
J-11

PROGRAMMER'S REFERENCE

Rev. 2. ~ 4 (J an ua ry, 1982)

COM PAN Y CON F IDE N T I A L

Copyright (c) 1979, 1980, 1981, 1982 by Digital Equipment Corporation
~

The information in this document is subject to change without notice and
s h 0 u 1 d not be con s t rue d a sac 0 m mit men t by Dig ita 1 E qui pm en t
Corpora tion. Dig i tal Equi pment Corporat ion assumes no respons ib iIi ty
for any errors that may occur in this document.

This sp~cification does not describe any program or product which is
currently available from Digital Equipment Corporation. Nor does
Digital Equipment Corporation commit to implement this specification in
any pro g ram 0 r pro d u ct. Dig ita 1 E qui pm e n t Cor po rat ion m a k e s no
commitment that this document accurately describes any product it might
ever make.

J-ll PROGRAMMER'S REFERENCE Page 2

REV

2.04

2.03

2.02

2.01

2.00

1.04

1.03

1.02

1.01

1.00

DATE

1/82

7/81

12/80

7/80

1/80

12/79

8/79

7/79

0/79

5/79

REVISION HISTORY

REASON

Minor corrections

Revised CPU Error Register and stack trap
description; minor corrections

Added floating point instructions

Added Table of Contents; revised I/O space, CPU Error
Register, and Memory System Error Register;
reorganized chapters 3, 4, and 5

Added PS protection chart, console single step

Revised Cache Control Register and Memory System
Error Register; added Hit/Miss Register; cleanup

Added comparison to 11/4~; eliminated stack limit;
title change

.Eliminated instruction complete; cleanup

Added I/O bus time error bit in CPU Error Register;
added CPU abort error bit in Memory System Error
Register; added disable interrupt bit in Cache
Control Register; fixed up original

Preliminary

J-11 PROGRAMMER'S REFERENCE

1.0 INTRODUCTION

1.1 Scope
1.2 Method

TABLE OF CONTENTS-

1.3 Applicable Documents

2.0 INSTRUCTION SET

3.0 ARCHITECTURAL FEATURES

General Registers
Processo r Sta tus Wo rd - _-PS (1 777777F,)

Page 3--

3.1
3.2
3.3
3.4
3.5
3.6

Program Interrupt Request Register - PIRQ (177 7 7772)
CPU Error Register (1'77777(:),6)
Stack Protection
Kernel Protection

4.0 MEMORY MANAGEMENT

4.1 Page AddresS Registers - PARs
4.2 Page Descriptor Registers - PDRs
4.3 Memory Management Register 0 - MMR0 (177 7 7572)
4.4 Memory Management Register 1 - MMR1 (17777574)
4.5 Memory Management Register 2 - MMR2 (1777757F,)
4.fi Memory Management Register 3 - MMR1 (1777251~)

4.7 I and 0 Space

5.0 MEMORY SYSTEM

5.1 Cache
5.1.1 Cache Control Register (17777746)
5.1.2 Hit/Miss Register (17777752)
5.1.3 Cache Multi-Processor Hooks
5.1.4 Cache Response Matrix

5.2 I-Stream Buffer
5.3 Memory System Error Register (17777744)

6.0 FLOATING POINT INSTRUCTIONS

6.1 Floating Point Status Register - FPS
6.2 Floating Point Exception Code and Address Registers -

FEC, FEA
F,.3 Accuracy

J-ll PROGRAMMER'S REFERENCE

TABLE OF-CONTENTS (cdnfinued)

7.0 TRAPS AND INTERRUPTS

8.0 GENERAL PERFORMANCE GOALS

9.0 CONSOLE

10.0 11/44 HARDWARE DIFFERENCES

11.0 11/70 HARDWARE DIFFERENCES

Appendix 1 J-11 Base Instruction Set '-

Appendix 2 - J-11 Floating Point r"nstruct ion

Appendix 3 J-11 Commercial Instruction Set

Appendix 4 - Console Command s

Set ~

Peige 4

J-11 PRQGRAMMER'S REFERENCE Page :5"

1.0 INTRODUCTION

1.1 Scope

Th is document spec i f ies the prog rammer-v is i ble function~ 0 f the, J.."...ll, a
high performance, MOS CPU ch~i-p set for the PDP-II family.~, ''''The J-11
implements the important 11/44 and 11/70 features:1see sections 10 and
11 for summary ,di-ffe~ence lists) and achieves 11/7,0 performance', in most
applications.

1.2 Method

The J-11 is in'fended'to replace both the 11/44 <ind the ~1/7,0. £: It will
run RT-11, RSX-11M, RSX-11M+, RSTS/E, DSM-11, UNIX, and KSOS. The 11/44
and 1 1/7 0 a r ~~ not e n t ire 1 y com pat i b 1 e • Wh e n a 4 ~: hO,: ~ e e . bet wee n
conflicting impleme'n.ta,tions is necessa,ry,,_ the J-11·, .fo,l;l-o:ws' ,the 11/44
rather than the 11/70. The only exception:s are'f'eatur~s~ which impact
potential software coverage (e.g., dual register set) or which unduly
complicate the MOS implementation.

1.3 Applicable Documents

J-ll Chip System Specification
PDP-ll/70 Processor Handbook
J-11 Control Chip Specification
J-11 Data Chip Specification
J-l1 Microprogrammer's Reference

J-11 PROGRAMMER'S REFERENCE

2.0 INSTRUCTION SET

The J-11 instruction set consists of the following:

11/70 Base, :Ihstruction Set including thee Exte-rided
Instructiort Set (EIS) plus th-e MT-PS, MFPS, MFPT,
TSTSET, WRTLCK,' and CSM instructions. Appendix 1
con t a-ins the com pIe tel i s t 0 f -J -11 - -b a" s e
instructions.

- Floating Point (FPl1) Instruction Set compatible
with the FP11A/C/E floating point processors.
Appendix 2 contains the complete list of J-11
fJo-at,ipg_ point instruction?

- -. Commercial Instruction Set (CIS) compatible- wi th_
~J1E:S:: -St.§ndar.<t,158. Appendix 3 contains the c6~-plete~
list of :J·-l1:: 'C'IS inst:tuctions.

3.0 ARCHITECTURAL FEATURES

3.1 General Registers

These include:

- Two sets of six working registers (~0-R5)

- Kernel/supervisor/user stack pointers (R~)

- Program counter (R7).

Page' ~.

Th i sis full y com pa t i b 1 e wi t h the 11/7 0 •
general register set.

The 11/44 lacks a second

J-ll PROGRAMMER'S REFERENCE page''}'

3.2· Processor ,Status W.ord ~ PS (1 7 777776)

The Processor Status Word (PS) contains information on the sta'tus' o:f the
processor.

15 14 13 12 11 10 ' . 9 8 7 5 4 3 2 1

+---+ ,
I ,

-I­:,
I

1.1 II-I I I I I I
I11111111I
II1111111I

I I I 1 I I
1 T I oN " ,Z I V I C I
I , " , , , +---~ ..,._:...---~--,- -,-.'::-- --.-:.-------------------------------------":;..'~;-'...;. ... -~+.

I'
Current I

Mode "

"

f
,/ .,

Prev iouS'-Mode~ : .. _:J

I . , ,
I.
I ,

Reg ister Set - ,
----..--~--

Instruct·ion, Suspen,s ~o'I1'
..

, I I
I I I
I I I
I I I , I I
I I I
I I ,
I r I
I r I ------------- I . I I .,

I I
I

priority ___________ ~~ ___ ~~ ______ ~ ___
I

I I , Trace \ Trap- .
I --~-------------~------------------------

ConditionCOd~s I J

--------------------------------------~------

BIT NAME'

15:14 'Current Mode'
,(RW., protected)_

13 :12 'Prev,ious' Mede
{RW,;" pr~t:ec'tedl

11

7:5

4

3:0

Reg! ster Set­
'(RW,' protec·t-ed)

Instruction Suspension
(RW)

Priority
(RW, protected)

Trace Trap
(RW, protected)

Condition Codes
(RW)

FUNCTION

Current processor mode:
.~ :'

00 = kernel
01 = supervisor
10 = illegal (traps)
11 = user.

Previous processor mode, same
encoding as current moge:'

General register set s~l#ct~'
o = reg is te r se t 0 . ,
1 = register set 1.

Set to indicate that a CIS instruction
was suspended to service an interrupt.

Processor interrupt priority level.

Set to force a trace trap.

Processor condition codes.

J-11 PROGRAMMER'S REFERENCE Page 8

Fo r the protection on the PS unde r va r ious cond i t'ions, see Table 3-1.
Th e PSi sin i t i ali zed a t po we r up (de pe nd son po we 'r U pop t i 0 ri s " and is,
cle-ared at console start. The RESET instruct"ion does not affect the PS.

Table 3-1
PS PROTECTION

; ,

I I--~-----/--------I--------I 1--------1--------1--------1 I
, / I . RTI, RTT I I TRAPS & INTERRUPTS I I

PS - ~.i.~lsJ~ _../1 User I Super I Kernel/ I User I Super/-Kerne·lll-
___ -------_1 1--------1---------/--------1 /-----:---.;--.-.~ /_-_ ... ______ 1 _____ ·---1 I
Condition 1/ loaded I loaded I loaded I I loaded I loaded I loaded / I
Codes I I from I from I from I I from I from I from I' I·,
PS <3:0> II stack stack I stack II vector I vecto.r I vector I r-

Trap Bit
PS <4>

/ 1-------- --------1--------1 /--------I--------I--,~;;..~·.;...,-....:·r /
I I loaded loaded I loaded / I loaded / loaded r~loaded 1 1
/ I from from I from I I from I. ~ rom, .. __ . f' fro m ,11'
II stack stack I stack II vector / .v.~ctor ',\7Eic,tor"'I';L
I 1---:..---- --------1--------1 I------.:-~J. -.::- :.·~.:..:...:'r=·~--~- ~ I I

Processor I I un- un- I loaded -,~ I-.loaded L . loaded .- ~.' loaded 1 t .
Pr ior i ty I I changed changed 1 from / / from L from . L from I / -
PS < 7: 5> 1 1 ./ s t ac k I / "ve.c to'--.J .'y.~c.to.L _ I vecto r 'I I,

. I 1-------- --------1--------11--------1--------1-----.;...--1 I
CIS 1 I loaded loaded I loaded I_load~d I loaded 1- lo~ded 1 I.
Suspend Bi t I I from from I from I from 1- from'-- I' fioin , I.
PS <8> ~.+- stack stack I stack J vector. I vector I 'vector II--

Register
Select
PS <11>

I 1-------- --------1-------- I--------I---:..--:-I----.. ---~ I I
I I ORed ORed I loaded 1 loaded I loaded I lo~(feif I I
1 I from from I from from I from I fr6~~~1 1
I I sta6k stack 1 sta6k vector I vectbr'I·-vector I I_
I 1--------1--------1-------- ________ I ___ .;..._...:.;;..~·I·~...;. __ · ... i... __ 1 /

Previous I I ORed I ORed I loaded copied 1 copied I copied I I
Mode I I from I from I from from I from I from I I
PS < 13: 12> I I s tac k I s tac k I s tac k PS I PS 1 PS I I

J .J ~ I I < 1 5: 1 4 > I < 1 5 : 1 4-> I < 1 5: 1 4 > I I
Il~-------I--------I-------- --------I------~-f-~------I I

Cur rent I / ORed I ORed / loaded loaded I lo'aded~ I ~ loaded I I
Mode 11 from I from / from from I from I from,;. I /
PS <15: 14> :/ I~···:=sta.·ck I stack / stack vecto r· I vecto,(t vector I I

I I -------- / -------- I -------- -------- I -------- I ---~;- ... -- I I

J-ll ,PROGRAMMER'S REFERENCE

T-a'ble 3-1 (continued)
PS PROTECTION

r.

I 1-:....;...;...;..--1---.... ----1--------1 1------- I --------1-------- bt. ~-.'-:'-.-;-----I I
1 1 ~XPLICIT PS ACCESS I I MTPS II POWER UP 1 I

PS~Bi t(~) ·11 ,User I! Super f Kernel II User I Super I Kerne_l.L:I~,."'f;~· I I
--:7---"'!":-~-·- I J~..;.-~..;...;..,.;;. ,--------...;. - ... ------ I 1 ------- I -------- I ----~~ Ll-~-------- I I
Conq.i;t,ion :J I loaded I . loaded loaded I 1 loaded I loaded I loade-& ·,k:.l ", I I
Cod~s) I from I from from I I from I from I from 1 1 ~leared I I
PS'. <3: 0>. ,JI so~~rc~l sO,ur{ce source I I sourcel source I sour~e I :t.: II

~ " ·1 I------T~:l-.;..-~-.;...;..- --------1 I-------I-----.:...--I-'"-~ ~...;;--I t·_.J...;.: ... ':'-_l..---1 I
TraP'Bit, .II un7' .l,'un-: un- II un- 1 un- I Un":'::.i ~q,1::'~,':·~'· II
PS <4> Ilchangedl changed changed I Ichangedl changed I changedl I cleared I I

11---.;..-..:.-1-.;..------ --------1 I-------I--------I~----~~-I I~~--------l I
Processor;~~~.loadedl~leaded loaded I I un- I un- I loa~ed 11-depends I I
~riority I I from 1 from from Ilchangedl changedl frbm "on power I I
P$' < 7 : 5> I I so u r ~ e I so u r c e so u r c e I I I I so u r c ell up 0 P t ion I I

.. I 1---~-.;.:.·-1--------1--------1 1-------1--------1--------1 1--'--------1 I
CIS.,;< .. · ~ ,:,1 L loaded.,l_-loaded I .. loaded II not I not '"- , ~I - net:,· ·,,·-i,i·· ... · I I
Suspend Bit' from ftom 1 from I I acces-l acces- , acces~ 1 I· cleared I I
PS <8> 1 source source 1 source II sible I sible 1 sible II ,'~ ; I I

: I -----.;....;. -~------I--------I 1-------1--------1--------1 I-~--------I 1
Register 1 I loaded loaded , loaded I not I not I not II -,.... II
Select 1 from from I from I acces-I· acces- I acces-~~-I ('··cleared I I
PS <11> I source source I source I sible I sible I sible II -, I I

1 ------- -----7"--1--------1 -------I----- --I--:.-==-.:. .. ~-i T::.-:..--------I I
Previous . I loaded loaded I loaded I not I not I not II
Mode 1 from from 1 from 1 acces-I acces':'" I 'acces~ ... -I-I·-cleared
PS <13: 12>' 1 source source I source I sible I sible I sible II. I I

1 ------- ;..-------1--------1 ------- I -------- (:~-..:-=-..:-- f r ... ----------I I
Current 1 loaded loaded I loaded I not I not I not t I cleared I I
MO'de I from from I from I acces-I acces- I ac'ces-' 1 r~f.e. , I I
PS <15: 14> I source source I source I sible I sible I sible II kernel I I

1 I 1 I I' ""·-rr' mode I I
I ------- --------1--------1 -------I--------I------~-I I,~~--------I I

J-ll PROGRAMMER I S REFERENCE

3.3 program Interrupt Request Register - ~IRQ (1777777~)

The Program Interrupt Request Register
. ,i nte-r-r· .. upt· fac i lity.

(PIRQ) implements q software

A request is queued by setting one of the bits <IS: 9> 'wh1ch corresponds
- ··to a~'prog-r'am -interrupt request at levels 7-1. Bits <T·:5)~·':'"and '("3-11') '~a.r-e

set by hardware to the encoded value of the highes~'pendin~ re~ue~~sai.
.. • "# .• ~

When the ~prog~am interrupt request is granted~ ~the :~rbcessortra~s~
t h t..o~ug. h . 1 Q c;; a t ion ' 2 4 0 • It i s the i n t err up t: sa rv iCe r 0 uti n e ' s
responsibility·' to clear the appropriate bit in PIRQ_b~f~re' e~iting' •.

. . 15 14 .. -13,12 11 10 9 8 7 -5- . ~ 4' • '3 1
+~--~~~-~~~----~----~~-~~~~~
,I ~: ' J. . I / / / 1 - 1 //11 ; J f I 1: J
1 ~ I 1 ~,~ 'I , I , I / / / I i / (1 ~t '. " - I / / l"

,.J '" '. .. -, '. , ,.,,' I I 1// / I ; ~ .J 1//1 . r / /1 J
+--------~-~----------------------------------~~~~~~~~----~-------~~;+
~ I f· ~ J 1 , I . 1

PIR 7 I I I t . I , ,
- . ,~, -- - oJ ~ .. _.J- . I I ,

PIR n I , I ' 1 I I
I I . I I ,

PIR 5 .1 t . I t I
l I I I

PIR 4 I , l I
:~" :.,; ': ~ - .' ::- I I' I

PIR 3 , I ,
I I

PIR 2:- - I I
I I

PIR 1 I I
I I

Priority encoded value of bits <15:9> -I I

PIRQ bits <15:9> are read/write; bits <7:5,3:1> are read only; the
remaining bits always read as zeroes. PIRQ is cleared at power up, by a
console start, and by a RESET instruction.

J-11 PROG~AMMER'S REFERENCE Page 11.: "

3.4 CPU Error Register (17777765)

This register identifif,!s the source of any abort or trap that cal!sed a'"
trap through location 4~

15 8 7 0 5 4 3 -.2 1 0'

~~~--~-----~------------------------------------------------~---+ 
'- - II) 11 I I I // 1/ / / / / I / / I / / / / /1 / I / /1/ I . I , 1-1// II I / J" 

1//11/1//1/////1/111/1/1/1/111111 I il/ili/iit 
I1111111111111111111111111111111I I 11/111/11 
+-------~---~-------~--------------------------------------~~-~~~ 

IJ.l¢g,al~ ~Hl\,L.! ___ .. , ' ___ ".-" .... '...;.,' -+-'! ________ _ 

I 
I 
I 

Add ress Er [-0 r . I 

Non-exi?tent~Memp~y~ ________________ __ 
I 

·1 
I 
I, 

" 

I 
I/O Bus, Timeo,u:t ,-.: 

~------------------------------------

Yellow Stack Violation ----------------------------------- I 
I 

Red Stack Violation ~ ," ~ < I -----------------------------------------
BIT 

7 

5 

4 

3 

2 

NAME -'-'-
Illegal HALT 
(RO) 

Address Error 
(RO) 

Non-existent Me~ory 
(RO) 

IIO Bus Timeout 
(RG) 

Yellow Stack Trap (RO) 

Red Sta~k-Trep (RO) 

FUNCTION 
\'. ." ~-

Set when execution of a HALT instruction 
is attempted in user or ~upervisor mode. 

Set when word access to an odd byte 
address or an instruction fetch from an 
internal register is attempted. 

Se t when a reference to rna i'n, memory. 
times out. 

Set when a reference to the IIO page 
times out. 

Set on a yellow stack trap. 

Set on a red stack trap. 

The CPU Error Register is cleared by any write reference. It is also 
c lea red a t po we r up 0 r b y co n so 1 est art. It i s una f f e c ted by aRE SET 
instruction. 

NOTE: This register is identical to the 11/70. The 11/44 includes 
several additional transient status bits. Note that the 
defi,niti.on.of addr~_s.s trap has been expanded to inc=l,,!~e 
instruction fetcnes from an internal reg ister, and that, the 
definition of stack trap has also been changed. 



J-II-PROGRAMMER'S REFERENCE Page 12 

3.5 Stack Protection 

The' J':"11 checks ke rnel stack references aga inst a 'f i xed 1 iin i t /) f 400 (8.) ._, 
If the virtual address of a kernel stack reference is less th~n 4'A(8), 
a yellow stack trap occurs at the end of the current instruction (except 
for CIS instructions, which abort at the start of instruction 

I execotion). A' ~stack trap can occur only on a kernel sta-ck' ref~rence, ,. 
which is' defined as a kernel mode 4 or 5 reference through R6, a CIS ppj' 
stac~ push, or a JSR, trap, or interrupt stack push. ' ~ 

I I n add i" t i on , the J -11 c h ec k s for k ern e 1 s t a c k a bo I" t s" d'di'log' ' i rt t err u pt , 
trap, or abort sequences. If a kernel stack push during an .!:in1;:errupt, 
trap, or abort causes an abort, the J-ll initiates a r"ed-.".-'z,one· stack~ t'rap-­
by creat ing an emergency stack at loca tions 2 and 0 , setting bi t <2,> "qf, 
the CPU Error Register, and vectoring through 10cat.iQn 4~.,.-.. ' 

NOTE: The J-ll treatment of yellow stack t I" ap.i s',-c-iden t ieai . to fhe' 
11/44. The 11/70 includes a stack limit register, and a.mor~ 
inclusive definition of a stack reference. Tl1-g.c~-;.lI's'd'efinition 
of a red stack trap is unique. 

3.fi Kernel Protection 

In order to protect the kernel operating system against interference',' 
the J-l1 inco~porates a number of protection mechanisms: 

- Ink ern elm 0 de, HA L T , RES E T , and S P Lex e cut e as 
specified. In supervisor or user mode, HALT causes 

'-a trap through location 4, while RESET and SPL'are 
tre'a ted as Naps. 

- In kernel mode, RTI and RTT can al ter PS <15: 11> 
and PS <7:5> freely. In supervisor or user mode,' 
RTI and RTT can only set PS <15: 11> and cannot 
alter PS <7:5>. 

- In kernel 
supervisor 
<7 : 5>. 

mode, MTPS can alter PS <7:5>. 
or user mode, MTPS cannot alter 

In 
PS 

- All trap and interrupt vector references' are' 
classified as kernel data space references, 
irrespective of the memory management mode at the 
time of the trap or interrupt.-· 

.'~ . c., 

- Kernel stack references are checked for stack 
overflow. Supervisor and user stack references are 
not checked. 

Th es e . pro t e c t ion me c han i sm s a I" e f u 11 yeo m pa t ih 1 e _ wit h t De 11/4 4 and 
11170. :'., 



J-l1 PR:OGR"AMMER' S REFERENCE Page 13 

4.0 MEMORY MANAGEMENT 

Th e -, J -11 " imp 1 em e n t s 11 I 4 4 -11 I 70 com pat i b 1 e m em 0 r y man a gem e n t • "Th i s' 
features: 

- 22 bit physical address translation. 

- In~truction and data (liD) address spaces. 

- Kernel, supervisor, and user (K/S/U) processor modes. 

NOTE: No I/O map is, supplied with the J-ll chip set. 
with t~e UNIBUS adapter module, if any. 

It is _coupled 

Th e vis i b Ie' me rn 0 r y man age rn en t s tat e con sis t s 0 f 4 8 ~ P a g' e ~'Ad d ~':s s~ 
Registers (P~Rs), 48 Page Descriptor Registers (PDRs), and four Memory 
Management Re9isters (MMR0-3). 

4.1 Page Address Registers - PARs 

The page Address Registers (PAR?) contain the In-bit Page Address Field 
(PAF) ~ 

15 + __ ~ ____ ~-___ ~ ______ .-_ ... __________________________________________ '...:.J.+ 

~ .. , -, I 
PAF I 

I 
+----~--~~~~-?~-~-----~-----------------------------------~------+ 

All bits- are reao/wrlte. These registers are not affected by console 
star"t -or- a'RE"SE't'<'in-tst-ruction. Their state at power up is UNDEFINED • 

..... .... c:- ,-' i . ~ 



J-ll PROGRAMMER'S REFERENCE Pa·ge 1.4· 

4.2 Page Descriptor Registers - PDRs 

The Page Descriptor Registers (PDRs) contain information relative to 
page expansion, page length, and access control. 

15 14 8 7 5 4 3 2 :' 1 o _ 
+---------------------------------------------------------~~---~-+ 
I I 11111 111111111 I :1//11 
I I PLF I111I W IIIIIIIIIED I ACF 11111 
I I I1111 I1111111I 11/1/1 
+~---------------------------------------------------------------+ 

~.J.'"': ': .' 
Bypass Cache 

Pag··~ .:Length, Field __ 
~ (,.: 'j -:. .... - ~ 

Page Written 

I 
.1 
I 
I 
I 
I 
I 

Expansion Direction . I 
----------------------------------~ 

Access Control Field 

I 
-I­
r 
I 

'I 
L 
I' 
I 

----------------------------------------~-

BIT NAME FUNCTION 

15 

14:8 

Bypass Cache 
- (RW.) 

Page Length Field 
(RW) 

Page Written 
(RO) 

This bit implements a conditional cache 
bypass mechanism. If set, re~~rence~_t~ 
the selected virtual page will bypass the 
cache. 

This field specifies.th~_b19Gk numb~r. ~ 
which defines the boundary of the current 
page. The block number of th.e virtual;. 
address is compared" agains~ the -Page. LerigtJi 
Field to detect length errors. An err"or' . 
occurs when expanding upwards if the block 
number is greater than the Page Length 
Field, and when expandfng downwards if the 
block number is less than the Page Length 
Field. 

This bit indicates whether or not this 
page has been modified (i.e. written into) 
since either the PAR or PDR was loaded (1 
is affi rmative). It is useful in 
applications which involve disk swapping 
and memory overlays. It is used to 
determine which pages have been modified 
'and hence must be saved in their new form 
and which pages have not been modified and 
can simply be overlaid. 

This bit is reset to 0 whenever either the 
PDR or the associated PAR is written into. 



J-ll PR-OG~AMMER' S REFERENCE Page 15 

3 Expansion Direction' 
(RW) 

This bit specifies in which direction' 
the page expands. If ED=0 the page expands 
upwards from block number 0 to include 
blocks with higher addresses i if ED=!:, the, 
page expands downwards from block number 
127 to include blocks with lower addresses. 
Upward expansion is usually used for ---~ 
program space while downward expansion is 
used for stack space. 

2.:...1 ... ' ..... ·Ac c e,s s· _,-(:·0 n tr·,Q I 
Field (RW) 

This field contains the access rights-tQ: 
to this particular page. The access codes 
or "keys" specify the manner in which a j: 
page may be accessed and whether or not a, 
given access should result in an abort'of. 
the current operation. The access codes' 
are: 

00 Non-resident - abort all accesses 
01 Read only - abort on writes 
10 Not used - abort all accesses, 
11 Read/write ~ 

Th e s ere g is t e r s are not a f f e c ted by 
instruction. Thei r state at power up is 
re~d as zero arid cannot be written. 

conso Ie s ta rt 0 r a ·RESET­
UNDEFINED. All un'used bi ts 

NOTE: The J-l1 PDR's are identical to the 11/44 PDR's. The--,J-ll,:,-cJ 
eli min a t: e~~:r "t h e II/70's "A" (any access) status bit, 'adds the 
~ypas.s ca'che bit, and only supports 11/70 access modes ':0, ,2., ',ana r. 

'1): --":1:n' -addit16n, "the J-l1 sets the W (page written) bit on writes 
which cause aborts or modify internal registers, while th~ 11/44 
and 11/70 do not. 



J-ll PROGRAMMER'S REFERENCE 

4.3 Memory Management Register 0 - MMR0 (17777572) 
:., ") " 

MMR0 con'tains error flags, the page number whose reference caused the 
abort~ and various other status flags. 

15,::' - 14 13 12 7 5 4 3 1 
+-~--~----------------------------------------------------~-~~---~---+ 
·I~ - I I 1111111111111111111111111111 I 1 1 1 
I I I 1111111111111111111111111111 I 1 I 1 
I I 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I. "I I, 

+;.;.. ,;.-;;,..~ --------------- ----- - ----------------- - -------.,-----------------~ + 
1- -' J 

Abort I I' 
Non-<:; -t'.:, - I 
Res.~I,' - f 

::. - '. t . 
Abort-Page I 
Length I 
Er ro rc:, ,': ' I, 

Abort-Read' 
Only Error ---
Process'o r Mode --------------------------------------
Page Space ______________________________________________ __ 

page,Number ________________________________________________ ~~~~ 
::""'," 

BIT NA-ME 

15 

14 

13 

Abort - Non Resident 
(RW) 

Abort - Page Length 
(RW) 

Abort - Read Only 
(RW) 

Bit 15 is set by attempting to access 
a page with an Access Control Field key 
equal to 0 or 2. It is also set by 
attempting to use memory relocation with a 
processor mode (PS<15:14» of 2. 

Bit 14 is set by attempting to access a 
location in a page with a block number 
(virtual address bits <12:~» that is 
outside the area authorized by the Page 
Leng th Fi eld of the Page Descr i ptor 
Register for that page. 

Bit 13 is set by attempting to write in a 
"Read Only" page. "Read Only" pages have 
access keys of 1. 

Note that bits <15:13> can be set by an explicit write; however such an 
action does not cause an abort. Whether set explicitly or by an abort, 
bits <15: 13> cause memory management to freeze the contents of 
MMR0<15: 13, /): 1>, MMRl, and MMR2. The status registers remain frozen 
until MMR0<15:13> are cleared by an explicit write or any initialization 
sequence. 



J-11 PROGRAMMER'S REFERENCE 

6:5 Processor Mode 
(RO) 

4 Page Space 
(RO) 

3:1' .Page Number 
(RO) 

o "Enable Relocation 
,( RW) . " ,. " -

Page -1'7 

Bits <~:5> indicate the processor mode 
(kernel/supervisor/user/illegal) 
assoc i a ted wi th the page ca us i ng the abo'rt"­
(kernel = 00, supervisor = OJ1, user ='-11,': ., 
illegal = 10). If the illegal mode is - .. 
specified, an abort is generated and bit 
<15> is set. 

Bit 4 indicates the address space (I or D) 
associated with the page causing the abort 
(0 = I space, 1 = D space) • 

Bits <3:1> contain the page number- of " the 
page causing the abort. 

Bit OJ en a b 1 e s reI 0 cat ion. Wh e nit is" set 
to 1, all addresses are relocated. -.- When 
bit 0 is se t to OJ, memo ry managemen't' is:' 
inoperative and addresses are not '" ' 
relocated. 

I ~MR0<15:~3,0> is cleared at power up, by a console start, and by a RESET 
lnstructlon. MMROJ<f1: 1> is UNDEFINED at power up. . .... 

NOTE: The J-l1 eliminates the 11/44-11/70 maintenance mode feature, and 
the 11/70 memory management trap and instruction complete 
features. The J -11 and 11/44 upda te MMROJ< n: 1> on references .. to 

: in t e rna I pro c e s so r reg i s t e r sit he 11/7 0 doe s no t • Th e 11/4 4 
'sets onlY_f:':1.MR0<15> on an abort due to the illegal processor mode; 
the 11/70 sets MMR0<15:14>; the J-11 sets MMROJ<15>, but the state 
of MMR~<~1:~3> is unpredictable • 

• - • .>-

4.4 Memory Management Register 1 - MMRI (177777574) 

MMR1 records any auto increment or decrement of the general purpose 
registers; ·This register supplies necessary information needed to 
recover f~om a:memory management abort. 

15 11 10 8 7 3 2 -" 
+----'-:'~-~~~-~ .. ~~{~.'T~--~-~-~------------------------------------.-:...::.------+ 

+-- ---~-.... ------~ ... ~-~-...;--------------------- --- - - --- ------------------ --+ 
I I I 

Amount:Changed . -- ~ / '/ 

I (in 2 '.9 complement I I I 
notation) I I I 

/ 
Register Number I 

MMRI is read only. Its state at power up is UNDEFINED. 



J-ll PROGRAMMER'S REFERENCE Page 18 

4.5 Memory Management Register 2 - MMR2 (17777576) 

MMR2-is loaded with the virtual 
inst-ruction fetch. MMR2 is read 
UNDEFINED. 

address at the beginning of each 
only. Its state at power up is 

NOTE: The 11/70 also loads MMR2 with the vector during an interrupt or 
trap. 

4.6 Memory Management Register 3 - MMR3 (17772516) 

MMR3 enabl'es or disables D space, 22-bi t mapping, the C9M '·.inst ruction, 
and the I/O map (when applicable) • 

.::.15 5 4 3 _2 

+-----~------------------------------------------------------~-~--+ 
1///111//////////////////////////////////1 I I I I I I 
1////////////////////////////////////////1 I I I I I I 
1////////////////////////////////////////1 I , , 1 , 1 
+----------------------------------------------------------------+ 

I 1 It' 
Enable I/O Map _________________________________ , , , I I 

I I I I 
Enable 22-bit Mapping _______________________________ , , I I 

, I I , 
Enable ,CSM Instruction , , I 

-------------------------------- I I 
Enable '.Kernel Data Space , I 

I 
Enable Supervisor Data Space , -------------------------------------
Enable User Data Space -----------------------------------------------
BIT NAME 

5 Enable I/O Map 
(RW) 

4 Enable 22-bit Mapping 
,., (RW) 

3 Enable CSM Instruction 
(RW) 

2:0 Enable Data Space 
(RW) 

FUNCTION 

This bit enables the I/O map on an 
ex,ternal UNIBUS adapter:"if any. 

This bit enables 22-bit memory 
addressing (the defaule~is_ '18--bi t 
addressing) • 

This bit enables recognition of the 
Call Supervisor Mode -instruc~iert~ 

These bi ts enable Data Space_ m~ppingt .,.' 
for kernel, supervisori and user modej 
respectively. 

MMR3 is cleared at power up, by a console start, and by a RESET 
instruction. 

NOTE: No I/O map is supplied with the J-ll. It is coupl ed wi th the 
UNIBUS adapter module, if any. 



J-ll PROGRAMMER'S REFERENCE Page 19 

4.7 I and D Space 

When the data space feature is enabled, the J-ll classifies memory 
references into instruction (I) and data (D) space references and uses 
the cor res po n din g m a pp i ng reg i s t e r s • In g e n era 1 , the follow i ng are 
classified as I space references: 

- instruction fetches 

- immediate operands (mode 27) 

absolute addresses (mode 37) 

-index w¢>rds 

-' inline operands (CIS instructions) 

- first references in modes 17, 47, and 57 

and all -,-ot-her ~l""eferences are classified as D space. However, MTPI, 
MFPI, MTPD, and MFPD behave differently than normal instructions. In 
particular, MFPI (if PS<15:12> = 1111), MTPD, and MFPD always force the 
last memory reference to D space; while MFPI (if PS<15:12> ~ 1111) and 
MTPI always' -for-ce the last memory reference to I space'; Table 4-1 
provides an exact description of the interaction of I and D space with 
the addressing modes. 

Address Mode 
and Reg Select 

00 - 0; 
10 - 16 
17 
20 - 26 
27 
30 36 
37 
40 - 46 

-47 
50 - 56 
57 
60 - 67 
70 - 77 

Table 4-1 
I AND D SPACE OPERATION 

(first/second/third memory references) 

Normal 
Instruction 

na 
D 
I 
D 
I 
D/D 
I/D 
D 
I 
D/D 
I/D 
I/D 
I/D/D 

MTPI, 
MFPI 
(PS <15: 12 > 

-F 1111) 

na 
I 
I 
I 
I 
D/I 
1/1 
I 
I 
D/I 
I/I 
I/I 
I/D/I 

MTPO,MFPD, 
MFPI 
(PS<15:12> 
= 1111) 

na 
D 
D 
o 
D 
D/D 
I/D 
o 
o 
D/D 
I/O 
I/D 
I/D/D 



J-ll PROGRAMMER'S REFERENCE 

5.0 MEMORY SYSTEM 

The following highlights the J-ll memory system: 

- It can contain a cache. 

- It incorporates an instruction stream buffer which'.­
implements a prefetch/predecode scheme. 

5.1 Cache 

Page 20 

The J-ll supports a physical cache subsystem. Many di'ffe'r::ent~ cache 
organizations are possible. The example used here isan,8KB di~ect map 
cache with a block size of two bytes. The organi zati6n:of ,- eci'ch' cache 
entry (exclusive of parity or other protection mechanism) is: 

25 24 In 15 8 7 
-+-----------------------------------------"":' ~~-----:~.-.~ ..... ~:"'--+:-

, I , V, 
I I 
~+---~--------------------------------------------~----~--+ 

Valid 
Bit -----
Tag Field -----------
Data Block - Byte 1 -------------------------

I -
I , 
I 
I , , , 

Data Block - Byte 0 ___________________________________________ , 

The physical address is logically subdivided as follows: 

21 12 11 1 0 
+----------------------------------------------+ , , , , 
I , I , 
, , , I 

+----------------------------------------------+ 
I 'I 

Cache Tag I I' 
, I 

Cache Index I' 
I 

Byte Wi thin Block I 



J-ll PROGRAMMER'S REFERENCE Page 21 

5.1.1 ~a~he_Control Register (1777774~) 

The Cac~~,~ontrol Register controls the operation of the cache. Of its 
f eat u res;, ' 9 ~ ~ y. byp ass and for cern iss are arc hit e c t u raIl y pa r t 0 f the 
J -11 chi P .. :6 e t •. Tag par i t Y , d a tap a r i t y, and c a c h e flu s h , i f 
impl~:men,t.ed; .. ar~e the responsibility of the control logic around the chlp 
set. _ 

15 11 10 9 8 7 (, 5 4 3 2 1 0 
+ ---;...'-.... -.---------------------------- - ---- - --- - -- - --------- --- - - -------+ 
11/1/ II;; I 11/;'1 I I I I I I I I I I I I I I I I I I ' I I 1 1 
1IIIIIllltll!!!111111111111 1 I I I I I I I 1 

111//111//1111/111111111111 I I I I 1 I 1 1 I 

+~,:"':';'~:--'';';'~'':'---;...-.-- - -- - ---------- - - -- - - --- - - - -- - - - - - - ----- - -------------+ 
~ ~., .,.' I I I I I 1 I I I 

Write Wrong Tag Parity I I I I I I I I I 
I I I I I I I I 

Byp-a~'s. Cac~le- . ~" ,_, I I I I I I I I 
-~.;.;....;...~------ I I I I I I I 

Flush ·'Cach~' I 1 I I I I I 

I I I I I I 
Enable P~rity Error Abort I I I I I I 

-------- I I I I I 
Write Wrong Data Parity I I I I I 

-------------------------- I I I I 
Force Replacement I I I 1 

~---------------------------------- III 
Force Mis$ 1 I 1 

----------------------------------------------- 1 1 

Disable Bus Traps I 1 
------------------------------------------------- I 

Disabie Cache Traps' I 

BIT 

9 

8 

NAME 

Write Wrong Tag 
Parity (f~W) 

Bypass Cache 
(RW) 

FI ush Cache 
(WO) 

FUNCTION 

This bit, when set, causes the cache tags 
to be written with wrong parity an all 
update cycles. This will cause a cache 
tag parity error to occur on the next 
access to that location. 

This bit, when set, forces all CPU memory 
references to go directly to main memory. 
Read or write hits will result in 
invalidation of accessed locations in the 
cache. 

Setting this bit causes the entire 
contents of the cache to be declared 
invalid. Writing a "0" into this bit will 
have no effect. 



J-11 PROGRAMMER'S REFERENCE 

7 Enable parity Error 
Abort (RW) 

Page 22 

This bit controln the response of the 
to a parity error. When set a cache 
parity error will cause a forc~ miss_and 
an abort to occur. When clear this bit 
inhibits the abort and enables an 
interrupt to parity error veGtor--,l,l-4'it-' All; 
cache parity errors result in force 

6 

5:4 

3:2 

1 

Write Wrong Data 
Par i ty (RW) 

Force Replacement 
(RW) 

Force Miss (RW) 

Disable Bus Traps 
(RW) 

Disable Cache Traps 
(RW) 

misses. 

Th is bi t, when set, causes high 'and' -low 
pa r i ty bytes to be wr i t ten wi th w.ro~g 
parity on all update cycles-' (CPU read 
misses and write hits). This will cause a 
cache parity error to occur-'on' the next 
access to that location. 

In a set associative cache, these bi~s, 
when set, force data repla_cemen.t- from mi:lin 
memory within one or both cache groups. 

These bits, when either_ i$ set, force all 
CPU m em 0 r y ref ere n c est 0 god i r e-c t I Y to 
main memory. The cache tag and data 
stores are not changed. 

In a system with separate I/O and memory 
busses, this bit, when set, disables 
recognition of parity errors -on the 1/0 
bus. 

This bit disables cache parity interrupts. 
When set, no interrupt to locatiori 114 
will occur when a parity error is 
encountered. 

If the control logic around the chip set implements cache data parity, 
then words read from the cache will be checked for parity. A parity 
error in the accessed word causes the following CPU responses: 

Bit 7 

o 
o 
1 

Bit 0 

o 
1 
X 

Action 

Interrupt to 114 and force miss. 
Force miss only. 
Abort and force miss. 

Th i 5 reg i s t e r i scI ear e don po we r up 0 r by a con sol est art. 
unaffected by a RESET instruction. 

It is 

NOTE: The organization of this register reflects the operating system 
groups' requests. It differs in some details from both the 11/44 
and the 11/70. 

, -



J-ll PROGRAMMER'S REFERENCE Page 23 

5.1.2 HitlMiss Register (17777752) 

This register indicates whether the six most recent CPU memory 
references resulted in cache hits or cache misses: 

15 5 
+--~-----------------------------------------------------------+ 
1111111111111111111111111111111111111111 I 
I111111111111111111111111111111111111111 <---FLOW I 
11/111/(1/111111111/11111111111111111111 I 
+--------------------------------------------------------------+ 

Bits ente~·f~om ~~e right (at bit <0» and are shifted leftward. A one 
indicates a cache,hit, a zero indicates a cache miss. 

The Hi t/Miss Register is read only. Its value at power up is UNDEFINED. 
The· Hit/M.iss Register is not affected by console start or a RESET 
instruction. 

NOTE: The HitlMiss Register is compatible with both the 11144 and the 
11/70. 

5.1.3 Cache Multi-Processor Hooks 

The following multi-processor cache "hooks" exist in the J-ll: 

- Conditional cache bypass - selected virtual pages 
can be made to bypass the cache. Bit <15> in the 
PDRs sets this condition. 

- Unconditional cache bypass - all CPU references can 
be made to bypass the cache. Bit <9> in the Cache 
Control Register sets this condition. 

Fl ush cache 
cleared. 

all valid bits in the cache are 

- Lock instructions (ASRB, TSTSET, WRTLCK) - these 
instructions guarantee a cache bypass reference. 



J-11 PROGRAMMER'S REFERENCE 

5.1.4 Cache Response Matrix 

The cache response matrix is: 

Read 

Write 

Read bypass 

Write bypass 

Read forced 
miss 

Write forced 
miss 

1 CPU 1 
1-----------------------1 
1 Hit 1 Miss 1 
1-----------------------1 
IRead cachedlRead memoryl 
1 data 1 & allocatel 
1 1 cache 1 
1-----------------------1 
IWrite thru 1 Write 1 
I cache to i memory t 
1 memory 1 1 
1-----------------------1 
IInvalidate 1 Read 1 
1 cache & 1 memory 1 

1 read mem 1 1 
1-----------------------1 
IInvalidate 1 Write 1 
1 cache & 1 memory 1 
I write mem 1 1 
1-----------------------1 
I Read 1 Read 1 
1 memory 1 memory 1 

1-----------------------1 
1 Wr i te 1 Wr i te 1 
1 memory 1 memory 1 

5.2 I-Stream Buffer 

Page 24 

1 DMA 1 
1 -------------------.;..-.;..-1-
I Hit 1 Miss 1 
1-----------------------1 
1 Re a diRe ad' 1 
1 memory 1 memory 1 
1 "I _ 1 
I------~----~-~~-----~--I 
IInvalidate ,'Write , 
I cache & I, mem~ry _ 1 
1 w r i tern em " ,- , 
I------------~~---------, 
1 na 1 na 1 
1 1 I 
1 I 1 
1-----------------------1 
1 na 1 na 1 
1 1 1 
1 1 1 
1-----------------------1 
1 na 1 na 1 

1 1 1 
1-----------------------1 
1 na 1 na 1 
1 I 1 

The J-11 gets much of its performance from a prefetching mechan·ism. 
Basically, sequential instruction stream words are prefetched under 
microcode control. The J-11 Data Chip Specification details the precise 
prefetch mechanism. 



J-ll PROGRAMMER'S REFERENCE Page 25 

5.3 Memory System Error Register (17777744) 

The Memory System Error register details the memory system failure mode. 
The Memo~y System Error Register is not part of the J-ll chip set; its 
implementat~ion is the responsibility of the control logic surrounding 
the ch i p set. -rf implemented, it wo uld have the followi ng fo rma t, 0 r a 
subset th"e"reof: 

15 14 13 12 11 10 9 8 7 5 4 3 2 1 
+--------------------------------------------------------------------+ 
I -11111/1111111111111111111111111111 I I I III/I 
I 111I111111111111111111111111111111 I I I 11I11 
-I lllllllllllllllllllllllllllllllill I I I 11111 
+-------------------------------------------------------------------~+ 

I 
CPU Abort 

Cache Data Parity Error -----------------------
Cache Tag Parity Error ---------------------------------
Main Memory Data Parity Error ----------------------------------
Main Memory Address Parity Error 

BIT 

15 

7:0 

5:4 

3:2 

1 

NAME 

CPU Abort 
(RO) 

Cache Data Parity Error 
(RO) 

Cache Tag Parity Error 
(RO) 

Main Memory Data 
Parity Error (RO) 

Main Memory Address 
Parity Error (RO) 

--------------------------------------
FUNCTION 

Set if any of bits <3:1> are set, or 
if any of bits <7:4> are set and Cache 
Control Register bit <7> is also set. 

One or both set if there is a cache 
d a t a p'a r i t Y err 0 r • 

One or both set if there is a cache 
tag parity error. 

One or bo~n set if there is a main 
memory data parity error. 

Set if there is a main memory address 
parity error. 

This register is cleared by any write reference. It is also cleared on 
power up or by console start. It is unaffected by a RESET instruction. 

NOTE: Due to hardware dependencies, this register differs from the 
11/44 Cache Memory Error Register and the 11/70 Memory System 
Error Register. 



J-ll PROGRAMMER'S REFERENCE Page 26 

6.0 FLOATING POINT INSTRUCTIONS 

Th e flo a t i ng po i n tin s t r uc t ion set ( F P-ll ) in the J -11 i s com pIe tel y 
software compatible with the FPl1-A used on the PDP-ll/34, the YPll~F 6n 
the PDP -11 / 4 4 , the F P 11-Eon the PD P -11/ fi 0 , and the F P ll:-C - on - the. 
PDP-ll/70. Both single and double precision floating point ,capability 
are available together with other features including floating-to-integer 
and integer-to-floating conversion. 

The floa t ing po i nt instruc t ion set is impl emen ted e i the r in microcode 
res id ing in the base Cont rol ch i p, 0 r ina sepa rate coprocessor. The 
coprocessor acts as a floating po int accelerator (FPA) and provides 
a p p r ox i mat ely f i vet i me s the per for man ceo f th e m ic roc 0 d e 
implementation. 

6.1 Floati~g Point Status Register - FPS 

This register provides mode and interrupt control for floating point 
instructions and records conditions resulting from the execution of the 
previous instruction. Three bits of the FPS register control the modes 
of operation: 

Single/Double: Floating point numbers can be either single or 
double precision. 

Long/Short: Integer numbers can be In bits or 32 bits. 

Chop/Round: The result of a floating point operation can be either 
chopped or rounded. The term "chop" is used instead of "truncate" 
in order to avoid confusion with truncation of series used in 
approximations for function subroutines. 

Th e F PS reg i s t e r con t a ins an err 0 r f 1 a g and f 0 U r con d i t ion cod e s ( 5 
bits): carry, overflow, zero, and negative, which are analogous to the 
processor status condition codes. 

The FP-l1 recognizes six floating point exceptions: 

Detection of the presence of the undefined variable in memory 
Floating overflow 
Floating underflow 
Failure of floating to integer conversion 
Attempt to divide by 0 
Illegal floating opcode. 

For the first four of these exceptions, bits in the FPS register are 
available to individually enable and disable interrupts. An interrupt 
on the occurrence of either of the last two exceptions can be disabled 
only by setting a bit which disables interrupts on all six of the 
exceptions, as a group. 



J-ll PROGRAMMER'S REFERENCE Page 27 

Of the thirteen FPS bits, five are set by the FP-ll as part of the 
out put 0 f a flo at in g po in tin s t r u c t ion: the err 0 r f 1 a g and con d i t ion 
codes. Any of the mode and interrupt control bi ts may be set by the 
user; the LDFPS instruct ion is ava i lable fo r th i s purpose. The FPS 
register is formatted as follows: 

15 14 13 12 11 10 9 8 7 5 4 3 2 1 
+---------------------------------------------------------------+ 
IF J F I111I111I F I F I F I F I F I F I F I111I F I F I F IF, 

-I' E I I I111I111I I I I I I I I I D I LIT I111I N I Z I V I C I 

BIT 

IS, 

14 

IRI D I111I111I U I U I V I C I I I I111I I I I I 

I I I111I111I V I I I I I I I111I I I I I 
+--~------------------------------------------------------------+ 

NAME 

Floating Error 
(FER) 

Interrupt Disable 
(FID) 

FUNCTION 

The FER bit is set by the FP-ll if 

l~ Division by zero occurs 
2. Illegal opcode occurs 
3. Anyone of the remaining occurs and the 

corresponding interrupt is enabled. 

Note that the above action is independent 
of whether the FID bit is set or clear. 

Note also that the FP-ll never resets the 
FER bi t. Once the FER bi t is set by the 
FP-l1, it can be cleared only by an LDFPS 
instruction (note the RESET instruction 
doe s not c 1 ear the FER bit). Th ism e an s 
that the FER bit is up to date only if the 
most recent floating point instruction 
produced a floating point exception. 

If the FID bit is set, all floating 
point interrupts are disabled. 

NOTES 
1. The FID bit is primarily a maintenance 

f eat u r e • Its h 0 u I d no rm a 11 y be c 1 ear. 
In particular, it must be clear if one 
wishes to assure that storage of -0 by 
the FP-ll is always accompanied by an 
interrupt. 

2. Th r 0 ug h 0 u t the res t 0 f t his c hap t e r, i t 
is assumed that the FID bit is clear in 
all discussions involving overflow, 
underflow, occurrence of -0, and integer 
conversion errors. 



J-ll PROGRAMMER'S REFERENCE Page 28 

13 Reserved for future use. 

12 Reserved for future use. 

11 

10 

9 

Interrupt on 
Undefined Variable 
(FIUV) 

Interrupt on 
Underflow 
(FlU) 

Interrupt on 
Overflow 
(FIV) 

An in t err up t 0 c cur s ifF I UV iss eta n d a 
-0 is obtained from memory as an operand 
of ADD, SUB, MUL, DIV, CMP, MOD, NEG, 
ABS, TST, or any LOAD instruction. The 
interrupt occurs before execution on all 
instruct ions. When FIUV is reset, -0 can 
be loaded and used in any FP-ll operation. 
Note that the interrupt is not activated by 
the presence of -0 in an AC operand of an 
arithmetic instruction; in particular, trap, 
on -0 never occurs in mode 0. 

A result of -0 will not be stored without 
the simultaneous occurrence of an 
interrupt. 

When the FlU bit is set, floating 
underflow will cause an interrupt. The 
fractional part of the result of the 
operation causing the interropt will be 
co r rect. The bi ased exponent wi 11 be too 
large by 400 8 , except for the special case 
of (/I , wh i chi s cor r e ct. An ex c e p t ion is 
discussed later in the detailed description 
of the LDEXP instruction. 

If the FlU bi t is reset and if underflow 
occurs, no interrupt occurs and the result 
is set to exact 0. 

When the FIV bit is set, floating overflow 
will cause an interrupt. The fractional 
part of the result of the operation causing 
the overflow will be correct. The biased 
exponent will be too small by 400 8 • 

If the FIV is reset and overflow occurs, 
there is no interrupt. The FP-ll returns 
exact 0. 



J-ll PROGRAMMER'S REFERENCE 

8 

7 

6 

5 

4 

3 

2 

1 

Interrupt on Integer 
Conversion Error 
(FIC) 

Floating Double 
Precision Mode 
(FD) 

Floating Long 
Integer Mode 
( FL) 

Floating Chop Mode 
(FT) 

Floating Negative 
operation was 

Floating Zero 
(FZ) 

Floating Overflow 
(FV) 

Floating Carry 
(FC) 

Page 29 

When the FIC bit is set and a conversion 
to integer instruction fails, an interrupt 
will occur. If the interrupt occurs, 
the destination is set to 0, and all other 
registers are left untouched. 

If the FIC bit is reset, the result of the 
operation will be the same as detailed 
above, but no interrupt will occur. 

Th e con v e r s ion ins t r u c t ion f ail s i fit 
generates an integer wi th more bi ts than 
can fit in the short or long integer word 
specified by the FL bit (bit 6). 

The FD bit determines the precision that 
is used for floating point calculations. 
Wh ens e t, do ubI e pre cis ion is ass urn e d ; 
when reset, single precision is used. 

The FL bit is active in conversion between 
integer and floating point format. When 
set, the intege r fo rma t assumed is double 
precision 2's complement (i.e., 32 bits). 
When reset, the integer format is assumed 
to be single precision 2's complement 
(i.e., 16 bits). 

Wh e nth eFT bit iss e t, the res u 1 t 0 fan y 
arithmetic operation is chopped (or 
truncated): When reset, the result is 
rounded. 

Reserved for future use. 

FN is set if the result of the last 
negative, otherwise it 

reset. 

FZ is set if the result of the last 
operation was 0, otherwise it is reset. 

(FN) 
is 

FV is 
in an 
reset. 

set if the last operat ion resul ted 
exponent over flow, otherwi se it is 

FC is set if the last operation resulted 
in a carry of the most significant bit. 
This can only occur in floating or double 
to integer conversions. 



J-ll PROGRAMMER'S REFERENCE Page 30 

6.2 Floating Exception Code and Address Registers - FEC, FEA 

One interrupt vector is assigned to take care of all floating point 
ex c e p t ion s ( I 0 cat ion 2 4 4 8) • Th e six po s sib lee r r 0 r s are cod e din the 
4-bit floating exception code (FEC) register as follows: 

2 Floating opcode error 
4 Floating divide by 0 
6 Floating to integer conversion error 
8. Floating overflow 

10. Floating underflow 
12. Floating undefined variable. 

The address of the instruction producing the exception is stored in the 
floating exception address (FEA) register. 

The FEC and FEA registers are updated only when one of the following 
occurs: 

1. Divide by 0 

2. Illegal opcode 

3. Any of the other four exceptions with the corresponding 
interrupt enabled. 

This implies that when and only when the FER bit is set by the FP-ll are 
the FEC and FEA registers updated. 

1. 

NOTES 

If one of the last 
occurs with the 
interrupt disabled, 
are not updated. 

four exceptions 
corresponding 

the FEC and FEA 

2. Inhibi tion of interrupts by the FlO 
bit does not inhibit updating of the 
FEe and FEA, if an exception occurs. 

3. The FEC and FEA do not get updated if 
no exception occurs. This means that 
the STST (sto re s ta tus) ins t ruct ion 
will return current information only 
if the most recent floating point 
instruction produced an exception. 

4. Unlike the FPS register, no 
instructions are provided for storage 
into the FEC and FEA registers. 



J-ll PROGRAMMER'S REFERENCE Page 31 

6.3 Accuracy 

General comments on the accuracy of the FP-ll are presented here. An 
instruction or operation is regarded as "exact" if the result is 
identical to an infinite precislon calculation involving the same 
operands. The a priori accuracy of the operands is thus ignored. All 
arithmetic instructions treat an operand whose biased exponent is 0 as 
an exact 0 (unless FIUV is enabled and the operand is -0, in which case 
an interrupt occurs). For all arithmetic operations, except DIV, a 0 
operand implies that the instruction is exact. The same statement holds 
for DIV if the 0 operand is the dividend. But if it is the divisor, 
division is undefined, and an interrupt occurs. 

For nonvanishing floating point operands, the fractional part is binary 
normalized. It contains 24 bits or 56 bits for floating mode and double 
mode, respectively. For ADD, SUB, MUL, and DIV, two guard bits are 
necessary and sufficient for the general case to guarantee return of a 
chopped or rounded result identical to the corresponding infinite 
precision operation chopped or rounded to the specified word length. 
Thus, wi th two guard bi ts, a chopped resul t has an error bound of one 
least significant bit (LSB); a rounded result has an error bound of 1/2 
LSB. These error bounds are realized by the J-ll on all instructions. 
Both the FPl1-A and the FPl1-E have an error bound greater than 1/2 LSB 
for ADD and SUB. 

In the rest of this specification, an arithmetic result is called exact 
if no nonvanishing bits would be lost by chopping. The first bit lost 
inc h 0 pp i ng i s ref err edt 0 as the " r 0 un ding" bit. Th e val u e 0 f a 
rounded result is related to the chopped result as follows. 

1. If the rounding bit is 1, the rounded result is the chopped 
result incremented by an LSB. 

2. If the rounding bit is 0, the rounded and chopped results are 
identical. 

It follows that: 

1. If the result is exact, 
rounded value = chopped value = exact value 

2. If the result is not exact, its magnitude 

a. is always decreased by chopping 
b. is decreased by rounding if the rounding bit is 0 
c. is increased by rounding if the rounding bit is 1. 



J-ll PROGRAMMER'S REFERENCE Page 32 

Occurrence of floating point overflow and underflow is an error 
condition: the result of the calculation cannot be correctly stored 
be c au set h e e x po n e n tis too 1 a r get 0 fit in tot he e i g h t bit s res e r v e d 
for it. However, the internal hardware has produced the correct answer. 
For the case of underflow, replacement of the correct answer by 0 is a 
reasonable resolution of the problem for many applications. This is 
done by the J-ll if the underflow interrupt is disabled. The error 
incurred by this action is an absolute rather than a relative error; it 
is bounded (in absolute value) by 2** (-128). There is no such simple 
resolution for the case of overflow. The action taken, if the overflow 
interrupt is disabled, is described under FIV (bit 9). 

The FIV and FIU bits (of the floating point status word) provide the 
user with an opportunity to implement his own correction of an overflow 
or underflow condition. If such a condition occurs and the 
corresponding interrupt is enabled, the microcode stores the fractional' 
part and the low eight bits of the biased exponent. The interrupt will­
take place and the user can identify the cause by examination of the FV 
( flo at i n g 0 v e r flo w) bit 0 f th e FE C ( flo at in 9 ex c e p t ion) reg i s t e r • Th e 
reader can readily verify that (for the standard arithmetic operations 
ADD, SUB, MUL, and DIV) the biased exponent returned by the instruction 
be a r s the folIo wi ng reI a t ion tot he cor r e c t e x po n e n t g e n era ted by the 
microcode. 

1. On overflow, it is too small by 400 8 • 

2. On underflow, if the biased exponent is 0, it is correct. If 
it is not 0, it is too large by 400 8 • 

Th us , wit h the i n t err up ten a b 1 e , 
dete rmine the co r rect answer. The 
variables (via STEXP and LDEXP) to 
the accuracy of the fractional part 
underflow or overflow. 

enough information is available to 
user may, for example, rescale his 
continue a calculation. Note that 
is unaffected by the occurrence of 



J-II PROGRAMMER'S REFERENCE Page 33 

7.0 TRAPS AND INTERRUPTS 

In both traps and interrupts, the currently executing program is 
interrupted and a new program, the starting address of which is 
s p e c i fie d by the t rap 0 r in t err up t ve c tor, i sex e cut e d • Th e h a r d wa r e 
process for traps and interrupts through a vector V is identical: 

PS --> temp 1 
PC --> temp 2 
o --> PS <15:14> 
M(V] --> PC 
M(V+2] --> PS 
templ<15:14> --> PS<13:12> 
SP-2 --> SP 
tempI --> M (SPl 
SP-2 --> SP 
temp2 --> M [SP] 

!save PS, PC in temporaries 

!force kernel mode 
!fetch PC from vector, data space 
!fetch PS from vector, data space 
!set previous mode 
!selected by new PS 
!push old PS on stack, data space 

!push old PC on stack, data space 
!go execute next instruction 

Note that if an abort occurs during either the vector fetch or the stack 
pushes, the PS and PC are restored to their original values prior to 
recognition of the abort. 

The priority order for traps and interrupts is as follows: 

address error 
memory management violation 
timeout/non-existent memory 
parity error 
trace (T-bit) trap 
yellow stack trap 
power fa i 1 
floating point trap 
PIRQ 7 
interrupt level 7 
PIRQ 6 
interrupt level r 

r) 

PIRQ 5 
interrupt level 5 
PIRQ 4 
interrupt level 4 
PIRQ 3 
PIRQ 2 
PIRQ I 
Halt line 



J-ll PROGRAMMER'S REFERENCE 

8.0 GENERAL PERFORMANCE GOALS 

The overall performance goals of the J-ll are: 

- J-ll base instruction performance equivalent to the 
11/70. 

- J-ll floa t ing po int perfo rmance equal to ha I f of 
the 11/44. With an optional floating point 
accelerator, the performance will be boosted to 
11/70 speeds. 

- J-ll CIS performance equal to the 11/44. 

9.0 CONSOLE 

Page 34 

The J-ll contains console microcode. This will enable a user to access 
mo s t 0 f the J -11 s tat e, run d i a g nos tic s, and mo nit 0 r the s y stem. Th e 
J-ll console replaces the "lights and switches" programmer's console 
with microcode that interprets ASCII characters to perform equivalent 
panel functions. 

The J-ll console microcode provides the minimum functionality needed to 
control the chip set. A more elaborate console protocol can be 
implemented using an external console processor. The console processor 
would then simulate an external console in order to gain access to the 
console microcode and the chip set. 

Appendix 4 details the operation of the console. 



J-11 PROGRAMMER'S REFERENCE Page 35 

10.0 11/44 HARDWARE DIFFERENCES 

Th e J -11 i s de s i g ned 
applications; however, 
hardware features: 

to replace the 11/44 
it does not contain 

in existing and future 
the following PDP-11/44 

- Cache data and maintenance registers (17777750, 17777754) 

- Switch register (17777570). 

The J-11 does contain additional functionality not present in the 11/44: 

- Dual general register set 

- SPL, MTPS, MFPS, TSTSET, WRTLCK instructions. 

The following list summarizes the hardware differences between the 11/44 
and the J-1l: 

Address 

17 777 776 
17 777 772 

17 777 7'16 

17 777 754 

17 777 752 

17 777 750 

17 777 74h 

17 777 744 

17 777 f)7fl 
to 

17 777 660 

17 777 656 
to 

17 777 640 

17 777 636 
to 

17 777 620 

Function 

PS 
PIRQ 

CPU Error 

Cache Data 

Hit/Miss 

Maintenance 

Cache Control 

Memory Error 

User Da ta PAR 

User Instruction PAR 

User Data PDR 

Differences 

Added register set select bit<11> 
No difference. 

Unibus monitoring bits 
unimplemented. 

Unimplemented. 

No difference. 

Unimplemented. 

Hardware specific changes 
(see section 5.1.1). 

Hardware specific changes 
(see section 5.3). 

No difference. 

No difference. 

No difference. 



J-11 PROGRAMMER'S REFERENCE Page 30 

17 777 1116 
to User Instruction PDR No difference. 

17 777 1100 

17 777 576 MMR2 No difference. 

17 777 574 MMR1 No difference. 

17 777 572 MMR0 Eliminated maintenance mode. 

17 777 570 Switch Register Unimplemented. 

17 772 5111 MMR3 No difference. 

17 772 37fi 
to Kernel Data PAR No difference. 

17 772 360 

17 77.2 356 
to Kernel Instruction PAR No difference. 

17 772 340 

17 772 336 
to Kernel Data PDR No difference. 

17 772 320 

17 772 316 
to Kernel Instruction PDR No difference. 

17 772 300 

17 772 276 
to Supervisor Data PAR No difference. 

17 772 260 

17 772 256 
to Supervisor Instruction No difference. 

17 772 240 PAR 

17 772 236 
to Supervisor Data PDR No difference. 

17 772 220 

17 772 216 
to Supervisor Instruction No difference. 

17 772 200 PDR 



J-11 PROGRAMMER'S REFERENCE Page 37 

11.0 11/70 HARDWARE DIFFERENCES 

The J -11 is des ig ned to repl ace the PDP-11/70 in 
applications; however it does not contain the 
hardware features: 

existing and future 
following PDP-l1/70 

- Stack Limit Register (17777774) 

- Micro Break Register (17777770) 

- System ID Register (17777704) 

- System Size Registers (177777~0, 17777702) 

- Maintenance Register (17777750) 

- Physical Error Ad?ress Registers (17777740, 17777742) 

- Switch Register (17777570). 

The J-11 does contain additional functionality not present in the 11/70: 

- MTPS, MFPS, MFPT, CSM, TSTSET, WRTLCK instructions 

- CIS instructions 

Bypass cache bit in PDRs. 

The following list summarizes the hardware differences between the 11/70 
and the J-11: 

Address Function Differences 

17 777 770 PS Added suspended instruction 
bit <8>. 

1 "7 777 774 Stack T': .: ~ Unimplemented. "'" , LI.Lm.L L. 

17 777 772 PIRQ No difference. 

17 777 770 Micro Break Unimplemented. 

17 777 766 CPU Error No difference. 

17 777 704 System ID Unimplemented. 

17 777 762 System Size Unimplemented. 

17 777 760 System Size Unimplemented. 

17 777 752 Hit/Miss No difference. 



J-ll PROGRAMMER'S REFERENCE 

17 777 750 

17 777 746 

17 777 744 

17 777 742 

17 777 740 

17 777 676 
to 

17 777 660 

17 777 656 
to 

17 777 ()40 

17 777 ()3() 
to 

17 777 n20 

17 777 616 
to 

17 777 ()00 

17 777 576 

17 777 574 

17 777 572 

17 777 570 

17 772 SIt') 

17 772 376 
to 

17 772 360 

17 772 356 
to 

17 772 340 

Maintenance 

Cache Control 

Memory Error 

High Error Address 

Low Error Address 

User Data PAR 

User Instruction PAR 

User Data PDR 

User Instruction PDR 

MMR2 

MMR1 

MMR0 

Switch Register 

MMR3 

Kernel Data PAR 

Kernel Instruction PAR 

Page 38 

Unimplemented. 

Hardware specific changes 
(see section 5.1.1). 

Hardware specific changes 
(see section 5.3). 

Unimplemented. 

Unimplemented. 

No difference. 

No difference. 

Added bypass cache, eliminated 
access flags and access modes 
other than 0, 2, and ~. 

Added bypass cache, eliminated 
access flags and access modes 
other than 0, 2, and 6. 

No difference. 

No difference. 

Eliminated traps, maintenance 
mode, and instruction complete. 

Unimplemented. 

Added CSM enable bit <3>. 

No difference. 

No difference. 



J-11 PROGRAMMER'S REFERENCE Page 39 

17 772 33h 
to Kernel Data PDR Added bypass cache, eliminated 

17 '7'7') 320 access flag and access modes , 'L-
other than 0, 2, and h. 

17 772 316 
to Kernel Instruction PDR Added bypass cache, eliminated 

17 772 300 access flag and access modes 
other than Cil, 2, and n. 

17 772 270 
to Supervisor Data PAR No difference. 

17 772 2h0 

17 772 256 
to Supervisor Instruction No difference. 

17 772 240 PAR 

17 772 23n 
to Supervisor Data PDR Added bypass cache, eliminated 

17 772 220 access flag and access modes 
other than 0, 2, and n. 

17 772 21n 
to Supervisor Instruction Added bypass cache, eliminated 

17 772 200 PDR access flag and access modes 
other than Cil, 2, and fie 



J-II PROGRAMMER'S REFERENCE Page A-I 

Appendix I - J-II Base Instruction Set 

Double Operand ADD BISB MOV 
Instructions ASH BIT MOVB 

ASHC BITB MUL 
BIC CMP SUB 
BICB CMPB XOR 
BIS DIV 

Single Operand ADC DEC ROR 
Instructions ADCB DECB RORB 

ASL INC SBC 
ASLB INCB SBCB 
ASR MFPS SWAB 
ASRB MTPS SXT 
CLR NEG TST 
CLRB NEGB TSTB 
COM ROL 
COMB ROLB 

Branch Instructions BCC/BHIS BHI BNE 
BCS/BLO BLE BPL 
BEQ BLOS BR 
BGE BLT BVC 
BGT BMI BVS 

Jump and Subroutine CSM JSR RTS 
Instructions JMP MARK SOB 

Trap and Interrupt BPT lOT RTT 
Instructions EMT RTI TRAP 

Miscellaneous HALT MTPD TSTSET 
Instructions MFPD MTPI WAIT 

MFPI RESET WRTLCK 
MFPT SPL 

Cond i tion Code CCC CLZ SEN 
Operators CLC NOP SEV 

CLN. SCC SEZ 
CLV SEC 



J-ll PROGRAMMER'S REFERENCE Page A-2 

Appendix 2 - J-ll Floating Point Instruction Set 

Floating Point ABSD LDCLF STCDI 
Instructions ABSF LDD STCDL 

ADDD LDEXP STCFD 
ADDF LDF STCFI 
CFCC LDFPS STCFL 
CLRD MODO STD 
CLRF MODF STEXP 
CMPD MULD STF 
CMPF MULF STFPS 
DIVD NEGD STST 
DIVF NEGF SUBD 
LDCDF SETD SUBF 
LDCFD SETF TSTD 
LDCID SETI TSTF 
LDCIF SETL 
LDCLD STCDF 



J-ll PROGRAMMER'S REFERENCE 

Appendix 3 - J-ll Commercial Instruction Set 

Character String 
Instructions 

Numer ic Str ing 
Instructions 

Packed String 
Instructions 

Convert Instructions 

Load Descr i ptor 
Instructions 

CMPC 
CMPCI 
LOCC 
LOCCI 
MATC 
MATCI 

ADDN 
ADDNI 
ASHN 
ASHNI 

ADDP 
ADDPI 
ASHP 
ASHPI 

CVTLN 
CVTLP 

L2D0 
L2Dl 
L2D2 
L2D3 
L2D4 
L2D5 
L2Dh 
L2D7 

MOVC 
MOVCI 
MOVRC 
MOVRCI 
MOVTC 
MOVTCI 

CMPN 
CMPNI 
SUBN 
SUBNI 

CMPP 
CMPPI 
DIVP 
DIVPI 

CVTNL 
CVTNP 

L3D0 
L3Dl 
L3D2 
L3D3 
L3D4 
L3D5 
L3Df) 
L3D7 

Page A-3 

SCANC 
SCANCI 
SKPC 
SKPCI 
SPANC 
SPANCI 

MULP 
MULPI 
SUBP 
SUBPI 

CVTPL 
CVTPN 



J-ll PROGRAMMER'S REFERENCE Page A-4 

Appendix 4 - Console Commands 

4.1 INTRODUCTION 

The console microcode (console ODT) is a portion of the processor 
m ic rocode tha t allows the processor to respond to command sand 
information entered via the terminal. The terminal addresses are 
1 7 777500 8 through 177775~68. They are generated in microcode and 
cannot oe changed. Console aDT is very useful as an a id in 
running and debugging programs. Communication between the user 
and processor is via a stream of ASCII characters interpreted by 
the processor as console commands. These commands are a subset of 
ODT-ll. 

4.2 TERMINAL INTERFACE 

The minimum hardware requirements for a serial line interface 
permitting a terminal to communicate with console ODT are 
contained in the following paragraphs. The intent is to describe 
the min i m urn h a r d war e r eq u ire d; t his i s a sub set 0 f the h a r d war e 
needed to operate system software. For system softwarelhardware 
requirements refer to the DLVll hardware specification. 

4.2.1 Receiver Control and Status Register (RCSR) 

Th e R C S R ( Fig u r e 4 - 1 ) m u s t e xis tat add res s 1 7 7 7 7 5 ?) 0 8 for 
character input to console ODT. Console ODT does not execute 
output bus cycles to this address; therefore, the RCSR only needs 
to respond to input bus cycles. However, system software causes 
output cycles in order to affect certain bits, such as Interrupt 
Enable (bit 6), which console ODT does not use. 

15 8 7 
+-----~-~======================================-----+ 

I111111111111111111111111 1111111111111111111111111 
1111111111111111111//1//1 D 1111111111111//1/1////1/1 
1111111111111111111111111 111111111111111/111111111 
+---------------------------------------------------+ 

Figure 4-1 Receiver Status Register 

Bit Description 

<7> Done flag. After a character is assembled and exists in 
the receiver buffer register (RBUF), the Done flag must 
be set to a 1. When an input cycle is performed to the 
RB U F ( top i c k up the c h a r act e r), the Do n e f 1 a g m u s t be 
c 1 ear e d by h a r d wa r e • Th e s y stem in i t i ali z a t ion s i g n a 1 
must also clear this bit. 



J-ll PROGRAMMER'S REFERENCE Page A-5 

Bit Description 

<n:0> 
<15:8> 

4.2.2 

Un use d • Th e s e bit s are don' t car e san d can be ina n y 
state since console aDT does not use them. In DIGITAL 
interfaces, these bits may be defined. 

Receiver Buffer Register (RBUF) 

The RBUF (Figure 4-2) must exist at address 17777Sr..,2 for 
character input to console ODT. This register only nee§s to 
respond to input bus cycles since console aDT does not execute 
output bus cycles to this address. System software interfaces 
s im i 1 a r 1 y, . but DIGITAL d i agnost i cs may cause an output cyc 1 e and 
not operate properly. 

Bit 

<7:0> 

<15:8> 

4.2.3 

15 8 7 
+-------------------------------------------------------+ 
11111111111111111111111111111 I 
I1111111111111111111111111111 DATA I 
I1111111111111111111111111111 I 
+-------------------------------------------------------+ 

Figure 4-2 Receiver Buffer Register 

Description 

ASCII character. These eight bi ts are read by the 
processor and interpreted as a console aDT command. When 
bit 7 of RCSR is a 1, the processor does a input cycle to 
the RBUF. After the input cycle, the hardware must clear 
bit 7 of RCSR to 0. 

Unused. These bi ts are don't cares and can be in any 
state since console ODT does not use them. In DIGITAL 
interfaces, these bits may be defined. 

Transmitter Control and Status Register (XCSR) 

The XCSR (Figure 4-3) must exist at address 17777Sn4p. for 
character output from console ODT. aDT does not execute output 
bus cycles to this address; therefore, the XCSR only needs to 
respond to input bus cycles. However, system software causes 
output cycles to affect certain bits, such as Interrupt Enable, 
which console ODT does not use. 



J-11 PROGRAMMER'S REFERENCE Page A-t:., 

15 8 7 
+--------------------------------------------------------+ 
11111111111111111111111111 111111111111111111111111111 
11111111111111111111111111 D 111111111111111111111111111 
11111111111111111111111111 111111111111111111111111111 
+--------------------------------------------------------+ 

Figure 4-3 Transmitter Control and Status Register 

Bit Description 

<7> Done flag. In the idle state, this bit is a 1 indicating 
that the hardware is ready to print a character. After 
an output cycle to the transmitter buffer register by the 
processor (i.e., a character loaded), thi s bi t must be 
cleared to 0 by the hardware. After the character is 
p r in ted, the h a r d war e set s t his bit to 1 • Po we r up and 
the system bus initialization signal must also set this 
bit to a 1. 

<~:0> 
<15:8> 

4.2.4 

Un use d • Th e s e bit s are don I t car e san d can be ina n y 
state since console ODT does not use them. In DIGITAL 
interfaces, these bits may be defined. 

Transmitter Buffer Register (XBUF) 

The XBUF (Figure 4-4) must exist at address 17777S{)t)8 for 
characte r output f rom console ODT. Thi s reg i ster onl y neeas to 
respond to output bus cycles since console aDT does not execute 
input bus cycles to this address. System software interfaces 
similarly but DIGITAL diagnostic may cause an input cycle and not 
operate properly. 

Bit 

<7:0> 

<15:8> 

15 8 7 o 
+-------------------------------------------------------+ 
1111111111111111111111111111 I 
1111111111111111111111111111 DATA , 
I111111111111111111111111111 1 

+-------------------------------------------------------+ 
Figure 4-4 Transmitter Buffer Register 

Description 

AS C I I c h a r act e r • Th e see i g h t bit s are wr itt en by the 
processor with the ASCII character to be printed. When 
bit 7 of XCSR is a 1, the processor does an output cycle 
to the XBUF. After the output cycle the hardware must 
clear bit 7 of XCSR to 0. 

Unused. These bits are don It ca res and can be in any 
state since console ODT does not use them. In DIGITAL 
interfaces, these bits may be defined. 



J-ll PROGRAMMER'S REFERENCE Page A-7 

4.3 CONSOLE ODT OPERATION 

The processor's microcode operates the serial line interface in 
half-duplex mode. Program I/O techniques are used rather than 
interrupts. When the console aDT microcode is printing characters 
us ing the transmi t s ide of the in terface, the m ic rocode is not 
monitoring the receive side for incoming characters. Any 
characters coming in at this time are lost. The interface may 
post overrun errors, but the microcode does not check for error 
bi ts in the interface. Therefore users should not type ahead to 
ODT because those characters are not recognized. In addition, if 
another processor is at the other end of the interface, it must 
obey half-duplex operation. No input characters should be sent 
until console ODT has finished outputting. 

4.3.1 Console aDT Entry Conditions 

aDT is entered under the following conditions: 

1. Execution of a HALT instruction in kernel mode. 

2. Assert ion of the HALT signal on the system bus. The 
signal must be asserted long enough so that it is seen at 
the end of a macroinstruction by the service state in the 
processor. 

3. At power up, if the appropriate power up option is 
selected. 

4.3.2 Console ODT Input Sequence 

Upon entry to console ODT, the RBUF register is read and the 
character present in the buffer is ignored. This is done so that 
erroneous characters or user program characters are not 
interpreted by console ODT as a command, especially when a program 
is halted. 

The input sequence for console aDT is as follows. 

1. Output <CR><LF> to terminal. 

2. Output contents of PC (R7) in six digits to terminal. 

3. Read and ignore character in RBUF. 

4. Output <CR><LF> to terminal. 

5. Output the prompt character, @, to terminal. 

fi. Enter a wait loop for terminal input. The Done flag, bit 
<7> in RCSR, is tested •. If it is 0, the test continues. 

7. If RCSR bit <7> is a 1, then low byte of RBUF is read. 



J-11 PROGRAMMER'S REFERENCE Page A-8 

4.3. 3 Console ODT Output Sequence 

The output sequence for ODT is as follows. 

1. Test XCSR bit <7> (Done flag) and if a 0, continue 
testing. 

2. If XCSR bit <7> is a 1, write character to low byte of 
XBUF (high byte is ignored by interface). 

4.4 CONSOLE ODT COMMAND SET 

The console ODT command set, listed in Table 4-1, is described in 
the following paragraphs. The commands are a subset of ODT-11 and 
use the same command character. Only specific characters are 
recognized as valid inputs; other inputs invoke a "?" response. 

Table 4-1 

Command Symbol 

Slash / 

Ca rr i age Return <CR> 

Li ne Feed <LF> 

Internal Register $ or R 
Designator 

Processor Status 
Word Designator 

Go 

Proceed 

S 

G 

P 

Console ODT Commands 

Use 

Pr ints the contents of a 
specified location. 

Closes an open location. 

Closes an open location and 
then opens the next 
contiguous location. 

Opens a specific processor 
register. 

Opens the PS must follow 
an S or R command. 

Starts program execution. 

Resumes 
program. 

execution of a 

Binary Dump Control-Shift-S Manufacturing use only. 

The parity bit (bit <7» on all input characters is ignored (i.e., 
not stripped) by console ODT. If the input character is echoed, 
the state of the parity bit is copied to the output buffer (XBUF). 
Output characters internally generated (e.g., <CR» by ODT have 
the parity bit equal to 0. All commands are echoed except for 
ASCI I codes in the range 0-17 8 • Where appl icable, upper- and 
lowercase of command characters are recognized. 



J-11 PROGRAMMER'S REFERENCE Page A-9 

Th e wo r d "10 cat ion," as use din the follow i n g sec t ion s, ref e r s to 
a memory location, an I/O device register, an internal processor 
register, or the processor status word (PS). 

4.4.1 

NOTE 

In the examples the response from the 
processor is underlined, while the 
user's entry is not. 

/ (ASCII 057) Slash 

This command is used to open a memory location, I/O device 
reg i ster, in ternal processo r reg is ter, 0 r processo r sta tus wo rd 
and must be preceded by other characters which specify a location. 
In response to /, console ODT prints the contents of the location 
(i.e., six chara~ters) and then a space (ASCII 40). After printing 
is complete, console ODT waits for either new data for that 
location or a valid close command. 

Example: ~001000/012525<SPACE> 

4.4.2 

where: 

@ 

001000 

/ 

012525 

<SPACE> 

= console ODT prompt character. 

= octal location desired by the user 
(leading 0s are not required). 

= command to open and pr int contents of 
location. 

= contents of octal location 1000. 

= space character generated by console 
ODT. 

<CR> (ASCII 015) Carriage Return 

This command is used to close an open location. If a location's 
contents are to be changed, the user should precede the <CR> with 
the new data. If no change is desired, <CR> closes the location 
without altering its contents. 

Example: @R1/004321<SPACE> <CR> <CR><LF> 
@ 

Processor register R1 was opened and no change was desired so the 
user i ssued<CR>. In response to the <CR>, console aDT pr in ted 
<CR><LF>@. 

Example: @R1/004321<SPACE> 1234 <CR> <CR><LF> 
@ 



J-II PROGRAMMER'S REFERENCE Page A-10 

In this case the user desired to change RI, so new data, 1234, was 
entered before issuing the <CR>. Console aDT deposited the new 
data in the open location and then printed <CR><LF>@. 

Console aDT does not directly echo the <CR> entered by the user 
but instead prints a <CR>, followed by a <LF>, and @. 

4.4.3 <LF> (ASCII 012) Line Feed 

This command is used to close an open location and then open the 
next contiguous location. Memory locations and processor 
registers are incremented by 2 and 1 respectively. If the PS is 
open when a <LF> is issued, it is closed and a <CR><LF>@ is 
printed; no new location is opened. If the open location's 
contents are to be changed, the new data should precede the <LF>. 
If no data is entered, the location is closed without being 
altered. 

Example: @R2/12345h<SPACE> <LF> <CR><LF> 
R3/054321<SPACE> 

In this case, the user entered <LF> with no data preceding it. In 
response, console ODT closed R2 and then opened R3. When a user 
has the last register, R7, open, and issues <LF>, console aDT 
opens the beginning register, R0. 

Example: @R7/000000<SPACE> <LF> <CR><LF> 
R0/12345n<SPACE> 

Unl ike wi th most other commands, console 
echo the <LF>. Instead it pr ints <CR>, 
that terminal printers operate properly. 
make this easier to decode, console ODT 
ASCII characters in the range 0 - 17 8 . 

ODT does not 
then <LF>, so 

In order to 
does not echo 

4.4 .. 4 $ (ASCII 044) or R (ASCII Internal Register 
Designator 

Either character when followed by a register number, 0 to 7, or PS 
designator, S, will open that specific processor register. 

The $ character is recognized to be compatible with ODT-11. The R 
character was introduced for the convenience of one key stroke and 
because it is representative of what it does. 

Example: fS0/000123<SPACE> 

or 

@R7/000123<SPACE> <LF> 
R0/054321<SPACE> 



J-ll PROGRAMMER'S REFERENCE Page A-II 

If more than one character is typed (digit or S) after the R or S, 
console ODT uses the last character as the register designator. 

4.4. 5 S (ASCII 123) Processor Status Word 

This designator is for opening the PS (processor status word) and 
may be employed only after the user has entered an R or S register 
designator. 

Example: fRS/100377<SPACE> 0 <CR> <CR><LF> 

Note the trace bit (bit <4» of the PS cannot be modified by the 
user. This is done so that PDP-II program debug utilities (e.g., 
ODT-ll), which use the T bit for single-stepping, are not 
accidentally harmed by the user. 

If the user issues a <LF> while the PS is open, the PS is closed 
and ODT prints <CR><LF>~. No new location is opened in this case. 

4.4.6 G (ASCII 107) Go 

Th i s command is used to sta r t prog ram execut ion a t a locat ion 
entered immediately before the G. This function is equivalent to 
the LOAD ADDRESS and START switch sequence on other PDP-II 
consoles. 

Example: @200G<NULL><NULL> 

The console ODT sequence for a G, after echoing the command 
character, is as follows. 

1. Print two nulls (ASCII 0) so the bus initialize that 
follows does not flush the G character from the 
double-buffered UART chip in the serial line interface. 

2 • Lo a d R 7 ( PC) wit h the en t ere d d a t a • If nod a t a i s 
entered, 0 is used. (In the above example, R7 is set to 
200, and that is where program execution begins.) 

3. The PS, MMR0<15:13,0>, MMR3, PIRQ, CPU Error Register, 
Memory System Error Register, Cache Control Register, and 
Floating Point Status Register are cleared to zero. 

4. The cache, if present, is fl ushed. 

5. The system bus is initialized by the processor. 

6. The service state is entered by the processor. If there 
is anything to be serviced, it is processed. If the bus 
HALT signal is asserted, the processor reenters the 
console ODT state. This feature is used to initialize a 
system without starting a program (R7 is altered). 



J-ll PROGRAMMER'S REFERENCE Page A-12 

4.4.7 P (ASCII 120) Proceed 

This command is used to resume execution of a program and 
corresponds to the CONTINUE swi tch on other PDP-II consoles. No 
programmer-visible machine state is altered using this command. 

Example: @P 

Program execution resumes at the address pointed to by R'. After 
the Pis e c hoe d, the pro c e s so r i mm e d i ate 1 yen t e r s the s tat e to 
fetch the next instruction. After the instruction is executed, 
outstanding interrupts, if any, are serviced. If the HALT bus 
signal is asserted, it is recognized at the end of the 
instruction, and the processor enters the console ODT state. Upon 
entry, the content of the PC (R7) is printed. In this fashion, 
the user can single-instruction step through a program and obtain 
a PC "trace" on the terminal. 

4.4.8 Control-Shift-S (ASCII 023) Binary Dump 

This command is used for manufacturing test purposes and is not a 
normal user command. It is described here to explain the 
pro c e s s 0 r' s res po n s e i f a c c i d en tall yin v 0 ked. It i sin ten de d to 
more efficiently display a portion of memory compared to using the 
"I" and <LF> commands. The protocol is as follows. 

1. After a prompt character, console ODT receives a 
control-shift-S command and echoes it. 

2. The host system at the other end of the serial line must 
send two 8-bit bytes which console ODT interprets as a 
starting address. These two bytes are not echoed. 

The first byte specifies starting address <15:08> and the 
second byte specifies starting address <07:00>. Address 
bits <21:16> are always forced to be 0; the dump command 
is restricted to the first 32K words of address space. 

3. After the second address byte has been received, console 
ODT outputs ten bytes to the serial line starting at the 
add res s pre v i 0 us 1 Y s P e c i fie d • Wh e nth e 0 u t put i s 
finished, console ODT prints <CR><LF>@. 

If a user accidentally enters this command, it is 
recommended, in order to exit from the command, that two 
@ characters (ASCII 100) be entered as a starting 
address. After the binary dump, an @ prompt character is 
printed. 



• 

J-11 PROGRAM~ERrs REFERENCE Page A-13 

4.5 ADDRESS SPECIFICATION 

All I/O addresses (17 7~0 000 to 17 777 777) must be entered by 
users with all 22 bits specified. For example, if a user desires 
to open the RCSR of the console serial interface he must enter 
177775~0, not 1775~0, or 777Sfi0 • 

4. S. 1 General Registers 

Accessing the general reg ister sets 'is accompl ished in the 
following way. Whenever R0-RS are referenced in console ODT, they 
access the general register set specified by the PS register set 
bit (PS<ll». If a program operating in general register set zero 
(PS<ll> = 0) is halted and a general register is opened, register 
set zero is accessed. Similarily, if a program is operating in 
register set one, "R0-R5" accesses register set one. 

If a specific register set is desired, PS<ll> must be set by the 
user to the appropriate value, and then the "R0"-"RS" commands can 
be used. If an operating program has been hal ted, the or ig inal 
value of PS<ll> must be restored in order to continue execution. 

Example: PS = 000000 

!R4/05252S<SPACE> <CR> <CR><LF> 

R4 in register set zero has been opened. 

@RS/000000<SPACE> 4000 <CR> <CR><LF> 
@R4/177777<SPACE> <CR> <CR><LF> 
!RS/004000<SPACE> 0 <CR> <CR><LF> 
@P 

In th i s cas e, R 4 i n reg i s t e r set 0 n e wa s des ire d • Th e PS wa s 
opened, and PS<ll> was set to 1 (register set one). Then R4 was 
examined and closed. The original value of PS<ll> was restored, 
and then the program was continued using the P command. 



J-ll PROGRAMMER'S REFERENCE Page A-14 

4.5. 2 Stack Pointers 

Accessing kernel, supervisor, and user stack pointer registers is 
accompl i shed in the followi ng way. Whenever Rt) is re f e renced in 
console ODT, it accesses the stack pointer specified by the PS 
current mode bits (PS<15:14». If a program operating in kernel 
mode (PS<15:14> = 00) is halted and R6 is opened, the kernel stack 
pointer is accessed. Similarly, if a program is operating in 
supervisor or user mode, "Rn" accesses the supervisor or user 
s t a c k po in t e r s • 

If a specific stack pointer is desired, PS<15:14> must be set by 
the user to the appropriate value and then the "Rn" command can be 
used. If an operating program has been halted, the original value 
of PS<15:14> must be restored in order to continue execution. 

Example: PS = 140000 

fR6/123456<SPACE> <CR> <CR><LF> 

The user mode stack pointer has been opened. 

@RS/140000<SPACE> 0 <CR> <CR><LF> 
@Rn/123456<SPACE> <CR> <CR><LF> 
!RS/000000<SPACE> 140000<CR> <CR><LF> 
@P 

In this case, the kernel mode stack po inter was desi red. The PS 
was 0 pe ned, and PS < 1 5 : 14 > we res e t to 00 ( k ern elm 0 de). Th en R n 
wa sex ami ned and c los e d • Th e 0 rig ina 1 val ue 0 f PS < 1 5: 1 4 > wa s 
restored, and then the program was continued using the P command. 

4.5.3 Floating Point Accumulators 

The 
ODT. 

4.'1 

flo at i ng po in t a c c urn u 1 a tor s can not be a c c e sse d fro m con sol e 
Only floating point instructions can access these registers. 

ENTERING OCTAL DIGITS 

When the user is specifying an address, console ODT will use the 
last eight octal digits if more than eight have been entered. 
When the user is specifying data, console ODT will use the last 
six 0 c tal dig its i f m 0 ret han six h a v e bee n en t ere d • Th e use r 
need not enter leading 0s for either address or data; console aDT 
forces 0s as the default. If an odd address is entered, console 
ODT responds to the error by printing ?<CR><LF>@. 



J-ll PROGRAMMER'S REFERENCE Page A-IS 

4.7 ODT TIMEOUT 

If the user specifies a nonexistent address or causes a parity 
error, console ODT responds to the error by printing ?<CR><LF>~. 

4.8 INVALID CHARACTERS 

Console ODT will recognize upper- and lowercase characters as 
commands. Any character that console ODT does not recogni ze 
during a particular sequence is echoed (except for ASCII 
characters in the range 0 17 8 ), and console ODT prints 
?<CR><LF>@. Console ODT has sever'al internal states, each of 
which has its own set of val id input characters. When in a 
particular state, only commands specific to that state are valid. 
This is done to lower the probability of a user unintentionally 
destroying a program by pressing the wrong key. 


	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15

