
TOP5-10/TOPS-20
DDT11 Manual
AA-M494A-TK

July 1984

The DDT11 program is a symbolic debugging program that runs
on TOPS-10 and TOPS-20, communicating with PDP-11
based front ends and remote nodes. This manual describes
how to use the DDT11 program.

OPERATING SYSTEM: TOPS-10 V7.02
TOP8-20 V5.1

SOFTWARE: DDT11 V7E

Software and manuals should be ordered by title and order number, In the United States. send orders
to the nearest distribution center, Outside the United States. orders should be directed to the nearest
DIGITAL Field Sales Office or representative,

Northeast/Mid-Atlantic Region Central Region Western Region

Digital Equipment Corporation
PO Box CS2008
Nashua. New Hampshire 03061
Telephone :(603)884-6660

Digital Equipment Corporation Digital Equipment Corporation
Accessories and Supplies Center Accessories and Supplies Center
1050 East Remington Road 632 Caribbean Drive
Schaumburg. Illinois 60195 Sunnyvale. California 94086
Telephone :(312)640-5612 Telephone:(408) 734-4915

digital equipment corporation. marlboro. rl,'assochusetts

First Printing, July 1984

© Digital Equipment Corporation 1984. All Rights Reserved.

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

~D~DDmDTM
DEC MASSBUS UNIBUS
DECmate PDP VAX
DECsystem-10 P/OS VMS
DECSYSTEM-20 Professional VT
DECUS Rainbow Work Processor
DECwriter RSTS
DIBOL RSX

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in preparing future
documentation.

PREFACE

1
1.1
1.2
1.3
1.4
1.5
2
2.1
2.2
2.3
2.4
2.5
3
3.1
3.2
3.3
3.4
4
4.1
4.2
4.3
4.4
5
5.1
5.2
5.3
5.4
6
7
7.1
7.2
7.3
7.4
8
9
10
11
12
12.1
12.2
12.3
12.4
13
13.1
13.2
13.3
14
15

CONTENTS

OVERVI EW • 1
Initializing Procedures for DDT11 •••••••• 1
Initial DDT11 Dialog • • • • • 2
Examining a Running Node • • • • • 2
Examining Dump Files • • • • • • 2
Examining Unrun System Images • • • • • • • • 3

USING DDT11 FOR ANF-10 NODES • • • • • 3
Loading and Saving ANF-10 Node Symbols • 3
Examining a Running ANF-10 Node ••• 3
Examining an ANF-10 Dump • • • • •• 4
Examining an ANF-10 Unrun System Image • 4
Examining a Nonrunning Node • • • • • • • • • 4

USING DDT11 FOR IBMCOM FRONT ENDS • • • 5
Loading and Saving Symbols • • • • • •• 5
Examining a DN60 Front End • • • • • 5
Examining an IBMCOM Front-End Dump • • • 6
Examining an Unrun Image • • • • • • • •••••• 6

USING DDT11 FOR DECnet-10/DECnet-20 FRONT ENDS • • • 6
Loading and Saving DN20 Symbols • • • • •• • 7
Examining a Running DECnet-10/DECnet-20 MCB Node • 8
Examining Dumps from DECnet (MCB) Nodes • • • • • 8
Examining an MCB Node Unrun System Image ••• 9

USING DDT11 FOR AN RSX-20F FRONT END • 9
Loading and Saving Symbols • • • • • • ••• 9
Examining an RSX-20F Front End • •• •••• 10
Examining RSX-20F Front-End Dumps • • •• 10
Examining an RSX-20F Front-End Unrun Image • 10

SETTING OUTPUT MODES • • • • • • • • • 11
USING DDT11 TO EXAMINE MEMORY • • • • • 12

Moving the Location Pointer •••• 12
Displaying the Contents of a Location 13
Searching for a Word • • • • 14
Using Masks to Search for Matches 14

USING DDT11 TO DEPOSIT INTO MEMORY • ••••• 15
STARTING EXECUTION • • • • • • •• •••• 16
MONITORING A LOCATION • • • • • • • • • 16
DUMPING MEMORY.. •••• • • • • 17
USING SYMBOLS • • • • • • 18

Defining Symbols • • • • • • • 18
Controlling Symbol Typeout • • • • • 18
Matching Symbols • • • • • 19
Completing Partial Symbols • • • • • • •• 19

USING COMMAND FILES IN DDT11 • 19
Command File Echoing • • • • • • • • 19
using Macro-Style Arguments • • • • • 20
Using Tags in Command Files • • • • •• 20

DDT11 COMMAND FILE FOR AN RSX-20F FRONT END 21
WRITING A BINARY FILE • • • • • • • • • • • • 23

iii

APPENDIX A SUMMARY OF DDTII COMMANDS

APPENDIX B SWITCHES FOR THE INPUT SPECIFICATION

TABLES

A-I DDTII Commands • • • • • • • • • • • • • • • • • • A-I

iv

PREFACE

This manual provides information for the moderately to very
experienced user of the TOPS-IO or TOPS-20 system. In addition, the
reader should be familiar with the configuration of the system
network, including both the software and hardware of front ends and
remote stations.

The purpose of this manual is twofold: first, to introduce DDTII to
users who have never used DDTII before; second, to bring new
information to experienced users. Therefore, the descriptions in this
manual are organized both functionally and in reference format.
However, it is recommended that the user become familiar with the
standard DDT before attempting to use DDTll.

v

CONVENTIONS USED IN THIS MANUAL

The following notations are used in this manual:

@D Indicates a place where you should press the ESCAPE
key.

(CTRLlX) Indicates a place where you should hold the CTRL key
and press the character indicated by x.

@J Indicates a place where you should press the linefeed
key.

(RET) Indicates a place where you should press the RETURN
key.

DOCUMENTS REFERENCED IN THIS MANUAL

You should be familiar with, and have access to, one of the following
manuals. Choose the manual appropriate to the communications software
you will be using.

TOPS-IO ANF-IO Software Installation Guide

TOPS-IO IBM Emulation/Termination DN61: 2780/3780

TOPS-20 IBM Emulation/Termination

TOPS-20 User's Guide

TOPS-IO Operating System Commands Manual

TOPS-IO/TOPS-20 RSX-20F System Reference Manual

TOPS-IO Utilities Manual
------(-In partIcular, the section on DDT)

DECnet-IO Network Generation and Installation Procedures

DECnet-20 Network Generation and Installation Procedures

vi

1 OVERVIEW

The DDTII program runs on TOPS-IO and TOPS-20 host systems. It is
used by system support specialists to diagnose and fix errors in nodes
and front ends, to make modifications to running software, and to
examine the running nodes and front ends. The DDTII program performs
some or all of the following functions for DC76, ANF-IO, IBM
communications, DECnet-10/20, and RSX-20F front ends and remote nodes:

• Examines and deposits memory on a running node.

• Examines dumps.

• Examines and deposits instructions in the system image file.

• Simulates the console terminal, execution of PDP-II
instructions, and the clock functions. The core image can be
obtained from any system image file or dump file.
Instructions can be executed in a free-running mode or one
instruction at a time.

DDTII runs only on a TOPS-IO or TOPS-20 host system; input and output
are directed to and from your controlling terminal, unless you specify
otherwise. Although the DDTII program functions in essentially the
same manner for each product listed below, the program requires a
different symbol file and a different command to identify the object
to be debugged. Therefore, a separate section describing the
procedures for initializing DDTII is devoted to each of the following
products:

Product

ANF-IO Nodes
IBMCOM-IO/20 Nodes
DECnet-10/20 MCB (DN20)
RJE-20 (DN200) Nodes
RSX-20F Front End

Section

2.0
3.0
4.0
4.0
5.0

1.1 Initializing Procedures for DDT11

Before you can use DDTII to examine and debug a specific node, you
should create a version of DDTII that recognizes the symbols specific
to the software running on that node.

The standard PDP-II and PDP-8 assembly operation codes are defined as
symbols in DDTII. You can define additional symbols by loading them
with DDTII from appropriate symbol files. Symbol definitions are
different for each node.

I

1.2 Initial DDTII Dialog

You should start the DDTll that you created for a specific node or
front end. To start the specific DDTll, RUN the program that you
created with the SAVE command.

For example, to start the DDTll for a specific DN82
Section 2.1), type:

(node 22)

.RUN DN8222~

DDTll prints one line identifying itself by
specifying the file from which the symbols
response to the above command is:

version number
were obtained.

(see

and
The

DDTll 7E(114) = DN8222/ SYMBOLS = DSK:DN8222.CRF 14:14 13-JAN-83

DDTll then prompts for what you want to look at:

Input:

Your response to the input prompt is determined by the function you
want to perform and the communications product involved.

The following sections describe how to load and examine dumps and
system images of running and nonrunning nodes and front ends, and
remote stations.

NOTE

When you specify a file as input to DDTll, the file is
loaded into memory. You can perform the same
functions on a file as you can perform on a running
node. Therefore, for the purposes of this manual,
"memory" describes the memory you are working with,
whether a running system or a previously loaded file.

1.3 Examining a Running Node

To examine a running node, you must first gain access to it. To
access the node, you must respond to the Input: prompt by specifying
the node specification. This is determined by the communications
software that is currently running. You must have privileges to
examine a running node or front end.

1.4 Examining Dump Files

To examine a dump from one of the nodes, you must specify the dump
file specification instead of the node specification. The dump file
name must consist of six characters or less. If the file does not
exist in your job's current directory path, the file specification
must include the PPN of the directory area where the file exists. On
TOPS-20, a file must also be specified by a PPN, if it does not exist
in the logged-in directory area. You can use the TRANSLATE command to
obtain a PPN for the file specification. Refer to the TOPS-20 User's
Guide.

2

1.5 Examining Unrun System Images

You can use DDTll to examine unrun system images. An unrun system
image is the file th~t is used initially to load the front end or
node. For examples on using DDTll to examine a specific node or front
end, refer to the section specific to that product.

2 USING DDT11 FOR ANF-10 NODES

The following sections show the procedures for loading and saving
symbols that are specific to the software generated on a TOPS-10 host
system for a DN82 node with a node number of 22. These sections
discuss examining a running node, a dump, and an unrun system image.

2.1 Loading and Saving ANF-10 Node Symbols

The file name shown here is, of course, specific to this case. You
must specify the CREF output file from MACDLX. The DDT1l command
sequence, file/SYMBOL, will look for the files with default file
extensions .LST and .CRF. If the extension is other than .LST or
.CRF, you must specify it. In this example, the file name is
DN8222.CRF •

• R DDTll~ ;load a standard copy of DDTll

DDTll 7E(ll4) iDDTl1 identifies itself
Input: DN8222/SYMBOL ;load symbols from the file DN8222.CRF

% loaded nn symbols

Input: [CTRLlZ)

EXIT

;DDTll tells how many symbols
i loaded

;exit DDTll

;DDTll signs off

were

This sequence loads the specific symbols with the standard symbols in
DDTll. When DDTll requests another input file, press <CTRL/Z> to exit
from DDTl1.

You can now save the loaded program by using the SSAVE command:

.SSAVE DN8222 ~
DN8222 saved

;save the node-specific DDT1l
;DN8222.EXE is saved

;TOPS-lO prompt

2.2 Examining a Running ANF-10 Node

You can specify an ANF-lO node by typing the /NODE:node-id switch in
response to the Input: prompt. Node-id refers to node name or node
number in the ANF-10 environment. For example, the following is used
to examine node 22, which was used in previous examples:

.RUN DN8222~
DDTll 7E(ll4) = DN8222/ SYMBOLS = DSK:DN8222.LST 12:03 Ol-JAN-83

Input:/NODE:22~ or /NODE:CTCH22~

3

The /NODE switch provides sufficient node specification for all
running ANF-IO nodes.

2.3 Examining an ANF-IO Dump

To examine a dump from a TOPS-IO ANF-IO node, run the node-specific
DDTII that was built for the node. For input, specify the file name
of the dump file. The default file extension is .LSD. The .LSD
extension is the default for dumps created by NETLDR. The following
example shows how a dump file might be read by a node-specific version
of DDTll:

.RUN DNS222~ ;Run the node-specific DDTII
DDTII 7E(114) = DNS222/ SYMBOLS = DSK:DNS222.LST 12:03 01-JAN-S3

Input:DNS222~ ;Dump file is DNS222.LSD

NOTE

Dumps produced by DTELDR from front ends must have
/DTELDR appended to the dump file specification. All
others do not require a switch.

2.4 Examining an ANF-IO Unrun System Image

The dialog used to examine an unrun system image from an ANF-IO node
is shown in this example:

.RUN DNS222~
DDTII 7E(114) = DNS222/ SYMBOLS DSK:DNS222.LST 12:03 01-JAN-S3

Input: SYS:DNS222.BIN~
[62p core]
[63p core]
[SIp core]

2.5 Examining a Nonrunning Node

You can use DDTll to look at the memory of a node that is not running
network software, but is running only the down-line load ROM. To
examine such a node, use the /NODE switch to specify a running node
that is adjacent to the nonrunning node in the network. Include the
/LINE switch in the input specificati~n. Use /LINE to indicate the
line in the running node to which the nonrunning node is connected.
In the following example, to examine node 41 from the TOPS-IO host,
you must specify node 31. In node 31, line 12 is connected to node
41. The input line looks like this:

Input:/NODE:31/LINE:12

4

3 USING DDT11 FOR IBMCOM FRONT ENDS

The distribution tape contains files necessary to build the IBMCOM
front ends. These files are named D6xyz.EXE to indicate the type of ~
system, and are copies of DDT11 with the correct symbols loaded for
that system.

3.1 Loading and Saving Symbols

Unless you have reassembled the front end programs, you can use these
.EXE files directly from the distribution tape. If you have
reassembled the front end software and included anything new, you
should load and save your own DDTll using the .CRL file produced by
the assembler. For example:

{ @DDT11~ .R DDTll~

DDTll 7E(114)

; (TOPS-20) load standard copy of DDTll}
;TOPS-IO

iDDTll identifies itself

Input:D6xyz.CRL/SYMBOL~
;load symbols from the file D6xyz.CRL

loaded nn symbols ;exit DDTll

EXIT

{
@SAVE D6xyz.EXE~
.SSAVE D6xYZ.EXE~

;TOPS-20}
;TOPS-IO

3.2 Examining a DN60 Front End

To examine front ends that are running DN6x software (any software in
the DN60 line), you must specify the /PORT switch. The port
specification is the number of the port through which the node
communicates with the TOPS-IO/20 host system. For more information on
the front-end operating system, generically called D6xyz, see the
TOPS-20 IBM Emulation/Termination manual. The following example shows
how such-a-node is specified:

{ @D6XYZ~ .RUN D6xyz~
;TOPS-20}
;TOPS-IO

DDTll 5(54) = DN60/SYMBOLS=DSK:D6xyz.CRL[4,56] 21:35 22-FEB-83

Input:/PORT:n~

Where: n is

Operating System

TOPS-IO KL

TOPS-20 KL

TOPS-IO/TOPS-20 KS

5

Number

0-3 on DL-IO#O
4·-7 on DL-IO#l
11-13 on DTE (10 is the console
f:ront end)

11-13 on DTE (10 is the console
f:ront end)

10-11 on 2020

To enable writing to the node, be sure to include the /PATCH switch in
the input specification.

3.3 Examining an IBMCOM Front-End Dump

To examine a dump from an IBMCOM front end, you must specify the dump
file name as shown in the following example:

{
@D6X y z@D
.R D6xyz@!]

;TOPS-20}
;TOPS-lO

DDTII 5(54) = D6xyz/SYMBOLS=D6xyz.CRL[4,56] 18:41 l3-Sept-82

Input: D6xyz.DMP@!]

[78p core]
[79p core]
[llOp core]

highest location is 157777

NOTE

Dumps produced by DTELDR from front ends must have
/DTELDR appended to the dump file specification. All
others do not require a switch.

3.4 Examining an Unrun Image

To examine an unrun system image from an IBMCOM front end, use the
.BIN file from the distribution tape, as shown:

{ @D6XYZ~ .R D6xyz@!J

Input: D6xyz.BIN~

iTOPS-20}
iTOPS-lO

4 USING DDT!! FOR DECnet-!O/DECnet-20 FRONT ENDS

You can build your own DDTII node-specific symbol files by using all
the .STB files in the directory used to build the front end. The
sections that follow show how to load and save DDTII for
DECnet-IO/DECnet-20 front ends; examine running front ends, dumps, and
unrun system images. Note that MCB is software for DECnet that runs
on DN20.

6

4.1 Loading and Saving DN20 Symbols

The following example contains all the files from the DN20
distribution that you can use to build a DDTII file containing symbols
common to all DECnet front ends.

{ @DDTII~ .R DDTIl@D
iTOPS-20}
iTOPS-IO

DDTII 7E(114)

Input: CEXCOM.STB/STB~
[47p core]
[48p core]

Input: DCP.STB/STB@D

Input: DMC.STB/STB~
[49p core]

Input: DMR. STB/STB@D

Input: DTE.STB/STB~

Input: INI. STB/STB ~

Input: KDP.STB/STB~

Input: MDT.STB/STB~
[50p core]

Input: NDT.STB/STB~

Input: NML.STB/STB~
[51p core]
[52p core]

Input: NMS.STB/STB~

Input: NMX.STB/STB~

Input: NSI.STB/STB~

Input: NS2.STB/STB~

Input: NSP.STB/STB~

Input: RSXIIS.STB/STB~
[53p core]

Input: RSXMS.STB/STB~
[54p core]
[55p core]
[56p core]

Input: SC.STB/STB~
[57p core]

Input: SCI.STB/STB~

Input: SCX.STB/STB~

Input: TLI.STB/STB~

7

Input: TOP.STB/STB~

Input: XPE. STB/STB ~

Input: XPT. STB/STB ~
[58p core]

Input: (CTRLlZ)

EXIT

{

@SAVE MCB~
.SSAVE MCB~

MCB Saved

iTOPS-20}
iTOPS-IO

NOTE

The procedures for loading and saving DDTll for the
RJE-20 (DN200) remote station are the same as
described for the DECnet-10/DECnet-20 MCB (DN20).
There are additional symbol files for the DN200.

4.2 Examining a Running DECnet-10/DECnet-20 MCB Node

To examine nodes running DECnet-10/20 MCB software, you must specify
the DECnet node name, as shown in the example below (DECnet MCB with
node name D2102A):

{ @MCB~ • R MCBl§ill
iTOPS-20}
iTOPS-10

DDTll 7E(114) = MCB /SYMBOLS=DN20:XPT.STB[4,25] 11:01 8-Dec-82

DDTll 7E(114) iDDTll identifies itself
Input: /MCB:D2102A~ iestablishes a logical link to the node

If you intend to deposit into the node, you must include the /PATCH
switch on the input line.

4.3 Examining Dumps from DECnet (MCB) Nodes

To examine a dump from a DECnet node, you must specify the node name
in the dump file specification followed by the /MCBDMP switch, as
shown in the following example:

{
@RUN MCB~
.R MCB~

iTOPS-20}
iTOPS-10

DDTll 7E(114) = MCB /SYMBOLS=DN20:XPT.STB[4,25] 11:01 8-Dec-82

Input: SYS:D2102A.DMP/MCBDMP~
[62p core]
[63p core]
[205p' core]
highest location is 757777

8

4.4 Examining an MCB Node Unrun System Image

You can use DDTII to examine the file used to initially load an MCB
node. The following example shows the dialog used for an MCB node:

$RUN MCB~
.RUN MCB~

DDTII 7E(114) = MCB /SYMBOLS=DN20:XPT.STB[4,25] 11:01 8-DEC-82

Input: SYS:D2102A.SYS/MCBSYS~
[62p core]
[63p core]
[205p core]
highest location is 662003

5 USING DDTll FOR AN RSX-20F FRONT END

The following sections explain using DDTII to load and save symbols;
and to examine running front ends, dumps, and unrun system images for
the RSX-20F front end.

5.1 Loading and Saving Symbols

The RSX-20F front end also contains specific symbols that must be
loaded into DDTII. The symbol file that is distributed with the front
end software is RSX20F.MAP. Therefore, you should specify this .MAP
file when loading the symbols. (Note that this example shows the
process as accomplished on a TOPS-20 host system, although the TOPS-IO
front end can be loaded in a similar manner.)

$DDTll~

DDTII 7E(114)
Input: SYSTEM:RSX20F/FESYM

~

loaded nn symbols

Inpu t : (CTRLlZ)

EXIT

;load a standard copy of DDTII

;DDTII identifies itself
iload symbols from the front-end
;file, note that you must use the
i/FESYM switch. If the extension
iis other than .MAP or .SYM, you
;must specify it.

;DDTII tells how many symbols were
; loaded

;exit DDTII

The RSX-20F symbols are now loaded with the standard DDTII symbols.
It is important that you specify the /FESYM switch after the file
name.

Now you must save the loaded DDTll, using the SAVE command:

$SAVE VB1445(]ill
VB1445 saved

$

9

isave the front-end-specific DDTII
iVB1445.EXE is saved

5.2 Examining an RSX-20F Front End

You can examine the RSX-20F front end by typing the /FE switch for the
input specification. The switch /FE:nm requires that you include the
CPU number (n) and DTE number (m). If n is not specified, 0 is the
default. For TOPS-20 systems, n will always be O. For TOPS-IO
systems, n is the number of the CPU to which the front end is
connected. The following example shows the procedure for examining a
front end on DTEO from a TOPS-20 host system:

$RUN VB1445 ~
DDTII 7E(114) = VB1445/SYMBOLS
16-JAN-83

Input :/FE: O~

FE:RSX20F.MAP[1,8] 7:18

If you wish to deposit into the memory of the front end, include the
/PATCH switch on the same line as /FE.

5.3 Examining RSX-20F Front-End Dumps

You can look at a dump from RSX-20F using the same procedure, but you
must run the RSX-20F-specific version of DDTll, and the RSX-20F dump
file. On TOPS-20, you must remember to rename the dump file to have a
file name of six characters or less. Also, be sure to specify the
extension (on TOPS-20, "file type"), if different from .LSD. The
extension must be three characters or less.

Finally, you must specify the /DTELDR switch after the filespec of the
dump file from RSX-20F.

The following example shows the dialog used to initiate examination of
a dump file from an RSX-20F front end on TOPS-20.

$RUN VB1445~ ;Run the specific version of DDTII

DDTII 7E(114) = VB1445/SYMBOLS = FE:RSX20F.MAP[1,8] 7:18
20-JAN-83

Input: SYSTEM:DUMPll.BIN/DTELDR~ ;Type the dump file name

In this example, the node-specific version of DDTII is
VB1445.EXE. The dump file had been renamed to DUMPll.BIN.

5.4 Examining an RSX-20F Front-End Unrun Image

named

The RSX-20F file system contains a file called RSX20F.SYS. This file
can be examined to see an unrun copy of RSX-20F. The actual core
image of RSX-20F can be found in the file [O,O]CORIMG.SYS on the
front-end file system. This is the image that the SAV function
modifies when patching the front end.

The following example shows the dialog used to examine unrun system
images for an RSX-20F front end:

$RUN VB1445~

DDTII 7E(114) = VB1445/SYMBOLS
20-JAN-83

Input: RSX20F. SYS/MCBSYS CETIJ

10

FE:RSX20F.MAP[I,8] 7:18

6 SETTING OUTPUT MODES

After the appropriate files are loaded, DDT11 output can take the form
of instructions, numbers, bytes, ASCII text, or addresses. You can
control the output in either temporary or permanent mode. Temporary
mode exists until you press the RETURN key. Permanent mode exists
until you change it with a new mode instruction.

Numeric information can be displayed in
through 16 (binary). In hexadecimal, a
input. The default radix is octal.
temporarily, type:

any numeric radix from 2
" " must be typed for decimal

To set the numeric radix

<ESC>nR Where n is the temporary radix number.

To set the radix in permanent mode, type:

<ESC><ESC>nR Where n is the permanent radix number.

You can control the format of output to your terminal by using the
following commands. If n is present, it must be entered as an octal
number, a decimal number (identified by a decimal point or "a" or "9"
within the number), or an expression enclosed by parentheses such as
(3*3). Always include decimal point when typing in a decimal number.
The default format is instruction format.

<ESC>nA

<ESC><ESC>nA

<ESC>nB

<ESC><ESC>nB

<ESC>nC

<ESC><ESC>nC

<ESC>nF

<ESC><ESC>nF

<ESC>nI

<ESC><ESC>nI

Sets absolute address format in temporary mode.
In this mode, the address field (right half) of
each word is typed out in absolute numeric form.
Each typeout will consist of n addresses. If you
omit n, the default is one address.

Sets address format in permanent mode.

Sets byte format in temporary mode. The two bytes
in the word will be switched, interpreted, and the
result displayed in numeric. Each typeout will
consist of n bytes. If you omit n, the default is
two bytes.

Sets byte format in permanent mode.

Sets current numeric word format in temporary
mode. Numeric word format will be displayed in
the current radix. Each typeout will consist of n
words. If you omit n, the default is one word.

Sets current numeric word format in permanent
mode.

Sets radix 50 typeout mode for n bytes.

Sets radix 50 format in permanent mode.

Sets IBM format in temporary mode.
will consist of n EBCDIC bytes.
the default is two bytes.

Sets IBM format in permanent mode.

11

Each typeout
If you omit n,

<ESC>nR

<ESC><ESC>nR

<ESC>nS

<ESC><ESC>nS

<ESC>nT

<ESC><ESC>nT

Sets output radix to "n" in temporary mode.

Sets output radix in permanent mode.

Sets symbolic format in temporary mode. The
typeout will consist of instructions of one, two,
or three words, depending on the type of
instruction. The variable n specifies the number
of instructions per typeout. If you omit n, the
default is one instruction.

Sets symbolic format in permanent mode.

Sets text format in temporary mode. Each typeout
will consist of n ASCII characters. If you omit
n, the default is two characters.

Sets text format in permanent mode.

7 USING DDT11 TO EXAMINE MEMORY

In DDT mode, your terminal input and output from the program take
place at a defined location in memory. This location is designated by
the location pointer. The location pointer is an invisible mark in
memory from which DDTl1 will output text at your request, and where
your changes are deposited. The symbol ".", by itself, represents the
current location.

7.1 Moving the Location Pointer

Each address in memory designates a location. DDT1l allows you
examine one location at a time on your terminal. You can access
locations in memory that you wish to examine or change by moving
location pointer to that location, and by opening the location.
a location is "open," you can examine or change its contents.

to
the
the

When

When you first start DDTll, the location pointer is set to location O.
To move the location pointer to another location, type the octal
address of that location, or the symbolic expression in the program,
followed by a slash (I). This action moves the pointer, opens the
location, and displays the contents of the location. For example:

30011 ;type this to move to location 3001

or

REVOI ;type this to move to REVO

When you type I, DDTll will open the location and display its contents
on your terminal. You can use [whenever a I is accepted. The [
always displays contents in the current radix; I displays contents in
the current output mode.

After you reach the desired location, you can move your location
pointer to the adjacent locations. Press the line-feed key <LF> to
move to the next location, open it and display its contents. Press
the up-arrow, or circumflex (~), or backspace (~H) to move to the
previous location, open it, and display its contents. The up-arrow is
echoed on your terminal. <ESC><RET> gets back the previously opened
location.

12

NOTE

PDP-II instructions can be 1, 2, or 3 words long (2,
4, or 6 bytes). A line-feed given in symbolic format
«ESC)S) will display the next succeeding instruction
regardless of the length of the instruction. The
up-arrow will move to the previous address and try to
interpret that as an instruction.

In all other formats, line-feed moves down n bytes and
up-arrow moves up n bytes.

7.2 Displaying the Contents of a Location

You can see the current location in anyone of various modes by typing
one of the following:

.= (period equal) displays the address of the current
location

(semicolon) opens and displays the location in current
typeout mode

(underscore) opens and displays the location as an
instruction

(equal) opens and displays the location in current
numeric radix

Many instructions indicate movement to another part of the program.
Such instructions may contain a branching statement, or a reference to
another location. To move the location pointer to a subroutine or
referenced address, press <TAB) at that location. For example:

3001/

1466

BR l466~ idisplay current location and press
i<TAB)

RESET iDDTll moves to location of BR and
idisplays contents

If the <TAB) key is used on other than a branch instruction, DDTll
sets the location pointer to the address specified by the last
quantity in the current location (whether it was DDTll typeout or
input), and will move to that location.

Once at the routine that you branched to, you can move back to
location at which you pressed <TAB) by pressing <ESC) followed
RETURN. Pressing <ESC) before a circumflex (A) moves back to
location, and then moves to the previous location and displays
contents. Press <ESC) followed by <LF) to move back and then move
the next location.

13

the
by a

the
its
to

7.3 Searching for a Word

DDTll has a search facility that will scan a specified area in memory
for either a match or a no-match condition on a l6-bit search
argument. The formats of the two commands are as follows:

loaddr<hiaddr>value
loaddr<hiaddr>value

~w ;for all matches in range
~N ;for non-matches in range

Where:

loaddr

<hiaddr>

value

<ESC>W

<ESC>N

is the lower limit of the search area.

is the upper limit of the search area.

is the search argument (the 16-bit quantity to be
searched for).

is the DDTll command to search for all words that
match the search argument.

is the DDTll command to search for all words that
do not match the search argument.

If you do not specify search limits, the previous limits are
The default limits are zero when examining a running node.
reading a dump file, the default limits are the entire file.

used.
When

7.4 Using Masks to Search for Matches

It is possible to specify a partial string, which DDTll can use to
find matches on that string. DDTll uses a mask facility to provide
for the matching of specific bits in a word. The initial value of the
mask is 177777 (match on all 16 bits). To change the mask, enter the
following:

~M/ 177777 newmask~

Where:

<ESC>M/

177777

newmask

is the DDTll command to display the current masko

is DDTll's reply (the current mask, displayed in
octal) •

is the new mask to be in effect.

For example, to perform a search that matches only on the right half
of a word (bits 7 through 0), set the mask equal to 377. A match on
only the left half of a word, bits 15 through 8, would require a mask
of 1774000

14

8 USING DDTll TO DEPOSIT INTO MEMORY

To patch a program that is running in a node or make changes to a
binary file residing in auxiliary storage, run the node-specific
DDTll. Note that to patch a running node you must have privileges,
and you must specify the /PATCH switch on the input specification
line. Use the examine functions to locate and open the location to be
patched. For example, the following examine entry displays location
3314. (DDTll is in numeric single-word typeout mode.)

3314/ 12737

The location pointer is now set to 3314. If you now enter an
expression followed by <RET>, <LF>, or A, the contents of 3314 will be
replaced by this new expression.

If you enter an octal number consisting of more than 16 bits, only the
rightmost 16 bits will be deposited.

To enter ASCII text, type a double quote ("), followed by a character
to serve as a delimiter. Then type the string of characters, and
repeat the delimiter. Each character is stored as 7 bits plus a zero
parity bit. The string is stored at the current location.

To type in multiple words or expressions, separate them with commas.

You can use any of the following expression operators:

+ addition

subtraction

* multiplication

division

inclusive OR

& and

<space> usually equivalent to +

<CTRL/X> exclusive OR

Operators are performed in the following order:

1. Logical operations (from left to right)

2. Multiplication and division (from left to right)

3. Addition and subtraction (from left to right)

During typein, you can use any of the following before you press
RETURN, to edit the input line:

DELETE Deletes the previously typed character.

15

NOTE

The DELETE key echoes differently, depending on the
type of terminal you are using and the type you have
specified (for example, /LA36 or /VT52). If a
hardcopy terminal, DELETE echoes the deleted
characters between slashes. If a display terminal,
DELETE erases the deleted characters from the screen.

<CTRL/W>

<CTRL/U>

<CTRL/R>

Deletes the previous expression (refer to your
system commands manual for more detail) •

Deletes the whole input line and rings the bell.

Reprints the input line.

9 STARTING EXECUTION

Starting execution is valid only when examining a dump, system image,
or a non-running node. This procedure is not recommended for RSX-20F
or DECnet.

When you are finished examining and writing into memory, you can start
execution with the <ESC>G command. You can specify an address or
symbol in front of <ESC>G to start execution at that point. If you do
not specify a starting location, execution starts at the current
location. For example, in FOO<ESC>G, FOO is the starting location.

To simulate execution of a single instruction, use the <ESC>X command.
As in <ESC>G, you can type an address or symbol in front of <ESC>X to
specify the location. To specify the number of instructions to
execute, type the number of instructions between <ESC> and X.

To execute a call to a subroutine (without single-stepping the entire
subroutine), type <ESC><ESC>X. Execution will continue until control
returns to the subroutine caller.

10 MONITORING A LOCATION

When you are examining a running node, it may be useful to monitor a
particular location for changes. The <ESC>V command can be used to
display the contents of an opened location when the contents change.
For example, to open location FRECNT and monitor its contents, enter:

FRECNT/ 141 ~v

DDTll will then display each observed change in contents as:

FRECNT/ 143
FRECNT/ 141
FRECNT/ 142
FRECNT/ 145
FRECNT/ 141

To end monitoring, type any character.

16

NOTE

If changes are occurring rapidly, some may not be
detected.

The masking feature of the search function is also active during the
monitor function. If the initial mask value is in effect (177777),
the monitored location is displayed when anyone of the 16 bits
changes. If, for example, you want to monitor a change in bit 12 of
some status word, set the mask as follows:

@DM/ oldmask 10000 ~

Where:

<ESC>M/

oldmask

10000

11 DUMPING MEMORY

is the command to display the current mask and set
the location pointer.

is the current mask displayed by DDTll.

is the new mask with only bit 12 set on.

Occasionally, it is desirable to dump portions of memory to a line
printer or a disk file. Use the <ESC>D command to initiate a dump and
set the dump limits with the following command:

loaddr<hiaddr> @Do

Where:

loaddr is the lowest address to be dumped.

<hiaddr> is the highest address to be dumped.

<ESC>D is the dump command.

DDTll will then prompt you for a file specification:

FILE:

Enter a file name and extension.
default is .LSD.

If you omit the extension, the

When the file specification is accepted by DDTll, the file is opened,
the dump is recorded, and the file is then closed. Therefore, each
range of memory locations that is dumped is recorded in a separate
dump file.

If a file of the same name already exists, the new dump will be
appended to the old dump. If the dump is part of a command file, the
device specification for the command file will be used for the dump
file.

The current output format is used for output. To create a file that
looks like an assembly listing, use the /DISASSEMBLE switch after the
dump file name.

17

12 USING SYMBOLS

DDT11 always has the standard PDP-II instructions defined as symbols.
The current location pointer may be referred to with the period (.).
The last word output by DDTII or input to DDTII may be referenced with
the command <ESC>Q. For example:

2002/

2020/

MOV 6 (RS) ,@ (RS) +

BR 1466 @DQ=622

CillJQ=6

When you input PDP-II instructions, DDTII defaults to relative
addressing. If you want to input absolute addresses, precede the
address by the symbol, @#. For example:

.R DDTll~

DDTII 7E(114)

Input: /CORE:4K/GO/PAT~
[S6p core]
[60p core]
[61p core]

S20<FOO:
SOO/ HALT

SOO/

SOO/
SOO/

JMP FOO

JMP FOO
JMP @#FOO

FOO=S20
JMP FOO

=167 14

JMP @#FOO
=137 520

12.1 Defining Symbols

You can define a symbol with a value equal to the current location
counter by typing the new symbol and terminating it with a colon (:).
For example:

S570/ RESET START:

You can also directly assign a value to a symbol by typing the value,
a left angle bracket «) and the symbol, terminated by a colon. For
example:

10S<Q:

12.2 Controlling Symbol Typeout

Type <ESC>K if you wish to make the last symbol typed (by you or
DDTll) unavailable for typeout from DDTII. You can also remove the
last symbol typed from the DDTII symbol table by typing <ESC><ESC>K.
Typing sym$K and sym$$K will achieve the same results, respectively.

18

12.3 Matching Symbols

If you type a question mark (?) when entering a symbol, DDT11 will
search its symbol table for partial matches. A partial match is any
symbol that begins the same as the partially typed-in symbol. If any
partial matches are discovered, DDTl1 will type:

following are partial matches

DDT11 will then type all of the partial matches and their values in
the current output radix. If the symbols are suppressed, the value
will be followed by:

spd

If no symbols match the partially typed symbol, DDTII will respond:

no partial matches for symbol

After displaying the partial matches, DDTII will retype the input and
you can continue typing your symbol.

12.4 Completing Partial Symbols

If you type CTRL/F with a symbol, DDTII will search for partial symbol
matches. DDTII will then add as many unambiguous characters as it can
to the typed-in symbol. If the symbol has no matches, DDTII will give
a bell response. If the symbol is not ambiguous, DDTII will fill in
the unambiguous portion (if any) and then give a bell response.

For example, type:

Fa (CTRL/F)

DDTII will search its symbol tables for symbols beginning with Fa. If
it finds only FOOP, it will complete the symbol for you by finishing
it with OP, and then it will give the bell signal.

If, however, DDTII knows the symbols FOOP and FOOl, it will add one
"0" and then give a bell response, because the symbol is ambiguous.

13 USING COMMAND FILES IN DDT11

You can use a command file as input to DDTII. To start a command
file, type the <ESC)Y command. After you type <ESC)Y, DDTII will ask
where to log responses. You may type a file name for the log file, or
TTY: to see output on your terminal. Then DDTII prints the FILE:
prompt. Here you type the name of the command file. (See Appendix B
for a sample command file.)

13.1 Command File Echoing

Usually, as characters are read from a command file, they are echoed
into the log file. If a CTRL/S is encountered in the command file,
echoing will be suspended until a CTRL/Q is encountered.

19

13.2 Using Macro-Style Arguments

During the execution of command files, CTRL/A is used to delimit
symbols whose values are to be converted to ASCII text. For example,
if the symbol FOO has a value of 13, and if the command file contains
the string:

FOO (CTRlIA) BLK

the string will be processed as if it were:

L13BLK

13.3 Using Tags in Command Files

Command files may contain tags. Tags are of the form:

%tag:

Where tag is an alphanumeric string.

The first character after the per~~nt sign (%) should be alphabetic.
Only the first five alphanumeric characters are used. Be careful when
you choose tag names. A text input string with a percent sign might
be confused with a tag elsewhere in the file.

Command files may contain unconditional branches by including %GOTO
%TAG commands. The %TAG may be anywhere in the command file.

Conditional branches may be included
numeric tests, the expression is a
NOF, the expression is a single symbol
true, control will be transferred to
be tested for are:

in the command files. For
general expression. For DEF or

name. If the condition is
%TAG. The conditions which can

OEF

OF

E

EQ

ERR

G

GE

The symbol is tested for existence.

Same as OEF.

Same as EQ.

Expression is tested for a zero value.

Tests and clears the error flag. The error flag is set
if an undefined symbol is used in an expression, or if
an illegal command is typed.

Same as GT.

The expression is tested for a positive value.

20

GT The expression is tested for a positive, nonzero value.

N Same as NE.

NDF The symbol is tested for nonexistence.

NE The expression is tested for a nonzero value.

L Same as LT.

LE The expression is tested for a zero or negative value.

LT The expression is tested for a negative value.

14 DDTll COMMAND FILE FOR AN RSX-20F FRONT END

The following example is a DDT11 command file for an RSX-20F front
end. The notations used are:

$ = <ESC>
"s <CTRL/S>
"Q <CTRL/Q>
""z <CTRL/Z>

Example:

@ddtll~
DDTl1 7F(106)

Input: vb1445.map/fesym
C46p core]
[47p core]
[48p core]
[49p core]
[50p core]
[51p core]
[52p core]
[53p core]
[54p core]
[55p core]
%Loaded 1216 symbols.

Input: [CTRLlZ]

EXIT
@save vb1445~

VB1445.EXE.8 Saved
@type dumpfe.ddt[R8]
"S'"'modified by David Weaver"

"""'QRSX20F crash analysis command file""S"""Q
""S""""QRSX20F version:"'S"$10T.VERNO/"'Q
"S"""'QCrashed on:
"'S"$12R$1B.MON$/$Q377+1=.DAY$/$Q377+1=$C.YEAR/"Q
"'S" "QRSX20F crash-code:"S"$3TO/~Q
"s" "QRunning on KL serial -S"$12R$C.CPUSN/"Q
"'S" "'QCurrent task:-S"$A.CRTSK/"Q
"s" "'QBytes left in the Free-pool:~S".FREPL+2["'Q
"'s" "'QBytes left in Big Buffer:"S".BGBUF+2["'Q
"'s" "'QNumber of lines locally shut off:"'S".S2IDC["Q
"'S" "'QNumber of lines with clock requests:"'S".TTS2FC"Q
"'s" "'QSaved stack pointer:"'S"$$CSPSAV/$Q<ZZ:"'Q
"'S% F EQ ZZ %REG
"Q

21

AS""AQR5:AS"ZZ/$A./AQ
AS""A QPC: AS".+2/$A./A Q
.... S"" QPS: AS".+2/$A./A Q
AS""AQR5:AS".+2/$A./AQ
.... S"" ... QPC: S".+2/$A./AQ
.... S""A QPS:AS".+2/$A./A Q
"'s
%REG:
AQ

"'S""A QR O:A S"40/$A./"'Q
"'s" AQRl: AS".+2/$A./"'Q
"'s" AQR 2: S".+2/$A./AQ
"s" AQR 3: S".+2/$A./A Q
AS" AQR 4: S".+2/$A./A Q
.... S" A QR5: S".+2/$A./AQ
AS" QSP: AS".+2/$A./A Q
.... S" QPC: S".+2/$A./"Q

@run vb1445~
DDTII 7F(106) = VB1445 /SYMBOLS=DSK:VB1445.MAP[4,144] 14:32
12-Nov-81

Input: remote .dmp/dte ~
[59p core]
[60p core]
[96p core]
highest location is 157777

$y
Log responses where: tty:

FILE: dumpfe

dump made 0:09:26 12-Aprl-83 of /FILE:DSK:REMOTE.DMP[4,144] 14:35
8-Feb-83

by DDTII 7F(106) = VB1445 /SYMBOLS=DSK:VB1445.MAP[4,144] 14:32
12-Nov-81

RSX20F crash analysis command file

RSX20F version: VB14-45h
Crashed on: 2. 8. 1983.
RSX20F crash code: TBT
Running on KL serial 2102.
Current task: NULTSK
Bytes left in the Free-pool: 4614
Bytes left in Big Buffer: 2000
Number of lines locally shut off: 0
Number of lines with clock requests: 0
Saved stack pointer: 25136

22

Stack items:

R5: 4 UC.TTY
pc: 11676 CR$TBT
PS: 301 QI.VER+1
R5: 0 0
pc: 5542 FETBL
PS: 164 H.LUT+34

Registers:

RO: 71304 71304
R1: 71304 71304
R2: 100 .INTEN
R3: 4676 IO.S80+276
R4: 177777 K.LUSR
R5: 174412 174412
SP: 11426 EMGSTK
pc: 173606 173606

File TTY: • [4,144] 1-Jan-64 written

Finished command file

15 WRITING A BINARY FILE

After DDT11 has read in a binary file, the <ESC>P command can be used
to write another binary file. Switches may accompany the file
specification. Legal switches include:

IBMB73
IIMAGE
IM9301
IMCBSYS
IPACKED

To indicate tape wanted for punching a BMB73 ROM.
To copy a file to-a PTP with II.
To make a tape for a M9301 ROM.
To patch a task image or an MCB system image.
To make a packed binary file suitable for BOOTll or
NETLDR. This is the default switch.

23

APPENDIX A

SUMMARY OF DDT!1 COMMANDS

The following table contains all the commands (characters and escape
sequences) that are significant to DDTII. The first column of Table
A-I shows the command character, and the second column contains a
brief description of the function of each command.

Table A-I: DDT11 Commands

Character Function

<CTRL/A>

<CTRL/C>

<CTRL/F>

Backspace

<TAB>

<LF>

<RET>

<CTRL/O>

<CTRL/Q>

<CTRL/R>

<CTRL/S>

<CTRL/T>

<CTRL/U>

Delimits symbols whose values are to be
converted to ASCII text, in command files.

Aborts DDTII execution and returns to the
operating system.

Requests DDTII to supply the rest of the
symbolic name (if unique).

Moves pointer to previous location and prints
its contents.

Opens and displays the contents of
address, if currently at a
instruction.

the branch
branching

Stores a value (if
location, closes it,
sequential instruction.

available) in
then displays

the open
the next

Stores a value (if available)
location and then closes it.

Suppresses output.

in the open

Resumes output; also, within a command file,
<CTRL/Q> resumes logging.

Re-displays a partial command.

Pauses output; also within a command file,
<CTRL/S> stops logging.

Forces USESTAT command (if RTCOMP is not set);
otherwise, <CTRL/T> is illegal.

Deletes current typein.

A-I

SUMMARY OF DDTII COMMANDS

Table A-I: DDTII Commands (Cont.)

Character Function

<CTRL/W> Deletes last symbol in typein.

<CTRL/X> Is the logical exclusive OR operator.

<CTRL/Z>

<ESC>

<SPACE>

n

$

%tag:

&

*
+

addr/

0-7

8-9

val<symb:

Requests DDTII to clean up and exits to the
operating system.

Depends on next character for meaning.

Is the same as n+n between symbolic names.

Is the logical inclusive OR operator.

Initiates text typein.

Denotes immediate mode in instruction typein.

Forms symbolic names.

Denotes a tag in a command file.

Is the logical AND operator.

Is the division operator.

Is the symbol for start-of-index register or
start of expression.

Is the symbol for end-of-index
of expression.

Is the multiplication operator.

Is the addition operator.

Is the separator for multiword

Is the subtraction operator.

Stands for current location
alone; otherwise, stands for a
symbolic name.

register or end

expressions.

pointer if used
character in a

Moves pointer to specified location and prints
contents.

Is the octal digit. Used either as a character
in a symbolic name, or as a character in an
octal or decimal number.

Is used either as a character in a symbolic
name, or as character in a decimal number.

Displays current location in current mode.

Assigns the value (val) to the symbol (symb).

A-2

SUMMARY OF DDTI! COMMANDS

Table A-I: DDTII Commands (Cont.)

Character Function

loaddr<hiaddr>

?

@

@

addr[

\

<DELETE>

<ESC><LF>

<ESC><RET>

<ESC>nA

<ESC><ESC>nA

<ESC>nB

<ESC><ESC>nB

<ESC>nC

<ESC><ESC>nC

<ESC>D

<ESC>G

<ESC>nI

<ESC><ESC>nI

Retypes previous input or output in current
radix.

Defines the lower and upper limits for a search,
dump, or output.

Prints a list of symbols that match.

Identifies address as indirect.

Denotes
typein.

absolute addressing in instruction

Moves pointer to specified location and prints
its contents in numeric mode.

Opens the new location without changing the
position of the location pointer.

Moves pointer to previous location and prints
its contents.

Prints contents of location as instruction.

Deletes the previous character that you typed.
(Also known as RUBOUT.)

Returns pointer to location before <TAB> and
prints contents of next location.

Returns pointer to location before <TAB> and
prints contents of the location.

Sets address format for typeout in temporary
mode.

Sets address format in permanent mode.

Sets byte format for typeout in temporary mode.

Sets byte format in permanent mode.

Sets current word
temporary mode.

format for typeout in

Sets current word format in permanent mode.

Dumps memory to a disk file.

Starts execution.

Sets IBM format for tyepout in temporary mode.

Sets IBM format in permanent mode.

A-3

SUMMARY OF DDTII COMMANDS

Table A-I: DDTII Commands (Cont.)

Character Function

<ESC>K

<ESC><ESC>K

<ESC>M

<ESC>N

<ESC>P

<ESC>Q

<ESC>nR

<ESC><ESC>nR

<ESC>nS

<ESC><ESC>nS

<ESC>nT

<ESC><ESC>nT

<ESC>V

<ESC>W

<ESC>X

<ESC><ESC>X

<ESC>Y

<ESC>'"'

Makes previously referenced symbol unavailable
for output.

Removes previously referenced symbol from symbol
table.

Displays the current mask.

Searches for words that do not match
specified string.

Outputs a binary file.

Types out the last word referenced.

the

Sets numeric radix for typeout in temporary
mode.

Sets numeric radix in permanent mode.

Sets symbolic format for typeout in temporary
mode.

Sets symbolic format in permanent mode.

Sets text format for typeout in temporary mode.

Sets text format in permanent mode.

Types out the current location every time its
contents change.

Searches for· words that match the specified
string.

Executes a single instruction.

Executes a subroutine call.

Starts a command file.

Returns pointer to location before <TAB> and
prints contents of previous location.

A-4

APPENDIX B

SWITCHES FOR THE INPUT SPECIFICATION

The following is a list of all the switches that you can use in the
input specification:

/11

/8

/BINARY

/CORE:nK

/DTELDR

/DUMP

/FE:nm

/FESYMB

/GO

/HELP

/LA36

/LINE:n

/LSD

/MCB:node

/MCBDMP

/MCBSYS

/MERGE

Same as /PDPII.

Same as /PDP8.

Reads a file produced by MACDLX.

Allocates the specified amount of core to read a
dump or binary file (1 core:28K).

Reads the file as a DTELDR dump. This switch is
used when looking at a RSX-20F dump.

Reads the file as a NETLDR dump.

Indicates that the front end is running an
RSX-20F. The value n is the number of the CPU to
which the front end is connected. The value m is
the DTE to which the front end is connected. If n
is not specified, then 0 is implied. You require
n only for systems with more than one CPU (SMP).

Loads symbols from a map file for the RSX-20F
front end.

Uses the core image saved with the DDTII program.

Produces text explaining all the DDTll switches.

Defines your terminal to be a hardcopy terminal.
This affects echo of deleted characters.

Specifies the line number on a running node of an
adjacent remote node that you want to examine.

Same as /DUMP.

Examines a running DECnet (MCB) node.

Examines a DECnet node dump.

Examines an unrun DECnet (or RSX-20F) system
image.

Reads a new dump and appends it to the existing
dump file.

B-1

SWITCHES FOR THE INPUT SPECIFICATION

/NODE:node-id Specifies
examine.
number.

the ANF-lO node that you wish to
The node-id can be a node name or node

/PATCH

/PDPII

/PDP8

/PORT:n

/RELOCA:sym

/STB

/SYMBOL:n

/UBA:n

/VT52

Enables deposits. You must have privileges to
deposit into a running node.

Uses only PDP-II symbols.
setting.

This is the default

Uses only PDP-8 symbols. You must specify this
switch when you examine a PDP-8 node (that is, a
DN92) or dump.

Specifies the port number of the node you wish to
examine.

Adds an offset to symbols loaded from an RSX-20F
dump, where sym is the offset number or symbol.

Reads an MCB symbol table produced by the DECnet
NETGEN procedure.

Loads symbols from a CREF listing file starting at
n, where n is the disk blocknumber. The disk
block number is optional.

Specifies the UBA when running standalone on a
KSIO, where n is the UBA number of the node.

Defines your terminal to be a video terminal.
This affects echo of deleted characters.

After specifying the node or file specification, DDTIl enters DDT
mode, as explained in Section 6.0.

The default file extensions are shown in the following table:

Switch

/SYMBOL

/FESYM

/STB

/MCBSYS

/MCBDMP

/BINARY
/LSD
/DUMP

/DTELDR

Default File Extensions

· , .LST, .CRF

· , .MAP, .SYM

, .STB, .SYM

· , .SYS, .MCB

· , .DMP f .SYS

., .LSD, .BIN

., .BIN

B-2

INDEX

Accessing locations in memory, 12
ANF-IO node

examining a dump, 4
examining a running, 3
examining unrun system image, 4
loading and saving symbols, 3

Binary file
making changes, 15
writing, 23

Choosing tag names, 20
Command file

for RSX-20F front end, 21
Command files

using, 19
using Macro-style arguments, 20
using tags, 20

Controlling
output format, 11
symbol typeout, 18

DDTII Commands
summary, A-I

DDTII default
relative addressing, 18
with PDP-II instructions, 18

DDTII input switches, B-1
DDT11 mask facility

for a partial string, 14
DDTII output mode, 11
DDTII search facility

for match condition, 14
for no-match condition, 14

DECnet front end
loading and saving symbols, 7

DECnet MCB node
examining a dump, 8
examining a running, 8
examining unrun system image, 9

Default file extension table, B-2
Defining symbols, 18
Displaying contents

of locations in memory, 13
Dumping memory, 17

Examining
a dump

ANF-IO node, 4
DECnet MCB node, 8
IBMCOM front end, 6
RSX-20F front end, 10

a dump file, 2
a running

ANF-IO node, 3
DECnet MCB node, 8
RSX-20F front end, 10

a running node, 2

Examining (Cont.)
IBMCOM front end running DN6x,

5
unrun system image

ANF-IO node, 4
DECnet MCB node, 9
IBMCOM front end, 6
RSX-20F, 10

IBMCOM front end
examining a DN60 front end, 5
examining a dump, 6
examining unrun image, 6
loading and saving symbols, 5

Initializing DDTII
ANF-IO Nodes, 1
DECnet-10/20 MCB (DN20), 1
IBMCOM-IO/20 Nodes, 1
RJE-20 (DN200) Nodes, 1
RSX~20F Front End, 1

Input specification
DDTII switches, B-1

Loading and saving symbols
ANF-IO node, 3
DECnet front end, 7
IBMCOM front end, 5
RJE-20 (DN200), 8
RSX-20F front end, 9

Location
monitoring, 16

Locations in memory
accessing, 12
displaying contents, 13

Macro-style arguments
in command files, 20

Matching symbols, 19
Memory

accessing locations, 12
depositing into, 15
dumping, 17
location pointer, 12
using DDTII to examine, 12

Monitoring a location, 16

Output format
controlling, 11
setting, 11

Partial symbol matches, 19
Patching a running node, 15
PDP-II instructions

defined as symbols, 18
Permanent output mode, 11

Relative addressing
DDTII default, 18

Index-l

RJE-20 (DN200)
loading and saving symbols, 8

RSX-20F front end
DDTll command file, 21
examining a dump, 10
examining a running, 10
examining unrun system image,

10
loading and saving symbols, 9

Setting output format, 11
Starting execution

restriction for DECnet, 16
restriction for RSX-20F, 16
when examining a dump, 16
when examining a non-running

node, 16
when examining a system image,

16
Summary

DDTll commands, A-I
Switches

DDTll input specification, B-1
Symbol typeout

controlling, 18
Symbols

defining, 18
matching, 19

Symbols (Cont.)
partial matches, 19
using, 18

Table
of default file extensions, B-2

Tags
choosing names, 20
form, 20
in command files, 20

Temporary output mode, 11

Using command files, 19
Using DDTll, 1

for ANF-IO nodes, 3
for DECnet front ends, 6
for IBMCOM front ends, 5
for RJE-20 (DN200), 8
for RSX-20F front end, 9
initial dialog, 2
to deposit into memory, 15
to examine a running node, 2
to examine dump files, 2
to examine memory, 12
to examine unrun system images,

3
Using symbols, 18

Writing a binary file, 23

Index-2

READER'S COMMENTS

TOPS-10/TOPS-20
DDT11 Manual
AA-M494A-TK

NOTE: This form is for document comments only. DIGITAL will use comments submitted on
this form at the company's discretion. If you require a written reply and are eligible to
receive one under Software Performance Report (SPR) service, submit your com
ments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make sugges
tions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of reader that you most nearly represent.

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other (please specify)~~~~~~~~~~~~~~~~~~~~~

Name Date __________ _

Organization ____ ~~~ __ ~~~ ___ Telephone ________ ~

Street ___________________________________ __

City ______________________ State ____ Zip Code ___ _

or Country

I
I
I
I
I
I

. - -~-.- -gDOmNotgTeaar - FmO.
1d

He Ire and Tape - - - - - -- -- -- - - - - -- - --- -ffl-Il1-- -- ----~~~~;:;~~ ---!
if Mailed in the
United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS

200 FOREST STREET MR01-2/L 12

MARLBOROUGH, MA 01752

. - - - - Do Not Tear - Fold Here and Tape - - _. -

	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	A-1
	A-2
	A-3
	A-4
	B-1
	B-2
	index-1
	index-2
	replyA
	replyB

