The hardware has failed.

® The volume is full (output only).
® Input file is corrupted.

Suggested User Response: Determine which condition caused the message and correct that
condition. Reenter the command line.

APP — NOT A DIRECTORY DEVICE

Description: A directory-oriented command was issued to a device that does not have
directories (such as a printer).

Suggested User Response: Reenter the command line without specifying a UFD.
APP — OPEN FAILURE ON INPUT FILE

or
APP — OPEN FAILURE ON OUTPUT FILE

Description: The specified file could not be opened. One of the following conditions may
exist:

® The file is protected against access.

® A problem on the physical device (e.g., device cycled down).
® The volume is not mounted.

® The specified file directory does not exist.

® The named file does not exist in the specified directory.

Suggested User Response: Determine which condition caused the message and correct that
condition. Reenter the command line. '

B.4 ARCHIVE
These are the error messages that are created by the archive command.



TRAX Support Environment Messages

NOTE
A question mark “?”” preceeding the bck or rst utility error
messages indicates a fatal error. A question mark in brackets
[?] indicates that the error may be fatal or diagnostic. If
no question mark preceeds the error message the error is
diagnostic. The error messages prefixed with ““DSC”’ refer
to volume archiving. The others refer to file archiving.

DSC — 7 DUP DEV NAME
The same device was entered more than once in the command.
Re-enter the command string with the devices specified only once.
DSC — 9 DEV device: NOT IN SYSTEM
The specified device is not present in the configuration of the operating system being used.
Check the device identifier that was entered in the command string, and retry the command.
DSC — 10 DEV device: NOT files-11
The specified input device is not formatted as a files-11 device.
Check the input device to ensure it is the one desired, and re-enter the command.
DSC — 14 OUTPUT TAPE ON device: IS NOT AT BOT
The specified continuation tape is not at load point.
Remount or reset the tape at load point and re-enter the command.
DSC — 18 TAPE device: NOT ANSI FORMAT
The tape is not in correct format for a DSC operation.
Check the tape and change if necessary.
DSC — 21 TAPE device: A CONTINUATION TAPE
The tape has been mounted out of sequence.

Re-enter the command, specify input tapes in proper order.

B-6



TRAX Support Environment Messages

DSC — 23 FAILED TO FIND HOME BLOCK device:

A read error occurred when trying to copy from the input disk. Either the disk is bad, the
home block is bad, or the disk is not in files-11 format.

Check the disk in question, change disk drives if possible, and re-enter the command.
DSC — 26 1/O ERROR B ON device:

The I/O error indicated by the message that follows explains why the file header on the input
device could not be read. The specified file is lost.

Retry the operation after correcting the cause of the error on the input device.
DSC — 27 I/O ERROR B ON device:

The I/O error indicated by the message that follows explains why the file header on the output
device could not be read. The specified file is lost.

Retry the operation after correcting the cause‘of the error on the output device.
DSC - 28 CODE A
The file header for the storage bit map file cannot be read.
The disk is unusable and therefore cannot be copied.
DSC — 29 I/O ERROR C ON device:
The following message explains the error that occurred while reading the specified file.
Retry the operation.
DSC — 30 I/O ERROR D ON device:

A read error, as indicated by the diagnostic message which follows, occurred when reading
the name or boot block of the disk.

Retry the operation on a new drive.
DSC — 31 RELATIVE VOLUME X OF SET NOT MOUNTED
The specified tape is not on the system.

Mount the tape and re-enter the command.



TRAX Support Environment Messages

DSC — 36 I/O ERROR E ON device: file id

The message that follows explains the I/O error that occurred while reading the specified
file header.

Retry the operation.
DSC — 37 INPUT DEVICE device: file id file number NOT PRESENT
The specified file does not have a file header in the index file; the file is not copied.
This is a warning only. If desired, the operation may be retried on a different disk drive.
DSC — 38 INPUT DEVICE device: file id file number IS DELETED
The specified file was found to be partially deleted on the input disk and was not copied.
This is a warning only. No action is required.
DSC — 39 INPUT DEVICE device: file id UNSUPPORTED STRUCTURE LEVEL
The specified input disk is not a level one (ODS1) disk and cannot be used.
Retry the operation with a level one disk.
DSC — 40 INPUT DEVICE device: file id file number FILE NUMBER CHECK
An incorrect file header was read from disk causing the specified file to be lost.
Retry the operation.
DSC — 41 INPUT DEVICE device: file id file number FILE HEADER CHECKSUM ERROR
Incorrect file header contents cause the specified file to be lost.
Retry the operation.
DSC — 42 INPUT DEVICE device: file id SEQUENCE NUMBER CHECK
The sequence number is incorrect.
Retry the operation and/or replace the disk.
DSC — 43 INPUT DEVICE device: file id file number SEGMENT NUMBER CHECK
The linkage connecting file segments has been broken; the specified file is lost.

Retry the operation.

B-8



TRAX Support Environment Messages

DSC — 44 DIRECTIVE ERROR
An internal error has occurred, usually the result of a system overload.
Retry the operation.

DSC — 45 I/O ERROR F ON device:

The message that follows indicates that the specified input device may cause a subsequent
error.

This message is a warning only. No action is required unless another error message is dis-
played. If another error message is displayed, correct the cause of the error and re-enter the
command.

DSC — 46 I/O ERROR F ON device:

The message that follows indicates that the specified output device may cause a subsequent
error.

This message is a warning only. No action is required unless another error message is dis-
played. If another error message is displayed, correct the cause of the error and re-enter the

command.

DSC — 47 I/O ERROR I ON device: file id file number virtual block number

An I/O error occurred which is explained by the message that follows which resulted in bad
data being read from the specified virtual block number.

This is a warning message only. The block specified should be examined to determine the
extent of the error.

DSC — 48 I/O ERROR I ON device: file id file number virtual block number

An I/O error occurred which is explained by the message that follows which resulted in bad
data being read from the specified virtual block number.

This is a warning message only. The block specified should be examined to determine the
extent of the error.

DSC — 49 VERIFICATION ERROR ON device: file id virtual block number

This is a warning signifying that the input and output devices did not match.



TRAX Support Environment Messages

DSC — 50 BAD DATA BLOCK ON device: file id file number virtual block number

A parity error occurred when copying the blocks contents from disk. The block specified on
the output disk contains erroneous data.

When the copy operation is completed, the data contaired in the specified block should be
examined and corrected.

DSC — 55 INPUT FILE ON device: WILL BE RESYNCHRONIZED

The tape position was lost while reading the input tape. The file specified in the message,
as well as some subsequent files, may be lost. Additional error messages will probably occur.

Retry the operation from the beginning.
DSC — 57 OUTPUT FILE HEADER FULL ON device:

Too many blocks on the output disk have caused inconsistencies in file header data. The
specified file is lost.

Retry the operation with a different output disk.

DSC — 58 OUTPUT FILE HEADER ON device: NOT MAPPED — file id file number
Space for the specified file header was not allocated. The file is lost.

Retry the operation; a new disk may be required.

DSC — 59 I/O ERROR G ON device:

The message that follows explains the I/O error that occurred while writing the specified file.
Retry the operation.

DSC — 60 FAILED TO READ FILE EXTENSION HEADER ON device: file id file number
When copying from the input disk, an extension header was searched for, but not found. The
remainder of the specified file was lost. A problem may exist with the input disk, or a
preceding I/O error occurrence may have caused an inconsistency.

Retry the operation.

DSC — 61 FAILED TO ALLOCATE HOME BLOCK device:

The home block cannot be created on the specified disk device because it has too many bad
blocks.

Replace the device and re-enter the command.

B-10



TRAX Support Environment Messages

DSC - 62 INDEX FILE ALLOCATION FAILURE device:
Too many bad blocks exist to allow the allocation for specified file.
Replace the disk and re-enter the command.
DSC — 63 OUTPUT DISK device: IS NOT BOOTABLE
Logical block number O of the specified disk or tape is bad.
This is a warning only. No action is required.
DSC — 64 INVALID BAD BLOCK DATA device:
The bad block data on the output disk are invalid.

Run the BAD utility on the disk; manually enter bad block data; or re-enter the command,
specifying another disk.

DSC — 65 BAD BLOCK FILE FULL device:
Too many bad blocks exist on the output disk.
Replace the disk and retry the command.

DSC — 66 NO BAD BLOCK DATA FOUND device:
No bad block data exists for the specified output disk.
If bad block data is not desired, ignore the message. Otherwise, run the BAD program on
the disk; manually enter bad block data; or re-enter the command using a new disk. The
functions of the BAD utility are described in the TRAX Support Environment System
Operations Guide.

DSC — 67 OUTPUT DEVICE device: IS A DIAGNOSTIC PACK DO NOT USE IT!
The specified output disk is a diagnostic device, and cannot be used.
Mount new output disk and re-enter the command.

DSC — 68 CODE B ON device: file id file number VBN: expected x found y

The tape position was lost when reading the virtual block number specified. Some data may
be lost.

Determine the extent of the error. If necessary, try the tape on another drive, or create
another tape.

B-11



TRAX Support Environment Messages

DSC — 69 CODE C ON device: file id file number VBN

The position of the tape was lost while reading the data file specified. Data beyond the VBN
mentioned are lost.

Re-create the tape, or retry the operation on a different tape drive.
DSC — 70 CODE D ON device: file id file number expected x found y

The tape position was lost while feading the tape mentioned in the message. All of “y” and
some of “x’’ are lost.

Retry the entire operation.
DSC — 71 FAILED TO MAP OUTPUT FILE ON device: file id file number
An inconsistency occurred when writing the specified file to the output disk. The file header
did not specify the correct number of virtual blocks required to write the file and the file is
lost.
Retry the operation.
DSC — 72 OUTPUT DISK device: IS TOO SMALL — nn BLOCKS NEEDED
The output disk is not large enough to accommodate the data to be transferred.
Retry the operation specifying a larger output disk.
DSC — 73 I/O ERROR C ON device:
The following message explains the error that occurred while reading the specified file.
Retry the opefation.
DSC — 74 1/0 ERROR H ON device:
The message that follows explains the I/O error that occurred while writing the specified file.
Retry the operation.
DSC — 75 I/O ERROR J ON device:

An I/O error (which follows) occurred when reading the tape labels on the specified device.

Retry the operation on a different tape drive.

B-12



TRAX Support Environment Messages

DSC — 76 INPUT TAPE ON device: MUST BE AT BOT
The specified tape must be at beginning of tape or its load point. This message is also dis-
played during a /VE operation merely to indicate that the current volume is rewinding to
enable the verify pass.
If /VE was not specified, check the tape and remount at load point.

DSC — 77 WRONG INPUT TAPE ON device: EXPECTING file id FOUND file id
The input tapes were specified out of sequence.
Check the tapes, re-enter in proper order after receiving mount instructions.

DSC — 78 CODE E ON device: AFTER file id file number

This is the result of a read error from tape. When trying to read an attribute block, some
other block was accessed. The file following the file specified in the error message is lost.

Retry the operation.

DSC — 79 1/O ERROR K ON device:
The message that follows explains the I/O error that occurred while reading the specified file.
Retry the operation.

DSC — 80 I/O ERROR L ON device:
The message that follows explains the I/O error that occurred while reading the file header.
Retry the operation.

DSC — 81 INPUT TAPE device: RESYNCHRONIZED AT file id file number
The tape position has been recovered. Some data preceding the file specified were lost.
This is usually received in conjunction with one or more error messages, all indicating that the
input tape was either read incorrectly or recorded badly. The tape should be re-created and
the operation re-initiated.

DSC — 82 TAPE FILE filelabel NOT FOUND ON device:

The input tape specified does not contain the file identified as “filelabel”.

Check the filelabel and the tape, re-enter when the correct tape and filelabel are specified.



TRAX Support Environment Messages

DSC — 83 EXPECTED EXTENSION HEADER NOT PRESENT ON device: file id, file number
A tape read error occurred ca_using the specified file to be lost.

If the error message was preceded by one or more I/O warning messages, the operation should
be retried. If not, the input tape is bad and should be re-generated.

DSC — 84 CODE F ON device: AFTER file id file number

This is the result of a read error from tape. When trying to read a file header some other
block type was accessed. The file following the file specified in the error message is lost.

Retry the operation.

DSC — 85 I/O ERROR M ON device:
The following message explains why the specified file could not be read.
Retry the operation.

DSC — 86 INDEX FILE DATA NOT PRESENT device:

When reading the input tape specified, a file other than the index file was accessed due to a
tape error or an 1/O error.

Re-create the tape, or retry the same tape on a different tape drive.
DSC — 87 I/O ERROR N ON device:

The message that follows explains the I/O error that occurred while restoring the index and
storage map files from the specified input tape.

Retry the operation using a different input tape drive.

DSC — 88 VOLUME SUMMARY DATA NOT PRESENT device:
Either the input tape is not a DSC tape, or incomplete data are contained.
Check the tape and re-enter the command.

DSC — 89 I/O ERROR O device: file id, file number

The message that follows explains the I/O error that occurred while writing the specified file
header.

Retry the operation.

B-14



TRAX Support Environment Messages

NOTE
The DSC errors identified as I/O errors are accompanied by
one or more of the following error messages to explain the
type of ifo error that occurred.
BAD BLOCK NUMBER
The block does not exist on the disk; an internal DSC error has occured; or the block is bad.
Retry the operation with a new disk and/or disk drive.
BAD BLOCK ON DEVICE

A device malfunctions has occurred, or a tape was used with bad data on it resulting in a
block containing incorrect information.

Retry the operation.

BLOCK CHECK
A parity error occurred indicating that bad data may have been transferred.
Retry the operation.

DATA OVERRUN

The physical tape used is larger than was expected; the tape got out of position, or is in the
wrong format.

Make sure the tape is the right one and retry the operation.
DEVICE NOT READY |
The device is not ready or not up to speed, or a blank tape has been used as an input tape.
Retry the operation after checking that the device is online and correctly mounted.
DEVICE OFFLINE
The device is not in the system.
Check the device, the device specification in the command string, and re-enter the command.
DEVICE WRITE LOCKED
The disk drive is write locked.

Write enable the disk drive and re-enter the command.

B-15



TRAX Support Environment Messages

END OF FILE DETECTED
The tape position was lost.
Retry the operation.
END OF TAPE DETECTED
The tape position was lost.
Retry the operation.
END OF VOLUME DETECTED
The tape position was lost.
Retry the operation.
FATAL HARDWARE ERROR
A hardware malfunctions has occurred.
Retry; if error repeats call DIGITAL Field Service.
INSUFFICIENT POOL SPACE
The operating system is overloaded.
Retry the operation.
PARITY ERROR ON DEVICE
A device malfunctions or taj)e incompatibility has occurred.
Retry the operation.
PRIVILEGE VIOLATION
A device has been mounted as FILES-11.
TRAX users: DISMOUNT the disk and retry the operation.
UNKNOWN SYSTEM ERROR
An undefinable I/O error has occurred.

Retry the operation.

B-16



TRAX Support Environment Messages

The following error messages appear only in the stand-alone version of DSC used as part of the
SYSGEN procedure.

Table B-1 General Error and I/O Error Message Codes

General Error Message Codes

Symbol Meaning
Code A Failed to read storage map header
Code B Input data out of phase
Code C Non-data block encountered
Code D Input file out of phase
Code E File attributes out of phase
Code F File header out of phase
I/O Error Message Codes
Symbol Meaning
A Reading index file bit map
B Reading index file header
C Reading storage bit map
D Reading boot or home block
E Reading file header
F Input (or output device)
G Writing index file bit map
H Writing storage bit map header
I Reading input device
J In input tape labels
K Reading file attributes
L Reading file header
M Reading index file data
N Reading summary data
0] Writing file header

utl — DEVICE/FILE IS FULL — device/filename
Description

The utility cannot create an output file on the indicated device because of insufficient space
or the indicated file cannot be extended due to insufficient space.

Suggested User Action
Reenter the command using another device for output files or copy the indicated file to

another device and retry the command. Optionally, delete unneeded files on the indicated
device and reenter the original command line.

B-17



TRAX Support Environment Messages

?utl — ERROR WITH WILDCARDS
Description

The wild card processor has returmned an error to the utility during resolution of wild cards in
a file specification.

Suggested User Action

Reenter the command line. If the same condition recurs, use successive invocations of the
utility and non-wild carded file specifications to achieve the original desired resulit.

?utl — FILE NOT AVAILABLE - filename
Description
The indicated file is being accessed for exclusive use by another job,
Suggested User Action
Periodically retry the command until the file has been released.
?utl — FILE POSITION LOST — filename
Description

The utility has lost its position within a container file on magnetic tape while rewinding or
backspacing. The error may have been caused by hardware failure.

Suggested User Action
Determine from the output account or summary listing file the extent of the processing that
was completed prior to the occurrence of the error. Reenter the command line eliminating file
specifications of files successfully processed. Use a new tape volume and/or a different tape
drive. The file is input to RESORE, the utility cannot restore the data records within the in-
dicated blocks of the original file.
Tut]l — I/O ERROR ENCOUNTERED ON OUTPUT FILE — filename

Description
One of the following conditions exists:

1. The device is not on line.

2. The device is not mounted.

3. The hardware has failed.
4. The volume is full.

B-18



TRAX Support Environment Messages

Suggested User Action

Rectify the condition and reenter the command line.

utl — INPUT FILE IS NOT BACKUP FILE — filename

Description

The utility requires that the input file be a backup file. The user has specified a file that is
not in backup format. For example, a file not in backup format is specified as input to
ARCHIVE/RESTORE.

Suggested User Action

Reenter the command line with the correct file specification.

utl — NO SUCH FILE

Description
No files in the UFD correspond to the wild cards of a file specification.
Suggested User Action

Obtain a listing of the files in the desired UFD. Reenter the command with the desired file
specification.

?utl — PRIVILEGE VIOLATION - filename

utl —

Description

The user does not have the privileges necessary to access the indicated file.
Suggested User Action

Have the owner of the file change its privilege specification.

READ ERROR, INTEGRITY CHECK TABLE AND REWRITE DATA MAY HAVE BEEN
LOST

Description

The utility has encountered an error while attempting to read internal data maintained in a
backup file or container file.

B-19



TRAX Support Environment Messages

Suggested User Action

Retry the command. If the same error occurs, check summary listing file created at the time
the backup or container file was created. Determine from this file which file or files cannot be
completely restored.

ut!l — READ ERROR ON FILE ATTRIBUTES — filename

Description

The volume is corrupted or the user does not have the necessary privileges to access the
indicated file.

utl — READ ERROR ON FILE PROLOGUE - filename

utl —

Description

The utility is unable to read the prologue (internal RMS-11 information within a file) of the
specified file. The file is bypassed and processing continues.

Suggested User Action

Reenter the command specifying the subject file only. If the same error occurs, the indicated
file cannot be properly accessed on the device. Use the RESTORE utility to retrieve a new
copy of the file. ‘

READ ERROR OR INCONSISTENT DATA. MAY HAVE LOST FILES.

Description

The utility has encountered an error while reading a backup or container file.

Suggested User Action

Retry the command. If the same error occurs, check summary listing file created at the time

the backup or container file was created. Determine from this file which file or files may
have been lost.

?utl — REWIND OR SPACE ERROR ON FILE — filename

B-20

Description
The utility has encountered an error while rewinding or backspacing on magnetic tape.
Suggested User Action

Retry the command. If the condition occurs again, mount the volume on another drive and
retry the command.



TRAX Support Environment Messages

?utl — SELECT ERROR —dev
Description
One of the following conditions exists:
1. The device is not on-line.
2. The device is not mounted.
3. The hardware has failed.
Suggested User Action
Rectify the condition and reenter the command line.
utl — UNABLE TO RESTORE SPECIAL ATTRIBUTES — filename

Description

The utility was unable to restore the file with one or more of its original date attributes
(e.g., creation date, revision date) or its original protection specification.

Suggested User Action
Use the DISPLAY utility to determine which attributes of the file were not restored.
?utl — WRITE ERROR ON ATTRIBUTES OF FILE - filename
Description
The volume is corrupted or the user does not have the necessary privileges to write the file.
Suggested User Action
Verify access to file.
?utl — WRITE ERROR ON CREATE OF OUTPUT FILE — filename
Description
One of the following conditions exists:
1. The device is not on line.
2. The device is not mounted.

3. The hardware has failed.
4. The volume is full.

B-21



TRAX Support Environment Messages

Suggested User Action
Rectify the coddition and reenter the command line.

7utl — WRITE ERROR ON INTEGRITY CHECK TABLE ON OUTPUT FILE — filename
Description
The utility is unable to write internal data integrity checking tables in the output backup file.
Suggested User Action
If the output medium is magnetic tape, use a different tape volume and retry the command.
If the output medium is disk, rename the output file so that the titility will not attempt to use

the space and retry the command. '

B.S COPY
These are the error messages created by the COPY command.

COP — ALLOCATION FAILURE — NO CONTIGUOUS SPACE

Description: Contiguous space available on the output volume is insufficient for the file
being copied.

Suggested User Response: Delete all files that are no longer required on the output volume,
and reenter the command line.

COP — ALLOCATION FAILURE ON OUTPUT FILE
- or
COP — ALLOCATION FAILURE — NO SPACE AVAILABLE
Description: Space available on the output volume is insufficient for the file being copied.

Suggested User Response: Delete all files that are no longer required on the output volume,
and reenter the command line. Also, use the archive command.

COP — BAD USE OF WILD CARDS IN DESTINATION FILE NAME

Description: A wildcard * was specified for an output filename where use of a wildcard is
explicitly disallowed.

B-22



TRAX Support Environment Messages

Suggested User Response: Reenter the command line with the proper output file ex-
plicitly specified.

COP — CANNOT FIND DIRECTORY FILE
Description: UFD specified does not exist on this volume.

Suggested User Response: Reenter the command line, specifying the correct UFD or the
correct volume.

COP — CANNOT FIND FILES(S)

Description: The files(s) specified in the command were not found in the designated
directory.

Suggested User Response: Check the file specifier and reenter the command line.
COP — CLOSE FAILURE ON INPUT FILE
or
COP — CLOSE FAILURE ON OUTPUT FILE

Description: The input or output file could not be properly closed. The file is locked to
indicate possible corruption.

Suggested User Response: Reenter the command line. If the error recurs, run a validity
check of the file structure using the verify utility (VFY) on the volume in question to
determine if it is corrupted. The functions of the Verify utility are described in the TRAX
System Manager’s Guide.

COP — DIRECTORY WRITE PROTECTED

Description: COP could not remove an entry from a directory because the device was
write-protected, or because of privilege violation.

Suggested User Response: Enable the unit for write operations or have the owner of the
directory change its protection.

COP — FAILED TO ENTER NEW FILE NAME

Description: You have specified a file that already exists in the directory file, or do not
have the necessary privileges to make entries in the specified directory file.

B-23



TRAX Support Environment Messages

Suggested User Response: Reenter the command line, ensuring that the filename and UFD
are specified correctly, or request COP under the correct UIC and reenter the command line.

COP — FAILED TO WRITE ATTRIBUTES

Description: Volume is corrupted or you do not have the necessary privileges to write the
file attributes.

Suggested User Response: Ensure that COP is running under the correct UIC. If the UIC is
correct, then run the validity check of the file structure verification utility (VFY) against

the volume in question to determine where and to what extent the volume is corrupted.
The functions of the Verify utility are described in the TRAX System Manager’s Guide.

COP — ILLEGAL “*” COPY TO SAME DEVICE AND DIRECTORY
Description: You attempted to copy all versions of a file into the same directory that is
being scanned for input files. This results in an infinite number of copies of the same file

and is not allowed.

Suggested User Response: Reenter the command line, renaming the files or copying them
into a different directory.

COP —1/O ERROR ON INPUT FILE
or
COP — I/O ERROR ON OUTPUT FILE
Description: One of the following conditions may exist:
® The device is not on-line.
® The device is not mounted.
® The hardware has failed.
® The volume is full (output only).

® Input file is corrupted.

Suggested User Response: Determine which condition caused the message and correct that
condition. Reenter the command line.

COP — NO SUCH FILE(S)

Description: The file(s) specified in the command were not found in the designated
directory.

Suggested User Response: Check the file specifier and reenter the command line.

B-24



TRAX Support Environment Messages

COP — OPEN FAILURE ON INPUT FILE
or
COP — OPEN FAILURE ON OUTPUT FILE

Description: The specified file could not be opened. One of the following conditions
may exist:

@ The file is protected against access.

® A problem on the physical device (e.g., device cycled down).
® The volume is not mounted.

@ The specified file directory does not exist.

® The named file does not exist in the specified directory.

Suggested User Response: Determine which condition caused the message and correct
that condition. Reenter the command line.

B.6 CREATE
These are the error messages created by the CREATE command.

NOTE
A question mark [?] preceeding the dfn utility message
indicates a fatal error. A question mark in brackets [?]
indicates that the error may be fatal or diagnostic. If no
question mark preceeds the error message it is a diagnostic.

7dfn — DEVICE OFF LINE - device
Description

The indicated device exists on the system but the attempt to access it has been prohibited for
one of the following reasons.

1. The device is not ready.
2. No volume is mounted on the device.
3. The device is currently reserved by another job.
4. The device requires privileges for ownership and the user does not have privilege.
5. The device has been disabled.
Suggested User Action

Determine the nature of the problem and take corrective action.

B-25



TRAX Support Environment Messages

?dfn — DEVICE WRITE PROTECTED - device
Description
The utility cannot access the indicated device for write operations.
Suggested User Action
Check the hardware condition of the indicated device. Write enable the unit.
?dfn — DEVICE/FILE IS FULL — device/filename
Description

The utility cannot create an output file on the indicated device because of insufficient space
or the indicated file cannot be extended due to insufficient space.

Suggested User Action

Reenter the command using another device for output files or-copy the indicated file to
another device and retry the command. Optionally, delete unneeded files on the indicated
device and reenter the original command line.
?dfn — DIRECTORY NOT FOUND - filename
Description
The directory does not exist on the specified device.
Suggested User Action
Reenter the command with the correct directory specification.
?dfn — FILE ALREADY EXISTS — filename
Description
The utility has attempted to create an output file that already exists in the output account.

Suggested User Action

Reenter the command line using a new or corrected filename or delete the existing file and re-
enter the original command line.

B-26



TRAX Support Environment Messages

?dfn — ILLEGAL DEVICE - device

Description

The indicated device does not exist.

Suggested User Action

Reenter the command line with a corrected device specification.
?dfn — ILLOGICAL DEVICE - device

Description

The indicated device is not permitted in the context of the command line. For example, the
user cannot CREATE an indexed file on magnetic tape.

Suggested User Action
Reenter the command line with an appropriate device specification.
?dfn — PRIVILEGE VIOLATION - filename
Description
The user does not have the privileges necessary to create the indicated file.
Suggested User Action |
Have the owner of the file change its privilege specification.
?dfn — WRITE ERROR ON-CREATE OF OUTPUT FILE — filename
Description
One of the following conditions exists: ..
1. The device is not on line. .'
2. The device is not mounted.
3. The hardware has failed.
4. The volume is full.

Suggested User Action

Rectify the condition and reenter the command line.

B-27



TRAX Support Environment Messages

The following messages pertain to the “CREATE/DIRECTORY”’ Command.
UFD — DIRECTORY ALREADY EXISTS
The requested UFD already existed on the volume.
UFD — FAILED TO CREATE DIRECTORY
No space existed on the volume, or an I/O error occurred.
UFD — NOT FILES-11 DEVICE

The device on which the UFD was to be created was not a Files-11 device, and therefore
could not support UFD’s.

UFD — WRITE ATTRIBUTES FAILURE

An error was encountered while writing the attributes of either the MFD or the newly
created UFD.

UFD — WRONG VOLUME
The volume label and the label specified in the command did not match.
UFD — VOLUME NOT MOUNTED

The volume on which a UFD is to be created must be mounted before accessing the
files-11 structure.

B.7 DCL

The error messages described in this section are command independent. The system prefixes the
error message with a unique 3 letter code derived from the command name. For example:

MES — YOU DO NOT HAVE THE PRIVILEGE TO ISSUE THIS COMMAND

the 3 letter code “MES” is derived from the MESSAGE command. In this section the command
names are substituted with “XXX” to signify that the operating task mnemonic is inserted in this
position.

XXX — ILLEGAL FUNCTION

Description: the command line contains an illegal command name.

Use the help command to get a list of valid commands.

B-28



TRAX Support Environment Messages

XXX — SYNTAX ERROR
Description: The command line has a syntax error.

Suggested User Response: Consult Chapter 9 for the correct syntax. Reenter the command
line.

XXX — FUNCTION NOT UNIQUE
Description: You did not enter enough characters to uniquely identify the command.

Suggested User Response: Consult Chapter 9 for the correct spelling of the command.
Reenter the command line.

XXX — ILLEGAL QUALIFIER
Description: The command line contains an illegal qualifier for the command.

Suggested User Response: Consult Chapter 9 for the correct task qualifiers. Reenter the
command line.

XXX — QUALIFIER NOT UNIQUE

Description: You did not enter enough characters to uniquely identify the qualifier in the
current context.

Suggested User Response: Consult Chapter 9 for the correct format. Reenter the
command line. ' ‘

XXX — REQUIRED PARAMETER NOT SPECIFIED
Description: a required parameter has been omitted from the command line.

Suggested User Response: Consult Chapter 9 for the correct format. Reenter the command
line. '

XXX — INVALID PROTECTION CODE SPECIFIED

Description: a protection code other than R, W, E or D was specified or the protection
codes where not specified in the order RWED.

Suggested User Response: check the command line. Reenter the command line correctly.
XXX — FILE SPECIFICATION EITHER INVALID OR NOT SPECIFIED
Description: the command line contains an invalid file specification or has been omitted.

Suggested User Response: check the command line. Reenter the command line correctly.

B-29



TRAX Support Environment Messages

XXX — PRIMARY KEY NOT SPECIFIED
Description: The number parameter of the key qualifier is missing. It should be 1.
Suggested User Response: Check the command line. Reenter the command line correctly.
XXX — CONTRADICTORY QUALIFIER IN KEY SPECIFICATION

Description: a contradictory pair of qualifiers was specified in the key specification. For
example:

UPDATE/NOUPDATE — OR — DUPLICATE/NODUPLICATE

Suggested User Response: Consult Chapter 9 for the correct format. Reenter the command
line.

XXX — INVALID KEY QUALIFIER VALUE
Description: A negative number or O was specified as the key qualifier value.
Suggested User Response: Consult Chapter 9. Reenter the command line.
XXX — REQUIRED VALUE NOT SPECIFIED FOR POSITION SIZE OR NUMBER

Description: The numeric value for either the number, position or size qualifiers have
not been specified.

Suggested User Response: Reenter the command line.

XXX — TASK ACTIVE

Description: You attempted to executive a command twice simultaneously on the same
terminal.

Suggested User Response: Wait till the first invocation is completed. Reenter the command
line.

XXX — WILD CARDS NOT PERMITTED

Description: Filename, type, or the version number of the file must be expressed explicitly,
the wildcard default “*”’ cannot be used.

Suggested User Response: Reenter the command line.

B-30



TRAX Support Environment Messages

XXX — ZERO VALUE NOT VALID FOR KEY SIZE OR NUMBER
Description: the key, size or number qualifiers must be a positive number.

Suggested User Response: Consult the command description in Chapter 9. Reenter the
command line.

XXX — CONTRADICTORY QUALIFIER

Description: The command line contains a pair of qualifiers that are contradictory.
For example:

UPDATE/NOUPDATE
XXX — INVALID FILE SPECIFICATION QUALIFIER
Description: the command line contains an invalid file specification qualifier.

Suggested User Response: check the command line. Consult the command description in
Chapter 9. Reenter the command line.

XXX — COMMAND LINE INCOMPLETE
Description: a necessary parameter was omitted from the command line.

Suggested User Response: Consult the command description in Chapter 9. Reenter the
command line.

XXX — LIBRARY INVALID ON LAST INPUT FILE
Description: the library must be spe&ﬁed before all other input files.
Suggested User Response: Consult the command description in Chapter 9.
XXX — INVALID COMMAND FUNCTION
Description: the command option is invalid. For example:
SET TABLE

Suggested User Response: Consult the command description in Chapter 9. Reenter the
command line. ‘

B-31



TRAX Support Environment Messages

XXX — QUEUE MARKED FOR DELETE
Description: the command line tried to access a queue that is marked for deletion.
Suggested User Response: try another queue.
XXX — PROCESSOR MARKED FOR REMOVAL
Description: the command line tried to access a processor marked for removal.
Suggested User Response: try another processor.
XXX — QUEUE DIRECTORY FULL
Description: The maximum number of queues of a given kind have already been created.
Suggested User Response: check queue directory, delete non-essential queues as required.
XXX — PROCESSOR DIRECTORY FULL
Description: The maximum number of processors of a given kind have already been created.

Suggested User Response: check processor directory, delete non-essential processors as
required.

XXX — REDUNDANT OPERATION
Description: Self-explanatory. For example, stopping a queue which is already stopped.
Suggested User Response: check command line. Reenter the command line.

XXX — DEVICE DOES NOT EXIST

Desciption: the device specified in the command line does not exist. Perhaps the unit
number has been omitted.

Suggested User Response: check the device address with a show device command. Reenter
the command line.

XXX — COMMAND PROCESSING TASK NOT IN SYSTEM

Description: The queue manager has not been initiated and therefore no queue management
commands can be processed.

Suggested User Response: Start the queue manager.

B-32



TRAX Support Environment Messages

XXX — CONFLICTING QUALIFIER

Description: A qualifier has been specified when some other attribute of the command
makes it meaningless.

Suggested User Response:

XXX — RESERVED QUEUE NAME
Description: You have attempted to create a queue whose name is reserved by the system.
Suggested User Response: Choose a different queue name.

XXX — ENTRY is not a job entry

Description: You have tried to access a queue entry which is not associated with a batch
or print job.

Suggested User Response: Invoke the show queue command to ascertain the correct job
entry number.

B.8 DISMOUNT
These are the error messages created by the DISMOUNT command.

DMO — ALREADY MARKED FOR DISMOUNT

The device-unit had been requested to be dismounted and was in the process of waiting
for all accesses to the volume to complete.

DMO — CHECKPOINT FILE STILL ACTIVE
The command attempted to dismount a volume that contained an active checkpoint file.
The volume cannot be dismounted until the checkpoint file has been discontinued. In
order to dismount your system disk please run the shutdown utility.

DMO — HOME BLOCK CHECKSUM ERROR

The checksum in the home block and the calculated checksum did not agree. This message
is usually caused by an I/O error.

DMO — HOME BLOCK I/O ERROR

An error was detected in updating the volume file sequence number in the volume home
block.

B-33



TRAX Support Environment Messages

DMO — NO VOLUME LIST

The command specified a magnetic tape drive for which a mounted volume list does not
exist.

DMO — NOT MOUNTABLE DEVICE

The specified device was not a mountable device and therefore could not be dismounted.
DMO — NOT MOUNTED

The specified device was not mounted.
DMO — WRONG VOLUME

The volume label and the label specified in the command did not match.

B.9 INITIALIZE
These are the error messages created by the INITIALIZE command.

INI — BAD BLOCK FILE CORRUPT - DATA IGNORED

Although automatic bad block recognition was selected, the bad block data on the disk
was not in the correct format, and was therefore ignored.

INI — BAD BLOCK FILE FULL
The disk had more than 102 bad regions on it.
INI — BAD BLOCK HEADER I/O ERROR
An error was detected in writing out the bad-block file header.
INT — BLOCK(S) EXCEED VOLUME LIMIT
The specified block (or blocks) exceeded the physical size of the volume.
INT — BOOT BLOCK WRITE ERROR
An error was detected in writing out the volume boot block.
INI — CHECKING DDnn
Not an error message. An automatic bad-block specification was proceeding, using the

bad-block file provided by the Bad Block Locator utility program or, on an RK07, the
factory-written file from the last track of the disk.

B-34



TRAX Support Environment Messages

INI — CHECKPOINT FILE HEADER I/O ERROR
An error was detected in writing out the checkpoint file header.

INI — DATA ERROR
The command specified a bad-block number or contiguous region that was too large.

INI — DISK IS ALIGNMENT CARTRIDGE
THE LAST TRACK ON AN RKO07 identified the volume as an alignment cartridge, which
cannot be initialized as a Files-11 volume. An alignment cartridge is specifically formatted
for aligning disk read/write heads.

INI — DUPLICATE BLOCK(S) FOUND
A block that had been defined as bad was being defined as bad a second time.

INI — FAILED TO READ BAD BLOCK FILE

The command was unable to read the bad block information from the last track of an
RKO7 disk.

INI — HOME BLOCK ALLOCATE WRITE ERROR

In overwriting a bad-home-block area, a write error occurred.
INI — HOME BLOCK WRITE ERROR

An error was detected in writing out the volume home block.
INI — INDEX FILE BIT MAP I/O ERROR

An error was detected in writing out the index-file bit-map.
INT — INDEX FILE HEADER I/O ERROR

An error was detected in writing out the index-file header.
INI — MFD FILE HEADER I/O ERROR

An error was detected in writing out the Master File Directory (MFD) file header.
INI — MFD WRITE ERROR

An error was detected in writing out a block in the Master File Directory (MFD).

B-35



TRAX Support Environment Messages

INI — NO BAD BLOCK DATA FOUND

Although automatic bad-block specification was selected, no bad-block file was found on
the volume.

INI — NOT FILES-11 DEVICE

The éystem does not support files-11 on the specified device.
INI — NULL FILE HEADER I/O ERROR

An error was detected in writing out null-file headers to the index file.
INI — STORAGE BITMAP FILE HEADER 1I/O ERROR

An error was detected in writing out the storage allocation file header.
INI — VOLUME MOUNTED

An attempt was made to initialize a mounted volume. Mounted volumes can not be
initialized.

INI — VOLUME NOT READY
The command specified a volume that was not ready (not up to speed).
INI — VOLUME WRITE LOCKED

The command specified a volume that was write-locked and therefore could not be
initialized as a Files-11 device.

INI — WARNING BLOCK 0 IS BAD

Block 0 of the specified volume, the boot block, was bad. A bootable image can therefore
not be placed on this volume.

B.10 LIBRARIAN
These are the error messages created by the LIBRARIAN command.

LBR — BAD LIBRARY HEADER

Description: Either the file is not a library file or the file is corrupted.

B-36



TRAX Support Environment Messages

Suggested User Response:

® If the file is not a library file, reenter the command line with a proper library file
specified.

@ If the file is a proper library file, the user should run the file structure verification
utility (VFY) against the volume to determine if it is corrupted. The functions of the
Verify utility are described in the TRAX System Manager’s Guide.

o If the volume is corrupted, it must be reconstructed before it can be used.

LBR — DUPLICATE ENTRY POINT NAME “name” IN filename

Description: An attempt has been made to insert a module into a library file when both
contain an identically-named entry point.

Suggested User Response: Determine if the specified input file is the correct file. If not,
reenter the command line, specifying the correct input file. If the input file is the correct
file, the user may delete the duplicate entry point from the library and rerun.

LBR - DUPLICATE MODULE NAME “name”’ IN filename

Description: An attempt has been made to insert (without replacement) a module into a
library that already contains a module with the specified name.

Suggested User Response: Determine if the specified input file is the correct file. If the
input file is correct, decide whether to delete the duplicate module from the library file
and insert the new one, or replace the duplicate module by rerunning LBR with the /RP
switch appended to the input file specifier.

LBR — EPT OR MNT EXCEEDED IN filename

Description: The EPT or MNT table limit has been reached during the execution of an
Insert or Replace command.

Suggested User Response: Copy the library, increasing the table space via the COMPRESS
command. Reenter the command line.

LBR — EPT OR MNT SPACE EXCEEDED IN COMPRESS

Description: An EPT or MNT table size was specified for the output library file that is
not large enough to contain the EPT or MNT entries used in the input library file.

Suggested User Response: Reenter the command line with a larger EPT or MNT table size
specified.

B-37



TRAX Support Environment Messages

B-38

LBR — ERROR IN LIBRARY TABLES, FILE filename
Description: The library file is corrupted or is not a library file.
Suggested User Response: If the file is corrupted, no recovery is possible; the file must be
reconstructed. If the file is not a library file, reenter the command line with the correct
library file specified.

LBR — FATAL COMPRESS ERROR
Description: The input library file is corrupted or is not a library file.

Suggested User Response: No recovery is possible. The file in question must be
reconstructed.

LBR — INVALID EPT AND/OR MNT SPECIFICATION

Description: An EPT or MNT value greater than 4096(10) was entered in a CREATE or
SQUEEZE function.

Suggested User Response: Reenter the command line with the correct value specified.
LBR — INVALID FORMAT, INPUT FILE filename

Description: The format of the specified input file is not the standard format for a macro
source or object file, or the input file is corrupted.

Suggested User Response: Reenter the command line with the correct input file specified.
LBR — NO ENTRY POINT NAMED ‘“‘name”
Description: The entry point to be deleted is not in the specified library file.

Suggested User Response: Determine if the entry point is misspelled or if the wrong library
file is specified. Reenter the command line with the entry point correctly specified.

LBR — NO MODULE NAMED “module”
Description: The module to be deleted is not in the specified library file.
Suggested User Response: Determine if the module name is misspelled or if the wrong

library file is specified. Reenter the command line with the module name correctly
specified.



TRAX Support Environment Messages

LBR — OPEN FAILURE ON FILE filename

Description: The file system, while attempting to open a file, has detected an error. One
of the following conditions may exist:

The user directory area is protected against an open.

A problem exists on the physical device (e.g., device cycled down).

The volume is not mounted.

The specified file directory does not exist.

The file does not exist as specified.

Insufficient contiguous space to allocate the library file (compress and create only).
Insufficient dynamic memory in Executive.

Suggested User Response: Determine which of the above conditions caused the message
and correct that condition. Reenter that command line.

LBR — OUTPUT ERROR ON filename

Description: A write error has occurred on the output file. One of the following conditions
may exist:

® The volume is full.
® The device is write-protected.
@ The hardware has failed.

Suggested User Response: If the volume is full, delete all unnecessary files and rerun LBR.
If the device is write-protected, write-enable the device, and reenter the command line. If
the hardware has failed, swap devices and reenter the command line or wait until the device
is repaired and rerun LBR.

B.11 LINK
The functions of the LINK command are described in the TRAX Linker Reference Manual. The

TRAX Linker produces diagnostic and fatal error messages. Error messages are printed in the
following forms:

TKB — *DIAG*-error-message
or
TKB — *FATAL*-error-message
Some errors are correctable when command input is from a terminal. In such a case, a
diagnostic error message can be printed, the error corrected, and the task building sequence

continued. If the same error is detected in an indirect file by the TRAX Linker, a correction
cannot be made, and the task linkage operation is aborted.

B-39



TRAX Support Environment Messages

B-40

Some diagnostic error messages merely advise the user of an unusual condition. If the
user considers the condition normal to his task, he can run the task image.

The following section tabulates the error messages produced by the Task Builder. Most
of the messages are self-explanatory. In some cases, the line in which the error occurred

is printed.

A Software Performance Report (SPR) should be submitted to DIGITAL in cases where
the explanation accompanying a message refers to a system error.

ALLOCATION FAILURE ON FILE file-name

The TRAX Linker could not acquire sufficient disk space to store the task image file,
or did not have write-access to the UFD or volume that was to contain the file.

LOOKUP FAILURE ON FILE filename
invalid-line

The invalid-line printed contains a filename that cannot be located in the directory.
LOOKUP FAILURE ON SYSTEM LIBRARY FILE

The TRAX Linker cannot find the system Library (SYO:[1,1] SYSLIB.OLB) file to
resolve undefined symbols.

LOOKUP FAILURE RESIDENT LIBRARY FILE
invalid-line

No symbol table or task image file can be found for the shared region.
MODULE module-name NOT IN LIBRARY

The TRAX Linker could not find the module named on the LB switch in the library.
SEGMENT seg-name HAS ADDR OVERFLOW: ALLOCATION DELETED

Within a segment, the program has attempted to allocate more than 32K. A map file is
produced, but no task image file is produced.

TASK HAS ILLEGAL MEMORY LIMITS

An attempt has been made to build a task whose size exceeds the partition boundary.
If a task image file was produced, it should be deleted.



TRAX Support Environment Messages

TASK IMAGE FILE filename IS NON-CONTIGUOUS

Insufficient contiguous disk space was available to contain the task image. A non-
contiguous file was created. After deleting unnecessary files, the /CO switch in PIP
should be used to create a contiguous copy.

B.12 LOGIN
The following are the error messages created by the LOGIN command.

LOG — ACCOUNT FILE OPEN FAILURE

The account file was open for another user; or the disk containing the account file
was not mounted. Retry command.

LOG — INVALID ACCOUNT

The name or UIC specified in the command is not stored in the account file; or the pass-
word specified does not match the name or UIC given.

LOG — LOGINS ARE DISABLED

The system was in the process of shutting down; or the command SET NOLOGIN has
been issued. A user cannot log onto a terminal at these times.

LOG — MESSAGE FILE ERROR nnn.

The system could not open the file [1,2] LOGIN.TXT for a reason indicated by the FCS
code nnn. See Section x.xx for a definition of the FCS code.

LOG — OTHER USER LOGGED ON

The issuing terminal was currently logged by another user. Only one user at a time can
be logged onto a terminal.

LOG — TERMINAL ALLOCATED TO OTHER USER

The issuing terminal has been allocated to another user. A user cannot log onto a
terminal allocated to someone else.

The system was unable to allocate a system file from the specified block because of
intermediate bad blocks or end of volume.

B.13 MERGE
These are the error messages created by the MERGE command.

B41



TRAX Support Environment Messages

NOTE
A question mark “?” preceeding the cnv error
message indicates a fatal error. A question mark
in brackets {?] indicates that the error may be
fatal or diagnostic. If no question mark pre-
ceeds the error message it indicates a diag-
nostic error.

?cnv — DEVICE OFF LINE - device
Description

The indicated device exists on the system but the attempt to access it has been prohibited for
one of the following reasons.

1. The device is not ready.
2. No volume is mounted on the device.
3. The device is currently reserved by another job. »
4. The device requires privileges for ownership and the user does not have privilege.
5. The device has been disabled.
Suggested User Action
Determine the nature of the problem and take corrective action.
?cnv — DEVICE WRITE PROTECTED - device
Description
The utility cannot access the indicated device for write operations.
Suggested User Action
Check the hardware condition of the indicated device. Write enable the unit.
cnv — DEVICE/FILE IS FULL - device/filename

Description

The utility cannot create an output file on the indicated device because of insufficient space or
the indicated file cannot be extended due to insufficient space.

Suggested User Action
Reenter the command using another device for output files or copy the indicated file to

another device and retry the command. Optionally, delete unneeded files on the indicated
device and reenter the original command line.

B-42



TRAX Support Environment Messages

?cnv — DIRECTORY NOT FOUND - filename
Description
The directory does not exist on the specified device.
Suggested User Action
Reenter the command with the correct directory specification.
cnv — DUP RCD=string
Description
The utility could not write a record into an indexed file because duplicate key values for
one or more keys in the record were not permitted. Writing the record would cause duplica-
tion. The displayed string represents the first 72 characters of the record that could not be
written.
Suggested User Action
None.
cnv — number DUPLICATE RECORDS NOT WRITTEN

Description

The utility could not write the indicated number of records into an indexed file because
duplicate key values for one or more keys were not permitted.

Suggested User Action

None.
?cnv — FILE NOT AVAILABLE - filename

Description

The indicated file is being accessed for exclusive use by another job.

Suggested User Action |

Periodically retry the command until the file has been released.
[?}cnv — FILE NOT FOUND - filename

Description

The indicated file was not found in the designated UFD and device.

B-43



TRAX Support Environment Messages

Suggested User Action
Verify the file specification and reenter the command line.
?cnv — FILE READ ERROR
Description
The utility has encountered a hardware read error on an input or output device.
Suggested User Action

If not at TRAX Support Environment prompt level, use CTRL/Z to terminate access to
utility. Check input and output devices for hardware problems.

?cnv — ILLEGAL DEVICE -device
Description |
The indicated device does not exist.
Suggested User Action
Reenter the command line with a corrected device specification.
?cnv — INPUT AND OUTPUT RECORD FORMATS DO NOT CORRESPOND
Description

The user is attempting to write records from one file to another. However, the input file
records are variable and the output file records are fixed.

?cnv — INPUT AND OUTPUT RECORD SIZES DO NOT CORRESPOND
Description

The user is attempting to write records from one file to another. However, one of the
following conditions exists:

1. Both files have fixed format records but the fixed size differs.
2. Both files have variable format records but the maximum size of the input file is
greater than the maximum size of the output file.

Suggested User Action

Redefine the output file and retry the command.

B-44



TRAX Support Environment Messages

?2cnv — MAXIMUM RECORD EXCEED - filename
Description

No more records can be written into the indicated relative file because of the file’s maximum
number of records attribute.

Suggested User Action

Create a new relative file through a MACRO-11 program. Specify an appropriate MRN
(maximum record number) attribute. Rerun the utility.

?cnv — NO SUCH KEY FOR FILE - value
Description
The specified key of reference value represents a non-existent key in an indexed file.
Suggested User Action
Reenter the command with a correct key of reference value.
?cnv — PRIVILEGE VIOLATION - filename
Description
The user does not have the privileges necessary to access the indicated file.
Suggested User Action
Have the owner of the file change its privilege specification.
?cnv — RECORD TOO BIG - filename
Description

A record from the indicated input file exceeds the maximum record size attribute of the
output file.

Suggested User Action

Use the DEFINE utility to create a new file with an appropriate maximum record size.

B.14 MOUNT
These are the error messages created by the MOUNT command.

B-45



TRAX Support Environment Messages

MOU — ACP NOT IN SYSTEM
The task specified as ACP or default ACP was not installed in the system.

MOU - ALREADY MOUNTED
The specified device-unit was already mounted.

MOU — DEVICE ATTACHED [-dev:]
The device-unit specified in the command was attached by a task and could not be mounted.
For attempts to mount one or more magnetic tapes, the message includes a specific
device-unit.

MOU — DEVICE OFFLINE [dev:]
The device specified in the command, although generated into the system, was not physically
present in the host configuration. If the offline device is a magnetic tape drive, the message
includes the device-unit.

MOU — FILE HEADER READ ERROR
Mount could not read either the index file header or the storage allocation file.

MOU — HOME BLOCK READ ERROR

An I/O error was detected in trying to read the home block. This message usually indicates
that the volume is not ready. Wait until it is ready and reissue the command.

MOU — MOUNT ERROR FROM ACP xxx.
The ACP detected an error while trying to mount the volume set.
MOU — NOT MOUNTABLE DEVICE

The specified device was not supported as a Files-11 device (including ANSI magnetic tape)
or a network device.

MOU — OTHER VOLUME MOUNTED [-dev: ]

An attempt was made to mount a volume on a device that already had a mounted volume.
The message specifies the device-unit if it is a tape drive.

B-46



TRAX Support Environment Messages

MOU - STORAGE BIT MAP FILE READ ERROR
An I/O error was encountered while reading the storage allocation file.
MOU — WRONG VOLUME
The volume label and the label specified in the command did not match.
MOU —- VOLUME STRUCTURE NOT SUPPORTED
TRAX did not support the files-11 structure level of the volume being mopnted.

B.15 RENAME
These error messages are created by the RENAME command.

REN — CANNOT FIND DIRECTORY FILE
Description: UFD specified does not exist on this volume.

Suggested User Response: Reenter the command line, specifying the correct UFD or the
correct volume. ’

REN — CANNOT RENAME FROM ONE DEVICE TO ANOTHER
Description: You attempted to rename a file across devices.

Suggested User Response: Reenter the command line, renaming the file on the input
volume; then, enter another command to transfer the file to the intended volume.

REN — DIRECTORY WRITE PROTECTED

Description: REN could not remove an entry from a directory because the device was
write-protected, or because of privilege violation.

Suggested User Response: Enable the unit for write operations or have the owner of the
directory change its protection.

B.16 SET
These are the error messages created by the SET command.

B-47



TRAX Support Environment Messages

SET — DEVICE NOT VARIABLE SPEED MULTIPLEXER

An attempt was made to set the baud rate for a terminal that was not attached to a DZ11
multiplexer.

SET — DEVICE NOT TERMINAL
An attempt was made to set terminal characteristics for a nonterminal device.

SET — INVALID SPEED
The multiplexér line specified does not support the requested speed; or the command
specified unequal receive and transmit speeds for a DZ11. The DZ11 does not support split
speeds.

SET — LINE NOT DZ11

The command attempted to set to remote a line that was not attached to a DZ11
multiplexer.

'IIs‘i11e7qun(zggns of the SORT command are described in the TRAX Sort Reference Manual. The
error messages generated by the SORT command are displayed in two formats:
The first format is:
SORT ERROR — CODE nn
The following is a list of the SORT error codes and a brief explanation of their meaning:
SORT ERROR — CODE 00
Description: No errors.
SORT ERROR — CODE 01
Description: Device input error.
SORT ERROR — CODE 02
Description: Device output error.

SORT ERROR — CODE 03

Description: OPEN(IN) failure.

B-48



TRAX Support Environment Messages

SORT ERROR — CODE 04
Description: OPEN(OUT) failure.
SORT ERROR — CODE 05
Description: Size of current record is greater than maximum size.
SORT ERROR — CODE 06
Description: Not enough work area.
SORT ERROR — CODE 07
Description: RETRN was called after it had exited with a negative error code (end of sort).
SORT ERROR - CODE 10

Description: SORT routine called out of order. (The order of the calls should be RSORT,
RELES, MERGE, RETRN, ENDS).

SORT ERROR — CODE 11

Description: Sort already in progress. (To do a second sort, ENDS must be called to clean
up the first sort.)

SORT ERROR - CODE 12

Description: Key size is not positive, Sorts detected a zero or negative key size in its calling
parameter.

SORT ERROR - CODE 13
Description: Record size is not positive.

SORT ERROR - CODE 14

Description: Key address is not even. (The keys must start at an even address because SORT
uses word moves).

SORT ERROR — CODE 15
Description: Record address is not even.

SORT ERROR - CODE 16

Description: Scratch records will be too large (the size of the keys plus the size of the
largest record must be less than 37776 octal).

B-49



TRAX Support Environment Messages

SORT ERROR — CODE 17

Description: Too few scratch files are given (a minimum of 3 scratch files must be
specified).

SORT ERROR — CODE 20

Description: Too many scratch files are given (a maximum of 10 scratch files may be
specified).

SORT ERROR — CODE 21

Description: End-of-string record was detected where none was expected.
SORT ERROR — CODE 22

Description: Unexpected end-of-file.
SORT ERROR - CODE 23

Description: SORT found a record larger than expected.
SORT ERROR — CODE 24

Description: Record length is not standard for SORTT, SORTA, SORTI.
The second format is:

SRT — control-phase: ?message [-RMS-status-code]

where:
control-phase is the SORT phase in control at the time the error occurred. These
values are:
C - command decoder
M- merge
P - presort
message is a one-line brief explanation of what happened.

RMS-status-code  is a decimal status code returned by RMS for additional information
on file errors only. If RMS is not impacted by the SORT error, this
status code does not appear. Status codes likely to be seen are listed
with their meanings in Section 4.7.

B-50



TRAX Support Environment Messages

SRT — C:?SORT COMMAND ERROR

a. Too many input files (more than two, including specification file) or output files
(more than one)

b. General syntax error

c. Too many switches

d. Erroneous switches on the specification file

e. An undefined switch

SRT — C:?IMPROPER SWITCH: /FI

a. Less than three or greater than eight scratch files.
b. Invalid terminator

NOTE
Valid terminators are period, comma, slash,
equal sign and <CR>, “INVALID TERMINA-
TOR’ means that some other character was used
as a terminator or that SORT expected to find a
terminator where none existed.

SRT — C:?IMPROPER SWITCH: /KE

a. Invalid letter or value

b. Start location or size is 0

c. No period (.) between start location and size
d. Illegal size for data mode

e. Invalid terminator (See NOTE above)

SRT — C:7TOO MANY KEYS
Buffer space overflowed

NOTE
SORT reserves a buffer area for storage of a
table based on the input specifications in order
to control the processing of each record. This
space should be ample for all situations to make
this error unlikely.

SRT — C:’NO KEYS SPECIFIED

There are no key switches in the command string and no specification file has been
declared. ~ ‘

B-51



TRAX Support Environment Messages

SRT — C:?KEY AFTER LAST BYTE OF RECORD

The end of an input record key field goes past the stated record size (switch or
specification).

SRT — C:?NO /FO SWITCH
You omitted the /JFORMAT switch on the input file.
SRT — C:?IMPROPER SWITCH: /FO
You have not specified a valid format type.
SRT — C:?IMPROPER SWITCH: /PR
You specified an invalid sort process. -
SRT — C:?INVALID CHARACTER [RMS-Status-Code]

a. Column 6 is not H, I, O, F and record is not ALTSEQ.

b. Process is not SORTR, SORTT, SORTA, SORTI, or blank.
c. Collating sequence is not blank, E, or X.

d. Data typeisnot B,C,D,F,1,J,K, P, Z.

e. Key typeisnot D, F, N, O.

f. Logical entry is not A, O, blank, or *.

SRT — C:?7ILLEGAL FIELD [RMS-Status-Code]

a. A numeric field in specification contains other than decimal digits or blanks.
b. No key size is given in Header specification.

c. No output size is given in Header Specification if type of SORT is SORTR or SORTT.
d. ALTSEQ is misspelled.

e. ALTSEQ entries do not represent 7-bit octal values.

f. Last location is less than first location in record field identification.

g. Size is invalid for data mode.

h. Sizes of Factors 1 and 2 in Record Specification do not match.

i. Compare relation is undefined.

j- Forced field is other than type C or more than one position.

SRT — C:2ILLEGAL CONSTANT [RMS-Status-Code]

a. Constant given in Factor 2 is greater than 20 characters.

b. Mode of constant does not agree with mode of Factor.

c. Invalid characters appear in constant (e.g., non-digits if the constant is numeric).
d. Sign is omitted from binary or packed constant.

B-52



TRAX Support Environment Messages

SRT — C:?’NO HEADER [RMS-Status-Code]
a. First record of specification file is not an H specification.
SRT — C:?7INCORRECT SEQUENCE [RMS-Status-Code]

a. Numeric record sequence is lower than sequence previously encountered.

b. No valid data specification appears when keys are to be stripped from output.
c. Record specification after “include-all” (“‘include-all” should be last).

d. Key specifications appear after data specifications.

SRT — C:?NO ALTSEQ [RMS-Status-Code}

a. Specification for alternate collation entered in Header column 26 but no ALTSEQ
Specifications follow.

SRT — C:?TOO MANY SPECIFICATIONS [RMS-Status-Code]

a. Number of specifications for a particular type of record have overflowed the buffer
space.

NOTE
SORT reserves a buffer space for storage of a
table based on the input specifications and
used to control the processing of each record
type. This space should be ample for all situa-
tions to make the error unlikely other than in
very exceptional circumstances.

B-53






APPENDIX C
TRAX 170 ERROR CODES

The following I/O error codes are return to TRAX Tasks:

Mnem.

.BAD
JFC
.DNR
.VER
.ONP
.SPC
.DNA
.DAA
.DUN
.EOF
.EOV
~.WLK
.DAO
.SRE
.ABO
PRI
.RSU
.OVR
BYT
.BLK
.MOD
.CON
.NOD
.DFU
JFU
NSF
LCK
HFU
WAC
.CKS
WAT
.RER
.WER
.ALN

Dec.

Octal

377
376
375
374
373
372
371
370
367
366
365
364
363
362
361
360
357
356
355
354
353
352
351
350
347
346
345
344
343
342
341
340
337
336

Bad parameters

Invalid function code

Device not ready

Parity error on device

Hardware option not present
Illegal user buffer

Device not attached

Device already attached

Device not attachable
End-Of-file detected

End-of volume detected

Write attempted to looked unit
Data overrun

Send/receive failure

Request terminated

Privilege violation

Shareable resource in use

Illegal overlay request

0Odd byte count (or virtual address)
Logical block number too large
Invalid UDC module number
UDC connect error

System dynamic memory exhausted
Device full

Index file full

No such file

Locked from read/write access
File header full

Accessed for write

File header checksum failure
Attribute control list format error
File processor device read error
File processor device write error
File already accessed on LUN

C-1



TRAX I/0 Error Codes

C-2

.SNC

.SQC
.NLN
CLO
.NBF
.RBG
.NBK
JLL

.BTP
.RAC
.RAT
.RCN

2DV
.FEX

BDR

.BDI

.FOP
.BDV
.BBE
.DUP
STK
.FHE
.NFI

ISQ

.EOT
.BVR
.BHD
.OFL
.BCC

.NFW

.BLB

.TMM
.NDR
.CNR
.TMO
.EXP

.BTF

.NNC
.NNL
.NLK

-35
-36
-37
-38
-39
-40
41
42
43

45
-46
47
-48
49

-50
-51
-52
-53
-55
-56
-57
-58
-59
-60
-61
-62
-63

-65
-66
-67
-68
-69
-70
-71
-72
-73
-74
-75
-76
=77
-78
-79

335
334
333
332
331
330
327
326
335
324
323
322

320
317

316
315
314
313
311
310
307
306
305
304
303
302
301
300
277
276

274
273
272
271
270
267
266
265
264
263
262
261

File ID, file number check

File ID, sequence number check
No file accessed on LUN

File was not properly closed

No buffer space available for file
Illegal record size

File exceeds space allocated, no blocks
Illegal operation on file descriptor block
Bad record type

Illegal record access bits set
Illegal record attributes bits set
Illegal record number-too large
(not used)

Rename-2 different devices
Rename - a new file name

already in use

Bad directory file

Cannot rename old file system
Bad directory syntax

File already open

Bad device name

Bad block on device
Enter-duplicate entry in directory
Not enough stack space (FCS or FCP)
Fatal hardware error on device
File ID was not specified

Hlegal sequential operation
End-of tape detected

Bad version number

Bad file header

Device offline

Block check or CRC error

(not used)

No such node

Path lost to partner

Bad logical buffer

Too many outstanding messages
No dynamic space available
Connection rejected

Time out on request

File expiration date not reached
Bad tape format

Not ANSI “D” format byte count
Not a network LUN

Task not linked to specified ICS/
ICR interrupts



.NST
FLN

JES
.PES

ULK

-80
-81

-82
-83
-84
-85

260
257

256
255
254
253

TRAX I/O Error Codes

Specified task not installed

Device offline when offline request
was issued

Invalid escape sequence

Partial escape sequence

Allocation failure

Unlock error

C3






APPENDIX D
RMS COMPLETION STATUS CODES

This appendix describes completion status codes that can be returned by RMS-11 to your
program.

All RMS-11 file and record operations return a completion status code into the status field (STS)
of the control block (i.e., FAB or RAB) associated with the operation. A symbolic name is defined
for each such code. The symbolic names for successful completion status codes take the following
form:

SUSxxx
where

XXX is a mnemonic value describing the successful operation.
Symbolic names for error completion status codes take the form:

ER$xxx
where

XXX is a mnemonic value representing the reason the operation failed.
For certain error conditions, RMS-11 uses the status value (STV) field to communicate additional
information to your program. The tables in this appendix list all instances in which a particular
symbolic value in the STS field indicates the presence of further information in the STV field.
A limited number of severe error conditions cause RMS-11 to invoke a fatal error crash routine.

Section D.1 of this appendix describes these conditions and the crash routine itself.

The sections that follow describe, respectively, successful completion status codes, error completion
status codes, and the RMS-11 fatal error crash routine.

D.1 SUCCESSFUL COMPLETION STATUS CODES
Table D-1 describes successful completion status codes returned by RMS-11 routines.

D-1



RMS Completion Status Codes

Table D-1 Successful Completion Status Codes

Symbolic
Name

- Value

Decimal

Description.

SUSSUC

1

Operation successful.

SU$DUP

2

A record written into an indexed file as a result of a
$PUT or SUPDATE operation contains at least one
key value that was already present in another record.

SUSIDX

During a $PUT or SUPDATE operation on an indexed
file, the record was successfully written. The record
can be subsequently retrieved but RMS-11 was not
able to optimize the structure of the index at the

time the record was inserted. Several indirections

will occur, therefore, on retrieval. In some instances,
RMS-11 may also return an error code (e.g., ERSRLK)
in the STV field of the control block.

SUSRRV

During a $PUT or $UPDATE operation on an indexed
file, the record was successfully written. However,
RMS-11 was unable to update one or more Record
Retrieval Vectors (RRVs) and the records associated
with the RRVs cannot be retrieved using alternate
indexes or RFA addressing mode.

D.2 ERROR COMPLETION STATUS CODES
Table D-2 describes error completion status codes returned by RMS-11 routines.

Table D-2 Error Completion Status Codes

Symbolic Octal Decimal
Value Value Value STV Description
ER$ABO | 177760 -16 ER$STK or Operation aborted: out of
ERSMAP stack save area or in core
data structures corrupted.

ERSACC | 177740 -32 Kernel Error code Kernel file system could not
access the file.

ERSACT | 177720 -48 File activity precludes action
(e.g., attempting to close a
file with outstanding asyn-
chronous record operation).




RMS Completion Status Codes

Table D-2 (Cont.) Error Completion Status Codes

Symbolic
Value

Octal
Value

Decimal
Value

STV

Description

ERSAID

177700

-64

XAB address

Bad area identification number
(AID) field in allocation XAB
(i.e., out of sequence).

ERSALN

177660

XAB address

Illegal value in alignment boundary
type (ALN) field allocation XAB.

ERSALQ

177640

(XAB address)

Value in allocation quantity
(ALQ) field in FAB (or alloca-
tion XAB) exceeds maximum
or, during an explicit SEXTEND
operation, equals zero.

ERSANI

177620

-112

Records in a file on ANSI labeled
magnetic tape are variable length
but not in ANSI D format.

ERSAOP

177600

-128

XAB address

Illegal value in allocation options
(AOP) field in allocation XAB.

ERSAST

177560

144

Invalid operation at AST level:
attempting to issue a synchronous
operation from an asynchronous
record operation completion
routine.

ERSATR

177540

-160

Kernel Error code

Read error on file header
attributes.

ERSATW

177520

-176

Kernel Error code

Write error on file header
attributes.

ER$BKS

177500

-192

Bucket size (BKS) field in FAB
contains value exceeding
maximum.

ER$BKZ

177460

-208

XAB address

Bucket size (BKZ) field in
allocation XAB contains value
exceeding maximum.

ER$BLN

177440

224

Block length (BLN) field in a
FAB or RAB is incorrect.

D-3



RMS Completion Status Codes

Table D-2 (Cont.) Error Completion Status Codes

Symbolic Octal Decimal
Value Value Value STV Description

ER$BOF | 177430 232 Beginning of file detected on
$SPACE operation to magnetic
tape file.

ER$BPA | 177420 240 Private buffer pool address not
a double word boundary.

ER$BPS 177400 -256 Private buffer pool size not a
multiple of 4.

ERS$BUG | 177360 =272 Internal error detected in RMS-
11 (refer to Section D.4 of this
Appendix); no recovery possible;
contact a Software Specialist.

ER$CCR | 177340 -288 Can’t connect RAB (i.e., only
one record access stream per-
mitted for sequential files).

ERS$CHG | 177320 -304 $UPDATE attempting to change
a key field that does not have
the change attribute.

ERS$CHK | 177300 -320 Index file bucket check-byte
mismatch. The bucket has been
corrupted. No recovery possible
for the bucket.

ER$COD | 177240 -352 XAB address Invalid COD field in XAB or
XAB type is illegal for the
organization or operation.

ERSCRE | 177220 -368 Kernel Error code Kernel file system could not
create file.

ERSCUR | 177200 -384 No current record: operation
not immediately preceded by a
successful $GET or $FIND.

ERSDAC | 177160 400 Kemel Error code Kemnel file system deaccess
error during $CLOSE

D-4



RMS Completion Status Codes

Table D-2 (Cont.) Error Completion Status Codes

Symbolic Octal Decimal
Value Value Value STV Description
ER$DAN | 177140 416 XAB address Invalid area number in DAN field
of key definition XAB.
ERSDEL | 177120 432 Record accessed by RFA access
mode has been deleted.
ERSDEV | 177100 448 1. Syntax error in device name.

2. No such device.

3. Inappropriate device for oper-
ation (e.g., attempting to create
an indexed file on magnetic
tape).

ERSDIR | 177060 464 Syntax error in directory name.

ERSDME | 177040 <480 Dynamic memory exhausted:
insufficient space in central space
pool or private buffer pool.

ERSDNF | 177020 496 Directory not found.

ERS$DNR | 177000 -512 Device not ready.

ERSDPE | 176770 -520 Kernel Error code Device positioning error.

ERSDUP | 176740 -544 Duplicate key detected, duplicates
allowed attribute not set for one
or more key fields.

ERSENT | 176720 -560 Kernel Error code Kernel file system enter function
failed.

ERS$SENV | 176700 -576 Environment error: operation or
file organization not specified in

ORGS$ macro.

ERSEOF | 176660 -592 End of file.

ERSESS 176640 -608 Expanded string area in NAM bloclé
too short.

ERSEXP | 176630 -616 File expiration date not reached.

D-5



RMS Completion Status Codes

Table D-2 (Cont.) Error Completion Status Codes

Symbolic Octal Decimal
Value Value Value STV Description

ERSEXT | 176620 -624 Kernel Error code File extend failure.

ERSFAB | 176600 -640 Not a valid FAB: BID field does
not contain FB$BID. Refer to
Section A.3 of this Appendix.

ERSFAC | 176560 -656 1. Record operation attempted

was not declared in FAC field
of FAB at open time.
2. Invalid contents in FAC field.
3. FBS$PUT not present in FAC
for SCREATE operation.

ERSFEX | 176540 -672 File already exists (attempted
$CREATE operation).

ERSFID 177530 -680 Invalid file id.

ERSFLG | 176520 -688 XAB address Invalid combination of values in
FLG field of key definition XAB
(e.g., no duplicates and keys can
change).

ERSFLK | 176500 -704 File locked by another user - - you
cannot access the file because your
sharing specification cannot be met

ERSFND | 176460 -720 Kernel Error code Kernel file system Find function
failed.

ERSFNF | 176440 -736 File not found.

ERSFNM | 176420 <752 Syntax error in file name.

ERS$SFOP 176400 -768 Invalid file options.

ERSFUL | 176360 -784 Device full: can’t create or extend
file.

ERSIAN 176340 800 XAB address Invalid area number in IAN field

of key definition XAB.




RMS Completion Status Codes

Table D-2 (Cont.) Error Completion Status Codes

Symbolic
Value

Octal
Value

Decimal
Value

STV

Description

ERSIDX

176320

-816

Index not initialized (this code can
only occur in the STV field when
STS contains ERSRNF).

ERSIFI

176300

-832

Invalid IF1I field in FAB.

ER$IMX

176260

-848

XAB address

Maximum number (254) of key
definition or allocation XABs
exceeded or multiple summary,
protection, or date XABs present
during operation.

ERSINI

176240

-864

$INIT or $INITIF macro call
never issued.

ERS$IOP

176220

-880

Illegal operation; examples include:

1. Attempting a STRUNCATE
operation to a non-sequential
file.

2. Attempting an $ERASE or
$EXTEND operation to a
magnetic tape file.

3. Issuing a block mode operation
(e.g., SREAD or $SWRITE) to
a stream not connected for
block operations.

4, Issuing a record operation (e.g.,
$GET, $PUT) to a stream
connected for block mode
operations.

ERSIRC

176200

-896

Illegal record encountered in
sequential file: invalid count field.

ERSISI

176160

912

Invalid internal stream identifier
(ISI) field in RAB (field may have
been altered by user) or SCONNECT
never issued for stream.

ER$SKBF

176140

928

Key buffer address (KBF) field
equals 0.




RMS Completion Status Codes

Table D-2 (Cont.) Error Completion Status Codes

Symbolic
Value

Octal
Value

Decimal
Value

STV

Description

ERSKEY

176120

944

Record identifier (i.e., the 4-byte
location addressed by KBF) for
random operation to relative file
is 0 or negative.

ER$KRF

176100

960

Invalid key of reference (KRF) in
RAB: 1) Asinput to random
$GET or $FIND operation, or 2)

As input to SCONNECT or
$REWIND (in this case, ER$KRF

is returned for the first record
operation following the SCONNECT
or SREWIND.

ER$KSZ

176060

976

Key size equals zero or too large
(indexed file) or not equal to 4
(relative file).

ERSLAN

176040

992

XAB address

Invalid area number in LAN field
of key definition XAB.

ERSLBL

176020

-1008

Magnetic tape is not ANSI labeled.

ERSLBY

176000

-1024

Logical channel busy.

ERSLCH

175760

-1040

Invalid value in logical channel
number (LCH) field of FAB.

ERSLEX

175750

-1048

XAB address

Attempt to extend an area
containing an UNUSED extent.

ERSLOC

175740

-1056

XAB address

Invalid value in LOC field of
allocation XAB.

ERSMAP

175720

-1072

In core data structures (e.g., I/O
buffers) corrupted. This code can
only occur in the STV field when
STS contains ERSABO. Refer also
to Section D.4 of this Appendix.

ERSMKD

175700

-1088

Kernel Error code

Kernel file system could not mark
file for deletion.




RMS Completion Status Codes

Table D-2 (Cont.) Error Completion Status Codes

Symbolic
Value

Octal
Value

Decimal
Value

STV

Description

ERSMRN

175660

-1104

1. Maximum record number field
contains a negative value during
$CREATE of relative file.

2. Record identifier (pointed to
by KBF) for random operation
to relative file exceeds maximum
record number specified when
file created.

ERSMRS

175640

-1120

Maximum record size (MRS) field
contains O during SCREATE
operation and:

1. Record Format is fixed, or

2. File organization is relative.

ER$NAM

175620

-1136

Odd address in Name Block
address (NAM) field in FAB on
$OPEN, $CREATE, or SERASE.

ERSNEF

175600

-1152

Not at end-of-file: attempting a
$PUT operation to a sequential
file when stream is not positioned
to EOF.

ERS$NID

175560

-1168

Can’t allocate internal index
descriptor: insufficient room in
space pool while attempting to
open an indexed file.

ERSNPK

175540

-1184

No primary key definition XAB
present during SCREATE of
indexed file.

ERSORD

175500

-1216

XAB address

XABs in chain not in correct order:

1. Allocation or key definition
XABs not in ascending (or
densely ascending) order.

2. XAB of another type intervenes
in key definition or allocation
XAB sub-chain.

D-9




RMS Completion Status Codes

Table D-2 (Cont.) Error Completion Status Codes

Symbolic
Value

Octal
Value

Decimal
Value

STV

Description

ERSORG

175460

-1232

Invalid value in file organization
(ORG) field of FAB.

ERS$PLG

175440

-1248

Error in file’s prologue: file is
corrupted and must be
reconstructed.

ER$POS

175420

-1264

XAB address

Key position (POS) field in key
definition XAB contains a value
exceeding maximum record size.

ERSPRM

175400

-1280

XAB address

File header contains bad date and
time information (retrieved by
RMS-11 because a date and time
XAB is present during a SOPEN
or $DISPLAY operation); file may
be corrupted.

ER$PRV

175360

-1296

Privilege violation: access to the
file denied by the operating system.

- ERSRAB.

175340

-1312

Not a valid RAB: BID field does
not contain RB$BID. Refer to
Section D.4 of this Appendix.

ERSRAC

175320

1328

1. Illegal values in record access
mode (RAC) field of RAB.

2. Hlogical value in RAC field
(e.g., RBSKEY with a sequen-
tial file).

ERSRAT

175300

1344

1. Illegal values in record
attributes (RAT) field of FAB
during SCREATE.

2. Illogical combination of
attributes (e.g., FBSCR and
FB$FTN) in RAC field during
$CREATE.




RMS Completion Status Codes

Table D-2 (Cont.) Error Completion Status Codes

Symbolic
Value

Octal
Value

Decimal
Value

STV

Description

ERSRBF

175260

-1360

Record Address (RBF) field in
RAB contains an odd address
(block mode access only).

ERSRER

175240

-1376

Kernel Error code

File read error.

ERSREX

175220

-1392

Record already exists: during a
$PUT operation in random mode
to a relative file, an existing record
found in the target record position.

ERSRFA

175200

-1408

Invalid RFA in RFA field of RAB
during RF A access.

ERS$RFM

175160

-1424

1. Invalid record format in RFM
field of FAB during SCREATE.

2. Specified record format is
illegal for file organization.

ERSRLK

175140

-1440

Target bucket locked by another
task or another stream in the same
program.

ERSRMV

175120

-1456

Kernel Error code

Kernel file system Remove
function failed.

ER$RNF

175100

-1472

(ERS$IDX)

Record identified by KBF/KSZ
fields of RAB for random $GET or
$FIND operation does not exist

in relative or indexed file (for
indexed files only, STV may
contain ER$IDX). Record may
never have been written or may
have been deleted.

ER$RNL

175060

-1488

$FREE operation issued but no
bucket was locked by stream.

ERS$ROP

175040

-1504

Record options (ROP) field
contains illegal values or illogical
combination of values.

D-11




RMS Completion Status Codes'

Table D-2 (Cont.) Error Completion Status Codes

Symbolic
Value

Octal
Value

Decimal
Value

STV

Description

ERSRPL

175020

-1520

Kernel Error code

Error while reading prologue.

ERSRRV

175000

-1536

Invalid RRYV record encountered
in indexed file; file may be
corrupted.

ERS$RSA

174760

-1552

Record stream active, i.e., in
asynchronous environment,
attempting to issue a record
operation to a stream that has a
request outstanding.

ERSRSZ

174740

-1568

Record size specified in RSZ of
RAB during $PUT or SUPDATE
is invalid :

1. RSZ equals zero.

2. RSZ exceeds maximum record
size (MRS) specified when file
created.

3. RSZ not equal to size of
Current Record for SUPDATE
operation to a sequential file
on disk.

4. RSZ does not equal MRS
(for fixed format records).

ERSRTB

174720

-1584

Actual record size

Record too big for user’s buffer:
RMS-11 could not move entire
record retrieved by $GET operation
to user work area (UBF/USZ). Note
that this error does not destroy the
current context of the stream.
Rather, the stream’s context is
updated as if the operation had
been completely successful.

ER$SEQ

174700

-1600

During $PUT operation, key of
record to be written is not equal
to or greater than key of previous
record (and RAC field contains
RBS$SEQ).

D-12




RMS Completion Status Codes

" Table D-2 (Cont.) Error Completion Status Codes

Symbolic | Octal Decimal
Value Value Value STV Description

ERS$SHR | 174660 -1616 Illogical value in SHR field of -
FAB (e.g., FB§WRI specified for
sequential file).

ERS$SIZ 174640 -1632 XAB address Invalid SIZ field in key definition
XAB during SCREATE (e.g.,
specified size exceeds maximum
record size).

ERS$STK | 174620 -1648 During asynchronous record
operation, RMS-11 has found that
the stack is too big to be saved
(this code can only occur in the
STV field when STS contains
ER$ABO).

ERS$SYS 174600 -1664 Directive or QIO System directive error.

status code

ERSTRE | 174560 -1680 Index tree error: indexed file is
corrupted.

ERSTYP 174540 -1696 Syntax error in file type (e.g., more
than 3 characters specified).

ERSUBF | 174520 -1712 Invalid address in UBF field of RAB:
1. UBF contains 0, or
2. UBF not word aligned (for block

mode access only).

ERSUSZ | 174500 -1728 Invalid USZ field in RAB (i.e., USZ
contains 0).

ERSVER | 174460 -1744 Syntax error in file version number.

ERSVOL | 174440 -1760 XAB address Invalid VOL field in allocation
XAB (i.e., VOL does not contain 0).

ERSWER | 174420 -1776 Kernel Error code File write error.

ERSWLK | 174410 -1784 Device is write locked.

D-13




RMS Completion Status Codes

- Table D-2 (Cont.) Error Completion Status Codes

Symbolic | Octal Decimal

Value Value Value STV Description
ERSWPL | 174400 -1792 Kernel Error code Error while writing prologue.
ER$XAB | 174360 -1808 (XAB address) XAB field in FAB (or NXT field

in XAB) contains an odd address.

D-14




RMS Completion Status Codes

D.3 FATAL ERROR CRASH ROUTINE ,

RMS-11 issues a BPT instruction whenever it encounters inconsistent internal FAB or RAB).
This action is taken only when RMS-11 cannot continue processing, since to do so might cause
damage to user files or the user’s task image. As an example, when the problem is caused by an
invalid FAB or RAB, RMS-11 cannot return an error status code in STS since it has recogn-
nizable user control block to work with.

The BPT instruction generated as a result of fatal errors is in the RORMSA module of RMS-11.
The following is the state of the general registers at the time this instruction is issued:

RO = RMS-11 error code

R1 = Entry SP value

R2 = Entry return PC

R3 = Address of system impure area

General registers R1 and R2 are always valid if the crash routine is invoked by a fatal user call
error. When the crash routine in invoked by inconsistent internal conditions, the contents of
general registers R1 is R2 may be meaningless if RMS-11 was executing an asynchronous
RAB operation.

The following subsections summarize, respectively, the fatal user call errors and the RMS-11
inconsistent internal conditions that can cause invocation of the fatal error crash routine.

D.4 FATAL USER CALL ERRORS
When the fatal error crash routine is invoked because of a user call error, general register RO
contains one of the following error codes:

e ERSFAB
e ERSRAB

These error codes indicate that the user called RMS-11 using a control block that was not a valid
FAB (for file operations such as SOPEN, SCREATE, etc) or RAB (for record operations such as
$CONNECT, $GET, $PUT, etc.). This condition can occur for any one of the following reasons:

1. ;The address of the FAB or RAB is 0.

2. The address of the FAB or RAB is odd.

3. ;The control block’s BID field does not contain the proper block identifier code (i.e.,
FB$BID for FABs and RB$BID for RABs).

D.5 RMS-11 INCONSISTENT INTERNAL CONDITIONS ERRORS
When the crash routine is invoked because of RMS-11 inconsistent internal conditions, general
register RO contains one of the following error codes:

e ERSBUG
@ ERSMAP



RMS Completion Status Codes

These error codes indicate internal problems with RMS-11 and are considered fatal. They can
be caused by improper coding by the user (e.g., destroying some internal RMS-11 data base),
but are also used to detect RMS-11 bugs. When one of the above error codes is encountered,
the user should provide, if possible, the following information to DEC with an SPR:

1. The contents of the general registers.

2. The first ten words, at a mininum, or all words upon the system stack.
3. The operation the program was performing (e.g., SOPEN, $GET, $PUT).
4. The organization of the file being processed.

5. A load map of the task.

6. If running on TRAX, a post-mortem dump.

D-16



INDEX

Abbreviation of Keywords, 8-5, 8-9 Command Name, Purpose of, 8-3
ABORT Command, 2-5, 5-6, 5-7, 9-1 Command Qualifiers, 8-5
Aborting an Indirect Command File Command Structure, 8-2

Task, 5-7 Comment line, 8-2
ABORT/TASK Command, 5-7 Compiling COBOL Source Programs,
Accessing Devices, 4-1 52
Accessing other Directories, 2-3 Concatenation of Files, 3-10
Accessing the System, 2-6 Conditional Processing, 6=5
Access Levels, File, 3-5 Continuation of Command, 6-1
ACTIVE, with Show TASKS, 9-82 CONTINUE Action, 6-5
ALL, with Show TASKS, 9-82 Control Key Functions, 8-5
Allocated devices, 4-1 COPY Command, 3-10, 9-8
ALLOCATE Command, 4-4, 9-3 Correcting Input Errors, 8-8
Altering Device Features, 4~5 CREATE Command, 3-5, 3-7, 3-8,
APPEND Command, 3-10, 9-4 9-10
Appending Records to Files, 3-10 CREATE/DIRECTORY Command, 4-5,
ASSIGN Command, 4-6, 9-5 9-15
Assigning Devices, 4-5 ‘ Creating Files, 3-7
Assignment Priority, 4-6 Creating Indirect Command Files,
At Sign (@), 1-4, 5-1, 7-1 7-1
AT,.Task, 5-7 Creating RMS-11l Files, A-1
Automatic Deallocation at LOGOUT, Creating Source Files, 5-1

4-4 CTRL Key Functions, 8-7

CTRL/C Function, 2-1, 5-7
CTRL/R Function, 8-8
CTRL/U Function, 8-8
BASIC Command, 9-6 CTRL/Z Function, 2-3, 3-7, 3-8,
BASIC-PLUS-2 Language, 1-5 A-3
BASIC-PLUS~2 Mode, 9-6 :
BASIC-PLUS-2 Source Files, 5-4
BASIC-PLUS~2 Usage, 5-4

BASIC Source Program, 2-3 Data Allocation, A-12
BASIC2 Prompt, 5-4 Data Blocks, Batch, 6-3
Batch Command Processing, 1l-1, $DATA Command, 6-3, 9-16
6-1 through 6-8 Data Structure, A-5S
Batch Data Blocks, 6-3 DCL> Prompt, 2-1, 8-2
Batch Files, 1-1, 6-1 DEALLOCATE Command, 4-4, 9-17
Batch Log File, 6-2 Deallocating a Device, 4-4
Batch Processing Command Set, 6-2 DEASSIGN Command, 4-7, 9-18
Beginning and Ending a Batch Job DEC EDITOR, 2-1, 2-3, 3-8, 5-1
File, 6-3 Default File Specifications, 3-3
BRIEF, with SHOW TASKS, 9-82 DELETE Command, 3-13, 9-18

DELETE File Command, 9-19
DELETE Key, 8-5, 8-8
DELETE Queued Job Command, 9-19

Calling RMSDEF, A-3 Deleting Files, 3-13
Categories of Users, 3-5 Deleting Individual Characters,
Changing Device Assignments, 4-6 8-8

Character Deletion, 8-8 Deleting Lines, 8-8

COBOL Command, 5-2, 9-7 Device Identifier, 3-1

COBOL Compilation, 5-2 Device Name Assignments, 4-5
COBOL Language, 1-5 Device Names, 3-3

COBOL Linking, 5-3 Device Status, 4-2

COBOL, Use of, 5-2 Device Verification, 4-4
Command Descriptions, 8-1 DIGITAL Command Language, 1l-1
Command Format Help, 2-8, 9-27 Directory, 1-5

Index-1



INDEX (Cont.)

DIRECTORY Command, 2-1, 9-20
DIRECTORY/FULL Command, 3-5, 9-21
Disconnecting a Volume, 4-4
DISMOUNT Command, 4-4, 9-24
Displaying Device Assignments,
Displaying Device Features, 4-~5
Displaying Device Names, 4-2
Displaying Device Status, 4-2
Displaying File Contents, 3-12
bollar Sign, 1-3, 6-1, 6-3

EDIT Command, 3-7, 3-8, 7-1, 9-24

Editor Prompt, 1-3, 2-3

ENTRY Queue, 9-19, 9-77, 9-78

Environment, Support, 1-1

Environment, Transaction
Processing, 1-1

SEOD Command, 6-3, 9-25

$EOJ Command, 1-3, 6-1, 6-3, 9-26

Error Logging During Merge, 3-11

Error Messages, 1-3

Error Status, 6-4

Error, Status Level, 6-5, 6-6

ESC Key, 8-5

Exact Copies of Files, 3-10

File Access Levels, 3-5

File Attribute Specification, A-1

File, Batch, 1-3

File Creation, 3-7, 5-1, A-1

File Creation Errors, A-14

File Creation, RMSDEF, A-13

File, Definition of, 1-5, 3-1

File, Log, 1-3, 6-2

File Management, 3-7

File Name, 2-1, 3-2

File Name Identifier, 3-2

File Ownership, 3-4

File Protection, 1-5, 3-4, 3-5,
A-12 .

File Security, 1-5, 3-4, 3-5, A-12

File Specification, 1-5, 2-1, A-5

File Specification Conventions,
3-1

File Storage, 1-5

File Structure, A-10

File-Structured Volume, 4-5

File Type, 2-3, 3-4

File Type Identifier, 3-4

File Types, Standard, 3-4

File Version, 3-4

Format, Batch Command, 6-1

Format Conventions, Outline of,
8-1 through 8-9

Function Keys, Keyboard, 8-6

Global Assignments, 4-5

$GOTO Command, 6-2, 6-7, 9-26
GROUP, Definition of, 3-5
Group Number, 2-6, 3-5

HELP Command, 2-8, 9-27

Identification of User, 2-1, 2-3

$IF Command, 6-6, 9-28

Indexed Files, 3-8

Indirect Command Files, 1-1, 1-4,
5-1, 7-1 through 7-3

Indirect Command File Task, 5-7,
7-1 through 7-3

INITIALIZE Command, 3-5, 4-4, 4-5,

9-29

Interactive Command Processing,
1-1, 1-2

Interactive Session, Sample, 2-1
through 2-8

Invoking a Batch Job, 6-1, 9-92

Invoking BASIC-~-PLUS-2, 5-4, 9-6

Invoking Indirect Command Files,
5-1, 7-1

Issuing Commands, 8-2

I/0 Rundown on ABORT, 5-7

$JOB Command, 1-3, 6-1, 9-32
Job Name, Batch, 6-3

Keyboard, Terminal, 2-1, 2-2
Key Definition, A-10

Label, Command, 6-1, 6-7
Language, BASIC-PLUS-2, 1-5
Language, COBOL, 1-5

LA36 Terminal, 2-1, 2-2
LIBRARIAN Command, 9-33
LIBRARIAN CREATE Command, 9-33
LIBRARIAN DELETE Command, 9-35
LIBRARIAN EXTRACT Command, 9-36
LIBRARIAN INSERT Command, 9-37
LIBRARIAN LIST Command, 9-38
LIBRARIAN REPLACE Command, 9-39
LIBRARIAN SQUEEZE Command, 9-40
Libraries, COBOL, 5-3

Line Deletion, 8-8

LINE FEED Key, 8-5

LINK/BASIC Command, 2-4, 9-41

Index-2



INDEX (Cont.)

LINK Command, 5-3, 5-5, 9-41
Linker, TRAX, 1-5, 5-3, 5-5
Linking, 2-4

Linking COBOL Object Files, 5-3
Local Assignments, 4-5

Log File, 1-3

Log File, Batch, 6-2, 6-3
Logging Out, 2-1, 9-49
Logical Device Name, 4-2
Logical Name, 4-2, 4-5
LOGIN Assignments, 4-6

LOGIN Command, 1-3, 2-1, 2-6, 9-48

LOGIN SEQUENCE, 2-3, 2-6
LOGOUT Command, 1-3, 2-1, 2-5,
2-8, 9-49

MACRO Command, 9-50

Making Device Assignments, 4-6

Managing Files and Volumes, 3-1

Managing System Devices and
Volumes, 4-1

Member Number, 2-6

MERGE Command, 3-11, 9-52, A-1

MERGE Logging, 3~11

Merging Records to Files, 3-11

MESSAGE Command, 9-54

Message, System Login, 2-6

MOUNT Command, 3-5, 4-4, 9-55

Mounting a Volume, 4-4

Multiple File Copying, 3-10, 9-8

Nonprivileged User, 4-1
Nonpublic Devices, 4-1
Notation, Format, 8-1

Object Files, 5-1 through 5-4
SON Command, 6-5, 9-57
Optimizing Files, 3-11
Optional Parameters, 8-4
Options, SET QUEUE, 9-70
Options, SET TERMINAL, 9-73
Options, SHOW QUEUE, 9-78
Options, SHOW TERMINAL, 9-85
OWNER, Definition of, 3-5

Parameter Lists, 8-4
Parameter, Purpose of, 8-3
Parameter Qualifiers, 8-5
Parameter Representation, 8-1
Parameters, Optional, 8-4
Password, 2-1, 2-6

PASSWORD: Prompt, 2-6

Index-3

Physical Device Name, 4-1, 4-5

Preparing Devices, 4-5

PRINT Command, 3-13, 9-58

Printing Files, 3-13

Private Devices, 4-1

Privileged Users, 2-6

Processing, Indirect Command
File, 1-4, 7-1 through 7-3

Processing, RMSDEF, A-4

Program Development, 5-1 through
5-7

Programming Language, 1-5

Programs, Support, 1l-1

Prompt, Editor, 2-1

Prompting for Parameters, 1-3,
8-3

Prompts, DCL, 1~2

Protection, File, 3-5

Pseudodevice Name, 4-1

Public Device, 4-1

PURGE Command, 3-13, 9-61

Purging Files, 3-~13, 9-61

Qualifiers, Command, 8-5
Qualifiers, Parameter, 8-5
Qualifiers, Purpose of, 8-5
Qualifier, Sub-Index of,
/AFTER, with PRINT, 9-58
/AFTER, with SUBMIT, 6-7, 9-92
/ALLOCATION, with CREATE, 9-10,
9-15
/ALLOCATION, with SORT, 9-86
/ATTRIBUTES, with DIRECTORY,
9-20
/BASIC, with LINK, 9-41
/BLOCKSIZE, with COPY, 9-8
/BLOCKSIZE, with SORT, 9-86
/BRIEF, with DIRECTORY, 9-20
/BUCKETSIZE, with CREATE, 9-10
/BUCKETSIZE, with SORT, 9-86
/CHECKPOINT, with LINK, 9-41
/COMMAND, with ABORT, 9-1
/CONCATENATED, with LINK, 9-41
/CONTIGUOUS, with COPY, 9-8
/CONTIGUOUS, with CREATE, 9-10
/CONTIGUOUS, with SORT, 9-86
/COPIES, with PRINT, 9-58
/CROSS-REFERENCE, with LINK,
9-41
/CROSS-REFERENCE, with MACRO,
9-50
/DEBUG, with LINK, 9-41
/DEFAULT~-LIBRARY, with LINK,
9-41
/DELETE, with PRINT, 9-58
/DENSITY, with INITIALIZE,
9-29
/DENSITY, with MOUNT, 9-55



INDEX (Cont.)

Qualifier, Sub-Index of (cont.)

/DEVICE, with SORT, 9-86

/DIRECTORY, with CREATE, 9-10

/DOLLARS, with $CREATE, 6-4,
9-10

/DOLLARS, with $DATA, 6-4, 9-16

/DUMP, with ABORT, 9-1

/DUMP, with LINK, 9-41

/ENTRIES, with LIBRARIAN LIST,
9-38

/EPT, with LIBRARIAN CREATE,
9-33

/EPT, with LIBRARIAN SQUEEZE,
9-40

/EXTENSION, with INITIALIZE,

9-29

/EXTENSION, with MOUNT, 9-55

/FILES, with SORT, 9-86

/FLAGPAGE, with PRINT, 9-58

/FORMAT, with CREATE, 9-10

/FORMAT, with SORT, 9-86

/FORMS, with PRINT, 9-58

/FREE, with DIRECTORY, 9-20

/FULL, with DIRECTORY, 9-20

/FULL, with LIBRARIAN LIST,
9-38

/FULL-SEARCH, with LINK, 9-41

/GLOBAL~SYMBOLS, with LIBRARIAN
DELETE, 9-35

/HEADERS, with INITIALIZE, 9-29

/INDEX, with INITIALIZE, 9-29

/INDEXED/KEY, with APPEND, 9-4

/INDEXED/KEY, with COPY, 9-8

/INDEXED/KEY, with CREATE, 9-10

/INDEXED/KEY, with MERGE, 9-52

/INDEXED/KEY, with SORT, 9-86

/JOB, with PRINT, 9-58

/JOB, with SUBMIT, 6-7, 9-92

/KEEP, with PURGE, 3-13, 9-61

/KEY, with /INDEXED files, 3-7,
3-10, 9-4, 9-8, 9-10, 9-52,
9-86

/LENGTH, with PRINT, 9-58

/LIBRARY file qualifier, 5-3

/LIBRARY, with LINK, 9-41

/LIBRARY, with MACRO, 9-50

/LIST, with COBOL, 9-7

/LIST, with MACRO, 9-50

/LOCAL, with ASSIGN, 9-5

/LOCAL, with DEASSIGN, 9-18

/LOG, with MERGE, 9-52

/LOWERCASE, with PRINT, 9-58

/MAP, with LINK, 9-41

/MAXIMUM, with INITIALIZE, 9-29

/MNT, with LIBRARIAN CREATE,
9-33

/MNT, with LIBRARIAN SQUEEZE,
9-40

/MODULE, with LIBRARIAN DELETE,
9-35

Index-4

Qualifier, Sub-Index of (cont.)

/NOCHECKPOINT, with LINK, 9-41
/NOCONCATENATED, with LINK, 9-41
/NOCONTIGUOUS, with SORT, 9-86
/NOCOPY, with $DATA, 9-16
/NOCROSS~-REFERENCE, with MACRO,
9-50
/NODELETE, with PRINT, 9-58
/NODUMP, with LINK, 9-41
/NOENTRYPOINTS, with LIBRARIAN
CREATE, 9-33
/NOENTRYPOINTS, with LIBRARIAN
INSERT, 9-37
/NOENTRYPOINTS, with LIBRARIAN
REPLACE, 9-39
/NOFLAGPAGE, with PRINT, 9-58
/NOFULL~SEARCH, with LINK, 9-41
/NOLIST, with COBOL, 9-7
/NOLIST, with MACRO, 9-50
/NOMAP, with LINK, 9-41
/NOOBJECT, with COBOL, 5-2, 9-7
/NOOBJECT, with MACRO, 9-50
/NOORIGINAL, with PRINT, 9-58
/NOORIGINAL, with SUBMIT, 6-7,
9-92
/NOPRINT, with SUBMIT, 6-7, 9-92
/NORECEIVE, with LINK, 9-41
/NORESTART, with PRINT, 9-58
/NORESTART, with SUBMIT, 6-7,
9-92
/NOSYMBOLS, with LINK, 9-41
/NOTASK, with LINK, 9-41
/NOVERIFIED, with INITIALIZE,
9-29
/NOWIDE, with PRINT, 9-58
/OBJECT, with COBOL, 5-2, 9-7
/OBJECT, with MACRO, 9-50
/OPTIONS, with LINK, 9-41
/ORIGINAL, with PRINT, 9-58
/ORIGINAL, with SUBMIT, 6-7,
9-92
/OUTPUT, with DIRECTORY, 9-20
/OUTPUT, with LIBRARIAN LIST,
9-38
/OUTPUT, with SORT, 9-86
/OVERLAY, with LINK, 9-41
/OVERRIDE, with MOUNT, 9-55
/OWN, with COPY, 9-8
/OWNER, with INITIALIZE, 9-29
/OWNER, with MOUNT, 9-55
/PAGES, with PRINT, 9-58
/PASS, with MACRO, 9-50
/PRINT, with DIRECTORY, 9-20
/PRINT, with SUBMIT, 6-7, 9-92
/PRIORITY, with PRINT, 9-58
/PRIORITY, with SUBMIT, 9-92
/PROCESS, with SORT, 9-86
/PROTECTION, with CREATE, 9-10,
9-15

/PROTECTION, with INITIALIZE, 9-29



INDEX (Cont.)

Qualifier, Sub-Index of (cont.) Record Format, 3-8, A-5
/PROTECTION, with MOUNT, 9-55 Record Sort, 3-12
/QUEUE, with DELETE, 9-18 RELATIVE Files, 3-8
/QUEUE, with PRINT, 9-58 Removal of Files, 3-13
/QUEUE, with SUBMIT, 6-7, 9-92 RENAME Command, 3-11, 9-63
/RECEIVE, with LINK, 9-41 Renaming Across UFD's, 3-11
/RELATIVE, with APPEND, 9-4 Renaming Existing Files, 3-11
/RELATIVE, with COPY, 9-8 Representation of Parameters, 8-1
/RELATIVE, with CREATE, 9-10 Representation of Qualifiers, 8-1
/RELATIVE, with MERGE, 9-52 Requesting Command Information,
/RELATIVE, with SORT, 9-86 2-8
/RESTART, with PRINT, 9-58 RETURN Key, 8-6

/RESTART, with SUBMIT, 6-7, 9-92 RMSDEF, Calling, A-3
/SELECT-SYMBOLS, with LIBRARIAN RMSDEF Termination, A-3

CREATE, 9-33 RMSDEF Utility, 3-7, A-1 through
/SELECT-SYMBOLS, with LIBRARIAN A-15
INSERT, 9-37 RUN Command, 5-6, 9-64

/SELECT-SYMBOLS, with LIBRARIAN Running A Task, 5-6
REPLACE, 9-39

/SELECT-SYMBOLS, with LINK, 9-41

/SEQUENTIAL, with APPEND, 9-4

/SEQUENTIAL, with COPY, 9-8 Sequence Control, 6-5
/SEQUENTIAL, with CREATE, 9-10 Sequential Files, 3-8
/SEQUENTIAL, with LINK, 9-41 SET Command, 9-65
/SEQUENTIAL, with MERGE, 9-52 SET DEFAULT Command, 9-65
/SEQUENTIAL, with SORT, 9-86 SET DEVICE Command, 4-5, 9-67
/SHOW, with MOUNT, 9-55 $SET NOON Command, 6-6, 9-68
/SIZE, with LIBRARIAN CREATE, $SET ON, 6-6, 9-68

9-33 SET PROTECTION Command, 3-5, 9-69
/SIZE, with LIBRARIAN SQUEEZE, SET QUEUE Command, 9-70

9-40 SET TERMINAL Command, 4-5, 9-73
/SIZE, with SORT, 9-~86 SEVERE-ERROR Status Level, 6-5
/SPECIFICATION, with SORT, 9-86 through 6-7
/SQUEEZE, with LIBRARIAN CREATE, Shared Devices, 4-1

9-33 SHIFT Key, 8-6
/SQUEEZE, with LIBRARIAN INSERT, SHIFT LOCK Key, 8-6

9-37 SHOW ASSIGNMENTS Command, 4-7, 9-75
/SQUEEZE, with LIBRARIAN SHOW Command, 9-74

REPLACE, 9-39 SHOW DEFAULT Command, 9-76
/SUMMARY, with DIRECTORY, 9-20 SHOW DEVICES Command, 4-1, 4-5,
/SWITCHES, with COBOL, 5-3, 9-7 9-77
/SWITCHES, with MACRO, 9-50 SHOW QUEUE Command, 9-78
/SYMBOLS, with LINK, 9-41 SHOW TASKS Command, 5-6, 5-7, 9-82
/TASK, with ABORT, 5-7, 9-1 SHOW TERMINAL Command, 4-5, 9-85
/TASK, with LINK, 9-41 SHOW TIME Command, 9-76
/TASK, with RUN, 6-7, 9-64 SORT Command, 3-12, 9-86
/TERMINAL, with MESSAGE, 9-54 Source File Compilation, 5-2
/TIME, with $JOB, 9-32 SPACE BAR Key, 8-6
/TYPE, with LIBRARIAN CREATE, Spooled Devices, 4-2

9-33 Spooling of Print Output, 3-13
/UNLOCKED, with MOUNT, 9-55 Standard Device Names, 3-3
/UPPERCASE, with PRINT, 9-58 Standard File Types, 3-1
/VERIFIED, with INITIALIZE, Starting a Batch Job, 6-1, 9-92

9-29 Status of Devices, 4-1
/VOLUME-LABEL, with CREATE, 9-10 STOP Action, 6-6
/VOLUME~-PROTECTION, with SUBMIT Command, 9-92

INITIALIZE, 9-29 Submitting a Batch Job, 6-1, 6-7,
/WIDE, with PRINT, 9-58 9-92
/WINDOW, with INITIALIZE, 9-29 SUCCESS Status Level, 6-5
/WINDOW, with MOUNT, 9-55 Support Programs, l-1

Index-5



INDEX (Cont.)

System Login Message, 2-6
SYSTEM User, Definition of, 3-5

TAB Key, 8-6

Tag Sort, 3-12

Task, Executable, 5-1 through 5-7

Task Execution and Control, 5-6

Task Linking, 1-1 '

Terminal Keyboard Functions, 8-6,
8-7

Terminals, 2-1

Terminal Support, l~

Terminating RMSDEF, A-3

Time Limit, Batch Job, 6-3

TYPE Command, 2-1, 3-~12, 9-93

UFD, 3-3

UIC Identifier, 1-5, 2-3, 2-6,
3-1, 3-4

UIC/UFD Relationship, 3-3

Underline Convention, 8-5

UNLOCK Command, 9-94

User File Directory, 1-5, 3

User Identification Code, 1~
2-3, 2-6, 3-1, 3-4

User Name, 2-6

Utility, RMSDEF, 3-7, A-1 through
A-15

Version Identifier, 3-2

Virtual Terminals, 1-1, 1-3, 4-2,
6-1

Volume, Definition of, 3-1

Volume Label Checking, 4-4

VIT52 Terminal, 2-1

WARNING Status Level, 6-5, 6-6
Wildcards, 2-3 through 2-7
WORLD, Definition of, 3-5

Index-6



TRAX Support
Environment
User’s Guide

READER’S COMMENTS AA-D331A-TC

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the

company'’s discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

00  Assembly language programmer
0O  Higher-level language programmer
O  Occasional programmer (experienced)
0O  User with little programming experience
00  Student programmer
O  Other (please specify)
Name ; ' Date -
Organization
Street.
City : State Zip Code

or
Country



Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

dlilgliltall

Software Documentation
146 Main Street ML 5-5/E39
Maynard, Massachusetts 01754












A ign
L,

i
A
PR

i
it

fin
i

R
i,

LA

A
I
R

i P | . . E .
o

e




