
OIL User Reference Manual 
AA-M581 8-TK 

November 1984 

The OIL is a set of callable subroutines that enable you to 
transfer data between TOPS-10, TOPS-20 and VMS systems. 

This revised document supersedes the DIL User Reference 
Manual, order numbers AA-M581 A-TK and AO-M581 A-T1 . 

OPERATING SYSTEM: TOPS-20 V4.1 and later 
for 2020 (KS) Systems 
TOPS-20 V5.1 and later 
for KL Systems 
VAX/VMS V3.1 and later 
TOPS-10 V7.02 and later 

SOFTWARE: TOPS-10ITOPS-20 COBOL V12B or later 
TOPS-10/TOPS-20 FORTRAN V7 or later 
VAX/VMS COBOL V3.1 or later 
VAX/VMS FORTRAN V3.0 or later 

Software and manuals should be ordered by title and order number. In the United States, send orders 
to the nearest distribution center. Outside the United States, orders should be directed to the nearest 
DIGITAL Field Sales Office or representative. 

Northeast/Mid-Atlantic Region Central Region Western Region 

Digital Equipment Corporation 
PO Box CS2008 
Nashua, New Hampshire 03061 
Telephone:(603)884-6660 

Digital Equipment Corporation Digital Equipment Corporation 
Accessories and Supplies Center Accessories and Supplies Center 
1050 East Remington Road 632 Caribbean Drive 
Schaumburg, Illinois 60195 Sunnyvale, California 94086 
Telephone:(312)64Q--5612 Telephone:(408)734-4915 

digital equipment corporation. marlboro. massachusetts 



First Printing, February 1983 
Updated, January 1984 
Revised, November 1984 

© Digital Equipment Corporation 1983, 1984. All Rights Reserved. 

The information in this document is subject to change without notice and should 
not be construed as a commitment by Digital Equipment Corporation. Digital 
Equipment Corporation assumes no responsibility for any errors that may 
appear in this document. 

The software described in this document is furnished under a license and may 
only be used or copied in accordance with the terms of such license. 

No responsibility is assumed for the use or reliability of software on equipment 
that is not supplied by DIGITAL or its affiliated companies. 

The following are trademarks of Digital Equipment Corporation: 

~D~DDmDTM 
DEC MASSBUS RSX 
DECmate PDP RT 
DECsystem-10 P/OS UNIBUS 
DECSYSTEM-20 Professional VAX 
DECUS Q-BUS VMS 
DECwriter Rainbow VT 
DIBOL RSTS Work Processor 

The postage-prepaid READER'S COMMENTS form on the last page of this 
document requests the user's critical evaluation to assist us in preparing future 
documentation. 



CONTENTS 

PREFACE 

PART I OIL USAGE MATERIAL 

CHAPTER 1 

1.1 
1..1.1 
1.1.2 

CHAPTER 2 

2.1 
2.1.1 
2.1.2 
2.1.3 

CHAPTER 3 

CHAPTER 4 

4.1 

OIL CONCEPTS AND CAPABILITIES 

INTRODUCTION • • • • • • • • • • • • • • • 
Data Interchange Library Status Codes 
The DIL Interface Support Files • • • • 

• • • • 1-1 
• • 1-4 

• • • • 1-6 

DATA CONVERSION CONCEPTS AND CAPABILITIES 

CONVERTING FIELDS •••••••••••• 
Conversion Using a Foreign Field Descriptor 
Conversion Using a Detailed Description 
Record Layouts and Byte Offsets •••••• 

TASK-TO-TASK CONCEPTS AND CAPABILITIES 

REMOTE FILE ACCESS CONCEPTS AND CAPABILITIES 

• • 2-1 
2-2 

• 2-4 
2-4 

OPENING A REMOTE FILE • • • 4-2 

PART II USING THE OIL FROM TOPS-I0 AND TOPS-20 

CHAPTER 5 TOPS-I0 AND TOPS-20 DATA CONVERSION 

5.1 
5.1.1 
5.1.2 
5.1.3 
5.1.4 
5.1.5 
5.2 
5.2.1 
5.2.2 
5.2.3 
5.2.4 
5.3 
5.3.1 
5.3.2 
5.3.3 
5.3.4 
5.3.5 
5.3.6 
5.3.7 
5.3.8 
5.3.9 

5.3.10 

5.3.11 

DATA CONVERSION FROM TOPS-I0/TOPS-20 COBOL • 5-1 
Compiling Programs • • • • • • • • • • • • • • • 5-1 
Including the Interface Support Files • 5-1 
Storing an FFD • • • • • • • • • • • • • • • • • 5-2 
Passing a Record to the XDESCR Routine •• • 5-2 
Checking For Errors ••• • • • • • • • • • • • 5-3 

DATA CONVERSION FROM TOPS-10/TOPS-20 FORTRAN • 5-4 
Including the Interface Support Files ••••• 5-4 
Storing an FFD • • • • • • • • • • • • • • • • • 5-4 
Passing a Record to the XDESCR Routine •• • 5-5 
Checking For Errors ••••• • . • • • • • • • 5-6 

TOPS-10/TOPS-20 DATA-CONVERSION REFERENCE •••• 5-7 
DILINI - Allow the OIL to Recognize Status Codes 5-7 
XDESCR - To Create an FFD • • • • • • •• • 5-8 
XCGEN - To Perform General Purpose Conversion 5-10 
XCVST - Convert String Fields •••••• 5-12 
XCVFB - Convert Fixed-Point Binary Fields 5-13 
XCVFP - Convert Floating-Point Fields 5-14 
XCVPD - Convert Packed Decimal Fields 5-15 
XCVDN - Convert Display Numeric Fields 5-17 
XCFBDN - Convert Fixed-Point Binary Fields to 
Display Numeric Fields • • • • • • • • • • 5-19 
XCFBPD - Convert Fixed-Point Binary- Fields to 
Packed Decimal Fields •••••••• 5-21 
XCPDDN - Convert Packed Decimal Fields to 
Display Numeric Fields • • • • • • • • 5-22 

iii 



5.3.12 

5.3.13 

5.3.14 

5.3.15 
5.4 
5.4.1 
5.4.2 

CHAPTER 6 

6.1 
6.1.1 
6.1.2 
6.1.3 
6.1.4 
6.1.5 
6.1.6 
6.2 
6.2.1 
6.2.2 
6.2.3 
6.2.4 
6.2.5 
6.3 
6.3.1 
6.3.2 

6.3.3 
6.3.4 

6.3.5 
6.3.6 
6.3.7 
6.3.8 
6.3.9 
6.3.10 
6.3.11 

6.3.12 

6.3.13 
6.4 
6.4.1 
6.4.2 

CHAPTER 7 

7.1 
7.1.1 
7.1.2 
7.1.3 
7.1.4 
7.1.5 
7.1.6 

7.1.7 
7.2 
7.2.1 
7.2.2 

XCPDFB - Convert Packed Decimal Fields to 
Fixed-Point Binary Fields • • • • • 5-24 
XCDNPD - Convert Display Numeric Fields to 
Packed Decimal Fields • • • • • • • • • • 5-26 
XCDNFB - Convert Display Numeric Fields to 
Fixed-Point Binary Fields • • • • • 5-28 
CVGEN - Perform Conversion Without an FFD 5-30 

TOPS-10/TOPS-20 DATA CONVERSION EXAMPLES • • •• 5-35 
TOPS-10/TOPS-20 COBOL Data Conversion Example 5-35 
TOPS-10/TOPS-20 FORTRAN Data Conversion Example 5-38 

TOPS-20 AND TOPS-10 TASK-TO-TASK 

TASK-TO-TASK FROM TOPS-20 OR TOPS-10 COBOL •• 6-1 
Compiling Programs • • • • • • • • • • 6-1 
Including the Interface Support Files • 6-1 
Storing a Network Logical Name (NLN) •• •• 6-2 
Storing Task and User Attributes •••••••• 6-2 
Checking the Status of a Task-to-Task Routine • 6-3 
The TOPS-10 Software Interrupt System • • • • • 6-3 

TASK-TO-TASK FROM TOPS-20 AND TOPS-10 FORTRAN •• 6-3 
Including the Interface Support Files • • 6-4 
Storing a Network Logical Name (NLN) •••••• 6-4 
Storing Task and User Attributes • • • • ~ • • • 6-4 
Checking the Status of a Task-to-Task Routine • 6-5 
The TOPS-10 Software Interrupt System • • • • • 6-5 

TOPS-10 AND TOPS-20 TASK-TO-TASK REFERENCE • • • • 6-6 
NFGND - Return the Status of a Link • • • • • • 6-6 
NFINF - Get Information About the Other End of a 
Logical Link. • •••••••••••••••• 6-8 
NFOPA - Open a Link From an Active Task (ASCII) 6-11 
NFOPB - Open a Link From an Active Task 
(Binary) • • • • • • • • • • • • • • • • • • • 6-14 
NFOP8 - Open a Link From an Active Task (8-bit) 6-17 
NFOPP - Open a Link From a Passive Task 6-20 
NFACC - Accept a Connection • • • • 6-22 
NFREJ - Reject a Connection 6-24 
NFRCV - Receive Data Over a Link • • • •• 6-25 
NFSND - Send Data Over a Link 6-28 
NFINT - Send an Interrupt Data Message Over a 
Li nk • • • • • • • • • • • • 6-30 
NFRCI - Receive an Interrupt Data Message Over 
a Link • • • • • • • • • • • • • • • • • • •• 6-31 
NFCLS - Close a Link • • • • • • • • • • • • • 6-32 

TOPS-10/TOPS-20 TASK-TO-TASK EXAMPLES ••••• 6-34 
TOPS-10/TOPS-20 COBOL Task-to-Task Examples 6-34 
TOPS-10/TOPS-20 FORTRAN Task-to-Task Examples 6-40 

TOPS-10 AND TOPS-20 REMOTE FILE ACCESS 

REMOTE FILE ACCESS FROM TOPS-10 OR TOPS-20 COBOL • 7-1 
Compiling Programs • • • • • • • • •• ••• 7-1 
Including the Interface Support Files • • • • • 7-1 
Storing a File Number • • • • • • • • 7-2 
Storing Accounting Information • • • 7-2 
Reading and Writing Remote Data ••• 7-2 
Checking the Status of a Remote File Access 
Routine •• • • • • • • • • • • • • 
The TOPS-10 Software Interrupt System 

REMOTE FILE ACCESS FROM TOPS-20 OR TOPS-10 
Including the Interface Support Files 
Storing a File Number • • • • • • • • • 

iv 

• • 7-3 
7-3 

FORTRAN 7-3 
• 7-4 

• • • • 7-4 



7.2.3 
7.2.4 
7.2.5 

7.2.6 
7.3 
7.3.1 
7~3.2 
7.3.3 
7.3.4 
7.3.5 
7.3.6 
7.3.7 
7.4 
7.4.1 
7.4.2 
7.5 
7.5.1 
7.5.2 

CHAPTER 8 

8.1 
8.2 
8.3 

Storing Account Information •• • • • • • • • • 7-4 
Reading and Writing Remote Data • • •••• 7-4 
Checking the Status of a Remote File Access 
Routine •••••••••••••••••• 7-5 
The TOPS-10 Software Interrupt System • • 7-5 

TOPS-20 AND TOPS-10 REMOTE FILE ACCESS REFERENCE • 7-6 
ROPEN - Open a Remote File • • • • • 7-6 
RREAD - Read Data From a Remote File • • • 7-9 
RWRITE - Write Data To a Remote File • • 7-10 
RCLOSE - Close a Remote File • • • • • 7-11 
RDEL - Delete a File • • • • • • • • • • • • • 7-13 
RSUB - Submit a File For Batch Processing 7-15 
RPRINT - Print a File •• • • • • • • • • 7-17 

TOPS-20 REMOTE FILE ACCESS EXAMPLES •••••• 7-19 
TOPS-20 COBOL Remote File Access Example • • • 7-19 
TOPS-20 FORTRAN Remote File Access Example 7-21 

TOPS-10 REMOTE FILE ACCESS EXAMPLES •••• 7-24 
TOPS-10 COBOL Remote File Access Example • 7-24 
TOPS-10 FORTRAN Remote File Access Example 7-26 

LINKING A TOPS-10/TOPS-20 PROGRAM 

DECsystem-10 LINKAGE INSTRUCTIONS •• • • • • • • 8-1 
DECSYSTEM-20 LINKAGE INSTRUCTIONS •••••••• 8-1 
DECSYSTEM-10 AND DECSYSTEM-20 OVERLAY INSTRUCTIONS 8-1 

PART III USING THE OIL FROM VMS 

CHAPTER 9 VMS DATA CONVERSION 

9.1 
9.1.1 
9.1.2 
9.1.3 
9.1.4 
9.2 
9.2.1 
9.2.2 
9.2.3 
9.2.4 
9.3 
9.3.1 
9.3.2 
9.3.3 
9.4 
9.4.1 
9.4.2 

CHAPTER 10 

10.1 
10.1.1 
10.1.2 
10.1.3 
10.1.4 
10.2 
10.2.1 
10.2.2 
10.2.3 
10.2.4 

DATA CONVERSION FROM VMS COBOL • • • • • • • • • • 9-1 
Including the Interface Support Files • • • • • 9-1 
Storing an FFD • • • • • • • • • • • • • • • • • 9-3 
Passing a Record to the DIX$MAK DES DET Routine 9-3 
Checking for Errors •••• • -; • -; • • • 9-3 

DATA CONVERSION FROM VMS FORTRAN • • • • • • • • • 9-4 
Including the Interface Support Files ••••• 9-4 
Storing an FFD • • • • • • • • • • • • • • • • • 9-5 
Passing a Record to the Data Conversion Routines 9-6 
Checking for Errors ••••••••• • • • • • 9-6 

VMS DATA CONVERSION REFERENCE •• • • • • • • • • 9-7 
DIX$MAK DES DET - Create an FFD • • • • • • • • 9-7 
DIX$BY DIX DES - Perform General Conversion • • 9-9 
DIX$BY-DET-- Convert a Field Without an FFD 9-11 

VMS DATA-CONVERSION EXAMPLES • • • • • • 9-15 
VMS COBOL Data Conversion Example 9-15 
VMS FORTRAN Data Conversion Example ••••• 9-17 

VMS TASK-TO-TASK 

TASK-TO-TASK FROM VMS COBOL • • • • • • 
Including the Interface Support Files 
Storing a Network Logical Name • • • • 
Storing Task and User Attributes • • • 
Checking the Status of a Task-to-Task Routine 

TASK-TO-TASK FROM VMS FORTRAN • • • • • 
Including the Interface Support Files •••• 
Storing a Network Logical Name • • • • • • • • 
Storing Task and User Attributes • • • • ••• 
Checking the Status of a Task-to-Task Routine 

v 

10-1 
10-1 
10-3 
10-3 
10-3 
10-4 
10-4 
10-5 
10-6 
10-6 



10.3 
10.3.1 
10.3.2 

10.3.3 

1,0.3.4 

10.3.5 

10.3.6 
10.3.7 
10.3.8 
10.3.9 
10.3.10 
10.3.11 

10.3.12 

10.3.13 
10.4 
10.4.1 
10.4.2 

CHAPTER 11 

11.1 
11.1.1 
11.1.2 
11.1.3 
11.1.4 
11.1.5 

11.2 
11.2.1 
11.2.2 
11.2.3 
11.2.4 
11.2.5 

11.3 
11.3.1 
11.3.2 
11.3.3 
11.3.4 
11.3.5 
11.3.6 
11.3.7 
11.4 
11.4.1 
11.4.2 

CHAPTER 12 

VMS TASK-TO-TASK REFERENCE • • • • • • • • • •• 10-7 
DIT$NFGND - Return the Status of Links • • •• 10-7 
DIT$NFINF - Get Information About the Other End 
of a Link. · · · · · · · · · · · · · · · · · · 10-9 
DIT$NFOPA - Open an ASCII Link From an Active 
Task . . . · · · · · · · · · · · · · · · · · · 10-12 
DIT$NFOPB - Open a Binary Link From an Active 
Task . . . · · · · · · · · · · · · · · · · · · 10-15 
DIT$NFOP8 - Open an 8-Bit Link From an Active 
Task • • • • • • • • • • • • • • • • • • • • 
DIT$NFOPP - Open a Link From a Passive Task 

• 10-18 
10-21 
10-23 
10-25 

DIT$NFACC - Accept a Connection • • • • • 
DIT$NFREJ - Reject a Connection 
DIT$NFRCV - Receive Data • • • • 
DIT$NFSND - Send Data •• • • • • • • • 
DIT$NFRCI - Receive an Interrupt Data Message 

10-26 
10-28 

Over a Link ••••••••••••••••• 10-30 
DIT$NFINT - Send an Interrupt Data Message 
Over a Link ••• • • • • • • • • • • • 10-31 
DIT$NFCLS - Close a Link • • • • • • 

VMS TASK-TO-TASK EXAMPLES ••••• 
VMS COBOL Task-to-Task Examples 

• • • • • 10-32 
• 10-33 

• • • • • 10-33 
VMS FORTRAN Task-to-Task Examples • 10-39 

VMS REMOTE FILE ACCESS 

REMOTE FILE ACCESS FROM VMS COBOL • • • • 
Including the Interface Support Files •••• 
Storing a File Number • • • • • • • • •••• 
Storing Account Information • • • • 
Reading and Writing Remote Data 
Checking the Status of a Remote File Access 
Rou tine •••••••• • • • • • • • • • • • 

REMOTE FILE ACCESS FROM VMS FORTRAN 
Including the Interface Support Files 
Storing a File Number • • • • • • • 
Storing Account Information •• • • 
Reading and Writing Remote Data ••••• 
Checking the Status of a Remote File Access 

11-1 
11-1 
11-3 
11-3 
11-3 

11-3 
11-4 
11-4 
11-6 
11-6 
11-6 

Routine ••••••••••• 11-6 
VMS REMOTE FILE ACCESS REFERENCE • • • 11-7 

DIT$ROPEN - Open a Remote File • • • 11-7 
DIT$RREAD - Read Data From a Remote File • 11-10 
DIT$RWRITE - Write Data to a Remote File ••• 11-11 
DIT$RCLOSE - Close a Remote File • • • • 11-12 
DIT$RDEL - Delete a File • • • • • • • •• 11-13 
DIT$RSUB - Submit a File For Batch Processing 11-15 
DIT$RPRINT - Print a File • • • • •• •• 11-17 

VMS REMOTE FILE ACCESS EXAMPLES •••••••• 11-19 
VMS COBOL Remote File Access Examples •••• 11-19 
VMS FORTRAN Remote File Access 'Example •• 11-22 

LINKING A VMS PROGRAM 

PART IV APPENDIXES 

APPENDIX A LANGUAGE-SPECIFIC VALUES FOR DIL NAMES 

A.l SPECIFYING DATA NAMES • • • • • • A-6 

vi 



APPENDIX B 

B.l 
B.2 
B.3 
B.4 
B.S 

APPENDIX C 

APPENDIX 0 

0.1 
0.2 
0.3 

0.4 
0.4.1 
0.4.2 
0.4.3 

APPENDIX E 

APPENDIX F 

F.l 
F.2 
F.3 

APPENDIX G 

INDEX 

G.l 
G.l.l 
G.l.2 
G.l.3 
G.l.4 
G.l.S 
G.l.6 
G.l.7 
G.2 
G.2.l 

G.2.2 
G.2.3 
G.2.4 
G.2.S 
G.2.6 
G.2.7 
G.2.8 
G.2.9 
G.2.l0 

OIL DATA FORMATS 

ALPHANUMERIC STRING DATA TYPES • 
BINARY FIXED-POINT DATA TYPES 
FLOATING-POINT DATA TYPES 
DISPLAY NUMERIC DATA TYPES • • 
PACKED DECIMAL DATA TYPES 

THE OIL SAMPLE APPLICATION 

TASK IDENTIFICATION 

• • B-1 
• B-3 
• B-7 
B-ll 
B-19 

ACCESSING A TASK BY NAME • • • • • • • • • • • • • 0-1 
ACCESSING A TASK THAT PROVIDES A CLASS OF SERVICE 0-2 
ACCESSING SPECIFIC TASK WHICH PROVIDES SERVICE 
(TOPS-20 ONLY) • • • • • • • • • • ••• 
VMS PASSIVE TASKS •••••••••• 

Tasks that Wait for a Connect Request 
Tasks Started as a Result of a Request • • 
Example of a Task Started as a Result of a 

• 0-2 
• 0-2 

• • • 0-3 
· • • 0-3 

Request • • • • • • • • • • • • • • • • • 0-4 

OIL STATUS CODES 

BIT TRANSPORT 

NFOPB LINKS • • • • • • • • F-l 
REMOTE FILE ACCESS IN ASCII MODE AND NFOPA LINKS • F-3 
NFOP8 LINKS • • • • • • • • F-4 

TASK-TO-TASK AND REMOTE-FILE-ACCESS ERROR MESSAGES 

REMOTE-FILE-ACCESS ERROR CODES AND THEIR MEANINGS: G-l 
ROPEN/DIT$ROPEN Routine: . . . . . . . G-l 
RREAD/DIT$RREAD: • • 
RWRITE/DIT$RWRITE: 

• • • • • . • . • . • G- 3 
• • • • • G-4 

RCLOSE/DIT$RCLOSE: • 
RDEL/DIT$RDEL: ••• 

• • • • • G-S 
• • • G-6 

RSUB/DIT$RUB: ••••• • G-7 
RPRINT/DIT$RPRINT: • • • • • • • G-8 

TASK-TO-TASK ERRORS AND THEIR MEANINGS: 
NFOPA, NFOPB, NFOP8, NFOPP/DIT$NFOPA, 
DIT$NFOPB, DIT$NFOP8, OIT$NFOPP: ••••• 
NFGND/DIT$NFGND: • • • • • • • • • • • • 
NFACC/DIT$NFACC: •••• 
NFRCV/DIT$NFRCV: 
NFSND/DIT$NFSND: 
NFREJ/DI~$NFREJ: • • •••. 
NFINT/OIT$NFINT: • 
NFRCI/DIT$NFRCI •••• 
NFCLS/DIT$NFCLS: • 
NFINF/DIT$NFINF: •••••••• 

vii 

G-IO 

G-IO 
G-ll 
G-12 
G-13 
G-14 
G-14 
G-IS 
G-IS 
G-16 
G-17 



FIGURES 

1-1 A Sample DIL Application • • • • • • • • •• • 1-3 
1-2 Format of a VMS Status Code • • • • • • • • • • • 1-4 
1-3 Format of a TOPS-IO or TOPS-20 Status Code 1-4 
2-1 TOPS-IO or TOPS-20 Record Layout •••• • 2-5 
2-2 VMS Record Layout ••• • • •• ••••••• 2-5 
3-1 Simple Task-to-Task Application • 3-3 
3-2 Task-to-Task Application • • • • • •• • 3-4 
C-l Sample Application Flowchart • • • C-l 

viii 



PREFACE 

The Data Interchange Library (OIL) is a set of callable subroutines 
that can be used by COBOL and FORTRAN programmers on TOPS-20, TOPS-IO 
and VMS systems. 

The OIL User Reference Manual describes the OIL and explains how to 
use it.----The manual consists of three basic parts: introductory 
material, reference sections and appendices. The introductory 
chapters (Chapters 1-4) present the concepts and capabilities of each 
part of the Data Interchange Library. The reference portion of the 
manual is divided first into TOPS-IO/TOPS-20 (Chapters 5-8) and VMS 
(Chapters 9-12) sections. Each of these system-specific sections has 
four subsections that explain: 

• The Data Conversion Routines 

• The Task-to-Task Routines 

• The Remote File Access Routines 

• Linking a program 

The reference sections give specific instructions for using the OIL 
subroutines from your operating system. 

Appendix A shows the language-specific values for OIL Names. Whenever 
the manual refers to the OIL Name of a status code, argument value or 
data type, check Appendix A to find its value for your language and 
system. Appendix 0 indicates the numerical value, OIL Name and 
meaning for status codes returned by the Data Interchange Library 
Routines. Other appendices present more in-depth information about 
the OIL. 

Examples in this manual use lower case to indicate that you can supply 
your own name for this variable. In the following call, you can use 
any names permitted by your system to represent the "nln" and "wait" 
data items. 

ENTER MACRO NFGNO USING nln, wait. 

ix 





CHAPTER 1 
OIL CONCEPTS AND CAPABILITIES 



CHAPTER 1 

OIL CONCEPTS AND CAPABILITIES 

1.1 INTRODUCTION 

The Data Interchange Library (DIL) is a set of callable subroutines 
that enable you, the COBOL or FORTRAN programmer, to access and use 
data that resides on another computer system. The DIL allows you to 
pass data between programs on different systems or to directly access 
records in files on other systems. You can use the DIL to access a 
single record within a file and avoid having to transfer an entire 
file to your system. If the accessed data is not of the proper format 
or data type, DIL provides the necessary data conversion facilities. 

Transporting an entire file can be costly and time consuming, 
particularly when you are dealing with a large file. It is probably 
not cost effective, for example, to spend hours transferring the 
entire personnel file to your system when you only need the data for 
one employee. If you have a small system, you probably don't even 
have the capability to store such a big file. 

To use the DIL in a multiple computer environment, the computers must 
be connected by DECnet to form a network. The network can be 
homogeneous or heterogeneous. A homogeneous network ~onsists of two 
or more systems of the same type. A heterogeneous network is made up 
of computers of different types. The DIL can be used in a network 
that supports any combination of VAX, DECSYSTEM-20 or DECsystem-lO 
computers. 

The DIL consists of three types of routines: 

1. Data Conversion Routines 
The Data Conversion Routines provide you with the ability to 
translate fields from one data type to another. These 
routines are especially useful when you move data through a 
heterogeneous network using the Task-to-Task Routines. A 
record written in VMS binary format, for example, cannot be 
used, as is, by a TOPS-20 system, because the two systems 
have different methods of internal data representation. 

1-1 



DIL CONCEPTS AND CAPABILITIES 

This release of the OIL supports "like-to-like" translation 
of some COBOL and FORTRAN data types. A like-to-like 
translation is a translation between data types in a single 
class. The Data Conversion Routines support translation of 
the following TOPS-IO, TOPS-20 and VMS data types: 

• Alphanumeric string 

• Fixed-point data (includes fixed-point binary, packed 
decimal and display numeric) 

• Floating-point binary 

You can, for example, use the Data Conversion Routines to 
convert a VMS COBOL string data item to a TOPS-IO/TOPS-20 
COBOL, VMS FORTRAN or TOPS-IO/TOPS-20 FORTRAN string data 
item. You cannot, however, use the routines to convert that 
same data item to any non-string data item. 

2. Task-to-Task Routines 
The Task-to-Task Routines allow you to move data between 
programs on different systems. To use the Task-to-Task 
Routines, you establish a network connection between two 
programs, rather than between a program and a file. This 
network connection is called a logical link. Once you have 
successfully established a logical link between programs, you 
can transfer data over that link. A program can use the 
Task-to-Task Routines to perform the following functions: 

• Open a logical link to another program. 

• Wait for another program to request its services. 

• Get information about the status of network connections. 

• Get information about the other end of a logical link. 

• Accept a connection request from another program. 

• Reject a connection request from another program. 

• Receive data from another program over a logical link. 

• Send data to another program over a logical link. 

• Receive an interrupt data message from another program 
over a logical link. 

• Send an interrupt data message to another program over a 
logical link. 

• Close a logical link. 

1-2 



DIL CONCEPTS AND CAPABILITIES 

3. Remote File Access Routines 
The Remote File Access routines allow you to access and use 
data that resides in a sequential ASCII file on another 
computer. The Remote File Access routines perform the 
following functions: 

• Open a file for reading, writing or appending 

• Read a record from a file 

• Write a record to a file 

• Close a file 

• Delete a closed file 

• Submit a closed file for batch processing 

• Print a closed file 

A practical OIL application might be used by a company that wants to 
eliminate the collection of paper employee labor ticke~s. Each week, 
every employee of the hypothetical company fills out a paper labor 
ticket (containing accounting information) and submits it to his or 
her secretary. By using the OIL in a heterogeneous network, the 
company could easily automate the labor ticket process. Figure 1-1 
illustrates one method of using the OIL to collect weekly labor ticket 
information. 

A. The user submits labor ticket information from a remote 
terminal connected to either a VAX-II or DECSYSTEM-20. 

B. The Task-to-Task Routines are used to ship data to a program 
on the DECSYSTEM-20. 

C. The Data Conversion Routines are used 
necessary, to DECSYSTEM-20 format. 
on the DECSYSTEM-20. 

to convert data, if 
The data is then stored 

D. The Remote File Access Routines are used by a program on the 
VAX-II to access data in the file on the DECSYSTEM-20 in 
order to write a summary report. 

MR·S·3464·83 

Figure 1-1: A Sample DIL Application 

1-3 



DIL CONCEPTS AND CAPABILITIES 

1.1.1 Data Interchange Library Status Codes 

Each OIL routine returns a status code or 
finishes processing. The status code 
routine ran successfully. It alerts you 
success, warning, error or fatal severity 
description of specific OIL status codes. 

condition value when it 
lets you know whether the 
to a problem by issuing 

codes. See Appendix 0 for a 

The OIL on VMS uses the standard VMS condition value. A condition 
value (or status code) is a word containing several fields that 
describe the type of error and its severity. Besides. indicating the 
success or failure of the called subroutine, the condition value can 
provide the following information: 

• Severity of the failure 

• Error identification 

• Associated message text (VMS only) 

• Facility detecting the error 

• Control of error message printing (VMS only) 

Figures 1-2 and 1-3, below, illustrate the format of the status code 
returned by the OIL routines. 

Condition Identification 

16 15 

Customer Definition Flag Facility Specific Flag 
MR-S-3463-83 

Figure 1-2: Format of a VMS Status Code 

35 31 

Condition Identification 

Customer Definition Flag Facility Specific Flag 
MR-S-3465-83 

Figure 1-3: For.at of a TOPS-10 or TOPS-20 Status Code 

1-4 



DIL CONCEPTS AND CAPABILITIES 

A status code is composed of the following parts: 

Severity Code 
The severity code indicates the seriousness of the error. 
The OIL returns the following severity codes: 

o warning 
1 success 
2 error 
3 information (considered a success code) 
4 severe error 
5-7 reserved for future use 

Condition Identification 
The condition identification uniquely identifies the 
condition on a system-wide basis. Condition identification 
is composed of the facility number and the message number 
(described on the following page). 

Facility Number 
The facility number identifies the subsystem that generates 
the status code. 

• Data Conversion routines return a facility number of 232 
decimal. 

• Remote File Access and Task-to-Task routines return a 
facility number of 233 decimal. 

Message Number 
The message number identifies the specific error that you 
made in your call to the routine. 

Control Bits 
A condition value normally contains four control bits. VMS 
status codes contain four zeroes as the value for this 
field. TOPS-IO and TOPS-20 status codes do not use this 
field. These bits are reserved for Digital use. 

On VMS systems, the LIB$MATCH COND function is available to compare 
two status codes and determine if they refer to the same condition. 
See the most recent version of the VAX-II Run-Time Library Reference 
Manual for further information. 

1-5 



OIL CONCEPTS ANO CAPABILITIES 

1.1.2 The OIL Interface Support Files 

The OIL requires that you pass numeric values as parameters to the 
routines. These parameters can have different meanings, depending 
upon the specific position of the parameter in a call to a DIL 
routine. As a programmer, you may find it difficult to remember which 
numeric values you will need to make the different OIL functions 
occur. You may also prefer to specify symbolic names rather than to 
directly use the required numeric values. To simplify your use of the 
OIL, several text files, called Interface Support files, are provided 
with the OIL. These files define symbolic names for the parameters 
for each of the OIL routines. The names found in the Interface 
Support files will make it easier for you to communicate with the OIL 
routines. 

There are two classes of Interface Support files, the "native" class 
and the "compatible" class. The native class Interface Support files 
define names that are native to the system for which the program is 
written. The compatible class of support files, define names that are 
compatible with both TOPS-IO/TOPS-20 and VMS language names. 
TOPS-IO/TOPS-20 systems do not have compatible class support files, 
since the TOPS-IO/TOPS-20 native class names are already compatible 
with VMS language names. A set of native class support files exists 
for both COBOL and FORTRAN on TOPS-IO/TOPS-20 systems. On VMS systems 
both the native and compatible classes of support files exist for both 
FORTRAN and COBOL. For VMS FORTRAN, these compatible names are also 
ANSI Standard names. If you want to write a program that can be 
easily transported to a TOPS-IO or TOPS-20 system, you may want to use 
the compatible class Interface Support files. 

For each language/system/class combination, the OIL has two types of 
Interface Support files: 

1. General OIL files that define terms applicable to all of the 
OIL routines from the language and the operating system that 
you plan to use. 

2. Function-specific files which describe terms applicaole to 
the type of OIL routines (Data Conversion, Remote File 
Access, or Task-to-Task), the language and the operating 
system that you plan to use. There are two types of 
function-specific files: 

• OIX files, which include the terms for the Data 
Conversion Routines 

• OIT files, which include the terms for the Remote File 
Access routines and the terms for the Task-to-Task 
Routines 

You must include both general and function-specific files 
compile your program. If, for example, you want to 
Task-to-Task Routines, you should include the general OIL 
Support file and the function-specific OIT file~ 

when you 
use the 

Interface 

The Interface Support files for TOPS-IO/TOPS-20 systems are provided 
in an appropriate manner for the languages they support. On VMS 
systems, the Interface Support files are provided as a single text 
library called DIL.TLB. You can use language-specific features to 
extract the information from the VMS Text library for inclusion in 
programs. 

1-6 



OIL CONCEPTS AND CAPABILITIES 

Appendix A contains a listing of the names and values included in the 
Interface Support files. You can use the LIBARY system utility on 
TOPS-IO or CPYLIB on TOPS-20 to either extract or modify individual 
modules in the COBOL library file. You can simply TYPE or PRINT the 
individual TOPS-IO and TOPS-20 FORTRAN Interface Support files. On 
VMS systems you can use the LIBRARY DCL command to either extract the 
individual modules in the Interface Support files as text files or to 
modify the files. 

For more information about using the DIL Interface Support files, see 
the language-specific sections of this manual. For information about 
the names defined in the Interface Support files, refer to Appendix A. 

Further Information: 

To learn more about DECnet, see the most recent version of the DECnet 
User's Guide for your operating system. 

An overview of DECnet can be found in the most recent version of 
Introduction to DECnet. 

To learn more about Status Codes, see the most recent version of The 
VAX-II Guide to Creating Modular Library Procedures and the system 
specific reference sections of this manual. 

1-7 





CHAPTER 2 
DATA CONVERSION CONCEPTS AND CAPABILITIES 



CHAPTER 2 

DATA CONVERSION CONCEPTS AND CAPABILITIES 

When you transfer records between heterogeneous systems, the data 
formats will not be understandable to both computers. Data 
representation in VMS memory differs from data representation in 
TOPS-IO or TOPS-20 memory. This means that a VMS COBOL record (and 
its fields), cannot be used, as is, by a TOPS-IO or TOPS-20 COBOL 
program. The Data Conversion Routines solve this problem by allowing 
you to translate a field from one data type to another. 

This release of the DIL supports "like-to-like" translation within the 
following clagses of data types: 

• Alphanumeric string 

• Fixed-point data (includes fixed-point binary, packed decimal 
and display numeric) 

• Floating-point binary 

A like-to-like translation is a translation from a particular data 
type to another data type within the same class. You can, for 
example, use the Data Conversion Routines to convert a VMS COBOL 
string data item to a TOPS-20 COBOL, TOPS-20 FORTRAN or VMS FORTRAN 
string data item. You cannot, however, use the routines to convert 
that same string data item to any type of non-string data item, such 
as a floating-point number. 

2.1 CONVERTING FIELDS 

You can use the Data Conversion Routines to convert a field while it 
still resides on its native system, before you transfer the field to 
another system. You can also wait and perform any necessary data 
conversion after you transfer the field. No matter where the 
conversion is done, the Data Conversion Routines require that you 
describe two fields: the source field and the destination field. The 
Data Conversion Routines provide two basic ways of describing a field. 

2-1 



DATA CONVERSION CONCEPTS AND CAPABILITIES 

2.1.1 Conversion Using a Foreign Field Descriptor 

The Data Conversion Routines provide a convenient way to describe a 
field in a record that requires conversion: the Foreign Field 
Descriptor (FFD). An FFD contains descriptive information about a 
field, including: 

• the name of the record that contains the field 

• the record's native system 

• the position of the field within the record 

• the address of the record 

This information allows the DIL to locate the field for conversion. 

To build an FFD for a field, you must use one of the Data Conversion 
Routines. If you are working on a VMS system, the DIX$MAK DES DET 
routine builds the FFD. If you are working on a TOPS-IO or -TOPS-20 
system, the XDESCR routine builds the FFD. 

To use the FFD method of data conversion you make two calls to the 
XDESCR (or DIX$MAK DES DET) routine; one call is used to create an FFD 
for the source field, the other to create an FFD for the destination 
field. The source field is the field that you want to convert. The 
destination field is the field after it has been converted. The 
source and destination FFDs must be different fields. The FFDs are 
data items that you define in your program and use when you call the 
XDESCR routine. When the routine successfully finishes processing, it 
returns an FFD value in the data item. 

Once you have FFDs for the source and destination fields, you can use 
one of the other Data Conversion Routines to convert the field. These 
conversion routines require only two arguments: an FFD for the source 
field and an FFD for the destination field. 

If you are working on a TOPS-IO or TOPS-20 system, use one of the 
following single-function conversion routines to convert the field 
using FFDs. 

XCVST 

XCVFB 

XCVFP 

XCVPD 

XCVDN 

Use the XCVST routine if you want to convert a string field. 

Use the XCVFB routine if you want to convert a fixed-point 
binary field. 

Use the XCVFP routine if 
floating-point field. 

Use the XCVPD routine if you 
decimal field. 

Use the XCVDN routine if you 
numeric field. 

2-2 

you want to convert a 

want to convert a packed 

want to convert a display 



DATA CONVERSION CONCEPTS AND CAPABILITIES 

XCFBDN 
Use the XCFBDN routine if you want to convert a fixed-point 
binary source field to a display numeric destination field. 

XCDNFB 
Use the XCDNFB routine if you want to convert a display 
numeric source field to a fixed-point binary destination 
field. 

XCPDDN 
Use the XCPDDN routine if you want to convert a packed 
decimal source field to a display numeric destination field. 

XCDNPD 
Use the XCDNPD routine if you want to convert a display 
numeric source field to a packed decimal destination field. 

XCPDFB 
Use the XCPDFB routine if you want to convert a packed 
decimal source field to a fixed-point binary destination 
field. 

XCFBPD 

XCGEN 

Use the XCFBPD routine if you want to convert a fixed-point 
binary source field to a packed decimal destination field. 

Use the XCGEN routine to perform any type of conversion 
allowed by the DIL. (When you link a program that calls 
XCGEN with the OIL, the LINKER loads all of the conversion 
routines. When you use one of the single-function routines 
described above, only the routines that convert the specific 
data types are loaded.) 

If you are working on a VMS system, use the DIX$BY OCR DES routine to 
perform string, fixed-point binary, packed decimal~ display numeric or 
floating-point conversions. 

When you convert a field using an FFD, the DIL creates an FFD for the 
field only once, no matter how many times you plan to convert the 
field. After creating the FFDs, you only have to call the proper 
sinqle-function (or DIX$BY DIX DES on VMS) routine whenever you want 
to convert the field. The -"De~ailed Description" method of data 
conversion, described in the next section, processes location and 
description information about the field each time you convert the 
field. If you plan to convert a field many times, your program will 
run more efficiently if you convert the field using a Foreign Field 
Descriptor. See Section 2.1.2, below. 

Further Information: 

TOPS-I0 and TOPS-20 users should read Sections 5.1, 5.2 and 5.3.2 for 
further information. 

VMS users should read Sections 9.1, 9.2 and 9.3.1 for further 
information. 

2-3 



DATA CONVERSION CONCEPTS AND CAPABILITIES 

2.1.2 Conversion Using a Detailed Description 

The detailed description method of data conversion allows you to 
convert a field without first making a Foreign Field Descriptor for 
the field. If you are working on a TOPS-IO or TOPS-20 system, you can 
use the CVGEN routine to convert a field without an FFD. If you are 
working on a VMS system, the DIX$BY DET routine converts the field 
without an FFD. -

CVGEN (DIX$BY DET on VMS) is a general purpose conversion routine: it 
accepts location and description arguments for both the source and 
destination fields, eliminating the need to explicitly create a 
Foreign Field Descriptor. 

When you call CVGEN (DIX$BY DET on VMS), you uniquely identify the 
source and destination fields and supply the data type of the field to 
be converted. Because you describe both the source and destination 
fields in one routine, you don't have to use the single-function (or 
DIX$BY DIX DES on VMS) routines to perform the actual conversion. The 
CVGEN routIne itself performs the conversion. 

Using the CVGEN routine to perfom data conversion is inappropriate if 
you plan to perform a particular conversion more than a few times. 
CVGEN calculates source and destination field locations each time it 
is called by your program. If you convert a field using the CVGEN 
routine eighty times during a program run, the routine must read the 
same location and description arguments eighty times. Since an FFD is 
created only once, it would be faster to describe the field with an 
FFD. You could then use one of the other routines to perform the 
conversion. If, on the other hand, you plan to convert the field only 
once, or the program is table-driven, it may better to use the CVGEN 
routine. 

Further Information: 

TOPS-IO and TOPS-20 users should read Section 5.3.15 for information 
about CVGEN. 

VMS users should read Section 9.3.3 for information about DIX$BY DET. 

2.1.3 Record Layouts and Byte Offsets 

To convert a field, the conversion routine m~st know exactly where the 
field resides in local memory. It must have this information for both 
the source and destination fields. 

To describe the location of a field in a record to the Data Conversion 
Routines, you must supply values for byte size, byte offset and bit 
offset. The bit offset is always zero. The byte offset is the number 
of bytes in a record that precede the field that you want to convert. 
You must also know the data type of the field. You can find these 
values by checking or creating a detailed layout for the record. See 
Appendix A of this manual for a list of data type names. 

2-4 



DATA CONVERSION CONCEPTS AND CAPABILITIES 

Since TOPS-IO/TOPS-20 systems represent data in 36 bit words and VMS 
systems represent data in 8 bit bytes, the byte size, byte offset and 
data type of a field will differ on the two systems. Figure 2-1 shows 
a sample TOPS-IO or TOPS-20 COBOL record. Figure 2-2 shows a very 
similar record written in VMS COBOL format. You use the same COBOL 
picture clause for both records regardless of what type of system you 
are using. The internal format of the record is controlled by the 
system where it is used. Both examples show the byte size, byte 
offset, bit offset and data type for each field within the record. 
ThE~ "(0)" shown in the Data Type column-represents the scale factor of 
the field. The scale factor is listed only for data types for which a 
scale factor is valid. Note that the byte size of the fields in the 
VMS record is always 8, while the byte size of the fields in the 
TOPS-IO/TOPS-20 record can vary. The byte offset is calculated 
relative to the byte size. 

Byte Byte Bit Data 
Size Offset Offset Type 

01 JOB-TICKET. 
05 NAME PIC X(30). 6 0 0 Sixbit 
05 COST-CENTER PIC X(5). 6 30 0 Sixbit 
05 WD-END-DATE PIC 9 (6) • 6 35 0 Sixbit 
05 TOTAL-HOURS COMP-l. 36 7 0 Float-36 
05 ACT IV-CODE PIC XXX. 6 48 0 Sixbit 
05 PL-NUM PIC XXX 6 51 0 Sixbit 
05 DIS--NUM PIC 9(5) COMPo 36 9 0 Sbf36(0) 
05 MFG-NUM PIC 9(5) COMPo 36 10 0 Sbf36(0) 
05 HOURS COMP-l. 36 11 0 Float-36 
05 OP-CD PIC X(5). 6 72 0 Sixbit 

Fi4;Jure 2-1: TOPS-IO or TOPS-20 Record Layout 

Byte Byte Bit Data 
Size Offset Offset Type 

01 JOB-TICKET. 
05 NAME PIC X(30}. 8 0 0 ASCII-8 
05 COST-CENTER PIC X(5). 8 30 0 ASCII-8 
05 WD-END-DATE PIC 9(6). 8 35 0 ASCII-8 
05 TOTAL-HOURS COMP-l. 8 41 0 F-Float 
05 ACT IV-CODE PIC XXX. 8 45 0 ASCII-8 
05 PL-NUM PIC XXX. 8 48 0 ASCII-8 
05 DIS-~:UM PIC 9(5) COMPo 8 51 0 Sbf32(0) 
05 MFG-NUM PIC 9(5) COMPo 8 55 0 Sbf32(0) 
05 HOURS COMP-l. 8 59 0 F-Float 
05 OP-CD PIC X(5). 8 63 0 ASCII-8 

Figure 2-2: VMS Record Layout 

2-5 



DATA CONVERSION CONCEPTS AND CAPABILITIES 

Further information: 

Data representation and record layout information can be found in the 
most recent version of the following manuals: 

VAX-II COBOL Language Reference Manual 

COBOL-74 Language Manual 

TOPS-IO/TOPS-20 FORTRAN Language Manual 

VAX-II FORTRAN Language Reference Manual 

2-6 



CHAPTER 3 
TASK~TO-TASK CONCEPTS AND CAPABILITIES 





CHAPTER 3 ' 

TASK-TO-TASK CONCEPTS AND CAPABILITIES 

The Task-to-Task routines permit you to move data between programs on 
different systems in a network. These routines differ from the Remote 
File Access Routines because Task-to-Task allows communication between 
programs whereas Remote File Access permits a program to access a file 
on another system. The Task-to-Task routines are especially helpful 
in a distributed data base environment, where a corporate data base 
resides on a large computer, but you also have remote, satellite 
systems using the data base. 

A simple Task-to-Task application, for example, might be used by a 
wholesale greengrocer and ;his company's central warehouse. The 
DECSYSTEM-20 at the warehouse contains information about the price and 
quantity of all products on hand at the warehouse. The grocer, in his 
shop, has a VAX-II connected by DECnet to the central machine at the 
warehouse. If a restauranteur walks into the store demanding 100 
crates of mangoes for immediate delivery, the shopkeeper runs a 
program on his VAX-II which queries a program on the main 
DECSYSTEM-20: "Do we have 100 crates of mangoes?" The program at the 
warehouse sends a message to the grocer: "OK, we have the mangoes," 
and updates its inventory to reflect the sale. (See Figure 3-1, at 
the end of this chapter.) 

The Task-to-Task Routines become even more useful if we expand this 
example to include a chain of greengroceries, each connected, by 
DECnet, to the central data base. A program using the Task-to-Tap:: 
routines can connect with several other programs. If anothLc 
restauranteur simultaneously appears at a different grocery store 
demanding 200 crates of mangoes, the owner of this store can run a 
program on,his computer querying the data base: "Do we have 200 
crates of mangoes?" The program at the warehouse processes the first 
request, for 100 cases. It then reads the next request, from 
shopkeeper number two, and sends a messag~: "Sorry, we're all sold 
out." The program at the warehouse remains open, waiting for requests 
from other grocers on the network. (See Figure 3-2, at the end of 
this chapter.) 

3-1 



TASK-TO-TASK CONCEPTS AND CAPABILITIES 

The programs are able to transfer information via a network 
connection. This connection is called a logical link. A logical link 
is established with one of the four "open link" Task-to-Task Routines, 
described below. Every program that uses the Task-to-Task Routines to 
transfer data must establish a logical link. The program on one side 
of the link is called a "passive task:" the other program is an 
"active task." The passive task, also known as the server program, 
waits for other programs to link to it and request its services. The 
active task connects to the server program and requests its services. 
A passive task can simultaneously serve many active tasks, but each 
open link is between exactly two tasks: the passive task and one 
active task. A single task can, at the same time, be the active task 
of one link, and the passive task of another link. 

In the examples described above, the computer at the warehouse runs 
the passive task. This task always has an open link, waiting for 
connections from the active tasks, run by the greengrocers. Once you 
link the two programs, however, there ceases to be any difference 
between active and passive tasks. Both active and passive tasks can 
send data, receive data or close the link. 

These routines identify a logical link by its Network Logical Name 
(NLN). The NLN uniquely identifies the task to the routines. NLN is 
set automatically by the "open link" routine when it successfully 
finishes processing. When you call any of the other Task-to-Task 
routines: to send data, check the link or disconnect the link, you 
refer to the link by its Network Logical Name. 

The Task-to-Task routines offer four open link routines: 

• NFOPA (DIT$NFOPA on VMS) 
This routine opens an active link. It establishes a 
connection which permits you to transfer ASCII data between 
systems. 

• NFOPB (DIT$NFOPB on VMS) 
This routine opens an active link. It establishes a 
connection which permits you to transfer binary data between 
systems. 

• NFOP8 (DIT$NFOP8 on VMS) 
This routine opens an active link. It establishes a 
connection which permits you to transfer data that is stored 
in 8-bit bytes. 

• NFOPP (DIT$NFOPP on VMS) 
This routine opens a passive link. NFOPP is always used in 
combination with the NFACC (DIT$NFACC) routine. First, the 
NFOPP routine opens the link. NFACC then accepts a network 
connection and specifies the type of data that you plan to 
move over the link. 

The open link routine used by the active task requires you to pass 
information on the location of the target passive task (system name, 
object type and taskname of the passive task). The open link routine 
used by the passive task identifies the passive link and indicates 
that it is ready to accept network connections from active tasks. See 
Appendix 0 for further information on task identification. 

The NFACC (DIT$NFACC on VMS) routine, called from the passive task, 
accepts the network connection requested by the active task. 

3-2 



TASK-TO-TASK CONCEPTS AND CAPABILITIES 

To che6k the status of one or more network connections, use the NFGND 
(DIT$NFGND on VMS) routine. NFGND returns a value indicating the most 
recent event for the link, for example, a connect request has arrived, 
data is available or the link has abo~ted. 

Once you have opened a link and connected the active and passive 
tasks, you can use the NFSND (DIT$'NF~ND on VMS) routine to send data 
and the NFRCV (DIT$NFRCV on VMS) routine to receive data. You can 
also use the NFINT (DIT$NFINT on VMS) t~ send an interrupt data 
message and NFRCI (DIT$NFRCI on VMS) to recelve an interrupt data 
message. When the tasks have performed the necessary data transfer, 
close the link by issuing a call to the NFCLS (DIT$NFCLS on VMS) 
routine. The task that receives the last piece of data should be the 
first to close the link. When the other task notices the disconnect 
(by calling NFGND) it aborts its end of the link. This method of 
ending the communication between two tasks ensures that the last piece 
of data is processed. 

The following figures show the order of calls to the Task-to-Task 
Routines that would be made by the shopkeeper(s) and the warehouse in 
the sample application discussed above. 

Node: SHOP 
Program: Grocer 

Calls to the 
Task-to-Task Routines: 

NFOPA 

NFSND 

NFRCV 

NFCLS 

Active Task 

Action 

Grocer Wants to L!rrk to 
Warehouse to Transfer ASCII Data 

Warehouse Accepts 
the Connection 

Grocer Sends Query: 
"Do We Have Mangoes?", 

Warehouse Sends Response: 
"Yes, Mangoes Reserved For You." 

Grocer Closes 
Active Link .. -
Warehouse Closes 
Passive Link 

Figure 3-1:, Simple Task-to-Task Application 

3-3 

Node: HQTRS 
Program: Warehouse 

Calls to the 
Task-to-Task Routines: 

NFOPP 

NFACC 

NFRCV 

NFSND 

NFCLS 

Passive Task 
(Server Program) 

MH,S-254B-B3 



Node: SHOP1 
Program: grocer1 

Calls: 

NFOPA 

NFSND 

NFRCV 

NFCLS 

Active Task 1 

Figure 3-2: 

TASK-TO-TASK CONCEPTS AND CAPABILITIES 

Grocer1 Wants to 
Link to Warehouse 

Warehouse Accepts 
the Connection 

Grocer1 Sends Query: 
"Do We Have Mangoes?' 

Warehouse Sends Response: 
"Yes, We Have Mangoes." 

Grocer1 Closes 
Active Task 

Warehouse Closes 
Passive Task, 
Releasing Link to be Used 
for a New Connection 

Node: HDQTRS 
Program· Warehouse 

CslIs: 

NFOPP I NFOPP no 
NFOPP walt 
NFOPP 

NFGND 
walt 

If Connect, Then: 
NFACC 

If Abort or 
Disconnect, Then: 
NFCLS 
NFOPP 

If Incoming Data, Then: 
NFRCV 

Process and Reply 
NFSND 

If Abort or 
Disconnect, Then: 
NFCLS 
NFOPP 

Passive Task 
(Server Program) 

Task~to-Task Application 

3-4 

Grocer2 Wanta to 
Link to Warehouse 

Warehouse Accepts 
the Connection 

Grocer2 Sends Query: 
"DO we Have Mangoes?" 

Warehouse Sends Response: 
"Sorry, sold Out. 

Grocer2 Closes 
Active Task 

Warehouse Closes 
Passive Task, 
Releasing Link to be Used 
for a New Connection 

Node: SHOP2 
Program: grocer2 

Calls: 

NFOPA 

NFSND 

NFRCV 

NFCLS 

Active Task 2 

MR-S-2S49-83 



CHAPTER 4 
REMOTE FILE ACCESS CONCEPTS AND CAPABILITIES 



CHAPTER 4 

REMOTE FILE ACCESS CONCEPTS AND CAPABILITIES 

The Remote File Access (RFA) routines allow you to access and use 
records that reside in an ASCII sequential file on another computer. 
The RFA portion of the DIL consists of the following routines: 

• ROPEN (DIT$ROPEN on VMS) 
The ROPEN routine opens an ASCII sequential file for reading, 
writing or appendinn 

• RREAD (DIT$RREAD on VMS) 
The RREAD routine reads a record from an ASCII sequential 
file 

• RWRITE (DIT$RWRITE on VMS) 
The RWRITE routine writes a record to an ASCII sequential 
file 

• RCLOSE (DIT$RCLOSE on VMS) 
The RCLOSE routine closes an ASCII sequential file 

• RDEL (DIT$RDEL on. VMS) 
The RDEL routine deletes a closed ASCII sequential file 

• RSUB (DIT$RSUB on VMS) 
The RSUB routine submits a closed ASCII sequential file 

• RPRINT (DIT$RPRINT on VMS) 
The RPRINT routine prints a closed ASCII sequential file 

If you are working on a VMS system, for example, you can access 
records in a sequential ASCII file on a TOPS-20 system. Since the 
file actually resides on another system, you have access to more data 
than would ordinarily be available to you as a VMS user. This means 
that if you have a large file on a TOPS-20 system, you can write 
reports from the file on your VMS system using records that you access 
with the RFA routines. When you use the RFA routines to access ASCII 
records, you don't have to wovry about format translation. The RFA 
routines automatically perform any necessary data conversion between 
TOPS-10/TOPS-20 ASCII data and VMS ASCII data. 

4-1 



REMOTE FILE ACCESS CONCEPTS AND CAPABILITIES 

4.1 OPENING A REMOTE FILE 

The ROPEN (DIT.$ROPEN) routine opens a file on another system. ROPEN 
finds the proper system on the network and opens the correct file by 
using location information that you supply in your call to the ROPEN 
routine. 

This location information is contained in the filename argument of the 
ROPEN routine. A valid network file name contains the following 
information: 

• The node name of the system 

• The file structure or device which contains the file 

• TQe directory name 

• The file name, type and optional version number 

KL2116::PS:(MORRILL)IN.DAT is an example of a valid TOPS-20 file name. 
KL2116 is the node name. PS is the structure name. MORRILL is the 
directory name. IN.DAT is the file name and extension. 

When you call any of the other RFA routines (to read a record, to 
write a record, or to close a file) you refer to the file by its file 
number, a unique value assigned by the ROPEN routine. You define a 
data item to store the file number, and use this data item as an 
argument in your call to the ROPEN routine. When ROPEN successfully 
finishes processing, it generates a file number value and places it in 
the data item. 

The RFA routines work by talking to the File Access Listener (FAL) 
program on the remote system. To learn more about the FAL, see the 
DECnet manual for the remote system. You cannot use the RFA routines 
unless the FAL is available on the remote file's system. Before you 
attempt to access records with the RFA, check with the remote system 
manager to make sure that the FAL program is available and that it 
supports the operation that you want to perform. 

4-2 



CHAPTER 5 
TOP5-10 AND TOPg.;..,20 DATA CONVERSION 



CHAPTER 5 

TOPS-IO AND TOPS-20 DATA CONVERSION 

5.1 DATA CONVERSION FROM TOPS-IO/TOPS-20 COBOL 

The information included in this section assumes 

- You are writing a COBOL program 
- You plan to use the program on a TOPS-IO or TOPS-20 system 

To store a Foreign Field Descriptor, pass a record or perform an error 
check, you must represent several data items in your program. Users 
generally allocate space for foreign fields and records in 
WORKING-STORAGE. 

5.1.1 Compiling Programs 

To use the DIL Data Conversion Routines on TOPS-20 from a COBOL 
program, you may need to compile your program with the /STACK compiler 
switch to insure that you have an adequate pushdown list size. If 
your program gets a stack overflow, compile the program with 
/STACK:2000. TOPS-IO programmers should use the /D compiler switch. 
If a TOPS-IO COBOL program gets a stack overflow, compile the program 
with /D:2000. 

5.1.2 Including the Interface Support Files 

The Interface Support file provided for TOPS-IO and TOPS-20 COBOL is a 
copy library called DIL.LIB. You can use the COBOL COpy verb to 
retrieve the information at compilation time. There are three library 
elements in DIL.LIB. These elements are called DIL, DIT, and DIX. 

The library element DIL defines general codes and names applicable to 
the Data Conversion Routines, the Task-to-Task routines and the Remote 
File Access routines. The general success status code (DIL name 
SS-NORMAL) is defined in element DIL. Severity codes and system codes 
are defined in element DIL. To define these names in your program, 
include the following statement in your WORKING-STORAGE section after 
an Ol-level declaration: 

COpy DIL OF "SYS:DIL.LIB". 

5-1 



TOPS-IO AND TOPS-20 DATA CONVERSION 

In the following example, the DIL element of the library is retrieved 
and included in your program: 

01 interface-files. 
COpy DIL OF "SYS:DIL.LIB". 

The library element DIX defines codes specific to the data conversion 
routines. This includes the DIX status codes as well as data type 
names for each supported data type. To define these names in your 
program, include the following statement in your WORKING-STORAGE 
section after an Ol-level declaration, such as that shown above for 
the DIL element: 

COPY DIX OF "SYS:DIL.LIB". 

For programs which use the Data Conversion Routines, you must include 
both the DIL and DIX library elements. 

5.1.3 Storing an FFD 

An FFD occupies three full words of TOPS-IO or TOPS-20 memory. To 
store an FFD, you must define a data item with the following format: 

01 your-ffd PIC S9(10) VSAGE COMPUTATIONAL OCCURS 3 TIMES. 

When you call the XDESCR routine to build the FFD, use your-ffd as the 
FFD to be returned. To pass the FFD to the routine, pass your-ffd 
with the subscript 1: your-ffd (1). 

5.1.4 Passing a Record to the XDESCR Routine 

To pass a record to the XDESCR routine, you must know how the record 
(containing the field that you want to convert) would be declared on 
its native system. You must then represent the record in your program 
on the local system. The record can be represented as any 
word-aligned group level data item. To pass the record to XDESCR, 
specify this group item as the record name ("rec") in the call to 
XDESCR. 

To figure the size of the record, count the number of bits on its 
native system; make the record name on the foreign system at least 
that large. In the following example, the TOPS-20 record REC contains 
720 bits of information. 

01 rec PIC S9(10) USAGE COMPUTATIONAL OCCURS 20 TIMgS. 

To pass "rec" to the XDESCR routine simply include it in your call to 
the routine. 

ENTER MACRO XDESCR USING ffd (1), rec, sysor, bysiz, byoff, bioff, 

type, lngth, scale. 

5-2 



TOPS-10 AND TOPS-20 DATA CONVERSION 

5.1.5 Checking For Errors 

To check for errors in a COBOL program on TOPS-IO or TOPS-20, you 
should define the following data items in WORKING-STORAGE: 

01 ini-stat PIC S9(10) USAGE COMPUTATIONAL. 
01 dil-stat PIC S9(10) USAGE COMPUTATIONAL. 
01 dil-msg PIC S9(10) USAGE COMPUTATIONAL. 
01 dil-sev PIC S9(10) USAGE COMPUTATIONAL. 

88 dil-warning VALUE O. 
88 dil-success VALUE 1. 
88 dil-error VALUE 2. 
88 dil-info VALUE 3. 
88 dil-severe VALUE 4. 
88 dil-ok VALUES 1, 3. 

You can choose your own names for the data items pictured above. 

For the OIL to use these data items, you must first pass them to the 
DILINI routine. Before calling any other OIL routine, call the 
initialization routine, DILINI. DILINI tells the OIL what data items 
to use when it returns status information about a call to one of the 
other routines. Call the DILINI routine using the following format: 

ENTER MACRO DILINI USING ini-stat, dil-stat, dil-sev, 
dil-msg. 

The routine returns a value in ini-stat. If successful, the return 
value is 1. Any other value indicates either an error in the call to 
DILINI, or incorrect definition of dil-stat, dil-severity or dil-msg. 
If you plan to use the OIL from a COBOL subroutine, you must also pass 
the status data items to the subroutine: otherwise the subroutine 
cannot check for errors. 

You only make this call to DILINI once in your program. All other 
calls to the conversion routines return their status codes in 
dil-stat. The severity portion of the status code is placed in 
dil-severity. A unique identifier for the condition is placed in 
dil-msg. 

A call to the Conversion Routines with a simple check for succeoJs 
might look like this: 

ENTER MACRO XDESCR USING ffd (1), rec, sysor, bysiz, byoff, 
bioff, type, lngth, scale. 

IF NOT dil-ok 
DISPLAY "error status returned from XDESCR". 

A call to the same routine with provisions for handling a specific 
type of error might look like this: 

ENTER MACRO XDESCR USING ffd (1), rec, sysor, bysiz, byoff, 
bioff, type, lngth, scale. 

IF NOT dil-ok 
IF dil-msg = DIX-C-INVDATTYP 

DISPLAY "invalid data type specified" 
ELSE 

DISPLAY "other error". 

5-3 



TOPS-IO AND TOPS-20 DATA CONVERSION 

To determine which error occurred, compare dil-msg 
condition identifiers defined in the TOPS-IO/TOPS-20 
Support fi~e. In the example above, DIX-C-INVDATTYP 
(defined ln the Interface Support file) indicating 
type was specified. 

5.2 DATA CONVERSION FROM TOPS-IO/TOPS-20 FORTRAN 

The information included in this section assumes 

- You are writing a FORTRAN program 

with the DIX 
COBOL Interface 

is the value 
an invalid data 

- You plan to use, the program on a TOPS-IO or TOPS-20 system 

The section explains methods to store a Foreign Field Descriptor, pass 
a record to the conversion routines and perform an error check. 

5.2.1 Including the Interface Support Files 

The Interface Support files provided for TOPS-IO and TOPS-20 FORTRAN 
are text files called DILV7.FOR, DITV7.FOR and DIXV7.FOR. The 
information from these files may be included into your source programs 
at compilati.on time using the FORTRAN INCLUDE statement. 

The file DILV7 defines general codes and names applicable to the Data 
Conversion Routines, the Task-to-Task Routines and the Remote File 
Access Routines. The general success status code (DIL name SS-NORMAL) 
is defined in DILV7. Severity code~ and system codes are defined in 
DILV7. To define these names in your program, include the following 
statement in your program: 

INCLUDE: 'SYS: DILV7 ' 

The file DIXV7 defines codes specific to the Data Conversion Routines. 
These codes: include the DIX status codes and data type names for each 
supported data type. To define these names in your program, include 
the following statement in your program: 

INCLUDE 'SYS:DIXV7' 

For programs which use the Data Conversion Routines, you must include 
both the DILV7 and DIXV7 files. 

5.2.2 Stori.ng an FFD 

An FFD occupies three full words of TOPS-IO or, TOPS-20 memory. To 
store an FFD, you must first dimension an array of type integer with 
length 3. 

INTEGER dilffd (3) 

When you call the XDESCR routine to build an FFD, use dilffd as the 
FFD to be returned. To pass this value to the routine, pass the 
entire array as dilffd, not as dilffd (1). 

5-4 



TOPS-IO.AND TOPS-20 DATA·CONVERSION 

5.2.3 Passing a Record to the XDESCR Routine 

To convert a field in a record, you must know how the record would be 
declared on its native system. You must then declare the record in 
your program on the local system. You create a space for the record 
on the foreign system by declaring an integer array big enough to 
contain the record. To figure the array size, count the number of 
bits used by the record on its native system1make the array on the 
foreign system at least that large. In the following example, the 
DECSYSTEM-20 record contains 720 bits of information. 

INTEGER rec (20) 

To pass the record to one of the Data Conversion Routines, pass the 
entire array. The following example shows "rec" being passed to the 
XDESCR routine: 

status = XDESCR (ffd, rec, sysor, bysiz, byoff,bioff, type, 
I lngth, scale) 

5-5 



TOPS-IO AND TOPS-20DATA CONVERSION 

5.2.4 Checking For Errors 

Each Data Conversion Routine returns a one-word integer status value 
when it finishes processing. To perform an error check on a Data 
Conversion Routine, first declare an integer where the routine can 
place the status value. 

INTEGER status 

A simple call with an error check might then be: 

status = XDESCR (ffd, rec, sysor, bysiz, byoff, bioff, type, 
1 lngth, scale) 
IF «status.AND.l).EQ.O) GO TO 20 

20 WRITE (5,10) 
10 FORMAT ('error') 

A call to the same routine with provlslons for handling a specific 
type of error might look like this: 

status = XDESCR (ffd, rec, sysor, bysiz, byoff, bioff, dattyp, 
1 Ingth, scale) 
IF (status.AND.l) GO TO 30 
IF (status.EQ.DATTYP) GO TO 20 

r. other error 

20 WRITE (5,10) 
10 FORMAT ('invalid data type specified') 

30 • 

C Success 

To determine which error occurred, compare "status" to the DIX status 
codes defined in the TOPS-IO/TOPS-20 FORTRAN Interface Support file. 
In the example above, DATTYP is the value (defined in the DIX 
Interface Support file) indicating that an invalid data type was 
specified. 

5-6 



TOPS-IO AND TOPS-20 DATA CONVERSION 

5.3 TOPS-10/TOPS-20 DATA CONVERSION REFERENCE 

5.3.1 DILINI - Allow the DIL to Recognize Status Codes 

PURPOSE: 

The OILINI routine allows status code data items in a TOPS-IO or 
TOPS-20 COBOL program to be recognized by the OIL. You do not 
need to use the OILINI routine if you plan to write a FORTRAN 
program. 

You only call the OILINI routine once in your program, before you 
call any of the other OIL subroutines. 

CALL FORMAT: 

COBOL: 

where: 

ENTER MACRO OILINI USING ini-stat, dil-stat, dil-msg, 
dil-sev. 

ini-stat is where the routine returns the results of the call to 
the OILINI routine. A return value of I indicates 
success. Any other value indicates an incorrect call 
or an incorrect definition of dil-stat, dil-msg or 
dil-sev. 

dil-stat is a one-word integer that contains the status code for 
a call to any other OIL- routine. 

dil-msg 

dil-sev 

is a one-word integer that contains the error message 
for a call to any other OIL routine. 

is a one-word integer that contains the severity 
portion of a OIL status code. 

5-7 



TOPS-IO AND TOPS-20 DATA CONVERSION 

5.3.2 XDESCR - To Create an FFD 

PURPOSE: 

The XDESCR routine accepts the detailed description information 
which you supply and builds a Foreign Field Descriptor for a 
native or foreign field. 

CALL FORMAT: 

COBOL: ENTER MACRO XDESCRUSING ffd (1), rec, sysor, bysiz, 
byoff, bioff, type, Ingth, scale. 

FORTRAN: status = XDESCR (ffd, rec, sysor, bysiz, byoff, bioff, 
1 type, Ingth, scale) 

where: 

ffd is the Foreign Field Descriptor (FFD) to be returned. 
The argument represents the data item where the routine 
places the resultant FFD. An FFD consists of three 
one-word integers. 

rec is the record that contains the field to be described. 

sysor 

bysiz 

byoff 

bioff 

type 

COBOL: This argument can be any word-aligned data 
item. 

FORTRAN: This argument is usually an integer array. 

is a one-word integer showing the system of orlgln of 
the record to be converted. Possible DIL Names for 
this argument are: 

SYS-IO-20 

SYS-VAX 

for a record defined for TOPS-IO or 
TOPS-20. 

for a record defined for VMS. 

is a one-word integer giving the byte size of the field 
to be described. All VMS fields have a byte size of 8. 
A TOPS-IO or TOPS-20 COBOL field can have a byte size 
of 6, 7, 9 or 36. A TOPS-IO or TOPS-20 FORTRAN field 
can have a byte size of 7 or 36. See Appendix A for 
further information. 

is a one-word integer that gives the byte offset to the 
field within the record. The byte offset is the number 
of bytes in the record (of byte size specified in 
"bysiz") that precede the field that you want to 
convert. 

is a one-word integer that gives the bit offset. This 
argument is not currently used; it should always be 
zero. 

is a one-word integer that gives the data type of the 
field that is being converted. See Appendix A for a 
list of valid data type codes. 

5-8 



1ngth 

scale 

STATUS CODES: 

TOPS-IO AND TOPS-20 DATA CONVERSION 

is a one-word integer that shows the length of the 
field: in characters for string fields. This argument 
is required for some data types; it must be zero for 
all other data types. See Appendix A for further 
information. 

is a one-word integer that gives the scale factor of 
the field. Scale factor indicates the number of 
decimal digits to move the decimal point to the left. 
A negative scale factor means that the decimal point 
will be moved to the right. You must specify a scale 
factor if you want to convert a fixed-point field. 
Specify a scale factor of zero for any other type of 
field. 

For COBOL programs, the DIL returns status codes in the dil-stat 
variable defined by the DILINI routine. For FORTRAN programs, 
the DIL routines return status codes as an integer function 
value. 

DIL Name Meaning 

DIX-INVDATTYP Invalid data type code. 

DIX-INVLNG Length invalid or unspecified. 

DIX-INVSCAL Scale factor invalid or unspecified. 

DIX-UNKSYS Unknown system of origin specified. 

DIX-INVBYTSIZ Invalid byte size specified. 

DIX-ALIGN Invalid alignment for data type. 

RELATED ROUTINES: 

CVGEN: This routine allows you to convert a field without 
making a Foreign Field Descriptor for the field. See 
Section 5.3.15 for a description of CVGEN. 

5-9 



TOPS-IO AND TOPS-20 DATA CONVERSION 

5.3.3 XCGEN - To Perform General Purpose Conversion 

PURPOSE: 

The XCGEN routine performs any type of data conversion that can 
be done by the OIL. 

XCGEN is a general purpose routine. XCGEN accepts Foreign Field 
Descriptors for the source and destination fields and decides if 
it can perform that conversion. If the specified conversion is 
allowable, XCGEN converts the field. 

NOTE 

When you link a program that calls XCGEN with the DIL, 
this causes all of the conversion routines to be 
loaded. If you use one of the single function 
conversion routines (like XCVST), only the routines 
which perform the specified conversion are loaded. 

CALL FORMAT: 

COBOL: ENTER MACRO XCGEN USING sffd (1), dffd (1). 

FORTRAN: status = XCGEN (sffd, dffd) 

where: 

sffd 

dffd 

STATUS CODES: 

is a Foreign Field Descriptor describing the source 
field. This argument consists of three one-word 
integers. 

is a Foreign Field Descriptor 
destination field. This argument 
one-word integers. 

describing the 
consists of three 

For COBOL programs, the DIL returns status codes in the di1-stat 
variable defined by the DILINI routine. For FORTRAN programs, 
the DIL routines return status codes as an integer function 
value. 

5-10 



TOPS-IO AND TOPS-20 DATA CONVERSION 

DIL Name Meaning 

DIX-INVDATTYP Invalid data type code. 

DIX~INVLNG Length invalid or unspecified. 

DIX-INVSCAL Scale factor invalid or unspecified. 

DIX-UNKSYS Unknown system of origin specified. 

DIX-ALIGN Invalid alignment for data type. 

DIX-INVALCHAR Invalid character in source field or 
conversion table. 

DIX-GRAPHIC Graphic charayter changed in conver-
sion. 

DIX-FMTLOST Format effector gained or lost in 
conversion. 

DIX-NONPRINT Non-printing character gained or lost 
in conversion. 

DIX-TRUNC String too long for destination --
truncated. 

DIX-TOOBIG Converted source field too large for 
destination field. 

DIX-UNSIGNED Negative value moved to unsigned 
field. 

DIX-ROUNDED Result is rounded. 

DIX-UNNORM Floating-point number improperly 
normalized. 

DIX-INVDNUMCHR Invalid display numeric character in 
source field. 

DIX-INVDNUMSGN Invalid display numeric sign in 
source field. 

DIX-INVPDDGT Invalid packed decimal digit in 
source field. 

DIX-INVPDSGN Invalid ,packed decimal sign in 
source field. 

RELATED ROUTINES: 

CVGEN: This routine allows you to convert a field without 
making a Foreign Field Descriptor for the field. See 
Section 5.3.15 for a description of CVGEN. 

5-11 



TOPS-lO AND TOPS-20 DATA CONVERSION 

5.3.4 XCVST - Convert String Fields 

PURPOSE: 

The XCVST routine converts string fields. 

CALL FORMAT: 

COBOL: ENTER MACRO XCVST USING sffd (1), dffd (1). 

FORTRAN: status = XCVST (sffd, dffd) 

where: 

sffd is a Foreign Field Descriptor describing the source 
field. This argument consists of three one-word 
integers. 

dffd 

STATUS CODES: 

is a Foreign Field Descriptor 
destination field. This argument 
one-word integers. 

describing the 
consists of three 

For COBOL programs, the DIL returns status codes in the dil-stat 
variable defined by the DILINI routine. For FORTRAN programs, 
DIL routines return status codes as an integer function value. 

DIL Name Meaning 

DIX-INVALCHAR Invalid character in source field or 
conversion table. 

DIX-GRAPHIC Graphic character changed in conver-
sion. 

DIX-FMTLOST Format effector gained or lost in 
conversion. 

DIX-NONPRINT Non-printing character gained or lost 
in conversion. 

DIX-TRUNC String too long for destination --
truncated. 

RELATED ROUTINES: 

CVGEN: This routine allows you to convert a field without 
making a Foreign Field Descriptor for the field. See 
Section 5.3.15 for a description of CVGEN. 

XCGEN: This general purpose routine performs any type of 
converSlon allowed by the Data Conversion Routines. 
See Section 5.3.3 for a description of XCGEN. 

5-12 



TOPS-lO AND TOPS-20 DATA CONVERSION 

5.3.5 XCVFB - Convert Fixed-Point Binary Fields 

PURPOSE 

The XCVFB routine converts fixed-point binary fields. 

CALL FORMAT: 

COBOL: ENTER MACRO XCVFB USING sffd (1), dffd (1). 

FORTRAN: status = XCVFB (sffd, dffd) 

where: 

sffd is a Foreign Field Descriptor describing the source 
field. This argument consists of three one-word 
integers. 

dffd is a Foreign Field Descriptor 
destination field. This argument 
one-word integers. 

describing the 
consists of three 

STATUS CODES: 

For COBOL programs, the DIL returns status codes in the dil-stat 
variable defined by the DILINI routine. For FORTRAN programs, 
the DIL routines return status codes as an integer function 
value. 

DIL Name Meaning 

DIX-INVDATTYP Invalid data type code. 

DIX-INVLNG Length invalid or unspecified. 

DIX-INVSCAL Scale factor invalid or unspecified. 

DIX-UNKSYS Unknown system of origin specified. 

DIX-ALIGN Invalid alignment for data type. 

DIX-TOOBIG Converted source field too large for 
destination field. 

DIX-UNSIGNED Negative value moved to unsigned 
field. 

DIX-ROUNDED Result is rounded. 

RELATED ROUTINES: 

CVGEN: This routine allows you to convert a field without 
making a Foreign Field Descriptor for the field. See 
Section 5.3.15 for a description of CVGEN. 

XCGEN: This general purpose routine performs any type of 
conversion allowed by the Data Conversion Routines. 
See Section 5.3.3 for a description of XCGEN. 

5-13 



TOPS-IO AND TOPS-20 DATA CONVERSION 

5.3.6 XCVFP - Convert Floating-Point Fields 

PURPOSE: 

The XCVFP routine converts floating-point fields. 

CALL FORMAT: 

COBOL: ENTER MACRO XCVFP USING sffd (1), dffd (1). 

FORTRAN: status = XCVFP tsffd, dffd) 

where: 

sffd is a Foreign Field Descriptor describing the source 
field. This argument consists of three one-word 
integers. 

dffd is a Foreign Field Descriptor describing the 
destination field. This argument consists of three 
one-word integers. 

STATUS CODES:, ---
For COBOL programs, the DIL returns status codes in the dil-stat 
variable defined by the DILINI routine. For FORTRAN programs, 
the DIL routines return status codes as an integer function 
value. 

DIL Name Meaning 

DIX-INVDATTYP Invalid data type code. 

DIX-INVLNG Length invalid or unspecified. 

DIX-INVSCAL Scale factor invalid or unspecified. 

DIX-UNKSYS Unknown system of origin specified. 

DIX-ALIGN Invalid alignment for data type. 

DIX-TOOBIG Converted source field too large for 
destination field. 

DIX-ROUNDED Result is rounded. 

DIX-UNNORM Floating-point number improperly 
normalized. 

RELATED ROUTINES: 

CVGEN: This routine allows you to convert a field without 
making a Foreign Field Descriptor for the field. See 
Section 5.3.15 for a description of CVGEN. 

XCGEN: This general purpose routine performs any type of 
conversion allowed by the Data Conversion Routines. 
See Section 5.3.3 for a description of XCGEN. 

5-14 



TOPS-IO AND TOPS-20 DATA CONVERSION 

5.3.7 XCVPD - Convert Packed Decimal Fields 

PURPOSE: 

The XCVPD routine converts packed decimal fields. 

CALL FORMAT: 

COBOL: ENTER MACRO XCVPD USING sffd (1), dffd (1). 

FORTRAN: status = XCVPD (sffd, dffd) 

where: 

sffd is a Foreign Field Descriptor describing the source 
field. This argument consists of three one-word 
integers. 

dffd is a Foreign Field Descriptor describing the 
destination field. This argument consists of three 
one-word integers. 

STATUS CODES: 

For COBOL programs, the DIL returns status codes in the dil-stat 
variable defined by the DILINI routines. For FORTRAN programs, 
the DIL routines return status codes as an integer function 
value. 

DIL Name Meaning 

DIX-INVDATTYP Invalid data type code. 

DIX-INVLNG Length invalid or unspecified. 

DIX-INVSCAL Scale factor invalid or unspecified. 

DIX-UNKSYS Unknown system of origin specified. 

DIX-ALIGN Invalid alignment for data type. 

DIX-TOOBIG Converted source field too large for 
destination field. 

DIX-ROUNDED Result is rounded. 

DIX-INVPDDGT Invalid packed decimal digit in 
source field. 

DIX-INVPDSGN Invalid packed decimal sign in 
source field. 

5-15 



TOPS-IO AND TOPS-20 DATA CONVERSION 

RELATED ROUTINES: 

CVGEN: 

XCGEN: 

This routine allows you to convert a field without 
making a Foreign Field Descriptor for the field. See 
Section 5.3.15 for a description of CVGEN. 

This general purpose routine performs any type of 
conversion allowed by the Data Conversion Routines. 
See Section 5.3.3 for a description of XCGEN. 

5-16 



TOPS-10 AND TOPS-20 DATA CONVERSION 

5.3.8 XCVDN - Convert Display Numeric Fields 

PURPOSE: 

The XCVDN routine converts display numeric fields. 

CALL FORMAT: 

COBOL: ENTER MACRO XCVDN USING sffd (1), dffd (1). 

FORTRAN: status = XCVDN (sffd, dffd) 

where: 

sffd is a Foreign Field Descriptor describing the source 
field. This argument consists of three one-word 
integers. 

dffd is a Foreign Field Descriptor 
destination field. This argument 
one-word integers. 

describing the 
consists of three 

STATUS CODES: 

For COBOL programs, the DIL returns status codes in the dil-stat 
variable defined by the DILINI routine. For FORTRAN programs, 
the DIL routines return status codes as an integer function 
value. 

DIL Name Meaning 

DIX-INVDATTYP Invalid data type code. 

DIX-INVLNG Length invalid or unspecified. 

DIX-INVSCAL Scale factor invalid or unspecified. 

DIX-UNKSYS Unknown system of origin specified. 

DIX-ALIGN Invalid alignment for data type. 

DIX-TOOBIG Converted source field too large for 
destination field. 

DIX-ROUNDED Result is rounded. 

DIX-INVDNUMSGN Invalid display numeric sign in 
source field. 

DIX-INVDNUMCHR Invalid display numeric character in 
source field. 

DIX-UNSIGNED Negative value moved to unsigned 
field. 

5-17 



TOPS-10 AND TOPS-20 DATA CONVERSION 

RELATED ROUTINES: 

CVGEN: 

XCGEN: 

This routine allows you to convert a field without 
making a Foreign Field Descriptor for the field. See 
Section 5.3.15 for a description of CVGEN. 

This general purpose routine performs any type of 
conversion allowed by the Data Conversion Routines. 
See Section 5.3.3 for a description of XCGEN. 

5-18 



TOPS-IO AND TOPS-20 DATA CONVERSION 

5.3.9 XCFBDN - Convert Fixed-Point Binary Fields to Display Numeric 
Fields 

PURPOSE: 

The XCFBDN routine converts Fixed-Point Binary fields to Display 
Numeric Fields. 

CALL FORMAT: 

COBOL: ENTER MACRO XCFBDN USING sffd (1), dffd (1). 

FORTRAN: status = XCFBDN (sffd, dffd) 

where: 

sffd is a Foreign Field Descriptor describing the source 
field. This argument consists of three one-word 
integers. 

dffd is a Foreign Field Descriptor 
destination field. This argument 
one-word integers. 

describing the 
consists of three 

STATUS CODES: ---
For COBOL programs, the DIL returns status codes in the dil-stat 
variable defined by the DILINI routine. For FORTRAN programs, 
the DIL routines return status codes as an integer function 
value. 

DIL Name Meaning 

DIX-INVDATTYP Invalid data type code. 

DIX-INVLNG Length invalid or unspecified. 

DIX-INVSCAL Scale factor invalid or unspecified. 

DIX-UNKSYS Unknown system of origin specified. 

DIX-ALIGN Invalid argument for data type. 

DIX-TOOBIG Converted source field too large for 
destination field. 

DIX-ROUNDED Result is rounded. 

DIX-UNSIGNED Negative value moved to unsigned 
field. 

5-19 



TOPS-lO AND TOPS-20 DATA CONVERSION 

RELATED ROUTINES: 

CVGEN: 

XCGEN: 

This routine allows you to convert a field without 
making a Foreign Field Descriptor for the field. See 
Section 5.3.15 for a description of CVGEN. 

This ge~eral purpose routine performs any type of 
converSlon allowed by the Data Conversion Routines. 
See Section 5.3.3 for a description of XCGEN. 

5-20 



TOPS-IO AND TOPS-20 DATA CONVERSION 

5.3.10 XCFBPD - Convert Fixed-Point Binary Fields to Packed Decimal 
Fields 

PURPOSE: 

The XCFBPD routine converts Fixed-Point Binary fields to Packed 
Decimal Fields. 

CALL FORMAT: 

COBOL: ENTER MACRO XCFBPD USING sffd (1), dffd (1). 

FORTRAN: status = XCFBPD (sffd, dffd) 

where: 

sffd is a Foreign Field Descriptor describing the source 
field. This argument consists of three one-word 
integers. 

dffd is a Foreign Field Descriptor 
destination field. This argument 
one-word integers. 

describing the 
consists of three 

STATUS CODES: 

For COBOL programs, the DIL returns status codes in the dil-stat 
variable defined by the DILINI routine. For FORTRAN programs, 
the DIL routines return status codes as an integer function 
value. 

DIL Name Meaning 

DIX-INVDATTYP Invalid data type code. 

DIX-INVLNG Length invalid or unspecified. 

DIX-INVSCAL Scale factor invalid or unspecified. 

DIX-UNKSYS Unknown system of origin specified. 

DIX-ALIGN Invalid alignment for data type. 

DIX-TOOBIG Converted source field too large for 
destination field. 

DIX-ROUNDED Result is rounded. 

RELATED ROUTINES: 

CVGEN: This routine allows you to convert a field without 
making a Foreign Field Descriptor for the field. See 
Section 5.3.15 for a description of CVGEN. 

XCGEN: This general purpose routine performs any type of 
conversion allowed by the Data Conversion Routines. 
See Section 5.3.3 for a description of XCGEN. 

5-21 



TOPS-10 AND TOPS-20 DATA CONVERSION 

5.3.11 XCPDDN - Convert Packed Decimal Fields to Display Numeric 
Fields 

PURPOSE: 

The XCPDDN routine converts Packed Decimal fields to Display 
Numeric Fields. 

CALL FORMAT: 

COBOL: ENTER MACRO XCPDDN USING sffd (1), dffd (1). 

FORTRAN: status = XCPDDN (sffd, dffd) 

where: 

sffd is a Foreign Field Descriptor describing the source 
field. This argument consists of three one-word 
integers. 

dffd is a Foreign Field Descriptor describing the 
destination field. This argument consists of three 
one-word integers. 

STATUS CODES: 

For COBOL programs, the DIL returns status codes in the dil-stat 
variable defined by the DILINI routine. For FORTRAN programs, 
the DIL routines return status codes as an integer function 
value. 

DIL Name Meaning 

DIX-INVDATTYP Invalid data type code. 

DIX-INVLNG Length invalid or unspecified. 

DIX-INVSCAL Scale factor invalid or unspecified. 

DIX-UNKSYS Unknown system of origin specified. 

DIX-ALIGN Invalid alignment for data type. 

DIX-TOOBIG Converted source field too large for 
destination field. 

DIX-ROUNDED Result is rounded. 

DIX-INVPDDGT Invalid packed decimal digit in 
source field. 

DIX-INVPDSGN Invalid packed decimal sign in 
source field. 

DIX-UNSIGNED Negative value moved to unsigned 
field. 

5-22 



TOPS-.10ARD TOPS-20 DATA CONVERSION 

RELATED ROUTINES: 

CVGEN: 

XCGEN: 

This routine allows you to convert a field without 
making a Foreign Field Descriptor for the field. See 
Section 5.3.15 for a description of CVGEN. 

This general purpose routine performs any type of 
converSlon allowed by the Data Conversion Routines. 
See Section 5.3.3 for a description of XCGEN. 

5-23 



TOPS-IO AND TOPS-20 DATA CONVERSION 

5.3.12 XCPDFB - Convert Packed Decimal Fields to Fixed-Point Binary 
Fields 

PURPOSE: 

The XCPDFB routine converts Packed Decimal fields to IFixed-Point 
Binary Fields. 

CALL FORMAT: 

COBOL: ENTER MACRO XCPDFB USING sffd (1), dffd (1). 

FORTRAN: status = XCPDFB (sffd, dffd) 

where: 

sffd is a Foreign Field Descriptor describing the source 
field. This argument consists of three one-word 
integers. 

dffd is a Foreign Field Descriptor describing the 
destination field. This argument consists of three 
one-word integers. 

STATUS CODES: 

For COBOL programs, the OIL returns status codes in the dil-stat 
variable defined by the DILINI routine. For FORTRAN programs, 
the OIL routines return status codes as an integer function 
value. 

OIL Name Meaning 

DIX-INVDATTYP Invalid data type code. 

DIX-INVLNG Length invalid or unspecified. 

DIX-INVSCAL Scale factor invalid or unspecified. 

DIX-UNKSYS Unknown system of origin specified. 

DIX-ALIGN Invalid alignment for data type. 

DIX-TOOBIG Converted source field too large for 
destination field. 

DIX-ROUNDED Result is rounded. 

DIX-INVPDDGT Invalid packed decimal digit in 
source field. 

DIX-INVPDSGN Invalid packed decimal sign in 
source field. 

DIX-UNSIGNED Negative value moved to unsigned 
field. 

5-24 



TOPS-IO AND TOPS-20 DATA CONVERSION 

RELATED ROUTINES: 

CVGEN: 

XCGEN: 

This routine allows you to convert a field without 
making a Foreign Field Descriptor for the field. See 
Section 5.3.15 for a description of CVGEN. 

This general purpose routine performs any type of 
converSlon allowed by the Data Conversion Routines. 
See Section 5.3.3 for a description of XCGEN. 

5-25 



TOPS-10 AND TOPS-20 DATA CONVERSION 

5.3.13 XCDNPD - Convert Display Numeric Fields to Packed Decimal 
Fields 

PURPOSE: 

The XCDNPD routine converts Display Numeric fields to Packed 
Decimal Fields. 

CALL FORMAT: 

COBOL: ENTER MACRO XCDNPD USING sffd (1), dffd (1). 

FORTRAN: status = XCDNPD (sffd, dffd) 

where: 

sffd is a Foreign Field Descriptor describing the source 
field. This argument consists of three one-word 
integers. 

dffd is a Foreign Field Descriptor 
destination field. This argument 
one-word integers. 

describing the 
consists of three 

STATUS CODES: 

For COBOL programs, the DIL returns status codes in the dil-stat 
variable defined by the DILINI routine. For FORTRAN programs, 
the DIL routines return status codes as an integer function 
value. 

DIL Name Meaning 

DIX-INVDATTYP Invalid data type code. 

DIX-INVLNG Length invalid or unspecified. 

DIX-INVSCAL Scale factor invalid or unspecified. 

DIX-UNKSYS Unknown system of origin specified. 

DIX-ALIGN Invalid alignment for data type. 

DIX-TOOBIG Converted source field too large for 
destination field. 

DIX-ROUNDED Result is rounded. 

DIX-INVDNUMSGN Invalid display numeric sign in 
source field. 

DIX-INVDNUMCHR Invalid display numeric character in 
source field. 

5-26 



TOPS-IO AND TOPS-20 DATA CONVERSION 

RELATED ROUTINES: 

CVGEN: This routine allows you to convert a field without 
making a Foreign Field Descriptor for the field. See 
Section 5.3.15 for a description of CVGEN. 

This general purpose routine performs any type of 
converSion allowed by the Data Conversion Routines. 
See Section 5.3.3 for a description of XCGEN. 

5-27 



TOPS-IO AND TOPS-20 DATA CONVERSION 

5.3.14 XCDNFB - Convert Display Numeric Fields to Fixed-Point Binary 
Fields 

PURPOSE: 

The XCDNFB routine converts Display Numeric fields to Fixed-Point 
Binary Fields. 

CALL FORMAT: 

COBOL: ENTER MACRO XCDNFB USING sffd (1), dffd (1). 

FORTRAN: status = XCDNFB (sffd, dffd) 

where: 

sffd is a Foreign Field Descriptor describing the source 
field. This argument consists of three one-word 
integers. 

dffd is a Foreign Field Descriptot describing the 
destination field. This argument consists of three 
one-word integers. 

STATUS CODES: 

For COBOL programs, the DIL returns status codes in the dil-stat 
variable defined by the DILINI routine. For FORTRAN programs, 
the DIL routines return status codes as an integer function 
value. 

DIL Name Meaning 

DIX-INVDATTYP Invalid data type code. 

DIX-INVLNG Length invalid or unspecified. 

DIX-INVSCAL Scale factor invalid or unspecified. 

DIX-UNKSYS Unknown system of origin specified. 

DIX-ALIGN Invalid alignment for data type. 

DIX-TOOBIG Converted source field too large for 
destination field. 

DIX-ROUNDED Result is rounded. 

DIX-INVDNUMSGN Invalid display numeric sign in 
source field. 

DIX-INVDNUMCHR Invalid display numeric character in 
source field. 

DIX-UNSIGNED Negative value moved to unsigned 
field. 

5-28 



TOPS-IO AND TOPS-20 DATA CONVERSION 

RELATED ROUTINES: 

CVGEN: 

XCGENJ 

This routine allows you to convert a field without 
making a Foreign Field Descriptor for the field. See 
Section 5.3.15 for a description of CVGEN. 

This general purpose routine performs any type of 
converSlon allowed by the Data Conversion Routines. 
See Section 5.3.3 for a description of XCGEN. 

5-29 



TOPS-IO AND TOPS-20 DATA CONVERSION 

5.3.15 CVGEN - Perform Conversion Without an FFD 

PURPOSE: 

The CVGEN routine allows you to convert a field without making an 
FFD for the field. CVGEN requires a detailed series of 
arguments; you must specify parameters for both the source and 
destination fields. 

You should only use CVGEl~ in cases where the field will be 
converted a limited number of times or the program is 
table-driven. CVGEN creates a description for the field each 
time it processes the field. If you plan to convert a field many 
times during a run, it is quicker to create an FFD for the field 
and convert it with one of the other single function conversion 
routines. Whereas CVGEN creates an FFD internally each time it 
processes, if you perform the conversion with an FFD (built using 
the XDESCR routine) you make an FFD only once. 

CALL FORMAT: 

COBOL: ENTER MACRO CVGEN USING srec, ssysor, sbysiz, sbyoff, 
sbioff, stype, slngth, sscale, drec, dsysor, 
dbysiz, dbyoff, dbioff, dtype, dlngth, dscale. 

FORTRAN: status = CVGEN (srec, ssysor, sbysiz, sbyoff, sbioff, 
1 stype, slngth, sscale, drec, dsysor, dbysiz, 

where: 

srec 

ssysor 

sbysiz 

sbyoff 

2 dbyoff, dbioff, dtype, dlngth, dscale) 

is the source record that contains the field to be 
described. 

COBOL: This field can be any word-aligned data item. 

FORTRAN: This argument will usually be an integer 
array. 

is a one-word integer giving the system of 
the source record. Possible DIL Names 
argument are: 

origin of 
for this 

SYS-lO-20 for a record defined for TOPS-IO or 
TOPS-20. 

SYS-VAX for a record defined for VMS. 

is a one-word integer gIvIng the byte size of the 
source field to be described. All VMS fields have a 
byte size of 8. A TOPS-IO or TOPS-20 COBOL field can 
have a byte size or 6, 7, 9 or 36. A TOPS-IO or 
TOPS-20 FORTRAN field can have a byte size of 7 or 36. 
See Appendix A for further information. 

is a one-word integer giving the byte offset to the 
field within the source record. The byte offset is the 
number of bytes in the source record (of byte size 
specified in "sbysiz") that precede the field that you 
want to convert. 

5-30 



sbioff 

stype 

slngth 

sscale 

drec 

dsysor 

dbysiz 

dbyoff 

dbioff 

dtype 

TOPS-IO AND TOPS-20 DATA CONVERSION 

is a one-word integer giving the bit offset. This 
argument is not currently necessary~ it should be zero. 

is a one-word integer giving the data type of the 
source field. See Appendix A for a list of valid data 
type codes. 

is a one-word integer giving the length of the source 
field: in characters for string fields. This argument 
is required for some data types~ it must be zero for 
all other data types. See Appendix A for further 
information. 

is a one-word integer giving the scale factor of the 
source field. It indicates the number of decimal 
digits to move the decimal point to the left. A 
negative scale factor means that the decimal point will 
be moved to the right. You must specify a scale factor 
if you want to convert a fixed-point field. Specify a 
scale factor of zero for any other type of field. 

is the destination record which contains the field to 
be described. 

COBOL: This argument can be any word-aligned data 
item. 

FORTRAN: This argument will usually be an integer 
array. 

is a one-word integer showing the system of origin of 
the destination record. Possible DIL Names for this 
argument are: 

SYS-10-20 for a record defined TOPS-10 or TOPS-20. 

SYS-VAX for a record defined for VMS. 

is a one-word integer giving the byte size of the 
destination field to be described. All VMS fields have 
a byte size of 8. A TOPS-10 or TOPS-20 COBOL field can 
have a byte Size of 6, 7, 9 or 36. A TOPS-10 or 
TOPS-20 FORTRAN field can have a byte size of 7 or 36. 
See Appendix A for furth~r information. 

is a one-word integer giving the byte offset of the 
destination record. The byte offset is the number of 
bytes in the record (of byte size specified in 
"dbysiz") that precede the field that you want to 
convert. 

is a one-word integer that shows the bit offset. This 
argument is not currently used~ it is always zero. 

is a one-word integer giving the data type of the 
destination field. See Appendix A for a list of valid 
data type codes. 

5-31 



dlngth 

dscale 

TOPS-IO AND TOPS-20 DATA CONVERSION 

is a one-word integer giving the length of the 
destination field: in characters for string fields. 
This argument is required for some data types, it must 
be zero for all other data types. See Appendix A for 
further information. 

is a one-word integer giving the scale factor of the 
destination field. It indicates t.he number of decimal 
digits to move the decimal point to the left. A 
negative scale factor means that the decimal point will 
be moved to the right. Yqu must specify a scale factor 
if you want to convert a fixed-point field. Specify a 
scale factor of zero for any other type of field. 

5-32 



TOPS-10 AND TOPS-20 DATA CONVERSION 

STATUS CODES: ---
For COBOL programs, the DIL returns status codes in the dil-stat 
variable defined by the DILINI routine. For FORTRAN programs, 
the DIL routines return status codes as an integer function 
value. 

DIL Name Meaning 

DIX-INVDATTYP Invalid data type code. 

DIX-INVLNG Length invalid or unspecified. 

DIX-INVSCAL Scale factor invalid or unspecified. 

DIX-UNKSYS Unknown system of origin specified. 

DIX-INVBYSIZ Invalid byte size specified. 

DIX-ALIGN Invalid alignment for data type. 

DIX-INVALCHAR Invalid character in source field or 
conversion table. 

DIX-GRAPHIC Graphic character changed in conver-
sion. 

DIX-FMTLOST Format effector gained or lost in 
conversion. 

DIX-NONPRINT Non-printing character gained or lost 
in conversion. 

DIX-TRUNC String too long for destination --
truncated. 

DIX-TOOBIG Converted source field too large for 
destination field. 

DIX-UNSIGNED Negative value moved to unsigned 
field. 

DIX-ROUNDED Result is rounded. 

DIX-UNNORM Floating-point number improperly 
normalized. 

DIX-INVDNUMCHR Invalid display numeric character in 
source field. 

DIX-INVDNUMSGN Invalid display numeric sign in 
source field. 

DIX-INVPDDGT Invalid packed decimal digit in 
source field. 

DIX-INVPDSGN Invalid packed decimal sign in 
source field. 

5-33 



TOPS-IO AND TOPS-20 DATA CONVERSION 

RELATED ROUTINES: 

XDESCR: This routine builds a Foreign Field Descriptor for the 
field you wish to convert. See Section 5.3.2 for a 
description of XDESCR. 

5-34 



TOPS-10 AND TOPS-20 DATA CONVERSION 

5.4 TOPS-10/TOPS-20 DATA CONVERSION EXAMPLES 

5.4.1 TOPS-IO/TOPS-20 COBOL Data Conversion Example 

IDENTIFICATION DIVISION. 

PROGRAM-ID. 

CDCR36. 

This program performs a single string data conversion. The 
ASCII-7 string value "ABCDE" will be converted to the same 
ASCII-8 value. 

ENVIRONMENT DIVISION. 

DATA DIVISION. 

WORKING-STORAGE SECTION. 

* source data field 

01 SRCDAT PIC X(5) USAGE DISPLAY-7 VALUE "ABCDE". 

* The destination data field must be large enough to hold the ASCII-8 
* equivalent of the source data field: 
* ASCII-7 PIC X(5) = 7 bits/character * 5 characters 35 bits 
* ASCII-8 PIC X(5) = 8 bits/character * 5 characters 40 bits 

01 DSTDAT PIC S9(10) COMP OCCURS 2. 

* The value of the destination data, when considered as a numeric bit 
* pattern, contains a large number (22620095041) which is not 
* acceptable to COBOL. Therefore we will use the SIXBIT equivalents 
* for the destination data fields: 

01 SIXBIT-EQUIVALENTS REDEFINES DSTDAT. 
05 SIXBIT-EQUIVl PIC X(6) USAGE DISPLAY-6. 
05 SIXBIT-EQUIV2 PIC X(6) USAGE DISPLAY-6. 

01 EXPECTED-VALUES. 
05 EXPECTED-VALl PIC X(6) USAGE DISPLAY-6 VALUE 15$OT)!". 
05 EXPECTED-VAL2 PIC X(6) USAGE DISPLAY-6 VALUE II $". 

5-35 



TOPS-IO AND TOPS-20 DATA CORVERSION 

* foreign field descriptors 

01 FFDS. 
05 SRCFFD PIC S9(10) COMP OCCURS 3. 
05 DSTFFD PIC S9(10) COMP OCCURS 3. 

01 INTERFACE-FILES. 
COpy DIL OF "SYS:DIL.LIB". 
COPY OIX OF "SYS:DIL.LIB". 

01 DILINI-PARAMS. 
05 OIL-INIT-STATUS PIC S9(10) COMPo 
05 OIL-STATUS PIC S9(10) COMPo 
05 OIL-MESSAGE PIC S9(10) COMPo 
05 OIL-SEVERITY PIC S9(10) COMPo 

PROCEDURE DIVISION. 

INITIALIZE-STUFF. 
* Set up for status code values, using OILINI routine 

ENTER MACRO OILINI USING OIL-INIT-STATUS, OIL-STATUS, 
OIL-MESSAGE, OIL-SEVERITY. 

IF OIL-INIT-STATUS NOT = 1 
DISPLAY"? Failure in OILINI. Oil-status = " OIL-STATUS. 

* initialize destination data field to zeros 

MOVE ° TO OSTOAT(l). 
MOVE ° TO OSTOAT(2). 

MAKE-FFOS. 
* make the foreign field descriptors for use by XCVST 

ENTER MACRO XOESCR USING SRCFFO(1) , SRCDAT, OIX-SYS-10-20, 7,0, 0, 
OIX-OT-ASCII-7, 5, O. 

IF OIL-SEVERITY NOT = STS-K-SUCCESS AND 
OIL-SEVERITY NOT = STS-K-INFO 

DISPLAY"? Failure in XOESCR. Oil-Status = " OIL-STATUS 
STOP RUN. 

ENTER MACRO XOESCR USING OSTFFO(l), OSTOAT(1), DIX-SYS-VAX, 8, 0, 0, 
OIX-OT-ASCII-8, 5, 0. 

IF OIL-SEVERITY NOT = STS-K-SUCCESS AND 
OIL-SEVERITY NOT = STS-K-INFO 

DISPLAY"? Failure in XOESCR. Oil-status 
STOP RUN. 

DO-CONVERSION. 

" OIL-STATUS 

* Convert ASCII-7 value "ABCOE" to ASCII-8 value "ABCOE". 

ENTER MACRO XCVST USING SRCFFO(1) , OSTFFO(l). 

IF OIL-SEVERITY NOT = STS-K-SUCCESS AND 
OIL-SEVERITY NOT = STS-K-INFO 

DISPLAY"? Failure in XCVST. Oil-status 
STOP RUN. 

5-36 

" OIL-STATUS 



TOPS-IO AND TOPS-20 DATA CONVERSION 

CHECK-RESULTS. 
* What should have been created is the VAX ASCII-a form of the source 
* value "ABCDE". 

* * In VAX memory, this is represented as follows: 

* 
* 
* 
* 
* 
* 
* 

symbolic representation: 
IAAAAAAAAI :m 

numeric (binary) representation: 
1010000011 :m 

* 
* 

I BBBBBBBB I : m+1 
I CCCCCCCC I : m+2 
I DDDDDDDD I :m+3 
I EEEEEEEE I : m+4 

* Transposing this into DEC-20 memory we have: 
* * symbolic representation: 
* IEEEEDDDDDDDDCCCCCCCCBBBBBBBBAAAAAAAAI n 
* I EEEE I n+1 
* * numeric (binary) representation: 
* 10101010001000100001101000010010000011 n 
* I 01001 n+1 
* * in octal this is: and in decimal: 

* 

1010000101 :m+1 
1010000111 :m+2 
1010001001 :m+3 
1010001011 :m+4 

* 12504206411011 n I 22620095041 I :n 
* 10000000000041 n+1 I 4 I :n+1 
* * Since this large number (22620095041) is not acceptable to COBOL, we will 
* use the SIXBIT equivalents for the destination data fields: 
* 5$OT) I :n 
* $ : n+l 
* 

IF SIXBIT-EQUIV1 NOT EQUAL EXPECTED-VALl 
DISPLAY "1 Error in conversion: " 
DISPLAY " expected converted value not returned from conversion" 
STOP RUN. 

IF SIXBIT-EQUIV2 NOT EQUAL EXPECTED-VAL2 
DISPLAY "1 Error in conversion: 
DISPLAY " expected converted value not returned from conversion" 
STOP RUN. 

DISPLAY" CDCR36 successfully completed.". 

STOP RUN. 

5-37 



TOPS-IO AND TOPS-20 DATA CONVERSION 

5.4.2 TOPS-IO/TOPS-20 FORTRAN Data Conversion Example 

C FDCR36 

C 
C 
C 

This program performs 
ASCII-7 string value 
ASCII-8 value. 

C Include interface files 
INCLUDE 'SYS:DIXV7' 
INCLUDE 'SYS:DILV7' 

a single string data conversion. 
"ABCDE" will be converted to the 

C Source and destination data fields. 

The 
same 

C NOTE: The destination data field must be large enough to hold the 
C ASCII-8 equivalent of the source data field: 
C ASCII-7 (5 chars) = 7 bits/character * 5 characters 35 bits 
C ASCII-8 (5 chars) = 8 bits/character * 5 characters 40 bits 

INTEGER SRCDAT (1), DSTDAT (2) 

C Foreign field descriptors (ffds) 

INTEGER SRCFFD (3), DSTFFD (3) 

C Status return code 
INTEGER DILSTS 

C Data for source and destination data fields 
DATA SRCDAT /'ABCDE'/ 
DATA DSTDAT /0, 0/ 

C make the foreign field descriptors for use by XCVST 

DILSTS = XDESCR (SRCFFD, SRCDAT, SYS36, 7, 0, 0, ASCII7, 5, 0) 
IF (DILSTS.NE.NORMAL) GOTO 100 

DILSTS = XDESCR (DSTFFD, DSTDAT, SYSVAX, 8, 0, 0, ASCII8, 5, 0) 
IF (DILSTS.NE.NORMAL) GOTO 100 

C Do conversions: convert ASCII-7 value "ABCDE" to ASCII-8 value "ABCDE" 

DILSTS = XCVST (SRCFFD, DSTFFD) 
IF (DILSTS.NE.NORMAL) GOTO 102 

C Check results: 

C What should have been created is the VAX ASCII-8 form of the source 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

value "ABCDE". 

In VAX memory, this is represented as follows: 

symbolic representation: 
AAAAAAAA : m 
BBBBBBBB :m+1 
CCCCCCCC :m+2 
DDDDDDDD :m+3 
EEEEEEEE :m+4 

numeric 

5-38 

(binary) representation: 
01000001 :m 
01000010 :m+1 
01000011 :m+2 
01000100 :m+3 
01000101 :m+4 



TOPS-IO AND TOPS-20 DATA CONVERSION 

C Transposing this into DEC-20 memory we have: 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

symbolic representation: 

IEEEEDDDDDDDDCCCCCCCCBBBBBBBBAAAAAAAAI 
. . EEEE 

n 
n+l 

numeric (binary) representation: 

1

0101010001000100001101000010010000011 n 
0100 n+l 

in octal this is: 

\
250420641101/ n 
000000000004 n+l 

and in decimal: 

I 226200495041 I :n 
:n+l 

IF (DSTDAT (1) .NEQ. 22620095041) GOTO 104 
IF (DSTDAT (2) .NEQ. 4) GOTO 104 

200 FORMAT (' FDCR36 successfully completed.') 
WRITE (5, 200) 
STOP 

C Print error information 
100 WRITE (5, 101) DILSTS 
101 FORMAT ('1 Failure in XDESCR. Dil-status 110) 

STOP 

102 
103 

WRITE (5, 103) DILSTS 
FORMAT ('1 Failure in XCVST. Dil-status 
STOP 

104 WRITE (5, 105) 
105 FORMAT ('1 Error in conversion:') 

WR I TE (5, 106) 

110) 

106 FORMAT (' expected converted value not retured from conversion') 
STOP 

END 

5-39 





CHAPTER 6 
TOPS-20 AND TOPS-10 TASK-TO-TASK 



CHAPTER 6 

TOPS-20 AND TOPS-IO TASK-TO-TASK 

6.1 TASK-TO-TASK FROM TOPS-20 OR TOPS-IO COBOL 

The information included in this section assumes 

-You are writing a COBOL program 
-You plan to use the program on a TOPS-20 or TOPS-IO system 

To store a Network Logical Name (NLN), task characteristics or user 
attributes, to send data or to perform a status check you must 
represent several data items in your program. Users generally 
allocate space for these data items in WORKING-STORAGE. 

6.1.1 Compiling Programs 

To use the DIL Data Conversion Routines on TOPS-20 from a COBOL 
program, you may need to compile your program with the /STACK compiler 
switch to insure that you have an adequate pushdown list size. If 
your program gets a stack overflow, compile the program with 
/STACK:2000. On TOPS-IO, you may need to compile your COBOL program 
with the /D compiler switch. If your program gets a stack overflow, 
compile it with /D:2000. 

6.1.2 Including the Interface Support Files 

The Interface Support file provided for TOPS-IO and TOPS-20 COBOL is a 
copy library called DIL.LIB. The COBOL COpy verb can be used to 
retrieve the information in the library at compilation time. There 
are three library elements in DIL.LIB. The elements are DIL, DIT, and 
DIX. 

The library element DIL defines general codes and names applicable to 
the Data Conversion Routines, the Task-to-Task routines and the Remote 
File Access Routines. The general success status code (SS-NORMAL) is 
defined in element DIL. Severity codes and system codes are defined 
in element DIL. To define these names in your program, include the 
following statement in your WORKING-STORAGE section after an Ol-level 
declaration: 

COpy DIL OF "SYS:DIL.LIB". 

6-1 



TOPS-20 AND TOPS-lO TASK-TO-TASK 

In the following example, the OIL element of the library is retrieved 
and included in your program: 

01 interface-files. 
COPY OIL OF "SYS:OIL.LIB". 

The library element OIT defines codes specific to the Task-to-Task and 
Remote File Access Routines. These codes include the OIT condition 
values Task-to-Task wait codes, Task-to-Task link types, Task-to-Task 
message modes and VMS task fire-up codes. To define these names in 
your program, include the following statement in your WORKING-STORAGE 
section after an 01-level declaration, such as that shown above for 
the OIL element: 

COPY OIT OF "SYS:OIL.LIB". 

For programs which use the Task-to-Task routines, you must include 
both the OIL and OIT library elements. 

6.1.3 Storing a Network Logical Name (NLN) 

The NLN consists of one word of TOPS-10/TOPS-20 memory. To store an 
NLN, you must define a data item with the following format: 

01 your-nln PIC S9(10) USAGE COMPUTATIONAL. 

When you call the NFOPA, NFOPB, NFOP8 or NFOPP routine to create the 
NLN, use your-nln as the NLN to be returned. When the routine 
successfully finishes processing, it returns a value to your-nln. 

6.1.4 Storing Task and User Attributes 

To include task and user attributes in a call to NFOPA, NFOPB or NFOP8 
or task attributes in a call to NFOPP you must describe these 
attributes as data items in WORKING-STORAGE. 

Task attributes are always OISPLAY-7 fields; they always have the 
picture clause PIC X(16). The format for the task attributes is as 
follows: 

01 target-name 
01 object-type 
01 desc-name 
01 task-name 

PIC X(16) OISPLAY-7. 
PIC X(16) OISPLAY-7. 
PIC X(16) OISPLAY-7. 
PIC X(16) OISPLAY-7. 

User attributes are always OISPLAY-7 fields; they always have the 
picture clause PIC X(39). The format for the user attributes is as 
follows: 

01 userid 
01 passwd 
01 acct 

PIC X(39) OISPLAY-7. 
PIC X(39) OISPLAY-7. 
PIC X(39) OISPLAY-7. 

6-2 



TOPS-20 AND TOPS-10 TASK-TO-TASK 

6.1.5 Checking the Status of a Task-to-Task Routine 

Section 5.1.5 of this manual presents a method for checking the status 
of any TOPS-10/TOPS-20 COBOL DIL Routine. Section 5.3.1 describes the 
DILINI initialization routine. 

A call to the Task-to-Task Routines with a simple check for success 
might look like this: 

ENTER MACRO NFOPA USING nln, trgsys, objtyp, desc, tsknam, 
userid, passwd, acct, usdat, wait. 

IF NOT dil-ok 
DISPLAY "fatal error". 

A call to the same routine with prOV1Slons for handling a specific 
type of error might look like this: 

ENTER MACRO NFOPA USING nln, trgsys, objtyp, 
desc, tsknam, userid, passwd, acct, usdat, 
wait 

IF NOT dil-ok 
IF dil-msg = DIT-C-INVARG 

DISPLAY "invalid data type error". 
ELSE 

DISPLAY "other error". 

To determine which error occurred, compare dil-msg to the DIT 
condition identifier defined in the TOPS-10/TOPS-20 COBOL Interface 
Support files. In the example above, DIT-C-INVARG is the value 
(defined in the Interface Support file) indicating an invalid argument 
was specified. 

6.1.6 The TOPS-10 Software Interrupt System 

The DIL task-to-task and remote file access routines need the services 
of the TOPS-10 software interrupt system (PSI). Because the FORTRAN 
and COBOL runtime systems do not provide a facility to share the use 
of the software interrupt system between non-cooperating routines in 
the same program, the user cannot use the software interrupt system in 
a COBOL or FORTRAN program that uses the task-to-task or remote file 
access routines. 

6.2 TASK-TO-TASK FROM TOPS-20 AND TOPS-IO FORTRAN 

The information included in this section assumes 

-You are writing a FORTRAN program 
-You plan to use the program on a TOPS-20 or TOPS-IO system 

This section explains how 
characteristics or user 
status check. 

to store a Network 
attributes, to send 

6-3 

Logical Name, task 
data or to perform a 



TOPS-20 AND TOPS-lO TASK-TO-TASK 

6.2.1 Including the Interface Support Files 

The Interface Support files provided for TOPS-IO and TOPS-20 FORTRAN 
are text files called DILV7.FOR, DITV7.FOR and DIXV7.FOR. You can 
include the information from these files into your source programs at 
compilation time using the FORTRAN INCLUDE statement. 

The file DILV7 defines general codes and names applicable to the Data 
Conversion Routines, the Task-to-Task Routines and the Remote File 
Access Routines. The general success status code (55-NORMAL) is 
defined in DILV7. Severity codes and system codes are defined in 
DILV7. To define these names in your program, include the following 
statement in your program: 

INCLUDE 'SYS:DILV7' 

The file DITV7 defines codes specific to the Task-to-Task and Remote 
File Access Routines. These codes include the DIT status codes, 
Task-to-Task wait codes, Task-to-Task link types, Task-to-Task message 
modes and VMS task fire-up codes. To define these names in your 
program, include the following statement: 

INCLUDE 'SYS:DITV7' 

For programs which use the Task-to-Task routines, you must include 
both the DILV7 and DITV7 files. 

6.2.2 Storing a Network Logical Name (NLN) 

The NLN consists of one word of TOPS-IO/TOPS-20 memory. To store an 
NLN, you must declare an integer, as shown below: 

INTEGER nln 

6.2.3 Storing Task and User Attributes 

To include task and user attributes in a call to NFOPA, NFOPB or NFOP8 
or task attributes in a call to NFOPP you must describe these 
attributes in your program as follows: 

INTEGER trgsys (4 ) or CHARACTER*16 trgsys 
INTEGER objtyp (4 ) or CHARACTER*16 objtyp 
INTEGER desc (4 ) or CHARACTER*16 desc 
INTEGER tsknam (4 ) or CHARACTER*16 tsknam 
INTEGER userid (8 ) or CHARACTER*39 userid 
INTEGER passwd ( 8 ) or CHARACTER*39 passwd 
INTEGER acct (8 ) or CHARACTER*39 acct 
INTEGER usdat (4 ) or CHARACTER*16 usdat 

6-4 



TOPS-20 AND TOPS-lO TASK-TO-TASK 

6.2.4 Checking the Status of a Task-to-Task Routine 

To check the status of a call to one of the task-to task routines from 
a TOPS-20 or TOPS-IO FORTRAN program, you should first declare an 
integer (implicitly or explicitly) where the routine can place a 
status value. 

INTEGER status 

A normal call to one of the Task-to-Task Routines 
Interface Support File), including provisions 
might be: 

(using the proper 
for status checking 

status = NFOP8 (nln, trgsys, objtyp, desc, tsknam, userid, 
1 passwd, acct, usdat, wait) 

IF (status.EQ.NORMAL) GOTO 100 
IF (status.EQ.INVARG) GOTO 50 
TYPE 10 

10 FORMAT (' error occurred') 

50 TYPE 51 
51 FORMAT (' invalid data type error') 

100 

To determine which error occurred, compare status to the DIT status 
codes defined in the TOPS-lO/TOPS-20 FORTRAN Interface Support file. 
In the example above, NORMAL and INVARG are status code values defined 
in the Interface Support files. 

6.2.5 The TOPS-lO Software Interrupt System 

The DIL task-to-task and remote file access routines need the services 
of the TOPS-IO software interrupt system (PSI). Because the FORTRAN 
and COBOL runtime systems do not provide a facility to share the use 
of the software interrupt system between non-cooperating routines in 
the same program, the user cannot use the software interrupt system in 
a COBOL or FORTRAN program that uses the task-to-task or remote file 
access routines. 

6-5 



TOPS-20 AND TOPS-IO TASK-TO-TASK 

6.3 TOPS-IO AND TOPS-20 TASK-TO-TASK REFERENCE 

6.3.1 NFGND - Return the Status of a Link 

PURPOSE: 

The NFGND routine returns 
connection or the next 
disconnect or an abort). 

the status of a specific network 
network event (such as a connection, a 

CALL FORMAT: 

COBOL: ENTER MACRO NFGND USING nln, wait. 

FORTRAN: status = NFGND (nln, wait) 

where: 

nln is the Network Logical Name of the link that you want 
information about. The NLN is set by the NFOPA, NFOPB, 
NFOP8 or NFOPP routines. The Network Logical Name is a 
one-word integer. 

wait 

If you want information about any event occurring on 
any logical link, use -1 as the value for this 
argument. NFGND finds the next network event and 
returns the NLN of that link. If NFGND cannot find an 
event, it returns an undefined value. 

is a one-word integer that gives the wait code. 

Set the wait code to "no" if you want the routine to 
return only the current status of events on the 
specified link. The DIL Name for this argument is: 

WAIT-NO 

Set the wait code to "yes" if you want the routine to 
wait for a network event to occur involving the 
specified link. When an event occurs the routine 
reports it. Waiting uses minimal CPU time. The DIL 
name for this argument is: 

WAIT-YES 

6-6 



TOPS-20 AND TOPS-IO TASK-TO-TASK 

STATUS CODES: 

For COBOL programs, the DIL returns status codes in the dil-stat 
variable defined by the DILINI routine. For FORTRAN programs, 
the DIL routines return status codes as an integer function value 
of status. 

DIL Name 

DIT-INVARG 

SS-NORMAL 

DIT-CONNECTEVENT 

DIT-ABREJEVENT 

DIT-DATAEVENT 

DIT­
DISCONNECTEVENT 

DIT-HORRIBLE 

DIT-INTERRUPT 

Meaning 

You passed an incorrect or invalid 
argument. 

The routine successfully completed 
processing. You receive this code 
only if you don't wait for a new 
event and no events have occured 
since the last reported event. If an 
event has taken place, (connect, 
data, abort, disconnect, interrupt 
data) you receive the code for that 
event. 

This code is returned for a connect 
event. If you are checking the 
status of a passive task, this code 
indicates that the task has received 
a connect request. If you are 
checking the status of an active 
task, this code indicates that a 
connect request issued by the active 
task has been accepted by the passive 
task. 

The routine returns this code if the 
link is aborted or rejected. You 
should call NFCLS to do an abort and 
release the resources of this link, 
so it can be used again. 

The routine returns this code when 
data is available over the specified 
link. You should call NFRCV to re­
ceive the data. 

The routine returns this code when 
the specified link has been discon­
nected. You should call NFCLS to do 
an abort to release the resources of 
this link, so it can be used again. 

This code is returned in the event of 
a system or unexpected error~ 

The routine returns this code when an 
interrupt data message is available. 
You should call NFRCI to read the 
interrupt data message. 

6-7 



TOPS-20 AND TOPS-IO TASK-TO-TASK 

6.3.2 NFINF - Get Information About the Other End of a Logical Link. 

PURPOSE: 

The NFINF routine returns information about the remote node, the 
remote process or the remote DECnet object associated with a 
specific network connection. 

You can also use the NFINF routine to read optional data sent by 
a remote process. If the cooperating process is on a VMS system, 
you can use NFINF to read optional data associated with a 
disconnection or rejection of a process. If the cooperating 
process is a TOPS-IO or TOPS-20 system, you can read any type of 
optional data. 

CALL FORMAT: 

COBOL: ENTER MACRO NFINF USING nln, inftyp, length, buffer. 

FORTRAN: status = NFINF (nln, inftyp, length, buffer) 

where: 

nln is the Network Logical Name of the link that you want 
information about. The NLN is set by the NFOPA, NFOPB, 
NFOP8, or NFOPP routine. The Network Logical Name is a 
one-word integer. 

inftyp is a one-word integer that specifies the type of 
information wanted. 

Refer to the DECnet User's Guide for your system for 
more information. 

6-8 



TOPS-20 AND TOPS~10 TAS~-TO-TASK 

Information Type DIL Name 

Remote node name of the cooperating task. INF-NODE 

Remote object type. This information is only INF-OBJECT 
available to the passive task. 

Remote object descriptor format (0 if the task INF-DESCF 
only requires an object id, 1 if the task only 
requires a taskname, or 2 if the task requires a 
project-programmer number) • This information is 
only available to the passive task. 

Remote DECnet object descriptor. This information INF-DESC 
is only available to the passive task. 

Remote process user ide This information is only INF-USERID 
available to the passive task. 

Remote process password. This information is only INF-PASSWD 
available to the passive task. 

Remote process account. This information is only INF-ACCT 
available to the passive task. 

Remote process optional data or disconnect optional INF-OPT 
data or reject optional data. If the cooperating 
task is running on a VMS system, only disconnect 
and reject optional data are available. 

Maximum segment size for the link in bytes. This INF-SEG 
is not available for VMS systems. The information 
can be used to determine the optimum size of 
records to be transmitted over the link. 

Abort code or reject code. You can find the INF-ABTCOD 
meaning of the abort or reject code in the DECn~t 
manual for the remote system. 

length is a one word integer in which the length of ASCII data 
returned is specified. 

buffer is the area in which to place returned ASCII data. 
This area must be at least 16 ASCII-7 characters long 
to accomodate optional data, a taskname, or a DECnet 
descriptor. It must be at least 39 ASCII-7 characters 
long to accommodate a userid, a password, or an 
account. 

6-9 



TOPS-20 AND TOPS-IO TASK-TO-TASK 

STATUS CODES: 

For COBOL programs, the OIL returns status codes in the dil-stat 
variable defined by the OILINI routine. For FORTRAN programs, 
the OIL routines return status codes as an integer function 
value. 

OIL Name Meaning 

OIT-INVARG You passed an incorrect or invall.d 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

OIT-INFONOTAVAIL The information you have requested 
is not available to this task. 

OIT-INFOOUTOFRANGE The information you have requested 
is not in the range of valid values. 

-- -- - _.". _.- -

OIT-HORRIBLE This code is returned in the event 
of a system or unexpected error. 

6-10 



TOPS-20 AND TOPS-lO TASK-TO-TASK 

6.3.3 NFOPA - Open a Link From an Active Task (ASCII) 

PURPOSE: 

The NFOPA routine opens a logical link to a program on another 
system. You use this routine when you intend to transmit or 
receive ASCII data. 

CALL FORMAT: 

COBOL: ENTER MACRO NFOPA USING nln, trgsys, objtyp, desc, 
tsknam, userid, passwd, acct, usdat, wait. 

FORTRAN: status = NFOPA (nln, trgsys, objtyp, desc, tsknam, 
1 userid, passwd, acct, usdat, wait) 

where: 

nln 

trgsys 

objtyp 

desc 

is the Network Logical Name (NLN) to be returned when 
this routine successfully finishes processing. You use 
the NLN to identify this link when you call other 
Task-to-Task routines. The Network Logical Name is a 
one-word integer. 

is the node name of the target system. The t~rget 
system, in this case, is the system which runs the 
passive task that you want to access with this link. 

The node name has a length of sixteen ASCII-7 
characters. If your node name is less than sixteen 
characters, left-justify the field. If you give this 
argument a value of spaces, it defaults to the local 
system's node name. 

is the object type of the passive task. The object 
type specifies the kind of service performed by the 
passive task. This argument has a length of sixteen 
ASCII-7 characters. If the object type has less than 
sixteen characters, left-justify the field. 

The object type can be expressed as either a number or 
a name. Most programs use an object type of 0 or TASK. 
Server programs which perform a generic service (MAIL, 
for example) have a non-zero· numeric object type. You 
can find a list of valid DECnet object types and their 
meanings in the appropriate DECnet User's Guide. 

is the DECnet descriptor. You must use a descriptor 
when you plan to access a task with object type 0 or 
object name TASK. The descriptor must contain the 
DECnet taskname of the passive task on the remote 
system. For TOPS-20 to TOPS-20 communication when the 
object type is not zero, you can provide a descriptor. 
See Appendix D for further information. The descriptor 
has a length of sixteen ASCII-7 characters. If your 
descriptor is less than sixteen characters, 
left-justify the field. 

6-11 



TOPS-20 AND TOPS-IO TASK-TO-TASK 

NOTE 

For a TOPS-20 system, the name of the target system, 
the object type and the DECnet descriptor cannot have 
a combined total of more than thirty-seven non-blank 
characters. 

tsknam is the DECnet taskname. Taskname is a unique sixteen 
character ASCII-7 string that identifies this process 
to the network. An active task never has to specify a 
taskname. If you pass a value of spaces for this 
argument, the operating system assigns a unique name. 

NOTE 

The following three arguments are optional user 
attributes. The passive task may use these attributes 
to· validate a network connection, or to perform any 
other recognition function agreed to by both tasks. 
These arguments are optional if you want to connect to 
a passive TOPS-20 or TOPS-10 task, or a passive VMS 
task that is already running. The arguments are 
required if you want to connect to a passive VMS task 
that is to be started as a result of your request. 

userid 

passwd 

acct 

usdat 

is youruserid. Userid has a length of thirty-nine 
ASCII-7 characters. If your userid is less than 
thirty-nine characters, left-justify the field. If you 
don't want to specify a userid, pass a value of spaces 
for this argument. 

is your password. Password has a length of thirty-nine 
ASCII-7 characters. If your password is less than 
thirty-nine characters, left-justify the field. If you 
don't want to specify a password, pass a value of 
spaces for this argument. 

is your account number or charge code. This field has 
a length thirty-nine ASCII-7 characters. If this 
information is less than thirty-nine characters, 
left-justify the field. Give this argument a value of 
spaces if you plan to connect to a passive task on a 
VMS system or you don't want to specify an account 
number. 

is sixteen optional ASCII-7 characters of user data. 
See the NFINF routine for more information. 

6-12 



wait 

STATUS CODES: 

TOPS-20 AND TOPS-lO TASK-TO-TASK 

is a one-word integer that gives the wait code. 

Set the wait code to "no" if you do not want your 
program to wait until it establishes a connection to 
the passive task. Using this code enables your program 
to perform other duties while waiting for the network 
connection. To find out if the passive task has 
accepted your connection, periodically call the NGFND 
routine to check status. The DIL Name for this 
argument is: 

WAIT-NO 

Set the wait code to "yes" if you want your program to 
wait until the passive task has accepted your link. 
The routine does not return to your program until it 
establishes the specified link. While it waits, you 
can not use the active task. Waiting uses minimal CPU 
time. The DIL Name for this argument is: 

WAIT-YES 

For COBOL programs, the DIL returns status codes in the dil-stat 
variable defined by the DILINI routine. For FORTRAN programs, 
the DIL routines return status codes as an integer function value 
of status. 

DIL Name Meaning 

DIT-TOOMANY You attempted too many links. The 
DIL allows a maximum of 20 open 
links. On TOPS-20 systems, however, 
a non-privileged user can only open 
a maximum of four links. 

DIT-INVARG You passed an incorrect or invalid 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

DIT-ABORTREJECT The link was aborted or rejected. 

DIT-HORRIBLE This code is returned in the event of 
a system or unexpected error. 

6-13 



TOPS-20 AND TOPS-IO TASK-TO-TASK 

6.3.4 NFOPB - Open a Link From an Active Task (Binary) 

PURPOSE: 

The NFOPB routine opens a logical link to a program on another 
system. You use this routine when you intend to transmit records 
or blocks of data. 

Data moved through the network on a link opened with NFOPB is 
transmitted as a string of bits, sent eight bits at a time. This 
format allows the data to be used by the Data Conversion 
Routines. To learn more about bit transport, see Appendix F. 

CALL FORMAT: 

COBOL: ENTER MACRO NFOPB USING nln, trgsys, objtyp, desc, 
tsknam, userid, passwd, acct, usdat, wait. 

FORTRAN: status = NFOPB (nln, trgsys, objtyp, desc, tsknam, 
1 userid, passwd, acct, usdat, wait) 

where: 

nln 

trgsys 

objtyp 

desc 

is the Network Logical Name (NLN) to be returned when 
this routine successfully finishes processing. You use 
the NLNto identify this link when you call other 
Task-to-Task routines. The NLN is a one-word integer. 

is the node name of the target system. The target 
system, in this case, is the system which runs the 
passive task that you want to access with this link. 

The node name has a length of sixteen ASCII-7 
characters. If your node name is less than sixteen 
characters, left-justify the field. If you give this 
argument a value of spaces, it defaults to the local 
system's node name. 

is the object type of the passive task. The object 
type tells the kind of service performed by the passive 
task. This argument has a length of sixteen ASCII-7 
characters. If the object type has less than sixteen 
characters, left-justify the field. 

The object type can be expressed as either a number or 
name. Most programs use an object type of 0 or TASK. 
Server programs which perform a generic service (MAIL, 
for example) have a non-zero numeric object type. You 
can find a list of valid DECnet object types and their 
meanings in the appropriate DECnet User's Guide. 

is the DECnet descriptor. You must use a descriptor 
when you plan to access a task with object type 0 or 
object name TASK. The descriptor must contain the 
DECnet taskname of the passive task on the remote 
system. For TOPS-20 to TOPS-20 communication when the 
object type is not zero, you can provide a descriptor. 
See Appendix D for further information. The descriptor 
has a length of sixteen ASCII-7 characters. If your 
descriptor is less than sixteen characters, 
left-justify the field. 

6-14 



TOPS-20 AND TOPS-IO TASK-TO-TASK 

NOTE 

For a TOPS-20 system, the name of the target system, 
the object type and the DECnet descriptor cannot have 
a combined total of more than thirty-seven non-blank 
characters. 

tsknam is the DECnet taskname. Taskname is a unique sixteen 
character ASCII-7 string that identifies this process 
to the network. An active task never has to specify a 
taskname. If you pass a value of spaces for this 
argument, the operating system assigns a unique name. 

NOTE 

The following three arguments are optional user 
attributes. The passive task may use these attributes 
to validate a network connection, or to perform any 
other recognition function agreed to by both tasks. 
These arguments are optional if you want to connect to 
a passive VMS task or a passive VMS task that is 
already running. The arguments are required if you 
want to connect to a passive VMS task that is to be 
started as a result of your request. See Appendix 0 
for further information. 

userid 

passwd 

acct 

usdat 

is your userid. Userid has a length of thirty-nine 
ASCII-7 characters. If your userid is less than 
thirty-nine characters, left-justify the field. If you 
don't want to specify a userid, pass a value of spaces 
for this argument. 

is your password. Password has a length of thirty-nine 
ASCII-7 characters. If your password is less than 
thirty-nine characters, left-justify the field. If you 
don't want to specify a password, pass a value of 
spaces fo~ this argument. 

is your account number or charge code. This field has 
a length thirty-nine ASCII-7 characters. If this 
information is less than thirty-nine characters, 
left-justify the field. Give this argument a value of 
spaces if you plan to connect to a VMS system or you 
don't want to specify an account number. 

is sixteen optional ASCII-7 characters of user data. 
See the NFINF routine for more information. 

6-15 



wait 

STATUS CODES: 

TOPS-20 AND TOPS-IO TASK-TO-TASK 

is a one-word integer that gives the wait code. 

Set the wait code to "no" if you do not want your 
program to wait until it establishes a connection to 
the passive task. Using this code enables your program 
to perform other duties while waiting for the network 
connection. To find out if the passive task has 
accepted your connection, periodically call the NGFND 
routine to check status. The DIL Name for this 
argument is: 

WAIT-NO 

Set the wait code to "yes" if you want your program to 
wait until the passive task has accepted your link. 
The routine does not return to your program until it 
establishes the specified link. While it waits, you 
can not use the active task. Waiting uses minimal CPU 
time. The DIL Name for this argument is: 

WAIT-YES 

For COBOL programs, the DIL returns status codes in the dil-stat 
variable defined by the DILINI routine. For FORTRAN programs, 
the DIL routines return status codes as an integer function 
value. 

DIL Name Meaning 

DIT-TOOMANY You attempted too many links. The 
DIL allows a maximum of 20 open 
links. On TOPS-20 systems, however, 
a non-privileged user can only open a 
maximum of four links. 

DIT-INVARG You passed an incorrect or invalid 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

DIT-ABORTREJECT The link was aborted or rejected. 

DIT-HORRIBLE This code is returned in the event of 
a system or unexpected error. 

6-16 



TOPS-20 AND TOPS-lO TASK-TO-TASK 

6.3.5 NFOP8 - Open a Link From an Active Task (8-bit) 

PURPOSE: 

The NFOP8 routine opens a logical link to a program on another 
system. You use this routine when you intend to transmit 8-bit 
bytes of data. This type of link is used primarily to transmit 
data between two VMS systems or to perform special operations. 

Data is moved 
8-bit bytes. 
target system 
8-bit bytes 
Appendix F. 

through a link opened with NFOP8 as a string of 
The routine does not transmit any unused bits. The 
stores the data in whatever way it normally stores 
of data. To learn more about bit transport, see 

CALL FORMAT: 

COBOL: ENTER MACRO NFOP8 USING nln, trgsys, objtyp, desc, 
tsknam~ userid, passwd, acct, usdat, wait. 

FORTRAN: status = NFOP8 (nln, trgsys, objtyp, desc, tsknam, 
1 userid, passwd, acct, usdat, wait) 

where: 

nln 

trgsys 

objtyp 

is the Network Logical Name (NLN) to be returned when 
this routine successfully finishes processing. You use 
the NLN to identify this link when you call other 
Task-to-Task routines. The NLN is a one-word integer. 

is the node name of the target system. The target 
system, in this case, is the system which runs the 
passive task that you want to access with this link. 

The node name has a length of sixteen ASCII-7 
characters. If your node name is less than sixteen 
characters, left-justify the field. If you give this 
argument a value of spaces, it defaults to the local 
system's node name. 

is the object type of the passive task. The object 
type tells the kind of service performed by the passive 
task. This argument has a length of sixteen ASCII 
characters. If the object type has less than sixteen 
characters, left-justify the field. 

The object type can b~ expressed as either a number or 
name. General, one-purpose programs use an object type 
of 0 or TASK. Server programs which perform a generic 
service (MAIL, for example) have a non-zero numeric 
object type. You can find a list of valid DECnet 
object types and their meanings in the appropriate 
DECnet User's Guide. 

6-17 



desc 

TOPS-20 AND TOPS-IO TASK-TO-TASK 

is the DECnet descriptor. You must use a descriptor 
when you plan to access a task with object type 0 or 
object name TASK. The descriptor must contain the 
DECnet taskname of the passive task on the remote 
system. For TOPS-20 to TOPS-20 communication when the 
object type is not zero, you can provide a descriptor. 
See Appendix 0 for further information. The descriptor 
has a length of sixteen ASCII-7 characters. If your 
descriptor is less than sixteen characters, 
left-justify the field. 

NOTE 

For a TOPS-20 system, the name of the target system, 
the object type and the DECnet descriptor cannot have 
a combined total of more than thirty-seven non-blank 
characters. 

tsknam is the DECnet taskname. Taskname is a unique sixteen 
character ASCII-7 string that identifies this process 
to the network. An active task never has to specify a 
taskname. If you pass a value of spaces for this 
argument the operating system assigns a unique 
taskname. 

NOTE 

The following three arguments are optional user 
attributes. The passive task may use these attributes 
to validate a network connection, or to perform any 
other recognition function agreed to by both tasks. 
These arguments are optional if you want to connect to 
a passive TOPS-20 or TOPS-10 task, or a passive VMS 
task that is already running. The arguments are 
required if you want to connect to a passive VMS task 
that starts up as a result of your request. 

userid 

passwd 

acct 

usdat 

is your userid. Userid has a length of thirty-nine 
ASCII-7 characters. If your userid is less than 
thirty-nine characters, left-justify the field. If you 
don't want to specify a userid, pass a value of spaces 
for this argument. 

is your password. Password has a length of thirty-nine 
ASCII-7 characters. If your password is less than 
thirty-nine characters, left-justify the field. If you 
don't want to specify a password, pass a value of 
spaces for this argument. 

is your account number or charge code. This field has 
a length thirty-nine ASCII-7 characaters. If this 
information is less than thirty-nine characters, 
left-justify the field. Give this argument a value of 
spaces if you plan to connect to a VMS system or you 
don't want to specify an account number. 

is sixteen optional ASCII-7 characters of user data. 
See the NFINF routine for more information. 

6-18 



wait 

STATUS COOES: 

TOPS-20 AND TOPS-lO TASK-TO-TASK 

is a one-word integer that gives the wait code. 

Set the wait code to "no" if you do not want your 
program to wait until it establishes a connection to 
the passive task. Using this code enables your program 
to perform other duties while waiting for the network 
connection. To find out if the passive task has 
accepted your connection, periodically call the NFGNO 
routine to check status. The OIL Name for this 
argument is: 

WAIT-NO 

Set the wait code to "yes" if you want your program to 
wait until the passive task has accepted your link. 
The routine does not return to your program until it 
establishes the specified link. While it waits, you 
can not use the active task. Waiting uses minimal CPU 
time. The OIL Name for this argument is: 

WAIT-YES 

For COBOL programs, the OIL returns status codes in the dil-stat 
variable defined by the OILINI routine. For FORTRAN programs, 
the OIL routines return status codes as an integer function 
value. 

OIL Name Meaning 

OIT-TOOMANY You attempted too many links. The 
OIL allows a maximum of 20 open 
links. On TOPS-20 systems, however, 
a non-privileged user can only open 
a maximum of four links. 

OIT-INVARG You passed an incorrect or invalid 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

OIT-ABORTREJECT The link was aborted or rejected. 

OIT-HORRIBLE This code is returned in the event of 
a system or unexpected error. 

6-19 



TOPS-20 AND TOPS-lO TASK-TO-TASK 

6.3.6 NFOPP - Open a Link From a Passive Task 

PURPOSE: 

The NFOPP routine opens a logical link from a passive task. It 
indicates that the server program is ready to accept connections 
from active programs. 

Data can be moved through the network in different ways. You 
must make sure that both the active and passive tasks specify the 
same method of data transfer. The active task which connects to 
NFOPP establishes the way data actually moves through the 
network. (NFOPA moves ASCII data, NFOPB moves binary data, NFOP8 
moves 8-bit bytes of data.) When it receives a connect request, 
the passive task calls the NFACC routine to accept the request. 
The "lnktyp" argument in the call to NFACC specifies the type of 
data to be transfered over the connection. If the active task 
and the NFACC routine specify different data types, the results 
are undefined. To learn more about bit transport, see Appendix 
F. 

CALL FORMAT: 

COBOL: ENTER MACRO NFOPP USING nln, objtyp, desc, tsknam, 
wait. 

FORTRAN: status = NFOPP (nln, objtyp, desc, tasknam, wait) 

where: 

nln 

objtyp 

desc 

is the Network Logical Name (NLN) to be returned when 
this routine successfully finishes processing. You use 
the NLN to identify this link when you call other 
Task-to-Task routines. The NLN is a one-word integer. 

is the object type of the passive task. The object 
type tells the kind of service performed by this task. 
This argument has a length of sixteen ASCII-7 
characters. If the object type has less than sixteen 
characters, left-justify the field. 

The object type can be expressed as either a number or 
name. General, one-purpose programs use an object type 
of 0 or TASK. Server programs which perform a generic 
service (MAIL, for example) have a non-zero numeric 
object type. You can find a list of valid DECnet 
object types and their meanings in the appropriate 
DECnet User's Guide. 

is the DECnet descriptor. A passive task can only 
specify a descriptor for TOPS-20 to TOPS-20 
communication when the object type is not zero. For a 
TOPS-IO system, this argument is ignored. See Appendix 
D for examples of proper task identification. 

A descriptor has a length of sixteen ASCII-7 
characters. If your descriptor is less than sixteen 
characters, left-justify the field. If you don't want 
to specify a descriptor, pass a value of spaces for 
this argument. 

6-20 



tsknam 

wait 

STATUS CODES: 

TOPS-20 AND TOPS-IO TASK-TO-TASK 

is the DECnet taskname. Taskname is a unique sixteen 
character ASCII-7 string that identifies this process 
to the network. Normally, a passive task must specify 
a taskname. Active tasks use the taskname to identify 
the passive task. See Appendix D for further 
information. If you don't specify a taskname, the 
operating system assigns a unique taskname. 

is a one-word integer that gives the wait code. 

Set the wait code to "no" if you you want to set up a 
server task, but you do not want to wait until an 
active task requests its services. Using this code 
leaves your program free to perform other duties. To 
find out if the an active wants to connect to the 
server, call the NFGND routine to check status. The 
DIL Name of this argument is: 

WAIT-NO 

Set the wait code to "yes" if you want to set up a 
server task that waits until an active task requests 
its services. The routine returns a status value when 
an active task tries to connect to the server. While 
it waits, you cannot use the server program to perform 
any other processing functions. Waiting uses minimal 
CPU time. The ~IL Name of this argument is: 

WAIT-YES 

For COBOL programs, the DIL returns status codes in the dil-stat 
variable defined by the DILINI routine. For FORTRAN programs, 
the DIL routines return status codes as an integer function 
value. 

DIL Name Meaning 

DIT-TOOMANY You attempted too many links. The 
DIL allows a maximum of 20 open 
links. On TOPS-20 systems, however, 
a non-privileged user can only open 
a maximum of four links. 

DIT-INVARG You passed an incorrect or invalid 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

DIT-ABORTREJECT The link was aborted or rejected. 

DIT-HORRIBLE This code is returned in the event of 
system or unexpected error. 

6-21 



TOPS-20 AND TOPS-lO TASK-TO-TASK 

6.3.7 ~FACC - Accept a Connection 

PURPOSE: 

The NFACC routine is used by the passive task to accept a 
connection from an active task and to specify how data will be 
moved through the network. The NFACC routine is always used 
following the NFOPP routine, which opens the logical link. 

CALL FORMAT: 

COBOL: ENTER MACRO NFACC USING nln, lnktyp, char, opdat. 

FORTRAN: status = NFACC (nln, lnktyp, char, opdat) 

where: 

nln 

lnktyp 

char 

opdat 

is the Network Logical Name set by the NFOPP 
when it successfully finishes processing. 
one-word integer. 

routine 
NLN is a 

is a one-word intger that specifies the 
that you want to transfer over the link. 
task specifies a different type of data, 
will be undefined. You must specify 
following values: 

Link Data Type OIL Name 

ASCII. LTYPE-ASCII 
To transfer ASCII 
data, use the 
NFOPA routine to 
open the link. 

Binary data. LTYPE-BINARY 
To transfer binary 
data, use the 
NFOPB routine to 
open the link. 

8-bit bytes. LTYPE-8BIT 
To transfer 8-bit 
bytes of data, 
use the NFOP8 rou-
to open the link. 

type of data 
If the active 
the results 
one of the 

is a one word-integer 
characters (0-16) of 
send (see below). 

that specifies the number of 
optional data that you plan to 

is sixteen optional ASCII-7 characters of user data. 
See the NFINF routine for more information. 

6-22 



TOPS-20 AND TOPS-IO TASK-TO-TASK 

STATUS CODES: 

For COBOL programs, the DIL returns status codes in the dil-stat 
variable defined by the DILINI routine. For FORTRAN programs, 
the DIL routines return status codes as an integer function 
value. 

DIL Name Meaning 

DIT-INVARG You passed an incorrect or invalid 
argument. 

- ---

SS-NORMAL The routine successfully completed 
processing. 

-_._. _ ... 

DIT-HORRIBLE This code is returned in the event of 
a system or unexpected error. 

6-23 



TOPS-20 AND TOPS-I0 TASK-TO-TASK 

6.3.8 NFREJ - Reject a Connection 

PURPOSE: 

The NFREJ routine is used by the passive task to reject a 
connection request from an active task. 

CALL FORMAT: 

COBOL: ENTER MACRO NFREJ USING nln, rejcod, char, opdat. 

FORTRAN: status = NFREJ (nln, rejcod, char, opdat) 

where: 

nln is the Network Logical Name set by the NFOPP routine 
when it successfully finishes processing. NLN is a one 
word integer. 

rejcod 

char 

opdat 

STATUS CODES: 

is a one-word integer that specifies the type of reject 
requested. You should use nine for this code, which 
means "User Program Abort." See your DECnet User's 
Guide for a list of abort/reject codes. This parameter 
is not used on either VMS or TOPS-10 systems. 

is a one-word integer 
characters (0-16) of 
send (see below.) 

that specifies the number of 
optional data that you plan to 

is sixteen ASCII-7 characters of optional user data. 
For more information, see the NFINF routine. 

For COBOL programs, the DIL returns status codes in the dil-stat 
variable defined by the DILINI routine. For FORTRAN programs, 
the DIL routines return status codes as an integer function 
value. 

DIL Name Meaning 

DIT-INVARG You passed an incorrect or invalid 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

DIT-HORRIBLE This code is returned in the event 
of a system or unexpected error. 

6-24 



TOPS-20 AND TOPS-lO TASK-TO-TASK 

6.3.9 NFRCV - Receive Data Over a Link 

PURPOSE: 

The NFRCV routine receives data (DECnet messages) over a logical 
link. 

If you specify message mode, this routine reads one DECnet 
message. Message mode is the recommended mode. 

If you specify stream mode, NFRCV reads a stream of as many 
characters as you request (in mxunit, below). It reads these 
characters from as many DECnet messages as are required to equal 
the numerical value shown in mxunit. The routine stops reading 
in the middle of a message once it has read the correct number of 
characters. 

VMS users cannot specify stream mode; VMS systems always send and 
receive messages. You must use message mode to communicate with 
tasks that run on VMS systems. If you use a DECSYSTEM-20 or a 
DECsystem-lO, you have the capability to specify stream mode. 

On a DECSYSTEM-20, using message mode, if the user's buffer is 
not large enough to receive the message, DIT-OVERRUN will be 
returned. You may call NFRCV again with a larger buffer to 
receive the message with no loss of data. 

On a DECsystem-lO, using message mode, if the user buffer is not 
large enough to receive the message, the message is truncated to 
the size of the buffer and a status of DIT-OVERRUN is returned to 
indicate the loss of data. Normally, this should not happen 
because cooperating tasks can agree on the message size. To 
create a task that can receive messages without loss of data, you 
should use stream mode. After each call to NFRCV in stream mode, 
the task can inspect the value returned for msmode to determine 
if an end-of-message was detected while filling the user buffer. 

CALL FORMAT: 

COBOL: ENTER MACRO NFRCV USING nln, msunit, mxunit, bufloc, 
msmode, wait. 

FORTRAN: status = NFRCV (nln, msunit, mxunit, bufloc, msmode, 
1 wait) 

where: 

nln 

msunit 

is the Network Logical Name set by the NFOPA, NFOPB, 
NFOP8 or NFOPP routine when the routine successfully 
finished processing. The NLN is a one-word integer. 

is the message unit size. It tells the byte size, in 
bits, of messages written in binary format (with links 
opened through NFOPB). A value of zero for this 
argument indicates the data is to be transferred as 
words. If you open the active side of the link with 
NFOPA or NFOP8, the routine ignores this argument. 

6-25 



mxunit 

bufloc 

msmode 

wait 

TOPS-20 AND TOPS-IO TASK-TO-TASK 

is a one-word integer that gives the maximum number of 
units to be read by the routine. When NFRCV returns, 
it replaces this value with the actual number of units 
that it read. 

• For links opened with NFOPA, this is the maximum 
number of ASCII characters in the message. 

• For links opened with NFOP8, this is the maximum 
number of sequential 8-bit bytes in the message. 

• For links opened with NFOPB, this is the maximum 
number of bytes (of the unit size shown in msunit) 
or words in the message. NFRCV pads the last byte 
or word sent with zero bits if it does not divide 
evenly into bytes of the specified size. 

If you use stream mode, set the value of this argument 
to the actual number of characters, bytes or words to 
be read. 

is the location of the user buffer where the message 
will be placed after it is read. This buffer must be 
at least as large as the number of bytes, characters or 
words specified in mxunit. 

is a one-word integer that indicates the message-mode 
flag. You can set this argument to message mode or 
stream mode. 

If you want to read the data in message mode, the OIL 
Name for this argument is: 

MSG-MSG 

If you want to read the required number of characters 
or bytes in stream mode, the OIL Name for this argument 
is: 

MSG-STM 

On a OECsystem-lO, if the user specifies msmode as 
MSG-STM and the end-of-message is detected while 
filling the user's buffer, msmode will be returned with 
a value of MSG-MSG. 

is a one-word integer that gives the wait code. 

Set the wait cod, to "no" if you want 
return whatever data is currently 
data is available the routine returns 
the program to perform other duties. 
this argument is: 

WAIT-NO 

the routine to 
available. If no 
and you can use 

The OIL name for 

Set the wait code to "yes" if you want the routine to 
wait until data is received or the read fails. Waiting 
uses minimal CPU time. The OIL name for this argument 
is: 

WAIT-YES 

6-26 



TOPS-20 AND TOPS-IO TASK-TO-TASK 

STATUS CODES: 

For COBOL programs, the DIL returns status codes in the dil-stat 
variable defined by the DILINI routine. For FORTRAN programs, 
the DIL routines return status codes as an integer function 
value. 

DIL Name Meaning 

DIT-INVARG You passed an incorrect or invalid 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

DIT-ABORTREJECT This code is returned if the link is 
disconnected or aborted. The char-
acter count area contains the number 
of units, by'tes or words, that the 
routine reads before the disconnect. 

DIT-OVERRUN This code is returned if you try to 
send too much data to the routine. 

DIT-NOTENOUGH This code is returned if the amount 
of data you requested is not avail-
able. This error occurs only when 
you use stream mode with a no-wait 
code. 

-
DIT-HORRIBLE This code is returned in the event of 

a system or unexpected error. 

DIT-INTERRUPT Interrupt data must be read first 
using NFRCI. 

6-27 



TOPS-20 AND TOPS-10 TASK-TO-TASK 

6.3.10 NFSND - Send Data Over a Link 

PURPOSE: 

The NFSND routine sends data over a logical link. 

If you open the logical link with NFOPA, the routine sends the 
data in ASCII format. The receiving task can directly read ASCII 
data from another system, even if the tasks are on heterogeneous 
systems. 

If you open the logical link with NFOP8, the routine sends the 
data as sequential 8-bit bytes. The local system treats the data 
as it normally treats 8-bit bytes of data. The remote system 
treats the data it receives in the way it normally stores 8-bit 
bytes of data. 

If you open the logical link with NFOPB, the routine sends the 
data in binary format. If the sending and receiving tasks are on 
homogeneous systems, the receiving system can directly read the 
data. If the sending and receiving tasks are on heterogeneous 
systems, you must convert the data using the Data Conversion 
Routines. The sending task can perform the conversion before it 
sends the data or the receiving task can convert the data it 
receives. 

If you specify message mode, this routine sends one DECnet 
message. To send more than one message, set up a loop to perform 
this routine until it has sent all of the messages. 

If you specify stream mode, NFSND sends the data in a stream of 
as many characters as you request (in length, below). It sends 
the data in as many DECnet messages as are required to equal the 
numerical value shown in length. The routine stops sending in 
the middle of a message if it has sent the correct number of 
characters, bytes or words. 

VMS users cannot specify stream mode; VMS systems always send and 
receive messages. You must use message mode to communicate with 
tasks that run on VMS systems. If you use a DECSYSTEM-20 or a 
DECsystem-IO, you have the capability to specify stream mode. 

CALL FORMAT: 

COBOL: ENTER MACRO NFSND USING nln, msunit, length, buffer, 
msmode. 

FORTRAN: status = NFSND (nln, msunit, length, buffer, msmode) 

where: 

nln 

msunit 

is the Network Logical Name set by the NFOPA, NFOPB, 
NFOP8 or NFOPP routine when the routine successfully 
finished processing. The NLN is a one-word integer. 

is a one-word integer that specifies the message unit 
size. It tells the byte size, in bits, of messages 
written in binary format (with links opened through 
NFOPB). A value of zero for this argument indicates 
that the data is to be sent as words. If you open the 
active side of the link with NFOPA or NFOP8, the 
routine ignores this argument. 

6-28 



length 

buffer 

msmode 

STATUS CODES: 

TOPS-20 AND TOPS-IO TASK-TO-TASK 

is a one-word integer that gives the length of the data 
that you want to send. This argument must have a value 
that is greater than zero. 

• For links opened with NFOPA, length is given in 
ASCII characters. 

• For links opened with NFOP8, length is given in 
sequential 8-bit bytes. 

• For links opened with NFOPB, length is given in 
bytes (of the unit size shown in msunit) or words. 

is the buffer containing the data that you want to 
send. 

is a one word integer that gives the message-mode flag. 
You can set this argument to send data in message mode 
or in stream mode. 

If you want to send data in message mode, the DIL Name 
for this argument is: 

MSG-MSG 

If you want to send the required number of characters 
or bytes in stream mode, the DIL Name for this argument 
is: 

MSG-STM 

A TOPS-20 or TOPS-lO system permits you to send data in 
message mode or stream mode. It is advised, however, 
that you always send data in message mode. VMS users 
must send data in message mode. 

For COBOL programs, the DIL returns status codes in the dil-stat 
variable defined by the DILINI routine. For FORTRAN programs, 
the DIL routines return status codes as an integer function 
value. 

DIL Name Meaning 

DIT-INVARG You passed an incorrect or invalid 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

DIT-HORRIBLE This code is returned in the event of 
a system or 'unexpected error. 

6-29 



TOPS-20 AND TOPS-10 TASK-TO-TASK 

6.3.11 NFINT - Send an Interrupt Data Message Over a Link 

PURPOSE 

The NFINT routine sends a single interrupt data message over a 
logical link. 

Unlike NFSND, NFINT data is always send in message mode, so a 
prompt attempt to send the data is guaranteed. Data sent in this 
mode is not sent in synchronization with data sent by NFSND. 
Only one interrupt data message can be outstanding from each end 
of a logical link at one time. If an interrupt data message is 
sent over a logical link by one process, a second interrupt data 
message cannot be sent by that process until the first one has 
been received at the other end of the logical link. If a second 
interrupt data message is sent before the first one has been 
received at the other side of the link, then the first interrupt 
data message may be lost at the receiving end of the link. 

CALL FORMAT: 

COBOL: ENTER MARCO NFINT USING nln, char, buffer 

FORTRAN: status = NFINT (nln, char, buffer) 

where: 

nln is the Network Logical Name set by the NFOPP routine 
when it successfully finishes processing. NLN is a one 
word integer. 

char is a one-word integer that specifies the number of 
ASCII-7 characters (1-16) of interrupt data to send. 

buffer is the buffer that contains the 1-16 characters of 
ASCII-7 data that you want to send. 

STATUS CODES: 

For COBOL programs, the DIL returns status codes in the dil-stat 
variable defined by the DILINI routine. For FORTRAN programs, 
the DIL routines return status codes as an integer function 
value. 

DIL Name Meaning 

DIT-INVARG You passed an incorrect or invalid 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

DIT-HORRIBLE This code is returned in the event 
of a system or unexpected error. 

6-30 



TOPS-20 AND TOPS-10 TASK-TO-TASK 

6.3.12 NFRCI - Receive an Interrupt Data Message Over a Link 

PURPOSE: 

The NFRCI routine receives a single interrupt data message over a 
logical link. 

Receipt of an interrupt data message is an asynchronous event. 
You should check for asynchronous events by using NFGND which 
will announce interrupt data messages before it will announce 
"regular" data messages (sent by NFSND). Interrupt data mesiages 
must be read before NFGND will announce any lower-level events 
(regular data messages or disconnections). NFRCV will return the 
DIT-INTERRUPT error and refuse to return data if an interrupt 
message is available which has not yet been read by NFRCI. 

CALL FORMAT: 

COBOL: ENTER MACRO NFRCI USING nln, char, buffer. 

FORTRAN: status = NFRCI (nln, char, buffer) 

where: 

nln is the Network Logical Name set by the NFOPP routine 
when it successfully finishes processing. NLN is a one 
word integer. 

char is a one-word integer into which the number of ASCII-7 
characters (1-16) of interrupt data read is returned. 

buffer is the location of the user buffer where the message 
will be placed after it is read. The length of this 
buffer must be at least 16 ASCII-7 characters. 

STATUS CODES: 

For COBOL programs, the DIL returns status codes in the dil-stat 
variable defined by the DILINI routine. For FORTRAN programs, 
the DIL routines return status codes as an integer function 
value. 

DIL Name Meaning 

DIT-INVARG You passed an incorrect or invalid 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

DIT-NODATAAVAILABLE No interrupt data is available to be 
read at this time. 

DIT-HORRIBLE This code is returned in the event 
of a system or unexpected error. 

6-31 



TOPS-20 AND TOPS-10 TASK-TO-TASK 

6.3.13 NFCLS - Close a Link 

PURPOSE: 

The NFCLS routine disconnects or aborts a logical link, releasing 
its resources to be used by another link. 

A "synchronous disconnect" is the normal way to close a link: it 
disconnects the link after it performs all outstanding data 
transmission. An abort would be used on a logical link if the 
remote program terminated abnormally, or if fatal errors occurred 
on the link. An abort instantaneously disconnects the link. 

You can call the NFCLS routine to disconnect the link before or 
after receiving a disconnect from the other end of the link. To 
preserve data integrity, the recipient of the last piece of data 
should be the first to disconnect the link (using a synchronous 
disconnect). The program that sent the data recognizes that its 
data was read when it receives the disconnect: it then aborts its 
end of the link. 

CALL FORMAT: 

COBOL: ENTER MACRO NFCLS USING nln, disc, char, opdat. 

FORTRAN: status = NFCLS (nln, disc, char, opdat) 

where: 

nln 

disc 

char 

opdat 

is the Network Logical Name, set by the NFOPA, 
NFOP8 or the NFOPP routine when the 
successfully finished processing. The NLN 
one-word integer. 

NFOPB, 
routine 
is a 

is a one-word integer that specifies the type of 
disconnect requested. Use zero for this argument if 
you want a synchronous disconnect. A non-zero value 
for this argument indicates an abort. The DECnet 
User's Guide for your system shows a list of abort 
codes. ----cocre 9 ("User Program Abort") signifies a 
normal abort. 

is a one-word 
characters (0 
opdat, below). 

integer that gives the number of 
to 16) of optional data to be sent (see 

is sixteen optional ASCII-7 characters of user data. 
See the NFINF routine for more information. 

6-32 



TOPS-20 AND TOPS-lO TASK-TO-TASK 

STATUS CODES: 

For COBOL programs, the DIL·returns status codes in the dil-stat 
variable defined by the DILINI routine. For FORTRAN programs, 
the DIL routines return status codes as an integer function 
value. 

DIL Name Meaning 

DIT-INVARG You passed an incorrect or invalid 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

DIT-HORRIBLE This code is returned in the event of 
a system or unexpected error. 

6-33 



TOPS-20 AND TOPS-IO TASK-TO-TASK 

6.4 TOPS-IO/TOPS-20 TASK-TO-TASK EXAMPLES 

6.4.1 TOPS-IO/TOPS-20 COBOL Task-to-Task Examples 

IDENTIFICATION DIVISION. 

PROGRAM-ID. 

PASC36. 

AUTHOR. 

SOFTWARE ENGINEERING. 

This program opens a passive link and then waits for a 
connection from an active task (created by the program 
ACTC36). Once a link is established, user specified messages 
are sent in both directions across the link. The link is 
closed by the program ACTC36 and this program waits for a 
confirmation of the close. 

INSTALLATION. 

DEC MARLBOROUGH. 

ENVIRONMENT DIVISION. 

DATA DIVISION. 

WORKING-STORAGE SECTION. 

01 INTERFACE FILES. 
COPY DIT OF "SYS:DIL.LIB". 
COpy OIL OF "SYS:DIL.LIB". 

01 DILINI-PARAMETERS. 
* Di1ini is necessary for DECsystem-10 and DECSYSTEM-20 Cobol only. 

05 DIL-INIT-STATUS PIC S9(10) COMPo 
05 OIL-STATUS PIC S9 (10) COMPo 
05 OIL-MESSAGE PIC S9(10) COMPo 
05 OIL-SEVERITY PIC S9(10) COMPo 

01 DATA-RECORDS. 
05 SEND-DATA PIC X(100) USAGE DISPLAY-7. 
05 RECEIVE-DATA PIC X(100) USAGE DISPLAY-7. 

01 COUNT-OPT-DATA PIC S9(10) COMP VALUE O. 
01 OPT-DATA PIC X(16) DISPLAY-7 VALUE SPACES. 
01 NETLN PIC S9(10) COMPo 
01 OBJECT-ID PIC X(16) DISPLAY-7 VALUE SPACES. 
01 DESCRIPTOR PIC X(16) DISPLAY-7 VALUE SPACES. 
01 TASKNAME PIC X(16) DISPLAY-7. 
01 MESSAGE-UNITS-SIZE PIC S9(10) COMP VALUE 7. 
01 MESSAGE-SIZE PIC S9(10) COMP VALUE 100. 

6-34 



TOPS-a YD TOPS-IG TASK-TO-TASI( 

PROCEDURE DIVISION. 

SETUP-RETURN-CODES. 
* Set up for status code values, using DILINI routine 

ENTER MACRO DILINI USING DIL-INIT-STATUS, DIL-STATUS, 
DIL-MESSAGE, DIL-SEVERITY. 

IF DIL-INIT-STATUS NOT 1 
DISPLAY "1 Invalid return code from DILINI routine = " DIL-INIT-STATUS. 

OPEN-PASSIVE 
* Open a passive link. 

MOVE "SERVER" TO TASKNAME. 
MOVE "0" TO OBJECT-ID. 

ENTER MACRO NFOPP USING NETLN, OBJECT-ID, DESCRIPTOR, 
TASKNAME, DIT-WAIT-NO. 

DISPLAY" NFOPP Status return: " DIL-STATUS. 
IF DIL-SEVERITY NOT = STS-K-SUCCESS 

AND DIL-SEVERITY NOT = STS-K-INFO 
DISPLAY "1 NFOPP: unsuccessful status return " 
STOP RUN. 

CHECK-FOR-CONNECT. 
* Wait for a connect request 

ENTER MACRO NFGND USING NETLN, DIT-WAIT-YES. 

DISPLAY" NFGND Status return: " DIL-STATUS. 
IF DIL-MESSAGE = DIT-C-CONNECTEVENT NEXT SENTENCE 
ELSE 

DISPLAY "1 NFGND: Unexpected or invalid status returned: " DIL-STATUS 
STOP RUN. 

ACCEPT-LINK 
* Accept link 

ENTER MACRO NFACC USING NETLN, DIT-LTYPE-ASCII, COUNT-OPT-DATA, OPT-DATA. 

DISPLAY" NFACC Status return: " DIL-STATUS. 
IF DIL-SEVERITY NOT = STS-K-SUCCESS 

AND DIL-SEVERITY NOT = STS-K-INFO 
DISPLAY "1 NFACC: unsuccessful status return" 
STOP RUN. 

CHECK-FOR-DATA 
* Wait for a data event on the link 

ENTER MACRO NFGND USING NETLN, DIT-WAIT-YES. 

DISPLAY" NFGND Status return: " DIL-STATUS. 
IF DIL-MESSAGE = DIT-C-DATAEVENT NEXT SENTENCE 
ELSE 

DISPLAY "1 NFGND: Unexpected or invalid status returned: " DIL-STATUS 
STOP RUN. 

6-35 



TOPS-20 AND TOPS-IO TASK-TO-TASK 

READ-THE-DATA. 
* Read the data received over the link 

MOVE 100 TO MESSAGE-SIZE. 

ENTER MACRO NFRCV USING NETLN, MESSAGE-UNITS-SIZE, MESSAGE-SIZE, 
RECEIVE-DATA, DIT-MSG-MSG, DIT-WAIT-YES. 

DISPLAY " NFRCV Status return: " DIL-STATUS. 
IF DIL-SEVERITY NOT = STS-K-SUCCESS 

AND DIL-SEVERITY NOT = STS-K-INFO 
DISPLAY"? NFRCV: unsuccessful status return " 
STOP RUN. 

DISPLAY" Data received: " 
DISPLAY RECEIVE-DATA. 

SEND-SOME-DATA. 
* Send some data over the link 

MOVE 100 TO MESSAGE-SIZE 

DISPLAY" Enter some data to be sent over the link: " 
ACCEPT SEND-DATA. 

ENTER MACRO NFSND USING NETLN, MESSAGE-UNITS-SIZE, MESSAGE-SIZE, 
SEND-DATA, DIT-MSG-MSG. 

DISPLAY" NFSND Status return: " DIL-STATUS. 
IF DIL-SEVERITY NOT = STS-K-SUCCESS 

AND DIL-SEVERITY NOT = STS-K-INFO 
DISPLAY"? NFSND: unsuccessful status return" 
STOP RUN. 

CHECK-FOR-CLOSE. 

ENTER MACRO NFGND USING NETLN, DIT-WAIT-YES. 

DISPLAY" NFGND Status return: " DIL-STATUS. 
IF DIL-MESSAGE NOT = DIT-C-ABREJEVENT AND 

DIL-MESSAGE NOT = DIT-C-DISCONNECTEVENT AND 
DIL-SEVERITY NOT = STS-K-SUCCESS AND 
DIL-SEVERITY NOT = STS-K-INFO 

DISPLAY"? NFGND: Invalid status returned" 
STOP RUN. 

DISPLAY" PASC36 successful. " 
STOP RUN. 

6-36 



TOPS-20 AND TOPS-IO TASK-TO-TASK 

IDENTIFICATION DIVISION. 

PROGRAM-ID. 

ACTC36. 

AUTHOR. 

SOFTWARE ENGINEERING. 

This program opens an active link by connecting to the passive task set up 
by the program PASC36. Once the link is established, user specified 
messages are sent in both directions across the link. Then the link is 
closed. 

INSTALLATION. 

DEC MARLBOROUGH. 

ENVIRONMENT DIVISION. 

DATA DIVISION. 

WORKING-STORAGE SECTION. 

01 INTERFACE-FILES. 
COpy DIT OF "SYS:DIL.LIB". 
COpy DIL OF "SYS"DIL.LIB". 

01 DILINI-PARAMETERS. 
* Dilini is necessary for DECsystem-10 and DECSYSTEM-20 COBOL only. 

05 DIL-INIT-STATUS PIC S9(10) COMPo 
05 DIL-STATUS-PIC S9(10) COMPo 
05 DIL-MESSAGE PIC S9(10) COMPo 
05 DIL-SEVERITY PIC S9(10) COMPo 

01 DATA-RECORDS. 
05 SEND-DATA PIC X(lOO) USAGE DISPLAY-7. 
05 RECEIVE-DATA PIC X(lOO) USAGE DISPLAY-7. 

01 COUNT-OPT-DATA PIC S9(10) COMP VALUE O. 
01 OPT-DATA PIC X(16) DISPLAY-7 VALUE SPACES. 
01 NETLN PIC S9(10) COMPo 
01 HOSTNAME PIC X(06) DISPLAY-7 VALUE SPACES. 
01 OBJECT-ID PIC X(16) DISPLAY-7 VALUE SPACES. 
01 DESCRIPTOR PIC X(16) DISPLAY-7 VALUE SPACES. 
01 TASKNAME PIC X(16) DISPLAY-7. 
01 USERID PIC X(39) DISPLAY-7 VALUE SPACES. 
01 PASSWD PIC X(39) DISPLAY-7. 
01 ACCT PIC X(39) DISPLAY-7 VALUE SPACES. 
01 MESSAGE-UNITS-SIZE PIC S9(10) COMP VALUE 7. 
01 MESSAGE-SIZE PIC S9(10) COMP VALUE 100. 

01 SYNCH-DISCONN PIC S9(10) COMP VALUE O. 

6-37 



TOPS-20 AND TOPS-IO TASK-TO-TASK 

PROCEDURE OIVISION. 

SETUP-RETURN-CODES. 
* Set up for status code values, using DILINI routine 

ENTER MACRO DILINI USING DIL-INIT-STATUS, OIL-STATUS 
OIL-MESSAGE, OIL-SEVERITY. 

IF DIL-INIT-STATUS NOT 1 
DISPLAY"? Invalid return code from DILINI routine = " DIL-INIT-STATUS. 

CONNECT-TO-PASSIVE 
* Ask for a connection to the passive link 

MOVE "0" TO OBJECT-ID. 
MOVE "SERVER" TO DESCRIPTOR. 
MOVE SPACES TO TASKNAME. 

ENTER MACRO NFOPA USING NETLN, HOSTNAME, OBJECT-ID, DESCRIPTOR, TASKNAME, 
USERID, PASSWD, ACCT, OPT-DATA, DIT-WAIT-NO. 

DISPLAY" NFOPA Status return: ", DIL-STATUS. 
IF OIL-SEVERITY NOT = STS-K-SUCCESS 

AND DIL-SEVERITY NOT = STS-K-INFO 
DISPLAY"? NFOPA: unsuccessful status return" 
STOP RUN. 

CHECK-FOR-CONNECT. 
* Wait for confirmation of the connection 

ENTER MACRO NFGND USING NETLN, DIT-WAIT-YES. 

DISPLAY" NFGND Status return: " OIL-STATUS. 
IF DIL-MESSAGE = DIT-C-CONNECTEVENT NEXT SENTENCE 
ELSE 

DISPLAY"? NFGND: Unexpected or invalid status returned: " DIL-STATUS 
STOP RUN. 

SEND-SOME-DATA 
* Send some data over the link 

MOVE 100 TO MESSAGE-SIZE. 

DISPLAY" Enter some data to be sent over the link: ". 
ACCEPT SEND-DATA. 

ENTER MACRO NFSND USING NETLN, MESSAGE-UNITS-SIZE, MESSAGE-SIZE, 
SEND-DATA, DIT-MSG-MSG. 

DISPLAY" NFSND Status return: " DIL-STATUS. 
IF DIL-SEVERITY NOT = STS-K-SUCCESS 

AND DIL-SEVERITY NOT = STS-K-INFO 
DISPLAY"? NFSND: unsuccessful status return " 
STOP RUN. 

6-38 



TOPS-20 AND TOPS-IO TASK-TO-TASK 

CHECK-FOR-OATA. 
*Wait for a data event on the link 

ENTER MACRO NFGNO USING NETLN, OIT-WAIT-YES. 

DISPLAY n NFGNO Status. return: " OIL-STATUS 
IF OIL-MESSAGE = DIT-C-DATAEVENT NEXT SENTENCE 
ELSE 

DISPLAY"? NFGND: Unexpected or invalid status returned: n DIL-STATUS 
STOP RUN. 

REAO-THE-OATA. 
* Read .the data received over the link 

MOVE 100 TO MESSAGE-SIZE 

ENTER MACRO NFRCV USING.NETLN, MESSAGE-UNITS-SIZE, MESSAGE-SIZE, 
RECEIVE-DATA, DIT-MSG-MSG, DIT-WAIT-YES. 

DISPLAY" NFRCV Status return: n DIL-STATUS. 
IF OIL-SEVERITY NOT = STS-K-SUCCESS 

AND OIL-SEVERITY NOT = STS-K-INFO 
DISPLAY"? NFRCV: unsuccessful status return n 

STOP RUN. 

DISPLAY n Data received: n 

DISPLAY RECEIVE-DATA. 

CLOSE-LINK. 
* Close the link 

ENTER MACRO NFCLS USING NETLN, SYNCH-OISCONN, COUNT-OPT-DATA, OPT-DATA. 

DISPLAY n NFCLS Status return: " OIL-STATUS. 
IF DIL-SEVERITY NOT = STS-K-SUCCESS 

AND DIL-SEVERITY NOT = STS-K-INFO 
DISPLAY"? NFCLS: unsuccessful status return" 
STOP RUN. 

DISPLAY" CTTT36 successful. " 
STOP RUN. 

6-39 



TOPS-20 AND TOPS-IO TASK-TO-TASK 

6.4.2 TOPS-IO/TOPS-20 FORTRAN Task-to-Task Examples 

C PASF36 

C This program opens a passive link and then waits for a 
C connection from an active task (created by the program 
C ACTC36). Once a link is established, user specified messages 
C are sent in both directions across the link. The link is 
C closed by the program ACTC36 and this program waits for a 
C confirmation of the close. 

C Use the OIL interface files. 

INCLUDE 'SYS:DITV7' 
INCLUDE 'SYS:DILV7' 

C Data records 

DIMENSION SENDD (20), RECD (20) 

C DIL task to task routine parameters 

DIMENSION OPTDAT (4), OBJID (4), DESCR (4), TASKN (4) 

INTEGER NETLN, DILSTS, MSGSIZ, MUNTSZ, CNTOPD 

C Link description fields passive end 

DATA OBJID /' 
DATA DESCR /' , 
DATA TASKN /'SERVE' , 'R 

DATA OPTDAT /' 

C Program messages 

777 
778 
779 
200 
202 
203 
204 
205 

FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 

( I 

( I 

( I 

( I 

( I 

( I 

( I 

( I 

Invalid status returned ••. I ) 

Enter some data to be sent over the 
Data received: I ) 

NFOPP Status return: I I12) 
NFGND Status return: I I12) 
NFACC Status return: I I12) 
NFSND Status return: I I12) 
NFRCV Status return: I I12) 

'/ 
'I 
'I 

'I 

link: 

C initialize sending and receiving message data fields 

DO 100 I = 1, 20 
SENDD (I) = 0 

100 RECD (I) = 0 

C Open a passive link 

DILSTS = NFOPP (NETLN, OBJID, DESCR, TASKN, WAITLN) 

WRITE (5, 200) DILSTS 
IF (DILSTS .EQ. NORMAL) GO TO 110 
WRITE (5, 777) 
STOP 

6-40 

I ) 



TOPS-20 AND TOPS-IO TASK-TO-TASK 

C Wait for a connect request 

110 DILSTS = NFGND (NETLN, WAITLY) 

WRITE (5, 202) DILSTS 
IF (DILSTS .EO. CONEVT) GO TO 120 
WRITE (5, 777) 
STOP 

C Accept link 

120 CNTOPD = 0 
DILSTS = NFACC (NETLN, LASCII, CNTOPD, OPTDAT) 

WRITE (5, 203) DILSTS 
IF (DILSTS .EQ. NORMAL) GO TO 130 
WRITE (5, 777) 
STOP 

C Wait for a data event on the link 

130 DILSTS = NFGND (NETLN, WAITLY) 

WRITE (5, 202) DILSTS 
IF (DILSTS .EO. DATEVT) GO TO 140 
WRITE (5, 777) 
STOP 

C Read the data received over the link 

140 MSGSIZ 100 

DILSTS NFRCV (NETLN, MUNTSZ, MSGSIZ, RECD, MSGMSG, WAITLY) 

'WRITE (5, 205) DILSTS 
IF (DILSTS .EO. NORMAL) GO TO 150 
WRITE (5, 777) 
STOP 

150 WRITE (5, 779) 
155 FORMAT (' , 20A5) 

WRITE (5, ISS) RECD 

C Send some data over the link 

WR IT E (5 , 7 7 8 ) 
157 FORMAT (20A5) 

ACCEPT 157, SENDD 

MSGSIZ 100 

DILSTS NFSND (NETLN, MUNTSZ, MSGSIZ, SENDD, MSGMSG) 

WRITE (5, 204) DILSTS 
IF (DILSTS .EO. NORMAL) GO TO 160 
WRITE (5, 777) 
STOP 

6-41 



TOPS-20 AND TOPS-IO TASK-TO-TASK 

C Check for the link being closed 

160 DILSTS = NFGND (NETLN, WAITLY) 

WRITE (5, 202) DILSTS 
IF (DILSTS .EO. ARJEVT) GO TO 170 
IF (DILSTS .EO. DSCEVT) GO TO 170 
IF (DILSTS .EO. NORMAL) GO TO 170 
WRITE (5, 777) 
STOP 

170 WRITE (5, 175) 
175 FORMAT (' PASF36 test successful ') 

STOP 
END 

C ACTF36 

C This program opens an active link by connecting to the passive 
C task set up by the program PASC36. Once the link is 
C established, user specified messages are sent in both 
C directions across the link. Then the link is closed. 

C Use the DIL interface files 

C Data records 

INCLUDE 'SYS:DITV7 ' 
INCLUDE 'SYS:DILV7 ' 

DIMENSION SENDD (20), RECD (20) 

C DIL task to task routine parameters 

DIMENSION HSTNAM (4), OPTDAT (4), OBJID (4), DESCR (4) 
DIMENSION PASSWD (8), ACCT (8), USERID (8), TASKN (4) 

INTEGER NETLN, DILSTS, MSGSIZ, MUNTSZ, CNTOPD, SYNCDS 

C Link description fields 

DATA OBJID I'TASK I I 'I , 
DATA DESCR I'SERVE ' , 'R 'I 
DATA TASKN I' 'I 
DATA HSTNAM I' 'I 
DATA PASSWD I' , 

1 'I 
DATA USERID I' , 

1 'I 
DATA ACCT I' , 

1 'I 

DATA OPTDAT I' 

6-42 



C Program messages 

777 
778 
779 
201 
202 
204 
205 
206 

FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 

( , 
( , 
( , 
( , 
( , 
( , 
( , 
( , 

TOPS-20 AND TOPS-10 TASK-TO-TASK 

Invalid status returned ••• ' ) 
Enter some data to be sent over the link: 
Data received: ' ) 
NFOPA Status return: , 112) 
NFGND Status return: , 112) 
NFSND Status return: , 112) 
NFRCV Status return: , 112) 
NFCLS Status return: , 112) 

C initialize sending and receiving message data fields 

DO 100 I = 1, 20 
SENDO (I) = 0 

100 RECD (I) = 0 

C Ask for a connection to the passive link 

DILSTS = NFOPA (NETLN, HSTNAM, OBJID, DESCR, TASKN, 

' ) 

1 USERID, PASSWD, ACCT, OPTDAT, WAITLN) 

WRITE (5, 201) DILSTS 
IF (DILSTS .EO. NORMAL) GO TO 110 
WR I T E (5, 7 7 7 ) 
STOP 

C Wait for confirmation of the connection 

110 DILSTS = NFGND (NETLN, WAITLY) 

WRITE (5, 202) DILSTS 
IF (DILSTS .EO. CONEVT) GO TO 120 
WRITE (5, 777) 
STOP 

C Send some data over the link 

120 WRITE (5, 778) 
125 FORMAT (20A5) 

ACCEPT 125, SENDD 

C Initialize number of bytes 

MSGSIZ 1 

DILSTS NFSND (NETLN, MUNTSZ, MSGSIZ, SENDD, MSGMSG) 

WRITE (5, 204) DILSTS 
IF (DILSTS .EO. NORMAL) GO TO 130 
WRITE (5, 777) 
STOP 

C Wait for a data event on the link 

130 DILSTS = NFGND (NETLN, WAITLY) 

WRITE (5, 202) DILSTS 
IF (DILSTS .EO. DATEVT) GO TO 140 
WRITE (5, 777) 
STOP 

6-43 



TOPS-20 AND TOPS-IO TASK-TO-TASK 

C Read the data received over the link 

140 MSGSIZ = 100 

DILSTS = NFRCV (NETLN, MUNTSZ, MSGSIZ, RECD, MSGMSG, WAITLY) 

WRITE (5, 205) DILSTS 
IF (DILSTS .EQ. NORMAL) GO TO 150 
WRITE (5, 777) 
STOP 

150 WRITE (5, 779) 
155 FORMAT (' '20A5) 

WRITE (5, 155) RECD 

C Close the link 

SYNCDS = 0 
DILSTS = NFCLS (NETLN, SYNCDS, CNTOPD, OPTDAT) 
WRITE (5, 206) DILSTS 
IF (DILSTS .EQ. NORMAL) GO TO 160 
WRITE (5, 777) 
STOP 

160 WRITE (5, 165) 
165 FORMAT (' ACTF36 test successful ') 

STOP 
END 

6-44 



CHAPTER 7 
TOPS-10 AND TOP5-20 REMOTE FILE ACCESS 



CHAPTER 7 

TOPS-IO AND TOPS-20 REMOTE FILE ACCESS 

7.1 REMOTE FILE ACCESS FROM TOPS-IO OR TOPS-20 COBOL 

The information included in this section assumes 

-You are writing a COBOL program 
-You plan to use the program on a TOPS-20 or TOPS-IO system 

To store a file number, file name and user attributes, to read or 
write a record or to perform a status check you must represent several 
data items in your program. Users generally, but not necessarily, 
allocate space for these data items in Working-Storage. 

7.1.1 Compiling Programs 

To use the DIL Remote File Access Routines on TOPS-20 from a COBOL 
program, you may need to compile your program with the /STACK compiler 
switch to insure that you have an adequate pushdown list size. If 
your program gets a stack overflow, compile the program with 
/STACK:2000. On TOPS-IO you may need to compile your COBOL program 
with the /D compiler switch. If your program gets a stack overflow, 
compile it with /D:2000. 

7.1.2 Including the Interface Support Files 

The Interface Support file provided for TOPS-IO and TOPS-20 COBOL is a 
copy library called DIL.LIB. The COBOL COpy verb can be used to 
retrieve the information in the library at compilation time. There 
are three library elements in DIL.LIB. The elements are DIL, DIT, and 
DIX. 

The library element DIL defines general codes and names applicable to 
the Data Conversion Routines, the Task-to-Task routines and the remote 
file access routines. The general success status code (SS-NORMAL) is 
defined in element DIL. Severity codes and system codes are defined 
in element DIL. To define these names in your program, include the 
following statement in your WORKING-STORAGE section after an Ol-level 
declaration: 

COpy DIL OF "SYS:DIL.LIB". 

7-1 



TOPS-IO AND TOPS-20 REMOTE FILE ACCESS 

In the following example, the DIL element of the library is retrieved 
and included in your program. 

01 Interface-files. 
COPYDIL OF "SYS:DIL!LIB". 

The library element DIT defines codes specific to the Task-to-Task and 
Remote File Access Routines. This includes the DIT status codes, 
Remote File Access file types, Remote File Access open modes, Remote 
File Access record formats, Remote File Access record attributes and 
Remote File Access close options. To define these names in your 
program, include the following statement in your WORKING-STORAGE 
section after an Ol-level declaration, as shown above for element DIL: 

COPY DIT OF "SYS:DIL.LIB". 

For programs which use the remote file access routines, you must 
include both the DIL and DIT library elements. 

7.1.3 Storing a File Number 

A file number consists of one word of TOPS-10/TOPS-20 memory. To 
store a file number, you must define a data item with the following 
format: 

01 your-fnum PIC S9(10) USAGE COMPUTATIONAL. 

When you call the ROPEN routine use your-fnum as the value for fnum, 
file number to be returned. When the routine successfully finishes 
processing, it returns a value in your-fnum. 

7.1.4 Storing Accounting Information 

To include your user code, password and account or charge code in a 
call to the ROPEN routine, you must describe these attributes as data 
items in WORKING-STORAGE. These arguments are always DISPLAY-7 data 
items; they must always have a length of PIC X(39). The format for 
these data items is as follows: 

01 userid 
01 passwd 
01 acct 

PIC X(39) 
PIC X(39) 
PIC X(39) 

7.1.5 Reading and Writing Remote Data 

USAGE DISPLAY-7. 
USAGE DISPLAY-7. 
USAGE DISPLAY-7. 

To read or write data in a file on a remote system, the program on the 
local system must define an area to accept the data and a one-word 
computational item for the length of the data. 

01 the-record 
01 dlength 

PIC X(lOO) 
PIC S9(10) 

7-2 

USAGE DISPLAY-7. 
USAGE COMPUTATIONAL VALUE 100. 



TOPS-10 AND TOPS-20 REMOTE FILE ACCESS 

7.1.6 Checking the Status of a Remote File Access Routine 

Section 5.1.3 of this manual presents a method for checking the status 
of a TOPS-IO/TOPS-20 COBOL DIL Routine. Section 5.3.1 describes the 
DILINI initialization routine. 

A call to one of the Remote File Access Routines with a simple check 
for success might look like this: 

ENTER MACRO RCLOSE USING fnum, close. 
IF NOT dil-ok THEN 

DISPLAY nfatal error". 

A call to the same routine with provisions for handling a specific 
type of error might look like this: 

ENTER MACRO RCLOSE USING fnum, close. 
IF NOT dil-ok 

IF dil-stat = DIT-C-INVARG 
DISPLAY ninvalid argument error" 

ELSE 
DISPLAY "other error". 

To determine which error occurred, compare dil-stat to the DIT 
condition identifier defined in the TOPS-lO/TOPS-20 COBOL Interface 
Support files. In the example above, DIT-C-INVARG is the value 
(defined in the Interface Support file) indicating an invalid argument 
was specified. 

7.1.7 The TOPS-lO Software Interrupt System 

The DIL task-to-task and remote file access routines need the services 
of the TOPS-lO software interrupt system (PSI). Because the FORTRAN 
and COBOL runtime systems do not provide a facility to share the use 
of the software interrupt system between non-cooperating routines in 
the same program, the user cannot use the software interrupt system in 
a COBOL or FORTRAN program that uses the task-to-task or remote file 
access routinese 

7.2 REMOTE FILE ACCESS FROM TOPS-20 OR TOPS-lO FORTRAN 

The information included in this section assumes 

-You are writing a FORTRAN program 
-You plan to use the program on a TOPS-20 or TOPS-lO system 

This section explains how to store a file number, file name and user 
attributes. It also tells how to read or write a record or to perform 
a status check. 

7-3 



TOPS-IO AND TOPS-20 REMOTE FILE ACCESS 

7.2.1 Including the Interface Support Files 

The Interface Support files provided for TOPS-IO and TOPS-20 FORTRAN 
are text files called DILV7.FOR, DITV7.FOR and DIXV7.FOR. You can 
include the information from these files into your source programs at 
compilation time using the FORTRAN INCLUDE statement. 

The file DILV7 defines general codes and names applicable to the Data 
Conversion Routines, the Task-to-Task Routines and the Remote File 
Access routines. The general success status code (SS-NORMAL) is 
defined in DILV7. Severity codes and system codes are defined in 
DILV7. To define these names in your program, include the following 
statement in your program: 

INCLUDE 'SYS:DILV7' 

The file DITV7 defines codes specific to the Task-to-Task and Remote 
File Access Routines. This includes the DIT status codes, Remote File 
Access file types, Remote File Access open modes, Remote File Access 
record formats, Remote File Access record attributes and Remote File 
Access close options. To define these names in your program, include 
the following statement: 

INCLUDE 'SYS:DITV7' 

For programs which use the remote file access routines, you must 
include both the DILV7 and DITV7 files. 

7.2.2 Storing a File Number 

To store a file number, you must implicitly or explicitly declare an 
integer with the following format: 

INTEGER fnum 

Use fnum as the value for the file number argument in the call to the 
ROPEN routine. 

7.2.3 Storing Account Information 

To include your user code, password, account number (or charge code) 
in a call to the ROPEN routine, you must first declare these values in 
your program. The format for these data items is as follows: 

INTEGER 
INTEGER 
INTEGER 

userid (8) 
passwd (8) 
acct (8) 

or CHARACTER*39 
or CHARACTER*39 
or CHARACTER*39 

7.2.4 Reading and Writing Remote Data 

userid 
passwd 
acct 

To read or write data from a file on a remote system, you must declare 
an area on the local system to accept the data, and an integer for the 
length of the data. 

INTEGER 
DATA 

therec (20), recl 
recl/IOO/ 

7-4 



TOPS-IO AND TOPS-20 REMOTE FILE ACCESS 

7.2.5 Checking the Status of a Remote File Access Routine 

The Remote File Access Routines return status values as their function 
values. To perform an error check on a Remote File Access Routine, 
first declare an integer where the routine can place a status value. 

INTEGER status 

A simple call with an error check might then be: 

status = RREAO (fnum, dunit, maxsiz, bufnam) 
IF (status .EQ. NORMAL) GOTO 100 
IF (status .EQ. INVARG) GOTO 50 
TYPE 10 

10 FORMAT (' error occurred') 

50 TYPE 51 
51 FORMAT (' invalid data type error') 
100 

To determine which error occurred, compare status with the OIT status 
codes defined in the TOPS-IO/TOPS-20 FORTRAN Interface Support files. 
In the example above, NORMAL and INVARG are status code values defined 
in the Interface Support file. 

7.2.6 The TOPS-IO Software Interrupt System 

The DIL task-to-task and remote file access routines need the services 
of the TOPS-IO software interrupt system (PSI). Because the FORTRAN 
and COBOL runtime systems do not provide a facility to share the use 
of the software interrupt system between non-cooperating routines in 
the same program, the user cannot use the software interrupt system in 
a COBOL or FORTRAN program that uses the task-to-task or remote file 
access routines. 

7-5 



TOPS-IO AND TOPS-20 REMOTE FILE ACCESS 

7.3 TOPS-20 AND TOPS-IO REMOTE FILE ACCESS REFERENCE 

7.3.1 ROPEN - Open a Remote File 

PURPOSE: 

This routine opens a remote, sequential ASCII file for 
processing. It also assigns a file number to the opened file. 

CALL FORMAT: 

COBOL: ENTER MACRO ROPEN USING fnum, fnam, userid, passwd, 
acct, mode, dattyp, recfor, recatt, recsiz, runit. 

FORTRAN: status = ROPEN (fnum, fnam, userid, passwd, acct, 
1 mode, dattyp, recfor, recatt, recsiz, runit) 

where: 

fnum is a one-word integer that gives the file number of the 
file that you want to open. This number is assigned by 
the subroutine. 

fnam is an ASCII-7 character string that gives the name of 
the file to be opened. The file name must also include 
the node name of the file's system of origin. 

NOTE 

The next three arguments supply accounting 
information. If the remote node is a OECSYSTEM-20 or 
a OECsystem-lO, you must supply a userid and password. 
You must also specify an account unless the remote 
system sets a default account. If the remote node is 
a VAX, these parameters are optional. If you do not 
specify accounting information, the VMS system uses 
the default OECnet directory. 

userid 

passwd 

acct 

mode 

is your user code. This field contains thirty-nine 
ASCII-7 characters. If your user code is less than 
thirty-nine characters, left-justify the field. 

is your password. This field contains thirty-nine 
ASCII-7 characters. If your password is less than 
thirty-nine characters, left-justify the field. 

is your account or charge code. This field contains 
thirty-nine ASCII-7 characters. If your account is 
less than thirty-nine characters, left-justify the 
field. If you don't plan to specify an account, pass 
spaces for this argument. 

is a one-word integer that indicates the mode in which 
you plan to use the file after it is opened. This 
version of the OIL allows you to read the file, write 
the file or append data to the file. Check with your 
system manager to make sure that the FAL on the file's 
computer allows the access mode that you have in mind. 

7-6 



dattyp 

recfor 

recatt 

TOPS-lO AND TOPS-20 REMOTE FILE ACCESS 

Mode DIL Name 

Read MODE-READ 

Write MODE-WRITE 

Append data to MODE-APPEND 
this file 

is a one-word integer that indicates the data type of 
the file. The DIL name for this argument is: 

TYPE-ASCII 

is a one-word integer that gives the record format. 
This argument, and the next three arguments, refer to 
the record which you plan to process after opening the 
file with the ROPEN routine. 

Record Format DIL Name 

Undefined RFM-UNDEFINED 

Fixed length RFM-FIXED 

Variable length RFM-VARIABLE 

Variable length RFM-VFC 
with fixed length 
control (VFC) 

Stream RFM-STREAM 

is a one-word integer that indicates the 
attributes of the file you plan to process. 

Record Attribute DIL Name 

Unspecified RAT-
UNSPECIFIED 

Implied <LF><CR> RAT-ENVELOPE 
envelope 

VMS printer RAT-PRINT 
carriage control 

FORTRAN carriage RAT-FORTRAN 
control 

7-7 

record 



TOPS-IO AND TOPS-20 REMOTE FILE ACCESS 

NOTE 

If you plan to use the RFA Routines to read a record 
from another system, you can use RFM-UNDEFINED or 
RAT-UNSPECIFIED values for the "recfor" and "recatt" 
arguments. You only have to specify values for these 
arguments if you plan to write a file on a VMS system. 

recsiz is a one-word integer that gives the record size, 
measured in bytes of the size listed as the record size 
unit (below). If you plan to write the file, this is 
its maximum record size. If you plan to read or append 
data to the file or if you don't specify a maximum 
record size, this argument must be zero. 

runit is a one-word integer that gives the record size unit. 
An ASCII record ignores this argument. 

STATUS CODES: 

For COBOL programs, the DIL returns status codes in the dil-stat 
variable defined by the DILINI routine. For FORTRAN programs, 
the DIL routines return status codes as an integer function 
value. 

DIL Name Meaning 

DIT-TOOMANY You attempted too many links. The 
DIL allows a maximum of 20 open 
links. On TOPS-20 systems, however, 
a non-privileged user can only open 
a maximum of four links. 

DIT-INVARG You passed an incorrect or invalid 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

DIT-NETOPRFAIL You attempted an impossible network 
operation. 

DIT-CHECKSUM The network returned a network check-
sum error. 

DIT-UNSFILETYPE You attempted to write a file whose 
file type is unsupported on the re-
mote system. 

DIT-FILEINUSE The file is already being processed 
by another program. 

DIT-NOFILE The file does not exist or is not 
available to you. 

DIT-HORRIBLE This code is returned in the event of 
a system or unexpected error. 

7-8 



TOPS-lO AND TOPS-20 REMOTE FILE ACCESS 

7.3.2 RREAD - Read Data From a Remote File 

PURPOSE: 

The RREAD routine reads a record from a file opened with the 
ROPEN routine. 

CALL FORMAT: 

COBOL: ENTER MACRO RREAD USING fnum, dunit, maxsiz, bufnam. 

FORTRAN: status = RREAD (fnum, dunit, maxsiz, bufnam) 

where: 

fnum is a one-word integer that gives the number of the file 
that you want to read. File number is assigned by the 
ROPEN routine. 

dunit 

maxsiz 

bufnam 

STATUS CODES: 

is a one-word integer that gives the data unit size. 
This argument is always zero. 

is a one-word integer that specifies the maximum record 
size, in characters. When RREAD finishes processing, 
this argument contains the number of characters 
actually read by the routine. 

is an ASCII-7 character string. This argument tells 
where the routine places the data that it reads. 

For COBOL programs, the DIL returns status codes in the dil-stat 
variable defined by the DILINI routine. For FORTRAN programs, 
the DIL routines return status. codes as an integer function 
value. 

DIL Name Meaning 

DIT-INVARG You passed an incorrect or invalid 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

DIT-NETOPRFAIL You attempted an impossible network 
operation. 

DIT-CHECKSUM The network returned a network check-
sum error. 

DIT-EOF The routine reached the end of the 
file it was reading. 

DIT-OVERRUN The record being read is too large to 
fit into the user buffer area. 

DIT-HORRIBLE This code is returned in the event of 
a system or unexpected error. 

7-9 



TOPS-IO AND TOPS-20 REMOTE FILE ACCESS 

7.3.3 RWRITE - Write Data To a Remote File 

PURPOSE: 

The RWRITE routine writes a record into a file opened by ROPEN. 

CALL FORMAT: 

COBOL: ENTER MACRO RWRITE USING fnum, dunit, length, data. 

FORTRAN: status = RWRITE (fnum, dunit, length, data) 

where: 

fnum is a one-word integer that gives the file number of the 
file that you want to write. File number is assigned 
by the ROPEN routine. 

dunit is a one-word integer that gives the data unit size. 
This argument is always zero. 

length is a one-word integer that specifies the data length, 
in characters. 

data is an ASCII-7 character string. This argument is the 
data to write. 

STATUS CODES: 

For COBOL programs, the DIL returns status codes in the dil-stat 
variable defined by the DILINI routine. For FORTRAN programs, 
the DIL routines return status codes as an integer function 
value. 

DIL Name Meaning 

DIT-INVARG You passed an incorrect or invalid 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

DIT-NETOPRFAIL You attempted an impossible network 
operation. 

DIT-CHECKSUM The network returned a network check-
sum error. 

DIT-NOFILE The file does not exist or is not 
available to you. 

DIT-HORRIBLE This code is returned in the event of 
a system or unexpected error. 

7-10 



TOPS-lO AND TOPS-20 REMOTE FILE ACCESS 

7.3.4 RCLOSE - Close a Remote File 

PURPOSE: 

The RCLOSE routine closes the file that you opened with the ROPEN 
routine. 

CALL FORMAT: 

COBOL: ENTER MACRO RCLOSE USING fnum, clopt. 

FORTRAN: status = RCLOSE (fnum, clopt) 

where: 

fnum 

clopt 

is a one-word integer that gives the file number of the 
file that you want to close. File number is assigned 
by the ROPEN routine. 

is a one~word integer that specifies the close option. 
This argument tells what to do with the file once it's 
closed. 

Close Option DIL Name 

No special action OPT-NOTHING 

Submit file for OPT-SUBMIT 
remote batch pro-
cessing 

Submit file for OPT-PRINT 
remote printing 

Delete the remote OPT-DELETE 
file 

7-11 



TOPS-IO AND TOPS-20 REMOTE FILE ACCESS 

STATUS CODES: 

For COBOL programs, the OIL returns status codes in the dil-stat 
variable defined by the DILINI routine. For FORTRAN programs, 
the DIL routines returns status codes as an integer function 
value. 

OIL Name Meaning 

DIT-INVARG You passed an incorrect or invalid 
argument. 

""\. 

SS-NORMAL The routine successfully completed 
processing. 

DIT-NETOPRFAIL You attempted an impossible network 
operation. 

DIT-CHECKSUM The network returned a network check-
sum error. 

DIT-HORRIBLE This code is returned in the event of 
a system or unexpected error. 

7-12 



TOPS-lO AND TOPS~20 REMOTE FILE ACCESS 

7.3.5 RDEL - Delete a File 

PURPOSE: 

The RDEL routine deletes a file. You can only delete a closed 
file. If you want to delete an open file, delete it using the 
RCLOSE routine with the OPT-DELETE close option. 

CALL FORMAT: 

COBOL: ENTER MACRO RDEL~ pSING fnam, userid, passwd, acct. 

FORTRAN: STATUS = RDEL (fnam, userid, passwd, acct) 

where: 

fnam is an ASCII-7 character string that gives the name of 
the file to be deleted. The file name must also 
include the node name of the file's system of origin. 

NOTE 

The next three arguments supply accounting 
information. If the remote node is a DECSYSTEM-20 or 
DECsystem-10, you must supply a userid and password. 
You must also specify an account unless the remote 
system sets a default account. If the remote node is 
a VAX, these parameters are optional. If you do not 
specify accounting information, the VMS system uses 
the default DECnet directory. 

userid 

passwd 

-acct 

is your user code. This field contains thirty-nine 
ASCII-7 characters. If your user code is less than 
thirty-nine characters, left-justify the field. 

is your password. This field contains thirty-nine 
ASCII-7 characters. If your password is less than 
thirty-nine characters, left-justify the field. 

is your account. This field contains thirty-nine 
ASCII-7 characters. If your account is less than 
thirty-nine characters, left-justify the field. 

7-13 



TOPS-IO AND TOPS-20 REMOTE FILE ACCESS 

STATUS CODES: 

For COBOL programs, the OIL returns status codes in the dil-stat 
variable defined by the DILINI routine. For FORTRAN programs, 
the OIL routines return status codes as an integer function 
value. 

OIL Name Meaning 

DIT-INVARG You passed an incorrect or invalid 
argument. 

S8-NORMAL The routine successfully completed 
processing. 

DIT-NETOPRFAIL You attempted an impossible network 
operation. 

- -

DIT-CHECKSUM The network returned a network check-
sum error. 

DIT-NOFILE The file does not exist or is not 
available to you. 

DIT-HORRIBLE This code is returned in the event of 
a system or unexpected error. 

7-14 



TOPS-IO AND TOPS-20 REMOTE FILE ACCESS 

7~3.6 RSUB - Submit a File For Batch Processing 

PURPOSE: 

The RSUB routine submits a remote file for batch processing on 
the remote system. You may only submit closed files for 
processing. If you want to submit an open file for batch 
processing, use the RCLOSE routine with the OPT-SUBMIT close 
option. 

CALL FORMAT: 

COBOL: ENTER MACRO RSUB USING fnam, userid, passwd, acct. 

FORTRAN: status = RSUB (fnam, userid, passwd, acct) 

where: 

fnam is an ASCII-7 character string that gives the name of 
the file to be submitted. The file name must also 
include the nod~ name of the file's system of origin. 

NOTE 

The next three arguments supply accounting 
information. If the remote node is a DECSYSTEM-20 or 
DECsystem-lO, you must supply a userid and password. 
You must also specify an account unless the remote 
system sets a default account. If the remote node is 
a VAX, these parameters are optional. If you do not 
specify accounting information, the VMS system uses 
the default DECnet directory. 

userid 

passwd 

acct 

is your user code. This field contains thirty-nine 
ASCII-7 characters. If your user code is less than 
thirty-nine characters, left-justify the field. 

is your password. This field contains thirty-nine 
ASCII-7 characters. If your password is less than 
thirty-nine characters, left-justify the field. 

is your account. This field contains thirty-nine 
ASCII-7 characters. If your account is less than 
thirty-nine characters, left-justify the field. 

7-15 



TOPS-l,O AND TOPS-20 REMOTE FILE ACCESS 

STATUS CODES: 

For COBOL programs, the OIL returns status codes in the dil-stat 
variable defined by the OILINI routine. For FORTRAN programs, 
the OIL routines return status codes as an integer function 
value. 

OIL Name Meaning 

OIT-INVARG You passed an incorrect or invalid 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

OIT-NETOPRFAIL You attempted an impossible network 
operation. 

OIT-CHECKSUM The network returned a network check-
sum error. 

OIT-NOFILE The file does not exist or is not 
available to you. 

OIT-HORRIBLE This code is returned in the event of 
a system or unexpected error. 

7-16 



TOPS-lO AND TOPS-20 REMOTE FILE ACCESS 

7.3.7 RPRINT - Print a File 

PURPOSE: 

The RPRINT routine prints a remote file at the remote system. 
You can only print closed files •. If you want to print an open 
file use the RCLOSE routine with the OPT-PRINT close option. 

CALL FORMAT: 

COBOL: ENTER MACRO RPRINT USING fnam, userid, passwd, acct. 

FORTRAN: status = RPRINT (fnam, userid, passwd, acct) 

where: 

fnam is an ASCII-7 character string that gives the name of 
the file to be printed. The file name must also 
include the node name of the file's system of origin. 

NOTE 

The next three arguments supply accounting 
information. If the remote node is a DECSYSTEM-20 or 
DECsystem-lO, you must supply a userid and password. 
You must also specify an account unless the remote 
system sets a default account. If the remote node is 
a VAX, these parameters are optional. If you do not 
specify accounting information, the VMS system uses 
the default DECnet directory. 

userid 

passwd 

acct 

is your user code. This field contains thirty-nine 
ASCII-7 characters. If your user code is less than 
thirty-nine characters, left-justify the field. 

is your password. This field contains thirty-nine 
ASCII-7 characters. If your password is less than 
thirty-nine characters, left-justify the field. 

is your account. This field contains thirty-nine 
ASCII-7 characters. If your account is less than 
thirty-nine characters, left-justify the field. 

7-17 



TOPS-IO AND TOPS-20 REMOTE FILE ACCESS 

STATUS CODES: 

For COBOL programs, the OIL returns status codes in the dil-stat 
variable defined by the OILINI routine. For FORTRAN programs, 
the OIL routines return status codes as an integer function 
value. 

OIL Name Meaning 

OIT-INVARG You passed an incorrect or invalid 
argument. 

S8-NORMAL The routine successfully completed 
processing. 

OIT-NETOPRFAIL You attempted an impossible network 
operation. 

OIT-CHECKSUM The network returned a network check-
sum error. 

OIT-NOFILE The file does not exist or is not 
available to you. 

OIT-HORRIBLE This code is returned in the event of 
a system or unexpected error. 

7-18 



TOPS-10 AND TOPS-20 REMOTE FILE ACCESS 

7.4 TOPS-20 REMOTE FILE ACCESS EXAMPLES 

7.4.1 TOPS-20 COBOL ReJaOte· File Access Exa.ple 

IDENTIFICATION DIVISION. 

PROGRAM-ID. 

CDAP36. 

This program opens a remote file named DAP.TST and writes an 
ASCII record into it, closes the file, reopens the file and 
reads the record back and then closes the file again. Note, 
this program tries to write and read the file DAP.TST using a 
directory called PS:(DIL-TEST>. If this directory does not 
exist, it must be created as a valid LOGIN directory. 

ENVIRONMENT DIVISION. 

CONFIGURATION SECTION. 

SOURCE-COMPUTER. 

DECSYSTEM-20. 

OBJECT-COMPUTER. 

DECSYSTEM-20. 

DATA DIVISION. 

WORKING-STORAGE SECTION. 

01 INTERFACE-FILES. 
COPY DIT OF "SYS:DIL.LIB". 
COPY DIL OF "SYS:DIL.LIB". 

01 DILINI-PARAMETERS. 
* Dilini is necessary for DECsystem-IO and DECSYSTEM-20 COBOL only. 

05 DIL-INIT-STATUS PIC S9(10) COMPo 
05 DIL-STATUS PIC S9(10) COMPo 
05 DIL-MESSAGE PIC S9(10) COMPo 
05 DIL-SEVERITY PIC S9(10) COMPo 

* File and directory description fields 

01 FILE-NAME PIC X(39) VALUE 'PS:(DIL-TEST)DAP.TST' DISPLAY-7. 
01 USERID USAGE DISPLAY-7 PIC X(39) VALUE 'DIL-TEST'. 
01 PASSWD USAGE DISPLAY-7 PIC X(39) VALUE SPACES. 
01 ACCT USAGE DISPLAY-7 PIC X(39) VALUE SPACES. 

* Record and file description fields 

01 FILE-NUMBER USAGE COMP PIC S9(10). 
01 RECORD-UNIT-SIZE USAGE COMP PIC S9(10) VALUE O. 
01 RECORD-SIZE USAGE COMP PIC S9 (10) VALUE 100. 

01 DATA-RECORD USAGE DISPLAY-7 PIC X(lOO). 

7-19 



TOPS-le ABD TOPS-20 R!ROTI FILE ACCESS 

PROCEDURE DIVISION. 

* Set up for status code values, using DILINI routine 

ENTER MACRO DILINI USING DIL-INIT~STATUS, DIL-STATUS, 
DIL-MESSAGE, DIL-SEVERITY. 

IF DIL-INIT-STATUS NOT 1 
DISPLAY"? Invalid return code from DILINI routine 

* Request the password 

n DIL-INIT-STATUS. 

DISPLAY" Enter the password: n WITH NO ADVANCING ACCEPT PASSWD. 

* Open file DAP.TST for output 

ENTER MACRO ROPEN USING FILE-NUMBER, FILE-NAME, USERID, PASSWD, ACCT, 
DIT-MODE-WRITE, DIT-TYPE-ASCII, DIT-RFM-STREAM, 
DIT-RAT-UNSPECIFIED, RECORD-SIZE, RECORD-UNIT-SIZE. 

DISPLAY" ROPEN Status return: " DIL-STATUS. 
IF DIL-SEVERITY NOT = STS-K-SUCCESS 

AND DIL-SEVERITY NOT = STS-K-INFO 
DISPLAY"? ROPEN: unsuccessful status return " 
STOP RUN. 

* Accept a record and write it to the file 

DISPLAY" Enter data for the record for the remote file: " 
ACCEPT DATA-RECORD. 

ENTER MACRO RWRITE USING FILE-NUMBER, RECORD-UNIT-SIZE, 
RECORD-SIZE, DATA-RECORD. 

DISPLAY" RWRITE Status return: " DIL-STATUS. 
IF DIL-SEVERITY NOT = STS-K-SUCCESS 

AND DIL-SEVERITY NOT = STS-K-INFO 
DISPLAY"? RWRITE: unsuccessful status return. " 
STOP RUN. 

* Close the file 

ENTER MACRO RCLOSE USING FILE-NUMBER, DIT-OPT-NOTHING. 

DISPLAY" RCLOSE Status return: ", DIL-STATUS. 
IF DIL-SEVERITY NOT = STS-K-SUCCESS 

AND DIL-SEVERITY NOT = STS-K-INFO 
DISPLAY"? RCLOSE: unsuccessful status return." 
STOP RUN. 

* Open the file to read the record 

ENTER MACRO ROPEN USING FILE-NUMBER, FILE-NAME, USERID, PASSWD, ACCT, 
DIT-MODE-READ, DIT-TYPE-ASCII, DIT-RFM-STREAM, 
DIT-RAT-UNSPECIFIED, RECORD-SIZE, RECORD-UNIT-SIZE. 

DISPLAY" ROPEN Status return: ", DIL-STATUS. 
IF DIL-SEVERITY NOT = STS-K-SUCCESS 

AND DIL-SEVERITY NOT = STS-K-INFO 
DISPLAY"? ROPEN: unsuccessful status return." 
STOP RUN. 

7-20 



TOPS-lO AND TOPS-20 REMOTE FILE ACCBSS 

* Read the record 

MOVE SPACES TO DATA-RECORD. 

ENTER MACRO RREAD USING FILE-NUMBER, RECORD-UNIT-SIZE, 
RECORD-S:IZ E, DATA-RECORD. 

DISPLAY" RREAD returned ", DIL-STATUS. 
IF DIL-SEVERITY NOT = STS-K-SUCCESS 

AND DIL-SEVERITY NOT = STS-K-INFO 
DISPLAY "1 RREAD: unsuccesful status return." 
STOP RUN. 

DISPLAY" The record was: " 
DISPLAY DATA-RECORD. 

* Close the file 

ENTER MACRO RCLOSE USING FILE-NUMBER, DIT-OPT-NOTHING. 

DISPLAY" RCLOSE Status return: ", DIL-STATUS. 
IF DIL-SEVERITY NOT = STS-K-SUCCESS 

AND DIL-SEVERITY NOT = STS-K-INFO 
DISPLAY"? RCLOSE: unsuccessful status return." 
STOP RUN. 

DISPLAY" CDAP36 successful. " 

STOP RUN. 

7.4.2 TOPS-20 FORTRAN Remote File Access Example 

C FDAP36 

C 
C 
C 
C 
C 
C 

This program opens a remote file named DAP.TST and writes an 
ASCII record into it, closes the file, reopens the file and 
reads the record back and then closes the file again. Note, 
this program tries to write and read the file DAP.TST from a 
directory called PS:<DIL-TEST). If· this directory does not 
exist, it must be created as a LOGIN directory. 

C Use the OIL interface support files. 

INCLUDE 'SYS:DITV7' 
INCLUDE 'SYS:DILV7' 

C File and directory description fields 
INTEGER FILNAM (8), USERID (8), PASSWD (8), ACCT (8), FILNUM 

C Sending and receiving data records 
INTEGER DATAl (20), DATA2 (20) 

C OIL Status code 
INTEGER DILSTS 

7-21 



TOPS-IO AND TOPS-20 REMOTE FILE ACCESS 

C Record size and record unit size 
INTEGER RECSIZ, RUNTSZ 
DATA FILNAM I'PS:(D', 'IL-TE', 'ST)DA', 'P.TST', , 

1 , , , I 
DATA USERID I'DIL-T' ,'EST 

1 , 'I 
DATA PASSWD I' 

1 , 'I 
DATA ACCT I' 

1 'I 

C Program messages 

200 FORMAT (' ROPEN status return: ',112) 
201 FORMAT (' RWRITE status return: " 112) 
202 FORMAT (' RCLOSE status return: " 112) 
203 FORMAT (' RREAD status return: " 112) 
700 FORMAT (' ? Invalid status returned ••• ') 

C Request the password 

100 FORMAT (' Enter the pas~word: ') 
WRITE (5,100) 

105 FORMAT (8A5) 
ACCEPT 105, PASSWD 

C Open file DAP.TST for output 

1 

RUNTSZ 0 
RECSIZ 100 

DILSTS ROPEN (FILNUM, FILNAM, USERID, PASSWD, ACCT, MWRITE, 
TASCII, FSTM, AUNSPC, RECSIZ, RUNTSZ) 

WRITE (5,200) DILSTS 
IF (DILSTS .EQ. NORMAL) GO TO 115 
WRITE (5,700) 
STOP 

C Accept a record and write it to the file 

110 FORMAT (' Enter data for the record: ') 
115 WRITE (5,110) 
120 FORMAT (20A5) 

ACCEPT 120, DATAl 

DILSTS = RWRITE (FILNUM, RUNTSZ, RECSIZ, DATAl) 

WRITE (5,201) DILSTS 
IF (DILSTS .EQ. NORMAL) GO TO 125 
WRITE (5,700) 
STOP 

7-22 



TOPS-IO AND TOPS-20 REMOTE FILE ACCESS 

C Close the file 

125 DILSTS = RCLOSE (FILNUM, ONTHNG) 

WRITE (5,202) DILSTS 
IF (DILSTS .EO. NORMA~) GO TO 130 
WRITE (5,700) 
STOP 

C Open the file to read the record 

130 DILSTS = ROPEN (FILNUM, FILNAM, USERID, PASSWD, ACCT, MREAD, 
1 TASCII, FSTM, AUNSPC, RECSIZ, RUNTSZ) 

WRITE (5,200) DILSTS 
IF (DILSTS .EO. NORMAL) GO TO 135 
WRITE (5,700) 
STOP 

C Read the record 

135 DILSTS = RREAD (FILNUM, RUNTSZ, RECSIZ, DATA2) 

WRITE (5,203) DILSTS 
IF (DILSTS .EO. NORMAL) GO TO 145 
WRITE (5,700) 
STOP 

140 FORMAT (' The record read was: ') 
145 WRITE (5, 140) 
146 FORMAT (' " 20A5) 

WRITE (5,146) DATA2 

C Close the file 

DILSTS = RCLOSE (FILNUM, ONTHNG) 

WRITE (5,202) DILSTS 
IF (DILSTS .EO. NORMAL) GO TO 155 
WRITE (5,700) 
STOP 

150 FORMAT (' FDAP36 successful ') 
155 WRITE (5,150) 

STOP 
END 

7-23 



TOPS-IO AND TOPS-20 REMOTE FILE ACCESS 

7.5 TOPS-IO REMOTE FILE ACCESS EXAMPLES 

7.5.1 TOPS-IO COBOL Remote File Access Example 

IDENTIFICATION DIVISION. 

PROGRAM-ID. 

CDAP36. 

This program opens a remote file named DAP.TST and writes an 
ASCII record into it, closes the file, reopens the file and 
reads the record back and then closes the file again. Note, 
this program tries to write and read the file DAP.TST using a 
directory called MYNODE:: [10,105]. If this directory does not 
exist, it must be created as a valid LOGIN directory. 

ENVIRONMENT DIVISION. 

CONFIGURATION SECTION. 

SOURCE-COMPUTER. 

DECSYSTEM-lO. 

OBJECT-COMPUTER. 

DECSYSTEM-lO. 

DATA DIVISION. 

WORKING-STORAGE SECTION. 

01 INTERFACE-FILES. 
COpy DIT OF "SYS:DIL,LIB". 
COPY DIL OF "SYS:DIL,LIB". 

01 DILINI-PARAMETERS. 
* Dilini is necessary for DECsystem-lO and DECSYSTEM-20 COBOL only. 

05 DIL-INIT-STATUS PIC S9(10) COMPo 
05 DIL-STATUS PIC S9(10) COMPo 
05 DIL-MESSAGE PIC S9(10) COMPo 
05 DIL-SEVERITY PIC S9(10) COMPo 

* File and directory description fields 

01 FILE-NAME PIC X(39) VALUE IMYNODE::DAP.TST I DISPLAY-7. 
01 USERID USAGE DISPLAY-7 PIC X(39) VALUE I [10,105] I. 
01 PASSWD USAGE DISPLAY-7 PIC X(39) VALUE SPACES. 
01 ACCT USAGE DISPLAY-7 PIC X(39) VALUE SPACES. 

* Record and file description fields 

01 FILE-NUMBER USAGE COMP PIC S9(10). 
01 RECORD-UNIT-SIZE USAGE COMP PIC S9(10) VALUE O. 
01 RECORD-SIZE USAGE COMP PIC S9(10) VALUE 95. 

01 DATA-RECORD USAGE DISPLAY-7 PIC X(100). 

7-24 



TOPS-IO AND TOPS-20 REMOTE FILE ACCESS 

PROCEDURE DIVISION. 

* Set up for status code values, using DILINI routine 

ENTER MACRO DILINI USING DIL-INIT-STATUS, DIL-STATUS, 
DI L-MESSAGE , DIL-SEVERITY. 

IF DIL-INIT-STATUS NOT 1 
DISPLAY"? Invalid return code from DILINI routine 

* Request the password 

n DIL-INIT-STATUS. 

DISPLAY" Enter the password: n WITH NO ADVANCING ACCEPT PASSWD. 

* Open file DAP.TST for output 

ENTER MACRO ROPEN USING FILE-NUMBER, FILE-NAME, USERID, PASSWD, ACCT, 
DIT-MODE-WRITE, DIT-TYPE-ASCII, DIT-RFM-STREAM, 
DIT-RAT-UNSPECIFIED, RECORD-SIZE, RECORD-UNIT-SIZE. 

DISPLAY" ROPEN Status return: n DIL-STATUS. 
IF DIL-SEVERITY NOT = STS-K-SUCCESS 

AND DIL-SEVERITY NOT = STS-K-INFO 
DISPLAY"? ROPEN: unsuccessful status return " 
STOP RUN. 

* Accept a record and write it to the file 

DISPLAY" Enter data for the record for the remote file: " 
ACCEPT DATA-RECORD. 

ENTER MACRO REWRITE USING FILE-NUMBER, RECORD-UNIT-SIZE, 
RECORD-SIZE, DATA-RECORD. 

DISPLAY" RWRITE Status return: " DIL-STATUS. 
IF DIL-SEVERITY NOT = STS-K-SUCCESS 

AND DIL-SEVERITY NOT = STS-K-INFO 
DISPLAY"? RWRITE: unsuccessful status return, " 
STOP RUN. 

* Close the file 

ENTER MACRO RCLOSE USING FILE-NUMBER, DIT-O~T-NOTHING. 

DISPLAY" RCLOSE Status return: ", DIL-STATUS. 
IF DIL-SEVERITY NOT = STS-K-SUCCESS 

AND DIL-SEVERITY NOT = STS-K-INFO 
DISPLAY "1 RCLOSE: un<successful status return." 
STOP RUN. 

* Open the file to read the record 

MOVE 100 TO RECORD-SIZE. 

ENTER MACRO ROPEN USING FILE-NUMBER, FILE-NAME, USERID, PASSWD, ACCT, 
DIL-MODE-READ, DIT-TYPE-ASCII, DIT-RFM-STREAM, 
DIT-RAT-UNSPECIFIED, RECORD-SIZE, RECORD-UNIT-SIZE. 

DISPLAY" ROPEN Status return: ", DIL-STATUS. 
IF DIL-SEVERITY NOT = STS-K-SUCCESS 

AND DIL-SEVERITY NOT = STS-K-INFO 
DISPLAY "1 ROPEN: unsuccessful status return." 
STOP RUN. 

7-25 



TOPS-IO AND TOPS-20 REMOTE FILE ACCESS 

* Read the record 

MOVE SPACES TO DATA-RECORD. 

ENTER MACRO RREAD USING FILE-NUMBER, RECORD-UNIT-SIZE, 
RECORD-SIZE, DATA-RECORD. 

DISPLAY" RREAD returned II, DIL-STATUS. 
IF DIL-SEVERITY NOT = STS-K-SUCCESS 

AND DIL-SEVERITY NOT = STS-K-INFO 
DISPLAY II? RREAD: unsuccessful status return. 1I 

STOP RUN. 

DISPLAY" The record was: 
DISPLAY DATA-RECORD. 

* Close the file 

ENTER MACRO RCLOSE USING FILE-NUMBER, DIT-OPT-NOTHING. 

OISPLAY " RCLOSE status return: II, DIL-STATUS. 
IF OIL-SEVERITY NOT = STS-K-SUCCESS 

AND DIL-SEVERITY NOT = STS-K-INFO 
DISPLAY"? RCLOSE: unsuccessful status return. 1I 

STOP RUN. 

OISPLAY " COAP36 successful. " 

STOP RUN. 

7.5.2 TOPS-IO FORTRAN Remote File Access Example 

C FDAP36 

C 
C 
C 
C 
C 
C 

This program opens a remote file named DAP.TST and writes an 
ASCII record onto it. Closes the file, reopens the file and 
reads the record back and then closes the file again. Note, 
this program tries to write and read the file DAP.TST from a 
directory called MYNODE:: [10,105]. If this directory does not 
exist, it must be created as a LOGIN directory. 

C Use the DIL interface support files. 

INCLUDE 'SYS:DITV7' 
INCLUDE 'SYS:DILV7' 

C File and directory description fields 
INTEGER FILNAM (8), USERID (8), PASSWD (8), ACCT (8), FILNUM 

C Sending and receiving data records 
INTEGER DATAl (20), DATA2 (20) 

C DIL Status code 
INTEGER DILSTS 

7-26 



TOPS-10 AND TOPS-20 REMOTE FILE ACCESS 

C Record size and record unit size 
INTEGER RECSIZ, RUNTSZ 

DATA FILNAM /' MYNOD' , , E: : DA' , , P. TST' , , 
1 , '/ 

DATA USERID /'10,10','5 
1 , '/ 

DATA PASSWD /' 
1 , '/ 

DATA ACCT /' , 
1 '/ 

C Program messages 

200 FORMAT (' ROPEN status return: " 112) 
201 FORMAT (' RWRITE status return: ',112) 
202 FORMAT (' RCLOSE status return: I, 112) 
203 FORMAT (' RREAD status return: I, 112) 
700 FORMAT (' ? Invalid status returned ••• ') 

C Request the password 

100 FORMAT (' Enter the password: ') 
WRITE (5,100) 

105 FORMAT (8A5) 
ACCEPT 105, PASSWD 

C Open file DAP.TST for output 

RUNTSZ 0 
RECSIZ 95 

, , , 

DILSTS 
1 

ROPEN (FILNUM, FILNAM, USERID, PASSWD, ACCT, MWRITE, 
TASCII, FSTM, AUNSPC, RECSIZ, RUNTSZ) 

WRITE (5,200) DILSTS 
IF (DILSTS .EQ. NORMAL) GO TO 115 
WRITE (5,700) 
STOP 

C Accept a record and write it to the file 

110 FORMAT (' Enter data for the record: ') 
115 WRITE (5,110) 
120 FORMAT (20A5) 

ACCEPT 120, DATAl 

DILSTS = RWRITE (FILNUM, RUNTSZ, RECSIZ, DATAl) 

WRITE (5,201) DILSTS 
IF (DILSTS .EQ. NORMAL) GO TO 125 
WRITE (5,700) 
STOP 

7-27 



TOPS-10 AND TOPS-20 REMOTE FILE ACCESS 

C Close the file 

125 DILSTS = RCLOSE (FILNUM, ONTHNG) 

WRITE (5,202) DILSTS 
IF (DILSTS .EQ. NORMAL) GO TO 130 
WRITE (5,700) 
STOP 

C Open the file to read the record 

130 RECSIZ 100 

1 
DILSTS ROPEN (FILNUM, FILNAM, USERID, PASSWD, ACCT, MREAD, 

TASCII, FSTM, AUNSPC, RECSIZ, RUNTSZ) 

WRITE (5,200) DILSTS 
IF (DILSTS .EQ. NORMAL) GO TO 135 
WRITE (5,700) 
STOP 

C Read the record 

135 DILSTS = RREAD (FILNUM, RUNTSZ, RECSIZ, DATA2) 

WRITE (5,203) DILSTS 
IF (DILSTS .EQ. NORMAL) GO TO 145 
WRITE (5,700) 
STOP 

140 FORMAT (' The record read was: ') 
145 WRITE (5, 140) 
146 FORMAT (' " 20A5) 

WRITE (5,146) DATA2 

C Close the file 

DILSTS = RECLOSE (FILNUM, ONTHNG) 

WRITE (5,202) DILSTS 
IF (DILSTS .EQ. NORMAL) GO TO 155 
WRITE (5,700) 
STOP 

150 FORMAT (' FDAP36 successful ') 
155 WRITE (5,150) 

STOP 
END 

7-28 



CHAPTER 8 
LINKING A TOP5-10/TOP5-20 PROGRAM 



CHAPTER 8 

LINKING A TOPS-IO/TOPS-20 PROGRAM 

8.1 DECsystem-lO LINKAGE INSTRUCTIONS 

The linker associates your program with the Data Interchange Library 
routines called by the program. When you have successfully compiled 
your program, link it by typing the following command sequence: 

.R LINK 
*PROG 
*/SEGMENT:LOW/SEARCH SYS:DIL,­
#SYS:B361LB, -
#SYS:XPORT/EXCLUDE:XFUNCT/GO 

EXIT 
.SAVE PROG 

where: "PROG" is the name of your program. 

8.2 DECSYSTEM-20 LINKAGE INSTRUCTIONS 

The linker associates your program with the Data Interchange Library 
routines that your program calls. When you have successfully compiled 
your program, link it by typing the following command string: 

@LINK 
*USRPRG, SYS:DIL/SEARCH, SYS:XPORT/SEARCH/EXCLUDE:XFUNCT/GO 

where: "USRPRG" is the name of your program. 

8.3 DECSYSTEM-IO AND DECSYSTEM-20 OVERLAY INSTRUCTIONS 

If your program is very large, you may want to overlay the program. 
For general information on overlaying programs, refer to the Link 
Manual and the language specific manuals for your system. When 
building an overlay tree, you must include the following modules in 
the root segment: 

1. .LOPEN (for Task-to-Task Routines) 

2. .UPEVT (for Task-to-Task Routines) 

3. XPNUTL (for Remote File Access Routines) 

4. XPNPSI (for Remote File Access Routines) 

8-1 





CHAPTER 9 
VMS DATA CONVERSION 



CHAPTER 9 

VMS DATA CONVERSION 

9.1 DATA CONVERSION FROM VMS COBOL 

The information included in this section assumes: 

-You are writing a COBOL program 
-You plan to use the program on a VMS system 

To store an FFD, pass a record or perform an error check, you must 
represent several data items in your program. Users generally 
allocate space for foreign fields and records in WORKING-STORAGE. 

9.1.1 Including the Interface Support Files 

On VMS systems, there are two different classes of Interface Support 
files for each supported language. The first class of files includes 
native VMS-type names for each of the various codes for VMS COBOL and 
VMS FORTRAN. The second class includes files with TOPS-IO/TOPS-20 
COBOL compatible names for VMS COBOL, and files which include ANSI 
Standard names for the interface to VMS FORTRAN. The Interface 
Support files for VMS are provided as a text library called DIL.TLB. 
This library includes the support files for both VMS COBOL and VMS 
FORTRAN. 

Native VMS COBOL 

You can use the COBOL COPY verb to retrieve information from DIL.TLB 
at compilation time. There are three library elements for Native VMS 
COBOL in DIL.TLB. The elements are DIL$COBOL, DIT$COBOL, and 
DIX$COBOL. 

The library element DIL$COBOL defines general codes and names 
applicable to the Data Conversion Routines, the Task-to-Task Routines 
and the Remote File Access Routines. The general success status code 
(SS-NORMAL) is defined in element DIL$COBOL. Severity codes and 
system codes are defined in element DIL$COBOL. To define these names 
in your program, include the following statement in your 
WORKING-STORAGE section after an Ol-level declaration: 

COpy DIL$COBOL OF "SYS$LIBRARY:DIL.TLB". 

In the following example the DIL$COBOL element of the library is 
retrieved and included in your program: 

01 Interface-files. 
COPY DIL$COBOL OF "SYS$LIBRARY:DIL.TLB". 

9-1 



VMS DATA CONVERSION 

The library element DIX$COBOL defines codes specific to the Data 
Conversion Routines. These codes include the DIX status codes which 
are standard VMS condition values. Also included are data type names 
for each supported data type. To define these names in your program, 
include the following statement in your WORKING-STORAGE section after 
an Ol-level declaration as described above for the DIL$COBOL element: 

COPY DIX$COBOL OF "SYS$LIBRARY:DIL.TLB". 

For programs which use the Data Conversion Routines with native VMS 
names, you must include both the DIL$COBOL and DIX$COBOL library 
elements. 

TOPS-IO/TOPS-20 Compatible COBOL 

If you want to write a program which can be easily transported to a 
DECsystem-lO or a DECSYSTEM-20, you may want to include the 
TOPS--IO/TOPS-20 compatible names in your program rather than the 
native VMS names. 

You can use the COBOL COpy verb to retrieve information 
at compilation time. There are three library 
TOPS-IO/TOPS-20 compatible COBOL in DIL.TLB. The 
DIL$COBOL_20, DIT$COBOL_20, and DIX$COBOL_20. 

from DIL.TLB 
elements for 

elements are 

The library element DIL$COBOL 20 defines general codes and names 
applicable to the Data Conversion Routines, the Task-to-Task Routines 
and the Remote File Access Routines. The general success status code 
(SS-NORMAL)is defined in element DIL$COBOL 20. Severity codes and 
system codes are defined in element DIL$COBOL-20. To define these 
names in your program, include the following statement in your 
WORKING-STORAGE section after an Ol-level declaration: 

COPY DIL$COBOL 20 OF "SYS$LIBRARY:DIL.TLB". 

In the following example, the DIL$COBOL_20 element of the library is 
retrieved and included in your program: 

01 Interface-files. 
COPY DIL$COBOL 20 OF "SYS$LIBRARY:DIL.TLB". 

The library element DIX$COBOL 20 defines codes specific to the data 
conversion routines. The codes include the DIX status codes in the 
compatible COBOL format which provides only the condition 
identification portion of the status code. Also included are data 
type names for each supported data type. To define these names in 
your program, include the following statement in your WORKING-STORAGE 
section after an Ol-level declaration as shown above for the 
DIL$COBOL 20 element: 

COPY DIX$COBOL 20 OF "SYS$LIBRARY:DIL.TLB". 

For programs which use the 
compatible names, you must 
DIX$COBOL 20 library elements. 

data conversion routines with 
include both the DIL$COBOL 20 

9-2 

the 
and 



VMS DATA CONVERSION 

9.1.2 Storing an FFD 

The FFD occupies three full longwords of VMS memory. To store an FFD 
you must define a data item with the following format: 

01 your-ffd. 
03 your-ffd-tbl PIC S9(9) USAGE COMPUTATIONAL OCCURS 3. 

When you call the DIX$MAK DES DET routine to build the FFD, use 
your-ffd-tbl as the FFD- to be returned. To pass the FFD to the 
routine, pass your-ffd-tbl with the subscript 1: your-ffd-tbl (1). 

9.1.3 Passing a Record to the DIX$MAK_DES_DET Routine 

To pass a record to the DIX$MAK DES DET routine, you must know how the 
record (containing the field- that you want to convert) would be 
declared on its native system. You must then represent the record in 
your program on the local system. The record can be represented as 
any word-aligned group level data item. To pass the record to 
DIX$MAK DES DET, specify this group item as the record name ("rec") in 
the call to-DIX$MAK_DES_DET. 

To figure the size of the record, count the number of bits on its 
native system: make the record name on the foreign system at least 
that large. In the following example, the VAX/VMS record "rec" 
contains 640 bits of information. 

01 rec PIC S9(9) USAGE COMPUTATIONAL OCCURS 20 TIMES. 

To pass "rec" to the DIX$MAK_DES_DET routine simply include it in your 
call to the routine. 

CALL "DIX$MAK DES DET" USING ffd (1), rec, sysor, bysiz, byoff, 
bioff, type,-lngth, scale GIVING stat. 

9.1.4 Checking for Errors 

A call to the Data Conversion Routines from VMS COBOL looks like the 
following example: 

CALL "DIX$MAK DES DET" USING ffd (1), rec, sysor, bysiz, byoff, 
bioff, type,-lngth, scale GIVING stat. 

"Stat", used above, is a standard VMS condition value and should be 
defined as: 

01 stat PIC S9(9) USAGE COMPUTATIONAL. 

The routine performs the error check and places the resultant status 
value into the data item stat. The following example shows a simple 
error check: 

CALL "DIX$MAK DES DET" USING ffd (1), rec, sysor, bysiz, byoff, 
bioff, type,-lngth, scale GIVING stat. 

IF stat IS FAILURE 
THEN DISPLAY "failure". 

9-3 



VMS DATA CONVERSION 

On VMS systems, the LIB$MATCH COND function is available to compare 
two status codes and determine if they refer to the same condition. 
See the most recent version of the VAX-II Run-Time Library Reference 
Manual for further information. 

Using LIB$MATCH COND, you can compare "stat" to the DIX status values 
defined in the DIL Interface Support files to identify which error 
occurred. 

NOTE 

If you are using the TOPS-lO/TOPS-20 Compatible COBOL 
Interface Support files, you cannot use LIB$MATCH COND 
to compare the status codes. Use the error checking 
procedure described in the TOPS-lO/TOPS-20 COBOL 
section of this manual. 

9.2 DATA CONVERSION FROM VMS FORTRAN 

The information included in this section assumes 

-You are writing a FORTRAN program 
-You plan to use the program on a VMS system 

The section explains methods to store a Foreign Field Descriptor, pass 
a record to the conversion routines and perform an error check. 

9.2.1 Including the Interface Support Files 

VMS systems have two different classes of Interface Support files for 
each supported language. The first class of files includes native 
VMS-type names for each of the various codes for VMS COBOL and VMS 
FORTRAN. The second class includes files with TOPS-lO/TOP8-20 COBOL 
compatible names for VMS COBOL, and files which include ANSI Standard 
names for the interface to VMS FORTRAN. The Interface Support files 
for VMS are provided as a text library called DIL.TLB. This library 
includes the support files for both VMS COBOL and VMS FORTRAN. 

Native VMS FORTRAN 

You can use the FORTRAN INCLUDE statement to retrieve information from 
DIL.TLB at compilation time. There are three library elements for 
native VMS FORTRAN in DIL.TLB. The elements are DIL$FORTRAN, 
DIT$FORTRAN, and DIX$FORTRAN. 

The library element DIL$FORTRAN defines general codes and names 
applicable to the Data Conversion Routines, the Task-to-Task Routines 
and the Remote File Access Routines. The general success status code 
(S8-NORMAL) is defined in element DIL$FORTRAN. Severity codes and 
system codes are defined in element DIL$FORTRAN. To define these 
names in your program, include the statement: 

INCLUDE '8YS$LIBRARY:DIL.TLB (DIL$FORTRAN)' 

This retrieves the DIL$FORTRAN element of the library file and 
includes it in your program. 

9-4 



VMS DATA CONVERSION 

The library element DIX$FORTRAN 
Conversion Routines. The codes 
standard VMS condition values. 
each supported data type. 
include the statement: 

defines codes specific to the Data 
include the DIX status codes which are 
Also included are data type names for 

To define these names in your program, 

INCLUDE 'SYS$LIBRARY:DIL.TLB (DIX$FORTRAN)' 

For programs which use the Data Conversion routines with the native 
VMS names, you must include both the DIL$FORTRAN and DIX$FORTRAN 
library elements. 

ANSI Standard Compatible FORTRAN 

If you want to write a program which can be easily transported to 
another system, you may want to include the ANSI Standard FORTRAN 
names in your program rather than the native VMS names. 

You can use the FORTRAN INCLUDE statement to retrieve information from 
DIL.TLB at compilation time. There are three library elements for 
ANSI Standard FORTRAN in DIL.TLB. The elements are DIL$ANSI FORTRAN, 
DIT$ANSI_FORTRAN, and DIX$ANSI_FORTRAN. -

The library element DIL$ANSI FORTRAN defines general codes and names 
applicable to the Data Conversion Routines, the Task-to-Task Routines 
and the Remote File Access Routines. The general success status code 
(SS-NORMAL) is defined in element DIL$ANSI FORTRAN. Severity codes 
and system codes are defined in element DIL$ANSI FORTRAN. To define 
these names in your program, include the statement: 

INCLUDE 'SYS$LIBRARY:DIL.TLB (DIL$ANSI_FORTRAN)' 

This retrieves the DIL$ANSI_FORTRAN element of the library file and 
includes it in your program. 

The library element DIX$ANSI FORTRAN defines codes specific to the 
Data Conversion Routines. The codes include the DIX status codes 
which are standard VMS condition values. Also included are data type 
names for each supported data type. To define these names in your 
program, include the following statement: 

INCLUDE 'SYS$LIBRARY:DIL.TLB (DIX$ANSI_FORTRAN) 

For programs which use the data' conversion routines with the 
compatible names, you must include both the DIL$ANSI FORTRAN and 
DIX$ANSI_FORTRAN library elements. 

9.2.2 Storing an FFD 

The FFD occupies three full longwords of VMS memory. To store an FFD, 
you must first dimension an array of type integer with length 3. 

INTEGER dilffd (3) 

When you call the DIX$MAK DES DET routine to build an FFD, use dilffd 
as the value for the FFD to be returned. To pass this value to the 
routine, always pass the entire array, specifying just the variable 
name, dilffd, not the array entry dilffd (1). 

9-5 



VMS DATA CONVERSION 

9.2.3 Passing a Record to the Data Conversion Routines 

To convert a field in a record, you must know how that field is 
represented on both its own system and the system where you plan to 
use the converted field. You create a space for the record on the 
local system by declaring an integer array big enough to contain the 
record. To figure the array size, count the number of bits used by 
the record on its native system; make the array on the local system at 
least that large. In the following example, this VAX/VMS record 
contains 640 bits of information: 

INTEGER rec (20) 

To pass the record to one of the Data Conversion Routines, pass the 
entire array. The example, below, shows rec being passed to the 
DIX$MAK DES DET routine. - -

status 
1 

DIX$MAK DES DET (ffd, rec, sysor, bysiz, byoff, bioff, 
type, Ingth; scale) 

9.2.4 Checking for Errors 

The Data Conversion Routines return a status value when called. To 
perform an error check on a Data Conversion Routine, first declare an 
integer where the routine can place a status value. 

INTEGER status 

A simple call with an error check might then be: 

status = DIX$MAK DES DET (ffd, rec, sysor, bysiz, byoff, bioff 
1 type, Ingth~ scale) 
IF (status .NE. SS$_NORMAL) GOTO 100 

100 TYPE 101 
101 FORMAT (' error occurred') 

On VMS systems, the LIB$MATCH COND function is available to compare 
two status codes and determine if they refer to the same condition. 
See the most recent version of the VAX-II Run-Time Library Reference 
Manual for further information. 

Using LIB$MATCH COND you can compare status to the DIX status values 
defined in the-VMS FORTRAN Interface Support file, to determine which 
error occurred. Note that SS$ NORMAL, used above, is ~he success 
status defined in the VMS FORTRAN Interface Support files. 

9-6 



VMS DATA CONVERSION 

9.3 VMS DATA CONVERSION REFERENCE 

9.3.1 DIX$MAK_DES_DET - Create an FFD 

PURPOSE: 

The DIX$MAK DES DET routine reads the detailed description 
information - which you supply and builds a Foreign Field 
Descriptor for a native or foreign field. 

CALL FORMAT: 

COBOL: CALL "DIX$MAK DES DET" USING ffd (1), rec, sysor, 
bysiz, byoff; bioff, type, lngth, scale GIVING 
stat. -

FORTRAN: status = DIX$MAK DES DET (ffd, rec, sysor, bysiz, 
1 byoff, bioff, type; lngth, scale) 

where: 

ffd is the Foreign Field Descriptor to be returned. This 
argument is the data item where the routine places the 
resultant FFD. A Foreign Field Descriptor consists of 
three one-word integers. 

rec is the record that contains the field being described. 

sysor 

bysiz 

byoff 

bioff 

COBOL: This argument can be any word-aligned data 
item. 

FORTRAN: This argument is usually an integer array. 

is a long integer that gives the system of origin of 
the field to be converted. OIL Names that can be used 
for this argument are: 

SYS-IO-20 for a- record defined for TOPS-IO or 
TOPS-20. 

for a record defined for VMS. 

is a long integer that gives the byte size of the 
record for this call to DIX$MAK DES DET. All VMS 
records have a byte size of 8. A TOPS-IO or TOPS-20 
COBOL record can have a byte size of 6, 7, 9 or 36. A 
TOPS-IO or TOPS-20 FORTRAN record can have a byte size 
of 7 or 36. See Appendix A for further information. 

is a long integer that gives the byte offset to the 
field within the record. The byte offset is the number 
of bytes in the record (of the size specified in 
"bysiz") that precede the field that you want to 
convert. 

is a long integer that gives the bit offset. This 
argument is not currently necessary; it should always 
be zero. 

9-7 



type 

lngth 

scale 

STATUS CODES: 

VMS DATA CONVERSION 

is a long integer that gives the data type of the field 
that is being converted. See Appendix A for a list of 
valid data type codes. 

is a long integer that gives the length of the field: 
in characters for string fields. This argument is 
required for some data types, it must be zero for all 
other data types. See Appendix A for further 
information. 

is a long integer that gives the scale factor of a 
fixed-point binary field. This argument tells how many 
decimal places the decimal point should be moved to the 
left. A negative scale factor means that you want to 
move the decimal point to the right. You must specify 
a scale factor for fixed-point conversions. Do not 
specify scale factor for any other type of field. 

DIL Name Meaning 

DIX-INVDATTYP 

DIX-INVLNG 

DIX-INVSCAL 

DIX-UNKSYS 

DIX-ALIGN 

DIX-INVBYTSIZ 

RELATED ROUTINES: 

DIX$BY DET: 

Invalid data type code. 

Length invalid or unspecified. 

Scale factor invalid or unspecified. 

Unknown system of origin specified. 

Invalid alignment for data type. 

Invalid byte size specified. 

This routine allows you to convert a field without 
making a Foreign Field· Descriptor for the field. 
See Section 9.3.3 for a description of DIX$BY_DET. 

9-8 



VMS DATA CONVERSION 

9.3.2 DIX$BY_DIX_DES - Perform General Conversion 

PURPOSE: 

The DIX$BY DIX DES routine performs any type of data conversion 
that can be done by the DIL. 

DIX$BY DIX DES is a general purpose routine. DIX$BY DIX DES 
accepts a Foreign Field Descriptor for the source and destination 
fields. If the DIL has the capability to convert that type of 
field, DIX$BY_DIX_DES converts the field. 

CALL FORMAT: 

COBOL: CALL "DIX$BY DIX DES USING" sffd (1), dffd (1) 
GIVING stat.- -

FORTRAN: status 

where: 

sffd 

dffd 

is a Foreign Field 
field. A Foreign 
long integers. 

Descriptor describing the source 
Field Descriptor consists of three 

is a Foreign Field Descriptor describing the 
destination field. A Foreign Field Descriptor consists 
of three long integers. 

9-9 



VMS DATA CONVERSION 

STATUS CODES: 

DIL Name Meaning 

DIX-INVDATTYP Invalid data type code. 

DIX-INVLNG Length invalid or unspecified. 

DIX-INVSCAL Scale factor invalid or unspecified. 

DIX-UNKSYS Unknown system of origin specified. 

DIX-ALIGN Invalid alignment for data type. 

DIX-INVALCHAR Invalid character in source field or 
conversion table. 

DIX-GRAPHIC Graphic character changed in conver-
sion. 

DIX-FMTLOST Format effector gained or lost in 
conversion. 

DIX-NONPRINT Non-printing character gained or lost 
in conversion. 

DIX-TRUNC String too long for destination --
truncated. 

DIX-TOOBIG Converted source field too large for 
destination field. 

DIX-UNSIGNED Negative value moved to unsigned 
field. 

DIX-ROUNDED Result is rounded. 

DIX-UNNORM Floating-point number improperly 
normalized. 

DIX-INVDNUMCHR Invalid display numeric character 
in source field. 

DIX-INVDNUMSGN Invalid display numeric sign in 
source field. 

DIX-INVPDDGT Invalid packed decimal digit in 
source field. 

DIX-INVPDSGN Invalid packed decimal sign in 
source field. 

RELATED ROUTINES: 

DIX$BY DET: This routine allows you to convert a field without 
making a Foreign Field Descriptor for the field. 
See Section 9.3.3 for a description of DIX$BY_DET. 

9-10 



VMS DATA CONVERSION 

9.3.3 DIX$BY_DET - Convert a Field Without an FFD 

PURPOSE: 

The DIX$BY DET routine allows you to convert a field without 
making an- FFD for the field. DIX$BY DET requires a detailed 
series of arguments; you must specify parameters for both the 
source and destination fields. 

You should only use DIX$BY DET in cases where the field will be 
converted a limited number of times or the program is 
table-driven. DIX$BY DET creates a description for the field 
each time it processes the field. If you plan to convert a field 
many times during a run, it is quicker to create an FFD for the 
field and convert it with one of the other single function 
conversion routines. Whereas DIX$BY DET creates an FFD 
internally each time it processes, if you perform the conversion 
with an FFD (built using the DIX$MAK DES DET routine) you make 
the FFD only once. - -

CALL FORMAT: 

COBOL: CALL "DIX$BY DET" USING srec, ssysor, sbysiz, sbyoff, 
sbioff,-stype, slength, sscale, drec, dsysor, 
dbysiz, dbyoff, dbioff, dtype, dlngth, dscale 
GIVING stat. 

FORTRAN: status = DIX$BY DET (srec, ssysor, sbysiz, sbyoff, 
1 sbioff, stype, slength, sscale, drec, dsysor, 

where: 

srec 

ssysor 

sbysiz 

2 dbysiz, dbyoff, dbioff, dtype, dlngth, dscale) 

is the source record that contains the field being 
described. 

COBOL: This argument can be any word-aligned data 
item. 

FORTRAN: This argument is usually an integer array. 

is a long integer that gives the system of 
the source record. Possible DIL Names 
argument are: 

origin of 
for this 

SYS-IO-20 for a record defined for TOPS-IO or 
TOPS-20. 

SYS-VMS for a record defined for VMS. 

is a long integer that gives the byte size of the 
source record for this call to the DIX$BY DET routine. 
All VMS records have a byte size of 8. A- TOPS-IO or 
TOPS-20 COBOL record can have a byte size of 6, 7, 9 or 
36. A TOPS-IO or TOPS-20 FORTRAN record can have a 
byte size of 7 or 36. See Appendix A for further 
information. 

9-11 



sbyoff 

sbioff 

stype 

slngth 

sscale 

drec 

dsysor 

dbysiz 

dbyoff 

dbioff 

VMS DATA CONVERSION 

is a long integer that gives the byte offset to the 
field within the source record. The byte offset is the 
number of bytes in the source record (of the size 
specified in "sbysiz") that precede the field which you 
want to convert. 

is a long integer that gives 
argument is not currently 
zero. 

the bit offset. This 
used; it should always be 

is a long integer that gives the data type of the 
source field. See Appendix A for a list of valid data 
type codes. 

is a long integer that indicates the length of the 
source field: in characters for string fields. This 
argument is required for some data types, it must be 
zero for all other data types. See Appendix A for 
further information. 

is a long integer that gives the scale factor of the 
source field. It indicates the number of decimal 
places to move the decimal point to the left. A 
negative scale factor means that the decimal point will 
be moved to the right. You must specify a scale factor 
if you want to convert a fixed-point field. Specify 
zero for all other classes of data. 

is the record that contains the record to be described. 
This argument is a long integer. 

COBOL: 

FORTRAN: 

This argument 
item. 
This argument 
array. You 
or an element 

can be any word-aligned data 

will usually be an integer 
can pass either the whole array 
of the array. 

is a long integer that gives the system of origin of 
the destination record. Possible OIL Names for this 
argument are: 

SYS-10-20 

SYS-VMS 

for a record defined for TOPS-IO or 
TOPS-20. 

for a record defined eor VMS. 

is a long integer that gives the byte size of the 
destination record for this call to OIX$BY OET. All 
VMS records have a byte size of 8. A TOPS-IO or 
TOPS-20 COBOL record can have a byte size of 6, 7, 9 or 
36. A TOPS-10 or TOPS-20 FORTRAN record can have a 
byte size of 7 or 36. See Appendix A for further 
information. 

is a long integer that gives the byte offset of the 
destination record. The byte offset is the number of 
bytes in the record (of the size specified in "dbysiz") 
that precede the field that you want to convert. 

is a long integer that gives the bit offset. This 
argument is not currently necessary; it should always 
be zero. 

9-12 



dtype 

dlngth 

dscale 

VMS DATA CONVERSION 

is a long integer that gives the data type of the 
destination field. See Appendix A for a list of valid 
data type codes. 

is a long integer that gives the length of the 
destination field: in characters for string fields. 
This argument is required for some data types, it must 
be zero for all other data types. See Appendix A for 
further information. 

is a long integer that gives the scale factor of the 
destination field. It indicates the number of decimal 
digits to move the decimal point to the left. A 
negative scale factor means that the decimal point will 
be moved to the right. You must specify a scale factor 
if you want to convert a fixed-point field. Specify 
zero for all other classes of data. 

9-13 



STATUS CODES: 

DIL Name 

DIX-INVDATTYP 

DIX-INVLNG 

DIX-INVSCAL 

DIX-UNKSYS 

DIX-ALIGN 

DIX-INVBYSIZ 

DIX-INVALCHAR 

DIX-GRAPHIC 

DIX-FMTLOST 

DIX-NONPRINT 

DIX-TRUNC 

DIX-TOOBIG 

DIX-UNSIGNED 

DIX-ROUNDED 

DIX-UNNORM 

DIX-INVDNUMCHR 

DIX-INVDNUMSGN 

DIX-INVPDDGT 

DIX-INVPDSGN 

RELATED ROUTINES: 

DIX$MAK_DES_DET: 

VMS DATA CONVERSION 

Meaning 

Invalid data type code. 

Length invalid or unspecified. 

Scale factor invalid or unspecified. 

Unknown system of origin specified. 

Invalid alignment for data type. 

Invalid byte size specified. 

Invalid character in source field or 
conversion table. 

Graphic character changed in conver-
sion. 

Format effector gained or lost in 
conversion. 

Non-printing character gained or lost 
in conversion. 

String too long for destination --
truncated. 

Converted source field too large for 
destination field. 

Negative value moved to unsigned 
field. 

Result is rounded. 

Floating-point number improperly nor-
malized. 

Invalid display numeric character 
in source field. 

Invalid display numeric sign in 
source field. 

Invalid packed decimal digit in 
source field. 

Invalid packed decimal sign in 
source field. 

This routine builds an FFD for the field that 
you wish to convert. See Section 9.3.1 for a 
description of DIX$MAK_DES_DET. 

9-14 



VMS DATA CONVERSION 

9.4 VMS DATA CONVERSION EXAMPLES 

9.4.1 VMS COBOL Data Conversion Example 

IDENTIFICATION DIVISION. 

PROGRAM-ID. 

CDCR32. 

This program performs a single string data conversion. The 
ASCII-8 string value "ABCDE" will be converted to the same 
ASCII-7 value. 

ENVIRONMENT DIVISION. 

CONFIGURATION SECTION. 

SOURCE-COMPUTER. 

VAX-II. 

OBJECT-COMPUTER. 

VAX-II. 

DATA DIVISION. 

WORKING-STORAGE SECTION. 

* source data field 

01 SRCDAT PIC X(5) USAGE DISPLAY VALUE "ABCDE". 

* The destination data field must be large enough to hold the ASCII-8 
* equivalent of the source data field: 
* ASCII-8 PIC X(5) = 8 bits/character * 5 characters 40 bits 
* ASCII-7 PIC X(5) = 7 bits/character * 5 characters 35 bits 

01 DESTINATION-DATA. 
02 DSTDAT PIC S9(9) COMP OCCURS 2. 

* foreign field descriptors 
01 FFDS. 

05 SRCFFD PIC S9(9) COMP OCCURS 3. 
05 DSTFFD PIC S9(9) COMP OCCURS 3. 

01 INTERFACE-FILES. 
COPY DIL$COBOL OF "SYS$LIBRARY:DIL.TLB". 
COPY DIX$COBOL OF "SYS$LIBRARY:DIL.TLB". 

* Dix call parameters. 

01 DIX-SYS PIC S9(9) COMPo 
01 DIX-DT PIC S9(9) COMPo 
01 DIX-BYSZ PIC S9(9) COMPo 
01 DIX-BYO PIC S9(9) COMPo 
01 DIX-BTO PIC S9(9) COMP VALUE O. 
01 DIX-LEN PIC S9(9) COMPo 
01 DIX-SCAL PIC S9(9) COMPo 
01 DIL-DISPLAY PIC X(9). 
01 DIL-STATUS PIC S9(9) COMPo 

9-15 



VMS DATA CONVERSION 

PROCEDURE DIVISION. 

INITIALIZE-STUFF. 
* initialize destination buffer to zeros 

MOVE 0 TO DSTDAT(l). 
MOVE 0 TO DSTDAT(2). 

MAKE-FFDS. 

MOVE 7 TO OIX-BYSZ. 
MOVE 0 TO DIX-BYO. 
MOVE 5 TO DIX-LEN. 
MOVE 0 TO DIX-SCAL. 

CALL "DIX$MAK_DES_DET" USING DSTFFD(l), DSTOAT(l}, DIX$K SYS 10 20, 
DIX-BYSZ, DIX-BYO, OIX-BTO,- -­
OIX$K DT ASCII 7, DIX-LEN, OIX-SCAL 

GIVING OIL-STATUS. -

IF DIL-STATUS IS NOT SUCCESS 
MOVE OIL-STATUS TO OIL-OISPLAY 
DISPLAY"? Failure in OIX$MAK OES DET. Oil-status 

MOVE 8 TO OIX-BYSZ. 
MOVE 0 TO DIX-BYO. 
MOVE 5 TO DIX-LEN. 
MOVE 0 TO OIX-SCAL. 

" DIL-DISPLAY. 

CALL "OIX$MAK_DES_OET" USING SRCFFO(l), SRCDAT, OIX$K SYS VAX, 
DIX-BYSZ, DIX-BYO, OIX-BTO, -
DIX$K DT ASCII 8, DIX-LEN, OIX-SCAL 

GIVING OIL-STATUS. -

IF OIL-STATUS IS NOT SUCCESS 
MOVE OIL-STATUS TO OIL-DISPLAY 
DISPLAY"? Failure in OIX$MAK_DES DET. Oil-status " OIL-OISPLAY. 

DO-CONVERSION. 
* Convert ASCII-8 value "ABCDE" to ASCII-7 value "ABCDE". 

CALL "DIX$BY DIX DES" USING SRCFFD(l), DSTFFD(l} 
- - GIVING OIL-STATUS. 

IF DIL-STATUS IS NOT SUCCESS 
MOVE DIL-STATUS TO OIL-OISPLAY 
DISPLAY"? Failure in DIX$BY_OIX_DES. Oil-s.tatus " DIL-OISPLAY. 

CHECK-RESULTS. 

9-16 



VMS DATA CONVERSION 

* What should have been created is the TOPS-10/TOPS-20 form of the 
* source value "ABCDE". 

* * In DEC-10/DEC-20 memory this looks like the following: 

* 
* * symbolic representation: 
* IAAAAABBBBBCCCCCDDDDDEEEEE 1 :m 

numeric (binary) representation: 
110000011000010100001110001001000101 1 :m 

* * Transposing this into VAX memory 
* symbolic representation: 
* 1 EEEEEEE 1 : n 
* ICDDDDDDDI :n+l 
* IBBCCCCCCI :n+2 
* IAAABBBBBI :n+3 
* 1 AAAAI :n+4 
* 

we have: 
numer ic (binary) 
11000101 1 :n 
1110001001 : n+1 
1101000011 :n+2 
1001100001 :n+3 
1 10001 :n+4 

representation: 

* if you consider the numeric values as longwords in VAX memory: 
* 1001100001010000111000100100010101 :n 
* 1000000000000000000000000000010001 :n+4 
* 
* 
* 
* 
* 

decimal equivalent: 
1 815907978 1 :n 
1 8 1 :n+4 

IF DSTDAT(l) NOT = 815907978 
DISPLAY"? Error (n conversion: " 
DISPLAY " expected converted value not returned from conversion" 
STOP RUN. 

IF DSTDAT(2) NOT = 8 
DISPLAY"? Error in conversion: " 
DISPLAY " expect~d converted value not returned from conversion" 
STOP RUN. 

DISPLAY" CDCR32 successfully completed.". 

STOP RUN. 

9.4.2 VMS FORTRAN Data Conversion Example 

C FDCR32 

C This program performs a single string data conversion. The 
C ASCII-8 string value "ABCDE" will be converted to the same 
C ASCII-7 value. 
C Include interface support files 

INCLUDE 'SYS$LIBRARY:DIL.TLB (DIL$ANSI FORTRAN)' 
INCLUDE 'SYS$LIBRARY:DIL.TLB (DIX$ANSI=FORTRAN)' 

C Source and destination data fields. 
C NOTE: The destination data field must be large enough to hold the 
C ASCII-8 equivalent of the source data field: 
C ASCII-8 (5 chars) = 8 bits/character * 5 characters 40 bits 
C ASCII-7 (5 chars) = 7 bits/character * 5 characters = 35 bits 

INTEGER SRCDAT (2), DSTDAT (2) 

9-17 



VMS DATA CONVERSION 

C Foreign field descriptors (ffds) 

INTEGER SRCFFD (3), DSTFFD (3) 

C Status return code 
INTEGER DILSTS 

C Data for source and destination data fields 
DATA SRCDAT I'ABCD', 'E 'I 
DATA DSTDAT 10, 01 

C make the foreign field descriptors for use by DIX$BY_DIX_DES 

DILSTS = DIX$MAK DES DET (SRCFFD, SRCDAT, SYSVAX, 8, 0, 0, 
1 ASCII8, 5, oT 
IF (DILSTS.NE.NORMAL) GOTO 100 

DILSTS = DIX$MAK DES DET (DSTFFD, DSTDAT, SYS36, 7, 0, 0, 
1 ASCII7, 5, 0) 
IF (DILSTS.NE.NORMAL) GOTO 100 

C Do conversions: convert ASCII-8 value "ABCDE" to ASCII-7 value ftABCDE" 

DILSTS = DIX$BY DIX DES (SRCFFD, DSTFFD) 
IF (DILSTS.NE.NORMAL) GOTO 102 

C Check results: 

C What should have been created is the TOPS-10/TOPS-20 form of the 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

source value "ABCDE". 

In DEC-10/DEC-20 memory this looks like the following: 

symbolic representation: 
IAAAAABBBBBCCCCCDDDDDEEEEE I :m 

numer ic (binary) representa tion: 
110000011000010100001110001001000101 I :m 

Transposing this into VAX memory we 
symbolic representation: 

I EEEEEEE I : n 
I CDDDDDDD I : n+1 
I BBCCCCCC I : n+2 
IAAABBBBBI :n+3 
I AAAAI :n+4 

have: 
numeric (binary) 
11000101 I :n 
111000100 I :n+1 
1101000011 : n+2 
100110000 I :n+3 
I 10001 :n+4 

representation: 

if you consider the binary values as longwords in VAX memory: 
100110000101~000111000100100010101 :n 
1000000000000000000000000000010001 :n+4 

decimal equivalent: 
I 815907978 I :n 
I 8 I :n+4 

IF (DSTDAT (1) .NE. 815907978) GOTO 104 
IF (DSTDAT (2) • NE. 8) GOTO 104 

200 FORMAT (' FDCR32 successfully completed.') 
WRITE (6, 200) 
STOP 

9-18 



VMS DATA CONVERSION 

C Print error information 
100 WRITE (6, 101) OILSTS 
101 FORMAT (' ? Failure in XOESCR. Oil-status I10) 

STOP 

102 
103 

WRITE (6, 103) DILSTS 
FORMAT ('? Failure in XCVST. Oil-status 
STOP 

104 WRITE (6, 105) 
105 FORMAT ('? Error in conversion:') 

WRITE (6, 106) 

I10) 

106 FORMAT (' expected converted value not returned from conversion') 
STOP 

ENO 

9-19 





CHAPTER 10 
VMS TASK-TO-TASK 



CHAPTER 10 

VMS TASK-TO-TASK 

10.1 TASK-TO-TASK FROM VMS COBOL 

The information included in this section assumes 

-You are writing a COBOL program 
-You plan to use the program on a VMS system 

To store a Network Logical Name, task 
attributes, to send data or to perform 
represent several data items in your program. 
not necessarily, allocate space for 
WORKING-STORAGE. 

10.1.1 Including the Interface Support Files 

characteristics or user 
a status check you must 

Users generally, but 
these data items in 

VMS systems have two different classes of Interface Support files for 
each supported language. The first class of files include native 
VMS-type names for each of the various codes for VMS COBOL and VMS 
FORTRAN. The second class includes files with TOPS-IO/TOPS-20 COBOL 
compatible names for VMS COBOL, and files which include ANSI Standard 
names for the interface to VMS FORTRAN. The Interface Support files 
for VMS are provided as a text library called DIL.TLB. This library 
includes the support files for both VMS COBOL and VMS FORTRAN. 

Native VMS COBOL 

You can use the COBOL COPY verb to retrieve information from DIL.TLB 
at compilation time. There are three library elements for native VMS 
COBOL in DIL.TLB. The elements are DIL$COBOL, DIT$COBOL, and 
DIX$COBOL. 

The library element DIL$COBOL defines general codes and names 
applicable to the Data Conversion Routines, the Task-to-Task Routines 
and the Remote File Access Routines. The general success status code 
(SS-NORMAL) is defined in element DIL$COBOL. Severity codes and 
system codes are defined in element DIL$COBOL. To define these names 
in your program, include the following statement in your 
WORKING-STORAGE section after an Ol-level declaration: 

COpy DIL$COBOL OF "SYS$LIBRARY:DIL.TLB". 

10-1 



VMS TASK-TO-TASK 

In the following example, the DIL$COBOL element of the library is 
retrieved and included in your program: 

01 interface-files. 
COPY DIL$COBOL OF "SYS$LIBRARY:DIL.TLB". 

The library element DIT$COBOL defines codes specific to the 
Task-to-Task and Remote File Access Routines. The codes include the 
DIT status codes, which are standard VMS condition values. Also 
included are Task-to-Task wait codes, Task-to-Task link types, 
Task-to-Task message modes and VMS task fire-up codes. To define 
these names in your program, include the following statement in your 
WORKING-STORAGE section after an Ol-level declaration as described 
above for the DIL$COBOL element: 

COpy DIT$COBOL OF "SYS$LIBRARY:DIL.TLB". 

For programs which use the Task-to-Task routines with the native VMS 
names, you must include both the DIL$COBOL and DIT$COBOL library 
elements. 

TOPS-IO/TOPS-20 Compatible COBOL 

If you want to write a program that can be 
DECsystem-lO or a DECSYSTEM-20, you 
TOPS-IO/TOPS-20 compatible names in your 
native VMS names. 

easily transported to a 
may want to include the 

program rather than the 

You can use the COBOL COPY verb to retrieve information 
at compilation time. There are three library 
TOPS-IO/TOPS-20 compatible COBOL in DIL.TLB. The 
DIL$COBOL_20, DIT$COBOL_20, and DIX$COBOL_20. 

from DIL.TLB 
elements for 

elements are 

The library element DIL$COBOL 20 defines general codes and names 
applicable to the Data Conversion Routines, the Task-to-Task Routines 
and the Remote File Access Routines. The general success status code 
(SS-NORMAL) is defined in element DIL$COBOL 20. Severity codes and 
system codes are defined in element DIL$COBOL-20. To define these 
names in your program, include the follo;ing statement in your 
WORKING-STORAGE section after an Ol-level declaration: 

COPY DIL$COBOL 20 OF "SYS$LIBRARY:DIL.TLB". 

n the following example, the DIL$COBOL 20 element of the library is 
retrieved and included in your program: 

1 interface-files. 
COPY DIL$COBOL 20 OF "SYS$LIBRARY:DIL.TLB". 

10-2 



VMS TASK-TO-TASK 

The library element DIT$COBOL 20 defines codes specific to the 
Task-to-Task and Remote File Access Routines. This includes the DIT 
status codes, in the compatible COBOL format which provides only the 
condition identification portion of the status code. Also included 
are Task-to~Task wait codes, Task-to-Task link types, Task-to-Task 
message modes and VMS task fire-up codes. To define these names in 
your program, include the following statement in your WORKING-STORAGE 
section after an Ol-level declaration as shown above for the 
DIL$COBOL_20 element: 

COpy DIT$COBOL_20 OF "SYS$LIBRARY:DIL.TLB". 

For programs which use the Task-to-Task routines with the compatible 
names, you must include both the DIL$COBOL 20 and DIT$COBOL 20 library 
elements. 

10.1.2 Storing a Network Logical Name 

The NLN occupies one longword of VMS memory. To store an NLN, you 
must define a data item with the fo~lowing format: 

01 your-nln PIC S9(9) COMPUTATIONAL. 

When you call the DIT$NFOPA, DIT$NFOPB, DIT$NFOP8 or DIT$NFOPP routine 
to create the NLN, use your-nln as the value for NLN to be returned. 
When the routine successfully finishes processing, it returns a value 
to your-nln. 

10.1.3 Storing Task and User Attributes 

To include task and user attributes in a 
or DIT$NFOP8 or task attributes in 
describe these attributes as data items 
attributes must always be DISPLAY items 
PIC X(39), as shown below: 

01 target-name PIC X(16) USAGE 
01 object-type PIC X(16) USAGE 
01 desc-name PIC X(16) USAGE 
01 task-name PIC X(16) USAGE 
01 userid PIC X(39) USAGE 
01 passwd PIC X(39) USAGE 
01 acct PIC X(39) USAGE 

call to DIT$NFOPA, DIT$NFOPB 
a call to DIT$NFOPP you must 

in WORKING-STORAGE. These 
with a length of PIC X(16) or 

DISPLAY. 
DISPLAY. 
DISPLAY. 
DISPLAY. 
DISPLAY. 
DISPLAY. 
DISPLAY. 

10.1.4 Checking the Status of a Task-to-Task Routine 

Section 9.1.4 explains how to check the status of a DIL Routine from 
VMS COBOL. 

A simple call to the Task-to-Task Routines from VMS COBOL, with an 
error check, looks like the following example: 

CALL "DIT$NFOPA" USING nln, trgsys, objtyp, desc, tsknam, userid, 
passwd, acct, usdat, wait GIVING status. 

IF status is FAILURE 
THEN DISPLAY "error occurred". 

10-3 



VMS TASK-TO-TASK 

10.2 TASK-TO-TASK FROM VMS FORTRAN 

The information included in this section assumes 

-You are writing a FORTRAN program 
-You plan to use the program on a VMS system 

This section explains how 
characteristics or user 
status check. 

to store a Network 
attributes, to send 

10.2.1 Including the Interface Support Files 

Logical Name, task 
data or to perform a 

VMS systems have two different classes of Interface Support files for 
each supported language. The first class of files include native VMS 
type names for each of the various codes for VMS COBOL and VMS 
FORTRAN. The second class includes files with TOPS-10/TOPS-20 COBOL 
compatible names for VMS COBOL, and files that include ANSI Standard 
names for the interface to VMS FORTRAN. The Interface Support files 
for the VMS are provided as a text library called DIL.TLB. The 
library includes the support files for both VMS COBOL and VMS FORTRAN. 

Native VMS FORTRAN 

You can use the FORTRAN INCLUDE statement to retrieve information from 
DIL.TLB at compilation time. There are three library elements for 
native VMS FORTRAN in DIL.TLB. The elements are DIL$FORTRAN, 
DIT$FORTRAN, and DIX$FORTRAN. 

The library element DIL$FORTRAN defines general codes and names 
applicable to the Data Conversion Routines, the Task-to-Task Routines 
and the Remote File Access Routines. The general success status code 
(SS-NORMAL) is defined in element DIL$FORTRAN. Severity codes and 
system codes are defined in element DIL$FORTRAN. To define these 
names in your program, include the following statement: 

INCLUDE 'SYS$LIBRARY:DIL.TLB (DIL$FORTRAN), 

This retrieves the DIL$FORTRAN element of the library file from the 
system area SYS$LIBRARY and includes it in your program. 

The library element DIT$FORTRAN defines codes specific to the 
Task-to-Task and Remote File Access Routines. This includes the DIT 
status codes, which are standard VMS condition values. Also included 
are Task-to-Task wait codes, Task-to-Task link types, Task-to-Task 
message modes and VMS task fire-up codes. To define these names in 
your program, include the following statement: 

INCLUDE 'SYS$LIBRARY:DIL.TLB (DIT$FORTRAN)' 

For programs which use the Task-to-Task routines with the native VMS 
names, you must include both the DIL$FORTRAN and DIT$FORTRAN library 
elements. 

10-4 



VMS TASK-TO-TASK 

ANSI Standard Compatible FORTRAN 

If you want to write a program that can be easily transported to 
another system, you may want to include the ANSI Standard FORTRAN 
names in your program rather than the native VMS names. 

You can use the FORTRAN INCLUDE statement to retrieve information from 
DIL.TLB at compilation time. There are three library elements for 
ANSI Standard FORTRAN in DIL.TLB. The elements are DIL$ANSI FORTRAN, 
DIT$ANSI_FORTRAN, and DIX$ANSI_FORTRAN. -

The library element DIL$ANSI FORTRAN defines general codes and names 
applicable to the Data Conversion Routines, the Task-to-Task Routines 
and the Remote File Access Routines. The general success status code 
(SS-NORMAL) is defined in element DIL$ANSI FORTRAN. Severity codes 
and system codes are defined in element DIL$ANSI FORTRAN. To define 
these names in your program, include the statement: 

INCLUDE 'SYS$LIBRARY:DIL.TLB (DIL$ANSI_FORTRAN), 

This retrieves the DIL$ANSI_FORTRAN element of the library file and 
includes it in your program. 

The library element DIT$ANSI FORTRAN defines codes specific to the 
Task-to-Task and Remote File Access Routines. The codes include the 
DIT status codes, which are standard VMS condition values. Also 
included are Task-to-Task wait codes, Task-to-Task link types, 
Task-to-Task message modes and VMS task fire-up codes. To define 
these names in your program, include the following statement: 

INCLUDE 'SYS$LIBRARY:DIL.TLB (DIT$ANSI_FORTRAN) 

For programs which use the Task-to-Task routines with the compatible 
names, you must include both the DIL$ANSI FORTRAN and DIT$ANSI FORTRAN 
library elements. -

10.2.2 Storing a Network Logical Name 

The NLN occupies one longword of VMS memory. To store an NLN, you 
must declare an integer, as shown below: 

INTEGER nln 

10-5 



VMS TASK-TO-TASK 

10.2.3 Storing Task and User Attributes 

To include task and user attributes in a call to DIT$NFOPA, DIT$NFOPB 
or DIT$NFOP8 or task attributes in a call to DIT$NFOPP you must 
describe these attributes in your program as follows: 

INTEGER trgsys (4 ) or CHARACTER*16 trgsys 
INTEGER objtyp (4 ) or CHARACTER*16 objtyp 
INTEGER desc ( 4 ) or CHARACTER*16 desc 
INTEGER tsknam (4) or CHARACTER*16 tsknam 
INTEGER userid (10) or CHARACTER*39 use rid 
INTEGER passwd (10) or CHARACTER*39 passwd 
INTEGER acct (10) or CHARACTER*39 acct 
INTEGER usdat (4 ) or CHARACTER*16 usdat 

NOTE 

By default, VAX-II FORTRAN passes arguments of type 
CHARACTER by descriptor. In order to use CHARACTER 
type variables as arguments to DIL (on VMS), the %REF 
built-in function .must be used because DIL string 
arguments must be passed by reference. 

10.2.4 Checking the Status of a Task-to-Task Routine 

Section 9.2.4 explains how to check the status of a DIL Routine from 
VMS FORTRAN. 

A simple call to the Task-to-Task routines from VMS FORTRAN, with an 
error check, might be: 

status = DIT$NFOPA (nin, trgsys, objtyp, desc, tsknam, 
1 userid, passwd, acct, usdat, wait) 
IF (status .NE. SS$_NORMAL) GOTO 100 

100 TYPE 101 
101 FORMAT (' error occurred') 

10-6 



VMS TASK-TO-TASK 

10.3 VMS TASK-TO-TASK REFERENCE 

10.3.1 DIT$NFGND - Return the Status of Links 

PURPOSE: 

The DIT$NFGND routine returns the status of network events such 
as connect requests, available data or aborted links. 

CALL FORMAT: 

COBOL: CALL "DIT$NFGND" USING nln, wait GIVING stat. 

FORTRAN: status = DIT$NFGND (nln, wait) 

where: 

nln is the Network Logical Name of the link that you want 
information about. An NLN is a long integer. It is 
set by the DIT$NFOPA, DIT$NFOPB, DIT$NFOP8 or DIT$NFOPP 
routine. 

wait 

If you want information about any event occuring on any 
logical link, use -1 as the value for this argument. 
DIT$NFGND finds the next network event and returns the 
NLN of that link. If DIT$NFGND cannot find an event 
the value of this argument is undefined. 

is a long integer that gives the wait code. 

Set the wait code to "no" if you want the routine to 
return only the current status of events on the 
specified link. The DIL Name for this argument is: 

WAIT-NO 

Set the wait code to "yes" if you want the routine to 
wait for a network event to occur involving the 
specified link. When an event occurs the routine 
reports it. Waiting uses minimal CPU time. The DIL 
Name for this argument is: 

WAIT-YES 

10-7 



STATUS CODES: 

DIL Name 

DIT-INVARG 

SS-NORMAL 

DIT-CONNECTEVENT 

DIT-ABREJEVENT 

DIT-DATAEVENT 

DIT­
DISCONNECTEVENT 

DIT-HORRIBLE 

DIT-INTDATAEVENT 

VMS TASK-TO-TASK 

Meaning 

You passed an incorrect or invalid 
argument. 

The routine successfully completed 
processing. You receive this code 
only if you don't wait for a new 
event and no events have occured 
since the last reported event~ If an 
event has taken place, (connect, 
abort, disconnect, data event) you 
receive the code for that event. 

This code is returned for a connect 
event. If you are checking the 
status of a passive task, this code 
indicates that the task has received 
a connect request. If you are check­
ing the status of an active task, 
~his code indicates that a connect 
request issued by the active task has 
been accepted by the passive task. 

The routine returns this code if the 
link is aborted or rejected. You 
should call NFCLS to do an abort and 
release the resources of this link, 
so it can be used again. 

The routine returns this code when 
data is available over the specified 
link. You should call NFRCV to re­
ceive the data. 

The routine returns this code when 
the specified link has been discon­
nected. You should call NFCLS to do 
an abort to release the resources of 
this link, so it can be used again. 

This code is returned in the event of 
a system or unexpected error. 

The routine returns this code 
when an interrupt data message is 
available. You should call NFRCI 
to read the interrupt data message. 

10-8 



VMS TASK-TO-TASK 

10.3.2 DIT$NFINF - Get Information About the Other End of a Link. 

PURPOSE: 

The DIT$NFINF routine returns information about the remote node, 
the remote process of the remote DECnet object associated with a 
specific network connection. 

You can also use the DIT$NFINF routine to read optional data sent 
by a remote process. If the cooperating process is on a VMS 
system, you can use DIT$NFINF to read optional data associated 
with a disconnection or rejection of a process. If the 
cooperating process is a TOPS-10 or TOPS-20 system, you can read 
any type of optional data. 

CALL FORMAT: 

COBOL: CALL "DIT$NFINF" USING nln, inftyp, length, buffer, 
GIVING stat. 

FORTRAN: status = DIT$NFINF (nln, inftyp, length, buffer) 

where: 

nln is the Network Logical Name of the link that you want 
information about. The NLN is set by the DIT$NFOPA, 
DIT$NFOBPB, DIT$NFOP8, or DIT$NFOPP routine. The 
Network Logical Name is a long integer. 

inftyp is a long integer that specifies 
information wanted. 

the type of 

Refer to the DECnet User's Guide for your system for 
more information. 

10-9 



VMS TASK-TO-TASK 

Information Type DIL Name 

Remote node name of the._; cooperating task. INF-NODE 

Remote object type. This information is only INF-OBJECT 
available to the passive task. 

Remote object descriptor format (0 if the task INF-DESCF 
only requires an object id, 1 if the task only 
requires a taskname, or 2 if the task requires a 
project-programmer number) • This information is 
only available to the passive task. 

Remote DECnet object descriptor. This information INF-DESC 
is only available to the passive task. 

Remote process user ide This information is only INF-USERID 
available to the passive task. 

Remote process password. This information is only INF-PASSWD 
available to the passive task. 

Remote process account. This information is only INF-ACCT 
available to the passive task. 

Remote process optional data or disconnect optional INF-OPT 
data or reject optional data. If the cooperating 
task is running on a VMS system, only disconnect 
and reject optional data are available. 

Maximum segment size for the link in bytes. This INF-SEG 
is not available for VMS systems. The information 
can be used to determine the optimum size of 
records to be transmitted over the link. 

Abort code or reject code. You can find the INF-ABTCOD 
meaning of the abort or reject code in the DECnet 
manual for your system. 

length is a long integer in which the length of ASCII data 
returned is specified. 

buffer is the area in which to place returned ASCII data. 
This area must be at least 16 ASCII-8 characters long 
to accomodate optional data, a taskname, or a DECnet 
descriptor. It must be at least 39 ASCII-8 characters 
long to accommodate a userid, a password, or an 
account. 

10-10 



VMS TASK-TO-TASK 

STATUS CODES: 

DIL Name Meaning 

DIT-INVARG You passed an incorrect or invalid 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

DIT-INFONOTAVAIL The information you have requested 
is not available to this task. 

DIT-INFOOUTOFRANGE The information you have requested 
is not in the range of valid values. 

DIT-HORRIBLE This code is returned in the event 
of a system or unexpected error. 

10-11 



VMS TASK-TO-TASK 

10.3.3 DIT$NFOPA - Open an ASCII Link From an Active Task 

PURPOSE: 

The DIT$NFOPA routine opens a logical link to a program on 
another system. You use this routine when you intend to transmit 
or receive ASCII data. 

CALL FORMAT: 

COBOL: CALL "DIT$NFOPA" USING nln, trgsys, objtyp, desc, 
tsknam,userid, passwd, acct, usdat, wait GIVING 
stat. 

FORTRAN: status = DIT$NFOPA (nln, trgsys, objtyp, desc, tsknam, 
1 userid, passwd, acct, usdat, wait) 

where: 

nln 

trgsys 

objtyp 

desc 

is the Network Logical Name (NLN) to be returned when 
this routine successfully finishes processing. You use 
the NLN to identify this link when you call other 
Task-to-Task routines. The NLN is a long integer. 

is the node name of the target system. The target 
system, in this case, is the system which runs the 
passive task that you want to access with this link. 

The node name has a length of sixteen ASCII-8 
characters. If your node name is less than sixteen 
characters, left-justify the field. If you give this 
argument a value of spaces, it defaults to the local 
system's node name. 

is the object type of the passive task. The object 
type specifies the kind of service performed by the 
passive task. This argument has a length of sixteen 
ASCII-8 characters. If the object type has less than 
sixteen characters, left-justify the field. 

The object type can be expressed as either a number or 
name. Most programs use an object type of 0 or TASK. 
Server programs which perform a generic service (MAIL, 
for example) have a non-zero object type. You can find 
a list of valid DECnet object types and their meanings 
in the appropriate DECnet User's Guide. 

is the DECnet descriptor. You must use a descriptor 
when you plan to access a task with object type 0 or 
object name TASK. The descriptor must contain the 
DECnet taskname of the passive task on the remote 
system. For TOPS-20 to TOPS-20 communication, when the 
object type is not 0, you can provide a descriptor. 
See Appendix D for further information. The descriptor 
has a length of sixteen ASCII-8 characters. If your 
descriptor is less than sixteen characters, 
left-justify the field. 

10-12 



tsknam 

VMS TASK-TO-TASK 

is the OECnet taskname. Taskname is a unique sixteen 
character ASCII-8 string that identifies this process 
to the network. VMS ignores this argument for active 
tasks. It generates a unique name. If you don't want 
to specify a taskname, pass spaces as the value for 
taskname. 

NOTE 

The following three arguments are optional user 
attributes. The passive task may use these attributes 
to validate a network connection, or to perform any 
other recognition function agreed to by both tasks. 
These arguments may be given a value of spaces if you 
want to connect to a passive task on a TOPS-20 or 
TOPS-IO system~ they are required if you want to 
connect to a passive task on a VMS system. 

userid 

passwd 

acct 

usdat 

wait 

is your userid. Userid has a length of thirty-nine 
ASCII-8 characters. If your userid is less than 
thirty-nine characters, left-justify the field. If you 
don't want to specify a userid, pass spaces as the 
value of this argument. 

is your password. Password has a length of thirty-nine 
ASCII-8 characters. If your password is less than 
thirty-nine characters, left-justify justify the field. 
If you don't want to specify a password, pass spaces as 
the value of the argument. 

is your account number or charge code. This field has 
a length of thirty-nine ASCII-8 characters. If the 
account has less than thirty-nine characters, 
left-justify the field. If you don't want to specify 
an account number, pass spaces as the value for this 
argument. 

is reserved for sixteen characters of ASCII-8 user 
data. Not currently usedon VMS systems; this argument 
must be spaces. 

is a long integer that gives the wait code. 

Set the wait code to "no" if you do not want your 
program to wait until it establishes a connection to 
the passive task. Using this code enables your program 
to perform other duties while waiting for the network 
connection. To find out if the passive task has 
accepted your connection, periodically call the 
OIT$NGFNO routine to check status. The OIL Name for 
this argument is: 

WAIT-NO 

Set the wait code to "yes" if you want your program to 
wait until the passive task has accepted your link. 
The routine does not return to your program until it 
establishes the specified link. While it waits, you 
can not use the active task. Waiting uses minimal CPU 
time. The OIL Name for this argument is: 

WAIT-YES 

10-13 



VMS TASK-TO-TASK 

STATUS CODES: ---

OIL Name Meaning 

DIT-TOOMANY You attempted too many links. The 
OIL allows a maximum of 20 open 
links. 

DIT-INVARG You passed an incorrect or invalid 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

DIT-ABORTREJECT The link was aborted or rejected. 

DIT-HORRIBLE This code is returned in the event of 
a system or unexpected error. 

10-14 



VMS TASK-TO-TASK 

10.3.4 DIT$NFOPB - Open a Binary Link From an Active Task 

PURPOSE: 

The DIT$NFOPB routine opens a logical link to a program on 
another system. You use this routine when you intend to transmit 
records or blocks of data. 

Data moved through the network on a link opened with DIT$NFOPB is 
transmitted as a string of bits, sent eight bits at a time. This 
format allows the data to be used by the Data Conversion 
Routines. To learn more about bit transport, see Appendix F. 

CALL FORMAT: 

COBOL: CALL "DIT$NFOPB" USING nln, trgsys, objtyp, desc, 
tsknam, userid, passwd, acct, usdat, wait GIVING 
stat. 

FORTRAN: status = DIT$NFOPB (nln, trgsys, objtyp, desc, tsknam, 
1 userid, passwd, acct, usdat, wait) 

where: 

nln 

trgsys 

objtyp 

desc 

is the Network Logical Name (NLN) to be returned when 
this routine successfully finishes processing. You use 
the NLN to identify this link when you call other 
Task-to-Task routines. The NLN is a long integer. 

is the node name of the target system. The target 
system, in this case, is the system which runs the 
passive task that you want to access with this link. 

The node name has a length of sixteen ASCII-B 
characters. If your node name is less than sixteen 
characters, left-justify the field. If you give this 
argument a value of spaces, it defaults to the local 
system's node name. 

is the object type of the passive task. The object 
type specifies the kind of service performed by the 
passive task. This argument has a length of sixteen 
ASCII-B characters. If the object type has less than 
sixteen characters, left-justify the field. 

The object type can be expressed as either number or 
name. Most programs use an object type of 0 or TASK. 
Server programs which perform a generic service (MAIL, 
for example) have a non-zero object type. You can find 
a list of valid DECnet object types and their meanings 
in the appropriate DECnet Guide. 

is the DECnet descriptor. You must use a descriptor 
when you plan to access a task with object type 0 or 
object name TASK. The descriptor must contain the 
DECnet taskname of the passive task on the remote 
system. See Appendix D for further information. The 
descriptor has a length of sixteen ASCII-8 characters. 
If your descriptor is less than sixteen characters, 
left-justify the field. 

10-15 



tsknam 

VMS TASK-TO-TASK 

is the DECnet taskname. Taskname is a unique string of 
sixteen ASCII-8 characters. The taskname identifies 
this process to the network. VMS ignores this argument 
for active tasks. It generates a unique name. If you 
don't want to specify a taskname, pass spaces as the 
value for this argument. 

NOTE 

The following three arguments are optional user 
attributes. The passive task may use these attributes 
to validate a network connection, or to perform any 
other recognition function agreed to by both tasks. 
These arguments may be given a value name of spaces if 
you want to connect to a passive task on a TOPS-20 or 
TOPS-IO system: they are required if you want to 
connect to a passive task on a VMS system. 

userid 

passwd 

acct 

usdat 

is your userid. Userid has a length of thirty-nine 
ASCII-8 characters. If your userid is less than 
thirty-nine characters, left-justify the field. If you 
don't want to specify a userid, pass spaces as the 
value for this argument. 

is your password. Password has a length of thirty-nine 
ASCII-8 characters. If your password is less than 
thirty-nine characters, left-justify the field. If you 
don't want to specify a password, pass spaces as the 
value for this argument. 

is your account number or charge code. This field has 
a length of thirty-nine ASCII-8 characters. If this 
information is less than thirty-nine characters, 
left-justify the field. If you don't want to specify 
an account number, pass spaces as the value for this 
argument. 

is reserved for sixteen ASCII-8 characters of user 
data. Not currently used on VMS systems; this argument 
must be spaces. 

10-16 



wait 

STATUS CODES: 

VMS TASK-TO-TASK 

is a long integer that gives the wait code. 

Set the wait code to "no" if you do not want your 
program to wait until it establishes a connection to 
the passive task. Using this code enables your program 
to perform other duties while waiting for the network 
connection. To find out if the passive task has 
accepted your connection, periodically call the 
DIT$NGFND routine to check status. The DIL Name for 
this argument is: 

WAIT-NO 

Set the wait code to "yes" if you want your program to 
wait until the passive task has accepted your link. 
The routine does not return to your program until it 
establishes the specified link. While it waits, you 
can not use the active task. Waiting uses minimal CPU 
time. The DIL Name for this argument is: 

WAIT-YES 

DIL Name Meaning 

DIT-TOOMANY You attempted too many links. The 
DIL allows a maximum of 20 open 
links. 

DIT-INVARG You passed an incorrect or invalid 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

DIT-ABORTREJECT The link was aborted or rejected. 

DIT-HORRIBLE This code is returned in the event of 
a system or unexpected error. 

10-17 



VMS TASK-TO-TASK 

10.3.5 DIT$NFOP8 - Open an 8-Bit Link From an Active Task 

PURPOSE: 

The DIT$NFOPS routine opens a logical link to a program on 
another system. You use this routine to transmit S-bit bytes of 
data. This routine is especially useful for transmitting data 
between VMS systems and for performing special operations. 

Data is moved 
S-bit bytes. 
target system 
S-bit bytes 
Appendix F. 

through a link opened with DIT$NFOPS as a string of 
The routine does not transmit any unused bits. The 
stores the data in whatever way it normally stores 
of data. To learn more about bit transport, see 

CALL FORMAT: 

COBOL: CALL "DIT$NFOPS" USING nln, trgsys, objtyp, desc, 
tsknam, userid, passwd, acct, usdat, wait GIVING 
stat. 

FORTRAN: status = DIT$NFOPS (nln, trgsys, objtyp, desc, tsknam, 
1 userid, passwd, acct, usdat, wait) 

where: 

nln 

trgsys 

objtyp 

desc 

is the Network Logical Name (NLN) to be returned when 
this routine successfully finishes processing. You use 
the NLN to identify this link when you call other 
Task-to-Task routines. The NLN is a long integer. 

is the node name of the target system. The target 
system, in this case, is the system which runs the 
passive task that you want to access with this link. 

The node name has a length of sixteen ASCII-S 
characters. If your node name is less than sixteen 
characters, left-justify the field. If you give this 
argument a value of spaces, it defaults to the local 
system's node name. 

is the object type of the passive task. The object 
type specifies the kind of service performed by the 
passive task. This argument has a length of sixteen 
ASCII-S characters. If the object type has less than 
sixteen characters, left-justify the field. 

The object type can be expressed as either a number or 
name. Most programs use an object type of a or TASK. 
Server programs which perform a generic service (MAIL, 
for example) have a non-zero object type. You can find 
a list of valid DECnet object types and their meanings 
in the appropriate DECnet User's Guide. 

is the DECnet descriptor. You must use a descriptor 
when you plan to access a task with object type 0 or 
object name TASK. The descriptor must contain the 
DECnet taskname of the passive task on the remote 
system. See Appendix D for further information. The 
descriptor has a length of sixteen ASCII-8 characters. 
If your descriptor is less than iixteen characters, 
left-justify the field. 

la-IS 



tsknam 

VMS TASK-TO-TASK 

is the DECnet taskname. Taskname is a unique sixteen 
character ASCII-8 string that identifies this process 
to the network. VMS ignores this argument for active 
tasks. It generates a unique name. If you don't want 
to specify a taskname, pass spaces as the value for 
this argument. 

NOTE 

The following three arguments are optional user 
attributes. The passive task may· use these attributes 
to validate a network connection, or to perform any 
other recognition function agreed to by both tasks. 
These arguments may be given a value name of spaces if 
you want to connect to a passive task on a TOPS-20 or 
TOPS-lO system~ they are required if you want to 
connect to a passive task on a VMS system. 

userid 

passwd 

acct 

usdat 

wait 

is your userid. Userid has a length of thirty-nine 
ASCII-8 characters. If your userid is less than 
thirty-nine characters, left-justify the field. If you 
don't want to specify a userid, pass spaces as the 
value for this argument. 

is your password. Password has a length of thirty-nine 
ASCII-8 characters. If your password is less than 
thirty-nine characters, left-justify the field. If you 
don't want to specify a password, pass spaces as the 
value for this argument. 

is your account- number or charge code. This field has 
a length of thirty-nine ASCII-8 characters. If this 
information is less than thirty-nine characters, 
left-justify the field. If you don't want to specify 
an account number, pass spaces as the value for this 
argument. 

is reserved for sixteen characters of ASCII-8 user 
data. Not currently used on VMS systems~ this argument 
must be spaces. 

is a long integer that gives the wait code. 

Set the wait code to "no" if you do not want your 
program to wait until it establishes a connection to 
the passive task. Using this code enables your program 
to perform other duties while waiting for the network 
connection. To find out if the passive task has 
accepted your connection, periodically call the 
DIT$NGFND routine to check status. The DIL Name for 
this argument is: 

WAIT-NO 

Set the wait code to "yes" if you want your program to 
wait until the passive task has accepted your link. 
The routine does not return to your program until it 
establishes the specified link. While it waits, you 
can not use the active task. Waiting uses minimal CPU 
time. The DIL Name for this argument is: 

WAIT-YES 

10-19 



VMS TASK-TO-TASK 

STATUS CODES: 

DIL Name Meaning 

DIT-TOOMANY You attempted too many links. The 
DIL allows a maximum of 20 open 
links. 

DIT-INVARG You passed an incorrect or invalid 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

DIT-ABORTREJECT The link was aborted or rejected. 

DIT-HORRIBLE This code is returned in the event of 
a system or unexpected error. 

10-20 



VMS TASK-TO-TASK 

10.3.6 DIT$NFOPP - Open a Link From a Passive Task 

PURPOSE: 

The DIT$NFOPP routine opens a logical link from a passive task. 
It indicates that the server program is ready to accept 
connections from active programs. 

There are different ways to move data through the network. The 
cooperating tasks must both specify the same method of data 
transfer. The active task which connects to DIT$NFOPP 
establishes the way data actually moves through the network. 
(DIT$NFOPA moves ASCII-8 data, DIT$NFOPB moves binary data and 
DIT$NFOP8 moves 8-bit bytes of data.) When it receives a connect 
request, The passive task calls the DIT$NFACC routine to accept 
the request. The "lnktyp" argument in the call to DIT$NFACC 
specifies the type of data to be transferred over the connection. 
If the active task and the DIT$NFACC routine specify different 
data types, results are undefined. To learn more about bit 
transport, see Appendix F. 

CALL FORMAT: 

COBOL: CALL "DIT$NFOPP" USING nln, objtyp, desc, tsknam, wait 
GIVING stat. 

FORTRAN: status = DIT$NFOPP (nln, objtyp, desc, tsknam, wait) 

where: 

nln is the Network Logical Name (NLN) to be returned when 
this routine successfully finishes processing. You use 
the NLN to identify this link when you call other 
Task-to-Task routines. The NLN is a long integer. 

objtyp 

Possible DIL Names for this argument are: 

PAS-FIREUP if the task can accept only one 
connection on this link. 

PAS-NFIREUP if the task can accept more than one 
connection on this link. You must have 
SYSNAM privileges to specify this 
parameter. 

See Appendix D for further information. 

is the DECnet object type of the passive task. The 
object type tells the kind of service performed by this 
task. This argument has a length of sixteen ASCII-8 
characters. If the object type has less than sixteen 
characters, left-justify the field. 

The object type can be expressed as either a a number 
or name. Most programs use an object type of 0 or 
TASK. Server programs which perform a generic service 
(MAIL, for example) have a non-zero object type. You 
can find a list of valid DECnet object types and their 
meanings in the appropriate DECnet User's Guide. 

10-21 



desc 

tsknam 

wait 

STATUS CODES: 

VMS TASK-TO-TASK 

is the DECnet descriptor. See Appendix D for examples 
of task identification. The descriptor has a length of 
sixteen ASCII-8 characters. If your descriptor is less 
than sixteen characters, left-justify the field. 

is the DECnet taskname. Taskname is a unique sixteen 
character ASCII-8 string that identifies this process 
to the network. An active task may identify the 
passive task it wants to connect to by specifying the 
passive task's taskname. For this reason, most passive 
tasks are given specific task names. If you pass 
spaces for this argument, the operating system assigns 
a unique task name. See Appendix D for further 
information. 

is a long integer that gives the wait code. 

Set the wait code to "no" if you you want to set up a 
server task, but you do not want to wait until an 
active task requests its services. Using this code 
leaves your program free to perform other duties. To 
find out if the an active task wants to connect to the 
server, call the DIT$NFGND routine to check status. 
The DIL Name for this argument is: 

WAIT-NO 

Set the wait code to "yes" if you want to set up a 
server task that waits until an active task requests 
its services. The routine returns a status value when 
an active task tries to connect to the server. While 
it waits, you can not use the server program to perform 
any other processing functions. Waiting uses minimal 
CPU time. The DIL Name for this argument is: 

WAIT-YES 

DIL Name Meaning 

DIT-TOOMANY You attempted too many links. The 
DIL allows a maximum of 20 open 
links. 

DIT-INVARG You passed an incorrect or invalid 
argument. 

5S-NORMAL The routine successfully completed 
processing. 

DIT-ABORTREJECT The link was aborted or rejected. 

DIT-HORRIBLE This code is returned in the event of 
system or unexpected error. 

10-22 



VMS TASK-TO-TASK 

10.3.7 DIT$NFACC - Accept a Connection 

PURPOSE: 

The DIT$NFACC routine accepts a connection from an active task 
and specifies the type of data to be transferred over the link. 
It is used in conjunction with the DIT$NFOPP routine, which opens 
the logical link. 

CALL FORMAT: 

COBOL: CALL "DIT$NFACC" USING nln, lnktyp, char, opdat 
GIVING stat. 

FORTRAN: status = DIT$NFACC (nln, lnktyp, char, opdat) 

where: 

nln 

lnktyp 

char 

opdat 

is the Network Logical Name set by the DIT$NFOPP 
routine when it successfully finishes processing. The 
NLN is a long integer. 

is a long integer that indicates the type of data that 
you want to transfer over the link. You must specify 
one of the following values: 

LINK Data Type OIL Name 

ASCII-8 data. LTYPE-ASCII 
To transfer ASCII 
data, use the 
DIT$NFOPA routine 
to open the link. 

Binary data. LTYPE-BINARY 
To transfer binary 
data, use the 
DIT$NFOPB routine 
to open the link. 

8-bit bytes. LTYPE-8BIT 
To transfer 8-bit 
bytes of data, 
use the DIT$NFOP8 
routine to open 
the link. 

is the number of characters of optional data that you 
plan to send (see below). 

sixteen ASCII-8 characters of optional user data. 
the DIT$NFINF routine for more information. 

See 



VMS TASK-TO-TASK 

STATUS CODES: 

DIL Name Meaning 

DIT-INVARG You passed an incorrect or invalid 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

DIT-HORRIBLE This code is returned in the event of 
a system or unexpected error. 

10-24 



VMS TASK-TO-TASK 

10.3.8 DIT$NFREJ - Reject a Connection 

PURPOSE: 

The DIT$NFREJ routine is used by the passive task to reject a 
connection request from an active task. 

CALL FORMAT: 

COBOL: CALL "DIT$NFREJ" USING nln, rejcod, 
GIVING stat. 

char, opdat 

FORTRAN: status = DIT$NFREJ (nln, rejcod, char, opdat) 

where: 

nln 

rejcod 

char 

opdat 

STATUS CODES: 

is the Network Logical Name set by the DIT$NFOPP 
routine when it successfully finishes processing. NLN 
is a long integer. 

is a long integer that specifies the type of reject 
requested. You should not use nine for this code, 
which means "User Program Abort." See your DECnet 
User's Guide for a list of abort/reject codes. This 
parameter is not used either VMS OR TOPS-lO systems. 

is a long integer that specifies the number of 
characters (0-16) of 'opt ional data that you plan to 
send (see below). 

is 16 ASCII-8 characters of optional user data. 
the DIT$NFINF routine for more information. 

See 

DIL Name Meaning 

DIT-INVARG You passed an incorrect or invalid 
argument. 

55-NORMAL The routine successfully completed 
processing. 

DIT-HORRIBLE This code is returned in the event 
of a system or unexpected error. 

10-25 



VMS TASK-TO-TASK 

10.3.9 DIT$NFRCV - Receive Data 

PURPOSE: 

The DIT$NFRCV routine receives data (DECnet messages) sent over a 
logical link. 

The routine reads one DECnet message each time it is sucessfully 
called. 

CALL FORMAT: 

COBOL: CALL "DIT$NFRCV" USING nln, msunit, mxunit, bufloc, 
msmode, wait GIVING stat. 

FORTRAN: status = DIT$NFRCV (nln, msunit, mxunit, bufloc, 
I msmode, wait) 

where: 

nln 

msunit 

mxunit 

bufloc 

msmode 

is the Network Logical Name set by the DIT$NFOPA, 
DIT$NFOPB, DIT$NFOP8 or DIT$NFOPP routine when the 
routine successfully finished processing. The NLN is a 
long integer. 

is a long integer that gives the message unit size. It 
tells the byte size, in bits, of messages written in 
binary format (with links opened through DIT$NFOPB). A 
value of zero for this argument indicates that you plan 
to transfer data as words. If you open the active side 
of the link with DIT$NFOPA or DIT$NFOP8, the routine 
ignores this argument (both routines send 8-bit bytes 
of data). 

is a long integer that specifies the maximum number of 
units to be read by the routine. 

• 

• 

For links 
maximum 
message. 

opened 
number 

For links opened 
maximum number of 
message. 

with DIT$NFOPA, this 
of ASCII-8 characters 

is 
in 

the 
the 

with DIT$NFOP8, this is the 
sequential 8-bit bytes in the 

• For links opened with DIT$NFOPB, this is the 
maximum number of bytes (of the unit size shown in 
msunit) or words in the message. DIT$NFRCV pads 
the last byte or word sent with zero bits if it 
does not divide evenly into bytes of the specified 
size. 

is the location of the user buffer where the message 
will be placed after it is read. This buffer must be 
at least as large as the number of bytes, characters or 
words specified in the mxunit argument, above. 

is the message-mode flag. The message-mode is a long 
integer. The DIL Name for this argument is: 

MSG-MSG 

10-26 



wait 

STATUS CODES: 

VMS TASK-TO-TASK 

is a long integer that gives the wait code. 

Set the wait code to "no" if you want the routine to 
return whatever data is currently available. If data 
is not available, the routine returns and you can use 
the program to perform other duties. The DIL Name for 
this argument is: 

WAIT-NO 

Set the wait code to Hies" if you want the routine to 
wait until data is received or the read fails. The DIL 
Name for this argument is: 

WAIT-YES 

DIL Name Meaning 

DIT-INVARG You passed an incorrect or invalid 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

DIT-ABORTREJECT This code is returned if the link is 
disconnected or aborted. The char-
acter count area contains the number 
of units, bytes or words that the 
routine read before the disconnect. 

DIT-OVERRUN This code is returned if you try to 
send too much data to the routine. 

DIT-NOTENOUGH This code is returned if the amount 
of data you requested is not avail-
able. 

DIT-HORRIBLE This code is returned in the event of 
a system or unexpected error. 

DIT-INTERRUPT Interrupt data must be read first 
using NFRCI. 

10-27 



VMS TASK-TO-TASK 

10.3.10 DIT$NFSND - Send Data 

PURPOSE: 

The DIT$NFSND routine sends data over a logical link. 

If you open the logical link with DIT$NFOPA, the routine sends 
the data in ASCII format. The receiving task can directly read 
ASCII data from another system, even if the tasks are on 
heterogeneous systems. 

If you open the logical link with DIT$NFOP8, the routine sends 
the data as sequential 8-bit bytes. The local system treats the 
data as it normally treats 8-bit bytes of data. The remote 
system treats the data it receives in the way it normally stores 
8-bit bytes of data. 

If you open the logical link with DIT$NFOPB, the routine sends 
the data in binary format. If the sending and receIvIng tasks 
are on homogeneous systems, the receiving system can directly 
read the data. If the sending and receiving tasks are on 
heterogeneous systems, you must convert the data using the Data 
Conversion Routines. The sending task can perform the conversion 
before it sends the data or the receiving task can convert the 
data it receives. 

This routine sends one DECnet message each time it is sucessfully 
called. 

CALL FORMAT: 

COBOL: CALL "DIT$NFSND" USING nln, msunit, length, buffer, 
msmode GIVING stat. 

FORTRAN: status = DIT$NFSND (nln, msunit, length, buffer, 

where: 

nln 

msunit 

length 

1 msmode) 

is the Network Logical Name set by the DIT$NFOPA, 
DIT$NFOPB, DIT$NFOP8 or DIT$NFOPP routine when the 
routine successfully finished processing. The NLN is a 
long intl::.!ger. 

is a long integer that gives the message unit size. It 
tells the byte size, in bits, of messages written in 
binary format (with links opened through DIT$NFOPB). A 
value of zero for this argument indicates that the data 
is to be sent as words. If you open the active side of 
the link with DIT$NFOPA or DIT$NFOP8, the routine 
ignores this argument. 

is a long integer that specifies the length of the data 
that you want to send. This argument must have a value 
that is greater than zero. 

• For links opened with DIT$NFOPA, length is given in 
ASCII-8 characters. 

10-28 



buffer 

msmode 

STATUS CODES: 

VMS TASK-TO-TASK 

• For links opened with DIT$NFOP8, length is given in 
sequential 8-bit bytes. 

• For links opened with DIT$NFOPB, length is given in 
bytes (of the unit size shown in the msunit 
argument, above) or in words. 

is the buffer containing the data you want to send. 

is the message-mode flag. The message-mode is a 
one-word integer. The DIL Name for this argument is: 

MSG-MSG 

DIL Name Meaning 

DIT-INVARG You passed an incorrect or invalid 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

DIT-HORRIBLE This code is returned in the event of 
a system or unexpected error. 

10-29 



VMS TASK-TO-TASK 

10.3.11 DIT$NFRCI - Receive an Interrupt Data Message Over a Link 

PURPOSE: 

The DIT$NFRCI routine receives a single interrupt data message over a 
logical link. 

Receipt of an interrupt data message is an asynchronous event. You 
should check for asynchronous events by using DIT$NFGND which will 
announce interrupt data messages before it will announce "regular" 
data messages (sent by DIT$NFSND). Interrupt data messages must be 
read before DIT$NFGND will announce any lower-level events (regular 
data messages or disconnections). DIT$NFRCV will return the 
DIT-INTERRUPT error and refuse to return data if an interrupt message 
is available which has not yet been read by DIT$NFRCI. 

CALL FORMAT: 

COBOL: CALL "DIT$NFRCI" USING nln, char, buffer GIVING stat. 

FORTRAN: status = DIT$NFRCI (nln, char, buffer) 

where: 

nln is the Network Logical Name set by the DIT$NFOPP 
routine when it successfully finishes processing. NLN 
is a long integer. 

char is a long integer into which the number of ASCII-8 
characters (1-16) of interrupt data read is returned. 

buffer is the location of the user buffer where the message 
will be placed after it is read. The length of this 
buffer must be 16 ASCII-8 characters. 

STATUS CODES: 

OIL Name Meaning 

DIT-INVARG You passed an incorrect or invalid 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

DIT-NODATAAVAILABLE No interrupt data is available to be 
read at this time. 

DIT-HORRIBLE This code is returned in the event 
of a system or unexpected error. 

10-30 



VMS TASK-TO-TASK 

10.3.12 DIT$NFINT - Send an Interrupt Data Message Over a Link 

PURPOSE: 

The DIT$NFINT routine sends a single interrupt data message over 
a logical link. 

Unlike DIT$NFSND, DIT$NFINT data is always sent in message mode, 
so a prompt attempt to send the data is guaranteed. Data sent in 
this mode is not sent in synchronization with data sent by 
DIT$NFSND. Only one interrupt data message can be outstanding 
from each end of a logical link at one time. If an interrupt 
data message is sent over a logical link by one process, a second 
interrupt data message cannot be sent by that process until the 
first one has been received at the other end of the logical link. 
If a second interrupt data message is sent before the first one 
has been received at the other side of the link, then the first 
interrupt data message may be lost at the receiving end of the 
link •. 

CALL FORMAT: 

COBOL: CALL "DIT$NFINT" USING nln, char, buffer GIVING stat. 

FORTRAN: status = DIT$NFINT (nln, char, buffer) 

where: 

nln is the Network Logical Name set by the DIT$NFOPP 
routine when it successfully finishes processing. The 
NLN is a long integer. 

char is a long integer that specifies the number of ASCII-8 
characters (1-16) of interrupt data to send. 

buffer is the buffer that contains the data that you want to 
send. 

STATUS CODES: 

DIL Name Meaning 

DIT-INVARG You passed an incorrect or invalid 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

DIT-HORRIBLE This code is returned in the event 
of a system or unexpected error. 

DIT-INTERRUPT Available interrupt data must be . 
read first. See the DIT$NFRCI 
routine. 

10-31 



VMS TASK-TO-TASK 

10.3.13 DIT$NFCLS - Close a Link 

PURPOSE: 

The DIT$NFCLS routine disconnects or aborts a logical link, 
releasing its resources to be used by another link. 

A "synchronous disconnect" is the normal way to close a link~ it 
disconnects the link after it performs all outstanding data 
transmission. An abort instantaneously disconnects the link. 

You can call the DIT$NFCLS routine to disconnect the link before 
or after receiving a disconnec~ from the other end of the link. 
To preserve data integrity, the recipient of the last piece of 
data should be the first to disconnect the link (using a 
synchronous disconnect). The program that sent the data 
recognizes that its data was read when it receives the other 
program's disconnect. It should then abort its end of the link, 
to free the resources for another use. 

CALL FORMAT: 

COBOL: CALL "DIT$NFCLS" USING nln, disc, char, opdat 
GIVING stat. 

FORTRAN: status = DIT$NFCLS (nln, disc, char, opdat) 

where: 

nln 

disc 

char 

opdat 

STATUS CODES: 

is the Network Logical Name, set by the DIT$NFOPA, 
DIT$NFOPB, DIT$NFOP8 or the DIT$NFOPP routine when the 
routine successfully finished processing. The NLN is a 
long integer. 

is a long integer that indicates the type of disconnect 
requested. Use zero for this argument if you want a 
synchronous disconnect. A non-zero value for this 
argument indicates an abort. "9" is the normal value 
for an abort. The DECnet User's Guide for your system 
gives a list of possible abort codes. 

is a long integer that specifies the number of 
characters (0 to 16) of optional data to be sent (see 
the opdat argument, below). 

is sixteen ASCII-8 characters of optional user data. 
See the DIT$NFINF rou~ine for more information. 

DIL Name Meaning 

DIT-INVARG You passed an incorrect or invalid 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

DIT-HORRIBLE This code is returned in the event of 
a system or unexpected error. 

10-32 



VMS TASK-TO-TASK 

10.4 VMS TASK-TO-TASK EXAMPLES 

10.4.1 VMS COBOL Task-to-Task Examples 

IDENTIFICATION DIVISION. 

PROGRAM-ID. 

AUTHOR. 

PASC32. 

SOFTWARE ENGINEERING. 

This program opens a passive link and then waits for a 
connection from an active task (created by the program 
ACTC32). Once a link is established, user specified messages 
are sent in both directions across the link. The link is 
closed by the program ACTC32 and this program waits for a 
confirmation of the close. 

INSTALLATION 

DEC MARLBORO. 

ENVIRONMENT DIVISION. 

DATA DIVISION. 

WORKING-STORAGE SECTION. 

01 INTERFACE-FILES. 
COPY DIT$COBOL OF "SYS$LIBRARY:DIL.TLB". 
COPY DIL$COBOL OF "SYS$LIBRARY:DIL.TLB". 

* DIL status return or condition value 
01 DIL-STATUS PIC S9(9) COMPo 

01 DATA-RECORDS. 
05 SEND-DATA PIC X(100). 
05 RECEIVE-DATA PIC X(100). 

01 COUNT-OPT-DATA PIC S9(9) COMP VALUE O. 
01 OPT-DATA PIC X(16) VALUE SPACES. 
01 NETLN PIC S9(9) COMPo 
01 OBJECT-ID PIC X(16). 
01 DESCRIPT PIC X(16) VALUE SPACES. 
01 TASKNAME PIC X(16). 
01 MESSAGE-UNITS-SIZE PIC S9(9) COMP VALUE 8. 
01 MESSAGE-SIZE PIC S9(9) COMP VALUE 100. 

01 DIL-DISPLAY PIC X(12). 

01 DIL-MATCH-COND PIC S9(9) COMPo 
88 NO-MATCH VALUE O. 
88 MATCH-1 VALUE 1. 

10-33 



VMS TASIC-TO-TASK 

PROCEDURE DIVISION. 

OPEN-PASSIVE. 
* Open a passive link. 

MOVE "SERVER" TO TASKNAME. 
MOVE "0" TO OBJECT-ID. 
MOVE DIT$K_PAS_NFIREUP TO NETLN. 

CALL "DIT$NFOPP" USING NETLN, OBJECT-ID, DESCRIPT, 
TASKNAME, DIT$K WAIT NO 

GIVING DIL-STATUS. - -

MOVE OIL-STATUS TO DIL-DISPLAY. 
DISPLAY" NFOPP Status return: " DIL-DISPLAY. 
IF DIL-STATUS IS NOT SUCCESS 

DISPLAY"? NFOPP: unsuccessful status return " 
STOP RUN. 

CHECK-FOR-CONNECT 
* Wait for a connect request 

CALL "DIT$NFGND" USING NETLN, DIT$K WAIT YES 
GIVING DIL-STATUS.- -

MOVE DIL-STATUS TO DIL-DISPLAY. 
DISPLAY " NFGND Status return: " DIL-DISPLAY. 

CALL "LIB$MATCH_COND" USING DIL-STATUS, 

IF NO-MATCH 

DIT$ CONNECTEVENT 
GIVING DIL=MATCH-COND. 

DISPLAY"? NFGND: Unexpected or invalid status returned: " 
STOP RUN. 

ACCEPT-LINK 
* Accept link 

CALL "DIT$NFACC" USING NETLN, DIT$K LTYPE ASCII, COUNT-OPT-DATA, OPT-DATA 
GIVING DIL-STATUS.- -

MOVE DIL-STATUS TO DIL-DISPLAY. 
DISPLAY" NFACC Status return: " DIL-DISPLAY. 
IF DIL-STATUS IS NOT SUCCESS 

DISPLAY"? NFACC: unsuccessful status return" 
STOP RUN. 

CHECK-FOR-DATA. 
* Wait for a data event on the link 

CALL "DIT$NFGND" USING NETLN, DIT$K WAIT YES 
GIVING DIL-STATUS.-

MOVE DIL-STATUS TO DIL-DISPLAY. 
DISPLAY" NFGND Status return: " DIL-DISPLAY. 

CALL "LIB$MATCH_COND" USING DIL-STATUS, 

IF NO-MATCH 

DIT$ DATAEVENT 
GIVING DIL=MATCH-COND. 

DISPLAY"? NFGND: Unexpected or invalid status returned: " 
STOP RUN. 

10-34 



VMS TASK-TO-TASK 

READ-THE DATA. 
* Read the data received over the link 

MOVE 100 TO MESSAGE-SIZE. 

CALL "DIT$NFRCV" USING NETLN, MESSAGE-UNITS-SIZE, MESSAGE-SIZE, 
RECEIVE-DATA, DIT$K MSG MSG, DIT$K_WAIT_YES 

GIVING OIL-STATUS. --

DISPLAY" NFRCV Status return: " OIL-STATUS. 
IF OIL-STATUS IS NOT SUCCESS 

DISPLAY ~? NFRCV: unsuccessful status return" 
STOP RUN. 

DISPLAY" Data received: " 
DISPLAY RECEIVE-DATA. 

SEND-SOME-DATA. 
* Send some data over the link 

MOVE 100 TO MESSAGE-SIZE. 

DISPLAY" Enter some data to be sent over the link: ". 
ACCEPT SEND-DATA. 

CALL "DIT$NFSND" USING NETLN, MESSAGE-UNITS-SIZE, MESSAGE-SIZE, 
SEND-DATA, DIT$K MSG MSG 

GIVING OIL-STATUS. - -

MOVE OIL-STATUS TO OIL-DISPLAY. 
DISPLAY" NFSND Status return: " OIL-DISPLAY. 
IF OIL-STATUS IS NOT SUCCESS 

DISPLAY"? NFSND: unsuccessful status return " 
STOP RUN. 

CHECK-FOR-CLOSE. 

CALL "DIT$NFGND" USING NETLN, DIT$K WAIT YES 
GIVING DIL-STATUS.- -

MOVE OIL-STATUS TO OIL-DISPLAY. 
DISPLAY" NFGND status return: " OIL-DISPLAY. 

CALL "LIB$MATCH_COND" USING OIL-STATUS, 
DIT$ ABREJEVENT, 
DIT$-DISCONNECTEVENT 

GIVING DIL=MATCH-COND. 

IF NO-MATCH 
DISPLAY"? NFGND: Invalid status returned on link close" 
STOP RUN. 

DISPLAY" PASC32 successful". 

STOP RUN. 

10-35 



VMS TASK-TO-TASK 

INDENTIFICATION DIVISION. 

PROGRAM-ID. 

ACTC32. 

AUTHOR. 

SOFTWARE ENGINEERING. 

This program opens an active link by connecting to the passive 
task set up by the program PASC32. Once the link is 
established, user specified messages are sent in both 
directions across the link. Then the link is closed. 

INSTALLATION. 

DEC MARLBORO. 

ENVIRONMENT DIVISION. 

DATA DIVISION. 

WORKING-STORAGE SECTION. 

01 INTERFACE-FILES. 
COpy DIT$COBOL OF "SYS$LIBRARY:DIL.TLB". 
COPY DIL$COBOL OF " SYS$LIBRARY:DIL.TLB". 

* DIL status return 
01 DIL-STATUS PIC S9(9) COMPo 

01 DATA-RECORDS. 
05 SEND-DATA PIC X(100). 
05 RECEIVE-DATA PIC X(100). 

01 COUNT-OPT-DATA PIC S9(9) COMP VALUE O. 
01 OPT-DATA PIC X(16) VALUE SPACES. 
01 NETLN PIC S9(9) COMPo 
01 HOSTNAME PIC X(06). 
01 OBJECT-ID PIC X(16). 
01 DESCRIPT PIC X(16) VALUE SPACES. 
01 TASKNAME PIC X(16). 
01 USERID PIC X(39) VALUE SPACES. 
01 PASSWD PIC X(39) VALUE SPACES. 
01 ACCT PIC X(39) VALUE SPACES. 
01 MESSAGE-UNITS-SIZE PIC S9(9) COMP VALUE 8. 
01 MESSAGE-SIZE PIC S9(9) COMP VALUE 100. 

01 SYNCH-DISCONN PIC S9(9) COMP VALUE O. 
01 DIL-DISPLAY PIC X(12). 

01 DIL-MATCH-COND PIC S9(9) COMPo 
88 NO-MATCH VALUE O. 
88 MATCH-1 VALUE 1. 
88 MATCH-2 VALUE 2. 

10-36 



VMS TASK-TO-TASK 

PROCEDURE DIVISION. 

CONNECT-TO-PASSIVE. 
* Ask for a connection to the passive link 

MOVE "0" TO OBJECT-ID. 
MOVE "SERVER" TO DESCRIPT. 
MOVE SPACES TO TASKNAME. 

CALL "DIT$NFOPA" USING NETLN, HOSTNAME, OBJECT-ID, DESCRIPT, TASKNAME, 
USERID, PASSWD, ACCT, OPT-DATA, DlT$K_WAIT_NO 

GIVING DIL-STATUS. 

MOVE DIL-STATUS TO DIL-DISPLAY. 
DISPLAY" NFOPA Status return: ", DIL-DISPLAY. 
IF DIL-STATUS IS NOT SUCCESS 

DIS~LAY "? NFOPA: unsuccessful status return " 
STOP RUN. 

CHECK-FOR-CONNECT. 
* wait for confirmation of the connection 

CALL "DIT$NFGND" USING NETLN, DIT$K WAIT YES 
GIVING DIL-STATUS.- -

MOVE DIL-STATUS TO DIL-DISPLAY. 
DISPLAY " NFGND Status return: " DIL-DISPLAY. 

CALL "LIB$MATCH_COND" USING DIL-STATUS, 

IF NO-MATCH 

DIT$ CONNECTEVENT 
GIVING DIL-MATCH-COND. 

DISPLAY"? NFGND: Unexpected or invalid status returned: " 
STOP RUN. 

SEND-SOME-DATA. 
* Send some data over the link 

MOVE 100 TO MESSAGE-SIZE. 

DISPLAY" Enter some data to be sent over the link: " 
ACCEPT SEND-DATA. 

CALL "DIT$NFSND" USING NETLN, MESSAGE-UNITS-SIZS, MESSAGE-SIZE, 
SEND-DATA, DIT$K MSG MSG 

GIVING DIL-STATUS. - -

MOVE DIL-STATUS TO DIL-DISPLAY. 
DISPLAY" NFSND Status return: " DIL-DISPLAY. 
IF DIL-STATUS IS NOT SUCCESS 

DISPLAY"? NFSND: unsuccessful status return " 
STOP RUN. 

10-37 



VMS TASK-TO-TASK 

CHECK-FOR-DATA. 
* Wait for a data event on the link 

CALL "DIT$NFGND" USING NETLN, DIT$K WAIT YES 
GIVING DIL-STATUS.-

MOVE DIL-STATUS TO DIL-DISPLAY. 
DISPLAY" NFGND Status return: " DIL-DISPLAY. 

CALL "LIB$MATCH_COND" USING DIL-STATUS, 
DIT$ DATAEVENT 

GIVING DIL=MATCH-COND. 

IF NO-MATCH 
DISPLAY"? NFGND: Unexpected or invalid status returned: " 
STOP RUN. 

READ-THE-DATA. 
* Read the data received over the link 

MOVE 100 TO MESSAGE-SIZE. 

CALL "DIT$NFRCV" USING NETLN, MESSAGE-UNITS-SIZE, MESSAGE-SIZE, 
RECEIVE-DATA, DIT$K MSG MSG, DIT$K WAIT YES 

GIVING DIL-STATUS. - - --

MOVE DIL-STATUS TO DIL-DISPLAY. 
DISPLAY" NFRCV Status return: " DIL-DISPLAY. 
IF DIL-STATUS IS NOT SUCCESS 

DISPLAY"? NFRCV: un~uccessful status return " 
STOP RUN. 

DISPLAY" Data received: " 
DISPLAY RECEIVE-DATA. 

CLOSE-LINK. 
* Close the link 

CALL "DIT$NFCLS" USING NETLN, SYNCH-DISCONN, COUNT-OPT-DATA, OPT-DATA 
GIVING DIL-STATUS. 

MOVE DIL-STATUS TO DIL-DISPLAY. 
DISPLAY " NFCLS Status return: " DIL-DISPLAY. 
IF DIL-STATUS IS NOT SUCCESS 

DISPLAY"? NFCLS: unsuccessful status return" 
STOP RUN. 

DISPLAY" ACTC32 successful". 
STOP RUN. 

10-38 



VMS TASK-TO-TASK 

10.4.2 VMS FORTRAN Task-to-Task Examples 

C PASF32 

C This program opens a passive link and then waits for a 
C connection from an active task (created by the program 
C ACTC36). Once a link is established, user specified messages 
C are sent in both directions across the link. The link is 
C closed by the program ACTC36 and this program waits for a 
C confirmation of the close. 

C Use the DIL interface files. 

INCLUDE 'SYS$LIBRARY:DIL.TLB (DIT$FORTRAN), 
INCLUDE 'SYS$LIBRARY:DIL.TLB (DIL$FORTRAN), 

C Data records 

DIMENSION SENDD (25), RECD (25) 

C DIL task to task routine parameters 

DIMENSION OPTDAT (4), OBJID (4), DESCR (4), TASKN (4) 

INTEGER NETLN, DILSTS, MSGSIZ, MUNTSZ, CNTOPD 

C Link description fields -- passive end 

DATA OBJID 1'0 
DATA DESCR I' , 
DATA TASKN I 'SERV' , 'ER 

DATA OPTDAT I' 
C Program messages 

777 
778 
779 
200 
202 
203 
204 
205 

FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 

( , 
( , 
( , 
( , 
( , 
( , 
( , 
( , 

Invalid status returned ••• ' ) 
Enter some data to be sent over 
Data received: ' ) 
NFOPP Status return: , I12) 
NFGND Status return: , I12) 
NFACC Status return: , I12) 
NFSND Status return: , I12) 
NFRCV Status return: , I12) 

'I 
'I 

'I 

'I 

the link: 

C initialize sending and receiving message data fields 

DO 100 I = 1, 25 
SENDD (I) = 0 

100 RECD (I) = 0 

C Open a passive link 

NETLN = DIT$K PAS NFIREUP 

' ) 

DILSTS = DIT$NFOPP (NETLN, OBJID, DESCR, TASKN, DIT$K_WAIT_NO) 

WRITE (6, 200) DILSTS 
IF (DILSTS .EQ. SS$ NORMAL) GO TO 110 
WRITE (5, 777) -
STOP 

10-39 



VMS TASK-TO-TASK 

C Wait for a connect request 

110 DILSTS = DIT$NFGND (NETLN, DIT$K_WAIT_YES) 

WRITE (6,202) DILSTS 
IF (DILSTS .EQ. DIT$ CONNECTEVENT) GO TO 120 
WRITE (6, 777) -
STOP 

C Accept link 

120 CNTOPD = 0 
DILSTS = DIT$NFACC (NETLN, DIT$K_LTYPE_ASCII, CNTOPD, OPTDAT) 

WRITE (6, 203) bILSTS 
IF (DILSTS .EO. SS$ NORMAL) GO TO 130 
WRITE (6, 777) -
STOP 

C Wait for a data event on the link 

130 DILSTS = DIT$NFGND (NETLN, DIT$K_WAIT_YES) 

WRITE (6,202) DILSTS 
IF (DILSTS .EQ. DIT$ DATAEVENT) GO TO 140 
WRITE (6, 777) -
STOP 

C Read the data received over the link 

140 MSGSIZ 100 
MUNTSZ = 8 

DILSTS = DIT$NFRCV (NETLN, MUNTSZ, MSGSIZ, RECD, DIT$K_MSG_MSG, 
1 DIT$K_WAIT_YES) 

WRITE (6, 205) DILSTS 
IF (DILSTS .EO. SS$ NORMAL) GO TO 150 
WRITE (6, 777) -
STOP 

150 WRITE (6, 779) 
155 FORMAT (' , 25A4) 

WRITE (6, 155) RECD 

C Send some data over the link 

WRITE (6, 778) 
157 FORMAT (25A4) 

ACCEPT 157, SENDD 

MSGSIZ 
MUNTSZ 

100 
8 

DILSTS DIT$NFSND (NETLN, MUNTSZ, MSGSIZ, SENDD, DIT$K_MSG_MSG) 

WRITE (6, 204) DILSTS 
IF (DILSTS .EO. SS$ NORMAL) GO TO 160 
WRITE (6, 777) -
STOP 

10-40 



VMS TASK-TO-TASK 

C Check for the link being closed 

160 DILSTS = DIT$NF'GND (NETLN, DIT$K_WAIT YES) 

WRITE (6, 202) DILSTS 
IF (DILSTS .EO. DIT$ ABREJEVENT) GO TO 170 
IF (DILSTS .EO. DIT$-DISCONNECTEVENT) GO TO 170 
IF (DILSTS .EO. SS$_NORMAL) GO TO 170 
WRITE (6, 777) 
STOP 

170 WRITE (6,175) 
175 FORMAT (' PASF32 test successful !) 

STOP 
END 

C ACTF32 

C This program .opens an active link by connecting to the passive 
C task set up by the programPASC36. Once the link is 
C established, user specified messages are sent in both 
C directions across the link. Then the link is closed. 

C Use the DIL interface files. 

INCLUDE 'SYS$LIBRARY:DIL.TLB (DIT$FORTRAN)' 
INCLUDE 'SYS$LIBRARY:DIL.TLB (DIL$FORTRAN)' 

C Data records 

DIMENSION SENDD (25), RECD (25) 

C DIL task to task routine parameters 

DIMENSION HSTNAM (4), OPTDAT (4), OBJID (4), DESCR (4) 
DIMENSION PASSWD (10), ACCT (10), USERID (10), TASKN (4) 

INTEGER NETLN, DILSTS, MSGSIZ, MUNTSZ, CNTOPD, SYNCDS 

C Link description fields 

DATA OBJID 1'0', 
, 'I , 

DATA DESCR I' SERV' , 'ER 'I 
DATA TASKN I' , I· 
DATA HSTNAM I' 'I 
DATA PASSWD I' , 
1 'I 
DATA USERID I' , 
1 , ' 'I 
DATA ACCT I' , , 
1 'I 
DATA OPTDAT I' 'I 

10-41 



C Program messages 

777 
778 
779 
201 
202 
204 
205 
206 

FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 

( , 
( , 
( , 
( , 
( , 
( , 
( , 
( , 

VMS TASK-TO-TASK 

Invalid status returned ••• ' ) 
Enter some data to be sent over the link: 
Data rec.eived: ' ) 
NFOPA Status return: , 112) 
NFGND Status return: , 112) 
NFSND Status return: , 112) 
NFRCV Status return: , 112) 
NFCLS Status return: , 112) 

C initialize sending and receiving message data fields 

DO 100 I = 1, 25 
SENDD (I) = 0 

100 RECD (I) = 0 

C Ask for a connection to the passive link 

' ) 

DILSTS = DIT$NFOPA (NETLN, HSTNAM, OBJID, DESCR, TASKN, 
1 USERID, PASSWD, ACCT, OPTDAT, DIT$K_WAIT_NO) 

WRITE (6, 201) DILSTS 
IF (DILSTS .EO. SS$ NORMAL) GO TO 110 
WRITE (6, 777) -
STOP 

C Wait for confirmation of the connection 

110 DILSTS = DIT$NFGND (NETLN, DIT$K_WAIT_YES) 

WRITE (6, 202) DILSTS 
IF (DILSTS .EO. DIT$ CONNECTEVENT) GO TO 120 
WRITE (6, 777) -
STOP 

C Send some data over the link 

120 WRITE (6, 778) 
125 FORMAT (25A4) 

ACCEPT 125, SENDD 

MSGSIZ = 100 
MUNTSZ = 8 

DILSTS = DIT$NFSND (NETLN, MUNTSZ, MSGSIZ, SENDD, DIT$K_MSG_MSG) 

WRITE (6, 204) DILSTS 
IF (DILSTS .EO. SS$ NORMAL) GO TO 130 
WRITE (6, 777) -
STOP 

C Wait for a data event on the link 

130 DILSTS = DIT$NFGND (NELTN, DIT$K_WAIT_YES) 

WRITE (6,202) DILSTS 
IF (DILSTS .EQ. DIT$ DATAEVENT) GO TO 140 
WRITE (6, 777) -
STOP 

10-42 



VMS TASK-TO-TASK 

C Read the data received over the link 

140 MSGSIZ 
MUNTSZ 

100 
8 

DILSTS DIT$NFRCV (NETLN, MUNTSZ, MSGSIZ, RECD, DIT$K_MSG_MSG, 
1 DIT$K_WAIT_YES) 

WRITE (6, 205) DILSTS 
IF (DILSTS .EO. SS$ NORMAL) GO TO 150 
WRITE (6, 777) -
STOP 

150 WRITE (6, 779) 
155 FORMAT (' , 25A4) 

WRITE (6, 155) RECD 

C Close the link to self 

SYNCDS o 

DILSTS DIT$NFCLS (NETLN, SYNCDS, CNTOPD, OPTDAT) 

WRITE (6, 206) DILSTS 
IF (DILSTS .EO. SS$ NORMAL) GO TO 160 
WRITE (6, 777) -
STOP 

160 WRITE (6,165) 
165 FORMAT (' ACTF32 test successful ') 

STOP 
END 

10-43 





CHAPTER 11 

VMS REMOTE FILE ACCESS 



CHAPTER 11 

VMS REMOTE FILE ACCESS 

11.1 REMOTE FILE ACCESS FROM VMS COBOL 

The information included in this section assumes 

-You are writing a COBOL program 
-You plan to use the program on a VMS system 

To store a file number, file name and user attributes, to read or 
write a record you must represent several data items in your program. 
Users generally, but not necessarily, allocate space for these data 
items in WORKING-STORAGE. 

11.1.1 Including the Interface Support Files 

VMS systems have two different classes of Interface Support files for 
each supported language. The first class of files include native 
VMS-type names for each of the various codes for VMS COBOL and VMS 
FORTRAN. The second class includes files with TOPS-IO/TOPS-20 COBOL 
compatible names for VMS COBOL, and files that include ANSI Standard 
names for the interface to VMS FORTRAN. The Interface Support files 
for VMS are provided as a text library called DIL.TLB. The library 
includes the support files for both VMS COBOL and VMS FORTRAN. 

Native VMS COBOL 

You can use the COBOL COpy verb to retrieve information from DIL.TLB 
at compilation time. There are three library elements for Native VMS 
COBOL in DIL.TLB. The elements are DIL$COBOL, DIT$COBOL, and 
DIX$COBOL. 

The library element DIL$COBOL defines general codes and names 
applicable to the Data Conversion Routines, the Task-to-Task Routines 
and the Remote File Access Routines. The general success status code 
(S8-NORMAL) is defined in element DIL$COBOL. Severity codes and 
system codes are defined in element DIL$COBOL. To define these names 
in your program, include the following statement in your 
WORKING-STORAGE section after an Ol-level declaration: 

COpy DIL$COBOL OF ~SYS$LIBRARY:DIL.TLB". 

11-1 



VMS REMOTE FILE ACCESS 

In the following example, the DIL$COBOL element of the library is 
retrieved and included in your program: 

01 interface-files. 
COpy DIL$COBOL OF "SYS$LIBRARY:DIL.TLB". 

The library element DIT$COBOL defines codes specific to the 
Task-to-Task and Remote File Access Routines. This includes the DIT 
status codes which are standard VMS condition values. Also included 
are Remote File Access file types, Remote File Access open modes, 
Remote File Access record formats, Remote File Access record 
attributes and Remote File Access close options. To define these 
names in your program, include the following statement in your 
WORKING-STORAGE section after an 01-level declaration as shown above 
for the DIL$COBOL element: 

COpy DIT$COBOL OF "SYS$LIBRARY:DIL.TLB". 

For programs which use the Remote File Access Routines with the native 
VMS names, you must include both the DIL$COBOL and DIT$COBOL library 
elements. 

TOPS-I0/TOPS-20 Compatible COBOL 

If you want to write a program that can be 
DECsystem-IO or a DECSYSTEM-20, you 
TOPS-I0/TOPS-20 compatible names in your 
native VMS names. 

easily transported to a 
may want to include the 

program rather than the 

You can use the COBOL COpy verb to retrieve information 
at compilation time. There are three library 
TOPS-I0/TOPS-20 compatible COBOL in DIL.TLB. The 
DIL$COBOL_20, DIT$COBOL_20, and DIX$COBOL_20. 

from DIL.TLB 
elements for 

elements are 

The library element DIL$COBOL 20 defines general codes and names 
applicable to the Data Conversion Routines, the Task-to-Task Routines 
and the Remote File Access Routines. The general success status code 
(SS-NORMAL) is defined in element DIL$COBOL 20. Severity codes and 
system codes are defined in element DIL$COBOL-20. To define these 
names in your program, include the folloiing statement i~ your 
WORKING-STORAGE section after an 01-level declaration: 

COpy DIL$COBOL_20 OF "SYS$LIBRARY:DIL.TLB". 

In the following example, the DIL$COBOL_20 element of the library is 
retrieved and included in your program: 

01 interface-files. 
COpy DIL$COBOL_20 OF "SYS$LIBRARY:DIL.TLB". 

The library element DIT$COBOL 20 defines codes specific to the 
Task-to-Task and Remote File Access Routines. The codes include the 
DIT status codes in the compatible COBOL format which provides only 
the condition identification portion of the status code. Also 
included are Remote File Access file types, Remote File Access open 
modes, Remote File Access record formats, Remote File Access record 
attributes and Remote File Access close options. To define these 
names in your program, include the following statement in your 
WORKING-STORAGE section after an 01-level declaration as shown above 
for the DIL$COBOL_20 element. 

COPY DIT$COBOL_20 OF "SYS$LIBRARY:DIL.TLB". 

11-2 



VMS REMOTE FILE ACCESS 

For programs that use the Remote File 
compatible names, you must include 
DIT$COBOL_20 library elements. 

11.1.2 Storing a File Number 

Access Routines with 
both the DIL$COBOL 20 

the 
and 

A file number consists of one longword of VMS memory. To store a file 
number, you must define a data item with the following format: 

01 your-fnum PIC S9(9) USAGE COMPUTATIONAL. 

When you call the DIT$ROPEN routine use your-fnum as the value for the 
file number to be returned. When the routine successfully finishes 
processing, it returns a value in your-fnum. 

11.1.3 Storing Account Information 

To include your user code, password and account number or charge code 
in a call to the DIT$ROPEN routine, you must describe these attributes 
as data items in Working-Storage. The format for ~hese data items 
must be exactly as follows: 

01 userid 
01 passwd 
01 acct 

PIC X(39) 
PIC X(39) 
PIC X(39) 

11.1.4 Reading and Writing Remote Data 

USAGE DISPLAY. 
USAGE DISPLAY. 
USAGE DISPLAY. 

To read or write data from a file on a remote system, the program on 
the local system must define an area to accept the data and a one-word 
computational item for the length of the data. 

11.1.5 Checking the Status of a Remote File Access Routine 

Section 9.1.4 explains how to check the status of a DIL routine from 
VMS COBOL. 

A simple call to the RFA Routines with an error check might be: 

CALL "DIT$ROPEN" USING fnum, fnam, userid, passwd, acct, mode, 
dattyp, recfor, recatt, recsiz, runit GIVING stat. 

IF stat IS FAILURE 
THEN DISPLAY "error". 

11-3 



VMS REMOTE FILE ACCESS 

11.2 REMOTE FILE ACCESS FROM VMS FORTRAN 

The information included in this section assumes 

-You are writing a FORTRAN program 
-You plan to use the program on a VMS system 

This section explains how to store a file number, file name and user 
attributes. It also explains how to read or write a record or to 
perform a status check. 

11.2.1 Including the Interface Support Files 

VMS systems have two different types of Interface Support files for 
each supported language. The first class of files includes native VMS 
type names for each of the various codes for VMS COBOL and VMS 
FORTRAN. The second class includes files with TOPS-lO/TOPS-20 COBOL 
compatible names for VMS COBOL, and files that include ANSI Standard 
names for the interface to VMS FORTRAN. The Interface Support files 
for the VMS are provided as a text library called DIL.TLB. The 
library includes the support files for both VMS COBOL and VMS FORTRAN. 

Native VMS FORTRAN 

You can use the FORTRAN INCLUDE statement to retrieve information from 
DIL.TLB at compilation time. There are three library elements for 
Native VMS FORTRAN in DIL.TLB. The elements are DIL$FORTRAN, 
DIT$FORTRAN, and DIX$FORTRAN. 

The library element DIL$FORTRAN defines general codes and names 
applicable to the Data Conversion Routines, the Task-to-Task Routines 
and the Remote File Access Routines. The general success status code 
(SS-NORMAL) is defined in element DIL$FORTRAN. Severity codes and 
system codes are defined in element DIL$FORTRAN. To define these 
names in your program, include the statement: 

INCLUDE 'SYS$LIBRARY:DIL.TLB (DIL$FORTRAN)' 

This retrieves the DIL$FORTRAN element of the library file and 
includes it in your program~ 

The library element DIT$FORTRAN defines codes· specific to the 
Task-to-Task and Remote File Access Routines. The codes include the 
DIT status codes which are standard VMS condition values. Also 
included are Remote File Access file types, Remote File Access open 
modes, Remote File Access record formats, Remote File Access record 
attributes and Remote File Access close options. To define these 
names in your program, include the statement: 

INCLUDE 'SYS$LIBRARY:DIL.TLB (DIT$FORTRAN)' 

For programs which use the Remote File Access Routines with the native 
VMS names, you must include both the DIL$FORTRAN and DIT$FORTRAN 
library elements. 

11-4 



VMS REMOTE FILE ACCESS 

ANSI Standard Compatible FORTRAN 

If you want to write a program that can be easily transported to 
another system, you may want to include the ANSI Standard FORTRAN 
names in your program rather than the native VMS names. 

You can use the FORTRAN INCLUDE statement to retrieve information from 
DIL.TLB at compilation time. There are three library elements for 
ANSI Standard FORTRAN in DIL.TLB. The elements are DIL$ANSI_FORTRAN, 
DIT$ANSI_FORTRAN, and DIX$ANSI_FORTRAN. 

The library element DIL$ANSI FORTRAN defines general codes and names 
applicable to the Data Conversion Routines, the Task-to-Task Routines 
and the Remote File Access Routines. The general success status code 
(SS-NORMAL) is defined in element DIL$ANSI FORTRAN. Severity codes 
and system codes are defined in element DIL$ANSI FORTRAN. To define 
these names in your program, include the statement: 

INCLUDE 'SYS$LIBRARY:DIL.TLB- (DIL$ANSI_FORTRAN) , 

This retrieves the DIL$ANSI_FORT~N element of the library file and 
includes it in your program. 

The library element DIT$ANSI FORTRAN defines codes specific to the 
Task-to-Task and Remote File Access Rout"ines. This includes the DIT 
status codes which are standard VMS condition values. Also included 
are Remote File Access file types, Remote File Access open modes, 
Remote File Access Record formats, Remote File Access record 
attributes and Remote File Access close options. To define these 
names in your program, include the following statement: 

INCLUDE 'SYS$LIBRARY:DIL.TLB (DIT$ANSI_FORTRAN)' 

For programs that use the remote file access routines with the 
compatible names, you must include both the DIL$ANSI FORTRAN and 
DIT$ANSI FORTRAN library elements. 

11-5 



VMS REMOTE FILE ACCESS 

11.2.2 Storing a File Number 

To store a file number, you must implicitly or explicitly declare an 
integer with the following format: 

INTEGER fnum 

When you call the DIT$ROPEN routine use fnum as the file number to be 
returned. 

11.2.3 Storing Account Information 

To include your user code, password, account number (or charge code) 
in a call to the DIT$ROPEN routine, you must first declare these 
values in your program. The format for these data items is as 
follows: 

INTEGER userid (10) 
INTEGER passwd (10) 
INTEGER acct (10) 

or 
or 
or 

CHARACTER*39 
CHARACTER*39 
CHARACTER*39 

NOTE 

userid 
passwd 
acct 

By default, VAX-II FORTRAN passes arguments of type 
CHARACTER by descriptor. In order to use CHARACTER 
type variables as arguments to DIL (on VMS), the %REF 
built-in function must be used because DIL string 
arguments must be passed by reference. 

11.2.4 Reading and Writing Remote Data 

To read or write data from a file on a remote system, you must declare 
an area on the local system to accept the data, and an integer for the 
length of the data. 

11.2.5 Checking the Status of a Remote File Access Routine 

Section 9.2.4 explains how to check the status of a DIL Routine from 
VMS FORTRAN. 

A simple call with an error check might then be: 

status = DIT$RREAD (fnum,dunit,rnaxsiz,bufnarn) 
IF (status .NE. SS$_NORMAL) GOTO 100 

100 TYPE 101 
101 FORMAT (' error occurred') 

11-6 



VMS REMOTE FILE ACCESS 

11.3 VMS REMOTE FILE ACCESS REFERENCE 

11.3.1 DIT$ROPEN - Open a Remote File 

PURPOSE: 

This routine opens a remote, sequential ASCII file for 
processing. It also assigns a file number to the opened file. 

CALL FORMAT: 

COBOL: CALL "DIT$ROPEN" USING fnum, fnam, userid, passwd, 
acct, mode, dattyp, recfor, recatt, recsiz, runit 
GIVING stat. 

FORTRAN: status = DIT$ROPEN (fnum, fnam, userid, passwd, acct, 
1 mode, dattyp, recfor, recatt, recsiz, runit) 

where: 

fnum is a long integer that gives the file number of the 
file that you want to open. This number is assigned by 
the subroutine. 

fnam is an ASCII-8 character string that gives the name of 
the file to be opened. The file name must also include 
the node name of the file's system of origin. See 
Section 4.1 of this manual for further information. 

NOTE 

The next three arguments supply accounting 
information. If the remote node is a DECSYSTEM-20 or 
DECsystem-lO you must supply a userid and password. 
You must also specify an account unless the remote 
system sets a default account. If the remote node is 
a VAX, these parameters are optional. If you do not 
specify accounting information, the VMS system uses 
the default DECnet directory. 

userid 

passwd 

acct 

mode 

is your user code. A user code contains thirty-nine 
ASCII-8 characters. If your user code is less than 
thirty-nine characters, left-justify the field. 

is your password. A password contains thirty-nine 
ASCII-8 characters. If your password is less than 
thirty-nine characters, left-justify the field. 

is your account. An account contains thirty-nine 
ASCII-8 characters. If your account is less than 
thirty-nine characters, left-justify the field. 

is a long integer that indicates the mode in which you 
plan to use the file after it is opened. This version 
of the DIL allows you to read the file, write the file 
or append data to the file. Check with your system 
manager to make sure the FAL on the file's computer 
allows the type of access you have in mind. 

11-7 



dattyp 

recfor 

recatt 

VMS REMOTE FILE ACCESS 

Mode DIL Name 

Read MODE-READ 

Write MODE-WRITE 

Append data to MODE-APPEND 
this file 

is a long integer that indicates the data type of the 
file. The DIL name for this argument is: 

TYPE-ASCII 

is a long integer that gives the record format. This 
argument, and the next three arguments, refer to the 
records which you plan to process after opening the 
file with the DIT$ROPEN routine. 

Record Format DIL Name 

Undefined RFM-UNDEFINED 

Fixed length RFM-FIXED 

Variable length RFM-VARIABLE 

Variable length RFM-VFC 
with fixed length 
control (VFC) 

Stream RFM-STREAM 

is a long integer that indicates the record attributes 
of the file that you plan to process. 

Record Attribute DIL Name 

Unspecified RAT-UNSPECIFIED 

Implied <LF><CR> RAT-ENVELOPE 
envelope 

VMS printer RAT-PRINT 
carriage control 

FORTRAN carriage RAT-FORTRAN 
control 

Record attribute 
RAT-PRINT is only valid for record format RFM-VFC. 

11-8 



VMS REMOTE FILE ACCESS 

NOTE 

If you plan to use the RFA routines to read a record 
from another system, you can use the RFM-UNDEFINED or 
RAT-UNSPECIFIED values for the "recfor" and "recatt" 
arguments. You only have to specify values for these 
arguments if you want to write a file on a VMS system. 

recsiz is a long integer that gives the record size, in bytes. 
If you plan to write the fila, this will be its maximum 
record size. Use zero if you want to read or append to 
the file. Use zero if you don't want to give the file 
a maximum record size. 

runit is a long integer that gives the record size unit. The 
value of this argument is always zero. 

STATUS CODES: 

OIL Name Meaning 

DIT-TOOMANY You can't open any more files. Ver-
sion 2.0 of the OIL allows a maximu~ 
of 20 open files. 

DIT-INVARG You passed an incorrect or invalid 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

DIT-NETOPRFAIL You attempted an impossible network 
operation. 

DIT-CHECKSUM The network returned a network check-
sum error. 

DIT-UNSFILETYPE You attempted to write a file whose 
file type is unsupported on the re-
mote system. 

DIT-FILEINUSE The file is already being processed 
by another program. 

DIT-NOFILE The file does not exist or is not 
available to you. 

DIT-HORRIBLE This code is returned in the event of 
a system or unexpected error. 

11-9 



VMS REMOTE FILE ACCESS 

11.3.2 DIT$RREAD - Read Data From a Remote File 

PURPOSE: 

The DIT$RREAD routine reads a record from a file opened with the 
DIT$ROPEN routine. 

CALL FORMAT: 

COBOL: CALL "DIT$RREAD" USING fnum, dunit, maxsiz, bufnam 
GIVING stat. 

FORTRAN: status = DIT$RREAD (fnum, dunit, maxsiz, bufnam) 

where: 

fnum is a long integer that gives the number of the file 
that you want to read. File number is assigned by the 
DIT$ROPEN routine. 

dunit 

maxsiz 

bufnam 

STATUS CODES: 

is a long integer that gives the data unit size. 
value for this argument is always zero. 

The 

is a long integer that specifies the maximum record 
size in characters. When DIT$RREAD finishes 
processing, this argument contains the number of 
characters actually read by the routine. 

is where the routine places the data that it reads. It 
is an ASCII-8 character string that must contain room 
for at least the number of characters specified in 
"maxsiz," above. 

DIL Name Meaning 

DIT-INVARG You passed an incorrect or invalid 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

DIT-NETOPRFAIL You attempted an impossible network 
operation. 

DIT-CHECKSUM The network returned a network check-
sum error. 

OIT-EOF The routine reached the end of the 
file it was reading. 

DIT-OVERRUN The record being read is too large to 
fit into the user buffer area. 

OIT-HORRIBLE This code is returned in the event of 
a system or unexpected error. 

11-10 



VMS REMOTE FILE ACCESS 

11.3.3 DIT$RWRITE - Write Data to a Remote File 

PURPOSE: 

The DIT$RWRITE routine writes a record into a file opened b~ 
DIT$ROPEN. 

CALL FORMAT: 

COBOL: CALL "DIT$RWRITE" USING fnum, dunit, length, data 
GIVING stat. 

FORTRAN: status = DIT$RWRITE (fnum, dunit, length, data) 

where: 

fnum is a long integer that gives the file number of the 
file that you want to write. File number is assigned 
by the DIT$ROPEN routine. 

dunit is a long integer that specifies the data unit size. 
The value of this argument is always zero. 

length is a long integer that gives the data length, in 
characters. 

data is an ASCII-8 character string that represents the data 
to write. 

STATUS CODES: 

DIL Name Meaning 

DIT-INVARG You passed an incorrect or invalid 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

DIT-NETOPRFAIL You attempted an impossible network 
operation. 

DIT-CHECKSUM The network returned a network check-
sum error. 

DIT-NOFILE The file does not exist or is not 
available to you. 

DIT-HORRIBLE This code is returned in the event of 
a system or unexpected error. 

11-11 



VMS REMOTE FILE ACCESS 

11.3.4 DIT$RCLOSE - Close a Remote File 

PURPOSE: 

The DIT$RCLOSE routine closes the file that you opened with the 
DIT$ROPEN routine. 

CALL FORMAT: 

COBOL: CALL "DIT$RCLOSE" USING fnum, clopt GIVING stat. 

FORTRAN: status = DIT$RCLOSE (fnum, clopt) 

where: 

fnum is a long integer that gives the file number of the 
file that you want to close. File number is assigned 
by the DIT$ROPEN routine. 

clopt is a long integer that gives the close option. This 
argument tells what you want to do with the file once 
it's closed. 

Close Option DIL Name 

No special action OPT-NOTHING 

Submit file for OPT-SUBMIT 
remote batch pro-
cessing 

Submit file for OPT-PRINT 
remote printing 

Delete the remote OPT-DELETE 
file 

STATUS CODES: 

DIL Name Meaning 

DIT-INVARG You passed an incorrect or invalid 
argument. 

S8-NORMAL The routine successfully completed 
processing. 

DIT-NETOPRFAIL You attempted an impossible network 
operation. 

DIT-CHECKSUM The network returned a network check-
sum error. 

DIT-HORRIBLE This code is returned in the event of 
a system or unexpected error. 

11-12 



VMS REMOTE FILE ACCESS 

11.3.5 DIT$RDEL - Delete a File 

PURPOSE: 

The DIT$RDEL routine deletes a file. You can only delete a 
closed file. If you want to delete an open file, delete it with 
the DIT$CLOSE routine using the OPT-DELETE close option. 

CALL FORMAT: 

COBOL: CALL "DIT$RDEL" USING fnam, userid, passwd, acct 
GIVING stat. 

FORTRAN: status = DIT$RDEL (fnam, userid, passwd, acct) 

where: 

fnam is an ASCII-8 character string that gives the name of 
the file to be deleted. The file name must also 
include the node name of the file's system of origin. 

NOTE 

The next three arguments supply accouQting 
information. If the remote node is a DECSYSTEM-20 or 
DECsystem-lO you must supply a userid and password. 
You must also specify an account unless the remote 
system sets a default account. If the remote node is 
a VAX, these parameters are optional. If you do not 
specify accounting information, the VMS system uses 
the default DECnet directory. 

userid 

passwd 

acct 

is your user code. This field contains thirty-nine 
ASCII-8 characters. If your user code is less than 
thirty-nine characters, left-justify the field. 

is your password. This field contains thirty-nine 
ASCII-8 characters. If your password is less than 
thirty-nine characters, left-justify the field. 

is your account. This field contains thirty-nine 
ASCII-8 characters. If your account is less than 
thirty-nine characters, left-justify the field. 

11-13 



VMS REMOTE FILE ACCESS 

STATUS CODES: 

OIL Name ~1eaning 

DIT-INVARG You passed an incorrect or invalid 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

DIT-NETOPRFAIL You attempted an impossible network 
operation. 

DIT-CHECKSUM The network returned a network check-
sum error. 

DIT-NOFILE The file does not exist or is not 
available to you. 

DIT-HORRIBLE This code is returned in the event of 
a system or unexpected error. 

11-14 



VMS REMOTE FILE ACCESS 

11.3.6 DIT$RSUB - Submit a File For Batch Processing 

PURPOSE: 

The DIT$RSUB routine submits a remote file -for batch processing 
on the remote system. You may only submit closed files for 
processing. If you want to submit an open file for batch 
processing, use the DIT$RCLOSE routine with the OPT-SUBMIT close 
option. 

CALL FORMAT: 

COBOL: CALL "DIT$RSUB" USING fnam, userid, passwd, acct 
GIVING stat. 

FORTRAN: status = DIT$RSUB (fnam, userid, passwd, acct) 

where: 

fnam is an ASCII-8 character string that gives the name of 
the file to be submitted. The file name must also 
include the node name of the file's system of origin. 

NOTE 

The next three arguments supply accounting 
information. If the remote node is a DECSYSTEM-20 or 
DECsystem-lO you must supply a userid and password. 
You must also specify an account unless the remote 
system sets a default account. If the remote node is 
a VAX, these parameters are optional. If you do not 
specify accounting information, the VMS system uses 
the default DECnet directory. 

userid 

passwd 

acct 

is your user code. This field contains thirty-nine 
ASCII-8 characters. If your user code is less than 
thirty-nine characters, left-justify the field. 

is your password. This field contains thirty-nine 
ASCII-8 characters. If your password is less than 
thirty-nine characters, left-justify the field. 

is your account. This field contains thirty-nine 
ASCII-8 characters. If your account is less than 
thirty-nine characters, left-justify the field. 

11-15 



VMS REMOTE FILE ACCESS 

STATUS CODES: 

DIL Name Meaning 

DIT-INVARG You passed an incorrect or invalid 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

DIT-NETOPRFAIL You attempted an impossible network 
operation. 

DIT-CHECKSUM The network returned a network check-
sum error. 

DIT-NOFILE The file does not exist or is not 
available to you. 

DIT-HORRIBLE This code is returned in the event of 
a system or unexpected error. 

11-16 



VMS REMOTE FILE ACCESS 

11.3.7 DIT$RPRINT - Print a File 

PURPOSE: 

The DIT$RPRINT routine prints a remote file at the remote system. 
If you want to print an open file, use the DIT$RCLOSE routine 
with the OPT-PRINT close option. 

CALL FORMAT: 

COBOL: CALL "DIT$RPRINT" USING fnam, userid, passwd, acct 
GIVING stat. 

FORTRAN: status = DIT$RPRINT (fnam, userid, passwd, acct) 

where: 

fnam is an ASCII-8 character string that gives the name of 
the file to be printed. The file name must also 
include the node name of the file's system of origin. 

NOTE 

The next three arguments supply accounting 
information. If the remote node is a DECSYSTEM-20 or 
DECsystem-lO you must supply a userid and password. 
You must also specify an account unless the remote 
system sets a default account. If the remote node is 
a VAX, these parameters are optional. If you do not 
specify accounting information, the VMS system uses 
the default DECnet directory. 

userid 

passwd 

acct 

is your user code. This field contains thirty-nine 
ASCII-8 characters. If your user code is less than 
thirty-nine characters, left-justify the field. 

is your password. This field contains thirty-nine 
ASCII-8 characters. If your password is less than 
thirty-nine characters, left-justify the field. 

is your account. This field contains thirty-nine 
ASCII-8 characters. If your account is less than 
thirty-nine characters, left-justify the field. 

11-17 



VMS REMOTE FILE ACCESS 

STATUS CODES: 

DIL Name Meaning 

DIT-INVARG You passed an incorrect or invalid 
argument. 

SS-NORMAL The routine successfully completed 
processing. 

DIT-NETOPRFAIL You attempted an impossible network 
operation. 

DIT-CHECKSUM The network returned a network check-
sum error. 

DIT-NOFILE The file does not exist or is not 
available to you. 

DIT-HORRIBLE This code is returned in the event of 
a system or unexpected error. 

11-18 



VMS REMOTE FILE ACCESS 

11.4 VMS REMOTE FIL~ ACCESS EXAMPLES 

11.4.1 VMS COBOL Remote File Access Examples 

IDENTIFICATION DIVISION. 

PROGRAM-ID. 

CDAP32. 

This program opens a remote file named DAP.TST and writes an 
ASCII record into it, closes the file, reopens the file and 
reads the record back and then closes the file again. This 
program tries to write and read the file DAP.TST using the 
default DECnet directory. 

ENVIRONMENT DIVISION. 

CONFIGURATION SECTION. 

SOURCE-COMPUTER. 

VAX-II. 

,'"'BJECT-COMPUTER. 

VAX-II. 

DATA DIVISION. 

WORKING-STORAGE SECTION. 

01 INTERFACE-FILES. 
COpy DIT$COBOL OF "SYS$LIBRARY:DIL.TLB". 
COpy DIL$COBOL OF "SYS$LIBRARY:DIL.TLB". 

* DIL status return 
01 DIL-STATUS PIC S9(9) COMPo 

* File and directory description fields 

01 FILE-NAME PIC X(39) VALUE "DAP.TST". 
01 USERID PIC X(39) VALUE SPACES. 
01 PASSWD PIC X(39) VALUE SPACES. 
01 ACCT PIC X(39) VALUE SPACES. 

* Record and file description fields 

01 FILE-NUMBER USAGE COMP PIC S9(9). 
01 RECORD-UNIT-SIZE USAGE COMP PIC S9(9) VALUE O. 
01 RECORD-SIZE USAGE COMP PIC S9(9) VALUE 100. 

01 DATA-RECORD PIC X(lOO). 

01 DIL-DISPLAY PIC X(12). 

11-19 



VMS REMOTE FILE ACCESS 

PROCEDURE DIVISION. 

BEGIN-CDAP32. 

* Open file DAP.TST for output; note: for remote file access, if you 
* leave the passwd and userid blank on a VAX, the connected directory 
* will be used 

CALL "DIT$ROPEN" USING FILE-NUMBER, FILE-NAME, USERID, PASSWD, ACCT, 
DIT$K MODE WRITE, DIT$K TYPE ASCII, 
DIT$K-RFM STREAM, DIT$K-RAT UNSPECIFIED, 
RECORD-SIZE, RECORD-UNIT-SIZE 

GIVING DIL-STATUS. 

MOVE DIL-STATUS TO DIL-DISPLAY. 
DISPLAY" ROPEN Status return: " DIL-DISPLAY. 
IF DIL-STATUS IS NOT SUCCESS 

DISPLAY"? ROPEN: unsuccessful status return" 
STOP RUN. 

* Accept a record and write it to the file 

DISPLAY" Enter data for the record for the remote file: " 
ACCEPT DATA-RECORD. 

CALL "DIT$RWRITE" USING FILE-NUMBER, RECORD-UNIT-SIZE, 
RECORD-SIZE, DATA-RECORD 

GIVING DIL-STATUS. 

MOVE DIL-STATUS TO DIL-DISPLAY. 
DISPLAY" RWRITE Status return: " DIL-DISPLAY. 
IF DIL-STATUS IS NOT SUCCESS 

DISPLAY"? RWRITE: unsuccessful status return. " 
STOP RUN. 

* Close the file 

CALL "DIT$RCLOSE" USING FILE-NUMBER, DIT$K_OPT_NOTHING 
GIVING DIL-STATUS. 

MOVE DIL-STATUS TO DIL-DISPLAY. 
DISPLAY" RCLOSE Status return: ", DIL-DISPLAY. 
IF DIL-STATUS IS NOT SUCCESS 

DISPLAY"? RCLOSE: unsuccessful status return." 
STOP RUN. 

* Open the file to read the record 

CALL "DIT$ROPEN" USING FILE-NUMBER, FILE-NAME, USERID, PASSWD, ACCT, 
DIT$K MODE READ, DIT$K TYPE ASCII, 
DIT$K-RFM STREAM, DIT$K RAT-UNSPECIFIED, 
RECORD-SIZE, RECORD-UNIT-SIZE 

GIVING DIL-STATUS. 

MOVE OIL-STATUS TO DIL-DISPLAY. 
DISPLAY" ROPEN Status return: ", DIL-DISPLAY. 
IF OIL-STATUS IS NOT SUCCESS 

DISPLAY"? ROPEN: unsuccessful status return." 
STOP RUN. 

11-20 



VMS REMOTE FILE ACCESS 

* Read the record 

MOVE SPACES TO DATA-RECORD. 

CALL "DIT$RREAD" USING FILE-NUMBER, RECORD-UNIT-SIZE, 
RECORD-SIZE, DATA-RECORD 

GIVING DIL-STATUS. 

MOVE DIL-STATUS TO DIL-DISPLAY. 
DISPLAY" RREAD returned ", DIL-DISPLAY. 
IF DIL-STATUS IS NOT SUCCESS 

DISPLAY "1 RREAD: unsuccesfu1 status return." 
STOP RUN. 

DISPLAY" The record was: " 
DISPLAY DATA-RECORD. 

* Close the file 

CALL "DIT$RCLOSE" USING FILE-NUMBER, DIT$K_OPT_NOTHING 
GIVING DIL-STATUS. 

MOVE DIL-STATUS TO DIL-DISPLAY. 
DISPLAY" RCLOSE Status return: ", DIL-DISPLAY. 
IF DIL-STATUS IS NOT SUCCESS 

DISPLAY "1 RCLOSE: unsuccessful status return." 
STOP RUN. 

DISPLAY" CDAP32 successful. " 

STOP RUN. 

11-21 



VMS REMOTE FILE ACCESS 

11.4.2 VMS FORTRAN Remote File Access Example 

C FDAP32 
C 
C 
C 

This program opens a remote file named DAP.TST and writes 
ASCII record into it, closes the file, reopens the file 
reads the record back and then closes the file again. 

C Use the DIL interface files. 

INCLUDE 'SYS$LIBRARY:DIL.TBL (DIT$FORTRAN)' 
INCLUDE 'SYS$LIBRARY:DIL.TBL (DIL$FORTRAN), 

C File and directory description fields 

an 
and 

INTEGER FILNAM (10), USERID (10), PASSWD (10), ACCT (10), FILNUM 
C Sending and receiving data records 

INTEGER DATAl (25), DATA2 (25) 
C DIL Status code 

INTEGER DILSTS 
C Record size and record unit size 

INTEGER RECSIZ, RUNTSZ 

DATA FILNAM I'DAP.', 'TST ' 
1 'I 

C Note: For remote file access on the VAX, if you leave the userid and 
C passwd blank, the connected directory will be used. 

DATA USERID I' 
1 
DATA PASSWD I' 
1 
DATA ACCT I' 
1 

C Program messages 

200 FORMAT (' ROPEN status return: " lID) 
201 FORMAT (' RWRITE status return: " lID) 
202 FORMAT (' RCLOSE status return: " lID) 
203 FORMAT (' RREAD status return: " lID) 
700 FORMAT ('1 Invalid status returned ••• ') 

C Request the password 

100 FORMAT (' Enter the password:') 
WRITE (6,100) 

105 FORMAT (10A4) 
ACCEPT 105, PASSWD 

11-22 

, , , 
'I 

'I 

'I 



VMS REMOTE FILE ACCESS 

COpen fi1eDAP.TST for output. 

RUNTSZ 0 
RECSIZ = 100 

DILSTS = DIT$ROPEN (FILNUM, FILNAM, USERID, PASSWD, ACCT, 
1 DIT$K MODE WRITE, DIT$K TYPE ASCII, DIT$K_RFM_STREAM, 
2 DIT$K=UNSPECIFIED, RECSIZ, RUN~SZ) 

WRITE (6,200) DILSTS 
IF (DILSTS .EQ. SS$ NORMAL) GO TO 115 
WRITE (6,700) -
STOP 

C Accept a record and write it to the file 

110 FORMAT (' Enter data for the record:') 
115 WRITE (6,110) 
120 FORMAT (25A4) 

ACCEPT 120, DATAl 

DILSTS = DIT$RWRITE (FILNUM, RUNTSZ, RECSIZ, DATAl) 

WRITE (6,201) DILSTS 
IF (DILSTS .EQ. SS$ NORMAL) GO TO 125 
WRITE (6,700) -
STOP 

C Close the file. 

125 DILSTS = DIT$RCLOSE (FILNUM, DIT$K_OPT_NOTHING) 

WRITE (6,202) DILSTS 
IF (DILSTS .EQ. SS$ NORMAL) GO TO 130 
WRITE (6,700) -
STOP 

C Open the file to read the record 

130 DILSTS 

1 
2 

DIT$ROPEN (FILNUM, FILNAM, USERID, PASSWD, ACCT, 

DIT$K MODE READ, DIT$K TYPE ASCII, DIT$K RFM STREAM, 
DIT$K=RAT_UNSPECIFIED,-RECSIZ, RUNTSZ) - -

WRITE (6,200) DILSTS 
IF (DILSTS .EQ. SS$ NORMAL) GO TO 135 
WRITE (6,700) -
STOP 

11-23 



VMS REMOTE FILE ACCESS 

C Read the record 

135 DILSTS = DIT$RREAD (FILNUM, RUNTSZ, RECSIZ, DATA2) 

WRITE (6,203) DILSTS 
IF (DILSTS .EQ. SS$ NORMAL) GO TO 145 
WRITE (6,700) -
STOP 

140 FORMAT (' The record read was: ') 
145 WRITE (6,140) 
146 FORMAT (' " 25A4) 

WRITE (6,146) DATA2 

C Close the file 

DILSTS = DIT$RCLOSE (FILNUM, DIT$K_OPT_NOTHING) 

WRITE (6,202) DILSTS 
IF (DILSTS .EQ. SS$_NORMAL) GO TO 155 

WRITE (6,700) 
STOP 

150 FORMAT (' FDAP32 successful ') 
155 WRITE (6,150) 

STOP 
END 

11-24 



CHAPTER 12 
LINKING A VMS PROGRAM 



CHAPTER 12 

LINKING A VMS PROGRAM 

The linker associates your program with the Data Interchange Library 
routines that your program calls. VMS supports two forms of the OIL, 
an object library and a shareable image. When you have successfully 
compiled your program, link it by typing the following command 
sequence: 

For object library: 

$ LINK usrprg, SYS$LIBRARY:DIL/LIBRARY, SYS$LIBRARY:XPORT/LIBRARY 

where usrprg is the name of your program. 

For sharable image: 

$ LINK usrprg, SYS$LIBRARY:DIL/OPTIONS 

where: usrprg is the name of your 
SYS$LIBRARY:DIL.OPT as a file 
specifications. 

program, and 
containing 

12-1 

OPTIONS identifies 
VMS linker option 





APPENDIX A 
LANGUAGE-SPECIFIC VALUES FOR OIL NAMES 



APPENDIX A 

LANGUAGE-SPECIFIC VALUES FOR OIL NAMES 

This appendix shows the DIL Names for status codes, severity codes, 
data type names and routine parame~er values as defined in the OIL 
Interface Support files. It then gives the equivalent names for COBOL 
and FORTRAN on the VAX, the DECsystem-IO and the DECSYSTEM-20. 

If you plan to write a COBOL program on a TOPS-IO or TOPS-20 syst~m, 
use the ANSI COBOL names. If you plan to write a FORTRAN program on a 
TOPS-IO or TOPS-20 system, use the ANSI FORTRAN names. If you want to 
write a program on a VMS system use the Native Vax names. If you plan 
to write a program which can be easily transported between 
TOPS-IO/TOPS-20 and VMS, use the ANSI COBOL or ANSI FORTRAN names. 

A-I 



LANGUAGE-SPECIFIC VALUES FOR OIL NAMES 

DIL NAME 

DIT-ABORTREJECT 
DIT-ABREJEVENT 
DIT-CHECKSUM 
DIT-CONNECTEVENT 
DIT-DATAEVENT 
DIT-DISCONNECTEVENT 
DIT-EOF 
DIT-FILEINUSE 
DIT-HORRIBLE 
DIT-INFONOTAVAIL 
DIT-INFOOUTOFRANGE 
DIT-INTDATAEVENT 
DIT-INTERRUPT 
DIT-INVARG 
DIT-NETOPRFAIL 
DIT-NODATAAVAILABLE 
DIT-NOFILE 
DIT-NOMOREFILES 
DIT-NOTENOUGH 
DIT-OVERRUN 
DIT-TOOMANY 
DIT-UNSFILETYPE 
DIX-ALIGN 
DIX-FMTLOST 
DIX-GRAPHIC 
DIX-IMPOSSIBLE 
DIX-INVALCHAR 
DIX-INVBYTSIZ 
DIX-INVDATTYP 
DIX-INVPDDGT 
DIX-INVPDSGN 
DIX-INVLNG 
DIX-INVDNCHR 
DIX-INVDNSGN 
DIX-INVSCAL 
DIX-NONPRINT 
DIX-ROUNDED 
DIX-TOOBIG 
DIX-TRUNC 
DIX-UNIMP 
DIX-UNKARGTYP 
DIX-UNKSYS 
DIX-UNNORM 
DIX-UNSIGNED 
SS-NORMAL 

1STATUS CODES: I 

ANSI COBOL 

DIT-C-ABORTREJECT 
DIT-C-ABREJEVENT 
DIT-C-CHECKSUM 
DIT-C-CONNECTEVENT 
DIT-C-DATAEVENT 
DIT-C-DISCONNECTEVENT 
DIT-C-EOF 
DIT-C-FILEINUSE 
DIT-C-HORRIBLE 
DIT-C-INFONOTAVAIL 
DIT-C-INFOOUTOFRANGE 
DIT-C-INTDATAEVENT 
DIT-C-INTERRUPT 
DIT-C-INVARG 
DIT-C-NETOPRFAIL 
DIT-C-NODATAAVAILABLE 
DIT-C-NOFILE. 
DIT-C-NOMOREFILES 
DIT-C-NOTENOUGH 
DIT-C-OVERRUN 
DIT-C-TOOMANY 
DIT-C-UNSFILETYPE 
DIX-C-ALIGN 
DIX-C-FMTLOST 
DIX-C-GRAPHIC 
DIX-C-IMPOSSIBLE 
DIX-C-INVALCHAR 
DIX-C-INVBYTSIZ 
DIX-C-INVDATTYP 
DIX-C-INVPDDGT 
DIX-C-INVPDSGN 
DIX-C-INVLNG 
DIX-C-INVDNCHR 
DIX-C-INVDNSGN 
DIX-C-INVSCAL 
DIX-C-NONPRINT 
DIX-C-ROUNDED 
DIX-C-TOOBIG 
DIX-C-TRUNC 
DIX-C-UNIMP 
DIX-C-UNKARGTYP 
DIX-C-UNKSYS 
DIX-C-UNNORM 
DIX-C-UNSIGNED 
SS-C-NORMAL 

A-2 

ANSI 
FORTRAN 

ABRTRJ 
ARJEVT 
CHKSUM 
CONEVT 
DATEVT 
DSCEVT 
DITEOF 
FILIU 
SYSERR 
NOTAVL 
INFOUR 
INTEVT 
INTRCV 
INVARG 
NETFAL 
NODATA 
NOFILE 
NOM ORE 
NOTENF 
OVRRUN 
TOOMNY 
UNSTYP 
ALIGN 
FMTLST 
GRAPHC 
IMPOSS 
INVCHR 
BYTSIZ 
DATTYP 
PDDGT 
PDSGN 
INVLNG 
DNMCHR 
DNMSGN 
INVSCL 
NONPRN 
RNDED 
TOOBIG 
TRUNC 
UNIMP 
ARGTYP 
UNKSYS 
UNNORM 
UNSIGN 
NORMAL 

NATIVE VAX 

DIT$ ABORTREJECT 
DIT$-ABREJEVENT 
DIT$-CHECKSUM 
DIT$-CONNECTEVENT 
DIT$-DATAEVENT 
DIT$-DISCONNECTEVENT 
DIT$-EOF . 
DIT$-FILEINUSE 
DIT$-HORRIBLE 
DIT$-INFONOTAVAIL 
DIT$-INFOOUTOFRANGE 
DIT$-INTDATAEVENT 
DIT$-INTERRUPT 
DIT$-INVARG 
DIT$-NETOPRFAIL 
DIT$-NODATAAVAILABLE 
DITS-NOFILE 
DIT$-NOMOREFILES 
DIT$-NOTENOUGH 
DIT$-OVERRUN 
DIT$-TOOMANY 
DIT$-UNSFILETYPE 
DIX$-ALIGN 
DIXS-FMTLOST 
DIX$-GRAPHIC 
DIX$-IMPOSSIBLE 
DIXS-INVALCHAR 
DIX$-INVBYTSIZ 
DIXS-INVDATTYP 
DIX$-INVPDDGT 
DIX$-INVPDSGN 
DIXS-INVLNG 
DIX$-INVDNCHR 
DIX$-INVDNSGN 
DIX$ INVSCAL 
DIX$-NONPRINT 
DIXS-ROUNDED 
DIX$-TOOBIG 
DIXS-TRUNC 
DIX$-UNIMP 
DIX$-UNKARGTYP 
DIXS-UNKSYS 
DIX$-UNNORM 
DIXS-UNSIGNED 
SSS_NORMAL 



OIL NAME 

STS-WARNING 
STS-SUCCESS 
STS-ERROR 
STS-INFO 
STS-SEVERE 

OIL NAME 

SYS-10-20 
SYS-VAX 

OIL NAME 

TYPE-ASCII 

OIL NAME 

MODE-READ 
MODE-WRITE 
MODE-APPEND 

OIL NAME 

RFM-UNDEFINED 
RFM-FIXED 
RFM-VARIABLE 
RFM-VFC 
RFM-STREAM 

LANGUAGE-SPECIFIC VALUES FOR OIL NAMES 

ISEVERITY CODES:) 

ANSI COBOL 

STS-K-WARNING 
STS-K-SUCCESS 
STS-K-ERROR 
STS-K-INFO 
STS-K-SEVERE 

ANSI FORTRAN 

STSWRN 
STSSUC 
STSERR 
STSINF 
STSSEV 

Is YSTEM CODES: I 

ANSI COBOL ANSI FORTRAN 

DIX-SYS-10-20 SYS36 
DIX-SYS-VAX SYSVAX 

NATIVE VAX 

STS$K WARNING 
STS$K-SUCCESS 
STS$K-ERROR 
STS$K-INFO 
STS$K-SEVERE 

NATIVE VAX 

DIX$K SYS 10 20 
DIX$K-SYS-VAX 

- -

IREMOTE FILE ACCESS FILE TYPES:I 

ANSI COBOL ANSI FORTRAN NATIVE VAX 

DIT-TYPE-ASCII TASCII 

(REMOTE FILE ACCESS OPEN MODES:I 

ANSI COBOL ANSI FORTRAN 

DIT-MODE-READ 
DIT-MODE-WRITE 
DIT-MODE-APPEND 

MREAD 
~1WRITE 

MAPPND 

NATIVE VAX 

DIT$K MODE READ 
DIT$K-MODE-WRITE 
DIT$K-MODE-APPEND - -

IREMOTE FILE ACCESS RECORD FORMATS:I 

ANSI COBOL ANSI FORTRAN 

DIT-RFM-UNDEFINED FUNDEF 
DIT-RFM-FIXED FFIXED 
DIT-RFM-VARIABLE FVAR 
DIT-RFM-VFC FVFC 
DIT-RFM-STREAM FSTM 

A-3 

NATIVE VAX 

DIT$K RFM UNDEFINED 
DIT$K-RFM-FIXED 
DIT$K-RFM-VARIABLE 
DIT$K-RFM-VFC 
DIT$K=RFM=STREAM 

VALUE 

o 
1 
2 
3 
4 

VALUE 

1 
2 

VALUE 

1 

VALUE 

1 
2 
3 

VALUE 

o 
1 
2 
3 
4 



OIL NAME 

RAT-UNSPECIFIED 
RAT-ENVELOPE 
RAT-PRINT 
RAT-FORTRAN 

DIL NAME 

OPT-NOTHING 
OPT-SUBMIT 
OPT-PRINT 
OPT-DELETE 

DIL NAME 

WAIT-NO 
WAIT-YES 

OIL NAME 

LTYPE-ASCII 
LTYPE-BINARY 
LTYPE-SBIT 

OIL NAME 

MSG-MSG 
MSG-STM 

LANGUAGE-SPECIFIC VALUES FOR DIL NAMES 

I REMOTE FILE ACCESS RECORD ATTRIBUTES: I 
ANSI COBOL ANSI FORTRAN NATIVE VAX VALUE 

OIT-RAT-UNSPECIFIEO AUNSPC OIT$K RAT UNSPECIFIED 0 
OIT-RAT-ENVELOPE AENVLP OIT$K-~AT-ENVELOPE 
DIT-RAT-PRINT APRINT DIT$K-RAT-PRINT 
DIT-RAT-FORTRAN AFTN DIT$K:RAT:FORTRAN 

I REMOTE FILE ACCESS CLOSE OPTIONS: I 
ANSI COBOL 

OIT-OPT-NOTHING 
OIT-OPT-SUBMIT 
DIT-OPT-PRINT 
OIT-OPT-DELETE 

ANSI FORTRAN NATIVE VAX 

ONTHNG DIT$K OPT NOTHING 
OSBMIT DIT$K-OPT-SUBMIT 
OPRINT DIT$K-OPT-PRINT 
ODLETE OIT$K=OPT=DELETE 

ITASK-TO-TASK WAIT CODES: I 
ANSI COBOL 

OIT-WAIT-NO 
DIT-WAIT-YES 

ANSI FORTRAN 

WAITLN 
WAITLY 

NATIVE VAX 

DIT$K WAIT NO 
DIT$K=WAIT=YES 

I TASK-TO-TASK LINK TYPES for NFACC:I 

ANSI COBOL ANS I. FORTRAN NATIVE VAX 

VALUE 

o 
1 
2 
4 

VALUE 

o 
1 

DIT-LTYPE-ASCII LASCII DIT$K LTYPE ASCII 
DIT-LTYPE-BINARY LBIN DIT$K-LTYPE-BINARY 
DIT-LTYPE-SBIT LSBIT OIT$K=LTYPE=SBIT 

I TASK-TO-TASK MESSAGE MODES: I 
ANSI COBOL 

DIT-MSG-MSG 
DIT-MSG-STM 

ANSI FORTRAN 

MSGMSG 
MSGSTM 

NATIVE VAX 

DIT$K MSG MSG 
OIT$(~MS(::STM 

A-4 

VALUE 

o 

VAX 
VALUE 

1 
2 
3 

1 
2 
3 

TOPS-1O/20 
VALUE 

0 
1 
2 



DIL NAME 

PAS-FIREUP 
PAS-NFIREUP 

DIL NAME 

ASCII-7 
ASCII-S 
ASCIZ 
D-FLOAT 
DN6LO 
DN6LS 
DN6TO 
DN6TS 
DN6U 
DN7LO 
DN7LS 
DN7TO 
DN7TS 
DN7U 
DNSLO 
DNSLS 
DNSTO 
DNSTS 
DNSO 
DN9LO 
DN9LS 
DN9TO 
DN9TS 
DN9U 
EBCDIC-S 
EBCDIC-9 
F-FLOAT 
FLOAT-36 
FLOAT-72 
G-FLOAT 
G-FLOAT72 
H-FLOAT 
PDS 
PD9 
SIXBI,T 
SBF12S 
SBF16 
SBF32 
SBF36 
SBFlS 
SBF64 
SBF72 
SBFS 
UBF16 
UBF32 
UBFS 

LANGUAGE-SPECIFIC VALUES FOR DIL NAMES 

[VMS TASK FIRE-UP CODES: I 
ANSI COBOL ANSI FORTRAN 

OIT-PAS-FIREUP FIREUP 
OIT-PAS-NFIREUP NFREUP 

ANSI COBOL 
I DATA TYPESI 
ANSI FORTRAN 

DIX-DT-ASCII-7 
OIX-OT-ASCII-S 
OIX-OT-ASCIZ 
OIX-OT-O-FLOAT 
DIX-OT-DN6LO 
OIX-OT-ON6LS 
DIX-OT-ON6TO 
OIX-OT-DN6TS 
OIX-OT-DN6U 
DIX-OT-ON7LO 
OIX-OT-ON7LS 
OIX-OT-ON7TO 
OIX-OT-ON7TS 
OIX-OT-DN7U 
OIX-OT-DNSLO 
OIX-DT-ONSLS 
OIX-OT-ONSTO 
OIX-OT-DNSTS 
OIX-OT-ONSU 
OIX-OT-ON9LO 
OIX-OT-ON9LS 
OIX-OT-ON9TO 
OIX-OT-ON9TS 
OIX-OT-ON9U 
OIX-OT-EBCDIC-S 
DIX-OT-EBCOIC-9 
OIX-OT-F-FLOAT 
OIX-OT-FLOAT-36 
OIX-OT-FLOAT-72 
DIX-DT-G-FLOAT 
DIX OT G FLOAT72 
OIX=OT=H=FLOAT 
DIX-OT-PDS 
OIX-DT-PD9 
OIX-OT-SIXBIT 
DIX-OT-SBFI2S 
OIX-OT-SBFI6 
DIX-OT-SBF32 
DIX-OT-SBF36 
OIX-OT-SBF4S 
OIX-DT-SBF64 
DIX-DT-SBF72 
DIX-OT-~BFS 
OIX-DT-UBFI6 
DIX-OT-UBF32 
DIX-OT-UBFS 

ASCII7 
ASCIIS 
ASCIZ 
OF LOAT 
DN6LO 
ON6LS 
ON6TO 
ON6TS 
ON6U 
ON7LO 
DN7LS 
ON7TO 
DN7TS 
ON7U 
ONSLO 
DNSLS 
ONSTO 
DNSTS 
DNSU 
ON9LO 
ON9LS 
ON9TO 
DN9TS 
DN9U 
EBCDCS 
EBCOC9 
FFLOAT 
FLOT36 
FLOT72 
GFLOAT 
GFL072 
HFLOAT 
POS 
P09 
SIXBIT 
SBF12S 
SBF16 
SBF32 
SBF36 
SBF4S 
SBF64 
SBF72 
SBFS 
UBF16 
UBF32 
UBFS 

A-5 

NATIVE VAX 

OIT$K PAS FIREUP 
OIT$K-PAS-NFIREUP - -

NATIVE VAX 

DIX$K DT ASCII 7 
OIX$K-OT-ASCII-S 
OIX$K-OT-ASCIZ­
OIX$K-OT-O FLOAT 
DIX$K-OT-ON6LO 
OIX$K-OT-ON6LS 
OIX$K-OT-ON6TO 
OIX$K-OT-ON6TS 
DIX$K-DT-ON6U 
OIX$K-OT-DN7LO 
OIX$K-OT-ON7LS 
OIX$K-OT-ON7TO 
OIX$K-DT-ON7TS 
OIX$K-DT-DN7U 
DIX$K-OT-DNSLO 
OIX$!(-OT-ONSLS 
OIX$K-DT-ONSTO 
OIX$K-OT-ONSTS 
DIX$K-OT-ONSU 
OIX$K-OT-ON9LO 
OIX$K-OT-DN9LS 
OIX$K-OT-ON9TO 
OIX$K-OT-ON9TS 
OIX$K-OT-DN9U 
OIX$K-OT-EBCOIC S 
OIX$K-OT-EBCOIC-9 
DIX$K-OT-F FLOAT 
OIX$K-DT-FLOAT 36 
DIX$K-DT-FLOAT-72 
DIX$K-OT-G FLOAT 
DIX$K-DT-G-FLOAT72 
DI X$K-OT-H-F LOAT 
DIX$K-OT-PDS 
DIX$K-:OT-PD9 
OIX$K-OT-SIXBIT 
DIX$K-DT-SBFI2S 
DIX$K-OT-SBFI6 
DIX$K-OT-SBF32 
DIX$K-OT-SBF36 
DIX$K-OT-SBF4S 
DIX$K-OT-SBF64 
DIX$K-DT-SBF72 
DIX$K-OT-SBFS 
OIX$K-OT-UBFI6 
DIX$K-DT-UBF32 
DIX$K-DT-UBFS 

VALUE 

o 
1 

VALUE 

257 
25S 
259 
769 
1025 
1026 
1027 
102S 
1029 
1030 
1031 
1032 
1033 
1034 
1035 
1036 
1037 
103S 
1039 
1040 
1041 
1042 
1043 
1044 
260 
261 
770 
771 
772 
773 
774 
775 
12S1 
12S2 
262 
513 
514 
515 
516 
517 
51S 
519 
520 
522 
523 
524 



LANGUAGE-SPECIFIC VALUES FOR OIL NAMES 

A.I SPECIFYING DATA NAMES 

TOPS-IO/TOPS-20 COBOL: 

Character sets as specified in the ALPHABET clause 
SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION: 

PICTURE clause 

9 (n) 
where l<=n<=l8 

S9 (n) 
where l<=n<=l8 

S9 (n) 
where l<=n<=18 

S9 (n) 
where 1<=n<=18 

S9 (n) 
where 1<=n<=18 

S9 (n) 
where 1<=n<=18 

9 (n) 
where 1<=n<=18 

59 (n) 
where 1<=n<=18 

59 (n) 
where 1<=n<=18 

59(n) 
where 1<=n<'=18 

59 (n) 
where 1<=n<=18 

APLHABET clause specification 

ASCII 
STANDARD-l 
NATIVE 
EBCDIC 
user specified literals 

USAGE clause SIGN clause 

unspecified or 
DISPLAY or 
DISPLAY-6 

unspecified or 
DISPLAY or 
DISPLAY-6 

unspecified or LEADING 
DISPLAY or or 
DISPLAY-6 LEADING OVER PUNCHED 

unspecified or TRAILING 
DISPLAY or or 
DISPLAY-6 TRAILING OVER PUNCHED 

unspecified or LEADING SEPARATE 
DISPLAY or 
DISPLAY-6 

unspecified or TRAILING SEPARATE 
DISPLAY or 
DISPLAY-6 

DISPLAY-7 

DI5PLAY-7 

DI5PLAY-7 LEADING 
or 

LEADING OVERPUNCHED 

DISPLAY-7 TRAILING 
or 

TRAILING OVER PUNCHED 

DI5PLAY-7 LEADING SEPARATE 

A-6 

DIL data type 

ASCII-7 
ASCII-7 
ASCII-7 
EBCDIC-9 
unsupported 

DIL DATA TYPE 

DN6u 
(or SIXBIT) 

DN6TO 
(or SIXBIT) 

DN6LO 
(or SIXBIT) 

DN6TO 
(or SIXBIT) 

DN6LS 
(or SIXBIT) 

DN6TS 
(or SIXBIT) 

DN7U 
(or A5CII-7) 

DN7TO 
(or ASCII-7) 

DN7LO 
(or A5CII-7) 

DN7TO 
(or ASCII-7) 

DN7LS 
(or A5CII-7 ) 

in the 

DIL FIELD LENGTH 

n 

n 

n 

n 

n + 1 

n + 1 

n 

n 

n 

n 

n + 1 



LANGUAGE-SPECIFIC VALUES FOR DIL NAMES 

PICTURE clause USAGE clause SIGN clause DIL DATA TYPE DIL FIELD LENGTH 

S9(n) DISPLAY-7 TRAILING SEPARATE DN7TS n + 1 
where 1<=n<=18 (or ASCII-7 ) 

9 (n) DISPLAY-9 DN9U n 
where 1<=n<=18 (or EBCDIC) 

S9 (n) DISPLAY-9 DN9TO n 
where 1<=n<=18 (or EBCDIC) 

S9 (n) DISPLAY-9 LEADING DN9LO n 
where 1<=n<=18 or (or EBCDIC) 

LEADING OVER PUNCHED 

S9 (n) DISPLAY'-9 TRAILING DN9TO n 
where 1<=n<=18 or (or EBCDIC) 

TRAILING OVEHPUNCHED 

S9(n) DISPLAY-9 LEADING SEPARATE DN9LS n + 1 
where 1<=n<=18 (or EBCDIC) 

S9 (n) DISPLAY-9 TRAILING SEPARATE DN9TS n + 1 
where 1<=n<=18 (or EBCDIC) 

9 (n) or S9 (n) COMP or SBF36 0 
where l<=n<=lO COMPUTATIONAL 

9 (n) or s9 (n) COMP or SBF72 0 
where lO<=n<=18 COMPUTATIONAL 

COMP-l or FLOAT-36 0 
COMPUTATIONAL-l 

9 (n) or S9 (n) COMP-3 or PD9 n 
where 1<=n<=18 COMPUTATIONAL-3 

X (n) unspecified or SIXBIT n 
DISPLAY or 
DISPLAY-6 

X (n) DISPLAY'-7 ASCII-7 n 

X (n) DISPLAY-9 EBCDIC n 

INDEX SBF36 0 

DATABASE-KEY' SBF36 0 

DBKEY SBF36 0 

A-7 



LANGUAGE-SPECIFIC VALUES FOR OIL NAMES 

TOPS-IO/TOPS-20 FORTRAN 

DATA TYPES COMPILER SWITCH DIL FIELD 
DESCRIPTION LENGTH 

CHARACTER * M ASCII-7 M 

INTEGER SBF36 0 

INTEGER * 2 SBF36 0 

INTEGER * 4 SBF36 0 

INTEGER ASCII-7 n * 5 
read in with: 
FORMAT (nA5) 

LOGICAL SBF36 0 

LOGICAL * 1 SBF36 0 

LOGICAL * 4 SBF36 0 

LOGICAL * 2 SBF36 0 

REAL FLOAT-36 0 

REAL * 4 FLOAT-36 0 

REAL * a FLOAT-72 0 

REAL * a /GFLOATING G-FLOAT72 0 
(Produces extended 
range DOUBLE 
PRECISION) 

REAL 
read in with: ASCII-7 n * 5 
FORMAT (nA5) 

A-a 



LANGUAGE-SPECIFIC VALUES FOR DIL NAMES 

VMS COBOL: 

Character sets as specified in the ALPHABET 
SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISON: 

clause 

PICTURE clause 

9 (n) 
where 1<=n<=18 

S9 (n) 
where 1<=n<=18 

S9 (n) 
where 1<=n<=18 

S9 (n) 
where 1<=n<=18 

S9 (n) 

S9 (n) 

9 (n) or S9 (n) 
where 1<=n<=4 

9 (n) or S9(n) 
where S<=n<=9 

9 (n) or S9 (n) 
where lO<=n<=18 

9 (n) or S9 (n) 
where 1<=n<=18 

APLHABET clause specification 

ASCII 
STANDARD-l 
STANDARD-2 
NATIVE 
EBCDIC 
user specified literals 

USAGE clause SIGN clause 

unspecified or 
DISPLAY 

unspecified or 
DISPLAY 

unspecified or LEADING or 
DISPLAY LEADING OVER PUNCHED 

unspecified or TRAILING or 
DISPLAY TRAILING OVERPUNCHED 

unspecified or LEADING SEPARATE 
DISPLAY 

unspecified or TRAILING SEPARATE 
DISPLAY 

COMP or 
COMPUTATIONAL 

COMP or 
COMPUTATIONAL 

COMP or 
COMPUTATIONAL 

COMP-l or 
COMPUTATIONAL-l -
COMP-2 or 
COMPUTATIONAL-2 

COMP-3 or 
COMPUTATIONAL-3 

unspecified or 
DISPLAY 

INDEX 

POINTER 

A-9 

DIL data type 

ASCII-8 
ASCII-8 
unsupported 
ASCII-8 
EBCDIC-8 
unsupported 

DIL DATA TYPE 

DN8U 
(or ASCII-8 ) 

DN8TO 
(or ASCII-8 ) 

DN8LO 
(or ASCII-8 ) 

DN8TO 
(or ASCII-8 ) 

DN8LS 
(or ASCII-8 ) 

DN8TS 
(or ASCII-8 ) 

SBF16 

SBF32 

SBF64 

F-FLOAT 

D-FLOAT 

PD8 

ASCII-8 

SBF32 

SBF32 

in the 

DIL FIELD 
LENGTH 

n 

n 

n 

n 

n + 1 

n + 1 

0 

0 

0 

0 

0 

n 

n x (n) 

0 

0 



LANGUAGE-SPECIFIC VALUES FOR DIL NAMES 

VMS FORTRAN 

DATA TYPES COMPILER DIL FIELD 
SWITCH DESCRIPTION LENGTH 

BYTE SBF8 0 

CHARACTER * M ASCII-8 M 

NOTE 

By default, VAX-II FORTRAN passes arguments of type 
CHARACTER by descriptor. In order to use CHARACTER 
type variables as arguments to DIL (on VMS), the 
%REF built-in function must be used because DIL 
string arguments must be passed by reference. 

DATA TYPES COMPILER DIL FIELD 
SWITCH DESCRIPTION LENGTH 

INTEGER SBF32 0 

INTEGER /NOI4 SBF16 0 

INTEGER * 2 SBF16 0 

INTEGER * 4 SBF32 0 

INTEGER ASCII-8 n * 4 
read in with: 
FORMAT (nA4) 

LOGICAL SBF32 0 

LOGICAL /NOI4 SBF16 0 

LOGICAL * 1 SBF8 0 

LOGICAL * 4 SBF32 0 

LOGICAL * 2 SBF16 0 

REAL F-FLOAT 0 

REAL * 4 F-FLOAT 0 

REAL * 8 D-FLOAT 0 

REAL * 8 /G-FLOATING G-FLOAT 0 

REAL * 16 H-FLOAT 0 

REAL 
read in with: ASCII-8 n * 4 
FORMAT (nA4) 

A-I0 



APPENDIX B ... 
OIL DATA FORMATS 



APPENDIX B 

DIL DATA FORMATS 

This appendix describes, in bit-by-bit detail, the formats of all of 
the data types referred to in this document. Bit numbering is 
specified with the least significant bit having the lowest number. 

In the diagrams for each type, the following notation is used: 

d or 0 A data bit 
s or S A sign bit 
e or E An exponent bit 
m or M A mantissa (fraction) bit 
x or X An unused bit 
c Characters 

All diagrams show bits grouped into 
significant bits towards the left. 
top of each diagram. 

bytes or words with the more 
They show bit numbering across the 

For string-based data types, the "normal" order of the characters is 
indicated at the bottom of the diagram. "Cl" indicates the first 
character, "C2" the second character, etc. 

B.1 ALPHANUMERIC STRING DATA TYPES 

ASCII-7 -- DEC-I0/20 7-bit ASCII 

7-bit characters, packed 5 to a 36-bit word. The first character in a 
word occupies the highest-order 7 bits. The lowest-order bit is not 
used. ASCII representation is used. 

Any byte alignment supported by the hardware byte-pointer instructions 
is acceptable. A string may start anywhere, but if it crosses a word 
boundary, the first byte in the new word must occupy the first 7 bits. 

The length of the string in characters must be explicitly specified. 

33333322222222221111111111 
543210987654321098765432109876543210 

dddddddDDDDDDDdddddddDDDDDDDdddddddX 

C1 C2 C3 C4 C5 

8-1 



OIL DATA FORMATS 

ASCII-8 -- PDP-II/VAX 8-bit ASCII 

Each character occupies one 8-bit byte. The first, or leftmost, byte 
of a string occupies the lowest~addressed byte of the storage 
allocated to the string. Following bytes in the string occupy 
sequentially higher addresses. 

The length of the string in characters must be explicitly specified. 

The standard 7-bit ASCII character set is used. 

76543210 

xDDDDDDD 

ASCIZ -- ASCII-7 with terminating null 

This is the same as ASCII-7, except that instead of specifying the 
length of the string, the string is terminated with a null byte at the 
end. 

EBCDIC-8 -- 8-bit EBCDIC 

Each character occupies one 8-bit byte. The first character 
(leftmost) in a string occupies the lowest-addressed byte of storage 
allocated to that string. Succeeding characters occupy sequentially 
higher-addressed bytes. 

8-bit EBCDIC character coding is used. 

The length of the string in characters must be explicitly specified. 

76543210 

dddddddd 

EBCDIC-9 -- DEC-10/20 9-bit EBCDIC 

Each character occupies one 9-bit byte. 4 characters are packed into 
each 36-bit word. The first (leftmost) character in the string 
occupies the high-order byte (most significant bits) of the word. 

Any byte alignment supported by the hardware byte-pointer instructions 
is acceptable. A string may start anywhere, but if it crosses a word 
boundary, the first byte in the new word must occupy the first 9 bits. 

8-bit EBCDIC character coding is used. The high-order bit of each 
byte is not used. 

The length of the string in characters must be explicitly specified. 

33333322222222221111111111 
543210987654321098765432109876543210 

XddddddddXddddddddXddddddddXdddddddd 

C1 C2 C3 C4 

B-2 



DIL DATA FORMATS 

SIXBIT -- SIXBIT Character String 

Characters are packed 6 per 36-bit word. 
word occupies the 6 highest-order bits. 
characters must be explicitly specified. 

33333322222222221111111111 
543210987654321098765432109876543210 

ddddddDDDDDDddddddDDDDDDddddddDDDDDD 

C1 C2 C3 C4 C5 C6 

B.2 BINARY FIXED-POINT DATA TYPES 

The first character in a 
The length of the string in 

SBF128 -- 128-bit signed binary fixed-point 

128-bit signed fixed-point number represented in twos-complement 
notation. Higher-order bytes come at higher addresses than 
lower-order bytes. Significance increases from right to left within 
each byte. 

The scale factor (number of decimal places to shift the point left) 
must be specified. 

3322222222221111111111 
10987654321098765432109876543210 

dddddddddddddddddddddddddddddddd : A 

66665555555555444444444433333333 
32109876543210987654321098765432 

dddddddddddddddddddddddddddddddd 

99999988888888887777777777666666 
54321098765432109876543210987654 

dddddddddddddddddddddddddddddddd 

1111111111111111111111111111 
22222222111111111100000000009999 
76543210987654321098765432109876 

sddddddddddddddddddddddddddddddd 

A + 4 

A + 8 

A + 12 

B-3 



DIL DATA FORMATS 

SBF16 -- 16-bit signed bina~y fixed-point 

A 16-bit signed fixed-point number represented in twos-complement 
notation. The range of values possible is -32768. to +32767. before 
scaling. The high-order byte comes after (at a higher address than) 
the low-order byte. 

The scale factor (number of decimal places to shift the point left) 
must be specified. 

111111 
5432109876543210 

sddddddddddddddd 

SBF32 -- 32-bit signed binary fixed-point 

A 32-bit signed fixed-point number represented in twos-complement 
notation. The range of values possible is -2147483648. to 
+2147483647. before scaling. The bytes are stored at increasing 
addresses in order of increasing significance. 

The scale factor (number of decimal places to shift the point left) 
must be specified. 

3322222222221111111111 
10987654321098765432109876543210 

sddddddddddddddddddddddddddddddd 

SBF36 -- 36-bit signed binary fixed-point 

A 36-bit signed fixed-point number represented in twos-complement 
notation. The range of values possible is -2-35 (-34359738368 
decimal) to 2-35 - 1 (34359738367 decimal) before scaling. 

The scale factor (number of decimal places to shift the point left) 
must be specified. 

33333322222222221111111111 
543210987654321098765432109876543210 

sddddddddddddddddddddddddddddddddddd 

B-4 



DIL·· DATA FORMATS 

SBF64 -- 64-bit signed binary fixed-point 

A 64-bit signed fixed-point number represented in twos-complement 
notation. The range of values possible is -2-63 (-9223372036854775808 
decimal) to (2-63)-1 (9223377036854775807 decimal) before scaling. 
The bytes are stored at increasing addresses in order of increasing 
significance. 

The scale factor (number of decimal places to shift the point left) 
must be specified. 

3322222222221111111111 
10987654321098765432109876543210 

dddddddddddddddddddddddddddddddd A 

66665555555555444444444433333333 
32109876543210987654321098765432 

sddddddddddddddddddddddddddddddd A + 4 

SBF72 -- 72-bit signed binary fixed-point 

A 72-bit signed fixed-point number represented in twos-complement 
notation. The range of values possible is -2-70 
(-1180591620717411303424 decimal) to (2-70)-1 (1180591620717411303423 
decimal) before scaling. 

The scale factor (number of decimal places to shift the point left) 
must be specified. 

776666666666555555555544444444443333 
109876543210987654321098765432109876 

sddddddddddddddddddddddddddddddddddd A 

33333322222222221111111111 
543210987654321098765432109876543210 

xddddddddddddddddddddddddddddddddddd 

SBF8 -- 8-bit signed binary fixed-point 

A + 1 

An 8-bit signed 
notation. The 
scaling. 

fixed-point number represented in twos-complement 
range of values possible is -128. to +127. before 

The scale factor (number of decimal places to shift the point left) 
must be specified. 

76543210 

sddddddd 

B-5 



DIL DATA FORMATS 

UBF16 -- 16-bit unsigned binary fixed-point 

A 16-bit unsigned fixed-point number represented in binary 
The range of values possible is 0 to 65535 before scaling. 
are stored at increasing addresses in order of 
significance. 

notation. 
The bytes 

increasing 

The scale factor (number of decimal places to shift the point left) 
must be specified. 

111111 
5432109876543210 

dddddddddddddddd 

UBF32 -- 32-bit unsigned binary fixed-point 

A 32-bit unsigned fixed-point number represented in binary notation. 
The range of values possible is 0 to 4294967295 before scaling. The 
bytes are stored at increasing addresses in order of increasing 
significance. 

The scale factor (number of decimal places to shift the point left) 
must be specified. 

3322222222221111111111 
10987654321098765432109876543210 

dddddddddddddddddddddddddddddddd 

UBF8 -- 8-bit unsigned binary fixed-point 

An 8-bit unsigned fixed-point number represented in binary notation. 
The range of values possible is 0 to 255 before scaling. 

The scale factor (number of decimal places to shift the point left) 
must be specified. 

76543210 

dddddddd 

B-6 



OIL DATA FORMATS 

B.3 FLOATING-POINT DATA TYPES 

D-FLOAT -- 64-bit D-floating 

A signed floating-point number represented in exponential notation. 
The magnitude of the item is in the approximate range .29 * (10--38) 
to 1.7 * (10-38). The precision is approximately 16 decimal digits. 

3322222222221111111111 
10987654321098765432109876543210 

mmmmmmmmmmmmmmmmSeeeeeeeemmmmmmm : A 

4444444433333333 
7654321098765432 

5555544 
4321098 

66665555555555444444444433333333 
32109876543210987654321098765432 

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 

111111 3322222222221111 
54321098765432101098765432109876 

Significance of mantissa bits 

: A + 4 

Significance of mantissa bits 

The value of the data represented is <.lm> * 2-(e - 128) where <.lm> 
means add a one bit at the most significant end of the mantissa, and 
consider the resulting string of bits to fall after a binary point. 

A value of 0 is represented by s = e = O. S = 1 e = 0 is a reserved 
operand. 

F-FLOAT -- 32-bit F-floating 

A signed floating-point number represented in exponential notation. 
The magnitude of the item is in the approximate range .29*(10--38) to 
1.7*(10-38). The precision is approximately 7 decimal digits. The 
bytes are stored at increasing addresses in order of increasing 
significance. 

3322222222221111111111 
10987654321098765432109876543210 

mmmmmmmmmmmmmmmmSeeeeeeeemmmmmmm 

111111 
5432109876543210 

2221111 
2109876 

Significance of mantissa bits 

The value of the data represented is <.lm>*(2-(e-128») where <.lm> 
means add a one bit at the most significant end of the mantissa, and 
consider the resulting string of bits to fall after a binary point. 

A value of 0 is represented by s = e = O. S = 1 e = 0 is a reserved 
operand. 

B-7 



DIL DATA FORMATS 

FLOAT-36 -- 36-bit DEC-10/20 floating 

A signed floating-point number represented in exponential notation. 
The magnitude of the item is in the approximate range .5*(2--128) 
(1.47*10--39 decimal) to (1-(2--27» * (2-127) (1.70*10-38 decimal). 
The precision is approximately 7 decimal digits. 

33333322222222221111111111 
543210987654321098765432109876543210 

SeeeeeeeeMMMMMMMMMMMMMMMMMMMMMMMMMMM 

22222221111111111 Significance of mantissa bits 
654321098765432109876543210 

If the value is positive (sign = 0), the value of the data represented 
is <.m>*(2-(e-128» where <.m> means take the mantissa, and consider 
the resulting string of bits to fall after a binary point. 

If the value is negative (sign = 1), the value of the data represented 
is the negative of the value you get by taking the twos-complement of 
the representation and proceeding as above. 

FLOAT-72 -- 72-bit DEC-10/20 hardware floating (D-Float) 

A signed floating-point number represented in exponential notation. 
The magnitude of the item is in the approximate range .5*(2--128) 
(1.47*10--39 decimal) to (1-(2--27»*(2-127)(1.70*10-38 decimal). The 
precision is approximately 18 decimal digits. 

33333322222222221111111111 
543210987654321098765432109876543210 

SeeeeeeeeMMMMMMMMMMMMMMMMMMMMMMMMMMM 

665555555555444444444433313 
109876543210987654321098765 

33333322222222221111111111 
543210987654321098765432109876543210 

Xmrnrnrnrnrnrnrnrnrnrnrnrnrnrnmrnrnmmrnrnrnrnmmmrnrnmrnrnrnrnm 

3333322222222221111111111 
43210987654321098765432109876543210 

: A 

Significance of mantissa bits 

: A + 1 

Significance of mantissa bits 

If the value is positive (sign = 0), the value of the data represented 
is <.m>*(2-(e-128» where <.m> means take the mantissa, and consider 
the resulting string of bits to fall after a binary point. 

If the value is negative (sign = 1), the value of the data represented 
is the negative of the value you get by taking the twos-complement of 
the representation and proceeding as above. 

B-8 



DIL DATA FORMATS 

G-FLOAT -- 64-bit G-floating 

A signed floating-point number represented in exponential notation. 
The magnitude of the item is in the approximate range .56 *(10--308) 
to .9 *(10-308). The precision is typically 15 decimal digits. 

3322222222221111111111 
10987654321098765432109876543210 

mmmmmmmmmmmmmmmmSeeeeeeeeeeemmmm : A 

4444444433333333 
7654321098765432 

5544 
1098 

Significance of mantissa bits 

66665555555555444444444433333333 
32109876543210987654321098765432 

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm : A + 4 

111111 3322222222221111 
54321098765432101098765432109876 

Significance of mantissa bits 

The value of the data represented is <.lm> * (2-(e-l024» where <.lm> 
means add a one bit at the most significant end of the mantissa, and 
consider the resulting string of bits to fall after a binary point. 

A value of 0 is represented by s = e = O. S = 1 e = 0 is a reserved 
operand. 

G-FLOAT72 -- 72-bit DEC-I0/20 G-floating 

A signed floating-point number represented in exponential notation. 
The magnitude of the item is in the approximate range .5 * (2--1024) 
(2.78*10--309 decimal) to (1 -(2--59»*(2-1023) (8.99*10-307 decimal). 
The precision is approximately 17 decimal digits. 

33333322222222221111111111 
543210987654321098765432109876543210 

SeeeeeeeeeeeMMMMMMMMMMMMMMMMMMMMMMMM 

555555555444444444433333 
876543210987654321098765 

33333322222222221111111111 
543210987654321098765432109876543210 

Xmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 

3333322222222221111111111 
43210987654321098765432109876543210 

: A 

S~gnificance of mantissa bits 

: A + 1 

Significance of mantissa bits 

If the value is positive (sign = 0), the value of the data represented 
is <.m>*(2-(e-l024» where <.m> means take the mantissa, and consider 
the resulting string of bits to fall after a binary point. 

If the value is negative (sign = 1), the value of the data represented 
is the negative of the value you get·by taking the twos-complement of 
the representation and proceeding as above. 

B-9 



DIL DATA FORMATS 

H-FLOAT -- 128-bit H-f1oating 

A signed floating-point number represented in exponential notation. 
The magnitude of the item is in the approximate range .84 * (10--4932) 
to .59 * (10-4932). The precision is typically 33 decimal digits. 

3322222222221111111111 
10987654321098765432109876543210 

mmmmmmmmmmmmmmmmseeeeeeeeeeeeeee 

111111111111 
1100000000009999 
1098765432109876 

6666555555S555444444444433333333 
32109876543210987654321098765432 

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 

77777777776666669999998888888888 
98765432109876545432109876543210 

99999988888888887777777777666666 
54321098765432109876543210987654 

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 

44444444333333336666555555555544 
76543210987654323210987654321098 

1111111111111111111111111111 
22222222111111111100000000009999 
76543210987654321098765432109876 

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 

111111 3322222222221111 
54321098765432101098765432109876 

: A 

Significance of mantissa bits 

: A + 4 

Significance of mantissa bits 

: A + 8 

Significance of mantissa bits 

: A + 12 

Significance of mantissa bits 

The value of the data represented is <.lm> * (2~(e-l024)) where <.lm> 
means add a one bit at the most significant end of the mantissa, and 
consider the resulting strint of bits to fall after a binary point. 

A value of 0 is represented by s = e = O. S = 1 e = 0 is a reserved 
operand. A value of 0 is represented by s = e = O. S = 1 e = 0 is a 
reserved operand. 

B-I0 



DIL DATA FORMATS 

8.4 DISPLAY NUMERIC DATA TYPES 

DN6LO - Sixbit signed leading overpunched 

A string of type SIXBIT (described above) with 
interpreted as a signed fixed-point number 
separately). 

some restrictions, 
(scaling specified 

The string should contain (in SIXBIT coding) decimal digits and spaces 
(interpreted as zeroes), and at most one sign character. The sign 
character, if present, must be the first character in the field. The 
sign characters and their meanings are listed: 

] Field is negative, first digit is 0 
J Field is negative, first digit is 1 
K Field is negative, first digit is 2 
L Field is negative, first digit is 3 
M Field is negative, first digit is 4 
N Field is negative, first digit is 5 
0 Field is negative, first digit is 6 
P Field is negative, first digit is 7 
Q Field is negative, first digit is 8 
R Field is negative, first digit is 9 

The string is interpreted as a decimal number, right-justified in the 
field. The string may contain a maximum of 18 digits (19 characters 
including the separate sign) . 

NOTE 

COBOL-IO/20 will accept any character code in a DN6LO 
field and interpret it as some digit, or as a sign and 
a digit. The Data Conversion Routines will consider a 
DN6LO field invalid if it contains characters other 
than those listed above. 

DN6LS -- Sixbit signed leading separate 

A string of type SIXBIT (described above) with 
interpreted as a signed fixed-point number 
separately). 

some restrictions, 
(scaling specified 

The sign is represented by the character "+" for positive or 
negative before the first significant digit in the field. 

"-" for 

The string should contain (in SIXBIT coding) decimal digits and spaces 
(interpreted as zeroes), and the sign characters. 

The string is interpreted as a decimal number, right-justified in the 
field. 

NOTE 

COBOL-I0/20 will accept any ,character code in a DN6LS 
field and interpret it as some digit, or as a sign and 
a digit. The Data Conversion Routines will consider a 
DN6LS field invalid if it contains characters other 
than those listed above. 

B-ll 



OIL DATA FORMATS 

DN6TO -- Sixbit signed trailing overpunched 

A string of type SIXBIT (described above) with 
interpreted as a signed fixed-point number 
separately). 

some restrictions, 
(scaling specified 

The string should contain (in SIXBIT coding) decimal digits and spaces 
(interpreted as zeroes), and at most one sign character. The sign 
character, if present, must be the last character in the field. the 
sign characters and their meanings are listed: 

] Field is negative, last digit is 0 
J Field is negative, last digit is 1 
K Field is negative, last digit is 2 
L Field is negative, last digit is 3 
M Field is negative, last digit is 4 
N Field is negative, last digit is 5 
0 Field is negative, last digit is 6 
p Field is negative, last digit is 7 
Q Field is negative, last digit is 8 
R Field is negative, last digit is 9 

The string is interpreted as a decimal number, right-justified in the 
field. The string may contain a maximim of 18 digits (19 characters 
including the separate sign) • 

NOTE 

COBOL-I0/20 will accept any character code in a DN6TO 
field and interpret it as some digit, or as a sign and 
a digit. The Data Conversion Routines will consider a 
DN6TO field invalid if it contains characters other 
than those listed above. 

DN6TS -- Sixbit signed trailing separate 

A string of type SIXBIT (described above) with 
interpreted as a signed fixed-point number 
separa tely) • 

some restrictions, 
(scaling specified 

The string should contain (in SIXBIT coding) decimal digits and spaces 
(interpreted as zeroes), and at most one sign character. The sign 
character is always present, and must be the last character in the 
field. A "+" indicates a positive field, a "-" a negative field. 

The string is interpreted as a decimal number, right-justified in the 
field. The string may contain a maximum of 18 digits. 

NOTE 

COBOL-I0/20 will accept any character code in a DN6TS 
field and interpret it as some digit, or as a sign and 
a digit. The Data Conversion Routines will consider a 
DN6TS field invalid if it contains characters other 
than those listed above. 

B-12 



OIL DATA FORMATS 

DN6U -- Sixbit unsigned display numeric 

A string of type SIXBIT (described above) 
interpreted as an unsigned fixed-point 
separately). 

with 
number 

some restrictions, 
(scaling specified 

The string should contain (in SIXBIT coding) decimal digits and spaces 
(interpreted as zeroes). The string may contain a maximum of 18 
characters (digits). 

The string is interpreted as a decimal number, right-justified in the 
field. 

NOTE 

COBOL-IO/20 will accept any character code in a DN6U 
field and interpret it as some digit, or as a sign and 
a digit. The Data Conversion Routines will consider a 
DN6U field invalid if it contains characters other 
than those listed above. 

DN7LO -- ASCII 7-bit signed leading overpunched 

A string of type ASCII-7 (described above) with 
interpreted as a signed fixed-point number 
separately). 

some restrictions, 
(scaling specified 

The string should contain (in ASCII-7 coding) decimal digits and 
spaces (interpreted as zeroes), and at most one sign character. The 
sign character, if present, must be the first character in the field. 
The sign characters and their meanings are listed: 

] Field is negative·, first digit is 0 
J Field is negative, first digit is 1 
K Field is negative, first digit is 2 
L Field is negative, first digit is 3 
M Field is negative, first digit is 4 
N Field is negative, first digit "is 5 
a Field is negative, first digit is 6 
p Field is negative, first digit is 7 
Q Field is negative, first digit is 8 
R Field is negative, first digit is 9 

The string is interpreted as a decimal number, right-justified 
field. The string may contain a maximum of 18 digits. 

NOTE 

COBOL-IO/20 will accept any character code in a DN7LO 
field and interpret it as some digit, or as a sign and 
a digit. The Data Conversion Routines will consider a 
DN7LO field invalid if it contains characters other 
than those listed above. 

DN7LS -- ASCII 7-bit signed leading separate 

in the 

A string of type ASCII-7 (described above) with 
interpreted as a signed fixed-point number 
separately) • 

some restrictions, 
(scaling specified 

B-13 



DIL DATA FORMATS 

The sign is represented by the character "+" for positive or 
negative before the first significant digit in the field. 

"-" for 

The string should contain (in ASCII-7 coding) decimal digits and 
spaces (interpreted as zeroes), and the sign characters. The string 
may contain a maximum of 18 digits (19 characters including the 
separate sign). 

The string is interpreted as a decimal number, right-justified in the 
field. 

NOTE 

COBOL-IO/20 will accept any character code in a DN7LS 
field and interpret it as some digit, or as a sign and 
a digit. The Data Conversion Routines will consider a 
DN7LS field invalid if it contains characters other 
than those listed above. 

DN7TO -- ASCII 7-bit signed trailing overpunched 

A string of type ASCII-7 (described above) with 
interpreted as a signed fixed-point number 
separately). 

some restrictions, 
(scaling specified 

The string should contain (in ASCII-7 coding) decimal digits and 
spaces (interpreted as zeroes), and at most one sign character. The 
sign character, if present, must be the last character in the field. 
The sign characters and their meanings are listed: 

] Field is negative, last digit is 0 
J Field is negative, last digit is 1 
K Field is negative, last digit is 2 
L Field is negative, last digit is 3 
M Field is negative, last digit is 4 
N Field is negative, last digit is 5 
0 Field is negative, last digit is 6 
p Field is negative, last digit is 7 
Q Field is negative, last digit is 8 
R Field is negative, last digit is 9 

The string is interpreted as a decimal number, right-justified 
field. The string may contain a maximum of 18 digits. 

NOTE 

COBOL-IO/20 will accept any character code in a DN7TO 
field and interpret it as some digit, or as a sign and 
a digit. The Data Conversion Routines will consider a 
DN7TO field invalid if it contains characters other 
than those listed above. 

DN7TS -- ASCII 7-bit signed trailing separate 

in the 

A string of type ASCII-7 (described above) with 
interpreted as a signed fixed-point number 
separately). 

some restrictions, 
(scaling specified 

The string should contain (in ASCII-7 coding) decimal digits and 
spaces (interpreted as zeroes), and at most one ~ign character. The 
sign character is always present, and must be the last character in 
the field. A "+" indicates a positive field, a "-" a negative field. 

B-14 



DIL DATA FORMATS 

The string is interpreted as a decimal number, right-justified in the 
field. The string may contain a maximum of 18 digits (19 characters 
including the separate sign). ' 

NOTE 

COBOL-IO/20 will accept any character code in a DN7TS 
field and interpret it as some digit, or as a sign and 
a digit. The Data Conversion Routines will consider a 
DN7TS field invalid if it contains characters other 
than those listed above. 

DN7U -- ASCII 7-bit unsigned disp}ay numeric 

A string of type ASCII-7 (described above) 
interpreted as an unsigned fixed-point 
separately). 

with some restrictions, 
number (scaling specified 

The string should contain (in ASCII-7 coding) decimal digits and 
spaces (interpreted as zeroes). 

The string is interpreted as a decimal number, right-justified in the 
field. The string may contain a maximum of 18 digits. 

NOTE 

COBOL-IO/20 will accept any character code in a DN7J 
field and interpret it as some digit, or as a sign and 
a digit. The Data Conversion Routines will consider a 
DN7U field invalid if it contains characters other 
than those listed above. 

DN8LO -- ASCII 8-bit signed leading overpunched 

A string of type ASCII-8 (described above) with 
interpreted as a signed (fixed-point number 
separately). 

some restrictions, 
(scaling specified 

The string should contain (in ASCII-8 coding) decimal digits and at 
most one sign character. The sign character, if present, must be the 
first character in the field. The sign characters and their meanings 
are listed: 

] Field is negative, first digit is 0 
J Field is negative, first digit is 1 
K Field is negative, first digit is 2 
L Field is negative, first digit is 3 
M Field is negative, first digit is 4 
N Field is negative, first digit is 5 
a Field is negative, first digit is 6 
p Field is negative, first digit is 7 
Q Field is negative, first digit is 8 
R Field is negative, first digit is 9 

The string is interpreted as a decimal number, right-justified in the 
field. The string may not contain more than 31 digits. 

B-15 



OIL DATA FORMATS 

DN8LS -- ASCII 8-bit signed leading separate 

A string of type ASCII-8 (described above) with 
interpreted as a signed fixed-point number 
separately). 

some restrictions, 
(scaling specified 

The sign is represented by the character "+" for positive or "_" for 
negative before the first significant digit in the field. A sign of 
" " (space) is also acceptable, and is interpreted as positive. 

The string should contain (in ASCII-8 coding) decimal digits only, and 
the sign character. The sign character must be the first character of 
the field. The string may not contain more than 31 digits (32 
characters including the separate sign). 

The string is interpreted as a decimal number, right-justified in the 
field. 

DN8TO -- ASCII 8-bit signed trailing overpunched 

A string of type ASCII-8 (described above) with 
interpreted as a signed fixed-point number 
separately). 

some restrictions, 
(scaling specified 

The string should corttain (in ASCII-8 coding) decimal digits and 
exactly one sign character. The sign character must be the last 
character in the field. The sign character and their meanings are: 

OVERPUNCHED CHARACTERS 

DIL 
Sign Digit DEFAULT 
VALUE VALUE CHAR Char Char Char Char 

+ 0 0 ? 
+ 1 1 A 
+ 2 2 B 
+ 3 3 C 
+ 4 4 D 
+ 5 5 E 
+ 6 6 F 
+ 7 7 G 
+ 8 8 H 
+ 9 9 I 

0 ] P 
1 J q 
2 K r 
3 L s 
4 M t 
5 N u 
6 0 v 
7 p w 
8 Q x 
9 R Y 

The string is interpreted as a decimal number, right-justified in the 
field. The string may not contain more than 31 digits. 

B-16 



DIL DATA FORMATS 

DN8TS -- ASCII 8-bit signed trailing separate 

A string of type ASCII-8 (described above) with 
interpreted as a signed fixed-point number 
separately) • 

some restrictions, 
(scaling specified 

The string should contain (in ASCII-8 coding) decimal digits and at 
most one sign character. The sign character is always present, and 
must be the last character in the field. A "+" indicates a positive 
field, a "-" a negative field. 

The string is interpreted as a decimal number, right-justified in the 
field. The string may not contain more than 31 digits (32 characters 
including the separate sign). 

DN8U -- ASCII 8-bit unsigned diplay numeric 

A string of type ASCII-8 (described above) 
interpreted as an unsigned fixed-point 
separately). 

with some restrictions, 
number (scaling specified 

The string should contain (in ASCII-8 coding) decimal digits only. 
The string may not have more than 31 digits. 

The string is interpreted as a decimal number, right-justified in the 
field. 

DN9LO -- EBCDIC 9-BIT signed leading overpunched 

A string of type EBCDIC-9 (described above) with 
interpreted as a signed fixed-point number 
separately) • 

some restrictions, 
(scaling specified 

The string should contain (in EBCDIC-9 coding) decimal digits and 
spaces (interpreted as zeroes), and at most one sign character. The 
sign character, if present, must be the first character in the field. 
The sign characters and their meanings are listed: 

] Field is negative, first digit is 0 
J Field is negative, first digit is 1 
K Field is negative, first digit is 2 
L Field is negative, first digit is 3 
M Field is negative, first-digit is 4 
N Field is negative, first digit is 5 
a Field is negative, first digit is 6 
P Field is negative, first digit is 7 
Q Field is negative, first digit is 8 
R Field is negative, first digit is 9 

The string is interpreted as a decimal number, right-justified in the 
field. The string may not contain more than 18 digits. 

NOTE 

COBOL-lO/20 will accept any character code in a DN9LO 
field and interpret it as some/digit, or as a sign and 
a digit. The Data Conversion Routines will consider a 
DN9LO field invalid if it contains characters other 
than those listed above. 

B-17 



OIL DATA FORMATS 

DN9LS -- EBCDIC 9-BIT signed leading separate 

A string of type EBCDIC-9 (described above) with 
interpreted as a signed fixed-point number 
separately). 

some restrictions, 
(scaling specified 

The sign is represented by the character "+" for positive or 
negative before the first significant digit in the field. 

"_" for 

The string should contain (in EBCDIC-9 coding) decimal digits and 
spaces (interpreted as zeroes), and the sign characters. The string 
may not contain more than 18 digits (19 characters including the 
separate sign). 

The string is interpreted as a decimal number, right-justified in the 
field. 

NOTE 

COBOL-lO/20 will accept any character code in a DN9LS 
field and interpret it as some digit, or as a sign and 
a digit. The Data Conversion Routines will consider a 
DN9LS field invalid if it contains characters other 
than those listed above. 

DN9TO -- EBCDIC 9-BIT signed trailing overpunched 

A string of type EBCDIC-9 (described above) with 
interpreted as a signed fixed-point number 
separately). 

some restrictions, 
(scaling specified 

The string should contain (in EBCDIC-9 coding) decimal digits and 
spaces (interpreted as zeroes), and at most one sign character. The 
sign character, if present, must be the last character in the field. 
The sign characters and their meanings are listed: 

] Field is negative, last digit is 0 
J Field is negative, last digit is 1 
K Field is negative, last digit is 2 
L Field is negative, last digit is 3 
M Field is negative, last digit is 4 
N Field is negative, last digit is 5 
0 Field is negative, last digit is 6 
P Field is negative, last digit is 7 
Q Field is negative, last digit is 8 
R Field is negative, last digit is 9 

The string is interpreted as a decimal number, right-justified in the 
field. The string may not contain more than 18 digits. 

NOTE 

COBOL-lO/20 will accept any character code in a DN9TO 
field and interpret it as some digit, or as a sign and 
a digit. The Data Conversion Routines will consider a 
DN9TO field invalid if it contains characters other 
than those listed above. 

B-18 



DIL DATA FORMATS 

DN9TS -- EBCDIC 9-BIT signed trailing separate 

A string of type EBCDIC-9 (described above) with 
interpreted as a signed fixed-point number 
separately). 

some restrictions, 
(scaling specified 

The string should contain (in EBCDIC-9 coding) decimal digits and 
spaces (interpreted as zeroes), and at most one sign character. The 
sign character is always present, and must be the last character in 
the field. A "+" indicates a positive field, a "-" a negative field. 

The string is interpreted as a decimal number, right-justified in the 
field. The string may not contain more than 18 digits (19 characters 
including the separate sign). 

NOTE 

COBOL-I0/20 will accept any character code in a DN9TS 
field and interpret it as some digit, or as a sign and 
a digit. The Data Conversion Routines will consider a 
DN9TS field invalid if it contains characters other 
than those listed above. 

DN9U -- EBCDIC 9-BIT unsigned display numeric 

A string of type EBCDIC-9 (described above) 
interpreted as an unsigned fixed-point 
separately). 

with some restrictions, 
number (scaling specified 

The string should contain (in EBCDIC~9 coding) decimal digits and 
spaces (interpreted as zeroes). The string may not contain more than 
18 digits. 

The string is interpreted as a decimal number, right-justified in the 
field. 

-NOTE 

COBOL-lO/20 will accept any character code in a DN9U 
field and inte~pret it as some digit, or as a sign and 
a digit. The Data Conversion Routines will consider a 
DN9U field invalid if it contains characters other 
than those listed above. 

B.5 PACKED DECIMAL DATA TYPES 

PD8 -- Packed decimal 8-bit 

A string of 4-bit bytes, packed two per 8-bit 
decimal number. Bttes at higher addresses 
digits. In each byte, the higher-numbered 
significant digit. 

3322222222221111111111 
10987654321098765432109876543210 

ddddDDDDddddDDDDddddDDDDddddDDDD 

D7 D8 D5 D6 D3 D4 Dl D2 

B-19 

byte, representing a 
hold less significant 
bits hold the more 



DIL DATA FORMATS 

The sign is stored in the low-numbered bits of the highest-addressed 
byte 1n the string. The digits are represented by unsigned numeric 
values of 0 through 9 in the 4-bit bytes. The sign is represented as 
follows: 

DECIMAL 
VALUE SIGN 

10 Positive 
11 Negative 
12 Positive (preferred representation) 
13 Negative (preferred representation) 
14 Positive 
15 Positive 

The length of the string may not exceed 31 digits (32 4-bit bytes, 
including sign). 

PD9 -- Packed decimal 9-bit 

A strangely arranged string of 4-bit bytes, representing a decimal 
number. The string may not exceed 19 bytes (the number represented 
may not exceed 18 digits). 

33333322222222221111111111 
543210987654321098765432109876543210 

XddddDDDDxDDDDddddXddddDDDDxDDDDdddd 

Dl D2 D3 D4 D5 D6 D7 D8 

The sign of the field is stored in the low-order byte of the field 
(least significant). The field is right justified on a 9-bit byte 
boundary. 

The digits are represented as unsigned numeric quantities in the 4-bit 
bytes. 

The legal sign values (given as the decimal value of the 4-bit byte 
containing them) and their meanings are as follows: 

DECIMAL 
VALUE SIGN 

10 Positive 
11 Negative 
12 Positve (preferred representation) 
13 Negative (preferred representation) 
14 Positive 
15 "Nonprinting plus sign" -- forces absolute value 

B-20 



ApPENDIX C 
THE OIL SAMPLE ApPLICATION 



APPENDIX C 

THE OIL SAMPLE APPLICATION 

The DIL package includes a sample application. The application may be 
found on the installation tape. 

The application is a "Job Ticket" program. This program eliminates 
the collection of paper job labor tickets and enables each employee to 
enter weekly job labor information from a terminal, either on a VMS, 
TOPS-IO or TOPS-20 system. The information is stored in an ISAM file 
on a TOPS-IO/TOPS-20 system. 

When prompted by the program, the user either enters a new badge 
number (and creates a new entry into the ISAM file) or an old badge 
number (and updates an existing entry in the ISAM file). A summary 
report, in the form of a sequential file stored on a VMS system, is 
written from a separate report program on the DECSYSTEM-20 or 
DECsystem-IO. 

A server program keeps a passive link open at all times, waiting for 
links from any other task. The server program keeps a table of 
information about the different links and their relative statuses at 
all times. 

All of the programs in this application use the DIL Interface Support 
files. 

DECSYSTEM-20 VAX-11 

MR-S-2597-83 

Figure C-I: Sample Application Flowchart 

C-I 





APPENDIX D 

TASK IDENTIFICATION 



APPENDIX D 

TASK IDENTIFICATION 

This section shows sets of compatible task identification parameters 
for use by the Task-to-Task Routines. Before a link can be completed, 
active and passive tasks must accurately identify the link. The task 
identification parameters issued by the active and passive tasks must 
have matching values. The examples, below, illustrate the three types 
of connections and show proper matching task identification for those 
connections. -

NOTE 

When both the passive and active tasks run on the same 
node, the active task can leave the hostname argument 
blank. 

NOTE 

Specifying the taskname of an active task is not 
meaningful on a VMS system; the VMS operating system 
assigns a unique taskname. It is also not generally 
useful on a TOPS20 system, but you may want to supply 
a taskname for debugging purposes. If you do specify 
a taskname, that name must be unique. If you do not 
specify a taskname, the operating system assigns a 
unique taskname. 

D.l ACCESSING A TASK BY NAME 

passive task 

objectid: 0 
descriptor: <spaces> 
taskname: SERVER 

active task 

hostname: BOSTON 
objectid: 0 
descriptor: SERVER 
taskname: USER 

SERVER is the task name of a general TASK (object type 0) running on 
node BOSTON. The active task USER can communicate with SERVER by 
using objectid 0 (or TASK) and the unique taskname SERVER as its 
descriptor. SERVER must be the only TASK (objectid 0) on node BOSTON 
whose taskname is SERVER, since taskname must always be unique. If 
you plan to have several identical passive tasks running on 9ne node, 
you should use a nonzero objectid (as described in the second example, 
below.) 

0-1 



TASK IDENTIFICATION 

0.2 ACCESSING A TASK THAT PROVIDES A CLASS OF SERVICE 

passive task 

objectid: 128 
descriptor: <spaces> 
taskname: <spaces> 

active task 

hostname: MAINE 
objectid: 128 
descriptor: <spaces> 
taskname: SOURCE 

The active task SOURCE requests a connection to a passive task of 
object type 128 on node MAINE. There can be many passive tasks 
running on one node, all with object type 128. SOURCE can connect to 
any of the passive tasks that provide the generic service defined by 
object type 128. 

0.3 ACCESSING SPECIFIC TASK WHICH PROVIDES SERVICE (TOPS-20 ONLY) 

passive task 

objectid: 17 
descriptor: REB 
taskname: AID 

active task 

hostname: LONDON 
objectid: 17 
descriptor: REB 
taskname: NFT 

NFT is the active task; AID is the passive task, running on node 
LONDON. NFT indicates that it wants to communicate with AID rather 
than any other passive task on node LONDON which has objectid 17 by 
specifying REB as the descriptor; this matches the descriptor used by 
AID. You can only do this if both tasks are running on TOPS20 
systems. The objectid is 17. An object type of 17 indicates that the 
passive task AID behaves as a FAL and that it provides the generic 
services provided by passive tasks with object type 17. (See the 
TOPS20 DECnet User's Guide for a list of object types). 

0.4 VMS PASSIVE TASKS 

VMS systems can initiate a passive task in two ways. When a VMS 
system receives a connect request from an active task, the system 
looks for an existing passive task that has the same task name (or 
object number) as that specified by the active task. If it finds a 
passive task with matching DECnet taskname, that passive task receives 
the connect request. This type of Task-to-Task behavior is the same 
as the behavior of a passive task on a TOPS-20 system; the passive 
task runs continuously and waits for network connections from active 
tasks. Section D.4.1 describes this type of VMS passive task. If the 
operating system does not find a task with a matching taskname, it 
can, if requested, use the accounting information provided by the 
active task to log in a new job. The new job then receives the 
connect request from the active task. Section D.4.2 describes this 
method of VMS task initiation. 

D-2 



TASK IDENTIFICATION 

0.4.1 Tasks that Wait for a Connect Request 

To create a passive task that waits for connections, you must: 

• Set the Network Logical Name to DIT$K PAS NFIREUP in your 
call to the DIT$NFOPP routine 

• Use the DIT$NFGND routine to check for network connections 

• Have SYSNAM privileges 

This type of passive task can accept multiple connections. 

D.4.2 Tasks Started as a Result of a Request 

To create a passive task as a result of a request from an active task, 
you must specify a valid password, userid and account when the active 
task calls DIT$NFOPA, DIT$NFOPB or DIT$NFOP8. The operating system 
logs in a job using this information. 

The newly-created job then runs a command file. The command file 
contains instructions to run the program that calls the passive task 
open routine, DIT$NFOPP. The command file can also be used to perform 
other tasks (as shown in the example, below). You must create the 
command file and put it in the proper directory. 

The operating system determines where to look for the command file 
based on the object type indicated by the active task in its call to 
DIT$NFOPA, DIT$NFOPB or DIT$NFOP8. If the passive task specifies an 
object type of zero (object name TASK), put the command file in the 
default directory that corresponds to the indicated userid. Give the 
command file the name: 

where 

<taskname>.com 

<taskname> is the task name of the passive task that you 
want to run. 

If the passive task has a non-zero object type, put the command file 
in the Configuration Data Base in SYS$SYSTEM. See the DECnet-VAX 
System Manager's Guide for information about the Configuration Data 
Base and SYS$SYSTEM. 

To create this type of passive task, you must set the Network Logical 
Name to DIT$K PAS FIREUP in the call to DIT$NFOPP. You do not have to 
use the DIT$NFGND-routine. The passive task starts only as a result 
of a request from an active task; it does not wait. You do not need 
SYSNAM privileges. 

This type of passive task only accepts one connect request: the 
request that caused it to start. A VMS passive task started as a 
result of a connect request may, however, declare a task name or 
object type. By declaring a taskname, the passive task can serve 
other requests once it completes the request that caused it to start. 
You need SYSNAM privileges to create this type of passive task. 

D-3 



TASK IDENTIFICATION 

D.4.3 Example of a Task Started as a Result of a Request 

An active task on another node calls DIT$NFOPA and passes the 
following parameters: 

hostname: VELDT 
object type: 0 
descriptor: IMPALA 

userid: PHONE 
password: SWORDFISH 
account: <spaces> 

This task wants to communicate with a passive task called IMPALA on 
the VELDT node, a VMS system. When the operating system receives this 
request it checks to see whether a task named IMPALA is running on the 
VELDT node. It cannot find a running IMPALA, so it logs in a task 
using the userid, password and account provided by the active task. 
The operating system then searches the PHONE directory for a command 
file with the name IMPALA.COM. It finds a file containing the 
following information: 

$ SET NOON 
$ RUN IMPALA.EXE 
$ PURGE/KEEP=6 SYS$LOGIN:IMPALA.LOG 
$ LOGOUT/BRIEF 

The new job starts the command file. The IMPALA.EXE program calls 
DIT$NFOPP and passes the following parameters: 

NLN 
objectid 

task name 

DIT$K PAS FIREUP 
0--
IMPALA 

This creates a passive task (IMPALA) to receive the connect request. 
The operating system sends the connect request to IMPALA. IMPALA then 
calls the DIT$NFACC routine to accept the connect request and 
establish a logical link. When it finishes ·processing the request, 
IMPALA closes the link with the DIT$NFCLS routine and exits. The job 
then logs out, deleting all but the latest six copies of its log file 
(as specified in the command file). 

D-4 



APPENDIX E 

OIL STATUS CODES 



ALL POSSIBLE 
RETURN CODES 

1 

60948488 r 60948489 
60948490 
60948491 
60948492 

60948496 r 
60948497 
60948498 
60948499 
60948500 

60948504 r 60948505 
60948506 
60948507 
60948508 

60948512 r 60948513 
60948514 
60948515 
60948516 

60948520 r 60948521 
60948522 
60948523 
60948524 

60948528 r 60948529 
60948530 
60948531 
60948532 

APPENDIX E 

OIL STATUS CODES 

ALL POSSIBLE STATUS CODES 
FOR DECsystem-l0 and DECSYSTEM-20 

LISTED BY DECIMAL VALUE 

DIL NAME 

SS-NORMAL 

DIX-ROUNDED 

DIX-TOOBIG 

DIX-INVDATTYP 

DIX-UNKARGTYP 

DIX-UNKSYS 

DIX-INVLNG 

E-l 

DESCRIPTION 

Success 

Result is rounded 

Converted source field too 
large for destination field 

Invalid data type code 

Argument passed by descriptor 
is unknown type 

Unknown system of origin 
specified 

Length invalid or unspecified 



ALL POSSIBLE 
RETURN CODES 

60948536 ~ 60948537 
60948538 
60948539 
60948540 

60948544 ~ 60948545 
60948546 
60948547 
60948548 

60948552 ~ 60948553 
60948554 
60948555 
60948556 

60948560 ~ 
60948561 
60948562 
60948563 
60948564 

60948568 ~ 60948569 
60948570 
60948571 
60948572 

60948576 ~ 60948577 
60948578 
60948579 
60948580 

60948584 ~ 60948585 
60948586 
60948587 
60948588 

60948592 ~ 60948593 
60948594 
60948595 
60948596 

60948600 ~ 60948601 
60948602 , 
60948603 
60948604 

DIL STATUS CODES 

DIL NAME 

DIX-INVSCAL 

DIX-GRAPHIC 

DIX-FMTLOST 

DIX-NONPRINT 

DIX-TRUNC 

DIX-UNIMP 

DIX-INVALCHAR 

DIX-ALIGN 

DIX-UNNORM 

E-2 

DESCRIPTION 

Scale factor invalid or 
unspecified 

Graphic character changed in 
conversion 

Format effector gained or lost 
in conversion 

Non-printing character gained 
or lost in conversion 

String too long for 
destination -- truncated 

Unimplemented conversion 

Invalid character in source 
field or conversion table 

Invalid alignment for data 
type 

Floating point number 
improperly normalized 



ALL POSSIBLE 
RETURN CODES 

60948608 r 60948609 
60948610 
60948611 
60948612 

60948616 r 
60948617 
60948618 
60948619 
60948620 

60948624 r 
60948625 
60948626 
60948627 
60948628 

60948632 r 60948633 
60948634 
60948635 
60948636 

60948640 r 
60948641 
60948642 
60948643 
60948644 

60948648 r 60948649 
60948650 
60948651 
60948652 

60948656 r 60948657 
60948658 
60948659 
60948660 

61210632 r 61210633 
61210634 
61210635 
61210636 

61210640 r 61210641 
61210642 
61210643 
61210644 

OIL STATUS CODES 

DIL NAME 

DIX-IMPOSSIBLE 

DIX-UNSIGNED 

DIX-INVBYTSIZ 

DIX-INVDNUMCHR 

DIX-INVDNUMSGN 

DIX-INVPDDGT 

DIX-INVPDSGN 

DIT-HORRIBLE 

DIT-TOOMANY 

E-3 

DESCRIPTION 

Severe internal problems 

Negative value moved to 
unsigned field 

Invalid byte size specified 

Invalid display numeric 
character in source 
field. 

Invalid display numeric sign 
character in source field. 

Invalid packed decimal digit 
in source field. 

. Invalid packed decimal sign 
in source field. 

Internal or system error 

Attempt to open too many files 
or links 



DIL STATUS CODES 

ALL POSSIBLE 
RETURN CODES DIL NAME DESCRIPTION 

61210648 

>-61210649 
61210650 DIT-INVARG Invalid argument 
61210651 
61210652 

61210656 

>-61210657 
61210658 DIT-NETOPRFAIL Network operation failed 
61210659 
61210660 

61210664 

>-61210665 
61210666 DIT-CHECKSUM Network checksum error 
61210667 
61210668 

61210672 

>-61210673 
61210674 DIT-UNSFILETYPE Unsupported file type 
61210675 
61210676 

61210680 

>-61210681 
61210682 DIT-FILEINUSE File activity precludes 
61210683 operation 
61210684 

61210688 

>-61210689 
61210690 DIT-NOFILE File not found 
61210691 
61210692 

61210696 

>-61210697 
61210698 DIT-EOF End of file 
61210699 
61210700 

61210704 

>-61210705 
61210706 DIT-OVERRUN Data overrun 
61210707 
61210708 

61210712 

>-61210713 
61210714 DIT-NOMOREFILES No more files 
61210715 
61210716 

E-4 



DIL STATUS CODES 

ALL POSSIBLE 
RETURN CODES DIL NAME DESCRIPTION 

61211432 

~ 
61211433 
61211434 DIT-CONNECTEVENT Connect event 
61211435 
61211436 

61211440 

~ 
61211441 
61211442 DIT-ABREJEVENT Abort/reject event 
61211443 
61211444 

61211448 

~ 
61211449 
61211450 DIT-INTDATAEVENT Interrupt data event 
61211451 
61211452 

61211456 

~ 
61211457 
61211458 DIT-DATAEVENT Data event 
61211459 
61211460 

61211464 

~ 
61211465 
61211466 DIT-DISCONNECTEVENT Disconnect event 
61211467 
61211468 

61211832 

~ 
61211833 
61211834 DIT-ABORTREJECT Abort/reject 
61211835 
61211836 

61211840 

~ 
61211841 
61211842 DIT-INTERRUPT Interrupt 
61211843 
61211844 

61211848 

~ 
61211849 
61211850 DIT-NOTENOUGH Not enough data available 
61211851 
61211852 

61211856 

~ 
61211857 
61211858 DIT-NODATAAVAILABLE No data available 
61211859 
61211860 

E-5 



ALL POSSIBLE 
RETURN CODES 

61211864 r 
61211865 
61211866 
61211867 
61211868 

61211872 ~ 
61211873 
61211874 
61211875 
61211876 

ALL POSSIBLE 
RETURN CODES 

1 

15237128 r 
15237129 
15237130 
15237131 
15237132 

15237136 r 
15237137 
15237138 
15237139 
15237140 

15237144 r 
15237145 
15237146 
15237147 
15237148 

15237152 r 15237153 
15237154 
15237155 
15237156 

15237160 r 
15237161 
15237162 
15237163 
15237164 

DIL STATUS CODES 

DIL NAME DESCRIPTION 

DIT-INFONOTAVAIL Information not available 

DIT-INFOOUTOFRANGE Information out of range 

ALL POSSIBLE STATUS CODES 
FOR VMS SYSTEMS 

LISTED BY DECIMAL VALUE 

DIL NAME 

SS-NORMAL 

DIX-ROUNDED 

DIX-TOOBIG 

DIX-INVDATTYP 

DIX-UNKARGTYP 

DIX-UNKSYS 

E-6 

DESCRIPTION 

Success 

Result is rounded 

Converted source field too 
large for destination field 

Invalid data type code 

Argument passed by 
descriptor is unknown 
type 

Unknown system of origin 
specified 



ALL POSSIBLE 
RETURN CODES 

15237168 ~ 
15237169 
15237170 
15237171 
15237172 

15237176 ~ 
15237177 
15237178 
15237179 
15237180 

15237184 ~ 
15237185 
15237186 
15237187 
15237188 

15237192 >-15237193 
15237194 
15237195 
15237196 

15237200 ~ 
15237201 
15237202 
15237203 
15237204 

15237208 >-
15237209 
15237210 
15237211 
15237212 

15237216 ~ 
15237217 
15237218 
15237219 
15237220 

15237224 >-15237225 
15237226 
15237227 
15237228 

15237232 ~ 15237233 
15237234 
15237235 
15237236 

DIL STATUS CODES 

DIL NAME 

DIX-INVLNG 

DIX-INVSCAL 

DIX-GRAPHIC 

DIX-FMTLOST 

DIX-NONPRINT 

DIX-TRUNC 

DIX-UNIMP 

DIX-INVALCHAR 

DIX-ALIGN 

E-7 

DESCRIPTION 

Length invalid or unspecified 

Scale factor invalid or 
unspecified 

Graphic character changed in 
converstion 

Format effector gained or 
lost in conversion 

Non-printing character 
gained or lost 
in conversion 

String too long for 
destination -- truncated 

Unimplemented conversion 

Invalid character in 
source field or 
conversion table 

Invalid alignment for data 
type 



ALL POSSIBLE 
RETURN CODES 

15237240 ~ 
15237241 
15237242 
15237243 
15237244 

15237248 ~ 
15237249 
15237250 
15237251 
15237252 

15237256 ~ 15237257 
15237258 
15237259 
15237260 

15237264 ~ 15237265 
15237266 
15237267 
15237268 

15237272 ~ 15237273 
15237274 
15237275 
15237276 

15237280 ~ 15237281 
15237282 
15237283 
15237284 

15237288 ~ 15237289 
15237290 
15237291 
15237292 

15237296 ~ 15237297 
15237298 
15237299 
15237300 

15302664 ~ 15302665 
15302666 
15302667 
15302668 

DIL STATUS CODES 

DIL NAME 

DIX-UNNORM 

DIX-IMPOSSIBLE 

DIX-UNSIGNED 

DIX-INVBYTSIZ 

DIX-INVDNUMCHR 

DIX-INVDNUMSGN 

DIX-INVPDDGT 

DIX-INVPDSGN 

DIT-HORRIBLE 

E-8 

DESCRIPTION 

Floating point number 
improperly normalized 

Severe internal problems 

Negative value moved to 
unsigned field 

Invalid byte size 
specified 

Invalid display numeric 
character in source field 

Invalid display numeric sign 
character in source field 

Invalid packed decimal digit 
in source field 

Invalid packed decimal sign 
in source field 

Internal or system error 



OIL STATUS CODES 

ALL POSSIBLE 
RETURN CODES DIL NAME DESCRIPTION 

15302672 

~ 
15302673 
15302674 DIT-TOOMANY Attempt to open too many 
15302675 files or links 
15302676 

15302680 

~ 
15302681 
15302682 DIT-INVARG Invalid argument 
15302683 
15302684 

15302688 

~ 
15302689 
15302690 DIT-NETOPRFAIL Network operation failed 
15302691 
15302692 

15302696 

~ 
15302697 
15302698 DIT-CHECKSUM Network checksum error 
15302699 
15302700 

15302704 

~ 
15302705 
15302706 DIT-UNSFILETYPE Unsupported file type 
15302707 
15302708 

15302712 

~ 
15302713 
15302714 DIT-FILEINUSE File activity precludes 
15302715 operation 
15302716 

15302720 

~ 
15302721 
15302722 DIT-NOFILE File not found 
15302723 
15302724 

15302728 

~ 
15302729 
15302730 DIT-EOF End of file 
15302731 
15302732 

15302736 

.~ 
15302737 
15302738 DIT-OVERRUN Data overrun 
15302739 
15302740 

E-9 



OIL STATUS CODES 

ALL POSSIBLE 
RETURN CODES DIL NAME DESCRIPTION 

15302744 

>--
15302745 
15302716 DIT-NOl10REFI LES No more files 
15302747 
15302748 

15303464 

>--
15303465 
15303466 DIT-CONNECTEVENT Connect event 
15303467 
15303468 

15303472 

>--
15303473 
15303474 DIT-ABREJEVENT Abort/reject event 
15303475 
15303476 

15303480 

r 15303481 
15303482 DIT-INTDATAEVENT Interrupt data event 
15303483 
15303484 

15303488 

>--
15303489 
15303490 DIT-DATAEVENT Data event 
15303491 
15303492 

15303496 

>--
15303497 
15303498 DIT-DISCONNECTEVENT Disconnect event 
15303499 
15303500 

15303864 

>--
15303865 
15303866 DIT-ABORTREJECT Abort/reject 
15303867 
15303868 

15303872 

r 15303873 
15303874 DIT-INTERRUPT Interrupt 
15303875 
15303876 

15303880 

>--
15303881 
15303882 DIT-NOTENOUGH Not enough data available 
15303883 
15303884 

E-I0 



ALL POSSIBLE 
RETURN CODES 

15303888 ~ 15303889 
15303890 
15303891 
15303892 

15303896 ~ 15303897 
15303898 
15303899 
15303900 

15303904 ~ 15303905 
15303906 
15303907 
15303908 

DIL STATUS CODES 

DIL NAME DESCRIPTION 

DIT-NOTDATAAVAILABLE No data available 

DIT-INFONOTAVAIL Information not 
available 

DIT-INFOOUTOFRANGE Information out of 
range 

E-ll 





APPENDIX F 

BIT TRANSPORT 



APPENDIX F 

BIT TRANSPORT 

This appendix describes how the DIL routines actually move the user 
data. You do not need this information if you plan to transfer ASCII 
data or binary fields of common data types. ASCII data appears as 
ASCII data on any homogeneous or heterogeneous system. Common binary 
data arrives at the receiving heterogeneous system in a format that 
can be used by the Data Conversion Routines. 

The information supplied by this appendix will be useful if your data 
consists of bit maps, masks, or other special-purpose or user-defined 
data types. This type of data is beyond the scope of the Data 
Conversion Routines. 

F.l NFOPB LINKS 

Data from a 36-bit system is shipped across the network link as a 
string of 8-bit bytes. They are sent in order, from right to left. 
The four high-order bits of the first word are combined to form a byte 
with the four low-order bits of the next word. 

The following example shows two 36-bit words that contain ASCII data. 

A B C D E I X F G H I J I Y 

No. of bits 7 7 7 7 7 1 7 7 7 7 7 1 

These words actually travel through the network in the following 
format: 

IEEEEEEEXI 

ICDDDDDDDI 

IBBCCccccl 

IAAABBBBBJ 

F-l 



BIT TRANSPORT 

JJJYAAAA 

IIIIJJJJ 

HHHHHIII 

I GGGGGGHH 

I FFFFFFFG I 

If the receiving system is also a 36-bit system, it stores the bytes 
in the same order as they were stored on the original system. If the 
receiving system is a 32-qit system, it stores the bytes in the order 
they were sent. The data can then be meaningfully accessed with the 
Data Conversion Routines. 

The sys'tem sends VMS data through the network as 8-bi t bytes. If the 
following nine bytes exist on a VAX: 

11111111 

22222222 

33333333 

44444444 

55555555 

H L 

66666666 

F-2 



BIT TRANSPORT 

77777777 

88888888 

99999999 

They are sent through the network in this order. They also arrive at 
a 32-bit system in the same order. The bytes will arrive at a 36-bit 
system as the following two words: 

I 555544444444333333332222222211111111 ) 

L 

I 999999998888888877777777666666665555 I 
H 

Byte 5 is split between 2 words: low-order bits in the first word and 
high-order bits in the second word. These 36-bit words are suitable 
for input to the Data Conversion Routines. 

If you send data between homogeneous systems, the data arrives at the 
recelvlng system formatted in the same way as it appeared on the 
sending system. You do not, therefore, need to call the Data 
Conversion Routines to translate this data. 

F.2 REMOTE FILE ACCESS IN ASCII MODE AND NFOPA LINKS 

ASCII data, stored as 7-bit bytes on 36-bit systems or as 8-bit bytes 
on 32-bit systems, becomes a special case when sent in ASCII mode. It 
is always sent as 8-bit ASCII characters and stored in the format of 
the receiving system. This means that the following 36-bit word of 
ASCII data: 

A S C I I I 0 I 
No. of bits: 7 7 7 7 7 1 

F-3 



BIT TRANSPORT 

Is sent through the network, and arrives at a 32-bit system in the 
following format: 

a 

a 

a 

a 

a 

This data can then be used without calling the Data Conversion 
Routines, even if it was transported between heterogeneous systems. 

F.3 NFOP8 LINKS 

Task-to-Task communication using NFOpa links should only be used if 
you plan to move a-bit bytes of non-textual data. The host system 
stores and accesses the bytes as it would normally store 8-bit bytes. 
Unused bits are not considered significant and are not sent over the 
network. The data will not necessarily be in a format appropriate for 
input to the Data Conversion Routines. 

For example, the 36-bit word: 

No. of bits: a a a a 4 

F-4 



BIT TRANSPORT 

would be sent through the network and received on a VAX as: 

1111111111 

8 

1222222221 

8 

1333333331 

8 

I 444444441 

8 

F-5 





APPENDIX G 
TASK-TO-TASK AND REMOTE-FILE-ACCESS ERROR MESSAGES 



APPENDIX G 

TASK-TO-TASK AND REMOTE-FILE-ACCESS ERROR MESSAGES 

This appendix explains error messages and their causes for each 
Task-to-Task and Remote-File-Access routine. 

G.l REMOTE-FILE-ACCESS ERROR CODES AND THEIR MEANINGS: 

G.l.l ROPEN/DIT$ROPEN Routine: 

DIT-INVARG: 

1. Filename is a string but is not ASCII-7 (DECsystem-lO/20 
only). If you are using the routine from a COBOL program, 
make sure that the filename's USAGE is DISPLAY-7. 

2. Userid is a string but is not ASCII-7 (DECsystem-lO/20 only). 
If you are using the routine from a COBOL program, make sure 
that the userid's USAGE is DISPLAY-7. 

3. Password is a string but is not ASCII-7 (DECsystem-lO/20 
only). If you are using the routine from a COBOL program, 
make sure that the password's USAGE is DISPLAY-7 .. 

4. Account is a string but is not ASCII-7 (DECsystem-lO/20 
only). If you are using the routine from a COBOL program, 
make sure that the account's USAGE is DISPLAY-7. 

5. File open mode does not have a valid value. The file must be 
opened for MODE-READ, MODE-WRITE, or MODE-APPEND. 

6. File data type does not have a valid value. 
must be TYPE-ASCII. 

The data type 

7. File record format does not have a valid value. Valid record 
formats are RFM-UNDEFINED, RFM-FIXED, RFM-VARIABLE, RFM-VFC, 
or RFM-STREAM. 

8. Record attributes does not have a valid value. Valid record 
attributes are RAT-UNSPECIFIED, RAT-ENVELOPE, RAT-PRINT, or 
RAT-FORTRAN. 

9. File name has improper syntax. 

G-l 



TASK-TO-TASK AND REMOTE-FILE-ACCESS ERROR MESSAGES 

10. Error in directory name (VMS only). 

11. Device full (VMS only). 

12. Logical name error (VMS only). 

13. Node name error (VMS only). 
syntax. 

The node name has improper 

14. Error in quoted string (VMS only). There is no need for you 
to specify access information in a quoted string. If you 
receive this error without doing so, it is an internal error. 

15. Error in file type (VMS only). 

16. Error in file version nu~ber (VMS only). 

SS-NORMAL: 

1. Normal successful completion. 

DIT-FILEINUSE: 

1. File activity precludes this operation (VMS only). 

DIT-TOOMANY: 

1. Attempt to open more than 20 files. You are limited to 20 
files open at once for version 2 of the OIL. 

DIT-NOFILE: 

1. File to be created already exists. 

2. File not found. 

3. File not available because it is locked. 

4. File protection violation. 

5. Error in access control string (probable internal error, VMS 
only). 

6. Directory not found (VMS only). 

7. File expiration date not yet reached (VMS only). You cannot 
overwrite this file because it has not expired yet. 

DIT-CHECKSUM: 

1. Network checksum error (probable monitor error, VMS only). 

G-2 



TASK-TO-TASK AND REMOTE-FILE-ACCESS ERROR MESSAGES 

DIT-NETOPRFAIL: 

1. Cannot connect to the FAL. This may be because the monitor 
has used up the resources it needs to make the connection, 
the network node you want is down or does not exist, the node 
is not currently running a FAL, the FAL on the node you need 
has aborted, there are already too many connections to the 
node you need, there are too many connections already to the 
FAL, you passed invalid accounting information (userid, 
password, and account) for the remote file, or because there 
is no network path to the node you need. 

2. DAP protocol error (internal error). 

3. Network link broken. 

4. Operation not supported by remote system. 

5. File-transfer mode precludes operation (VMS only). 

6. Network operation failed (VMS only). 

DIT-HORRIBLE: 

1. Internal error. 

2. Monitor error. 

3. Hardware error. 

G.l.2 RREAD/DIT$RREAD: 

DIT-INVARG: 

1. File number not in valid range or refers to a file which is 
not open. 

SS-NORMAL 

1. Normal successful completion. 

DIT-EOF: 

1. End of file. 

DIT-OVERRUN: 

1. Data overrun. For files on a DECsystem-lO or DECSYSTEM-20, 
you must add 2 to the length of a written record to determine 
the actual record size in the file. This is because files on 
the DECsystem-lO or DECSYSTEM-20 are always actually written 
in stream format with <CR><LF>s, and you must allow room in 
your buffer when reading such a file to accommodate the 
<CR><LF> as well as your data. 

G-3 



TASK-TO-TASK AND REMOTE-FILE-ACCESS ERROR MESSAGES 

DIT-NETOPRFAIL: 

1. Cannot connect to FAL. This may be because the monitor has 
used up the resources it needs to make the connection, the 
network node you want is down or does not exist, the node is 
not currently running a FAL, the FAL on the node you need has 
aborted, there are already too many connections to the node 
you need, there are too many connections already to the FAL, 
you passed invalid accounting information (userid, password, 
and account) for the remote file, or because there is no 
network path to the node you need. 

2. DAP protocol error (internal error). 

3. Network link broken. 

4. Operation not supported by remote system. 

5. File-transfer mode precludes operation (VMS only). 

6. Network operation failed (VMS only). 

DIT-CHECKSUM: 

1. Network checksum error (probable monitor error, VMS only). 

DIT-HORRIBLE: 

1. Internal error. 

2. Monitor error. 

3. Hardware error. 

G.l.3 RWRITE/DIT$RWRITE: 

DIT-INVARG: 

1. File number is out of range or refers to a file which is not 
open. 

S5-NORMAL: 

1. Normal successful completion. 

DIT-NOFILE: 

1. Privilege violation. 

DIT-NETOPRFAIL: 

1. Cannot connect to FAL. This may be because the monitor has 
used up the resources it needs to make the connection, the 
network node you want is down or does not exist, the node is 
not currently running a FAL, the FAL on the node you need has 
aborted, there are already too many connections to the node 
you need, there are too many connections already to the FAL, 
you passed invalid accounting information (userid, password, 
and account) for the remote file, or because there is no 
network path to the node you need. 

G-4 



TASK-TO-TASK AND REMOTE-FILE-ACCESS ERROR MESSAGES 

2. DAP protocol error (internal error). 

3. Network link broken. 

4. Operation not supported by remote system. 

5. File transfer mode precludes operation (VMS only). 

6. Network operation failed (VMS only). 

DIT-HORRIBLE: 

1. In version 2 of the DIL, it is possible to get this error on 
a DECsystem-lO or DECSYSTEM-20 if you attempt to write a 
fixed-length file on a VMS system and the length of the 
record being written does not agree with the record size of 
the file. 

2. Internal error. 

3. Monitor error. 

4. Hardware error. 

G.l.4 RCLOSE/DIT$RCLOSE: 

DIT-INVARG: 

1. Invalid close option. Valid close options are OPT-NOTHING, 
OPT-PRINT, OPT-SUBMIT, or OPT-DELETE. 

2. File number out of range or refers to a file which is not 
open. 

DIT-NETOPRFAIL: 

1. Cannot connect to FAL. This may be because the monitor has 
used up the resources it needs to make the connection, the 
network node you want is down or does not exist, the node is 
not currently running a FAL, the FAL on the node you need has 
aborted, there are already too many connections to the node 
you need, there are too many connections already to the FAL, 
you passed invalid accounting information (userid, password, 
and account) for the remote file, or because there is no 
network path to the node you need. 

2. DAP protocol error (internal error). 

3. Network link broken. 

4. Operation not supported by remote system. 

5. File transfer mode precludes operation (VMS only). 

6. Network operation failed (VMS only). 

G-5 



TASK-TO-TASK AND REMOTE-FILE-ACCESS ERROR MESSAGES 

DIT-HORRIBLE: 

1. In version 2 of the OIL, it is possible to get this error on 
a DECsystem-l0 or DECSYSTEM-20 if you attempt to write a 
fixed-length file on a VMS system and the length of the 
record being written does not agree with the record size of 
the file. 

2. Internal error. 

3. Monitor error. 

4. Hardware error. 

G.l.S RDEL/DIT$RDEL: 

DIT-INVRG: 

1. File name is a string but is not ASCII-7 (DECSYSTEM-I0/20 
only). If you are using this routine from a COBOL program, 
the filename's USAGE must be DISPLAY-7. 

2. Userid is a string but is not ASCII-7 (DECsystem-l0 or 
DECSYSTEM-20 only). If you are using this routine from a 
COBOL program, the userid's USAGE must be DISPLAY-7. 

3. Password is a string but is not ASCII-7 (DECsystem-l0 or 
DECSYSTEM-20 only). If you are using this routine from a 
COBOL program, the password's USAGE must be DISPLAY-7. 

4. Account is a string but is not ASCII-7 (DECsystem-l0 or 
DECSYSTEM-20 only). If you are using this routine from a 
COBOL program, the account's USAGE must be DISPLAY-7. 

~. Filename has invalid syntax. 

SS-NORMAL: 

1. Normal successful completion. 

DIT-NOFILE: 

1. Invalid simultaneous access. Another user is already using 
this file. 

2. File not found. 

3. File protection violation. 

4. Error in access control string (VMS only). 

5. Directory not found (VMS only). 

G-6 



TASK-TO-TASK AND REMOTE-FILE-ACCESS ERROR MESSAGES 

DIT-NETOPRFAIL: 

1. Cannot connect to FAL. This may be because the monitor has 
used up the resources it needs to make the connection, the 
network node you want is down or does not exist, the node is 
not currently running a FAL, the FAL on the node you need has 
aborted, there are already too many connections to the node 
you need, there are too many connections already to the FAL, 
you passed invalid accounting information (userid, password, 
and account) for the remote file, or because there is no 
network path to the node you need. 

2. DAP protocol error (internal error). 

3. Network link broken. 

4. Operation not supported on remote system. 

5. File transfer mode precludes operation (VMS only). 

6. Network operation failed (VMS only). 

DIT-HORRIBLE: 

1. Internal error. 

2. Monitor error. 

3. Hardware error. 

G.l.6 RSUB/DIT$RUB: 

DIT-INVARG: 

1. File name is a string but is not ASCII-7 (DECsystem-lO or 
DECSYSTEM-20 only). If you are using this routine from a 
COBOL program, the filename's USAGE must be DISPLAY-7. 

2. Userid is a string but is not ASCII-7 (DECsystem-lO or 
DECSYSTEM-20 only). If you are using this routine from a 
COBOL program, the userid's USAGE must be DISPLAY-7. 

3. Password is a string but is not ASCII-7 (DECsystem-lO or 
DECSYSTEM-20 only). If you are using this routine from a 
COBOL program, the password's USAGE must be DISPLAY-7. 

4. Account is a string but is not ASCII-7 (DECsystem-lO or 
DECSYSTEM-20 only). If you are using this routine from a 
COBOL program, the account's USAGE must be DISPLAY-7. 

5. Filename has invalid syntax. 

6. Error in directory name (VMS only). 

7. Logical name error (VMS only). 

8. Node name error (VMS only). 

G-7 



TASK-TO-TASK AND REMOTE-FILE-ACCESS ERROR MESSAGES 

9. Error in quoted string (VMS only). 

10. Error in file type (VMS only). 

11. Error in version number (VMS only). 

DIT-NOFILE: 

1. File not found. 

2. File protection violation. 

3. Error in access control string (VMS only). 

4. Directory not found (VMS only). 

5. File locked (VMS only). 

SS-NORMAL: 

1. Normal successful completion. 

DIT-NETOPRFAIL: 

1. Cannot connect to FAL. This may be because the monitor has 
used up the resources it needs to make the connection, the 
network node you want is down or does not exist, the node is 
not currently running a FAL, the FAL on the node you need has 
aborted, there are already too many connections to the node 
you need, there are too many connections already to the FAL, 
you passed invalid accounting information (userid, password, 
and account) for the remote file, or because there is no 
network path to the node you need. 

2. DAP protocol error (internal error). 

3. Network link broken. 

4. Operation not supported on remote system. 

5. File transfer mode precludes operation (VMS only). 

6. Network operation failed (VMS only). 

DIT-HORRIBLE: 

1. Internal error. 

2. Monitor error. 

3. Hardware error. 

G.l.7 RPRINT/DIT$RPRINT: 

DIT-INVARG: 

1. Filename is a string but is not ASCII-7 (DECsystem-lO or 
DECSYSTEM-20 only). If you are using this routine from a 
COBOL program, filename's USAGE must be DISPLAY-7. 

G-8 



TASK-TO-TASK AND REMOTE-FILE-ACCESS ERROR MESSAGES 

2. Userid is a string but is not ASCII-7 (DECsystem-lO or 
DECSYSTEM~20 only). If you are using this routine from a 
COBOL program, userid's USAGE must be DISPLAY-7. 

3. Password is a string but is not ASCII-7 (DECsystem-lO or 
DECSYSTEM-20 only). If you are using this routine from a 
COBOL program, password's USAGE must be DISPLAY-7. 

4. Account is a string but is not ASCII-7 (DECsystem-lO or 
DECSYSTEM-20 only). If you are using this routine from a 
COBOL program, account's USAGE must be DISPLAY-7. 

5. Filename has invalid syntax. 

6. Error in directory name (VMS only) • 

7. Logical name error (VMS only) • 

8. Node name error (VMS only) • 

9. Error in quoted string (VMS only) . 

10. Error in file type (VMS only) • 

11. Error in version number (VMS only) • 

SS-NORMAL: 

1. Normal successful completion. 

DIT-NOFILE: 

1. File locked. 

2. File not found. 

3. File protection violation. 

4. Error in access control string (VMS only). 

5. Directory not found (VMS only). 

6. File locked (VMS only). 

DIT-NETOPRFAIL: 

1. Cannot connect to FAL. This may be because the monitor has 
used up the resources it needs to make the connection, the 
network node you want is down or does not exist, the node is 
not currently running a FAL, the FAL on the node you need has 
aborted, there are already too many connections to the node 
you need, there are too many connections already to the FAL, 
you passed invalid accounting information (userid, password, 
and account) for the remote file, or because there is no 
network path to the node you need. 

2. DAP protocol error (internal error). 

3. Network link broken. 

G-9 



TASK-TO-TASK AND REMOTE-FILE-ACCESS ERROR MESSAGES 

4. Operation not supported by remote system. 

5. File transfer mode precludes operation (VMS only). 

6. Network operation failed (VMS only). 

DIT-HORRIBLE: 

1. Internal error. 

2. Monitor error. 

3. Hardware error. 

G.2 TASK-TO-TASK ERRORS AND THEIR MEANINGS: 

G.2.1 NFOPA, NFOPB, NFOP8, NFOPP/DIT$NFOPA, DIT$NFOPB, DIT$NFOP8, 
DIT$NFOPP: 

DIT-INVRG: 

1. Network Logical Name is not an integer. 

2. Network Logical Name has an invalid value (for DIT$NFOPP, VMS 
only). It must have the initial value of either PAS-FIREUP 
or PAS-NFIREUP on entry to this routine on a VMS system. 

3. Hostname is a string but is not ASCTI-7 (DECSYSTEM-IO/20 
only). If this routine is called from a COBOL program, 
hostname's USAGE must be DISPLAY-7. 

4. Objectid is a string but is not ASCII-7 (DECSYSTEM-IO/20 
only). If this routine is called from a COBOL program, 
objectid's USAGE must be DISPLAY-7. 

5. Descriptor is a string but is not ASCII-7 (DECsystem-lO or 
DECSYSTEM-20 only). If this routine is called from a COBOL 
program, descriptor's USAGE must be DISPLAY-7. 

6. Taskname is a string but is not ASCII-7 (DECsystem-lO or 
DECSYSTEM-20 only). If this routine is called from a COBOL 
program, taskname's USAGE must be DISPLAY-7. 

7. Password is a string but is not ASCII-7 (DECsystem-lO or 
DECSYSTEM-20 only). If this routine is called from a COBOL 
program, password's USAGE must be DISPLAY-7. 

8. Account is a string but is not ASCII-7 (DECsystem-lO or 
DECSYSTEM-20 only). If this routine is called from a COBOL 
program, account's USAGE must be DISPLAY-7. 

9. User data is a string but is not ASCII-7 (DECsystem-lO or 
DECSYSTEM-20 only). If this routine is called from a COBOL 
program, the user data must have USAGE DISPLAY-7. 

G-IO 



TASK-TO-TASK AND REMOTE-FILE-ACCESS ERROR MESSAGES 

10. Wait code is not an integer. It must have the value WAIT-YES 
or WAIT-NO. 

11. Unknown or unreachable network node name. 

12. Invalid object. You may have specified a nonexistent object 
name (one that is not defined for your system), or used an 
object number which is out of range or which you do not have 
the privilege to use for a passive task. See the DECnet 
manual for your system. 

13. Invalid taskname. The taskname you gave may not be unique. 

14. Object is already defined. 

15. Optional data exceeds 16 bytes. 

SS-NORMAL 

1. Normal successful completion. 

DIT-TOOMANY: 

1. Attempt to open more than 20 links at once. You are limited 
to 20 links at anyone time in DIL version 2. 

2. The monitor will not allow you to open any more links. On a 
DECsystem-lO or DECSYSTEM-20, a nonprivileged job has a limit 
of four open links. The monitor itself may have run out of 
links. 

3. No privileges to open links (VMS only). 

4. Insufficient memory to open links (VMS only). 

DIT-ABORTREJECT: 

1. Waiting link open got an abort or reject. 

DIT-HORRIBLE: 

1. Internal error. 

2. Monitor error. 

3. Hardware error. 

G.2.2 NFGND/DIT$NFGND: 

DIT-INVARG: 

1. Network Logical Name is not an integer, is out of range, or 
refers to an unused link. 

2. Wait code is not an integer or has an invalid value. It must 
have the value WAIT-YES or WAIT-NO. 

G-ll 



TASK-TO-TASK AND REMOTE-FILE-ACCESS ERROR MESSAGES 

SS-NORMAL: 

1. Wait code was WAIT-NO and nothing new has happened. 

DIT-CONNECTEVENT: 

1. Connect event occurred (connect request if link is passive: 
connect accept if link is active). 

DIT-ABREJEVENT: 

1. Abort or reject event occurred. 

DIT-DISCONNECTEVENT: 

1. Disconnect event occurred. 

DIT-INTDATAEVENT: 

1. Interrupt data available. 

DIT-DATAEVENT: 

1. Data available. 

DIT-HORRIBLE: 

1. Internal error. 

2. Monitor error. 

3. Hardware error. 

G.2.3 NFACC/DIT$NFACC: 

DIT-INVARG: 

1. Network Logical Name is not an integer, is out of range, or 
refers to an unused link. 

2. Link type is not an integer or has an invalid value. Valid 
link types are LTYPE-ASCII, LTYPE-BINARY, or LTYPE-8BIT. 

3. Count of optional data is not an integer or has an invalid 
value. You may have 0 to 16 optional data characters. 

4. Optional data is a string but is not ASCII-7 (DECsystem-lO or 
DECSYSTEM-20 only). If you are using this routine from a 
COBOL program, the optional data must have USAGE DISPLAY-7. 

SS-NORMAL: 

1. Normal successful completion. 

DIT-ABORTREJECT: 

1. Link aborted. 

G-12 



TASK-TO-TASK AND REMOTE-FILE-ACCESS ERROR MESSAGES 

DIT-HORRIBLE: 

1. Internal error. 

2. Monitor error. 

3. Hardware error. 

G.2.4 NFRCV/DIT$NFRCV: 

DIT-INVARG: 

1. Network Logical Name is not an integer, is out of range, or 
refers to an unused link. 

2. Data unit size is not an integer. 

3. Count of data is not an integer. 

4. Message-mode flag is not an integer or has an invalid value. 
It must have the value MSG-STM or MSG-MSG. 

5. Wait code is not an integer or has an invalid value. It must 
have the value WAIT-YES or WAIT-NO. 

SS-NORMAL: 

1. Normal successful completion. 

DIT-INTERRUPT: 

1. Interrupt data message must be read first. 

DIT-NOTENOUGH: 

1. Not enough data available to satisfy nonwaiting stream mode 
request (DECSYSTEM-20 only). 

2. No data available now for non-waiting read. 

DIT-ABORTREJECT: 

1. Link aborted or disconnected. 

DIT-OVERRUN: 

1. Data will not fit into user buffer. For a DECSYSTEM-20 only, 
no data is lost. Another NFRCV call with a larger buffer may 
retrieve the data. On other systems, the data message has 
been truncated to fit in the user's buffer. 

DIT-HORRIBLE: 

1. Internal error. 

2. Monitor error. 

3. Hardware error. 

G-13 



TASK-TO-TASK AND REMOTE-FILE-ACCESS ERROR MESSAGES 

G.2.S NFSND/DIT$NFSND: 

DIT-INVARG: 

1. Network Logical Name not an integer, is out of range, or has 
an invalid value. 

2. Record unit size is not an integer. 

3. Data count is not an integer. 

4. Message-mode flag not an integer or has an invalid value. It 
must have the value MSG-MSG or MSG-STM. 

SS-NORMAL: 

1. Normal successful completion. 

DIT-ABORTREJECT: 

1. Link aborted. 

DIT-HORRIBLE: 

1. Internal error. 

2. Monitor error. 

3. Hardware error. 

G.2.6 NFREJ/DIT$NFREJ: 

DIT-INVARG: 

1. Network Logical Name not an integer, ,is out of range, or 
refers to an unused link. 

2. Reject code is not an integer. 

3. Count of optional data is not an integer or has an invalid 
value. It must be from 0 to 16. 

4. Optional data is a string but is not ASCII-7 (DECsystem-l0 or 
DECSYSTEM-20 only). If you are using this routine from a 
COBOL program, the optional data must have USAGE DISPLAY-7. 

DIT-ABORTREJECT: 

1. Link aborted. 

SS-NORMAL: 

1. Normal successful completion. 

G-14 



TASK-TO-TASK AND REMOTE-FILE-ACCESS ERROR MESSAGES 

DIT-HORRIBLE: 

1. Internal error. 

2. Monitor error. 

3. Hardware error. 

G.2.7 NFINT/DIT$NFINT: 

DIT-INVARG: 

1. Network Logical Name not an integer, is out of range, or 
refers to an unused link. 

2. Count of interrupt data not an integer or has an invalid 
value. It must have a value between 0 and 16. 

3. Interrupt data is a string but is not ASCII-7 (DECsystem-lO 
or DECSYSTEM-20 only). If you are using this routine from a 
COBOL program, the interrupt data must have USAGE DISPLAY-7. 

SS-NORMAL: 

1. Normal successful completion. 

DIT-ABORTREJECT: 

1. Link aborted. 

DIT-HORRIBLE: 

1. Internal error. 

2. Monitor error. 

3. Hardware error. 

DIT-INTERRUPT: 

1. There is an outstanding interrupt message. 

G.2.8 NFRCI/DIT$NFRCI 

DIT-INVARG: 

1. Network Logical Name not an integer, is out of range, or 
refers to an unused link. 

2. Count of interrupt data characters is not an integer. 

3. Interrupt data is a string but is not ASCII-7 (DECsystem-lO 
or DECSYSTEM-20 only). If you are using this routine in a 
COBOL program, the data must have USAGE DISPLAY-7. 

G-15 



TASK-TO-TASK AND REMOTE-FILE-ACCESS ERROR MESSAGES 

SS-NORMAL: 

1. Normal successful completion. 

DIT-ABORTREJECT: 

1. Link aborted. 

DIT-NODATAAVAILABLE: 

1. No interrupt data available now. 

DIT-HORRIBLE: 

1. Internal error. 

2. Monitor error. 

3. Hardware error. 

G.2.9 NFCLS/DIT$NFCLS: 

DIT-INVARG: 

1. Network Logical Name not an integer, is out of range, or 
refers to an unused link. 

2. Type of link close is not an integer. 

3. Count of optional close data is not an integer or is out of 
range. The count of optional data must be from 0 to 16. 

4. Optional data is a string but is not ASCII-7 (DECsystem-lO or 
DECSYSTEM-20 only). If you are using this routine from a 
COBOL program, the optional data must -have USAGE DISPLAY-7. 

SS-NORMAL: 

1. Normal successful completion. 

DIT-ABORTREJECT: 

1. Link aborted. 

DIT-HORRIBLE: 

1. Internal error. 

2. Monitor error. 

3. Hardware error. 

G-16 



TASK-TO-TASK AND REMOTE-FILE-ACCESS ERROR MESSAGES 

G.2.10 NFINF/DIT$NFINF: 

DIT-INVARG: 

1. Network Logical Name is not an integer, is out of range, or 
refers to an unused link. 

2. Type of information wanted is not an integer. 

3. Count of information returned is not an integer. 

4. Area for returned information is a string but is not ASCII-7 
(DECsystem-lO or DECSYSTEM-20 only). If you are using this 
routine in a COBOL program, the data area must have USAGE 
DISPLAY-7. 

SS-NORMAL 

1. Normal successful completion. 

DIT-ABORTREJECT: 

1. The link aborted or was rejected. 

DIT-INFOOUTOFRANGE: 

1. Information requested is not in the range of valid values. 
Valid information to request is INF-NODE, INF-OBJECT, 
INF-DESCF, INF-DESC, INF-USERID, INF-PASSWD, INF-ACCT, 
INF-OPT, INF-SEG, or INF-ABTCODE. 

DIT-INFONOTAVAILABLE: 

1. Information requested is not available. You cannot get it 
because this operating system does not supply it, you do not 
have the necessary privileges, or the information is not 
available for this type of link. 

DIT-HORRIBLE: 

1. Internal error. 

2. Monitor error. 

3. Hardware error. 

G-17 





INDEX 

. NOTE 

To minimize the length of entries, several abbreviations have 
used throughout this index. The following list explains 
abbreviations: 

Abbreviation 

DIL 
DCR 
TTT 
RFA 
FFD 
NLN 
(T) 
(TC) 
(TF) 
(V) 
(VC) 
(VF) 

Meaning 

Data Interchange Library 
Data Conversion Routines 
Task-to-Task Routines 
Remote File Access Routines 
Foreign Field Descriptor 
Network Logical Name 
TOPS-IO/TOPS-20 
TOPS-IO/TOPS-20 COBOL 
TOPS-IO/TOPS-20 FORTRAN 
VMS 
VMS COBOL 
VMS FORTRAN 

been 
these 

The example shown below tells where to find information about storing 
a foreign field descriptor from TOPS-IO/TOPS-20 COBOL: 

FFD, 
storing (Te) 



-A-

Access, remote File 
see RFA 

-B-

Bit Transport, F-1 
Byte Offset 

Introduction, 2-4 
TOPS-10/20, 2-4 
VMS, 2-4 

-c-

INDEX 

DCR (Cont.) 
Foreign Field Descriptors, 2-2 
Record Layout for, 2-4 
Single-function Routines, 2-2 
Supported Conversions, 2-1 

DIL 
Data Formats, B-1 
DIL names, A-1 
Introduction, 1-1 
sample application, C-1 

DIL Names 
values for, A-1 

CHARACTER datatype for TOPS-10/20 
FORTRAN, 6-5, 7-4 

DILINI Routine, 5-3, 5-7 
DIT$NFACC Routine, 10-23 
DIT$NFCLS Routine, 10-32 
DIT$NFGND Routine, 10-7 
DIT$NFOP8 Routine, 10-18 
DIT$NFOPA Routine, 10-12 
DIT$NFOPB Routine, 10-15 
DIT$NFOPP Routine, 10-21 
DIT$NFRCV Routine, 10-26 
DIT$NFSND Routine, 10-28 
DIT$RCLOSE Routine, 11-12 
DIT$RDEL Routine, 11-13 
DIT$ROPEN Routine, 11-7 
DIT$RPRINT Ro~tine, 11-17 
DIT$RREAD Routine, 11-10 
DIT$SUB Routine, 11-15 
DIT$WRITE Routine, 11-11 
DIX$BY DET Routine, 9-11 
DIX$BY-DIX DES Routine, 9-9 
DIX$MAK DES DET 

CHARACTER datatype for VMS 
FORTRAN, 10-6, 11-6 

COBOL 
DCR (T), 5-1 
DCR (V), 9-1 
RFA (TC), 7-1 
RFA (V), 11-1 
TTT (T), 6-1 
TTT (V), 10-1 

Code 
condition, 1-5 
facility, 1-5 
message, 1-5 
severity, 1-5 

Condition value, 1-4 
Condition value, VMS, 1-4 
Control Bits, 1-5 
CVGEN Routine, 5-30 

-D-

Data Conversion Routines 
see DCR 

Data Formats, B-1 
fixed-point, B-3 
floating-point, B-7 
string, B-1 

Data Interchange Library 
see DIL 

Data Names 
for COBOL (T), A-6 
for COBOL (V), A-9 
for FORTRAN (T), A-8 
for FORTRAN (V), A-11 

DCR, 1-1 
Byte Offset for, 2-4 
Concepts, 2-1 
Detailed Description, 2-4 
for TOPS-10/20 COBOL, 5-1 
for TOPS-10/20 FORTRAN, 5-4 
for VMS COBOL, 9-1 
for VMS FORTRAN, 9-4 

passing to (VC), 9-3 
Routine, 9-7 

-F-

FAL, 4-2 
FFD, 2-2 

storing (TC), 5-2 
storing (TF), 5-4 
storing (VC), 9-3 
storing (VF), 9-5 

File Access Listener, 4-2 
File name 

format, 4-2 
Foreign Field Descriptor 

see FFD 
FORTRAN 

DCR (T), 5-4 
DCR (V), 9-4 
RFA (TF), 7-4 
RFA (V), 11-4 
TTT (T), 6-4 
TTT (V), 10-4 

-H-

Heterogeneous Network, 1-1 

Index-1 



Homogeneous Network, 1-1 

-1-

Instructions, overlay 
TOPS-I0/20, 8-1 

Interface Files 
compatible, 1-6 
for DCR (TC), S-l 
for DCR (TF), S-4 
for DCR (VC), 9-1 
for DCR (VF), 9-4 
for RFA (TC), 7-1 
for RFA (TF), 7-4 
for RFA (VC), 11-1 
for RFA (VF), 11-4 
for TTT (TC), 6-1 
for TTT (TF), 6-4 
for TTT (VC), 10-1 
General, 1-6 
Introduction, 1-6 
native, 1-6 
specific, 1-6 
TTT (VF), 10-4 

-L-

Layout, record 
Introduction, 2-4 
TOPS-I0/20, 2-4 
VMS, 2-4 

Like-to-like translation, 2-1 
Linkage Instructions 

TOPS-I0, 8-1 
TOPS-20, 8-1 
VMS, 12-1 

Logical Link, 3-1 

-N-

Network Connection, 3-1 
Network Logical Name 

see NLN 
Network, heterogeneous, 1-1 
Network, homogeneous, 1-1 
NFACC Routine, 6-22 
NFCLS Routine, 6-32 
NFGND Routine, 6-6 
NFOP8 Routine, 6-17 
NFOPA Routine, 6-11 
NFOPB Routine, 6-14 
NFOPP Routine, 6-20 
NFRCV Routine, 6-2S 
NFSND Routine, 6-28 
NLN, 3-2 

for TOPS-I0 FORTRAN, 6-4 
for TOPS-20 COBOL, 6-2 
for TOPS-20 FORTRAN, 6-4 
for VMS COBOL, 10-3 
for VMS FORTRAN, 10-S 

-0-

Open Link 
AS C I I ( T ), 6 - 11 
AS C I I ( V), 1 0 -1 2 
Binary (T), 6-14 
binary (V), 10-lS 
8-bit (T), 6-17 
8-bit (V), 10-18 
Passive task (Tt, 6-20 
Passive Task (V), 10-21 

Overlay Instructions 
TOPS-I0/20, 8-1 

-P-

PSI, status 
for TOPS-I0, 6-3, 6-S, 7-3, 7-S 

-R-

RCLOSE Routine, 7-11 
RDEL Routine, 7-13 
Record Layout 

Introduction, 2-4 
TOPS-I0/20, 2-4 
VMS, 2-4 

Remote File Access 
see RFA 

RF A , 1-3, 7 - 1 
Concepts, 4-1 
f i 1 e name, 4 - 2 
for TOPS-I0 COBOL, 7-1 
for TOPS-I0 FORTRAN, 7-4 
for TOPS-20 COBOL, 7-1 
for TOPS-20 FORTRAN, 7-4 
for VMS COBOL, 11-1 
for VMS FORTRAN, 11-4 
Storing fields (TC), 7-2 
Storing fields (TF), 7-4 
storing fields (VC), 11-3 
storing fields (VF), 11-6 

ROPEN Routine, 7-6 
Routines 

Index-2 

CVGEN, S-30 
DILINI, S-3, S-7 
DIT$NFACC, 10-23 
DIT$NFCLS, 10-32 
DIT$NFGND, 10-7 
DIT$NFOP8, 10-18 
DIT$NFOPA, 10-12 
DIT$NFOPB, 10-lS 
DIT$NFOPP, 10-21 
DIT$NFRCV, 10-26 
DIT$NFSND, 10-28 
DIT$RCLOSE, 11-12 
DIT$RDEL, 11-13 
DIT$ROPEN, 11-7 
DIT$RPRINT, 11-17 
DIT$RREAD, 11-10 
DIT$SUB, II-IS 
DIT$WRITE, 11-11 
DIX$BY_DET, 9-+1 



Routines (Cont.) 
OIX$BY OIX OES, 9-9 
OIX$MAK OES OET, 9-7 
NFACC, 6-22-
NFCLS, 6-32 
NFGNO, 6-6 
NFOP8, 6-17 
NFOPA, 6-11 
NFOPB, 6-14 
NFOPP, 6-20 
NFRCV, 6-25 
NFSNO, 6-28 
RCLOSE, 7-11 
ROEL, 7-13 
ROPEN, 7-6 
RPRINT, 7-17 
RREAO, 7-9 
RSUB, 7-15 
RWRITE, 7-10 
XCGEN, 5-10 
XCVFB, 5-13 
XCVFP, 5-14 
XCVST, 5-12 
XOESCR, 5-2, 5-8 

RPRINT Routine, 7-17 
RREAO Routine, 7-9 
RSUB Routine, 7-15 
RWRITE Routine, 7-10 

-S-

Sample application, C-1 
Status Code 

by decimal (T), E-1 
by decimal (V), E-1 
Condition code, 1-5 
Control Bits, 1-5 
Facility Code, 1-5 
for OCR (TC), 5-3 
for OCR (TF), 5-6 
for OCR (VC), 9-3 
for OCR (VF), 9-6 
for RFA (TC), 7-3 
for RFA (TF), 7-5 
for RFA (VC), 11-3 
for RFA (VF), 11-6 
for TTT (TC), 6-3 
for TTT (TF), 6-5 
for TTT (VC), 10-3 
for TTT (VF), 10-6 
Introduction, 1-4 
LIB$MATCH CONO, 1-6 
Message Code, 1-5 
Severity Code, 1-5 
TOPS-10/20, 1-5 
VMS, 1-4 

Status PSI 
for TOPS-10, 6-3, 6-5, 7-3, 7-5 

-T-

Task 
active, 3-1 
fired-up (V), 0-3 
identification, 0-1 
not fired-up (V), 0-3 
not fired-up example, 0-3, 0-4 
Passive, 0-2 
passive, 3-1 

Task-to-Task Routines 
see TTT 

TOPS-10/20 
Record Layout, 2-4 

TTT, 1-2 
ASCII data (T), 6-11 
ASCII data (V), 10-12 
Binary data (T), 6-14 
binary data (V), 10-15 
8-bit data (T), 6-17 
8-bit data (V), 10-18 
Concepts, 3-1 
for TOPS-10 COBOL, 6-1 
for TOPS-10 FORTRAN, 6-4 
for TOPS-20 COBOL, 6-1 
for TOPS-20 FORTRAN, 6-4 
for VMS COBOL, 10-1 
for VMS FORTRAN, 10-4 
Logical Link, 3-1 
Network Logical Name, 3-2 
Open Passive Task (T), 6-20 
Opening a link, 3-2 
Passive Task (V), 10-21 
Passive Tasks 

(V), 0-2 
storing fields (TC), 6-2 
storing fields (TF), 6-4 
storing fields (VC), 10-3 
storing fields (VF), 10-6 

-v-

Value, condition, 1-4 
Value, VMS condition, 1-4 
VMS condition value, 1-4 

-x-
XCGEN Routine, 5-10 
XCVFB Routine, 5-13 
XCVFP Routine, 5-14 
XCVST Routine, 5-12 
XOESCR Routine, 5-8 

Index-3 

Passing to (TC), 5-2 
Passing to (TF), 5-5 



READER'S COMMENTS 

DIL User Reference Manual 
AA-M581 B-TK 

NOTE: This form is for document comments only. DIGITAL will use comments submitted on 
this form at the company's discretion. If you require a written reply and are eligible to 
receive one under Software Performance Report (SPR) service, submit your com­
ments on an SPR form. 

Did you find this manual understandable, usable, and well-organized? Please make sugges­
tions for improvement. 

Did you find errors in this manual? If so, specify the error and the page number. 

Please indicate the type of reader that you most nearly represent. 

D Assembly language programmer 
D Higher-level language programmer 
D Occasional programmer (experienced) 
D User with little programming experience 
D Student programmer 
D Other (please specijy)~~~~~~~~~~~~~~~~~~~~~ 

Name~~~~-----~~~~~~~~-----~~---- Date __ ~~~ _____ ~~~~~ __ 

Organization Telephone ~~~~~~~~_ 

Street __ ~~~~~~~~~~~~~----------~--~~~--------------------------____ ___ 

City __________________________ ~ State _______ Zip Code ___ _ 

or Country 



I 
I 
I 
I 
I 
I 
I 

--~.--000 ;oTear~~.d "a ere and Tape ----------------------f fl-Ill--------~~;;;~~ -__ I 
~ W II~ if Mailed in the 

United States 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SOFTWARE PUBLICATIONS 

200 FOREST STREET MR01-2/L 12 

MARLBOROUGH, MA 01752 

-- - - - Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	01-001
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-001
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	03-01
	03-02
	03-03
	03-04
	04-001
	04-01
	04-02
	05-001
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	06-001
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	07-001
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	08-001
	08-01
	08-02
	09-001
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	10-001
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	10-41
	10-42
	10-43
	10-44
	11-001
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	12-001
	12-01
	12-02
	A-001
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-001
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	C-001
	C-01
	C-02
	D-001
	D-01
	D-02
	D-03
	D-04
	E-001
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	F-001
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	G-001
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	G-17
	G-18
	index-001
	index-01
	index-02
	index-03
	replyA
	replyB

