J-11

PROGRAMMER'S REFERENCE

Rev. 2.74 (January, 1982)

COMPANY CONFIDENTTIATL

I Copyrigpt (c) 1979, 1987, 1981, 1982 by Digital Equipment Corporation

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may occur in this document.

This specification does not describe any program or product which is

currently available from Digital Equipment Corporation. Nor does
Digital Equipment Corporation commit to implement this specification in
any program or product. Digital Equipment Corporation makes no

commitment that this document accurately describes any product it might
ever make.

J-11 PROGRAMMER'S REFERENCE ‘ Page 2

REVISION HISTORY

REV DATE REASON

2.04 1/82 Minor corrections

2.03 7/81 Revised CPU Error Register and stack trap
description; minor corrections

2.02 12/80 Added floating point instructions

2.01 7/8¢0 Added Tablie of Contents; revised I/D space, CPU Error

Register, and Memory System Error Register;
reorganized chapters 3, 4, and 5

2.00 1/80 Added PS protection chart, console single step

1.04 12/79 Revised Cache Control Register and Memory System
Error Register; added Hit/Miss Register; cleanup

1.03 8/79 Added comparison to 11/44; eliminated stack limit;
titlie change

1.02 7/79 .Eliminated instruction complete; cleanup

1.01 6/79 Added I/0 bus time error bit in CPU Error Register;

added CPU abort error bit in Memory System Error
Register; added disable interrupt bit in Cache
Control Register; fixed up originail

1.00 5/79 Preliminary

J-11 PROGRAMMER'S REFERENCE

TABLE OF CONTENTS"

1.0 INTRODUCTION

1 Scope
.2 Method
3 Applicable Documents

SRR
L]

2.8 INSTRUCTION SET
3.¢ ARCHITECTURAL FEATURES

General Registers
Processor Status Word - .PS (17777776)

.

CPU Error Register (17777746)
Stack Protection
Kernel Protection

Wwwwww
.
AN D WN -

4.9 MEMORY MANAGEMENT

Page Address Registers - PARs

Page Descriptor Registers - PDRs

Memory Management Register # - MMR@# (17777572)
Memory Management Register 1 - MMR1 (17777574)
Memory Management Register 2 - MMR2 (17777576)
Memory Management Register 3 - MMR3 (17772515)
I and D Space

TSI N SN N L S Y
.
N A s WN -

5.0 MEMORY SYSTEM

5.1 Cache
5.1.1 Cache Control Register (17777746)
5.1.2 Hit/Miss Register (17777752)
5.1.3 Cache Muiti-Processor Hooks
5.1.4 Cache Response Matrix

5.2 I-Stream Buffer
5.3 Memory System Error Register (17777744)

6.0 FLOATING POINT INSTRUCTIONS

5.1 Floating Point Status Register - FPS
6.2

FEC, FEA
6.3 Accuracy

Page 3~

Program Interrupt Request Register - PIRQ (17777772)

Fioating Point Exception Code and Address Registers -

J-11 PROGRAMMER'S REFERENCE L. - Page 4

TABLE OF 'CONTENTS (Cdnﬁinued)

7.9 TRAPS AND INTERRUPTS

8.0 GENERAL PERFORMANCE GOALS
9.9 CONSOLE

1.4 11/44 HARDWARE DIFFERENCES

11.4 11/7% HARDWARE DIFFERENCES

Appendix 1 - J-11 Base Instruction Set-
Appendix 2 - J-11 Floating Point Instruction Set -
Appendix 3 - J-11 Commerciai Instruction Set

Appendix 4 - Console Commands

J-11 PROGRAMMER'S REFERENCE A Page. 5
1.9 INTRODUCTION

1.1 Scope

This document specifies the programmer-visible functions of the J-11, a
high performance . MOS. CPU chip set for the PDP-11 family.: ~The J-11
impiements the important 11/44 and 11/7@ features {see sections 10 and
11 for summary difference lists) and achieves 11/70 performance in most
applications. I

1.2 Method

The J-11 is intended to replace both the 11/44 and the 11/74. :: It will
run RT-11, RSX-11M, RSX-11M+, RSTS/E, DSM-11, UNIX, and KSOS. The 11/44
and 11/78 are: not entirely compatible. When a_ choice- between
conflicting implementations 1is necessary,. the J-11- follews the 11/44
rather than the 11/70. The only exceptions are features: which impact
potential software coverage (e.g., dual register set) or which unduly
complicate the MOS implementation.

1.3 Applicablie Documents

J-11 Chip System Specification
PDP-11/7# Processor Handbook
J-11 Controi Chip Specification
J-11 Data Chip Specification
J-11 Microprogrammer's Reference

J-11 PROGRAMMER'S REFERENCE

2.ﬂ

INSTRUCTION SET

The J-11 instruction set consists of the following:

~ 11/70 Base. ‘Instruction Set including the Extended -

Instruction Set (EIS) plus the MTPS, MFPS, MFPT,

TSTSET, WRTLCK, and CSM instructions. Appendix 1

contains the complete - 1ist of J-11 ~'base
instructions.

- Floating Point (FPll) Instruction Set compatible
with the FP11A/C/E floating point processors.

Appendix 2 contains the compiete list of J-11

floating point instructions.

b

‘Iist of .J-1¥ CIS instructions.

3.0 ARCHITECTURAL FEATURES

3.1

General Registers

These include:

This

- Two sets of six working registers (R@-RS5)
- Kernel/supervisor/user stack pointers (R4)

- Program counter (R7).

Commercial Instruction Set (CIS) compatibie with *
_DEC Standard. 158. Appendix 3 contains the‘cdmpleté‘“

Péaé'ﬁ

is fully compatible with the 11/70. The 11/44 lacks a second
general register set.

J-11 PROGRAMMER'S REFERENCE 1 Page 7

3.2 Processor.Status Word - PS (17777776)

The-ProcesSor Status Word (PS) contalns information on the status of the -
processor.

15 14 13 12 11 10 9 8 7 5 4 3 2 1 o]
e e e e e e e e e e e e o = e o e e
Iv | -I- \.//////771 | | ro] |
| 1 g \////7/7777)] T I Nl 2Z2Z1VvI]C
| RE | \/7//7777/71 - | | | I [
o i e e e e i e o e e e e e e e e > s o +
Current |

|

|

Mode g il
" . . I

|

Previous~Mode-=

[T 3

Reglster Set D e

Instructlon Suspen31oniw
Prlo:lty
Trace Trap~' . .
Condltlon Cédés
BIT ~ NAME , | o FUNCTION
15:14 ‘Current Mode- Current processor mode:
- (RW., protected) . .08 kernel
g1 supervisor

10 iliegal (traps)
11 user.
13:12 Previous Mede - Previous processor mode, same
: (RWs -protected) encoding as current mode,
11 Register Set- Genera1 register set sglgct°‘
(RW, protected) - ; g = register set @
ToE T 1 = register set 1.
8 Instruction Suspension Set to indicate that a CIS instruction
(RW) was suspended to service an interrupt.
7:5 Priority Processor interrupt priority level.
(RW, protected)
4 Trace Trap Set to force a trace trap.
(RW, protected)
3:0 Condition Codes Processor condition codes.

(RW)

J-11 PROGRAMMER'S REFERENCE ‘ PagéVB

For the protection on the PS under various conditions, see Table 3-1.
The PS is initialized at power up (depends on power up options) "and is.
cieared at console start. The RESET instruction does not affect the PS.

Table 3-1
PS PROTECTION

| |
. . |1 RTI, RTT |1 TRAPS & INTERRUPTS 1
PS Bit(s) || User | Super | Kernel || User | Super |-Kernel ||
——e——e————— [|=m————— === —— | | | e | e e | e -1
Condition || loaded | loaded | loaded || loaded | loaded | loaded ||
Codes Il from | from | from |l from | from | from I]
PS <3:0> || stack | stack | stack || vector | vector | vector |[.
[= == | ———————— | | == [mmmmmmmm | m =T |
|| loaded | loaded | loaded || loaded | loaded_| ioaded ||
Trap Bit Il from | from | from [1 from | from | from :|1:
PS <4> Il stack | stack | stack || vector | vector | vector -l
[[===mmmmm | o | === | === === Je—mmm===11
Processor || un- | un- | loaded ||.loaded | _Ioaded | loaded |}
Priority Il changed| changed| from |l from | from - | from Il
PS <7:5> || | | stack ||.vector. | vector | vector ‘||
N mm—————- = = [lemm————— | === |—==——===11
CIS || loaded | loaded | loaded || loaded |_loaded | loaded ||
Suspend Bitl| from | from | from || from | from | £rom |].
PS <8> H-stack | stack | stack |] vector | vector | vector ||
[== == |==————— [=== | mmm Rl |
Register Il ORed | ORed | loaded || loaded | loaded | loaded ||
Select |1 from | from | from || from | from = | from~. 7||
PS <11> I| stack | stack | stack || vector | vectdr | ~vector ||
[== | == |[=———=——= [|==em———- [m—mmmrtl e m e miioma | |
Previous || ORed | ORed | loaded || copied | copied | copied ||
Mode Il from | from | from !l from | from] from |
PS <13:12> || stack | stack | stack || PS | PS | PS I
N l | [l <15:14>| <15:14>] <15:14>1|
1= |~ | mem e [=== | ———— mer | ———— I
Current |1 DRed | ORed | loaded || loaded | loaded®'|-1locaded ||
Mode 4. from | from | from Il from | from . | from. .. ||
PS <15:14> || stack | stack | stack |] vector | vector | |1
| | | | |

J-11 :PROGRAMMER'S REFERENCE

Table 3-1

PS PROTECTION

User

(continued)

—tmmmm e | | e | m

ACCESS I
PS. Bit(s) .User |+ Super | Kernel ||
St N el Rt S EE L Bt
Condition .]| loaded| loaded | loaded ||
Codes Il from | from | from I
PS:<3:08>. .|| source} source | source ||
B R B e R I
Trap Bit: || un=- } un- ' | un- I
PS <4> | lchanged| changed| changed]|
e EE e = Il
Processor: :}}.1oaded|. leaded | loaded ||
Priority Il from | from | from
PS <7:5> || sourgel| source | source ||
cn N R | =
CIS...-» -:}l]-1oaded}.-1oaded |.. 1caded
Suspend Bit|| from | from | from
PS <8> || source| source | source
5||_---__;'-; ______ | ________
Register || loaded| loaded | loaded
Select |l from | from | from
PS <11> || source| sour¢e | source
e [==mmmrmm |
Previous :]| loaded| loaded | loaded
Mode || from | from] from
PS <13:12> || sourcel source | source
e | == ———
Current || loaded| loaded | loaded ||
Mode |l from | from | from |1
PS <15:14> || sourcel| source | source ||
I ! I
] |

loaded
from
source

un-

changed|

un-

| lchanged

acces-
sible

| loaded
| from
| source

-______‘____-;__',;,ag;,_

| un-
changed

not

—— v ——d —

not
.acces-
sible
not
acces-
sible
not
acces-
sible

s — . . eyt s S s oot iy ot i s i ST o s sttt

U U U I S
V
i . i

Page

| e p—

|| POWER UP
Kernel |:¢ rs-

| source

| an=::
IAchanged

loaded |1
from I
source 1]

not .
acces-
siblie |

- ——— —— —

--_-__,_I'

B S —

~depends
on power

- — —— -

C

- - ——

J-11 PRQGRAMMER'S REFERENCE Page 1@

3.3 Program Interrupt Request Register - PIRQ (17777772)

The Program Interrupt Request Register (PIRQ) implements a software
- -interrupt facility. - BT om s T e T
A request .is queued by setting one of the bits <15:9> which correépqp8§
-to a~program -interrupt request at levels 7-1. Bits <7§5>’%hd;<3%1} are
set by hardware to the encoded value of the highest pending- request’ set.

When the -program interrupt request is granted, the ‘processor ~ traps’
. through -location .- 240. It is the interrupt: service routine's
responsibility-to clear the appropriate bit in PIRQ before exiting..

15 14.. - 13 12 11 10 9 8 7 5- <4 - 3 1 g

e R e e e ——lald

| ! ! | | I I 17771 1//71 17771

| | [.= 1| | I I 1///71 17771 17771

o] | I | | | 1//7/1 - 1777 [/7//]

o e e e e ———— o e ey o +
. - R | | ! I | | 1
PIR 7_| |+ [| | | | I
e R E T I ! I I |
PIR 6 I | | I I I |
- | -1 I | | | |
PIR 5 | t. I [| I I
. N oo ! | l |
PIR 4 | | | I] |
g T L - - | | | | !
PIR 3 . | I | | |-
. R | | I |
PIR 2- I I l B
L. I | I
PIR 1 | | |
| I

‘Priority encoded value of bits <15:9>

PIRQ bits <15:9> are read/write; bits <7:5,3:1> are read only; the
remaining bits always read as zeroes. PIRQ is cleared at power up, by a
| console start, and by a RESET instruction.

J-11 PRQGBAMMER'S REFERENCE Page 11

3.4 CPU Error Register (17777765)

This register identifies the source of any abort or trap that caused a-
trap through locatlon 4.

15 . 8 7 6 5 4 3 .2 1 @

___ +
I///////////////////////////////I I [| | (. L///////L
\////7777777/7//7//7/7/777/7777777) ! | | | | VIV IR
\/////777//777777//77777777/7/7777) | | | | | /7777771
o e e
‘); ' . - N ;' ’ -. ' -

Iilegal HALT . . = !

Address Error

[
I
!
l
|
I

Non-existent. Memocry

I/0 Bus Timeout .-

Yeiiow Stack Violation

l
I
I
I
l
|
!
|-
I
|
|
I

Red Stack Violation

BIT NAME FUNCTION A
7 Illegal HALT Set when execution of a HALT instruction
(RO) . is attempted in user or supervisor mode.
6 Address Error Set when word access to,an<6da byte
(RO) address or an instruction fetch from an

internal register is attempted.

5 Non—existént Memory . Set when a reference to mairn memory
(RO) o times out.

4 I/0 Bus Timeout Set when a reference to the I/O page
(RO) . e times out.

3 Yellow Stack Trap (RO) Set on a yellow stack trap.

2. - Red Stack .Trap (RO) . Set on a red stack trap.

The CPU Error Regisﬁer is cleared by any write reference. It is also
cleared at power up or by console start. It is unaffected by a RESET
instruction. . -

NOTE: This register is identical to the 11/74a. The 11/44 includes
several additional transient status bits. Note that the
definition .of address trap has been expanded to include -
instruction fetches from an 1internal register, and that , the
definition of stack trap has aiso been changed.

J-11.PROGRAMMER'S REFERENCE ‘Page 12

3.5 Stack Protection

The 'J=11 checks kernel stack references against a fixed limit of 4Qﬂ(é$,;

If the virtual address of a kernel stack reference is less than 4#d(8),
a yeliow stack trap occurs at the end of the current instruction (except
for CIS instructions, which abort at the start of instruction
execution). A ‘stack trap can occur only on a kernel stack reference,
which is defined as a kernel mode 4 or 5 reference through R6, a CIS
stack push, or a JSR, trap, or interrupt stack push.

In addition, the J-11 checks for kernel stack aborts during interrupt,

ﬂ4pPX

trap, or abort sequences. If a kernel stack push during an ,interrupt, .

trap, or abort causes an abort, the J-11 initiates a red-.zone. stack trap

by creating an emergency stack at locations 2 and @, setting b1t <2> of

the CPU Error Register, and vectoring through location 4..

NOTE: The J-11 treatment of yeliow stack trap .is.idéntical to the
11/44. The 11/78 inciudes a stack limit reglster, and a more .

inciusive definition of a stack reference. The J=l11's definition
of a red stack trap is unique.

3.6 Kernel Protection

In order to protect the kernei operating system against interference;,-

the J-11 incorporates a number of protection mechanisms:

- In kernel mode, HALT, RESET, and SPL execute as
specified. 1In supervisor or user mode, HALT causes
a trap through location 4, while RESET and SPL are
treated as NOPs.

- In kernel mode, RTI and RTT can alter PS <15:11>
and PS <7:5> freely. In supervisor or user mode,-
RTI and RTT can only set PS «<15:11> and cannot
alter PS <7:5>.

- In kernel mode, MTPS can alter PS <7:5>. In

supervisor or wuser mode, MTPS cannot alter PS
<7:5>. ‘

- All trap and interrupt vector references are
classified as kernel data space references,
irrespective of the memory management mode at the
time of the trap or interrupt. T

- Rernel stack references are checked for stack

overflow. Supervisor and user stack references are
not checked.

TheSe protectlon mechanisms are fully compatlble w1th the 11/44 and
11776. °

J-11 PROGRAMMER'S REFERENCE Page 13

4.9 MEMORY MANAGEMENT

The "J-11 implements 11/44-11/70 compatible memory management. ‘' This
features: : '

- 22 bit physical address translation.
- Instrqctiqn and data (I/D) address spaces.
- Kernel, supervisor, and user (K/S/U) processor modes.

NOTE: No I/0 map is supplied with the J-11 chip set. It is coupled
with the UNIBUS adapter module, if any.

The visible memory management state consists of 48:Page Addr¥ss
Registers (PARs), 48 Page Descriptor Registers (PDRs), and four Memory
Management Registers (MMR@G-3) .

4.1 Page Address Regiéters - PARs

The Page AddréééwR;giéféfs (PARs) contain the 16-bit Page Address Field
(PAF) .

15 ®
Ao e e e e e e e —+
l K |
| PAF |
I , I
e e e e +

All bits-are read/write. These registers are not affected by console
scaYE‘brxg‘RQSET*idéttuCtion. Their state at power up is UNDEFINED.

1

J-11 PROGRAMMER'S REFERENCE e ‘ - Page 14

4.2 Page Descriptor Registers - PDRs

The Page Descriptor Registers (PDRs) contain. information relative to
page expansion, page length, and access control. .

15 14 8 7 6 5 4 3 2 -1 @.
F e e e e e e e e e e e e e e e e e e =t = e e = e
I I \///1 \///////1 I N VOA
| I PLF \///\ w1///////1ED | ACF |///]
! | 1/7//1 \/7/7///771 I /771
e +

sl Tev e - o '
Bypass Cache |
I

]

Page; Length Field

o% <

T T
oo

Page Written

Expansion Direction

Access Control Field

T PN

BIT NAME ' FUNCTION

15 Bypass Cache This bit implements a conditionai cache
(RW) . . bypass mechanism. If set, references to
the selected virtual page will bypass the
cache.
14:8 Page Length Field This field specifies the block number
(RW) which defines the boundary of the current

page. The block number of the virtual.
address is compared against the -Page Length
Field to detect length errors. An error
occurs when expanding upwards if the block
number is greater than the Page Length
Field, and when expanding downwards if the
block number is less than the Page Length

Field.
6 Page Written This bit indicates whether or not this
(RO) page has been modified (i.e. written into)

since either the PAR or PDR was loaded (1
is affirmative). It is useful in
applications which involve disk swapping
and memory overlays. It is used to
determine which pages have been modified
‘and hence must be saved in their new form
and which pages have not been modified and
can simply be overlaid.

This bit is reset to # whenever either the
PDR or the associated PAR is written into.

J-11 PROGBAMMER'S REFERENCE Page 15 |

3 Expansion Direction’ This bit specifies in which direction-

(RW) the page expands. If ED=0 the page expands

SR upwards from bliock number # to include - = ™
blocks with higher addresses; if ED=1l; the .
page expands downwards from block number
127 to include blocks with lower addresses.
Upward expansion is usually used for ----.
program space while downward expansion is
used for stack space.

1. . .-Access Control This fieid contains the access rights-to:
Field (RW) to this particular page. The access codes
; or "keys" specify the manner in which a .
page may be accessed and whether or not a.
given access should result in an abort of.
the current operation. The access codes’

2

[Ad

are:

39 Non-resident - abort all accesses
71 Read only - abort on writes

19 Not used - abort all accesses,

11 Read/write -

These registers are not affected by console start or a RESET-
instruction. Their state at power up is UNDEFINED, All unused bits
read as zero and cannot be written.

NOTE: The J-11 PDR's are identical to the 11/44 PDR's. The-. J-11:9
eliminates "the 11/78's "A"™ (any access) status bit, adds the
bypass cache bit, and only supports 11/78 access modes 0, -2, =and~
®. In addition, the J-11 sets the W (page written) bit on writes
which cause aborts or modify internal registers, while the 11/44
and 11/74 do not. T

J-11 PROGRAMMER'S REFERENCE P ' Page 1%

4.3 Memory Management Register @& - MMR@ (17777572) : S

Tt Yy o . :
MMR@ contains error flags, the page number whose reference caused the
abort; and various other status flags.

T I \//77/777/777/777/77777/7777/] ! l | !
I l l /777777777777 ///7/7//777//7/7) l | I I
| | I \//777/777/777/777/77/777/771 I (. o |

o e e e e e e e —— e 2 e e e e e e U

S | , T
Abort | [
Non-= t-« |
Res.Z | -~ | ~

ERRRSE
Abort-Page |
Length |
Errore. @ - |

Abort-Read-
Only Error

— i s — s ot i i st o S o

Processor Mode

SE

—— st ey e WAl o T s et i et s
3

Page Space

Bl e’
s

i
| e et e s o e e oy —— e — o

Page -Number

=y X z. ¢ (e t i

|

I

|

|

|

|

|

I

|

I

I
I

)

,JT

'.

N

7]

|

|

Fnablke .Reloccation

BIT - NAME FUNCTION B .

i5 Abort - Non Resident Bit 15 is set by attempting to access
(RW) a page with an Access Control Field key

equal to # or 2. It is also set by
attempting to use memory relocation with a
processor mode (PS<15:14>) of 2.

14 Abort - Page Length Bit 14 is set by attempting to access a
(RW) location in a page with a block number
(virtual address bits <12:6>) that is
outside the area authorized by the Page
Length Field of the Page Descriptor
Register for that page.

13 Abort - Read Only Bit 13 is set by attempting to write in a
(RW) "Read Only" page. "Read Only" pages have
access keys of 1.

Note that bits <15:13> can be set by an explicit write; however such an
action does not cause an abort. Whether set explicitly or by an abort,
bits <15:13> cause memory management to freeze the contents of
MMR@<15:13,A:1>, MMR1, and MMR2. The status registers remain frozen
until MMRA<15:13> are cleared by an explicit write or any initialization
sequence.

J-11 PROGRAMMER'S REFERENCE Page 17

6:5 Processor Mode Bits <A:5> indicate the processor mode
(RO) (kernei/supervisor/user/illegal) /
) associated with the page causing the abort
(kernel = @8, supervisor = 01, user =11, --

illegal = lﬂ) If the illegal mode is
specified an abort is generated and blt
<15> is set. :

4 Page Space Bit 4 indicates the address space (I or D)
(RO) associated with the page causing the abort
(8 = I space, 1 = D space). . R
3:1- : Page Number Bits <3:1> contain the page number. of" the v
(RO) page causing the abort. - :
) “Enable Relocatlon Bit @ enables relocation. When it is set

{RW) S to 1, all addresses are relocated. ~Wheh
' bit ¢ is set to #, memory management 1s
' inoperative and addresses are not
' relocated.
MMRQ<15 l3 #> is cleared at power up, by a console start, and by a RESET
1nstruct10n. MMRA<6:1> is UNDEFINED at power up.

NOTE: The J-11 eliminates the 11/44-11/78 maintenance méde feature, and
the 11/7¢ memory management trap and instruction complete
features. The J-11 and 11/44 update MMRA<A:1> on references.to
‘internal processor registers; the 11/78 does not. The 11/44
'sets only MMR@<15> on an abort due to the illegal processor méde;
the 11/70 sets MMR@<15:14>; the J-11 sets MMRA<15>, but the state
‘of MMR@<14:13> is unpredictable. R

4.4 Memory Management Register 1 - MMR1 (177777574)
MMR1 records any auto increment or decrement of the generail purpose

registerss - This register suppiies necessary information needed to
recover from & memory management abort.

d o ———— i b el iy it e o it i o o o o e = = = e e T = = = = e " =~ ——— - — >

(in 2's complement

|
Amount Changed - r
|
notation) |

Register Number

MMR1 is read only. 1Its state at power up is UNDEFINED.

J-11 PROGRAMMER'S REFERENCE Page 18

4.5 Memory Management Register 2 - MMR2 (17777576)

MMR2. .is loaded with the wvirtual address at the beginning of each

instruction fetch. MMR2 1is read only. Its state at power up is

UNDEFINED.

NOTE: The 11/74 also iocads MMR2 with the vector during an interrupt or
trap.

4.6 Memory Management Register 3 - MMR3 (17772516)

MMR3 enables or disables D space, 22-bit mapping, the CSMinstruction,
and the I/0 map (when applicable). .

-15 6 5 4 3 2 1)
__ e ———t
l//I I I | | | I
\//77//77/7/77/777/777/7777777/777/7/777777/777] | I |] I I
V/7/77777777/77777777/77/77/7/7//777/7/7/7/777]) I I | ! I I
e +
: | | I ! [
Enable I/O Map | | I b
[| l | |
Enable 22-bit Mapping | | I | |
L | [
Enable :.CSM Instruction I Pl |
‘ | | N
Enable -Kernel Data Space P |
‘ I I
Enable Supervisor Data Space | I
|
Enable User Data Space I
BIT NAME FUNCTION
5 Enable I/0 Map This bit enabies the I/0 map on an’
(RW) externai UNIBUS adapter, if any.
4 Enable 22-bit Mapping This bit enables 22-bit memory
e -~ (RW) . . addressing (the default “is -18-bit
addressing).
3 Enable CSM Instruction This bit enables recognition of the
(RW) Call Supervisor Mode -instructien
2:0 Enable Data Space These bits enable Data Space mapping.
(RW) for kernel, supervisor; and user mode;

respectively.

MMR3 is cleared at power up, by a console start, and by a RESET
instruction.

NOTE: No I/O map is supplied with the J-11. It is coupled with the
UNIBUS adapter module, if any.

J-11 PROGRAMMER'S REFERENCE Page 19

4,7 I and D Space
When the data space feature is enabled, the J-11 classifies memory
references into instruction (I) and data (D) space references and uses
the corresponding mapping registers. In general, the following are
classified as I space references:

- instruction fetches

- immediate operands (mode 27)

absolute addresses (mode 37)

- index words

finline'opepands (CIS instructions)
- first references in modes 17, 47, and 57

and arl-other -references are classified as D space. However, MTPI,
MFPI, MTPD, and MFPD behave differently than normal instructions. In
particular, MFPI (if PS<15:12> = 1111), MTPD, and MFPD always force the
last memory reference to D space; while MFPI (if PS<15:12> # 1111) and
MTPI always - force the last memory reference to I space: = Table 4-1
provides an exact description of the interaction of I and D space with
the addressing modes.

Tablie 4-1
I AND D SPACE OPERATION
(first/second/third memory references)

Address Mode Normal MTPI, MTPD,MFPD,

and Reg Select Instruction MFPI MFPT
(PS<15:12> (PS<15:12>
#1111) = 1111)

oA - @7 na na na

19 - 16 D I D

17 I I D

20 - 26 D I D

27 - I I D

30 - 36 : D/D D/I D/D

37 I/D I/1 I1/D

40 - 46 D I D

47 I I D

50 - 56 D/D D/1 D/D

57 1/D 1/1 /D

60 - 67 1/D 1/1 1/D

70 - 77 1/D/D I/D/1 I/D/D

J-11 PROGRAMMER'S REFERENCE Page 21
5.8 MEMORY SYSTEM

The following highiights the J-11 memory system:
- It can contain a cache.
- It incorporates an instruction stream buffer which-.
implements a prefetch/predecode scheme.
5.1 Cache
The J-11 supports a physical cache subsystem. Many different- cache

organizations are possible. The example used here is an 8 KB direct map
cache with a block size of two bytes. The organizatieon of "each cache

entry (exclusive of parity or other protection mechanism) is: ~
. G o -
25 24 16 15 8 7 @
- +‘_-—_-_—__—__-———-—_-_——_——_——_-__———--_—_——..—___?._—'—%,-:—-’-
[| I ‘ R
v I | |
I I I - |
i e +
g | | I
valid | | I I
Bit I I | |
I I |
Tag Field I I |
| |
Data Block - Byte 1 | |
|
Data Block - Byte ¢ |
The physical address is logically subdivided as follows:
21 12 11 1 0
o e +
| | I
I ! o
! I P
o e +

Cache Tag I

Cache Index

Byte Within Block

J-11 PROGRAMMER'S REFERENCE Page 21

5.1.1 Cache Control Register (17777745)

The Cache‘ContrOL Register controls the operation of the cache. Of its
features;, only. bypass and force miss are architecturally part of the
J-11 chip set. Tag parity, data parity, and cache fiush, if

impiemented, are the responsibility of the control iogic_around the chip
Set. R .

l//f//////////////////////I I ! | l i o I |
V/1L77771 10717 4L7/7777/7777] ! | l ! l ! I I
l/////////////////////////I I l I I l I I l

Write Wrong Tag Parlty |

Bypass Cache

Flush'Cachéw

Enable Parity Error Abort

Write Wrong Data Parity

Force Replacement

Force Miss

Disable Bus Traps

Disabie Cache Traps

BIT NAME FUNCTION
19 - Write Wrong Tag This bit, when set, causes the cache tags
Parity (RW) . to be written with wrong parity on alil

update cycles. This will cause a cache
tag parity error to occur on the next
access to that location.

9 Bypass Cache This bit, when set, forces all CPU memory
(RW) references to go directly to main memory.

Read or write hits will result in
invalidation of accessed locations in the

cache.
8 Fiush Cache Setting this bit causes the entire
(WO) T contents of the cache to be declared

invalid. Writing a "@" into this bit will
have no effect.

J-11 PROGRAMMER'S REFERENCE R Page 22

7 Enable Parity Error This bit controls the response of the
Abort (RW) to a parity error. When set a cache
parity error will cause a force miss and
an abort to occur. When clear this bit
inhibits the abort and enables an o)
interrupt to parity error vector--1I4.- Alil
cache parity errors result in force S

misses.
6 - Write Wrong Data This bit, when set, causes high and low
Parity (RW) parity bytes to be written with wrong

parity on all update cycles (CPU read
misses and write hits). This will cause a
cache parity error to occur™on the next
access to that location.

5:4 Force Replacement In a set associative cache, these bits, .
(RW) when set, force data repiacement from main
memory within one or both cache groups.

3:2 Force Miss (RW) These bits, when either is set, force all
CPU memory references to go directly to
main memory. The cache tag and data
stores are not changed. ‘

-1 Disable Bus Traps In a system with separate I/0 and memory
(RW) busses, this bit, when set, disables
recognition of parity errors -.on -the 1/0
bus.
2 Disable Cache Trap This bit disables cache parity interrupts.
(RW) o When set, no interrupt to location 114

will occur when a parity error is
encountered.

If the control logic around the chip set impiements cache data parity,
then words read from the cache will be checked for parity. A parity
error in the accessed word causes the following CPU responses:

Bit 7 Bit 0 Action
] Y Interrupt to 114 and force miss.
@ 1 Force miss only. ’
1 X Abort and force miss.

This register is cleared on power up.or by a console start. It is
unaffected by a RESET instruction.

NOTE: The organization of this register reflects the operating system
groups' requests. It differs in some details from both the 11/44
and the 11/70.

J-11 PROGRAMMER'S REFERENCE Page 23

5.1.2 Hit/Miss Register (17777752)

This register indicates whether the six most recent CPU memory
references resulted in cache hits or cache misses:

15 2 5 A

__ +
l//////////////////////////////////////l |
V//77777777777/777777/7/777/7/77/77/7/7/77777]) <---FLOW I
I//////////////////////////////////////I I
et +

Bits enter. from the right (at bit <#>) and are shifted lieftward. A one
indicates a cache ‘hit, a zero indicates a cache miss. .

The Hit/Miss>Register is read only. 1Its value at power up is UNDEFINED.
The Hit/Miss Register is not affected by console start or a RESET
instruction.

NOTE: The Hit/Miss Register is compatible with both the 11/44 and the
11/7@.

5.1.3 Cache Multi-Processor Hooks
The following multi-processor cache "hooks" exist in the J-11:
- Conditional cache bypass - selected virtual pages
can be made to bypass the cache. Bit <15> in the
PDRs sets this condition.
- Unconditional cache bypass - all CPU references can

be made to bypass the cache. Bit <9> in the Cache
Control Register sets this condition.

- Flush cache - all wvalid bits in the cache are
cleared.
- Lock 1instructions (ASRB, TSTSET, WRTLCK) - these

instructions guarantee a cache bypass reference.

J-11 PROGRAMMER'S REFERENCE Page 24

5.1.4 Cache Response Matrix

The cache response matrix is:

CpPU		DMA		
==	ettt it bt D			
Hit	Miss		Hit	Miss
[I	=			
Read	Read cached	Read memoryl	Read	Read ‘
data	& allocate]	memory	memory]	
1	cache		I ,	
= e [e				
Write	Write thru	Write]	Invalidate	Write
cache to	memory		cache &	memory
memory			write mem	
[e I	—=———m———e ———————————			
Read bypass	Invalidate	Read		na
cache &	memory	!	l	
read mem]] '		
R ettt		-		
Write bypass	Invalidate	Write I] na	na	
cache &	memory ! I			
write mem	I		I	
[| | === |
Read forced | Read | Read | | na | na !
miss | memory | memory I I | :
[- | I intata bt Dt
Write forced | Write | Write | | na | na |
miss | memory | memory | | ! |

- - —— ————————— ————— ———— - ——————————— ——— o — ——

5.2 I-Stream Buffer

The J-11 gets much of its performance from a prefetching mechandism.
Basically, sequential instruction stream words are prefetched under
microcode control. The J-11 Data Chip Specification details the precise
prefetch mechanism.

J-11 PROGRAMMER'S REFERENCE Page 25

5.3 Memory System Error Register (17777744)

The Memory System Error register detaiis the memory system failure mode.
The Memory System Error Register is not part of the J-11 chip set; its
implementation 1s the responsibility of the control logic surrounding
the chip set. T1If implemented, it would have the following format, or a

subset thereof:

15 14 13 12 11 1¢ 9 8 7 6 5 4 3 2 1 a

e +

L N1/ 777777777777777777777/77777777) | ! ' I 17771

- V///1777777777777777777/777//7/7/777) l [[1/7/1

S| \///7777777/7777///7/7/77/7/7/7/7777777771 | | | 17771

o e e e}
l I |
CPU Abort I I
I |
Cache Data Parity Error | =
|

Cache T
Main Me
Main Me
BIT

15

W
.
N

This register is cleared by any write reference.

power u

NOTE:

ag Parity Error

mory Data Parity Error

mory Address Parity Error

NAME

CPU Abort
(RO)

Cache Data Parity Error
(RO)

Cache Tag Parity Error
(RO)

Main Memory Data
Parity Error (RO)

Main Memory Address
Parity Error (RO)

p or by console start.
to hardware

Due

Error Register.

dependencies,
11/44 Cache Memory Error Register and the

FUNCTION

Set if any of bits <3:1>
if any of bits <7:4> are
Control Register bit <7>

One or both set if there
data parity error.

One or both set if there
tag parity error.

One or both set if there
memory data parity error.

Set if there is a main memory

parity error.

this register

differs
11/78 Memory System

are set, or
set and Cache
is also set.

is a cache

is a cache
main

is a

address

It is also cleared on
It is unaffected by a RESET instruction.

from the

J-11 PROGRAMMER'S REFERENCE Page 26
6.8 FLOATING POINT INSTRUCTIONS

The floating point instruction set (FP-11) in the J-11 is completely
software compatible with the FP11-A used on the PDP-11/34, the FP11-F on

the PDP-11/44, the FPll1-E on the PDP-11/A0, and the FPl1-C -on. " the. -

PDP-11/70. Both single and double precision floating point .capability.
are available together with other features inciuding fioating-to-integer
and integer-to-floating conversion.

The floating point instruction set is implemented either in microcode
residing in the base Control chip, or in a separate coprocessor. The
coprocessor acts as a flioating point accelerator (FPA) and provides
approximately five times the performance of the microcode
implementation. '

6.1 Floating Point Status Register - FPS

This register provides mode and interrupt control for floating point
instructions and records conditions resulting from the execution of the
previous instruction. Three bits of the FPS register control the modes
of operation:

Single/Doublie: Floating point numbers can be either single or
double precision.

Long/Short: Integer numbers can be 16 bits or 32 bits.

Chop/Round: The result of a floating point operation can be either
chopped or rounded. The term "chop" is used instead of "truncate"
in order to avoid confusion with truncation of series used in
approximations for function subroutines.

The FPS register contains an error flag and four condition codes (5
bits): carry, overflow, zero, and negative, which are analogous to the
processor status condition codes.

The FP-11 recognizes six floating point exceptions:

Detection of the presence of the undefined varlable in memory
Floating overflow -

Floating underflow

Failure of fioating to integer conversion

Attempt to divide by ¥

Illegal fioating opcode.

For the first four of these exceptions, bits in the FPS register are
available to individually enable and disable interrupts. An interrupt
on the occurrence of either of the last two exceptions can be disabled
only by setting a bit which disables interrupts on alil six of the
exceptions, as a group.

J-11 PROGRAMMER'S REFERENCE Page 27

Of the thirteen FPS bits, five are set by the FP-11 as part of the
output of a floating point instruction: the error flag and condition
codes. Any of the mode and interrupt control bits may be set by the
user; the LDFPS instruction 1is available for this purpose. The FPS
register is formatted as follows:

BIT NAME ; FUNCTION

15. Floating Error The FER bit is set by the FpP-11 if
. (FER) _
1. Division by zero occurs
2. Illegal opcode occurs
3. Any one of the remaining occurs and the
corresponding interrupt is enabled.

Note that the above action is independent
of whether the FID bit is set or clear.

Note also that the FP-11 never resets the
FER bit. Once the FER bit is set by the
FP-11, it can be cleared only by an LDFPS
instruction (note the RESET instruction
does not clear the FER bit). This means
that the FER bit is up to date only 1if the
most recent floating point instruction
produced a floating point exception.

14 Interrupt Disable If the FID bit 1is set, all floating
(FID) point interrupts are disabled.

NOTES
1. The FID bit is primarily a maintenance
feature. It should normally be clear.
In particular, it must be clear if one
wishes to assure that storage of -8 by
the FP-11 is always accompanied by an
interrupt.

2. Throughout the rest of this chapter, it
is assumed that the FID bit is clear in
all discussions 1involving overfliow,
underflow, occurrence of -0, and integer
conversion errors.

J-11 PROGRAMMER'S REFERENCE

13

12

11

10

Interrupt on
Undefined Variable
(FIUV)

Interrupt on
Underfiow
(FIU)

Interrupt on
Overflow
(FIV)

Page 28

Reserved for future use.
Reserved for future use.

An interrupt occurs if FIUV is set and a
-@ is obtained from memory as an operand

of ADD, SUB, MUL, DIV, CMP, MOD, NEG,
ABS, TST, or any LOAD 1instruction. ‘The
interrupt occurs before execution on all
instructions. When FIUV is reset, = can
be loaded and used in any FP-11 operation.
Note that the interrupt is not activated by
the presence of -f in an AC operand of an
arithmetic instruction; in particular, trap . .
on —-@ never occurs in mode #. .

A result of - will not be stored without
the simultaneous occurrence of an
interrupt.

When the FIU bit is set, fioating
underflow will cause an interrupt. The
fractional part of the result of the
operation causing the interrupt will be
correct. The biased exponent will be too
large by 4@@8, except for the special case
of 7, which "is correct. An exception is
discussed later in the detailed description
of the LDEXP instruction.

If the FIU bit is reset and if underflow
occurs, no interrupt occurs and the result
is set to exact 4.

When the FIV bit is set, floating overflow
will cause an interrupt. The fractional
part of the result of the operation causing
the overflow will be correct. The biased
exponent will be too small by 40@8.

If the FIV is reset and overflow occurs,
there is no interrupt. The FP-11 returns
exact 4.

J-11 PROGRAMMER'S REFERENCE

Interrupt on Integer
Conversion Error
(FIC)

Floating Double
Precision Mode
(FD)

Fioating Long
Integer Mode
(FL)

Floating Chop Mode
(FT)

Floating Negative
operation was

Floating Zero
(F2)

Floating Overflow
(FV)

Floating Carry
(FC)

Page 29

When the FIC bit is set and a conversion
to integer instruction fails, an interrupt
will occur. If the 1interrupt occurs,
the destination is set to @, and all other

registers are left untouched.

If the FIC bit is reset, the result of the
operation will be the same as detailed
above, but no interrupt will occur.

The conversion instruction fails if it
generates an integer with more bits than
can fit in the short or long integer word
specified by the FL bit (bit 6).

The FD bit determines the precision that
is used for floating point calculations.
When set, double precision is assumed;
when reset, single precision is used.

The FL bit is active in conversion between

integer and flioating point format. When
set, the integer format assumed is double
precision 2's complement (i.e., 32 bits).
When reset, the integer format is assumed
to be single precision 2's complement
(i.e., 16 bits).

When the FT bit is set, the result of any
arithmetic operation is chopped (or
truncated) . When reset, the result 1is

rounded.

Reserved for future use.

FN is set if the result of the last (FN)
negative, otherwise it is

reset.

FZ is set if the result of the last
operation was #, otherwise it is reset.

FV is set if the last operation resuited
in an exponent overfiow, otherwise it is
reset.

FC is set 1if the 1last operation resulted
in a carry of the most significant bit.

This can only occur in floating or double
to integer conversions.

J-11 PROGRAMMER'S REFERENCE Page 390

6.2 Floating Exception Code and Address Registers - FEC, FEA

One interrupt vector is assigned to take care of all floating point
exceptlions (location 244,). The six possible errors are coded in the
4-bit floating exception code (FEC) register as follows:

Floating opcode error

Floating divide by #

Floating to integer conversion error
8. Floating overflow

18. Floating underflow

12. Floating undefined variable.

o BN

The address of the instruction producing the exception is stored in the
fioating exception address (FEA) register.

The FEC and FEA registers are updated only when one of the following
occurs:

1. Divide by @
2. Iliegal opcode

3. Any of the other four exceptions with the corresponding
interrupt enabled.

This implies that when and only when the FER bit is set by the FP-11 are
the FEC and FEA registers updated.

NOTES

1. "If one of the last four exceptions
occurs with the corresponding
interrupt disabled, the FEC and FEA
are not updated.

2. Inhibition of interrupts by the FID
bit does not inhibit updating of the
FEC and FEA, if an exception occurs.

3. The FEC and FEA do not get updated if
no exception occurs. This means that
the STST (store status) instruction
will return current information only
if the most recent floating point
instruction produced an exception.

4. Unlike the FPS ‘register, no
instructions are provided for storage
into the FEC and FEA registers.

J-11 PROGRAMMER'S REFERENCE Page 31

6.3 Accuracy

General comments on the accuracy of the FP-11 are presented here. An
instruction or operation is regarded as "exact" 1if the result |is
identical to an infinite precision calculation involving the same
operands. The a priori accuracy of the operands is thus ignored. All
arithmetic instructions treat an operand whose biased exponent is @ as
an exact 0 (unless FIUV is enabled and the operand is -#, in which case
an interrupt occurs). For all arithmetic operations, except DIV, a @
operand implies that the instruction is exact. The same statement holds
for DIV if the @ operand is the dividend. But if it is the divisor,
division is undefined, and an interrupt occurs.

For nonvanishing fioating point operands, the fractional part is binary
normalized. It contains 24 bits or 56 bits for floating mode and double
mode, respectively. For ADD, SUB, MUL, and DIV, two gquard bits are
necessary and sufficient for the general case to guarantee return of a
chopped or rounded result identical to the corresponding 1infinite
precision operation chopped or rounded to the specified word 1length.
Thus, with two guard bits, a chopped result has an error bound of one
least significant bit (LSB); a rounded result has an error bound of 1/2
LSB. These error bounds are realized by the J-11 on all instructions.
Both the FPll-A and the FPl11-E have an error bound greater than 1/2 LSB
for ADD and SUB.

In the rest of this specification, an arithmetic result is called exact
if no nonvanishing bits would be lost by chopping. The first bit lost
in chopping is referred to as the "rounding" bit. The value of a
rounded result is related to the chopped resuit as follows.

1. If the rounding bit is 1, the rounded result is the chopped
result incremented by an LSB.

2. If the rounding bit is 0, the rounded and chopped results are
identical.

It follows that:

1. If the result is exact,
rounded value = chopped value = exact value
2. If the result is not exact, its magnitude

a. 1is always decreased by chopping
b. 1is decreased by rounding if the rounding bit is @
c. 1is increased by rounding if the rounding bit is 1.

J-11 PROGRAMMER'S REFERENCE Page 32

Occurrence of floating point overfiow and underflow is an error
condition: the result of the calculation cannot be correctly stored
because the exponent is too large to fit into the eight bits reserved
for it. However, the internal hardware has produced the correct answer.
For the case of underflow, replacement of the correct answer by @ is a
reasonable resolution of the problem for many applications. This 1is
done by the J-11 if the underflow interrupt is disabied. The error
incurred by this action is an absolute rather than a relative error; it
is bounded (in absolute wvalue) by 2**(-128). There 1is no such simple
resolution for the case of overflow. The action taken, if the overflow
interrupt is disabled, is described under FIV (bit 9).

The FIV and FIU bits (of the floating point status word) provide the
user with an opportunity to implement his own correction of an overflow
or underflow condition. If such a condition occurs and the:
corresponding interrupt is enabled, the microcode stores the fractional °
part and the low eight bits of the biased exponent. The interrupt will-
take place and the user can identify the cause by examination of the FV
(floating overflow) bit of the FEC (floating exception) register. The
reader can readily verify that (for the standard arithmetic operations
ADD, SUB, MUL, and DIV) the biased exponent returned by the instruction
bears the following relation to the correct exponent generated by the
microcode,.

l. On overfiow, it is too smail by 4@@8.

2. On underflow, if the biased exponent is #, it is correct. if
it is not @4, it is too large by 4@@8.

Thus, with the interrupt enable, enough information is available to
determine the correct answer. The user may, for example, rescale his
variables (via STEXP and LDEXP) to continue a calculation. Note that
the accuracy of the fractional part is unaffected by the occurrence of
underflow or overfliow.

J-11 PROGRAMMER'S REFERENCE Page 33
7.6 TRAPS AND INTERRUPTS

In both traps and interrupts, the currently executing program is
interrupted and a new program, the starting address of which |is
specified by the trap or interrupt vector, is executed. The hardware
process for traps and interrupts through a vector V is identical:

PS --> temp 1 !save PS, PC in temporaries

PC --> temp 2

g --> PS <15:14> tforce kernel mode

M[V] --> PC tfetch PC from vector, data space
M[V+2] --> PS tfetch PS from vector, data space
templ<15:14> --> PS<13:12> !set previous mode

SpP-2 --> SP !selected by new PS

templ --> M[SP] tpush old PS on stack, data space
Sp-2 --> SP

temp2 --> M([SP] !push old PC on stack, data space

!go execute next instruction

Note that if an abort occurs during either the vector fetch or the stack
pushes, the PS and PC are restored to their original values prior to
recognition of the abort.

The priority order for traps and interrupts is as follows:

address error

memory management violation
timeout/non-existent memory
parity error

trace (T-bit) trap

yellow stack trap

power fail

ficating point trap

PIRQ 7

interrupt level 7

PIRQ 6
interrupt level
PIRQ 5
interrupt level 5
PIRQ 4

interrupt level 4
PIRQ 3

PIRQ 2

PIRQ 1

Halit line

N

J-11 PROGRAMMER'S REFERENCE Page 34

£

8.0 GENERAL PERFORMANCE GOALS

The overall performance goals of the J-11 are:

- J-11 base instruction performance equivalent to the
11/7a.

- J-11 floating point performance equal to half of
the 11/44. With an optional floating point
accelerator, the performance will be boosted to
11/79 speeds.

- J-11 CIS performance equal to the 11/44.
9.0 CONSOLE

The J-11 contains console microcode. This will enable a user to access
most of the J-11 state, run diagnostics, and monitor the system. The
J-11 console replaces the "lights and switches" programmer's console
with microcode that interprets ASCII characters to perform equivalent
panei functions.

The J-11 console microcode provides the minimum functionality needed to
control the chip set. A more elaborate console protocol can be
implemented using an external console processor. The console processor
would then simulate an external console in order to gain access to the
console microcode and the chip set.

Appendix 4 details the operation of the console.

J-11 PROGRAMMER'S REFERENCE Page 35

16.4 11/44 HARDWARE DIFFERENCES

The J-11 is designed to replace the 11/44 1in existing and future
applications; however, it does not contain the following PDP-11/44
hardware features:
- Cache data and maintenance registers (17777754, 17777754)
- Switch register (17777579).
The J-11 does contain additional functionality not present in the 11/44:
- Dual general register set

- SPL, MTPS, MFPS, TSTSET, WRTLCK instructions.

The following list summarizes the hardware differences between the 11/44
and the J-11:

Address Function Differences
17 777 776 PS Added register set select bit<lil>
17 777 772 PIRQ No difference.
17 777 766 CPU Error Unibus monitoring bits
unimpliemented.
17 777 754 Cache Data , Unimplemented.
17 777 752 Hit/Miss No difference.
17 777 758 - Maintenance Unimplemented.
17 777 744 Cache Control Hardware specific changes
(see section 5.1.1).
17 777 744 Memory Error Hardware specific changes
(see section 5.3).
17 777 676
to User Data PAR No difference.
17 777 660
17 777 656
to User Instruction PAR No difference.
17 777 649
17 777 636
to User Data PDR No difference.

17 777 629

J-11 PROGRAMMER'S REFERENCE

17 777 Al6

17
17
17
17
17

17

17
17
17
17
17
17
17
17
17
17
17
17
17
17

17

to
777

7717

777

777

777

772

772
to
772

77.2
to
772

772
to
772

772
to
772

772
to
772

772
to
772

772
to
772

772
to
772

2}
576
574
572
570
514
376
360
354
349
336
329
316
300
276
260
256
249
236
220
216

200

User Instruction PDR

MMR2
MMR1
MMR@
Switch

MMR3

Kernel
Kernel
Kernel

Kernel

Register

Data PAR

Instruction PAR
Data PDR

Instruction PDR

Supervisor Data PAR

Supervisor Instruction

PAR

Supervisor Data PDR

Supervisor Instruction

PDR

No difference.

No difference.

No difference.

Page 36

Eliminated maintenance mode.

Unimplemented.

No

No

No

No

No

No

No

No

No

difference.

difference.

difference,

difference,

difference.

difference.

difference.

difference.

difference.

J-11 PROGRAMMER'S REFERENCE Page 37
11.4 11/70 HARDWARE DIFFERENCES

The J-11 is designed to replace the PDP-11/7¢0 in existing and future
applications; however it does not contain the following PDP-11/70
hardware features:

- Stack Limit Register (17777774)

- Micro Break Register (17777774@)

- System ID Register (17777764)

- System Size Registers (17777760, 17777762)

- Maintenance Register (17777759)

- Physical Error Address Registers (17777748, 17777742)

- Switch Register (17777579).
The J-11 does contain additional functionality not present in the 11/70:

- MTPS, MFPS, MFPT, CSM, TSTSET, WRTLCK instructions

- CIS instructions

- Bypass cache bit in PDRs.

The following 1ist summarizes the hardware differences between the 11/78
and the J-11:

Address Function Differences
17 777 776 PS Added suspended instruction
bit <8>.

17 777 774 Stack Limit Unimplemented.

17 777 772 PIRQ No difference.

17 777 77¢@ Micro Break Unimplemented.

17 777 766 CPU Error No difference.

17 777 764 System ID Unimplemented.

17 777 762 System Size Unimplemented.

17 777 760 System Size Unimplemented.

17 777 752 Hit/Miss No difference.

J-11 PROGRAMMER'S REFERENCE

17

17

17

17

17

17

17

17

17

17

17

17

17

17

17

17

17

777

777

777

777

777

777

to
777
7t

777
to

777
777

to
777

777
to

777
777
777

777

777
772

772
to
772

772
to
772

750

746

744

742
740
676
669
656
640
636

20

616

1’17

576
574

572

570
516
376
360
356

349

Maintenance

Cache Control

Memory Error

High Error Address

Low Error Address

User Data PAR

User Instruction PAR

User Data PDR

User Instruction PDR

MMR 2
MMR1

MMR@

Switch Register

MMR3

Kernel Data PAR

Kernel Instruction PAR

Page 38

Unimplemented.

Hardware specific changes
(see section 5.1.1).

Hardware specific changes
(see section 5.3).

Unimplemented.

Unimplemented.

No difference.

No difference.

Added bypass cache, eliminated
access flags and access modes
other than ¢, 2, and 4.

Added bypass cache, eliminated
access flags and access modes
other than #, 2, and 5.

No difference.

No difference.

Eliminated traps, maintenance
mode, and instruction complete.

Unimplemented.

Added CSM enable bit <3>.

No difference.

No difference.

J-11 PROGRAMMER'S REFERENCE

17

17

17

17

17

17

17

17

17

17

17

17

772
to
772

772
to
772

772
to
772

772
to
772

772
to
772

772
to
772

336

329

316

300

276
260
256
249
236

220

216

200

Kernel Data PDR

Kernel Instruction PDR

Supervisor Data PAR

Supervisor Instruction
PAR

Supervisor Data PDR

Supervisor Instruction
PDR '

Page 39

Added bypass cache, eliminated
access flag and access modes
other than 8, 2, and A.

Added bypass cache, eliminated
access flag and access modes
other than @, 2, and 6.

No difference.

No difference.

Added bypass cache, eliminated
access flag and access modes
other than @, 2, and 5.

Added bypass cache, eliminated
access flag and access modes
other than @, 2, and 6.

J-11 PROGRAMMER'S REFERENCE

Appendix 1 - J-11 Base Instruction Set

Double Operand
Instructions

Single Operand
Instructions

Branch Instructions

Jump and Subroutine
Instructions

Trap and Interrupt
Instructions

Miscellaneous
Instructions

Condition Code
Operators

ADD
ASH
ASHC
BIC
BICB
BIS

ADC
ADCB
ASL
ASLB
ASR
ASRB
CLR
CLRB
COM
COMB

BCC/BHIS
BCS/BLO
BEQ

BGE

BGT

CSM
JMP

BPT
EMT

HALT
MFPD
MFPI
MFPT

CcCcC
CLC
CLN.
CLV

BISB
BIT
BITB
CMP
CMPB
DIV

DEC
DECB
INC
INCB
MF PS
MTPS
NEG
NEGB
ROL
ROLB

BHT
BLE
BLOS
BLT
BMI

JSR
MARK

I0T
RTI

MTPD
MTPI
RESET
SPL

CLZ
NOP
SccC
SEC

Page A-1

MOV
MOVB
MUL
SuB
XOR

ROR
RORB
SBC
SBCB
SWAB
SXT
TST
TSTB

BNE
BPL
BR

BVC
BVS

RTS
SOB

RTT
TRAP

TSTSET
WAIT
WRTLCK

SEN
SEV
SEZ

J-11 PROGRAMMER'S REFERENCE

Appendix 2 - J-11 Fioating Point Instruction Set

Fioating Point ABSD

Instructions ABSF
ADDD
ADDF
CFCC
CLRD
CLRF
CMPD
CMPF
DIVD
DIVF
LDCDF
LDCFD
LDCID
LDCIF
LDCLD

LDCLF
LDD
LDEXP
LDF
LDFPS
MODD
MODF
MULD
MULF
NEGD
NEGF
SETD
SETF
SETI
SETL
STCDF

Page A-2

STCDI
STCDL
STCFD
STCFI
STCFL
STD
STEXP
STF
STFPS
STST
SUBD
SUBF
TSTD
TSTF

J-11 PROGRAMMER'S REFERENCE

Appendix 3 - J-11 Commercial Instruction Set

Character String
Instructions

Numeric String
Instructions

Packed String
Instructions

Convert Instructions

Load Descriptor
Instructions

CMPC
CMPCI
LOCC
LOCCI
MATC
MATCI

ADDN
ADDNI
ASHN
ASHNI

ADDP
ADDPI
ASHP
ASHPI

CVTLN
CVTLP

L2D@
L2D1
L2D2
L2D3
L2D4
L2D5
L2DA
L2D7

MOoVC
MOVCI
MOVRC
MOVRCI
MOVTC
MOVTCI

CMPN
CMPNI
SUBN
SUBNI

CMPP
CMPPI
DIVP
DIVPI

CVTNL
CVTNP

L3D#A
L3D1
L3D2
L3D3
L3D4
L3D5
L3D4
L3D7

Page A-3

SCANC
SCANCI
SKPC
SKPCI
SPANC
SPANCI

MULP
MULPI
SUBP
SUBPI

CVTPL
CVTPN

J-11 PROGRAMMER'S REFERENCE Page A-4
Appendix 4 - Console Commands

4.1 INTRODUCTION

The console microcode (console ODT) is a portion of the processor
microcode that allows the processor to respond to commands and
information entered via the terminai. The terminai addresses are
17777568, through 177775A46,. They are generated in microcode and
cannot be changed. Console ODT is very useful as an aid in
running and debugging programs. Communication between the user
and processor is via a stream of ASCII characters interpreted by
the processor as console commands. These commands are a subset of
ODT-11.

4.2 TERMINAL INTERFACE

The minimum hardware requirements for a seriai 1line interface
permitting a terminal to communicate with console ODT are
contained in the following paragraphs. The intent is to describe
the minimum hardware required; this is a subset of the hardware
needed to operate system software. For system software/hardware
requirements refer to the DLV11l hardware specification.

4.2.1 Receiver Control and Status Register (RCSR)

The RCSR (Figure 4-1) must exist at address 1777756ﬂ8 for
character input to console ODT. Consoie ODT does not exXecute
output bus cycles to this address; therefore, the RCSR only needs
to respond to input bus cycles. However, system software causes
output cycles in order to affect certain bits, such as Interrupt
Enable (bit 6), which console ODT does not use.

I///////////////////////I I///////////////////////I
V/7777777777777777/7777/7/) D V11777777777 /7777/7/7/7777]
I///////////////////////! \ /1777777777777 7777777771

___ +
Figure 4-1 Receiver Status Register

Bit Description)

<7> Done fiag. After a character is assembled and exists in

the receiver buffer register (RBUF), the Done flag must
be set to a 1. When an input cycle is performed to the
RBUF (to pick up the character), the Done flag must be
cieared by hardware. The system initiaiization signail
must also clear this bit.

J-11 PROGRAMMER'S REFERENCE Page A-5

Bit Description

<6:0> Unused. These bits are don't cares and can be in any
<15:8> state since console ODT does not use them. In DIGITAL
interfaces, these bits may be defined.

4.2.2 Receiver Buffer Register (RBUF)

The RBUF (Figure 4-2) must exist at address 1777756A2 for
character input to console ODT. This register only neegs to
respond to input bus cycles since console ODT does not execute
output bus cycles to this address. System software interfaces
similarly, but DIGITAL diagnostics may cause an output cycle and
not operate properly.

15 8 7]
e +
V//777/7/77/777/777/77/7/77/777/77] |
\///7///7////77/7/77////7/77771 DATA I
V//7/7//7/777/7/7/7/7//7//7777777) I
g U +

Figure 4-2 Receiver Buffer Register

Bit Description

<7:08> ASCII character. These eight bits are read by the
processor and interpreted as a console ODT command. When
bit 7 of RCSR is a 1, the processor does a input cycle to
the RBUF. After the input cycle, the hardware must clear
bit 7 of RCSR to 4.

<15:8> Unused. These bits are don't cares and can be in any
state since consoie ODT does not use them. In DIGITAL

interfaces, these bits may be defined.

4.2.3 Transmitter Control and Status Register (XCSR)

The XCSR (Figure 4-3) must exist at address 17777564, for
character output from console ODT. ODT does not execute output
bus cycles to this address; therefore, the XCSR only needs to
respond to 1input bus cycles. However, system software causes
output cycles to affect certain bits, such as Interrupt Enabie,
which console ODT does not use.

J-11 PROGRAMMER'S REFERENCE Page A-5

15 8 7 A A
o e +
W//7/7777//77/7/7777/777777771) V17777777777 77777777777771
\//7////77/7/7//7/7//7/7/7//7/77/ D V//////77/777/7/7/777/7777777771
\//77/77//7/7/7/7//77/7777771 V////7////7/7///7/7//7/7//7/7/7/7/77771
e e +

Figure 4-3 Transmitter Control and Status Register

Bit Description

<7> Done fiag. In the idie state, this bit is a 1 indicating
that the hardware is ready to print a character. After
an output cycle to the transmitter buffer register by the
processor (i.e., a character 1loaded), this bit must be
cleared to @ by the hardware. After the character is
printed, the hardware sets this bit to 1. Power up and
the system bus initialization signal must also set this
bit to a 1.

<h:0> Unused. These bits are don't cares and can be 1in any
<15:8> state since console ODT does not use them. In DIGITAL
interfaces, these bits may be defined.

4.2.4 Transmitter Buffer Register (XBUF)

The XBUF (Figure 4-4) must exist at address 177775656 for
character output from console ODT. This register only needs to
respond to output bus cycles since console ODT does not execute
input bus cycles to this address. System software interfaces
similariy but DIGITAL diagnostic may cause an input cycle and not
operate properly.

15 8 7 2
e SRS +
V7777777777777 7777777/7777] |
\///77//77/7//7777/7//7/7777777) DATA |
1/7/777777777/77777/7/7777777) I
e +

Figure 4-4 Transmitter Buffer Register

Bit Description

<7:0> ASCII character. These eight bits are written by the
processor with the ASCII character to be printed. When
bit 7 of XCSR is a 1, the processor does an output cycle
to the XBUF. After the output cycle the hardware must
clear bit 7 of XCSR to 0.

<15:8> Unused. These bits are don't cares and can be in any
state since consoie ODT does not use them. In DIGITAL
interfaces, these bits may be defined.

J-11 PROGRAMMER'S REFERENCE Page A-7

4.3 CONSOLE ODT OPERATION

The processor's microcode operates the serial line interface in
hal f-duplex mode. Program I/O techniques are used rather than
interrupts. When the console ODT microcode is printing characters
using the transmit side of the interface, the microcode is not
monitoring the receive side for incoming characters. Any
characters coming in at this time are lost. The interface may
post overrun errors, but the microcode does not check for error
bits in the interface. Therefore users should not type ahead to
ODT because those characters are not recognized. In addition, if
another processor is at the other end of the interface, it must
obey half-duplex operation. No input characters should be sent
until console ODT has finished outputting.

4.3.1 Console ODT Entry Conditions
ODT is entered under the following conditions:
1. Execution of a HALT instruction in kernel mode.
2. Assertion of the HALT signal on the system bus. The
signal must be asserted liong enough so that it is seen at
the end of a macroinstruction by the service state in the

processor.

3. At power up, if the appropriate power up option is
selected.

4.3.2 Console ODT Input Sequence
Upon entry to console ODT, the RBUF register is read and the
character present in the buffer is ignored. This is done so that
erroneous characters or user program characters are not
interpreted by console ODT as a command, especially when a program
is halted.
The input sequence for console ODT is as follows.

1. Output <CR><CLF> to terminal.

2. Output contents of PC (R7) in six digits to terminal.

3. Read and ignore character in RBUF.

4, Output <CR>XLF> to terminal.

5. Output the prompt character, @, to terminal.

6. Enter a wait ioop for terminal input. The Done fiag, bit
<7> in RCSR, is tested. If it is @, the test continues.

7. If RCSR bit <7> is a 1, then low byte of RBUF is read.

J-11 PROGRAMMER'S REFERENCE Page A-8

4.3.3 Console ODT Output Sequence
The output sequence for ODT is as follows.

1. Test XCSR bit <7> (Done flag) and if a @, continue
testing.

2. If XCSR bit <7> is a 1, write character to low byte of
XBUF (high byte is ignored by interface).
4,4 CONSOLE ODT COMMAND SET
The console ODT command set, listed in Table 4-1, is described in
the following paragraphs. The commands are a subset of ODT-11 and

use the same command character. Only specific characters are
recognized as valid inputs; other inputs invoke a "?" response.

Table 4-1 Console ODT Commands
Command Symbol Use

Siash / Prints the contents of a
specified location.

Carriage Return <CR> Closes an open location.
Line Feed <LF> Cioses an open location and
then opens the next

contiguous location.

Internal Register $ or R Opens a specific processor

Designator register,

Processor Status S Opens the PS - must follow

Word Designator an $ or R command.

Go G Starts program execution.

Proceed P Resumes execution of a
program.

Binary Dump Control-Shift-S Manufacturing use only.

The parity bit (bit <7>) on ail input characters is ignored (i.e.,
not stripped) by console ODT. If the input character is echoed,
the state of the parity bit is copied to the output buffer (XBUF).
Output characters internally generated (e.g., <CR>) by ODT have
the parity bit equal to 4. All commands are echoed except for
ASCII codes in the range G—l78. Where applicable, upper- and
lowercase of command characters are recognized.

J-11 PROGRAMMER'S REFERENCE Page A-9

The word "location," as used in the following sections, refers to
a memory location, an I/O device register, an internal processor
register, or the processor status word (PS).

NOTE

In the examples the response from the
processor is underlined, while the
user's entry is not.

4.4.1 / (ASCII @57) Slash

This command is used to open a memory 1location, I/0 device
register, internal processor register, or processor status word
and must be preceded by other characters which specify a location.
In response to /, console ODT prints the contents of the location
(i.e., six characters) and then a space (ASCII 4¢). After printing
is complete, console ODT waits for either new data for that
location or a valid ciose command.

Example: @@01000/812525<SPACE>

where:

e ' = console ODT prompt character.

anlang = octal location desired by the user
(leading 0s are not required).

/ = command to open and print contents of
location.

712525 = contents of octal location 1A@0@.

<SPACE> = space character generated by console

ODT.

4.4.2 <CR> (ASCII 015) Carriage Return

This command is used to close an open location. If a location's
contents are to be changed, the user should precede the <CR> with
the new data. 1If no change is desired, <CR> cioses the location
without altering its contents.

Example: @R1/0@A4321<SPACE> <CR> <CR>JLF>
@

Processor register R1 was opened and no change was desired so the
user 1issued<CR>. In response to the <CR>, console ODT printed
<CR><LF>Q@. :

Exampie: R1/9034321<SPACE> 1234 <CR> <CR><LF>

e
@

J-11 PROGRAMMER'S REFERENCE Page A-10

In this case the user desired to change R1l, so new data, 1234, was
entered before issuing the <CR>. Console ODT deposited the new
data in the open location and then printed <CR><XLF>Q.

Console ODT does not directly echo the <CR> entered by the user
but instead prints a <CR>, followed by a <LF>, and @.

4.4.3 <LF> (ASCII @12) Line Feed

This command is used to close an open location and then open the
next contigquous location. Memory locations and processor
registers are incremented by 2 and 1 respectively. If the PS is
open when a <LF> 1is issued, it is closed and a <CR>XLF>®@ is
printed; no new location 1is opened. If the open 1location's
contents are to be changed, the new data should precede the <LF>.
If no data 1is entered, the 1location 1is closed without being
altered.

Exampie: @R2/12345A<KSPACE> <LF> <CR><ZLF>
R3/#54321<SPACE>

In this case, the user entered <LF> with no data preceding it. 1In
response, console ODT closed R2 and then opened R3. When a user
has the 1last register, R7, open, and issues <KLF>, console ODT
opens the beginning register, R#.

Example: @R7/00008AG<KSPACE> <LF> <CR><ZLF>
RO/123456<SPACE>

Unlike with most other commands, conscle ODT does not
echo the <LF>. Instead it prints <CR>, then <KLF>, so
that terminal printers operate properly. In order to
make this easier to decode, console ODT does not echo
ASCII characters in the range # - 178.

4.4.4 $ (ASCII 244) or R (ASCII 122) Internal Register
Designator

Either character when followed by a register number, # to 7, or PS
designator, S, will open that specific processor register.

The $ character is recognized to be compatible with ODT-11. The R
character was introduced for the convenience of one key stroke and
because it is representative of what it does.

Example: @S0/000123<SPACE>

or

@R7/40M123<SPACE> <LF>
RA/354321<SPACE>

~J-11 PROGRAMMER'S REFERENCE Page A-11

If more than one character is typed (digit or S) after the R or $,
console ODT uses the last character as the register designator.

4.4.5 S (ASCII 123) Processor Status Word

This designator is for opening the PS (processor status word) and
may be employed only after the user has entered an R or $ register
designator.

Example: @RS/10808377<SPACE> & <CR> <CR><LF>

Note the trace bit (bit <4>) of the PS cannot be modified by the
user. This is done so that PDP-11 program debug utilities (e.g.,
ODT-11), which use the T bit for single-stepping, are not
accidentally harmed by the user.

If the user issues a <KLF> while the PS is open, the PS is closed
and ODT prints <CR>»<XLF>@, No new location is opened in this case.

4.4.6 G (ASCII 147) Go

This command is used to start program execution at a location
entered immediately before the G. This function is equivalent to
the LOAD ADDRESS and ' START switch sequence on other PDP-11
consolies.

Exampie: @200G<NULL><NULL>

The console ODT sequence for a G, after echoing the command
character, is as follows.

1. Print two nulls (ASCII @) so the bus initialize that
follows does not flush the G character from the
double-buffered UART chip in the serial line interface.

2. Load R7 (PC) with the entered data. If no data is
entered, @ is used. (In the above example, R7 is set to
200, and that is where program execution begins.)

3. The PS, MMR@<15:13,9>, MMR3, PIRQ, CPU Error Register,
Memory System Error Register, Cache Control Register, and
Floating Point Status Register are cleared to zero.

4, The cache, if present, is flushed.
5. The system bus is initialized by the processor.
6. The service state is entered by the processor. If there

is anything to be serviced, it is processed. If the bus
HALT signal 1is asserted, the processor reenters the
console ODT state. This feature is used to initialize a
system without starting a program (R7 is aliltered).

J-11 PROGRAMMER'S REFERENCE Page A-12

4.4.7 P (ASCITI 120@) Proceed

This command is wused to resume execution of a program and
corresponds to the CONTINUE switch on other PDP-11 consoies. No
programmer-visible machine state is altered using this command.

Exampie: @P

Program execution resumes at the address pointed to by R7. After
the P is echoed, the processor immediately enters the state to
fetch the next instruction. After the instruction is executed,
outstanding interrupts, if any, are serviced. If the HALT bus
signal 1is asserted, it 1is recognized at the end of the
instruction, and the processor enters the console ODT state. Upon
entry, the content of the PC (R7) is printed. In this fashion,
the user can single-instruction step through a program and obtain
a PC "trace" on the terminal.

4.4.8 Control-sShift-S (ASCII @A23) Binary Dump

This command is used for manufacturing test purposes and is not a
normal user command. It is described here to explain the
processor's response if accidentally invoked. It is intended to
more efficiently display a portion of memory compared to using the
"/" and <LF> commands. The protocol is as follows.

1. After a prompt character, console ODT receives a
control-shift-S command and echoes it.

2. The host system at the other end of the serial line must
send two 8-bit bytes which consolie ODT interprets as a
starting address. These two bytes are not echoed.

The first byte specifies starting address <15:48> and the
second byte specifies starting address <f7:00>. Address
bits <21:16> are always forced to be #; the dump command
is restricted tc the first 32K words of address space.

3. After the second address byte has been received, consolie
ODT outputs ten bytes to the serial line starting at the
address previousiy specified. When the output 1is
finished, console ODT prints <CR><LF>@.

If a user accidentally enters this command, it 1is
recommended, in order to exit from the command, that two
@ characters (ASCII 100) be entered as a starting
address. After the binary dump, an @ prompt character is
printed.

J-11 PROGRAMMER'S REFERENCE Page A-13

4.5 ADDRESS SPECIFICATION

All I/O addresses (17 7608 @008 to 17 777 777) must be entered by
users with all 22 bits specified. For example, if a user desires
to open the RCSR of the console serial interface he must enter
17777568, not 177568, or 7775640.

4.5.1 General Registers

Accessing the general register sets 'is accomplished in the
foliowing way. Whenever R#-R5 are referenced in console ODT, they
access the general register set specified by the PS register set
bit (PS<11>). 1If a program operating in general register set zero
(P5<11> = @) is halted and a general register is opened, register
set zero is accessed. Similarily, if a program is operating in
register set one, "RA-R5" accesses register set one.

If a specific register set is desired, PS<1l> must be set by the
user to the appropriate value, and then the "R@#"-"R5" commands can
be used. If an operating program has been halted, the original
value of PS<11> must be restored in order to continue execution.

Example: PS = @400Aa00

@R4/A52525<SPACE> <CR> <CR><LF>

R4 in register set zero has been opened.

@RS/JAAPAOLKSPACE> 4040 <CR> <CR>KLF>
QR4/177777<SPACE> <CR> <CR><LF>
@RS/AN4AFALKSPACE> # <CR> <CR><LF>

@ep

In this case, R4 in register set one was desired. The PS was
opened, and PS<11l> was set to 1 (register set one). Then R4 was
examined and closed. The original value of PS<1l> was restored,
and then the program was continued using the P command.

J-11 PROGRAMMER'S REFERENCE Page A-14

4.5.2 Stack Pointers

Accessing kernel, supervisecr, and user stack pointer registers is
accompiished in the following way. Whenever R5 is referenced in
console ODT, it accesses the stack pointer specified by the PS
current mode bits (PS<15:14>). If a program operating in kernel
mode (PS<15:14> = @@) is haited and R6 is opened, the kernel stack
pointer is accessed. Similariy, if a program is operating in
supervisor or user mode, "RA" accesses the supervisor or user
stack pointers.

If a specific stack pointer is desired, PS<15:14> must be set by
the user to the appropriate value and then the "RA" command can be
used. If an operating program has been halted, the original value
of PS<15:14> must be restored in order to continue execution.
Example: PS = 1400080

@R6/123456<SPACE> <CR> <CR><ZLF>

The user mode stack pointer has been opened.

@PRS/140B0B<SPACE> A <CR> <CR><LF>
@R6/123456A<SPACE> <CR> <CR>LLF>
ERS/@G@WG%(SPA€E> 140A0A<KCR> <CR>LLF>
@p

In this case, the kernel mode stack pointer was desired. The PS
was opened, and PS<15:14> were set to @## (kernel mode). Then R6
was examined and closed. The original wvalue of PS<15:14> was
restored, and then the program was continued using the P command.

4.5.3 Floating Point Accumulators

The floating point accumulators cannot be accessed from console
ODT. Only floating point instructions can access these registers.

4,6 ENTERING OCTAL DIGITS

When the user is specifying an address, console ODT will use the
last eight octal digits if more than eight have been entered.
When the user is specifying data, console ODT will use the 1last
six octal digits if more than six have been entered. The user
need not enter leading @s for either address or data; console ODT
forces @s as the default. If an odd address is entered, console
ODT responds to the error by printing ?<CR><LF>@.

J-11 PROGRAMMER'S REFERENCE Page A-15

4.7 ODT TIMEOUT

If the user specifies a nonexistent address or causes a parity
error, console ODT responds to the error by printing ?<CR><LF>@.

4,8 INVALID CHARACTERS

Console ODT will recognize upper- and 1lowercase characters as
commands. Any character that console ODT does not recognize
during a particular sequence is echoed (except for ASCII
characters in the range @8 - 178)' and console ODT prints
?2<CR><KLF>@. Console ODT has several internal states, each of
which has its own set of valid input characters. When in a

particular state, only commands specific to that state are valid.
This is done to lower the probability of a user unintentionally

destroying a program by pressing the wrong key.

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15

