
TOPS-1 O/TOPS~20
COBOL Conversion
Utility Guide
AA-M586A-TK

July 1982

This manual reflects the software of Version 12B of 68274.EXE,
the COBOL-68 to COBOL-74 Conversion Utility.

This is a new manual.

OPERATING SYSTEM:

SOFTWARE:

Software and manuals should be ordered by title and order number. In the United States, send orders
to the nearest distribution center. Outside the United States, orders should be directed to the nearest
DIGITAL Field Sales Office or representative.

Northeast/Mid-Atlantic Region Central Region Western Region

Digital Equipment Corporation Digital Equipment Corporation

~OPS-10 V7.01 or later
TOPS-20 V4.0 or later

68274 V12B

Digital Equipment Corporation
PO Box CS2008 Accessories and Supplies Center Accessories and Supplies Center
Nashua, New Hampshire 03061
Telephone:(603)884-6660

1050 East Remington Road 632 Caribbean Drive
Schaumburg, Illinois 60195 Sunnyvale, California 94086
Telephone :(312)640-5612 Telephone:(408) 734-4915

digital equipment corporation. marlboro. massachusetts

First Printing, July 1982

Copyright ©, 1982, Digital Equipment Corporation. All Rights Reserved.

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

DEC DECnet lAS
DECUS DECsystem-10 MASSBUS
DECSYSTEM-20 PDT PDP
DECwriter RSTS UNIBUS
DIBOL RSX VAX
EduSystem VMS VT

~DmDD~D RT

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in preparing future
docu mentation.

Contents

Preface

Chapter 1 The COBOL-68 to COBOL-74 Converter

1.1 Introduction to 68274
1.2 Messages and Conversions.
1.3 Line-Sequenced File Considerations .

Chapter 2 How to Use the COBOL Converter Utility

2.1 Building the Converter
2.2 Using the Converter.
2.3 Copy Library Considerations. .
2.4 Reserved Word Considerations.

Chapter 3 COBOL-58 to COBOL-74 Conversion

3.1 Identification Division Conversion.
3.2 Environment Division Conversion
3.3 Data Division Conversion ...
3.4 Procedure Division Conversion ..

Chapter 4 COBOL-68 to COBOL-74 Messages

4.1 Identification Division Messages.
4.2 Environment Division Messages .
4.3 Data Division Messages . . .
4.4 Procedure Division Messages. . .

1-1
1-2
1-3

2-1
2-2
2-3
2-4

3-1
3-2
3-3
3-3

4-1
4-2
4-2
4-4

iii

Appendix A Differences Between COBOL-68 and COBOL-74

Notes

A. (RELATIVE files)
B. (INDEXED files).
C. (Segmentation and PERFORM rules).
D. (CALL and CANCEL rules)

iv

A-6
A-7
A-7
A-8

Preface

This manual describes the COBOL-68 to COBOL-74 converter utility pro
gram, 68274, as it has been implemented on the TOPS-IO and TOPS-20
operating systems.

It is assumed that the reader has a knowledge of the COBOL-68 and
COBOL-74 languages. This manual is intended as a guide and as a refer
ence manual for COBOL programmers who wish to convert COBOL-68
programs to COBOL-74 programs.

Chapter I contains an introduction to the converter and defines the basic
characteristics of the program. Chapter 2 describes how to build and use
the converter program, 68274, and provides COpy library and reserved
word considerations. Chapter 3 describes the conversions that take place
within the four divisions of a COBOL-68 program. Chapter 4 describes the
messages that may be generated within the four divisions of a COBOL-68
program. Appendix A describes the differences between COBOL-68 code
and COBOL-74 code. (A copy of this appendix can also be found in the
TOPS-10ITOPS-20 COBOL-74 Language Manual.)

If you wish to reference the latest version of either COBOL-68 or
COBOL-74, you should refer to the following manuals:

• TOPS-10ITOPS-20 COBOL-68 Language Manual, Order No.
AA-5057B-TK

• TOPS-10ITOPS-20 COBOL-74 Language Manual, Order No.
AA-5059B-TK

If you wish to learn the COBOL language, refer to the books listed in the
FORWARD of both the COBOL-68 and COBOL-74 Language Manuals.

v

Chapter 1
The COBOL-68 to COBOL-74 Converter

1.1 Introduction to 68274

The COBOL-68 to COBOL-74 converter utility program, 68274, provides a
tool to assist you in the conversion of a valid COBOL-68 coded program
(Version 12B) to a valid COBOL-74 coded program (Version 12B). The
converter utility is named 68274.EXE; however, your installation can give
this program any other name.

NOTE

There is no guarantee from Digital Equipment Corporation
that all programs can be converted without your help. In
addition, correcting all differences found between COBOL-68
and COBOL-74 may not provide the efficiency needed for
your programs.

The 68274 program does the following:

1. Tries to convert a COBOL-68 program to a COBOL-74 program.

2. Provides a listing with messages of all statements that either could not
be converted or may have been converted incorrectly.

The program takes, as input, your COBOL-68 source program including
Copy libraries and produces a converted source output file (with a file
extension of .CVT) and a listing file (with a file extension of .LST). This
utility does not produce a binary file (file extension .REL).

All COBOL-68 switches are valid. However, the only useful switches are
IS, for card sequenced files, and IN, for no printing of errors on the terminal.

The converted source output file is in the same format as the COBOL-68
input file with as few source changes as possible, so that a FILCOM listing
shows minimal differences.

1-1

1.2 Messages and Conversions

As described in the previous section, 68274 produces a .LST file and a .CVT
file. The .LST file displays all warning messages that occurred during the
conversion. These warning messages indicate COBOL-68 statements

1. that are illegal in their format for COBOL-74.

2. Contain data-names that are reserved words (see Section 2.4) in
COBOL-74, but are not reserved words in COBOL-68.

Fatal messages may also appear if your COBOL-68 program does not com
pile correctly due to errors in the source code.

The .CVT file contains your COBOL-68 program as it can appear in
COBOL-74 format. All COBOL-68 statements that can be converted to
COBOL-74 statements are done so directly without any messages appear
ing in the listing (.LST) file. If you attempt to compile and execute this
format using CBL74.EXE, you may receive new fatal and warning mes
sages. Thus, the converted COBOL--74 program may need additional edit
ing to compile correctly. To do any editing on the .CVT file, use the listing
file for reference.

Using the example shown in Section 1.3, your directory may appear as
follows after a conversion:

TOPS-20

@DIRECTDRYru

CBL20:<BRDWN>
COBOL1.CBL.1
• CI.lT. 1
.LST.2

Total of 3 files
@

TOPS-IO

.DIRECTru

COBOL1 CBL <055> 13-Jan-82 DSKB:
COBOL1 CVT <055> 13-Jan-82
COBOL1 LST «55) 13-Jan-82
Total of G blod,s in 3 files on DSKB: [27,5107]

1-2 COBOL-68 to COBOL-74 Converter

[27,51.07]

1.3 Line-Sequenced File Considerations

The 68274 program works with most forms of COBOL-68 source input.
Input from your terminal presents no problems, with the exception of
source files that contain line-sequence numbers (programs produced by
EDIT or SOS). A source program that contains line-sequence numbers
forces the converter to create a line number 1 greater than the previous
line number if it does an insertiOn, but it does not correct subsequent line
numbers. For example, a COBOL-68 source input file could be:

00001 IDENTIFICATION DIVISION.
00002 ENVIRONMENT DIVISION.
00003 INPUT-OUTPUT SECTION.
00004 FILE-CONTROl.
00005 SELECT OUTFIL ASSIGN TO DSK.
00006 DATA DIVISION.
00007 FILE SECTION.
00008 FD OUTFIL LABEL RECORDS ARE STANDARD
00009 VALUE OF IDENTIFICATION IS "OUTFILDAT'
00010 DATA RECORD IS OUTREC
00011 BLOCK CONTAINS 20 RECORDS.
00012 01 OUTREC PIC X(80).
00013 WORKING-STORAGE SECTION.
00014 77 A PIC 9999 USAGE IS COMPo
00015 PROCEDURE DIVISION.
00016 START.
00017 OPEN OUTPUT OUTFll.
00018 MOVE ZEROS TO OUTREC.
00019 MOVE 1000 TO A.
00020 LOOP.
00021 WRITE OUTREC.
00022 SUBTRACT 1 FROM A.
00023 IF A IS GREATER THAN ZERO GO TO LOOP.
00024 CLOSE OUTFll.
00025 GOBACK.

COBOL-68 to COBOL-74 Converter 1-3

and your converted COBOL-74 source output file would appear as:

00001 IDENTIFICATION DIVISION.
00002 ENVIRONMENT DIVISION.
00003 INPUT-OUTPUT SECTION.
00004 FILE-CONTROL.
00005 SELECT OUTFIL ASSIGN TO DSK.
00006 DATA DIVISION.
00007 FILE SECTION.
00008 FD OUTFIL LABEL RECORDS ARE STANDARD
00009 VALUE OF IDENTIFICATION IS "OUTFILDAT"
00010 DATA RECORD IS OUTREC
00011 BLOCK CONTAINS 20 RECORDS.
00012 01 OUTREC PIC X(80).
00013 WORKING-STORAGE SECTION.
00014 01 TALLY PICS9(5).
00014 77 A PIC 9999 USAGE IS COMPo
00015 PROCEDURE DIVISION.
00016 START.
00017 OPEN OUTPUT OUTFIL.
00018 MOVE ZEROS TO OUTREC.
00019 MOVE 1000 TO A.
00020 LOOP.
00021 WRITE OUTREC.
00022 SUBTRACT 1 FROM A.
00023 IF A IS GREATER THAN ZERO GO TO LOOP.
00024 CLOSE OUTFIL.
00025 EXIT PROGRAM.

NOTE

The TALLY clause is generated automatically for your
COBOL-74 program, whether your program needs this
clause or not. (Refer to Section 3.3.)

Thus, no effort is made to check that line number 00014, as shown in the
example above, already exists. Therefore, it is recommended that all
line-sequenced COBOL-68 source files be resequenced (with increments
greater than 1) before they are used as input to 68274.

If the source input file is card image (you would use the /S switch to compile
the program), then each new line created gets the same line number as the
previous line number and ((68274" is entered in the comment field (columns
73 through 80). Thus, if line 00013 appeared as:

000013 WORKING-STORAGE SECTION.

then the next line, for TALLY, would appear as:

000013 01 TALLY PIC S9(5). 68274

1-4 COBOL-68 to COBOL-74 Converter

Chapter 2
How to Use the COBOL Converter Utility

2.1 Building the Converter

The 68274 converter utility is a variation of the COBOL-68, Version 12B
compiler. This variation is produced by setting the feature test switch
FT68274 to 1 (it is normally 0). To do this, you must add FT68274 = = 1 to
COBASM.MAC and rebuild the compiler in the normal way by using the
control file COBOL.CTL (on TOPS-20) or by using COBOL.CTM (on
TOPS-I0). When you have rebuilt the compiler as 68274.EXE, copy (or
move) the .EXE files to SYS:.

For example,

@EDIT COBASM.MAC®]
Edit: COBASM.MAC.l
*I2700®]
02750 FTG8274==1®]

Jw
*EUN®]
[COBASM.MAC.2J
@

then:

.SUBMIT COBOL.CTM/TIME:Ol :OO:OO®]

or

@SUBMIT COBOL.CTL ITIME:Ol:00:00ru

(for TOPS-I0)

(for TOPS-20)

2-1

2.2 Using the Converter

To use the converter utility, 68274, type the following on your terminal:

.R 68274 ffi) (for TOPS-I0)

or

@68274 ffi) (for TOPS-20)

The general form of the converter command string is as follows:

*cvtfil,lstfil = libfilll,src1 ,src2, ...

where:

cvtfil is the file that is to hold the converted source code. If no con
verted source code is desired, replace the file specification for
cvtfil with a hyphen.

Example:

-,Istfil = src1 ,src2 ...

lstfil is the file that is to hold the generated listing. If no listing is
desired, replace the file specification for lstfil with a hyphen.

Example:

cvtfil,-= src1 ,src2, ...

libfil is the optional library file referenced by COpy verbs in the
source files. If this file is not specified, the LIBRARY.LIB file is
assumed.

srcl,src2 are one or more source files required to form one input
program.

Each file specification has the following form:

device:file.ext r project,programmer]/switch/switch

where:

device is the name of a physical or logical device. The name is
composed of 6 or fewer letters andlor digits.

file is the name of a file. The name is composed of 6 or fewer
letters andlor digits.

ext is the filename extension. It is composed of 3 or fewer let-
ters andlor digits.

project is a user's project number (TOPS-I0).

programmer is a user's programmer number (TOPS-I0).

switch is any of the switches shown in Table 6-1 of the COBOL-68
Language Reference Manual.

2-2 How to Use the COBOL Converter Utility

2.3 Copy Library Considerations

You must consider the following when text is copied from a copy library
with the COpy verb statement in your COBOL-68 program:

1. The .L8T file contains the COpy statement and the text as it is copied
into your source program.

2. The .CVT file contains the COPY statement as a comment (an asterisk
appears in the continuation column) and the text appears between two
additional comment lines as:

***** Start of copy library text *****

(text copied from copy library)

***** End of copy library text *****

3. EDIT (or 80S) line numbers are added (or replaced) to the copied text
in the .CVT file for editing purposes (if the input file is line-sequenced).

With the .LST file, you can examine the COPY verb statement and its text
for correctness. The text appears in the .L8T file as it appears in the COPY
library. No conversion on this text has taken place. In addition, any warn
ing messages that pertain to the text for conversion also appears. This
permits you to make the. correct edits to the .CVT file.

In the .CVT file, the COpy verb statement becomes a comment, two addi
tional comment lines are added (as shown above), the text is converted to
COBOL-74 syntax, if needed, and the text becomes permanent source code.
For example, a COBOL-68 program with:

0079 07900
ooaoc

COpy EXAMINE OF "COPYIT.LlB".
EXAMINE ALPHA-TEXT TALLYING ALL "Z",

appears in your .CVT file as:

07900
07902
07903
07904

* COPY EXAMINE OF "COPYIT.LlB".
***** Start of copy library text *****

INSPECT ALPHA-TEXT TALLYING TALLY FOR ALL "Z".
***** End of copy library text *****

Thus, the .CVT file can be compiled as it now appears. If you wish, you can
remove the comment lines before compiling your converted COBOL-68
program.

If your COBOL-68 source program has line numbers, then the copied text
from the copy library must also have line numbers so that you can edit the
copied text in the .CVT file. The COPY library text with line numbers,
which when copied into your source program, is replaced with new line
numbers generated from the last source line number, such as the COpy
statement, adding one for each new line. If the copy library text does not
have line numbers, the line numbers are generated automatically, adding
one for each new line.

How to Use the COBOL Converter Utility 2-3

2.4 Reserved Word Considerations

Your COBOL-68 source program may contain one or more of the following
words as a user-name:

ALSO
BOTTOM
CHARACTER
CODE-SET
COLLATING
DAY
DEBUGGING
DUPLICATES
DYNAMIC
EBCDIC

END-OF-PAGE
EOP
EXCEPTION
INSPECT
LINAGE
LINAGE-COUNTER
NATIVE
ORGANIZATION
PRINTING
PROCEDURES

REFERENCES
REMOVAL
RMS
SEPARATE
SORT-MERGE
STANDARD-l
START
TOP
TRAILING

These words are reserved words in COBOL-74. When you convert a
COBOL-68 program that contains any of the above words, the word is
flagged as a reserved word in COBOL-74 with the following error message:

*** This is a new reserved word in COBOL-74.

Therefore, when this warning message appears in your .LST file, you must
change the word in your .CVT file so that the COBOL-74 compiler does not
produce an error.

2-4 How to Use the COBOL Converter Utility

Chapter 3
COBOL-S8 to COBOL-74 Conversion

COBOL-68 to COBOL-74 conversions occur in either of the
following ways:

1. The COBOL-68 syntax is automatically converted to COBOL-74
syntax.

2. The COBOL-68 syntax is not needed in the COBOL-74 program for
mat and is converted into a comment by placing an asterisk (*) in the
continuation field.

If the COBOL-68 source line contains more than one word to be converted
or made into a comment, the source line is broken into two or more parts
and each part is treated separately.

If the COBOL-68 syntax cannot be converted or made into a comment, a
warning message appears below the syntax in the .LST file. Warning mes
sages are described in Chapter 4.

The following four sections describe the conversions that occur in your
COBOL-68 program when processed by the 68274 utility. To check which
lines are converted, use the FILCOM program and specify the .CBL and
.CVT files as input.

3.1 Identification Division Conversion

DATE-COMPILED.

All comment paragraph lines after the first line (DATE-COMPILED. com
ment) have an asterisk (*) inserted in the continuation field, since
COBOL-74 compiler would otherwise delete the lines.

3-1

REMARKS.

All lines, including the first one (REMARKS. comment), have an asterisk
(*) inserted in the continuation field, since the COBOL-74 compiler would
otherwise delete the lines.

3.2 Environment Division Conversion

CONFIGURATION SECTION.

No conversion takes place, no action is required.

INPUT-OUTPUT SECTION.

No conversion takes place, no action is required.

FILE-CONTROL paragraph.

FOR MULTIPLE REEL/UNIT

This segment of the FILE-CONTROL paragraph is converted into a
comment by insertion of an asterisk in the continuation field.

RESERVE integer ALTERNATE AREAS

The ALTERNATE phrase is deleted by the converter and the integer
value is incremented by 2.

RESERVE NO ALTERNATE AREAS

This segment of the FILE-CONTROL paragraph is converted to
RESERVE 1 AREA.

FILE-LIMITS clause

This segment of the FILE-CONTROL paragraph is converted into a
comment by placing an asterisk in the continuation field.

ACCESS MODE IS SEQUENTIAL

This segment of the FILE-CONTROL paragraph IS converted to
ORGANIZATION IS SEQUENTIAL.

ACCESS MODE IS RANDOM

This segment of the FILE-CONTROL paragraph is converted to
ORGANIZATION IS RELATIVE; ACCESS MODE IS DYNAMIC.

ACCESS MODE IS INDEXED

This segment of the FILE-CONTROL paragraph is converted to
ORGANIZATION IS INDEXED; ACCESS MODE IS DYNAMIC.

PROCESSING MODE IS SEQUENTIAL

This segment of the FILE-CONTROL paragraph is converted to
ACCESS MODE IS SEQUENTIAL.

3-2 COBOL-68 to COBOL-74 Conversion

ACTUAL KEY

This segment of the FILE-CONTROL paragraph is converted to
RELATIVE KEY.

SYMBOLIC/NOMINAL KEY clause

This segment of the FILE-CONTROL paragraph is converted to a
comment by placing an asterisk in the continuation field.

I-O-CONTROL paragraph.

No conversion takes place, no action is required.

3.3 Data Division Conversion

FILE SECTION.

LABEL RECORDS ARE record-name

This statement is converted to a comment by placing an asterisk in the
continuation field. In addition, a warning message is provided to indi
cate an incompatible change.

OAT A description entry

TALLY

The TALLY clause is no longer generated automatically. 68274 does
not determine whether this clause is required. Thus, 68274 always
generates the following TALLY clause as a DATA description entry:

01 TALLY PIC S9(5) COMPo

3.4 Procedure Division Conversion

EXAMINE

The EXAMINE statement is converted to an equivalent INSPECT state
ment as shown in the following formats:

1. EXAMINE identifier TALLYING ALL literal-1

Converted to:

INSPECT identifier TALLYING TALLY FOR ALL literal-1

2. EXAMINE identifier TALLYING ALL literal-1 REPLACING BY literal-2

Converted to:

INSPECT identifier TALLYING TALLY FOR ALL literal-1 REPLACING ALL
Iiteral-1 BY literal-2

COBOL-68 to COBOL-74 Conversion 3-3

3. EXAMINE identifier TALLYING LEADING literal-1

Converted to:

INSPECT identifier TALLYING TALLY FOR LEADING literal-1

4. EXAMINE identifier TALLYING LEADING literal-1 REPLACING BY
literal-2

Converted to:

INSPECT identifier TALLYING TALLY FOR LEADING Iiteral-1
REPLACING LEADING literal-1 BY Iiteral-2

5. EXAMINE identifier TALLYING UNTIL FIRST literal-1

Converted to:

INSPECT identifier TALLYING TALLY FOR CHARACTERS BEFORE
INITIAL Iiteral-1

6. EXAMINE identifier TALLYING UNTIL FIRST literal-1 REPLACING BY
literal-2

Converted to:

INSPECT identifier TALLYING TALLY FOR CHARACTERS BEFORE
INITIAL Iiteral-1 REPLACING CHARACTERS BY Iiteral-2

7. EXAMINE identifier REPLACING ALL literal-1 BY literal-2

Converted to:

INSPECT identifier REPLACING ALL literal-1 BY Iiteral-2

8. EXAMINE identifier REPLACING LEADING Iiteral-1 BY literal-2

Converted to:

INSPECT identifier REPLACING LEADING Iiteral-1 BY literal-2

9. EXAMINE identifier REPLACING FIRST Iiteral-1 BY literal-2

Converted to:

INSPECT identifier REPLACING FIRST literal-1 BY literal-2

10. EXAMINE identifier REPLACING UNTIL FIRST Iiteral-1 BY Iiteral-2

Converted to:

INSPECT identifier REPLACING CHARACTERS BY literal-2 BEFORE
INITIAL literal-1

GOBACK

This COBOL-68 statement is converted to EXIT PROGRAM.

3-4 COBOL-68 to COBOL-74 Conversion

NOTE

The NOTE statement is converted into a comment by placing an asterisk in
the continuation field.

SEEK

The SEEK verb is converted into a comment by placing an asterisk in the
continuation field. In addition, a warning message is provided to indicate
an incompatible change.

USE LABEL PROCEDURE

The USE LABEL PROCEDURE statement is converted into a comment by
placing an asterisk in the continuation field. In addition, a warning mes
sage is provided to indicate an incompatible change.

WRITE record-name

In COBOL-68, the WRITE statement defaults to BEFORE ADVANCING
when writing ASCII files. Thus, the WRITE statement is converted to:

WRITE record-name BEFORE ADVANCING 1 LINE.

since the COBOL-74 default is AFTER 1 LINE.

COBOL-68 to COBOL-74 Conversion 3-5

Chapter 4
COBOL-68 to COBOL-74 Messages

The messages that can appear in your .LST file when you convert a
COBOL-68 program to a COBOL-74 are either:

1. Those the program would get if compiled with COBOL-74, or

2. Those indicating impossible or incorrect conversions.

In addition, all COBOL-68 fatal and warning messages are output if your
program contains illegal COBOL-68 syntax.

The following four sections describe the messages that can appear in your
.LST file. Corrective action is programmer dependent.

4.1 Identification Division Messages

The only message that may occur in the IDENTIFICATION DIVISION of
your converted COBOL-68 program is as follows:

If you have a hyphen (-) in the continuation field for a comment paragraph,
such as REMARKS or SECURITY, the message:

Continuation of comment-entry by '-' is not permitted in COBOL-74.

appears below the comment line in the .LST file. You must change the
hyphen to an asterisk in the continuation field in your .CVT file.

4-1

4.2 Environment Division Messages,

CONFIGURATION SECTION.

SWITCH (n)

Switches are defined differently in COBOL-74. Therefore, all defini
tions of SWITCH are followed by the message:

SWITCHes are defined differently in COBOL-74.

CURRENCY SIGN IS

The characters ((L" , ((I" , and ((= " cannot be specified in the
CURRENCY SIGN clause. If one of these characters are specified, the
following message appears:

Improper character for CURRENCY SIGN in COBOL-74.

INPUT-OUTPUT SECTION.

FILE-CONTROL paragraph.

ACTUAL KEY IS key

ACTUAL KEY is converted to RELATIVE KEY and the ((key" must
be an unsigned integer in COBOL-74. If the COBOL-68 program has
a signed key integer, the following message appears:

Should be unsigned integer in COBOL-74.

I-O-CONTROL paragraph.

No messages are generated for the I-O-CONTROL paragraph.

4.3 Data Division Messages

FILE SECTION.

LABEL RECORDS ARE record-name

The LABEL RECORDS ARE record-name clause in COBOL-68 is no
longer legal in COBOL-74. If this clause exists, the following message
appears in the .LST file:

Non-standard labels are illegal in COBOL-74.

4-2 COBOL-68 to COBOL-74 Messages

DATA description entry

level-number

When you specify a group item in your COBOL-68 program, all data
items subordinate to the group item data-name may have different
level numbers. However, COBOL-74 does not allow this to occur. For
example,

01 PRINT-OUTPUT-RECORD.
03 LINE-ONE PIC X(30).
02 LINE-TWO PIC X(30).

02 LINE-TEN PIC X(30).

is valid source code in COBOL-68. The above code, when converted,
generates the following warn.ing message:

All items that are immediately subordinate to a group item must have the
same level-number in COBOL-74.

BLANK WHEN ZERO

The BLANK WHEN ZERO clause and an asterisk (*) as zero suppres
sion in a PICTURE clause cannot appear in the same entry. For
example:

02 ITEM-NUMBER PIC ****** BLANK WHEN ZERO

is illegal in COBOL-74. If this situation exists, the following message
appears in the .LST file:

BLANK WHEN ZERO and '*' not allowed together in COBOL-74.

TODAY

The TODAY entry in COBOL-68 can no longer be generated automat
ically in COBOL-74. For example, in COBOL-68 you may have the
statement:

MOVE TODAY TO CURRENT-DATE.

The contents of CURRENT-DATE, in the WORKING-STORAGE
SECTION, could be:

01 CURRENT-DATE PIC X(12).

COBOL-68 to COBOL-74 Messages 4-3

The contents of TODAY (CURRENT-DATE) is In the format of
(yymmddhhmmss', where:

yy year
mm month
dd day
hh hour
mm minute
ss second

If this entry exists in your COBOL-74 program, the following message
appears:

Replace TODAY with ACCEPT FROM DAY, DATE, or TIME as
appropriate.

A possible method of constructing TODAY in COBOL-74 is to create
the following entries:

01 TODAY.
02 NEW-TODAY-DATE
02 NEW-TODAY-TIME

PIC X(6).
PIC X(6).

Then in the COBOL-74 PROCEDURE DIVISION, you can create the
following statements to obtain the date and time:

ACCEPT NEW-TODAY-DATE FROM DATE.
ACCEPT NEW-TODAY-TIME FROM TIME.

VALUE

The VALUE clause in the PICTURE clause is initialized independent
of the JUSTIFIED clause. If this is different from COBOL-68, the
JUSTIFIED clause is followed by the following message in the
.LST file:

The VALUE clause is initialized independent of the JUSTIFIED clause in
COBOL-74.

4.4 Procedure Division Messages

Abbreviated Combined Relation Condition

If your COBOL-68 source program has an abbreviated combined relation
condition containing the NOT clause, the following message may be
generated:

NOT is abbreviated combined relation conditions may generate
different code.

For example, an IF test of the expression:

A > B AND NOT < C OR D

may be different for COBOL-74. If the above message occurs, the best
solution is to expand the expression using parenthesis, where required.

4-4 COBOL-68 to COBOL-74 Messages

MOVE LOW-VALUE TO identifier

If the statement MOVE LOW-VALUE TO identifier exists In your
COBOL---68 and the identifier is one of the following keys:

• ACTUAL KEY (for a RANDOM file)

• SYMBOLIC KEY (for an ISAM file)

• RECORD KEY (for an ISAM file)

or a data-item subordinate to it, then the MOVE LOW-VALUE TO state
ment should be deleted and the next READ or RETAIN verb should be
replaced, with its approximate key, by one of the following:

• READ NEXT

• RETAIN NEXT

• START

The MOVE LOW-VALUE TO ((some-key" produces the following message:

Replace LOW-VALUE hack with appropriate COBOL-74 syntax.

in your .LST file.

STRING/UNSTRING

If your COBOL---68 program has consecutive occurrences of either of the
following statements:

STRING DELIMITED BY ALL literal/data-name DELIMITER IN item-1

or

UNSTRING DELIMITED BY ALL literal/data-name DELIMITER IN item-1

and item-l is larger than DELIMITER, then the following message ap
pears in your .LST file:

Contents of DELIMITER may be different in COBOL-74.

The converted COBOL---74 program contains only one occurrence of
DELIMITER. (Your COBOL---68 program contains the actual text of the
delimi ter.)

COBOL---68 to COBOL---74 Messages 4-5

Unsigned Integer

If your COBOL-68 program is using either:

• DISPLAY literal

• STOP literal

and literal is a signed integer, the following warning message appears in
your .LST file:

Numeric literal must be unsigned integer in COBOL-74.

The integer must be changed to an unsigned integer for COBOL-74.

4-6 COBOL-68 to COBOL-74 Messages

Appendix A
Differences Between COBOL-68 and COBOL-74

The terms COBOL-68 and COBOL-74, which are used in the following
text, refer to DIGITAL's implementation of ANS-68 and ANS-74 COBOL,
respectively. Any references to ANS COBOL are made clear by the use of
the initials ((ANS".

The symbols within angle brackets « » following the differences listed
below represent:

• The module affected (nNUC, nSEG, nTBL, nSRT, RPW, nSEQ, nREL,
nINX, nDEB, nIPC, nLIB, and nCOM).

• A change that does not impact existing programs (1).

• A change that could impact existing programs and/or some re
programming may be needed (2).

• General remarks with ANS numbers, where applicable.

COBOL-74 differs from COBOL-68 in the following ways:

1. Two contiguous quotation marks can be used to represent a single quo
tation mark character in a non-numeric literal. <lNUC (1) New
feature.>

2. REMARKS paragraph is deleted. <lNUC (2) Function was replaced by
the comment line.>

3. Continuation of Identification Division comment-entries must not have
a hyphen in the continuation indicator area. <lNUC (2»

4. PROGRAM COLLATING SEQUENCE clause specifies that the collat
ing sequence associated with alphabet-name is used in non-numeric
comparisons. <lNUC (1) New feature.>

A-I

5. SPECIAL-NAMES paragraph: ~fL", ff/", and f~ =" cannot be specified in
the CURRENCY SIGN clause. <2NUC (2) This restriction did not exist
in X3.23-1968.>

6. Alphabet-name clause relates a user-defined name to a specified col
lating sequence or character code set (ANSI, native, or
implementor-specified). <lNUC (1) New feature.>

7. Alphabet-name clause: the literal phrase specifies a user-defined col
lating sequence. <2NUC (1) New feature.>

8. All items that are immediately subordinate to a group item must have
the same level-number. <lNUC (2»

9. Object of a REDEFINES clause can be subordinate to an item described
with an OCCURS clause, but must not be referred to in the
REDEFINES clause with a subscript or an index. <lNUC (1) New
feature.>

10. An asterisk used as a zero suppression symbol in a PICTURE clause
and the BLANK WHEN ZERO clause cannot appear in the same entry.
<lNUC (2»

11. Alphabetic PICTURE character-string can contain the character B.
<lNUC (1) New feature.>

12. Stroke (I) permitted as an editing character. <lNUC (1) New feature.>

13. SIGN clause allows the specification of the sign position. < 1NUC (1)
New feature. >

14. In the Procedure Division a section can contain zero or more para
graphs and a paragraph can contain zero or more sentences. < 1NUC (1)
New feature.>

15. In relation and sign conditions, arithmetic expressions must contain at
least one reference to a variable. <lNUC (2»

16. Comparison of non-numeric operands: If one of the operands is de
scribed as numeric, it is treated as though it were moved to an alphanu
meric item of the same size and the contents of this alphanumeric item
were then compared to the non-numeric operand. <lNUC (3»

17. Abbreviated combined relation condition: When any portion is enclosed
in parentheses, all subjects and operators required for the expansion of
that portion must be included within the same set of parentheses.
<2NUC (2) No such restriction appeared in X3.23-1968.>

18. Abbreviated combined relation condition: If NOT is immediately fol
lowed by a relational operator, it is interpreted as part of the relational
operator. <2NUC (2) In X3.23-1968, NOT was a logical operator in
such cases.>

19. Class condition: The numeric test cannot be used with a group item
composed of elementary items described as signed. <lNUC (3»

A-2 Differences Between COBOL-68 and COBOL-74

20. In an arithmetic operation, the composite of operands must not contain
more than 18 decimal digits. However, if your COBOL-74 compiler
makes use of the Business Instruction Set, the maximum is 36 digits.
<1NUC (2) X3.23-1968 specified limits only for ADD and
SUBTRACT.>

21. ACCEPT identifier FROM DATE/DA Y/TIME allows the programmer
to access the date, day, and time. <2NUC (1) New feature.>

22. COMPUTE statement: the identifier series. <2NUC (1) New feature.>

23. DISPLAY statement: If the operand is a numeric literal, it must be an
unsigned integer. <1NUC (2»

24. DIVIDE statement: the INTO identifier series and the GIVING
identifier series. <1NUC (2»

25. DIVIDE statement: The remainder item can be numeric-edited.
<2NUC (1) New feature.>

26. EXAMINE statement and the special register TALLY were deleted.
<1NUC (2) Function was replaced by the INSPECT statement.>

27. INSPECT statement provides ability to count or replace occurrences of
single characters or groups of characters. <1NUC (1) New feature.>

28. MOVE statement: A scaled integer item (that is, the rightmost charac
ter of the PICTURE character-string is a P) can be moved to an alpha
numeric or alphanumeric-edited item. <1NUC (1) New feature.>

29. MULTIPLY statement: the BY identifier series and the GIVING identi
fier series. <2NUC (1) New feature.>

30. PERFORM statement: There is no logical difference needed between
fixed and fixed overlayable segments. <1NUC (1) X3.23-1968 did not
permit fixed overlayable segments to be treated the same as a fixed
segments.>

31. PERFORM statement: Control is passed only once for each execution of
a Format 2 PERFORM statement (that is, an independent segment
referred to by such a PERFORM is made available in its initial state
only once for each execution of that PERFORM statement).
<1NUC,1SEG (3»

32. STOP statement: If the operand is numeric literal, it must be an un
signed integer. <1NUC (2»

33. A data description entry with an OCCURS DEPENDING clause can be
followed within that record only by entries subordinate to it. That is,
only the last part of the record can have a variable number of occur
rences. <2TBL (2) This rule did not appear in X3.23-1968.>

Differences Between COBOL-68 and COBOL-72 A-3

34. When a group item, having subordinate to it an entry that specifies
Format 2 of the OCCURS clause, is referenced, only that part of the
table area that is defined by the value of the operand of the
DEPENDING phrase is used in the operation. That is, the actual size of
a variable length item is used, not the maximum size. <2TBL (2»

35. The subject of the condition in the WHEN phrase of the SEARCH ALL
statement must be a data item named in the KEY phrase of the table;
the object of this condition cannot be a data item named in the KEY
phrase. <2TBL (2) X3.23-1968 specified that either the subject or ob
ject could be a data item named in the KEY phrase.>

36. SORT statement: COLLATING SEQUENCE phrase provides the abil
ity to override the program collating sequence. <2SRT (1) New
feature.>

37. No more than one file-name from a multiple file reel can appear in a
SORT statement. <2SRT (2»

38. Segment-numbers are permitted in DECLARATIVES. <lSEG (1»

39. ACCESS MODE IS DYNAMIC clause: provides the ability to access a
file sequentially or randomly in the same program. <2REL,2INX (1)
New feature.>

40. ACTUAL KEY clause deleted. «2»

41. RELATIVE KEY clause added for relative organization. <1REL (1)
New feature.>

42. FILE-LIMITS clause deleted. «2»

43. PROCESSING MODE clause deleted. «2»

44. ORGANIZATION IS RELATIVE clause. <1REL (2) New feature.>

45. ORGANIZATION IS SEQUENTIAL clause. <1SEQ (2) New feature.>

46. ORGANIZATION IS INDEXED clause. <1INX (2) New feature.>

47. MULTIPLE REEL/UNIT clause deleted. «2»

48. RESERVE ... ALTERNATE AREAS deleted. «2»

49. RESERVE integer AREAS specifies the exact number of areas to be
used. <1SEQ,lREL,1INX (1) New feature.>

50. The data-name option of the LABEL RECORDS clause deleted.
<lSEQ,lREL,lINX (2) X3.23-1968 provided for user-defined label
records.>

51. LINAGE clause permits programmer definition of logical page size.
<2SEQ (1) New feature.>

52. CLOSE ... FOR REMOVAL statement. <2SEQ (1) New feature.>

53. DELETE statement. <1REL (1) New feature.>

A-4 Differences Between COBOL-68 and COBOL-74

54. OPEN REVERSED positions the file at its end. <2SEQ (2»

55. OPEN EXTEND statement adds records to an existing file. <2SEQ (1)
New feature.>

56. The OPEN REVERSED statement applies to all devices that claim sup
port for this function. <2SEQ (1) X3.23-1968 restricted the application
of this phrase.>

57. READ statement: AT END phrase required only if no applicable USE
AFTER ERROR/EXCEPTION procedure specified. <lSEQ,lREL,lINX
(1) New feature.>

58. READ statement: INVALID KEY phrase required only if no applicable
USE AFTER ERROR/EXGEPTION procedure specified. <lREL,lINX
(1) New feature.>

59. READ ... NEXT statement retrieves the next logical record from a file
when the access mode is dynamic. <2REL, 2INX (1) New feature.>

60. REWRITE statement. <lSEQ,lREL (1) New feature.>

61. SEEK statement deleted. «2»

62. START statement provides for logical positioning within a relative or
indexed file for sequential retrieval of records. <2REL, 2INX (1) New
feature.>

63. USE statement: the label processing options were deleted.
<lSEQ,lREL,lINX (2) X3.23-1968 provided for the processing of
user-defined labels. >

64. USE ... ERROR/EXCEPTION statement. <lSEQ,lREL,lINX (1) New
feature.>

65. Recursive invocation of USE procedures prohibited.
<lSEQ,lREL,lINX (2»

66. WRITE statement: INVALID KEY phrase required only if no applica
ble USE AFTER ERROR/EXCEPTION procedure specified.
<lREL,lINX (1»

67. WRITE statement: BEFORE/AFTER PAGE phrase provides ability to
skip to top of a page. <lSEQ (1»

68. WRITE statement: END-OF-PAGE phrase. <2SEQ (1) New feature.>

69. CALL identifier statement. <lIPC (1) New feature.>

70. EXIT PROGRAM statement replaces the GOBACK statement.

Differences Between COBOL-68 and COBOL-72 A-5

Note A. (RELATIVE files)

The RANDOM file access method of COBOL-68 has been replaced by the
RELATIVE file organization in COBOL-74. This means a number of syn
tactic changes, but in addition it means some important semantic changes
as well.

In the Environment Division, the syntactic changes include the substitu
tion of an ORGANIZATION IS RELATIVE clause for the old ACCESS IS
RANDOM clause, and the substitution of the ACCESS IS
SEQUENTIAL / RANDOM / DYNAMIC for the old PROCESSING IS
SEQUENTIAL clause. The FILE LIMITS clause goes away. The ACTUAL
KEY clause is replaced by the RELATIVE KEY clause, although the mean
ing of the key value is identical to that in COBOL-68.

The Data Division is unchanged.

The Procedure Division verbs are changed considerably. OPEN, CLOSE
and the USE ON ERROR procedures are unchanged. The WRITE state
ment is unchanged in syntax, but its meaning is restricted to writing a
record into an empty position in the file. If the record position in the file
into which the record is being written is already occupied, the WRITE must
not alter the existing contents of the record position, but must instead take
the INVALID KEY path (or execute a USE procedure). In order to change
the contents of an occupied record position one either has to REWRITE it or
DELETE and WRITE it. Attempting to DELETE or REWRITE a record
position that is already empty causes the INVALID KEY path to be taken.
In other words, each record position of the relative file must have an occu
pied state that can be recognized by the object time 110 routines. There is
also a START verb that can be used to position at or beyond a given record
position. Then sequential READs or WRITEs can be done. The sequential
READ is done with a READ NEXT statement, whereas the random READ
is simply a READ statement. The sequential READ uses the AT END
phrase (which is optional) and the random READ uses the INVALID KEY
phrase (also optional). Thus, there are not only many syntactic changes in
existing verbs, but new verbs, and a markedly different approach to the
file's contents.

A-6 Differences Between COBOL-68 and COBOL-74

Note B. (INDEXED files)

The INDEXED 110 module of COBOL-74 is fairly similar to that of
COBOL-68. There are syntactic differences in the Environment Division
and in the Procedure Division.

COBOL-68 had a SYMBOLIC KEY clause to designate the key used in
READ, WRITE, REWRITE and DELETE statements. COBOL-74 does not
have a SYMBOLIC KEY clause. The random READ statement has a KEY
IS identifier phrase that supplies a key value. The WRITE statement uses
key values from the record being written, and the DELETE and REWRITE
statements must follow a successfully executed READ and use the remem
bered key from that operation.

COBOL-74 includes a START statement in the Procedure Division that
positions the record pointer in the file specified. Also, the READ NEXT
statement is; used to do sequential reading through the existing records of
the file.

Note C. (Segmentation and PERFORM rules)

In COBOL-74, sections in the Procedure Division can have segment num
bers (called priority numbers in COBOL-68) that range from 00 to 99.
Segments with numbers 50 and above are called independent segments.
Also, the programmer can specify a SEGMENT LIMIT IS clause with a
value between 00 and 49. This divides the segments with numbers below 50
into two groups. Thus all segments fall into one of three groups:

1. Below the segment limit, called fixed permanent, that are always resi
dent.

2. From the segment limit to 49, called fixed overlayable; that is, each
segment number defines an overlay and the code in such a segment is
brought into memory only as needed. Any GO TOs that have been
ALTERED retain their most recently set values when they are brought
into memory.

3. From 50 up, called independent; that is, each segment number defines
an overlay and the code is brought into memory only as needed. Any
GO TOs that have been altered are reset each time the segment is
brought into memory.

Differences Between COBOL-68 and COBOL-72 A-7

The restrictions on the ALTER and PERFORM verbs have not really
changed from ANS-68 COBOL to ANS-74 COBOL but they have become
more explicit. COBOL-74 implements the restrictions on the ALTER state
ment correctly (by either standard) but implements the restrictions on
PERFORM in a manner different from either standard. COBOL-74 uses
the segment-limit value as the dividing line for the PERFORM restric
tions, whereas the standards use the segment number 50 as the dividing
line. When you do not specify a segment limit value the compiler supplies
50 as the default, making the restrictions the same for COBOL-74 and the
standards. However, when you do supply the segment limit value,
COBOL-74 applies the rules in such a way as to make all overlayable
segments behave the same.

Note D. (CALL and CANCEL rules)

There are many differences between the COBOL-74 implementation of
CALL and CANCEL and the ANS-74 COBOL standard.

1. The syntax is different for both statements in that COBOL-74 inter
prets a user-word as a program-name with or without quotes around it,
whereas ANS-74 COBOL interprets a user-word as a data-name in
which is stored the program-name.

2. In ANS-74 COBOL there is an ON OVERFLOW ... clause for handling
instances in which there is insufficient memory space available to load
the called subprogram. This cannot happen in COBOL-74.

3. COBOL-74 allows alternate entry points to subprograms, not allowed
in ANS-74 COBOL, and COBOL-74 uses the ENTER
(MACRO/FORTRAN) statement to allow you to call subprograms writ
ten in those languages.

4. The semantics are very different. COBOL-74 uses LINK to construct a
tree-structured overlay scheme from user-supplied commands to
LINK. When a subprogram is CALLed, the branch of the tree up to that
subprogram is loaded along with the subprogram. Likewise, when a
subprogram is CANCELled, the entire tree beyond that subprogram is
cancelled. ANS-74 COBOL recognizes no such tree structure, and al
lows loading and cancelling to occur strictly on a subprograln basis. In
addi tion, LINK allows more than one subprogram to be linked into a
single overlay, with the effect that a cancel of one of the subprograms in
the overlay results in a cancel of all subprograms in that overlay.

A-8 Differences Between COBOL-68 and COBOL-74.

Index

68274,
how to use, 2-1
Introduction to, 1-1

68274 program, 1-1

ACCESS MODE clause, 3-2
ACTUAL KEY clause, 3-3

Building the converter, 2-1

Clause,
ACCESS MODE, 3-2
ACTUAL KEY, 3-3
DATA description entry, 3-3
DATE-COMPILED, 3-1
FILE-LIMITS, 3-2
FOR MULTIPLE REEL/UNIT, 3-2
LABEL RECORDS, 3-3
PROCESSING MODE, 3-2
REMARKS, 3-2
RESERVE, 3-2
SYMBOLIC/NOMINAL KEY, 3-3
TALLY, 1-4,3-3

COBASM.MAC, 2-1
COBOL converter utility,

using the, 2-1
COBOL-68 switches, 1-1
COBOL-68 to COBOL-74

conversion, 3-1
COBOL-68 to COBOL-74

messages, 4-1
COBOL-68/COBOL-74

differences, A-I
COBOL-74 conversion,

COBOL-68 to, 3-1
COBOL-74 messages,

COBOL-68 to, 4-1
COBOL.CTL, 2-1
COBOL.CTM, 2-1

Command string,
converter, 2-2

CONFIGURATION SECTION, 3-2
Considerations,

copy library, 2-3
line-sequenced file, 1-3
reserved word, 2-4

Conversion,
COBOL-68 to COBOL-74, 3-1
data division, 3-3
environment division, 3-2
identification division, 3-1
procedure division, 3-3

Conversions, 1-2
Converter,

building the, 2-1
using the, 2-2

Converter command string, 2-2
Copy library considerations, 2-3
.CVT file, 1-1, 2-3

DATA description entry
clause, 3-3

Data division conversion, 3-3
Data division message

descriptions, 4-2
DATE-COMPILED clause, 3-1
Differences,

COBOL-68/COBOL-74, A-I

Environment division
conversion, 3-2

Environment division
message descriptions, 4-2

EXAMINE statement, 3-3

File,
.CVT, 1-1,2-3
.LST, 1-1, 2-3

Index-l

FILE SECTION, 3-3
File specification, 2-2
FILE-CONTROL paragraph, 3-2
FILE-LIMITS clause, 3-2
Files,

line-sequenced, 1-4
FOR MULTIPLE REEL/UNIT

clause, 3-2

GOBACK statement, 3-4

How to use 68274,2-1

I-O-CONTROL paragraph, 3-3
Identification division

conversion, 3-1
Identification division

message descriptions, 4-1
INPUT-OUTPUT SECTION, 3-2
Introduction to 68274, 1-1

LABEL RECORDS clause, 3-3
Library considerations,

copy, 2-3
Line-sequenced file

considerations, 1-3
Line-sequenced files, 1-4
LST file, 1-1, 2-3

Message descriptions,
data division, 4-2
environment division, 4-2
identification division, 4-1
procedure division, 4-4

Messages, 1-2
COBOL-68 to COBOL-74, 4-1

NOTE statement, 3-5

Index-2

Paragraph,
FILE-CONTROL, 3-2
I-O-CONTROL, 3-3

Procedure division
conversion, 3-3

Procedure division message
descriptions, 4-4

PROCESSING MODE clause, 3-2
Program,

68274, 1-1

REMARKS clause, 3-2
RESERVE clause, 3-2
Reserved word

considerations, 2-4

SEEK statement, 3-5
Specification,

file, 2-2
Statement,

EXAMINE, 3-3
GOBACK, 3-4
NOTE, 3-5
SEEK, 3-5
USE LABEL, 3-5
WRITE, 3-5

Switches,
COBOL-68, 1-1

SYMBOLIC/NOMINAL KEY clause, 3-3

TALLY clause, 1-4, 3-3

USE LABEL statement, 3-5
Using the COBOL converter

utility, 2-1
Using the converter, 2-2
Utility,

using the COBOL converter, 2-1

WRITE statement, 3-5

READER'S COMMENTS

TOPS-10/TOPS-20
COBOL Conversion

Utility Guide
AA-M586A-TK

NOTE: This form is for document comments only. DIGITAL will use comments submitted on
this form at the company's discretion. If you require a written reply and are eligible to
receive one under Software Performance Report (SPR) service, submit your com
ments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make sugges
tions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of reader that you most nearly represent.

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other (please specify)~~~~~~~~~~~~~~~~~~~~~~

Name ___________________________________ Date ____________________ __

Organization Telephone ______________ _

Street __ __

City ___________________________________ State ______ Zip Code ______ _

or Country

1

1

1

1

1

- - -, _go;tgTear

o
-F; Hoere and Tape ---------------------T fl-111- ------: ;;~~:~;~:h: --it

~ ~ ~ United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS

200 FOREST STREET MR1-2/L12

MARLBOROUGH, MASSACHUSETTS 01752

1

1

1

1

1

1

1

1

1

- - - - - Do Not Tear - Fold Here and Tape
_______________________________________ ~ ____ I

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1 (1)

1.5
I...J

I~
I;:
1 0

1°
I~
1.2
1<
1= IU
1

1

1

1

1

1

1

1

1

1

1

I
1

1

	001
	002
	003
	004
	005
	006
	1-02
	1-03
	1-04
	1-05
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	index-1
	index-2
	replyA
	replyB

