What Have We Learned from the PDP-11?

C. Gordon Bell

Digital Equipment Corporation
Maynard, Massachusetts

and

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania

In the six years that the PDP-11 has been on the market, more than 20,000 units in 10
different models have been sold. Although one of the original system design goals was a
broad range of models, the actual range of 500 to 1 (in cost and memory size) has
exceeded the design goals.

The PDP-11 was designed to be a small computer, yet its design has been successfully
extended to high-performance models. This paper recollects the experience of designing
the PDP-11, commenting on its success from the point of view of its goals, its use of
technology, and on the people who designed, built and marketed it.

1. INTRODUCTION

A computer is not solely determined by its architecture; it reflects the
technological, economic, and human aspects of the environment in which
it was designed and built. Most of the non-architectural design factors lie
outside the control of the designer: the availability and price of the basic
electronic technology, the various government and industry rules and
standards, the current and future market conditions. The finished com-
puter is a product of the total design environment.

In this chapter, we reflect on the PDP-11: its goals, its architecture, its
various implementations, and the people who designed it. We examine the
design, beginning with the architectural specifications, and observe how it
was affected by technology, by the development organization, the sales,
application, and manufacturing organizations, and the nature of the final
users. Figure 1 shows the various factors affecting the design of a com-
puter. The lines indicate the primary flow of informatiop for product
behavior and specifications. The physical flow of materials is along nearly

7

physical flow

______] .| FEL
r MANUFACTURING service [oom0- 2
| I !
1 4 : '
| 1
Il 1
BASIC RBD; TeoNO oGy — | APPLICATIONS
ADVANCED — Eo SEmL IMPLEMENTATION (HARDWARE / MKT/SALES USER
DEVELOPMENT| | | (o Ptee) 1 SOFTWARE)
L !
ARCHITECTURE |— \
- Competitors
|
Governments, standards, | _—* OP. sYSs. 1
testing, professional
societies
LANGUAGES |—

flow of information (specifications, ideas, etc.)

Fig. 1. Structure of organization affecting a computer design.

What Have We Learned from the PDP-11? 9

the same lines, but more direct: beginning with the applied technology
manufacturers, material moves through computer manufacturing and then
to service personnel before delivery to the end user.

2. BACKGROUND: THOUGHTS BEHIND THE DESIGN

It is the nature of computer engineering to be goal-oriented, with
pressure to produce deliverable products. It is therefore difficult to plan for
an extensive lifetime. Nevertheless, the PDP-11 evolved rapidly, and over
a much wider range than we expected. This rapid evolution would have
placed unusual stress even on a carefully planned system. The PDP-11 was
not extremely well planned or controlled; rather it evolved under pressure
from implementation and marketing groups.

Because of the many pressures on the design, the planning was asynch-
ronous and diffuse; development was distributed throughout the company.
This sort of decentralized design organization provides a system of checks
and balances, but often at the expense of perfect hardware compatibility.
This compatibility can hopefully be provided in the software, and at lower
cost to the user. ‘

Despite its evolutionary planning, the PDP-11 has been quite successful
in the marketplace: over 20,000 have been sold in the six years that it has
been on the market (1970-1975). It is not clear how rigorous a test (aside
from the marketplace) we have given the design, since a large and aggres-
sive marketing organization, armed with software to correct architectural
inconsistencies and omissions, can save almost any design.

It has been interesting to watch as ideas from the PDP-11 migrate to
other computers in newer designs. Although some of the features of the
PDP-11 are patented, machines have been made with similar bus and ISP
structures. One company has manufactured a machine said to be “plug
compatible” with a PDP-11/40. Many designers have adopted the UNI-
BUS as their fundamental architectural component. Many microprocessor
designs incorporate the UNIBUS notion of mapping I/O and control
registers into the memory address space, eliminating the need for I1/0
instructions without complicating the I/0O control logic. When the LSI-11
was being designed, no alternative to the UNIBUS-style architecture was
even considered.

An earlier paper [Bell et al. 70] described the design goals and con-
straints for the PDP-11, beginning with a discussion of the weaknesses
frequently found in minicomputers. The designers of the PDP-11 faced
each of these known minicomputer weaknesses, and our goals included a

solution to each one. In this section we shall review the original design

10 C. Gordon Bell

goals and constraints, commenting on the success or failure of the PDP-11
at meeting each of them.

The first weakness of minicomputers was their limited addressing capa-
bility. The biggest (and most common) mistake that can be made in a
computer design is that of not providing enough address bits for memory
addressing and management. The PDP-11 followed this hallowed tradition
of skimping on address bits, but it was saved by the principle that a good
design can evolve through at least one major change.

For the PDP-11, the limited-address problem was solved for the short
run, but not with enough finesse to support a large family of minicom-
puters. That was indeed a costly oversight, resulting in both redundant
development and lost sales. It is extremely embarassing that the PDP-11
had to be redesigned with memory management only two years after
writing the paper that outlined the goal of providing increased address
space. All predecessor DEC designs have suffered the same problem, and
only the PDP-10 evolved over a long period (ten years) before a change
was needed to increase its address space. In retrospect, it is clear that since
memory prices decline 26 to 41% yearly, and users tend to buy “constant-
dollar” systems, then every two or three years another address bit will be
required.

A second weakness of minicomputers was their tendency not to have
enough registers. This was corrected for the PDP-11 by providing eight
16-bit registers. Later, six 32-bit registers were added for floating-point
arithmetic. This number seems to be adequate: there are enough registers
to allocate two or three (beyond those already dedicated to program
counter and stack pointer) for program global purposes and still have
registers for local statement computation. More registers would increase
the multiprogramming context switch time and confuse the user.

A third weakness of minicomputers was their lack of hardware stack
capability. In the PDP-11, this was solved with the autoincrement/auto-
decrement addressing mechanism. This solution is unique to the PDP-11
and has proven to be exceptionally useful. (In fact, it has been copied by
other designers.)

A fourth weakness, limited interrupt capability and slow context switch-
ing, was essentially. solved with the device of UNIBUS interrupt vectors,
which direct device interrupts. Implementations could go further by pro-
viding automatic context saving in memory or in special registers. This
detail was not specified in the architecture, nor has it evolved from any of
the implementations to date. The basic mechanism is very fast, requiring
only four memory cycles from the time an interrupt request is issued until
the first instruction of the interrupt routine begins execution.

A fifth weakness of prior minicomputers, inadequate character-handling
capability, was met in the PDP-11 by providing direct byte addressing

What Have We Learned from the PDP-11? 1

capability. Although string instructions are not yet provided in the hard-
ware, the common string operations (move, compare, concatenate) can be
programmed with very short loops. Benchmarks have shown that systems
which depend on this string-handling mechanism do not suffer for it.

A sixth weakness, the inability to use read-only memories, was avoided
in the PDP-11. Most code written for the PDP-11 tends to be pure and
reentrant without special effort by the programmer, allowing a read-only
memory (ROM) to be used directly. ROMs are used extensively for
bootstrap loaders, program debuggers, and for normal simple functions.
Because large ROMs were not available at the time of the original design,
there are no architectural components designed specifically with large
ROMs in mind.

A seventh weakness, one common to many minicomputers, was primi-
tive I/O capabilities. The PDP-11 answers this to a certain extent with its
improved interrupt structure, but the more general solution of I/0
processors has not yet been implemented. The I/O-processor concept is
used extensively in the GT4X display series, and for signal processing.
Having a single machine instruction that would transmit a block of data at
the interrupt level would decrease the CPU overhead per character by a
factor of three, and perhaps should have been added to the PDP-11
instruction set.

Another common minicomputer weakness was the lack of system range.
If a user had a system running on a minicomputer and wanted to expand it
or produce a cheaper turnkey version, he frequently had no recourse, since
there were often no larger and smaller models with the same architecture.
The problem of range and how it is handled in the PDP-11 is discussed
extensively in a later section.

A ninth weakness of minicomputers was the high cost of programming
them. Many users program in assembly language, without the comfortable
environment of editors, file systems, and debuggers available on bigger
systems. The PDP-11 does not seem to have overcome this weakness,
although it appears that more complex systems are being built successfully
with the PDP-11 than with its predecessors, the PDP-8 and PDP-15.
Some systems programming is done using higher-level languages; the
optimizing compiler for Briss—11, however, runs only on the PDP-10.

One design constraint that turned out to be expensive, but probably
worth it in the long run, was that the word length had to be a multiple of
eight bits. Previous DEC designs were oriented toward 6-bit characters,
and DEC has a large investment in 12-, 18-, and 36-bit systems. The notion
of word length is somewhat meaningless in machines like the PDP-11 and
the IBM System/360, because data types are of varying length, and
instructions tend to be multiples of 16 bits.

Microprogrammability was not an explicit design goal, partially since

12 C. Gordon Bell

the large ROMs which make it feasible were not available at the time of
the original Model 20 implementation. All subsequent machines have been
microprogrammed, but with some difficulty and expense.

Understandability as a design goal seems to have been minimized. The
PDP-11 was initially a hard machine to understand, and was marketable
only to those who really understood computers. Most of the first machines
were sold to knowledgeable users in universities and research laboratories.
The first programmers’ handbook was not very helpful, and the second,
arriving in 1972, helped only to a limited extent. It is still not clear whether
a user with no previous computer experience can figure out how to use the
machine from the information in the handbooks. Fortunately, several
computer science textbooks [Gear 74, Eckhouse 75, and Stone and
Siewiorek 75] have been written based on the PDP-11; their existence
should assist the learning process.

We do not have a very good understanding of the style of programming
our users have adopted. Since the machine can be used so many ways,
there have been many programming styles. Former PDP-8 users adopt a
one-accumulator convention; novices use the two-address form; some
compilers use it as a stack machine; probably most of the time it is used as
a memory-to-register machine with a stack for procedure calling.

Structural flexibility (modularity) was an important goal. This succeeded
beyond expectations, and is discussed extensively in the UNIBUS section.

3. TECHNOLOGY: COMPONENTS OF THE DESIGN

The nature of the computers that we build is strongly influenced by the
basic electronic technology of their components. The influence is so strong,
in fact, that the four generations of computers have been named after the
technology of their components: vacuum-tube, single semiconductors
(transistors), integrated circuits (multiple transistors packaged together),
and LSI (large-scale integration). The technology of an implementation is
the major determinant of its cost and performance, and therefore of its
product life. In this section, we shall examine the relationship of computer
design to its supporting technology.

3.1. Designing with Improved Technologles

Every electronic technology has its own set of characteristics, all of
which the designer must balance in his choice of a technology. They have
different cost, speed, heat dissipation, packing density, reliability, etc.
These factors combine to limit the applicability of any one technology;
typically, we use one until we reach some such limit, then convert to

What Have We Learned from the PDP-11? 13

another. Often the reasons for the existence of a newer technology will lie
outside the computer industry: integrated circuits, for example, were
developed to meet aerospace requirements.

When an improved basic technology becomes available to a computer
designer, there are three paths he can take to incorporate that technology
in a design: use the newer technology to build a cheaper system with the
same performance, hold the price constant and use the technological
improvement to get a slight increase in performance, or push the design to
the limits of the new technology, thereby increasing both performance and
price.

If we hold the cost constant and use the improved technology to get
better performance, we will get the best increase in total-system cost
effectiveness. This approach provides a growth in quality at a constant
price and is probably the best for the majority of existing users.

If we hold the performance constant and use the improved technology to
lower the cost, we will build machines that make new applications possible.
The minicomputer (for minimal computer) has traditionally been the
vehicle for entering new applications, since it has been the smallest
computer that could be constructed with a given technology. Each year, as
the price of the minimal computer continues to decline, new applications
become economically feasible. The microprocessor, or processor-on-a-chip,
is a new yet evolutionary technology that again provides alternatives to
solve new problems.

If we use the new technology to build the most powerful machine
possible, then our designs advance the state of the art. We can build
completely new designs that can solve problems previously not considered
feasible. There are usually two motivations for operating ahead of the state
~of the art: preliminary research motivated by the knowledge that the
technology will catch up, and national defense, where an essentially
infinite amount of money is available because the benefit—avoiding
annihilation—is infinite.

3.2. Specific Improvements in Technology

The evolution of a computer system design is shaped by the technology
of its constituent parts. Machines of varying sizes will often be based on
different technologies, and will therefore evolve differently as the compo-
nent evolutions differ.

The evolutionary rate of computers has been determined almost exclu-
sively by the technology of magnetic storage and semiconductor logic.
Memory is the most basic component of a computer, and it is used
throughout the design. Besides the obvious uses as “main” program memory

14 C. Gordon Bell

and file storage devices (disks and tapes), we find memory inside the
processor in the form of registers and indicators, memory as a cache
between the processor and the program memory, and memory in I/0O
devices as buffers and staging areas. Memory can be substituted for nearly
all logic, by substituting table-lookup for computation. We are therefore
deeply interested in all forms of memory used throughout a computer
system.

Disk technology has evolved in a different style than the primary
memory devices. The price of a physical structure, such as a disk pack with
10 platters, actually increases somewhat in time, but the storage density per
square inch increases dramatically. IBM’s disk packs with 10 platters
(beginning with the 1311) have increased in capacity at the rate of 42% per
year, and the price per bit has decreased at 38% per year. For disks, there
has been an economy of scale; the number of bits for larger disk units
increases more rapidly than cost, giving a decreased cost per bit. The
overhead of motors, power supply, and packaging increases less rapidly
with size. Also, more effort is placed to increasing the recording density of
larger disks. The technology developed for the large disks shows up on
smaller designs after several years.

‘The price of a chip of semiconductor memory is essentially independent
of its size. A given design is available for one or two years at a high price
(about $10 per chip) while people buy in to evaluate the component.
Within a year, enough have been sold that the price drops sharply,
sometimes by more than a factor of two. The density of state-of-the-art
laboratory semiconductor memory has doubled every year since 1962. The
relative growth of different semiconductor technologies is shown in Table
I; the density of MOS read /write is used as a reference.

Keeping in mind this simple model for the growth of specific semicon-
ductor technologies, we find the situation shown in Table II.

The various technology improvement rates per year for other major
components are 30% for magnetic cores, 25% for terminals, 23% for
magnetic tape density, 29% for magnetic tape performance, and -3% for
packaging and power. The total effect of all component technologies on
minicomputers has been an average price decline of about 31% per year

TABLE I
Bipolar read /write Lags by 2 years
Bipolar read-only Lags by 1 year
MOS read /write (Reference year)
MOS read-only Leads by 1 year

Production volumes Lags by 1 or 2 years

What Have We Learned from the PDP-11? 15

TABLE I1
Production
Technology Bits availability
Bipolar read /write 16 1969-1970
64 1971-1972
1024 1975-1976
MOS read /write 16,384 1977-1978
Bipolar read-only 256 1971-1972
1024 1974-1975
2048 1975-1976

[Bell and Newell 71). In 1972 an 8-bit 1-chip microprocessor was in-
troduced; the price of these machines is declining at a rate comparable to
the 12- and 16-bit minicomputers. In summary, if we look at the price/
performance behavior of computers over time, the computer performance
simply tracks memory performance.

3.3. PDP-11 Evolution through Memory Technologies

The design of the PDP-11 series began in 1969 with the Model 20.
Subsequentiy, three models were introduced as minimum-cost, best
cost/performance, and maximum-performance machines. The memory
technology of 1969 imposed several constraints. First, core memory was
cost effective for the primary (program) memory, but a clear trend toward
semiconductor primary memory was visible. Second, since the largest
high-speed read /write memories available were 16 words, then the number
of processor registers should be kept small. Third, there were no large
high-speed read-only memories that would have permitted a micropro-
grammed approach to the processor design.

These constraints established four design attitudes toward the PDP-11’s
architecture. First, it should be asynchronous, and thereby capable of
accepting different configurations of memory that operate at different
speeds. Second, it should be expandable to take eventual advantage of a
larger number of registers, both user registers for new data types and
internal registers for improved context switching, memory mapping and
protected multiprogramming. Third, it could be relatively complex, so that
a microcode approach could eventually be used to advantage: new data
types could be added to the instruction set to increase performance, even
though they might add complexity. Fourth, the UNIBUS width should be
relatively large, to get as much performance as possible, since the amount
of computation possible per memory cycle is relatively small.

16 C. Gordon Bell

As semiconductor memory of varying price and performance became
available, it was used to trade cost for performance across a reasonably
wide range of models. Different techniques were used on different models
to provide the range. These techniques include microprogramming to
enhance performance (for example, faster floating point), use of faster
program memories for brute-force speed improvements, use of fast caches
to optimize program memory references, and expanded use of fast registers
inside the processor.

3.3.1. MICROPROGRAMMING

Microprogramming is the technique by which the conventional logic of a
sequential machine is replaced by an encoded representation of the logic
and circuitry to decode that microprogram. Microprograms are stored in
conventional random-access memories, though often in read-only versions.

Computer designers use microprogramming because it permits relatively
complex control sequences to be generated without proportionately com-
plex logic. It is therefore possible to build more complex processors
without the attendant problems of making such large sequential circuits.
Additionally, it is much easier to include self-diagnosis and maintenance
features in microprogrammed logic. Microprogramming depends on the
existence of fast memories to store the microprograms. The memory speed
is determined by the task at hand: whether it be for an electric typewriter
or a disk controller, the microprogram memory must be fast enough to
keep up with the application. Typically, processors and fast disks present
the most difficult control problems.

Microprogramming a fast, complex processor often presents a dilemma,
since the technology used for the microprogram memory is often used for
the main program memory. But a microprogram needs to run 5 to 10 times
as fast as the primary memory if all components are to be fully utilized. To
be cost effective, microprogramming depends on the microstore memories
being cheaper than conventional combinatorial logic. Some circuits may be
cheaper and faster built out of conventional sequential components, while
others will be cheaper or faster if microprogrammed. It depends on the
number of logic states, inputs, and outputs.

3.3.2. SEMICONDUCTORS FOR PROGRAM MEMORY

We naturally expect that semiconductor memory will ultimately replace
core for primary program memories, given their relative rates of price
decline (60-100% per year versus 30% per year). The crossover time,
determined by a function of the basic costs for different producer—con-
sumer pairs, is complex. It includes consideration of whether there is an
adequate supply of production people in the labor-intensive core assembly

What Have We Learned from the PDP-11? 17

process, as well as the reliability and service costs. For IBM, with both
core and semiconductor memory technology in-house, the cost crossover
occurred in 1971; IBM offered semiconductor memory (actually bipolar)
on System /370 (Model 145) and System /7 computers. Within DEC, which
has cores and core stacks manufacturing, the crossover point has not yet
occurred for large memories. It occurred for small memories (less than
16K) in 1975. In 1969 IBM first delivered the 360 Model 85, which used a
mixture of 80-nsec bipolar and. 1800-nsec core. This general structure,
called a cache has been used in the PDP-11/70. The effect on core
memories has been to prod their development to achieve lower costs.
Recent research has shown that it is possible to hold several states (4 to 16)
in a single core. A development of this type, in effect, may mean up to
three years additional life in core memory systems.

3.3.3. PROGRAM MEMORY CACHING

A cache memory is a small fast associative memory located between the
central processor Pc and the primary memory Mp. Typically, the cache is
implemented in bipolar technology while Mp is implemented in MOS or
magnetic core technology. The cache contains address/data pairs consist-
ing of an Mp address and a copy of the contents of that address. When the
Pc references Mp, the address is compared against the addresses stored in
the cache. If there is a match, then Mp is not accessed, rather the datum is
retrieved directly from the cache. If there is no match, then Mp is accessed
as usual. Generally, when an address is not found in the cache, it is placed
there by the “not found” circuitry, thereby bumping some other address
that was in the cache. Since programs frequently cluster their memory
references locally, even small caches provide a large improvement over the
basic speed of Mp.

A significant advantage of a cache is that it is totally transparent to all
programs; no software changes need be made to take advantage of it. The
PDP-11/70 uses a cache to improve on memory speed.

4. PEOPLE: BUILDERS OF THE DESIGN

Any design project, whether for computers or washing machines, is
shaped by the skill, style, and habit of its designers. In this section, we shall
outline the evolutionary process of the PDP-11 design, describing how the
flavor of the designs was subtly determined by the style of the designers.

A barely minimal computer, i.e., one that has a program counter and a
few instructions and that can theoretically be programmed to compute any
computable function, can be built trivially. From this minimal point,

18 C. Gordon Bell

performance increases. Eventually the size increases and the design be-
comes unbuildable or nearly unprogrammable, and therefore not market-
able. The designer’s job is to find a point on the cost/performance curve
representing a reasonable and marketable design, and produce the
machine corresponding to that point. There is a nearly universal tendency
of designers to n+ 1 their systems: incrementally improve the design
forever. No design is so perfect that a redesign cannot improve it.

The problems faced by computer designers can usually be attributed to
one of two causes: inexperience or second-systemitis. Inexperience is just a
problem of resources: Are there designers available? What are their back-
grounds? Can a small group work effectively on architectural specifica-
tions? Perhaps most important is the principle that no matter who the
architect might be, the design must be clearly understood by at least one
person. As long as there is one person who clearly understands the total
design, a project can usually succeed with many inexperienced designers.
Second-systemitis is the tendency of many designers to specify a system
that solves all of the problems faced by prior systems—and borders on the
unbuildable.

We can see the results of second-systemitis in the history of the PDP-8
implementation designs: alternate designs were bigger, then cheaper. The
big designs solved the performance problems of the smaller ones; then the
smaller ones solved the cost problems of the bigger ones.

4.1. The System Architecture

Some of the initial work on the architecture of the PDP-11 was done at
Carnegie-Mellon University by Harold McFarland and Gordon Bell. Two
of the useful ideas, the UNIBUS and the generalized use of the program
registers (such as for stack pointers and program counters), came out of
earlier work by Gordon Bell and were described in Bell and Newell [71].
The d=tailed design specification was the work of Harold McFarland and
Roger Cady.

The PDP-11/20 was the first model designed. Its design and implemen-
tation took place more or less in parallel, but with far less interaction
between architect and builder than for previous DEC designs, where the
first architect was the implementor. As a result, some of the architectural
specifications caused problems in subsequent designs, especially in the area
of microprogramming.

As there began to appear other models besides the original Model 20,
strong architectural controls disappeared; there was no one person respon-
sible for the family-wide design. A similar loss of control occurred in the
design of the peripherals after the basic design.

What Have We Leamed from the PDP-11? 19

4.2. A Chronology of the Design

The internal organization of DEC design groups has through the years
oscillated between market orientation and product orientation. Since the
company has been growing at a rate of 30 to 40% a year, there has been a
constant need for reorganization. At any given time, one third of the staff
has been with the company less than a year.

At the time of the PDP-11 design, the company was structured along
product lines. The design talent in the company was organized into tight
groups: the PDP-10 group, the PDP-15 (an 18-bit machine) group, the
PDP-8 group, an ad hoc PDP-8/S subgroup, and the LINC-8 group.
Each group included marketing and engineering people responsible for
designing a product, software and hardware. As a result of this organiza-
tion, architectural experience was diffused among the groups, and there
was little understanding of the notion of a range of products.

The PDP-10 group was the strongest group in the company. They built
large, powerful time-shared machines. It was essentially a separate division
of the company, with little or no interaction with the other groups.
Although the PDP-10 group as a whole had the best understanding of
system architectural controls, they had no notion of system range, and
were only interested in building higher-performance computers.

The PDP-15 group was relatively strong, and was an obvious choice to
build the new mid-range 16-bit PDP-11. The PDP-15 series was a con-
stant-cost series that tended to be optimized for cost performance. How-
ever, the PDP-11 represented direct competition with their existing line.
Further, the engineering leadership of that group changed from one
implementation to the next, and thus there was little notion of architectural
continuity or range.

The PDP-8 group was a close-knit group who did not communicate very
much with the rest of the company. They had a fair understanding of
architecture, and were oriented toward producing minimal-cost designs
with an occasional high-performance model. The PDP-8/S “group” was
actually one person, someone outside the regular PDP-8 group. The
PDP-8/S was an attempt to build a much lower-cost version of the PDP-8
and show the group engineers how it should be done. The 8 /S worked, but
it was not terribly successful because it sacrificed too much performance in
the interests of economy.

The LINC-8 group produced machines aimed at the biomedical and
laboratory market, ¢ . had the greatest engineering strength outside the
PDP-10 group. The LINC-8 people were really the most systems oriented.
The LINC design came originally from MIT’s Lincoln Laboratory, and
there was dissent in the company as to whether DEC should continue to
build it or to switch software to the PDP-38.

20 C. Gordon Bell

The first design work for a 16-bit computer was carried out under the
eye of the PDP-15 manager, a marketing person with engineering back-
ground. This first design was called PDP-X, and included specification for
a range of machines. As a range architecture, it was better designed than
the later PDP-11, but was not otherwise particularly innovative. Unfor-
tunately, this group managed to convince management that their design
was potentially as complex as the PDP-10 (which it was not), and thus
ensured its demise, since no one wanted another large computer unrelated
to the company’s main large computer. In retrospect, the people involved
in designing PDP-X were apparently working simultaneously on the
design of Data General.

As the PDP-X project folded, the DCM (Desk Calculator Machine, a
code name chosen for security) was started. Design and planning were in
disarray, as Data General had been formed and was competing with the
PDP-8, using a very small 16-bit computer. Work on the DCM progressed
for several months, culminating in a design review at Carnegie-Mellon
University in late 1969. The DCM review took only a few minutes; the
general feeling was that the machine was dull and would be hard to
program. Although its benchmark results were good, we now believe that it
had been tuned to the benchmarks and would not have fared well on other
sorts of problems.

One of the DCM designers, Harold McFarland, brought along the
kernel of an alternative design, which ultimately grew into the PDP-11.
Several people worked on the design all weekend, and ended by recom-
mending a switch to the new design. The machine soon entered the
design-review cycle, each step being an n + 1 of the previous one. As part
of the design cycle, it was necessary to ensure that the design could achieve
a wide cost/performance range. The only safe way to design a range is to
simultaneously do both the high-and low-end designs. The 11/40 design
was started right after the 11/20, although it was the last to come on the
market. The low and high ends had higher priority to get into production,
as they extended the market.

Meanwhile an implementation was underway, led by Jim O’Laughlin.
The logic design was conventional, and the design was hampered by the
holdover of ideas and circuit boards from the DCM. As ideas were tested
on the implementation model, various design changes were proposed; for
example, the opcodes were adjusted and the UNIBUS width was increased
with an extra set of address lines.

With the introduction of large read-only memories, various follow-on
designs to the Model 20 were possible. Figure 2 sketches the cost of
various models over time, showing lines of constant performance. The
graphs show clearly the differing design styles used in the different models.

What Have We Learned from the PDP-11? 21

Log
Price- Pc + Mp only

| N N\ 80 \\

cost/performance designs
20\ N N\
AN

AN AN
N\ N \ \
AN N\ \ \
N N N
3001-based ?\\\ lines of constant performance
’ \. (and decreasing price)
minimum N
cost designs \ \
N \
i —~+ AN
7o T2 75— t

Fig. 2. BDP_11 models price versus time with lines of constant performance.

The 11/40 and 11/45 design groups went through extensive “buy-in”
processes, as they each came to the PDP-11 by first proposing alternative
designs. The people who ultimately formed the 11 /45 group had started by
proposing a PDP-11-like 18-bit machine with roots in the PDP-15. Later a
totally different design was proposed, with roots in the LINC group, that
was instruction subset-compatible at the source program level. As the
groups considered the impact of their changes on software needs, they
rapidly joined the mainstream of the PDP~11 design.

Note from Fig. 2 that the minimum-cost group had two successors to
their original design, one cheaper with slightly improved performance, the
other the same price with greatly improved performance and flexibility.

5. THE PDP-11: AN EVALUATION

The end product of the PDP-11 design is the computer itself, and in the
evolution of the architecture we can see images of the evolution of ideas.
In this section, we outline the architectural evolution, with a special
emphasis on the UNIBUS.

In general, the UNIBUS has behaved beyond all expectations. Several
hundred types of memories and peripherals have been interfaced to it; it
has become a standard architectural component of systems in the $3K to
$100K price range (1975). The UNIBUS is a price and performance
equalizer: it limits the performance of the fastest machines and penalizes

22 C. Gordon Bell

the lower-performance machines with a higher cost. For larger systems,
supplementary buses were added for Pc-Mp and Mp—-Ms traffic. For very
small systems like the LSI-11, a narrower bus (called a Q-bus) was
designed.

The UNIBUS, as a standard, has provided an architectural component
for easily configuring systems. Any company, not just DEC, can easily
build components that interface to the bus. Good buses make good
engineering neighbors, since people can concentrate on structured design.
Indeed, the UNIBUS has created a secondary industry providing alterna-
tive sources of supply for memories and peripherals. With the exception of
the IBM 360 Multiplexor/Selector bus, the UNIBUS is the most widely
used computer interconnection standard.

5.1. The Architecture and the UNIBUS

The UNIBUS is the architectural component that connects together all
of the other major components. It is the vehicle over which data flow takes
place. Its structure is shown in Fig. 3. Traffic between any pair of
components moves along the UNIBUS. The original design anticipated the
following traffic flows.

1. Pc—Mp for the processor’s programs and data.

2. Pc-K for the processor to issue I/O commands to the controller X.

3. K-Pc, for the controller K to interrupt the Pec.

4. Pc-K for direct transmission of data from a controller to Mp under
control of the Pc.

5. K—Mp for direct transmission of data from a controller to Mp; i.e.,
DMA data transfer.)

6. K-T-K-Ms, for direct transmission of data from a device to sec-
ondary memory without intervening Mp buffering; e.g., a disk refreshing a
CRT.

Experience has shown that paths 1 through 5 are used in every system
that has a DMA (direct memory access) device. An additional communica-
tions path has proved useful: demons, i.e., special Kio/Pio/Cio com-

Fig. 3. UNIBUS structure.

(UNIBUS)

What Have We Learned from the PDP-11? 23

municating with a conventional K. These demons are used for direct
control of another K in order to remove the processing load from Pc.

Several examples of a demon come to mind: a K that handles all
communication with a conventional subordinate Kio (e.g., an A/D con-
verter interface or communications line); a full processor executing from
Mp a program to control K; or a complete /0O computer, Cio, which has a
program in its local memory and which uses Mp to communicate with Pc.
Effectively, Pc and the demon act together, and the UNIBUS connects
them. Demons provide a means of gracefully off-loading the Pc by adding
components, and is useful for handling the trivial pre-processing found in
analog communications, and process-control 1/0.

5.1.1. UNEXPECTED BENEFITS FROM THE DESIGN

The UNIBUS has turned out to be invaluable as an “umbilical cord” for
factory diagnostic and checkout procedures. Although such a capability
was not part of the original design, the UNIBUS is almost capable of
dominating the Pc, Tk’s, and Mp during factory checkout and diagnostic
work.

Ideally, the scheme would let all registers be - accessed during full
operation. This is now possible for all devices except Pc. By having all Pc
registers available for reading and writing in the same way that they are
now available from the console switches, a second system could fully
monitor the computer in the same fashion as a human. Although the DEC
factory uses a UNIBUS umbilical cord to watch systems under test,
human intervention is occasionally required.

In most recent PDP-11 models, a serial communications line is con-
nected to the console, so that a program may remotely examine or change
any information that a human operator could examine or change from the
front panel, even when the system is not running,

5.1.2 DIFFICULTIES WITH THE DESIGN

The UNIBUS design is not without problems. Although two of the bus
bits were in the original design set aside as parity bits, they have not been
widely used as such. Memory parity was implemented directly in the
memory; this phenomenon is a good example of the sorts of problems
encountered in engineering optimization. The trading of bus parity for
memory parity exchanged higher hardware cost and decreased perfor-
mance for decreased service cost and better data integrity. Since engineers
are usually judged on how well they achieve production cost goals, parity
transmission is an obvious choice to pare from a design, since it increases

24 C. Gordon Bell

the cost and decreases the performance. As logic costs decrease and
pressure to include warranty costs as part of the product design cost
increases, the decision to transmit parity might be reconsidered.

Early attempts to build multiprocessor structures (by mapping the
address space of one UNIBUS onto the memory of another) were beset
with deadlock problems. The UNIBUS design does not allow more than
one master at a time. Successful multiprocessors required much more
sophisticated sharing mechanisms than this UNIBUS Window.

At the time the UNIBUS was designed, it was felt that allowing 4K
bytes of the address space for I/O control registers was more than enough.
However, so many different devices have been interfaced to the bus over
the years that it is no longer possible to assign unique addresses to every
device. The architectural group has thus been saddled with the chore of
device address bookkeeping. Many solutions have been proposed, but
none was soon enough; as a result, they are all so costly that it is cheaper
just to live with the problem and the attendant inconvenience.

5.2. UNIBUS Cost and Performance

Although performance is always a design goal, so is low cost; the two
goals conflict directly. The UNIBUS has turned out to be nearly optimum
over a wide range of products. However, in the smallest system, we
introduced the Q-bus, which uses about half the number of conductors.
For the largest systems, we use a separate 32-bit data path between
processor and memory, although the UNIBUS is still used for communica-
tion with most I/0 controllers. The UNIBUS slows down the high-perfor-
mance machines and increases the cost of low-performance machines; it is
optimum over the middle range.

There are several attributes of a bus that affect its cost and performance.
One factor affecting performance is simply the data rate of a single
conductor. There is a direct tradeoff among cost, performance, and relia-
bility. Shannon [48] gives a relationship between the fundamental signal
bandwidth of a link and the error rate (signal-to-noise ratio) and data rate.
The performance and cost of a bus are also affected by its length. Longer
cables cost proportionately more, and the longer propagation times
necessitate more complex circuitry to drive the bus.

Since a single-conductor link has a fixed data rate, the number of
conductors affects the net speed of a bus. The cost of a bus is directly
proportional to the number of conductors. For a given number of wires,
time-domain multiplexing and data encoding can be used to trade perfor-

What Have We Learned from the PDP-11? 25

mance and logical complexity. Since logic technology is advancing faster
than wiring technology, we suspect that fewer conductors will be used in
all future systems. There is also a point at which time-domain multiplexing
impacts performance.

If during the original design of the UNIBUS we could have forseen the
wide range of applications to which it would be applied, its design would
have been different. Individual controllers might have been reduced in
complexity by more central control. For the largest and smallest systems, it
would have been useful to have a bus that could be contracted or
expanded by multiplexing or expanding the number of conductors.

The cost-effective success of the UNIBUS is due in large part to the high
correlation between memory size, number of address bits, I/0 traffic, and
processor speed. Amdahl’s rule of thumb for IBM computers is that 1 byte
of memory and 1 byte/sec of I /O are required for each instruction/sec. For
DEC applications, with emphasis in the scientific and control applications,
there is more computation required per memory word. Further, the
PDP-11 instruction sets do not contain the complex instructions typical of
IBM computers, so a larger number of instructions will be executed to
accomplish the same task. Hence, we assume 1 byte of memory for each 2
instructions/sec, and that 1 byte/sec of I/0O occurs for each instruction/
sec.

In the PDP-11, an average instruction accesses 3-5 bytes of memory, so
assuming 1 byte of I1/0 for each instruction/sec, there are 4-6 bytes of
memory accessed on the average for each instruction/sec. Therefore, a bus
that can support 2 megabyte/sec traffic permits instruction execution rates
of 0.33-0.5 megainstructions/sec. This implies memory sizes of 0.16-0.25
megabytes; the maximum allowable memory is 0.064—0.256 megabytes. By
using a cache memory on the processor, the effective memory processor
rate can be increased to balance the system further. If fast floating point
instructions were added to the instruction set, the balance would approach
that used by IBM and thereby require more memory (seen in the 11/70).

5.3. Evolution of the Design

The market life of a computer is determined in part by how well the
design can gracefully evolve to accommodate new technologies, innova-
tions, and market demands. As component prices decrease, the price of the
computer can be lowered, and by compatible improvements to the design
(the “mid-life kicker™), the useful life can be extended. An example of a
mid-life kicker is the writable control store for user microprogramming of

26 C. Gordon Bell

K(UNIBUS) Pc T.. Ms..
Mp{ﬁ_ 1
S

1 f
Mp{_HL KUNIBUS) Pc t.. Ms..

—
Mp:
K(UNIBUS)

Fig. 4. Use of dual Pc multiprocessor system with processorless UNIBUS for 1/0 data
transmission (from Bell et al. [70]).

the 11/40 [Almes ef al. 75]. The PDP-11 designs have used the mid-life
kicker technique occasionally. In retrospect, this was probably poor plan-
ning. Now that we understand the problem of extending a machine’s useful
life, this capability can be more easily designed in.

In the original PDP-11 paper [Bell et al. 70], it'was forecast that there
would evolve models with increased performance, and that the means to
achieve this increased performance would include wider data paths, multi-
processors, and separate data and control buses for I/O transfers. Nearly
all of these devices have been used, though not always in the style that had
been expected.

Figure 4 shows a dual-processor system as originally suggested. A
number of systems of this type have been built, but without the separate
1/0 data and control buses, and with minimal sharing of Mp. The switch
S permitting two computers to access a single UNIBUS, has been widely
used in high-availability high-performance systems.

In designing higher-performance models, additional buses were added so

D('FPIl Floating Point Processor)

UNIBUS A
- Map;'KTH-C -
Pe) ———=
C} K[Memory MunagememJ addresses
-— .
UNIBUS B
swé'g (for second Pc)
K (memory)
Mp (Bipolar)
Mp (MOS)

Fig. 5. PMS structure of 11/45.

What Have We Learned from the PDP-11? 27

D(Floating Point Processor}

'Tc UNIBUS 1
K (Mem. K(map) K(#1:4) Ms/T—
Mgmt.
Mc——[—l J amt.)
e
Mp... Massbus
32 bit

Fig. 6. PMS structure of 11/70.

that a processor could access fast local memory. The original design never
anticipated the availability of large fast semiconductor memories. In the
past, high-performance machines have parlayed modest gains in compo-
nent technology into substantially more performance by making architec-
tural changes based on the new component technologies. This was the case
with both the PDP-11/45 (see Fig. 5) and the PDP-11/70 (see Fig. 6).
In the PDP-11/45, a separate bus was added for direct access to either

Data/address lines (16 -bits)

LST-11 bus Contro!

—

ALU 8-bits Flags

MU | ML
A B

26, 8-bit
Registers

I C

Y y

Control
(including 2 program-logic arrays)}

o=

oP AJ__B

address

*
512 X 22 - bit 1
b~ control memory

512 X 22 - bit 4
control memory

Fig. 7a. PDP — 11/03 (LSI-11) block diagram. (* indicates one LSI chip each and one for
data and registers.)

28 C. Gordon Bell

| el Bus address

register - |

Y (] Y
AMUX
U
N) J
[
B ALU
U
S
Bin Ain
3
B register
Processor
status
} Control
A 4 44
Read
only Branch D—I
memory Address buffer
[}]

Fig. 7b. PDP-11/05 block diagram.

300-nsec bipolar or 350-nsec MOS memory. It was assumed that these
memories would be small, and that the user would move the important
parts of his program into the fast memory for direct execution. The 11/45
also provided a second UNIBUS for direct transmission of data to the fast
memory without processor interference. The 11/45 also used a second
autonomous data operation unit called a Floating Point Processor (not a
true processor), which allowed integer and floating-point calculations to
proceed concurrently.

The PDP--11/70 derives its speed from the cache, which allows it to take
advantage of fast local memories without requiring the program to shuffle
data in and out of them. The 11/70 has a memory path width of 32 bits,
and has separate buses for the control and data portions of 1/0 transfer.
The performance limitations of the UNIBUS are circumvented; the second
Mp system permits transfers of up to 5 megabytes/sec., 2.5 times the
UNIBUS limit. If direct memory access devices are placed on the UNI-
BUS, their address space is mapped into a portion of the larger physical
address space, thereby allowing a virtual-system user to run real devices.

Figure 7 shows the block diagrams of the LSI-11, the 11/05, and the
11/45. 1t includes the smallest and largest (except the 11/70) models. Note

What Have We Learned from the PDP-11? 29

T/W‘
ALU PC A \
SHFMUX
Bin A, PC B
BMUX | AMUX J [1
Constants i
| Scratch Scratch
pad pad
0 memory memory
N -
| r"
B M
U
p - g - SRMUX DRMUX
le Floating B register
point
—T processor
S | S register J D register‘]
Solid
F ‘ state ———] J
M memory
e U B register A
X
) gl
Processor T
status BRMUX Read = - Control buffer
Past ! !
astA R. only ranc
Stack limit L— memory Address
buffer
Processor

\/’ status

Fig. 7c. PDP-11/45 block diagram.

that the 11/45 block diagram does not include the floating-point opera-
tions, but does show the path to fast local memory. It has duplicate sets of
registers, even to a separate program counter. The local Mp.MOS and
Mp. Bipolar provide the greatest performance improvements by avoiding
the UNIBUS protocols. When only core memory is used, the 11/45
floating-point performance is only twice that of the 11 /40. Table III charts
the implementation of each design and its performance and parallelism as
measured by the microprogram memory width. Note that the brute-force
speed of the 11/45 core is only 2 to 4 times faster than the 11/05 for
simple data types, i.e., for the basic instruction set. The 11/45 has roughly
twice the number of flip-flops.

TABLE Il

Relative perform.
First Machine Word length No. of Single prec. Simple
Model delivery ROM RAM time (nsec) micromem. microwords fl. pt. arith. Mp Innovations
03 6/75 1k 13W 350 22 1024 32 1.5 MOS/core LSI—4 chips; ODT; maint; fl. pt.
LSI-11 +PLA NMOS;

NMOS; 75 nsec
150 nsec.

04 9/75 256, 1k; 4x16; 260 38 249 1.6 23 MOS/core Size; maint. /test; built-in ASCII
2k; 50 nsec 50 nsec console

05 6/72 256; 1k; 4x16 137,314 40 249 14 2.1 Core Size
50 nsec 630

20 6/70 — 4 x16 — — — — — Core ISP; UNIBUS

34 9/75 See04 4%16 200,260 43 470 22 3 See 04 Size; modularity

40 1/73 See05 4% 16 140,200, 56 256 6 2.8 Core General purpose emulation; fl. pt.

300
45 6/72 See05 256 150 256 13 3.8 Core Fastest fl. pt./mem. mgmt.
(mapping) Schottky-TTL
55 6/72 SeeO0S 256 bipolar 150 256 90 35 Bipolar Bipolar
6/76 1k bipolar
70 3/75 See05 1k cache 150 64 256 85 31 Core Cache; Systems-oriented
3001 9/75 1k bipolar 11W 170 32 512 — — Core Emulation

c/D

?

— Writable control store

What Have We Learned from the PDP-11? 31
5.4. ISP Design

. Designing the ISP level of a machine—that collection of characteristics
such as instruction set, addressing modes, trap and interrupt sequences,
register organization, and other features visible to a programmer of the
bare machine—is an extremely difficult problem. One has to consider the
performance (and price) ranges of the machine family as well as the
intended applications, and there are always difficult tradeoffs. For exam-
ple, a wide performance range argues for different encodings over the
range. For small systems a byte-oriented approach with small addresses is
optimal, whereas larger systems require more operation codes, more reg-
isters, and larger addresses. Thus, for larger machines, instruction coding
efficiency can be traded for performance.

The PDP-11 was originally conceived as a small machine, but over time
its range was gradually extended so that there is now a factor of 500 in
price ($500 to $250,000) and memory size (8K bytes to 4 megabytes)
between the smallest and largest models. This range compares favorably
with the range of the 360 family (4K bytes to 4 megabytes). Needless to say,
a number of problems have arisen as the basic design was extended.

For one thing, the initial design did not have enough opcode space to
accommodate instructions for new data types. Ideally, the complete set of
operation codes should have been specified at initial design time so that
extensions would have fit. Using this approach, the uninterpreted opera-
tion codes could have been used to call the various operation functions
(e.g., floating-point add). This would have avoided the proliferation of
runtime support systems for the various hardware /software floating point
arithmetic methods (Extended Arithmetic Element, Extended Instruction
Set, Floating Instruction Set, Floating Point Processor). This technique was
used in the Atlas and SDS designs, but most computer designers don’t
remember the techniques. By not specifying the ISP at the initial design,
completeness and orthogonality have been sacrificed.

At the time the 11/45 was designed, several extension schemes were
examined: an escape mode to add the floating point operations, bringing
the 11 back to being a more conventional general-register machine by
reducing the number of addressing modes, and finally, typing the data by
adding a global mode that could be switched to select floating point
instead of byte operations for the same opcodes. The FPP of the
PDP-11/45 is a version of the second alternative.

It also became necessary to do something about the small address space
of the processor. The UNIBUS limits the physical memory to 262,144
bytes (addressable by 18-bits). In the implementation of the 11/70, the
physical address was extended to 4 megabytes by providing a UNIBUS

32 C. Gordon Bell

map so that devices in a 256K UNIBUS space could transfer into the 4
megabyte space via mapping registers. While the physical address limits
are acceptable for both the UNIBUS and larger systems, the address for a
single program is still confined to an instantaneous space of 16 bits, the
user virtual address. The main method of dealing with relatively small
addresses is via process-oriented operating systems that handle many small
tasks. This is a trend in operating systems, especially for process control
and transaction processing. It does, however, enforce a structuring disci-
pline in (user) program organization. The RSX series operating systems for
the PDP-11 are organized this way, and the need for large addresses is
minimized.

The initial memory management proposal to extend the virtual memory
was predicted on dynamic, rather than static assignment of memory
segment registers. In the current memory management scheme, the address
registers are usually considered to be static for a task (although some
operating systems provide functions to get additional segments dynami-
cally).

With dynamic assignment, a user can address a number of segment
names, via a table, and directly load the appropriate segment registers. The
segment registers act to concatenate additional address bits in a base
address fashion. There have been other schemes proposed that extend the
addresses by extending the length of the general registers—of course,
extended addresses propagate throughout the design and include double
length address variables. In effect, the extended part is loaded with a base
address.

With larger machines and process-oriented operating systems, the con-
text switching time becomes an important performance factor. By provid-
ing additional registers for more processes, the time (overhead) to switch
context from a process (task) to another process can be reduced. This
option has not been used in the implementations of the 11’s to date.
Various alternatives have been suggested, and to accomplish this most
effectively requires additional operators to handle the many aspects of
process scheduling. This extension appears to be relatively unimportant
since the range of computers coupled with networks tend to alleviate the
need by increasing the real parallelism (as opposed to the apparent
parallelism) by having various independent processors work on the sep-
arate processes in parallel. The extensions of the 11 for better control of
1/0 devices is clearly more important in terms of improved performance.

The criteria used to decide whether or not to include a particular
capability in an instruction set are highly variable and border on the
artistic. We ask that the machine appear elegant, where elegance is a
combined quality of instruction formats relating to mnemonic significance,

What Have We Learned from the PDP-11? 33

operator /data-type completeness and orthogonality, and addressing con-
sistency. Having completely general facilities (e.g., registers) which are not
context dependent assists in minimizing the number of instruction types,
and greatly aids in increasing understandability (and usefulness). We feel
the 11 provided this.

Techniques for generating code by the human and compiler vary widely
and thus affect ISP design. The 11 provides more addressing modes than
nearly any other computer. The 8 modes for source and destination with
dyadic operators provide what amounts to 64 possible add instructions. By
associating the Program Counter and Stack Pointer registers with the
modes, even more data accessing methods are provided. For example, 18
varieties of the MOVE instruction can be distinguished [Bell er al. 70] as
the machine is used in two-address, general-register and stack machine
program forms. (There is a price for this generality—namely, fewer bits
could have been used to encode the address modes that are actually used
most of the time.)

In general, the 11 has been used mostly as a general register machine. In
one case, it was observed that a user who previously used a 1-accumulator
computer (e.g., PDP-8), continued to do so. Normally, the machine is used
as a memory to registers machine. This provides the greatest performance,
and the cost (in terms of bits) is the same as when used as a stack machine.
Some compilers, particularly the early ones, are stack oriented since the
- code production is easier. Note, that in principle, and with much care, a
fast stack machine could be constructed. However, since most stack
machines use Mp for the stack, there is a loss of performance even if the
top of the stack is cached. The stack machine is perhaps the most poorly
understood concept in computing. While a stack is natural (and necessary)
structure to interpret the nested block structure languages, it doesn’t
necessarily follow that the interpretation of all statements should occur in
the context of the stack. In particular, the predominance of register
transfer statements are of the simple 2-and 3-address forms

D«S
and
D 1(index 1) « f(S2(index 2), S3(index 3)).

These don’t require the stack organization. In effect, appropriate assign-
ment allows a general register machine to be used as a stack machine for
most cases of expression evaluation. It has the advantage of providing
temporary, random access to common sub-expressions, a capability that is
usually hard to exploit in stack architectures.

34 C. Gordon Bell
5.5. Multiprocessors

Although it is not surprising that multiprocessors have not been used
save in highly specialized applications, it is depressing. One way to extend
the range of a family is to build multiprocessors. In this section we.
examine some factors affecting the design and implementation of multi-
processors, and their affect on the PDP-11.

It is the nature of engineering to be conservative. Given that there are
already a number of risks involved in bringing a product to the market, it
is not clear why one should build a higher-risk structure that may require a
new way of programming. What has resulted is a sort of deadlock
situation: we cannot learn how to program multiprocessors until such
machines exist, but we won’t build the machine until we are sure that there
will be a demand for it, i.e., that the programs will be ready.

While on the subject of demand for multiprocessors, we should note that
there is little or no market pressure for them. Most users don’t even know
that multiprocessors exist. Even though multiprocessors are used exten-
sively in the high-performance systems built by Burroughs, DEC
(PDP-10), and Univac, the concept has not yet been blessed by IBM.

One reason that there is not a lot of demand for multiprocessors is
acceptance of the philosophy that we can always build a better single-
processor system. Such a processor achieves performance at the consider-
able expense of cost of spares, training, reliability, and flexibility. Although
a multiprocessor architecture provides a measure of reliability, backup,
and system tunability unreachable on a conventional system, the biggest,
fastest machines are always uniprocessors.

6.5.1. MULTIPROCESSORS BASED ON THE PDP-11

Multiprocessor systems have been built out of PDP-11’s. Figure 8
summarizes the design and performance of some of these machines. The
topmost structure was built using 11/05 processors, but because of im-
proper arbitration techniques in the processor, the expected performance
did not materialize. Table IV shows the expected results for multiple 11,/05
processors sharing a single UNIBUS:

From these results we would expect to use as many as three 11/05
processors to achieve the performance of a Model 40. More than 3
processors will increase the performance at the expense of the cost-effec-
tiveness. This basic structure has been applied on a production basis in the
GT4X series of graphics processors. In this scheme, a second P.display is
added to the UNIBUS for display picture maintenance. A similar structure
is used for connecting special signal-processing computers to the UNIBUS,
although these structures are technically coupled computers rather than
multiprocessors.

What Have We Learned from the PDP-11? 35

Pc I;c Mp... KT... IJ(MS
l | I

a. Multi-Pc structure using a single Unibus.

Pc leisplay* Mp... II(T II(Ms..,
| |

* used in GT4X series; alternatively

P specialized (e.g., FFT) Pc specialized

b. Pc with P.display using a single Unibus.

Pc Il(Ms... Il(T I[(clock
|
P|c : lI(Ms II(T Il(clock

Mp...

¢. Multiprocessor using multiport Mp.
KT... KMs...

Mp(#0:1 ST S [Cfntralgcrosspoint] Po(#0:15;°11/40) —— S(Unibus) L
: 16x16 l :

d. C.mmp CMU multi-mini-processor computer structure.

Fig. 8. Multiprocessor computer structures implemented using PDP-11.

As an independent check on the validity of this approach, a multi-
processor system has been built, based on the Lockheed SUE [Ornstein et
al. 72]. This machine, used as a high-speed communications processor, is a
hybrid design: it has seven dual-processor computers with each pair
sharing a common bus as outlined above. The seven pairs share two shared
multiport memories.

TABLE 1V
Pc perf.
Pc (rel.) Pc price Price?/perf. SYS price Price® /perf.
1 1.00 1.00 1.00 3.00 1.00
2 1.85 1.23 0.66 3.23 0.58
3 24 1.47 0.61 347 0.48
40 2.25 1.35 0.60 3.35 0.49

4Pc cost only.
bTotal-system cost, assuming one-third of system is Pc cost.

36 C. Gordon Bell

The second type of structure given in Fig. 8 is a conventional multi-
processor using multiple-port memories. A number of these systems have
been installed, and they operate quite effectively. However, they have only
been used for specialized applications.

The most ambitious multiprocessor structure made from PDP-11’s,
C.mmp, is amply described in the literature [Wulf er al. 72]. As it becomes
a user machine, we will gather data about its effectiveness. Hopefully, data
from this and other multiprocessor efforts will establish multiprocessors as
applicable and useful in a wide variety of situations.

6. FUTURE PLANS AND DIRECTIONS

The problems encountered on the PDP-11 project are not peculiar to
that machine, or to any machine or style of architecture. In the course of
the project, we have isolated several specific problems in computer design.
We intend to explore each of them further.

6.1. The Bus Specification Problem

It has taken a long time to understand the UNIBUS in terms of its
electrical, performance, and logical capabilities. The existing bus specifica-
tions, however inadequate, are the result of many iterations of respecifica-
tion based on experience and redesign. Several description techniques have
been tried: timing diagrams, threaded diagrams showing the cause and
effect of signals, and partial state flowcharts showing state in master and
slave components. A rigorous specification language, such as BNF, would
be helpful. BNF has proven helpful in the specification of communication
links, but is too clumsy for general use, and is not widely understood by
engineers and programmers.

The most important use of a rigorous bus specification is the testing of
faulty components rather than the exercising of good ones. A bus specifi-
cation would provide a behavior standard against which to check faulty
components. It is not clear how one should best attack the problem of bus
behavior specification. A safe place to start would be an exhaustive set of
examples.

6.2. Characterizing Computation Problems

When a user comes to us with a task needing computerization, we don’t
have a good way to describe the computational needs of the task. The
needs are multidimensional, consisting of the procedural algorithms, the
file structure, the interface transducers, reliability, cost, and development

What Have We Learned from the PDP-11? . 37

deadline. This communications difficulty exists between computer de-
signers and operating-system designers as much as between computer
designers and end users.

Even when there is a good way to specify to the system designer exactly
what the user’s computational needs might be, there is still a lot of work in
finding an architecture to best solve that problem and finding an im-
plementation to best build that architecture.

6.3. Operating Systems

A taxonomy and notation is needed to describe the functions of a
system, especially the operating systems. There is no good methodology for
talking about tradeoffs, because the functions and structures of a system
are so vague.

There exist numerous operating systems for the PDP-11. One of the
reasons for this situation is that there is no easy way to compare an
existing system with a design for a new one. Instead, an engineering-
marketing conspiracy invents a new system because it is oriented toward a
particular market in some nebulous way. If we had the ability to specify
operating system behavior in a uniform and comprehensible way, then a
system could be analyzed before it is programmed.

6.4. Problems with Architectural Range

In a growing family of computers, the designer is constantly faced with
the question of whether or not to build a certain model or provide an
certain point on the price/performance curve. The decision is colored by
technology, user requirements, competitor offerings, and available design
staff. It is difficult to answer precisely even a question so simple as whether
to build two models that are close together (as the 11/40 and 11/45), or to
make a single model and expand it with a multiprocessor option.

The range problem occurs at other levels. Consider memory. The num-
ber of memory technologies available is growing constantly, and the
once-clear boundaries between memory classes based on memory speed
are blurring. Some of the new electronic-based technologies such as CCD
and magnetic bubbles have an access time in the 100-microsecond range,
and fill the gap between traditional random-access memories (.1 to 1
microsecond) and electromechanical memories like disks or drums (1
millisecond to 100 millisecond). The system designer must decide how
much of which kinds of memory will be used in each implementation. It
may well be that a solution to problems of this sort will be dependent on
the ability to characterize the computational needs.

38 C. Gordon Bell
7. SUMMARY

In this paper we have reexamined the PDP-11 in the light of six years of
experience, and have compared its successes and failures with the goals
and problems of the initial ideas. With the clarity of hindsight, we now see
the initial design problems. Many mistakes were made through ignorance,
and many more because the design work was started too late. As we
continue to evolve and improve the PDP-11 computer over the next five
years, it will indeed be interesting to observe whether the PDP-11 can
continue to be a significant, cost-effective minicomputer. We believe it can.
The ultimate test is its use.

ACKNOWLEDGMENT

I would like to thank Brian Reid for editing and rewriting sections of this paper.

REFERENCES

Almes, G. T., Drongowski, P. J., and Fuller, S. H., Emulating the Nova on the PDP-11/40: a
case study. Proc. COMPCON, Washingion, D.C., September 1975.

Bell, C. G., Cady, R., McFarland, H., Delagi, B., O’Loughlin, J., Noonan, R., and Wulf, W.,
A new architecture of minicomputers— The DEC PDP-11. Proc. SJCC 36, 657-675
(1970).

Bell, C. G., and Newell, A., Computer Structures. McGraw-Hill, New York, 1971.

Eckhouse, R. H., Minicomputer Systems: Organization and Programming (PDP-11). Pren-
tice-Hall, Englewood Cliffs, New Jersey, 1975.

Gear, C. W., Computer Organization and Programming, Second Edition. McGraw-Hill, New
York, 1974.

McWilliams, T., Sherwood, W., and Fuller, S., PDP-11 implementation using the Intel 3000
microprocessor chips. Proc. NCC 46, 243-253 (1977).

O’Loughlin, J. F., Microprogramming a fixed architecture machine. Microprogramming and
Systems Architecture Infotech State of the Art Rep. 23, 205-224 (1975).

Ornstein, S. M., Heart, F. E., Crowther, W. R,, Rising, H. K., Russell, S. B., and Michael, A.,
The terminal IMP for the ARPA computer network. Proc. SJCC 40, 243-254 (1972).
Shannon, C. E., A mathematical theory of communication. Bell Sys. Tech. J. 27, 379-423,

623-656 (1948).

Stone, H. S., and Siewiorek, D. P., Introduction to Computer Organization and Data Structures:
PDP-11 Edition. McGraw-Hill, New York, 1975.

Wulf, W. A, and Bell, C. G., C.mmp: a multi-mini-processor. Proc. FJCC 41, 765-778 (1972).

