BLISS-10

Programmer’s Reference Manual

dlilgliltiall

decsyscemic
BLISS-10
PROGRAMMER 'S

REFERENCE MANUAL

DEC-10-LBRMA-A-D

This document reflects the software as of Version 4 of the BLISS-10 Compiler.

digital equipment corporation - maynard, massachusetts

First Printing, April 1973
Revised: February 1974

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use

or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (:) 1973, 1974 Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDP DIGITAL INDAC PS/8
COMPUTER LAB DNC KAlO QUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS

DDT FLIP CHIP LAB-K RSX

DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 0s/8 RT-11
DECTAPE IDAC PDP SABR

DIBOL IDACS PHA TYPESET 8

UNIBUS

CONTENTS

PAGE
INTRODUCTION
CHAPTER 1 LANGUAGE DEFINITION

1.1 BLISS~10 - AN EXPRESSION LANGUAGE 1-1
1.2 EXPRESSIONS 1-2
1.3 SIMPLE EXPRESSIONS 1-3
1.3.1 Order of Expression Evaluation 1-6
1.4 NAMES 1-9
1.5 THE "“CONTENTS OF" OPERATORS . 1-10
1.5.1 More on "Contents of"Operators and Printers]-11
l.6 DATA REPRESENTATION 1-18
1.7 COMMENTS 1-19
1.8 MODULES 1-19
1.9 BLOCKS AND COMPOUND EXPRESSIONS 1-20
1.10 LITERALS 1-21
l.11 POINTERS TO LITERALS 1-22
1.12 INTERLUDE 1 1-25
1.13 CONTROL EXPRESSIONS 1-26
1.14 CONDITIONAL EXPRESSIONS 1-26
1.15 LOOP EXPRESSIONS 1-27
1.16 ESCAPE EXPRESSIONS 1-28
1.17 CHOICE EXPRESSIONS 1-31
1.17.1 Case Expression 1-31
1.17.2 Select Expression 1-32
1.17.3 Compile-time Constants in Conditional and

Choice Expressions 1-33
1.18 CO-ROUTINE EXPRESSIONS 1-34
1.19 DECLARATIONS 1-37
1.19.1 - sScope and Concept of GLOBAL in a Block

Structured Language 1-37
1.20 STORAGE (AN INTRODUCTION) 1-39
1.21 INTERLUDE 2 1-40

Version 4 BLISS tii February 1974

CHAPTER 2

CHAPTER 3
3

Version 4 BLISS

FUNCTIONS AND ROUTINES
GLOBAL

EXTERNAL and FORWARD Declarations

DATA STRUCTURES (AN INTRODUCTION)

THE ACTUAL DECLARATION SYNTAX
Structures

MEMORY ALLOCATION
MAP DECLARATION
BIND DECLARATIONS
LABEL DECLARATION
REQUIRE DECLARATION

MACROS
Syntax For Macro Declarations

UNDECLARE DECLARATION

SPECIAL LANGUAGE FEATURES
SPECIAL FUNCTIONS

CHARACTER MANIPULATION FUNCTION
MORE SPECIAL FUNCTIONS

MACHINE LANGUAGE

COMMUNICATION WITH THE MONITOR
SYSTEM FEATURES

COMPILATION CONTROL

COMMAND SYNTAX

Normal Use

Use From CCL

MODULE HEAD

SWITCHES DECLARATION

ACTIONS

UNENFORCED RESTRICTIONS
SEGMENT DECLARATIONS

SIX12

iv

PAGE
1-40
1-43
1-43
1-43

1-46
1-47

1-48
1-51
1-51
1-52
1-52

1-53
1-53

1-55

February 1974

PAGE

CHAPTER 4 RUN-TIME REPRESENTATION OF PROGRAMS
4.1 INTRODUCTION TO CALLING SEQUENCES 4-1
4.2 REGISTERS -1
4.3 THE STACK AND FUNCTIONS 4-3
4.4 ACCESS TO VARIABLES 4-7
4.5 MAIN PROGRAM CODE 4-8
4.5.1 CCL Entry Linkage 4-8
4.5,2 Stack Initialization 4-8
4.5.3 Program Termination 4-8
4.6 TIMER CODE 4-9
CHAPTER 5 BLISS~10 EXAMPLES 5-1
APPENDIX A BLISS-10 SYNTAX A-1
APPENDIX B DESCRIPTION OF NON-TERMINALS OF BLISS~10 B-1
APPENDIX C RESERVED WORDS c-1
APPENDIX D WORD FORMATS D-1
APPENDIX E BLISS-10 ERROR MESSAGES E-1

v February 1974

NUMBER

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
1-12
1-13
1-14
1-15
4-1
4-2
4-3

NUMBER

1-1

FIGURES

Format of a Pointer

Format of a Byte within a Word

Pointer to a 3-bit Field

A 3=-bit Field

Access of a Byte Using a Byte Pointer

Using the @ Operator to Modify Use of a Byte Pointer
Using the \ Operator to Modify Use of a Byte Pointer
Assignment to a Byte Using a Byte Pointer

Description of @ .A=5

Description of (.A)<0,36>=5

Memory Allocation of some PLITs

Memory Allocation of some PLITs with Replication Factors
Computing the Address of the Last Item in a Linked List
Imaginary Routine to Describe a Structure Access

Memory at the Beginning of Calculation z(2,3)

Typical Stack Configuration

Function Prolog and Epilog

Block entry and Exit

TABLES

Simple Expressions

vi February 1974

I PREFACE

This manual is a reference manual. It is intended to contain the
complete specification of the BLISS-10 language syntax and semantics
las processed by version 4 of the BLISS~10 compiler.

Although the attempt has been made to clearly explain all language
concepts and terms which are not part of the standard vocabulary, this
document is not intended to be a tutorial manual or a guide to
efficient BLISS-10 programming techniques. Although it is not
required, familiarity with ALGOL block structure, storage allocation,
and recursion will assist in the understanding of this document. 1In
fact, we recommend that an individual who is attempting to 1learn the
BLISS~-10 language and who has no exposure to the concepts of BLOCK
STRUCTURE and NAME SCOPE consult one of the many available ALGOL
tutorial documents before reading this manual.

The material in this manual, including but not limited to,
construction times and operating speeds is for information purposes
only. All such material is subject to change without notice.
Consequently DEC makes no claim and shall not be liable for its
accuracy.

Version 4 BLISS vii February 1974

ACKNOWLEDGEMENT

The following people from Carnegie-Mellon
University are acknowledged to have contributed
substantially to the BLISS-10 Manual:
J. Apperson, C. Geschke, C. Wienstock, D. Wile,
W. Wulf, and J. Zarrella.

The cooperation of faculty, staff, and graduate
students at Carnegie=Mellon University is
possible in part because of a Department of
Computer Science orientation that pursues
research and advanced development efforts of
relevance to the total community. Digital
Equipment Corporation acknowledges the
considerable assistance given by the members of
the Department of Computer Science in bringing
BLISS-10 into being,

viii

BLISS=10 SUPPORT

The BLISS~10 compiler and related files are in software support
category 4. This means that no formal support is provided under any
circumstances by Digital Equipment Corporation for this software.
Furthermore, Digital Equipment Corporation makes no claim that this
software will ever be supported in the future. This material 1is
provided for information purposes only.

Note also that Digital Equipment Corporation reserves the right to
change the specifications of this language in any way including such
ways as would invalidate currently legal source syntax.

Note also that it is possible for this version of the compiler to
abort, loop, or otherwise run out of control and precautions should be
taken to guard against such occurrences. We do not wish to imply in
any way that this is production quality software.

Since this language or a variant may become supported in the future,
we would appreciate receiving your comments and problems via the
Software Performance Report mechanism, We cannot at this time,
however, promise to reply to any such Software Performance Reports.

ix

INTRODUCTION

BLISS-10 is a programming language for the DECsystem-10. It is
specifically intended to be used for implementing "System Software".
As such, it differs from other languages in several significant ways.

1.

Higher level 1languages derive their suitability for a
particular problem area - FORTRAN/ALGOL for mathematics,
SNOBOL for strings, GPSS for simulations, etc., - because
they provide to the user a vocabulary and set of conventions
appropriate to that problem area. "Implementation Languages"
can be viewed in a similar way - as application languages
where the application is a particular brand of hardware. As
such, an implementation language must reflect the
capabilities and architecture of its machine and not block or
frustrate the programmer's use of these capabilities.

Input/output is not a part of BLISS-10. I/O can be done
directly either in the language much as an assembly program
might or through subroutine calls.

Every attempt has been made to give the user explicit control
over the code his program generates, while providing maximum
convenience otherwise,

There are no explicit or implicit data modes other than the
36 bit binary word. Data modes are essentially user defined
via the STRUCTURE (1) mechanism which allows the user to set
or compute an algorithm for data access.

(1)Words in upper case represent reserved words in terminal symbols in
language. In programs the compiler recognizes them- as reserved
words in upper case only.

the

xi

Version 4 BLISS

NOTE

BLISS~10 is in transition. This
docunment reflects the target
specification at the conclusion of the
transition period. For those intending
to use the language during the
transition period, exception paragraphs
are included immediately following the
text which they modify. For example, if
paragraph 1.5 contains the form of the
final specification but it is presently
not implemented, the paragraph

1.5 Exception

describes the current state of the
language.

xii

February 1974

CHAPTER 1
LANGUAGE DEFINITION

1.1 AN EXPRESSION LANGUAGE

The programming language BLISS-10 enables programmers (persons who
converse in a programming language) to construct text (programs) which
evoke computations to transform input into a desired result. Programs
written in BLISS-10 consist of declarations, which establish
structure, and expressions sequenced to compute results. Expressions
in BLISS-10 can assume remarkably complex forms built up from
elementary forms; but regardless of their complexity every expression
computes a value. This notion, that a BLISS-1l0 program consists
solely of declarations and expressions, and that these expressions can
become arbitrarily complex yet compute a single value during the
execution of the program, represents a key concept the reader must
understand to properly construct programs in BLISS-10 and fully
exploit its power. The concept of a statement prevalent in many
programming languages has no meaning in BLISS-10. In reading this
manual the reader should strive to master the implications and meaning
of the following statement:

BLISS-10 is an expression language.

1.2 EXPRESSIONS

Every executabl

e form in the BLISS language (that is,

every form

except the declarations) computes a value. Thus all commands are

expressions. In the syntax description, E is used as an

for expression.

E LR

= smpl=expr/cntrl-expr (1)

NOTE

Section 1,3 1lists all the simple
expressions (smpl-expr) in BLISS=-10,
Simple expressions generally consist of
one or two expressions acted on by an
operator. (Note, for example, that
'name' has no operator associated with

it but does result in the computation of

(1) This specifi

non-terminals

use of lower-case characters.

non-terminals

Version 4 BLISS

a value and has a definite place in the
precedence hierarchy. Also, the
operators FLOAT and FIX are treated as
unary operators in BLISS-10 and not as
internal functions. The priority of
FLOAT and FIX is 5.) This 1list appears
with full knowledge that the reader does
not yet know the semantics of many of
the operators. It is assumed that the
reader is sophisticated and can be
depended on to fill in the gaps usually
provided by documents with a tutorial
intent. The discussion of control
expressions (cntrleexpr) appears after
discussing a sufficient number of the
components making up simple expressions
(block, 1literal, name, etc.) to permit
the construction of some simple
programs.

abbreviation

cation uses a form similar to BNF (Backus-Naur Form),
differing from it by its absence of angle brackets <> to enclose
in the language. Non-terminals are indicated by the

used throughout the specification.

The glossary contains definitions of

1-2 February 1974

1.3 SIMPLE EXPRESSIONS

The semantics of simple expressions (smpl-expr) is most easily
described in terms of the relative precedence of a set of operators,
but readers should also refer to the BNF~like description in Appendix
A. The precedence number used below should be viewed as an ordinal, so
that 1 means first and 2 second in precedence. In the following table
the letter E has been used to denote an actual expression of the
appropriate syntactic type, (refer to Appendix A).

Table 1-1
Simple Expressions
Precedence Example Semantics
1 compound block The component expressions are

evaluated from left to right,
and the final value is that of
the last component expression.

1 EO(E1l,E2,...,EN) A routine call. (refer to
1.23).

1 E0O [El,E2,...,EN] A structure access, (refer to
1.24).

1 name , A pointer to the named item,

(refer to 1.4).

1 literal Value of the converted
literal, (refer to 1.10).

2 E<pntr-parms> A partial word pointer.

5 FIX E Evaluate E and treat the
results as if it were a KA-10
floating point value. The
value of FIX E is the
corresponding integer
equivalent of the value of E.

5 FLOAT E Evaluate E and treat the
result as an integer value.
The value of FLOAT E is the
KA-10 floating point
representation of the value of
E.

4 .E Value (possibly partial word)
pointed at by E.

4 QE Equivalent to .E<0,36,0,0>
(Cont. on next page)

Version 4 BLISS 1-3 February 1974

Table 1=-1 (Cont)

4 \E Equivalent to
. (t=E)<0,36,.t<18,4>,
«t<22,1>>
where t is a temporary

5 E1+E2(1) El shifted arithmetically by
E2 bits, Shift
is left if E2 is positive,
right if negative. Shifts are

mod 256,
6 E1*E2 Product of E's.
6 E1/E2 or El1l DIV E2 El divided by E2.
6 El MOD E2 El modulo E2.
7 -Ef Negative of E.
7 E1+E2 Sum of E's.
7 El-E2 Difference between El and E2.
NOTE
All arithmetic is carried out modulo 2436 with
a residue of =-2435.
6 ~E13FMPR E2 Floating multiplication.
6 El. FDVR E2 Floating division
7 FNEG E Floating negation
7 El FADR E2 Floating addition
7 El FSBR E2 Floating subtraction
8 E1l EQL E2 El = E2
8 El NEQ E2 Not (El1 = E2)
8 El LSS E2 El < E2
8 El LEQ E2 Not (E1 > E2)
8 El GTR E2 El > E2
8 El GEQ E2 Not (El1 < E2)

(Cont on next page)

(1)On TTY's without <4>, a caret will serve as the shift operator.

Version 4 BLISS 1-4 February 1974

10
11
12
12
13

NOT E

E1 AND E2
El OR E2
El XOR E2
El EQV E2
El = E2(1)

(1)The store operator is to become <=>, Currently it is <<>. When it
equal however, <<> will still be recognized as valid. As a
result of the change in the ASCII standard character set, <« appears
as underscore on many terminals.

becomes

TABLE l1-1 (Cont.)

‘Bitwise complement of E

Bitwise and of E's

Bitwise inclusive or of E's
Bitwise exclusive or
Bitwise equivalence

The value of this expression
is identical to that of E2,
but as a side effect this
value is stored into the
partial word pointed to by El;
with associative use of =. The
assignments are executed from
right to left: thus

El = E2 = E3 means

El = (E2 = E3).

1.3.1 oOrder of Expression Evaluation (1)

BLISS~10 has two potential side effect producing operations:
1. The assignment operator, and
2. Routine dalls.(Z)

A side-~effect has occurred if the result of expression evaluation
depends upon the order in which the expression was evaluated. This
can only happen if the same variable appears more than once in the
expression and is altered at least once during expression evaluation.
For example, the expression

(R=2; ,R* (R=3))
may evaluate to 6 or 9 depending on which of the two expressions
.R or (R=3)

is evaluated first. Problems of this type are usually resolved by
establishing order-of-evaluation rules.

To describe these rules, the five different kinds of ordering in
BLISS=10 must be considered:

l. Lexical order (the ordering of program text);
2, Order imposed by operator precedence and parentheses;

3. The order (if any) observed with respect to sub-expressions
of commutative operators (e.g. +, and, *, etc):

4. The 'essential' order observed with respect to expressions
which produce side effects (specifically, assignments and
routine calls).

5. The evaluation rules for expressions whose values may be
uniquely determined without evaluating the entire expression.

BLISS=-10 applies rules to these cases as follows:

Case 1
The lexical order is determined by the programmer. The one
exception is multiple assignment where the order is right to left
as in X=Y=Z=A=0;.

(1)Though this section logically belongs here, it contains examples
that presume knowledge of other sections, in particular 1.4 and 1.5;
on a first pass through the manual the readers may find it useful to
read these sections before proceeding with 1l.3.1.

(2)To avoid needless repetition the terminology 'Routine Calls' will
encompass both ROUTINES and FUNCTIONS unless otherwise noted.

Case 2
The effect of operator precedence (hierarchy) and parentheses
(grouping), is observed, subject to the definitions in Cases 3 and
4 below,

Case 3
Mathematically commutative operators (+,and,*,etc) are assumed to
have computational commutativity as well, Thus El1+E2 may compile
as either El+E2, or E2+El,

Case 4 :

The effect of side effects is accounted for only at a semi-colon
<;>(1) within a compound expression. Thus the <;> defines a point
at which all side-effect producing operations to the left
(lexically) of the <;> within the enclosing compound are completed
prior to evaluation of expressions to the right of the <;>,

Case 5
An attempt will be made to evaluate an expression only to the
point necessary to uniquely determine its value.

Case 5. Exception
Unless a program unconditionally exits a control scope BLISS-10
currently evaluates an entire -expression except in the case of
constant expressions which evaluate at compile time.

The compiler may make other rearrangements but they are guaranteed to
observe the rules stated above.

The evaluation rules defined above permit more code rearrangement than
typically found in higher 1level languages. There are two distinct
reasons for this:

1. The compiler can produce considerably better code by allowing
it more freedom, and

2. The rules tend to eliminate the use of programming techniques
containing 'hidden side effects' since the programmer himself
cannot predict the outcome when employing such techniques,
Programs with hidden side effects tend to produce code that
is difficult to understand and modify, and often generate
software faults which defy resolution.

(1) Where improved reading flow will result, any angle brackets will
enclose non-terminals (the same meta-linguistic device used in
original BNF).

The elimination of expressions which produce unpredictable results
does require some diligence from the programmer, but the circumstances
which give rise to potentially ambiguous results occur rarely in
practice, are easily recognized, and their elimination represents good
pProgramming practice.

Two programming contexts can produce unwanted side effects,
unpredictable results, or both.

Context 1.

1. An assignment statement nested in a larger expression that
uses the contents of the variable assigned to in the inner
expression, or

2. A routine called with an argument consisting of an undotted
name whose contents is altered by the routine but used
elsewhere in the expression.

These two situations are manifestations of the same problem but in the
second case we consider the potential side effect hidden.

Examples for Context 1
<l> X=,X*(X=2)
BLISS~10 can freely determine which of the two components in
the simple expression .X*(X=2) it will evaluate first since *
is a commutative operator. The outcome clearly depends on
the order of evaluation and the programmer must consider it
unpredictable.
<2> X=G(.X)+F(X)+.X
Here F(X), passed a pointer to X, may change X and if it does
the value of entire expression depends on the order of
evaluation. Since the + operator is commutative, this
construct must be viewed by the programmer as having an
unpredictable outcome.
The cautions are simple. Suspect any expressions which
l. Contain multiple store operations on the same variable

2, Contain routine calls containing undotted names of variables
appearing elsewhere in the expression.

Context 2

Occurs when a side effect producing sub~expression may not be
needed to determine the value of the overall expression.

Examples for Context 2
<l> X=.,A GTR .B AND (C=5) LSS F (B)
BLISS-10 will perform expression evaluation only to the point

at which it can uniquely determine a result. In the above

1-8

expression both the order-of-evaluation and the outcome can
affect the result.

If, for example, .A is in fact less than .B, and if the
compiled code evaluated this result first, then F(B) which
may change B does not get executed, thus eliminating a
possibly assumed side effect. :

On the other hand, if the Boolean
(C=5) LSS F(B)

executes first, and if F(B) changes B then the outcome of the
test

.A AND .B
is clearly affected, possibly unpredictably.
<1l> Exception

Currently only expressions with compile time constants
conform to this optimization:

(.B GTR 0) AND ((.C=.D)LSS 0);

will currently make the assignment no matter what the value
of .B.

<2> X=0%(Y=1)

Here X will always equal zero (0), but depending on order of
evaluation, Y may remain unchanged (since the value of X is
always uniquely determined here) or be set equal to 1.

The caution simply exhorts the programmer to beware of expressions
whose value can be uniquely determined by the evaluation of a
sub-expression contained within it. Failure to do so may result in an
assumed side effect not occurring.

1.4 NAMES

Syntactically an identifier, or name, is composed of a sequence of
letters and/or digits, the first of which must be a letter, Certain
names are reserved as delimiters. Refer to Appendix C. Semantically
the occurrence of a name is exactly equivalent to the occurrence of a
pointer to the named item. The term "pointer" will take on special
connotation later with respect to contiguous sub-fields within a word;
however, for the present discussion the term may be equated with
"address". This interpretation of name is uniform throughout the
language and there is no distinction between left and right hand
values. ‘Note that a name belongs to the class of simple expressions,
has a position in the precedence hierarchy, and computes a value,
namely, the address of the named item.

There is a special case where names may contain the characters "$",
“g$®, and "." as well as letters and digits. This has been provided to
be compatible with other DECsystem=10 names, particularly those
included in JOBDAT. Any name containing any of these three characters
must be immediately preceded by a question mark, and will be delimited
by (1) any character other than one of the three, (2) a letter, or (3)
a digit. For example, :

EXTERNAL ?.JBSYM;

SYMADDRESS= .?.JBSYM<0,18>;

1.5 THE "CONTENTS OF" OPERATORS

Since a name always evaluates to an address, and typically a
programmer wants to manipulate the datum stored at the address, the
language must provide some notation for accessing the contents of
memory. In BLISS-10 this takes the form of the "contents of", or
"dot" operator signified by a period <.> prefixing an expression.

The operator <.> is a unary operator used to designate the contents of
the location named by its operand. That location may be in core
memory or one of the registers. Thus if "X" is the name of a word of
memory, then ".X" names its contents, and "..X" names the contents of
the word pointed at by the contents of location X.

To further illustrate this Dbasic BLISS-10 concept consider the
assignment expression

A=.B

In this expression we have two names, A and B, and two operators <,>
and <=>, To determine the value of this expression we use the
precedence rules of section 1.3. First we derive values for the names
(highest precedence). This derives 'the address of A and the address of
B. Then we apply the dot operator to the value of B; thus, we derive
the contents of B as the value of .B. Then we apply the store
operator, <=>, to the two values thus computed. The store operator
semantics store the value on the right hand side into the location
pointed to by the value on the left hand side. Algorithmically, A=.B
becomes

1. Derive value of B (a pointer):;

2. Apply dot to value derived in 1. (contents of B becomes new
value) ;

3. Derive value of A (a pointer):;

4. Apply store operator to values derived in 2, and 3, (store
contents of B into contents of A).

This simple example illustrates the semantics of two operators (= and
.) and how simple expressions build more complex expressions. To
carry complexity a step further consider the construction

D=(A=.B)

Version 4 BLISS 1-10 February 1974

which represents a valid BLISS-=10 construction. To determine the
semantics, view it as two expressions connected by the store operator;
D and (A=.B). The value of an expression involving the store operator
takes on the value of the right hand side, so, (A=.B) has a value
equal to the contents of B. Thus the entire expression results in
storing the contents of B into A and D. Similarly,

A=B=C=D=0

will initialize the four variables, A, B, C, and D to 0. (Store
operators are left associative). To understand BLISS-10 the reader
must master the concept that every BLISS=-10 expression computes a
value.

NOTE
BLISS-10 will eventually recognize two
characters for the store operators « and =,
This manual, however, uses = exclusively to

represent the store operator. Currently it
recognizes only <.

I 1.5.1 More on "Contents of" Operators and Pointers

The description in 1.5 covers the vast majority of programming
requirements - and is a machine independent construction. But BLISS=10
has another goal, hardware access, which at times conflicts with that
of machine independence. One feature of the DECsystem=10 permits a
programmer to pack or unpack bytes(l) anywhere in a word. Movement of
a byte 1is always between an AC and a memory location: a deposit
instruction takes a byte from the right end of an AC and inserts it at
any desired position in the memory locations; a load instruction
takes a byte from any position in the memory location and places it
right-justified in an AC.

The byte manipulation instructions have the standard memory reference
format, but the effective address E is used to retrieve a pointer,
which is used in turn to locate the byte or the place that will
receive it. The pointer has the format

(¢} 56 12 13 14 1718 . 35

Figure 1-1
Format of a Pointer

(1)By byte we mean a contiguous field within a word whose length is
between 1 and 36 bits.

1-11 February 1974

where S is the size of the byte as a number of bits, and P is its
position as the number of bits remaining at the right of the byte in
the word (e.g., if P is 3 the rightmost bit of the byte is bit 32 of
the word). The rest of the pointer is interpreted in the same way as
in an instruction: I, X and Y are used to calculate the address of
the location that is the source or destination of the byte. Thus the
pointer aims at a word whose format is

S BITS P BITS

) 36-P-S+1 35-P 35-P+1 35

Figure 1-2
Format of a Byte within a Word

where the shaded area is the byte.

The use of these byte pointers can result in coding efficiencies.
Indeed, the compiler itself binds every name to a byte pointer with a
format identical to that of Figure 1l-l1l. To provide the programmer
access to byte pointers, BLISS-10 provides the pointer operator. In
its most general form, the pointer operator specifies five quantities
which operate on the value of a name to produce a byte pointer as
defined in the DECsystem-10 hardware.

Given the expression
E<E1l,E2,E3,E4>
BLISS-10 computes its value as follows
l. Establish the value of E (a 36 bit byte pointer). (If E is a
simple name it will normally reduce to an 18 bit ¥ value with
the P, I, and X fields of the byte pointer equal to 0, and
the S field equal to 36.)

2. El and E2 are computed mod 246 and become the P and S fields
of the byte pointer.

3. E3 is computed mod 2+4 and forms the X field (index field)
of the byte pointer.

4. E4 is computed mod 241 and forms the I field (indirect field)
of the byte pointer.

The result is a 36=-bit value which is, in fact, a DECsystem=-10 byte
pointer.

Each of the expressions El, E2, E3, E4, may be omitted with defaults
El, E3, E4=0, and E2=36.

Thus the expression
(A+1)<.B,3>

has a value defined by a byte pointer as follows:

P S | X Y
.B 3 [¢] o] A-+1
Figure 1-3

Pointer to a 3-bit Field

This byte pointer in fact refers to a 3=-bit field

in the first

location beyond A. The position of this 3-bit field is .B (the
contents of B) bits from the right end of the word. (See Figure 1-4,)

Figure 1l-4
A 3-bit Field

Examples:

<l1> C=(A+l1l)<.B,3>

“‘“‘3_"‘_—.8_"

This expression stores the byte pointer of Figure 1-3 into

the location pointed to by C.

<2> D=, (A+1)<.B,3>

Store 3 bits .B from the right of A+l into the field pointed

to by D (right Jjustified). Note: names
pointer operator of <0,36>,

<3> F=..C

carry a default

Where C contains the value from <1>. F now contains the same

value as D from example <2>,

The use of byte pointers(l) , though it provides great

flexibility, is

I (1) If the compiler can determine at compile time that a byte pointer
points to a fullword or a halfword, it will generate the proper

instruction.

February 1974

inefficient when word or halfword quantities are being manipulated
since the DECsystem-10 has explicit instructions to handle words and
halfwords. To accommodate the efficiencies inherent in word and
halfword operations two additional "contents of" operators are
provided, both of which are defined in terms of the dot and pointer
operations.

The @ operator produces a fullword pointer ignoring the P, S, X, and I
fields. Thus @ is defined as

@E=,E<0,36,0,0>
To develop the value of the expression on the right.
l. Develop a 36=-bit byte pointer value for E.
2. Apply El1=0, E2=36, E3=0, and E4=0 to byte pointer developed
in 1, producing a byte pointer with an 18-bit address (Y

field).

3. Apply dot, which accesses the location pointed to by the Y
field.

The @ operator by eliminating the P and S fields bypasses the need of
accessing a byte pointer. (S is eliminated in the sense that it
equals 36, implying fullword access.)

The \ operator produces a 23-bit address using I and X but not P and
S. It is defined as (t is a temporary)

\E==, (t=E)<0,36,.t<18,4>,.t<22,1>>
Developing the expression on the right we have:

l. Store E into t (not the contents of E but the 36-bit byte
pointer value for E).

2. Set El=0, E2=36.
3. E3=the X field in the byte pointer of original expression.

E4=the I field in the byte pointer of the original
expression.

Note that t contains the original byte pointer value of E. A
byte pointer for t with the defined subfields (<18,4>,<22,1>)
when applied to the contents of t will retrieve the original
E subfields.

4. Using the address (I, X, and Y included) retrieve the
contents of memory pointed to.

More Examples:
Suppose the assignment

A=B<3,15,R1,0>;

has been executed. The assignment stores a byte pointer in A,
P=3, S=15, X=Rl, and I=0. Assume Rl contains a 2. Then:

<4>

<5>

<6>

2=.A

Stores the byte pointer into 2.

Uses the pointer in A as a byte pointer and stores the
in Figure 1=5 into Z.

B+ .R1 ,_l_ﬂ

fe—15—sje—3 —s|

FPigure 1-5
Access of a Byte Using a Byte Pointer
Z=Q.A;
Stores the contents of B into 2.
Following Figure 1-6 we have:
l. Extract the contents of A.
2. Modify value derived in 1 so that P=I=X=0,S=36.
3. Interpret the result of 2 as a pointer.

4, Extract the pointed-to word and store it into Z.

where

field

Figure 1-6
Using the Operator to Modify Use of a Byte Pointer
<7> 2Z=\.A;
Store the contents of the second word following B into Z.
Following Figure 1-7 we have:
l. Extract the contents of A.
2, Modify value derived in 1 so that P=0, S=36.
3. Interpret the result in 2 as a pointer.

4. Extract the pointed-to word and store it in 3.

A—» z

LI [= Jo L]
® ®
L_Eo lq X l 8 41 X L, 2+8 P—————-———q ®

Figure 1-7 .
Using the \ Operator to Modify Use of a Byte Pointer

<8> L(A=5;

Stores 5 (right-justified, zero-filled) into the 15-bit field
in the second word following B as shown in Figure 1-8.

Version 4 BLISS 1-16 February 1974

<9>

<10>

B B+1 B+2

e 3 -

- Figure 1-8
Assignment to a Byte Using a Byte Pointer

@A=5;
+A=5;
\A=5
are equivalent.

@A=5
decomposes as

1. Form a 36-bit byte pointer form A

2. Apply @ to this value, which effectively leaves it
unaltered.

3, Take the value pointed to by the value derived in 2 (the
contents of A) use this as a pointer and store 5 in the
pointed=-to word.

Both

«A=5
and
\A=5

will produce exactly the same result, because A, a name, is
bound to a byte-pointer (which is its value) such that both @
and \ leave this value unchanged.

@.A=5
and
(.A)<0,36>=5

are not equivalent.

Following Figure 1-9 @.A=53 decomposes as

1.

2.

3.

Extract contents of A, set P=0, S=36, X=0, I=0.

Use the value from 1 as a pointer; extract the word
pointed to.

Using the value in 2 as a pointer store 5 in the
pointed-to word.

1-17 February 1974

® TEbMP
®

Y TEMP 5

Figure 1-9
Description of @.A=5
Following Figure 1-10
(.A)<0,36> decomposes as:
1. Extract contents of A, set P=0, S=36, X=0, I=0,
2. Using value derived in 1 store 5 into word pointed to.
A [-.A

Y

't

0 |36 of O Y 5

Figure 1-10
Description of (.A)<0,36>=5

1.6 DATA REPRESENTATION

In general, all values are treated as strings of Dbits. Different
operators will interpret these strings in various ways; for instance,
(1) arithmetic operators (+,=-,etc.) interpret values as 2's momplement

integers, (2) floating point operators (FADR, etc) interpret values as
KA=-10 floating point values, (3) logical operators (AND, OR, etc.)
interpret values as bit strings, and (4) access operators (<, ., >)
interpret values as byte pointers.

All Boolean tests depend on the low=-order bhit of the word or field
being tested. The relational operators generate a full word 0 or 1 as
their value, when required to yield a value. Zero represents falsity,
and one represents truth,

Version 4 BLISS 1-18 February 1974

l.7 COMMENTS

Comments may be enclosed between the symbol ! and the end of the line
on which the | appears or between paired % symbols. Note that a ! or
% enclosed within quotes is part of the quoted string, not the start
of a comment. Also a $ after ! and before the end of the line, or !
between %'s is part of the enclosing comment.

comment ::= ! restofline end=-in-sym/
% strng-no-pct %/empty

Examples:

1Start a comment
g$Hurrah for Karamazov!$
!the GNP declined 3%

The compiler will not accept a 1line of source or comment which
contains over 135 characters. In BLISS~10 a line is terminated by a
carriage return. . On input all source characters with ASCII codes less
than #40 are ignored except for tab (#11), carriage return (#15), and
form feed (#14).

1.8 MODULES

A module is a program element which may be compiled independently of
other elements and subsequently loaded with them to form a complete
program,

module ::= block/

module~head block/

module~head block ELUDOM/block ELUDOM
module-head: := MODULE name (mdle-parms)=

A module may request access to variables and functions declared in
other modules by declaring their names in EXTERNAL declarations. A
module permits general use of its OWN variables and ROUTINES by means
of GLOBAL declarations. These lines of communication between modules
are completed by the loader prior to execution. A complete program
consists of a set of complied modules bound by the loader. The <name>
in a module declaration is used to identify that module and must be
unique in its first four characters from any other module names which
are to be loaded together to form a complete program. When loading a
number of modules, it is necessary that at least one module contain a
module head. The use of the keyword MODULE is optional but if no
module appears, BLISS-10 will default the name to that of the REL file
requested.

A terminating ELUDOM is optional and is ignored whether or not a
module has a module-head.

The (mdle~parms) field of a module definition is used to control the

compilation. Refer to section 3.3-3.5 for a descriptive list of
parameters and defaults.,

Version 4 BLISS 1

19 February 1974

Example:

IThe start module for BLISS is compiled in front
lof a number of other BLISS modules.

MODULE START (STACK=EXTERNAL (STACK,#2000)=
BEGIN

END
ELUDOM

I 1.9 BLOCKS AND COMPOUND EXPRESSIONS

A block is one or more declarations followed by an arbitrary number of
expressions all separated by semicolons and enclosed in a matching
BEGIN-END or "(" - ")" pair.

block ::= BEGIN blockbody END / (blockbody)
blockbody ::= decls exprs
decls ::= decl;/decls; decl
cmpnd=-exXpr ::= BEGIN exprs END /(exprs)
exprs ::= E/label:E/ E; exprs/

hd E SEMICOLON exprs/empty (1)

The block indicates the lexical scope of the names declared at its
head. However, names of variables and ROUTINES declared as GLOBAL
have a scope beyond the block although they are declared within the
module. The effect, for a module citing them in an EXTERNAL
declaration, is as if they were declared in the current block.

This violation of conventional block structure has implications with
respect to allowed references, particularly in connection with
declared registers. These implications, and a corresponding set of
restrictions, will be discussed in connection with the affected
declarations.

The reserved identifier SEMICOLON is identical to the character ";"
syntactically. In addition, it is a directive +to the compiler
declaring that the expression just completed may have side-~effects
which are unpredictable by the compiler. Consequently, no assumptions
should be made about wvalid temporary or intermediate results for
optimization purposes.

(1)The string <empty> will mean that an option for the construct in
question may be empty. For example, a block may consist of nothing
but declarations.

Version 4 BLISS 1-20 February 1974

1.10 LITERALS

The basic data element on the DECsystem-10 is the 36-bit word. The
hardware, however, permits access to an arbitrary length contiguous
field within a word. The programmer can view the 36=bit word as the
limiting case of a partial word. Refer to section 1.5.1 for
additional information on ‘partial words.

literal ::=

: umber/string/plit
string ::= s

ring=-type quoted=-string
strng-type ::= ASCII/ASCIZ/RADIX50/SIXBIT/empty
quoted-strin := leftadjstring/rightadjstring
leftadjstrin := 'strng-no-sngle-"'"
rightadstring ::= "strng-no-sngle-""
number ::= decimal/octal/floating
decimal ::= digit/decimal digit
floating ::= decimal.decimal/

decimal.decimal exponent/

decimal exponent)
exponent ::= E decimal(l)/E+decimal/E~decimal
octal : #oit/octal oit
oit ::= 0/1/2/3/4/5/6/7
digit : 0/1/2/3/4/5/6/7/8/9

Numbers (unsigned integers) are converted to binary modulo 2(36)
residue =2(35). The binary number is 2's complement and is signed.
Octal constants are prefixed by the sharp sign <#>. Quoted~string
literals may be used to specify bit patterns corresponding to the
7=bit ASCII code for printing graphic characters on the external 1I/0
media. Strings of one to five characters may be used freely as
character constants,

n
t
g9
g

BLISS=10 will allocate the specified data in increasing memory address
order.

The ASCII string=-type converts the quoted-string following the keyword
ASCITI into five 7-bit ASCII characters. ASCIZ creates an ASCII string
terminated with at least one zero byte; for strings containing an
even multiple of five characters, a zero word.

RADIX50 packs the six characters into 32 bits right justified with the
left 4 bits equal to 0. A quoted-string following RADIX50 cannot
contain more than six characters from the set <A=%2>,<0-9>,<$>,<.>,<%>,
and <null>.

Quoted~string literals may be used to specify bit patterns
corresponding to the ASCII, SIXBIT, or RADIX50 codes used on the
DECsystem=10; left or right justification may be obtained through the
use of the single or double quote chracters. An empty 'stringtype'
implies an ASCII string., Normal quoted strings are constrained to be
representable within a single word (five characters for ASCII, six
characters for SIXBIT and RADIX50), but strings of arbitrary 1length
may be used in PLIT's (refer to 1l.11).

(1)This is the literal E, not an expression.

Version 4 BLISS February 1974

Within a quoted string the quoting character is represented by two
successive occurrences of that character. Also, in an ASCII or ASCIZ
quoted string the question mark, <?>, is an escape=-to=control
character =-- thus <?M> represents a <control-M>, or carriage return.
In addition

<??> represents a question mark itself
<?0> represents the NULL (zero) character
<?1> represents the DEL (all ones) character

1.11 POINTERS TO LITERALS

A PLIT is a pointer to a literal word whose contents are specified at
compile time and established at load time; e.g., PLIT 3 is a pointer
to a word whose contents will be set to 3 at load time.

plit ::= PLIT plitarg
plitarg ::= load-time=-expr /
long=-string /
triple
triple ::= (triple-item=-1lst)
triple~item-lst ::= triple-item /
triple-item,triple-item-1lst
triple-item ::= load-time-expr /
long=-string /
dup=fctr:plitarg
dup~-fctr ::= compl-time-expr

NOTE

"PLIT (3)+4" has 2 parses:
PLIT load-time-expr, and
PLIT triple + expr

The latter choice is used. Hence, "PLIT (3)+4" is the same as " (PLIT
3)+4". Note that PLIT (3)+4 yields a value that may have little or no
meaning. PLIT (3) produces a pointer to a memory location containing
a 3. Adding 4 to this pointer may not produce the intended value.

A PLIT may point to a contiguously stored sequence of literals; long
strings and nested lists of literals are also allowed. The value of

PLIT (3’5'7'9)
is a pointer +to four contiguous words containing 3,5,7 and 9,
respectively. A long string (more than 5 characters) is also a valid
argument to a PLIT:

PLIT "this allocates 5 words"

allocates five words of 7-bit ASCII characters with three pad
characters of zero to the right.

Note: A long string cannot exceed 1,000 characters in the current
implemenation of BLISS-10.

Version 4 BLISS 1-22 February 1974

The arguments to PLITs need only be constant at load time; PLITs are
themselves 1literals, thus nesting of PLITs is allowed (with the inner
PLITs allocated first):

Name binding is possible within a PLIT by use of the NAMES or INDEXES
facility.

EXAMPLE:

BIND APLIT=PLIT (
NAMEl GLOBALLY NAMES 1,
INDEX2 GLOBALLY INDEXES NAME2 NAMES 2,
3);

In this example the identifier NAMEl is bound to the address of the
PLIT element which it precedes (i.e., 1l). Use of the word GLOBALLY
makes this identifier available as a global symbol to separately
compiled modules. The identifier INDEX2 is bound to the offset of the
element it precedes in the PLIT.

Thus the following produce equivalent results, even though some of the
names are not valid in all scopes, Note that in BLISS=10 all indices
start at 0, not at 1.

X=.NAME1l[1];
X=,NAME1 [INDEX2] ;
X=,APLIT(1];
X=,APLIT[INDEX2];
X=,NAME2;

Name binding of this sort can occur in nested PLITS. Name binding
cannot occur in a portion of a PLIT subject to a duplication factor.
In this case a warning message is generated and the name binding is
ignored.

Any triple-item may be preceded by any number of occurrences of a
plit=-name=-bind where

plit-name-bind: :=name NAMES/
name GLOBALLY NAMES/
name INDEXES/
name GLOBALLY INDEXES

The following example introduces two declarations; EXTERNAL and BIND.
EXTERNAL declares that the names following it exist in an
independently compiled module (thus evaluatable only at load time).
BIND establishes an equivalence between.the variable name on the left
of the equal sign, =, and the expression on the right, such that when
the variable name appears in the program the compiler substitutes the
value of the expression for the variable name. The use of the equal
sign does not indicate a store operation in the BIND context, merely
association between the name and the expression (see section 1.22,2
for details on EXTERNAL and 1.27 for details on BIND).

Examples:

EXTERNAL A,B,C:
BIND Y = PLIT (A, PLIT (B,C), PLIT 3, 'A LONG STRING', 5+9%*3);

is such that (see Figure 1l-11l):
.y[0)]==A<0,36>;..y[1]==B<0,36>;.(.y[1]+1)==C<0,36>

l «.y[2]==3;.y[3]=="A LON";.y[4]=="G STR";.y[5]=="ING";
y[6]1==32;

A
7

Y -0 A<O, 36> —/////f’
1 . - 2
2 - — B<O, 36>
3 . AALON €<o0, 36 >
4 GASTR
5 INGA 1
6 32 3

Figure 1-11
Memory Allocation of some PLITs

The notation Y[i] can be viewed as vector addressing with Y[0)
pointing to the first element of the vector. Actually this notation
involves a BLISS-10 structure access which is discussed in sections
1.23 through 1l.25.

In addition, any argument to a PLIT can be replicated by specifying
the number of times it is to be repeated; e.q., '

PLIT (7:3)
produces a pointer to 7 contiguous words, each of which contains the
value 3, duplicated PLITs are allocated once, identical PLITs are not
pooled. Hence,

BIND X = PLIT (3: PLIT A, PLIT A, 2: (2,3));

is such that:

1-24 February 1974

eoeX[0] == ,.x[1] == ..x[2] == ..x[3] == A<0,36>; (1)
x[0] == .x[1l] == .x[2] not == ,x[3];
.x[4] == .x[6] == 2; .x[5] == .x[7] == 3;

.X[0],.X[1l), .X[2] are equal since three 1literal pointers are
generated all pointing to a single instance of A. .X[3] does not equal
.X[0], .X[1l), .X[2] because it results in a separate allocation for A.
Figure 1=-12 shows the entire PLIT generation.

8 1
R —— = 2
1
*— A
2
3
2
3

Figure 1-12
Memory Allocation of some PLITs with Replication Factors

Note: The length of every PLIT (in words) is stored as the word
preceding the PLIT. Hence, in the last example, .X[-1] = 8.

A replication factor of zero(0) results in no allocation.

l.12 INTERLUDE 1

In Section 1.2 we began searching the basic building blocks of
BLISS-10 programs namely, expressions, but interrupted it exposing the
reader to names, the dot and store operators, modules, blocks, data
representation, literals, pointers to literals (plits), and pointers.
We now return to the discussion of expressions. It may prove useful
for the reader to review Sections 1.1 and 1.2 before proceeding.

(1)Note the use of two successive equal signs (==) means equivalence.
We use this convention as a pedagogical mechanism to avoid confusion
with the store operator <=>, BLISS=10 has no syntactical structure
using <==>,

Version 4 BLISS 1-25 - February 1974

1.13 CONTROL EXPRESSIONS

The control expressions provide the mechanism needed for controlling
the execution sequence of a program. BLISS-10 has five forms:

cntrl-expr: :=cndlt-expr/
loop-expr/
choice~expr/
escp-expr/
co-rtn-expr

1.14 CONDITIONAL 'EXPRESSIONS
cndtl-expr ::= If E1 THEN E2 ELSE E3;

El is computed and the resulting value is tested. If it is true, then
E2 1is evaluated to provide the value of the conditional expression,
otherwise E3 is evaluated to provide the value of the conditional
expression.

cndtl-expr ::=IF E1 THEN E2

This form is equivalent to if El then E2 else 0. However, it does
introduce the "dangling else" ambiguity. This is resolved by matching
each ELSE to the most recent unmatched THEN as the conditional
expression is scanned from left to right.

Examples:
<1>(1) IF .X THEN J = K ELSE J=.L;

<2> J = (IF .X THEN .K ELSC .L);!Same effect as
Iprevious line

<3> IF .L THEN
BEGIN.....END
ELSE
BEGIN.....END
; IBlocks allow multiple
lexpressions

<4> position = .position + (IF .char EQL #11 %$tab% TILN
8 ELSE 1);

INote the use of an octal literal, lower case names,
land the comment enclosed in % symbols (#11
Irepresents the octal code for tab.)

(1) The single integer values in angle brackets simply number the
examples, and do not belong to the syntax of the language.

Version 4 BLISS 1-26 February 1974

Another form of the conditional expression is:

IFSKIP E1 THEN /E2 ELSE E3;
In this case, El is evaluated first. If the last instruction in El
causes a skip, (including a routine call with no parameters), then E2
is evaluated to provide the value of the expression, otherwise E3 is
evaluated.

Example:

MACHOP TTCALL=#51; MACRO SKPINC=TTCALL(#13,0)$;

IFSKIP SKPINC THEN 1IS A CHARACTER IN THE INPUT
BUFFER?
BEGIN ... END 1YES
ELSE
BEGIN ... END I{NO

’

1.15 LOOP EXPRESSIONS

The value of each of the six loop expressions is =1, except when an
EXITLOOP or LEAVE is used, see 1,.16.

loop=expr ::=WHILE El1 DO E2

The El1 is computed and the resulting value is tested. If it is true,
;hen E2 is computed and the complete loop-expr is recomputed; if it
is false, then the loop-expr evaluation is complete. (1)

loop-expr::=UNTIL E3 DO E2
l This form is equivalent to WHILE NOT(E3) DO E2
loop=-expr:=DO E2 WHILE E1

The expressions E2, El are computed in that sequence. The value
resulting from El is tested: if it 4is true, then the complete

loop-expr is recomputed: if it is false, then the loop-expression
evaluation is complete,

loop-expr::=DO E2 UNTIL E3
' This form is equivalent to DO E2 WHILE NOT (E3)

loop~expr::=INCR name FROM El1 TO E2 BY E3 DO E4

The <name> is declared to be a register or a local for the scope of

the 1loop. The expression El is computed and stored in <name>. The

expressions E2 and E3 are computed and stored in unnamed local memory

which for explanation purposes we shall name U2 and U3, any of the

phrases FROM El, TO E2, or BY E3 may be omitted~-in which case default

values of E1 = 0, E2 = 2435-1, E3 = 1 are supplied. The effect is as
I if the following loop-expr were executed:

I BEGIN REGISTER NAME; LOCAL U2,U3; NAME=El; U2=E2; U3=E3; (2)
UNTIL .NAME GTR ,U2 DO (E4; NAME=,NAME+,U3)
END

(1)Only the low order bit is tested; 0= false 1= true.
(2) Section 1.25 discusses the declarations REGISTER and LOCAL.

Version 4 BLISS 1-27 February 1974

The final form of a loop-expr is:
loop-expr::=DECR name FROM E1 TO E2 BY E3 DO E4
This is equivalent to INCR name FROM El TO E2 BY =-(E3) DO E4.

CAUTION:
BLISS-10 uses signed relationals in the loop expressions, This can
cause unexpected results if any of the loop variables represent
pointers rather than numerical values.

If any of the FROM, TO, or BY phrases are omitted from a DECR
expression, default values of El=0, E2=-2435, and E3=1 are supplied.
Notice that in both forms the end condition is tested before the loop,
hence the loop is potentially executed zero or more times.

Examples:

<l> IFollowing algorithm will place the address of the
llast item of a linked list into the variable
!LINK. Figure 1-13 shows storage layout initially

LINK=.LISTHEAD;
WHILE ..LINK NEQ 0 DO

BEGIN

LINK=,,LINK
END;
¥ LISTHEAD

.LISTHEAD \\\\\\‘ -—\\\\\\\\x
LINK

A
LLINK ////' v
. .LINK

Figure 1-13
Computing the Address of the Last Item in a Linked List

<2> lAdd up the first n integers
IN contains ordinal count of integers required
!in the sum
SUM=0;
INCR J FROM 1 TO .N DO SUM=,SUM+.J

1.16 ESCAPE EXPRESSIONS

The escape expressions permit control to leave its current
environment. There are three forms:

esc-expr ::=LLAVE .abazl WITY E/
RETURL: E/
LEAVE label/
RETURN

Version 4 BLISS 1-28 February 1974

Any expression may be labeled by preceding it with the label name and
a colon. Within a labeled expression, control may be caused to leave
the expression and yield E as the value of the expression.

A LEAVE expression must occur within an expression with the same
label. Refer to l1.28 for restrictions on the use of labels.

If the WITH E is missing then WITH O is presumed.

I RETURN exits the currently executing routine, yielding E as the value
of the routine.

Examples:

<1> |IFind INDEX of first space in line image of 80
{characters
1INDEX is -1 if none found because the value of an
lexhausted loop-exp equals -1.
INDEX=LOOP:INCR J FROM 0 TO 79 DO IF .(LINE+.J) EQL #40
THEN LEAVE LOOP WITH .J

<2> |How to escape to next iteration in a loop
INCR J FROM 1 TO 100 DO
L2: (...
IF .condition THEN LEAVE L2;
{Exit the compound

{which
ces tconstitutes the loop
tbody. The exit
)i lterminates the

fcurrent iteration
fimmediately causing
Ithe next iteration
tof the DO loop.

<3> IFind first zero element of a 2-D array
' L3:BEGIN INCR I FROM 1 TO .IMAX DO
INCR J FROM 1 TO .JMAX DO
IF .ARRAY[.I,.J] EQL 0 THEN (II=.I;JJ=.J; LEAVE
L3) ’
END

!This example results in complete loop termination

Isince the label, L3, labels the BEGIN INCR...END
lexpression. Contrast with preceding example.

| l.16.1 Exception
Escape Expressions That Will Disappear
The following furms of escape expressions in addition to those of

Section 1.16 permit control to leave its current environment. These
forms will soon be obsolete and the programmer should avoid their use.

Version 4 BLISS 1-29 February 1974

escpe~expr::=envt level escp-val

envt: :=EXIT/EXITBLOCK/EXITCOMPOUND/EXITLOOP/EXITCOND
EXITCASE/EXITSET/EXITSELECT/BREAK/
EXITCOMP/EXITCONDIT

level::=[E] /empty

escp~-val::=E/empty

Each of these expressions conveys to its new environment a value, say
E, obtained by evaluating the escape value (escp-val), which may
optionally be omitted implying E=0. The levels field, which must
evaluate to a constant, say n, at compile time, determines the number
of levels of the specified control environment to be exited; the
levels field may optionally be omitted in which case one level is
implied. The maximum number of levels which may be exited in this way
is limited by the current function (routine) body or the outermost
block.

EXITBLOCK terminates the innermost n (where n is the value of the
"levels" field) blocks, yielding a value of E for the
outermost one exited. '

EXITCOMPOUND terminates the innermost n compound

or expressions, yielding a value of E for the

EXITCOMP outermost one exited.

EXITLOOP terminates the innermost n loop expressions,

or yielding a value of E for the outermost

BREAK one exited.

EXITCOND Terminates the innermost n conditional

or expressions, yielding a value of E for the

EXITCONDIT outermost one exited.

EXIT terminates the innermost n control scopes (whether

blocks, compounds, conditionals, or loops) with E as
the value of the outermost.

EXITCASE terminates tlie n innermost case expressions yielding a
value of E for the outermost of these.

EXITSET terminates the n innermost set expressions in a case
expression, yielding a value of E for the outermost of
these.

EXITSELECT terminates the n innermost select expressions yielding

a value of E for the outermost of these.

Examples:

! find INDEX of first space in line image of 80 characters
(one per word)

! INDEX = =1 implies none found

index = incr j from 0 to 79 do
if .(line + .j) eql #40 then exitloop j;

Version 4 BLISS 1-30 February 1974

! to exit the body of a loop and go on to the next iteration

INCR J FROM 1 TO 100 DO

IF .condition THEN EXITCOMPOUND; !go to next iteration

) {close compound

fclose body
expression

-

1.17 CHOICE EXPRESSIONS

1.17.1 CASE Expression

choice-expr: :=CASE expr-lst OF SET expr-set TES(l)
expr-1lst ::=E/E,expr-lst
expr-set ::= BE/;expr-set/E;expr-set/empty

Consider each expression in expr-lst to be numbered, i.e., EO, El,...;
and each expression in expr-set similarly, i.e., ESO, ESl, ... Then
for each En, n running from 0 until expr-lst is exhausted, the En is
evaluated, yielding a value m. This value is used to select a member
of expr-set, namely ESm, which is evaluated. The value of the CASE
expression is the value of the last ESm evaluated.

The following points should be noted:
1. A value of -1 for any En terminates the case expression.
2. A value for any En less than -1 or greater than the number of
expressions in the expr-lst can cause unpredictable results.

No range checking is performed.

3. If the CASE expression is prematurely terminated (see 1), its
value is undefined if no ESm has been evaluated.

- - — - o = -

(1)BLISS=10 uses the convention of forward-reverse spelling of keyword
delimiters in every case except BEGIN-END.

Version 4 BLISS 1-31 , February 1974

Examples:

<l> [|Suppose TYPE(.CHAR)=0(l) if ,CHAR is a number, 1 if a
!letter, 2 if ignorable: equal to space, tab, and 3
lotherwise. Collect a string of letters and digits, with
ICOUNT being the length
!ID names the location used to collect successive
{characters in the identifier. The algorithm
{first checks for a character and if found begins
1to collect the identifier in ID.

INXTCHR is a routine with no parameters which
Ireturns as its value the next character.

COUNT=0;
L3:IF TYPE(.CHAR) EQL 1 THEN
DO
CASE TYPE (.CHAR) OF
SET

((ID+.COUNT)=,CHAR;COUNT=,COUNT+1); 1CASE=0
((ID+.COUNT)=.CHAR;COUNT=,COUNT+1); !CASE=l

0; ICASE=2
LEAVE L3 !{CASE=3
TES

WHILE (CIIAR=NXTCHAR();1);

ICASE 0 deposits a digit in ID(properly indexed by
! .COUNT) and increments COUNT.

ICASEl does the same for a letter.

{CASE2 bypasses the character.

ICASE3 terminates the scan.

!The WHILE loop causes an infinite loop since

it always has the value TRUE; escape via

ILEAVE L3

1.17.2 SELECT Expression

The SELECT expression is similar to the CASE expression in that it
selects from the exXpressions between the NSET-TESN brackets, depending
on the values of the expr-lst. The expressions in the d-expr-set are
not thought of as being ordered =~ each element consists of an
"activation expression" tagging a "target expression". The criterion
for evaluation of the target expression 1is that the value of the
activation expression is equal to the value of (at least) one of the
elements in the expr-1l1st.

Evaluation of the SELECT expression proceeds as follows: First, the
expressions in the expr-1lst are evaluated and their values saved. In
an undefined order, except when defined by the use of OTHERWISE or

(1) TYPE (.CHAR) results in a call on the subroutine TYPE which returns
the values defined. The discussion of ROUTINES appears in Section
1.22,

Version 4 BLISS 1-32 February 1974

ALWAYS, each activation expression is evaluated and its value compared
to the saved values of expr-lst. If any of these values is equal to
the value of the activation expression, the target expression is
evaluated. The value of the SELECT expression is the value of the
last target expression evaluated, or =1 if no target expression was
evaluated.

For example, the evaluation of:

SELECT El1, E2, E3 OF
NSET
E4: E5
E6: E7
E8: E9
TESN

we wo we

proceeds as follows: El, E2 and E3 are evaluated. Then E4 is
evaluated. If the value of E4 equals either of El, E2, or E3, then E5
is evaluated. Similarly, E6 is evaluated and tested, possibly causing
evaluation of E7; E8 and E9 follow. The value of the expression is
the last target expression (E5, E7, or E9) to be evaluated; or -1 if
neither E5, E7 nor E9 were evaluated.

There are two reserved words which may be used as activation
expressions - OTHERWISE and ALWAYS. ALWAYS causes the target
expression to be evaluated whatever the values in the expr-lst.
OTHERWISE causes the target expression to be evaluated if and only if
no target expression has been previously evaluated in this SELECT
expression. A semicolon missing before an OTHERWISE or ALWAYS will
generate a warning message, and be assumed present.

Note that although ALWAYS or OTHERWISE may be used as any activation
expression, it makes no sense to use more than one OTHERWISE or to use
an OTHERWISE after an ALWAYS, since the latter OTHERWISE can never
cause the target expression to be evaluated.

1.17.3 Compile~time Constants in Conditional and Choice Expression

Many BLISS-10 constants require that non-terminals become constants at
compile time. For example the declaration

OWN XI[E]

requires that E be completely determined at compile time. As long as
E does reduce to a compile-time constant, it can admit to expressions
the programmer would not normally consider in the context of a
compile~time constant. In particular we may write without generating
an error

OWN X[IF E1 THEN E2 ELSE E3]

if we can guarantee that the control expression will reduce to a
compile time constant. BLISS-10 permits control-expressions and CASE
expressions to be used in this manner, but not SELECT expressions.
Use of the control and CASE expressions in this manner can prove quite
useful in effecting conditional compilations and as a technique for
simplifying the achievement of algorithm and data independence.

Version 4 BLISS 1-33 February 1974

1.18 CO-ROUTINE EXPRESSIONS

Coroutines can often simplify a given problem both in its conception
and its implementation. (See references on next page.) Coroutines
differ from subroutines in that subroutines are always initiated at
the beginning while coroutines are always initiated at the location
following where they left off. Getting coroutines started is a matter
of properly initializing the linkage. Each coroutine has a return
address and one (that of the last coroutine relinquishing control)
must be preserved when control is passed.

In BLISS5-10, the body of a function or routine may be activated as a
co-routine and/or asynchronous process; the additional syntax is

co-rtn~expr: :=CREATE El (expr-lst) AT E2 LENGTH
E3 THEN E4/)
EXCHJ (E6,E7)

The effect of a 'create' expression is to create a context (i.e., an
independent stack) for the routine (function) named by El, with
parameters specified by the expr-1st, at the location whose address is
specified by E2, and of size E3 words., The value of a 'create'
expression is the address specified by E2. Control then passes to the
statements following the ‘'create'. When two or more such contexts have
been established, control may be passed from any one to any other by
executing an exchange-jump, EXCHJ (E6,E7) (1), where the value of E6
must be the stack base, E2, of a previous ‘create' expression. The
value of E7 is made available to the called routine as the value of
its own EXCHJ which caused control to pass out of that routine. Thus

References

l. ZKnuth, Donald
The Art of Computer Programming
pps. 210-250
2. Maurer, Ward
Programming Languages
pPps. 25=50
3. Conway, M. E.
Design of a Separable Transition-Diagram Compiler
Communications of the ACM July 1963, pps. 396-407

(1) Note that the 1lst EXCHJ to a newly created process causes control
to enter from its head with actual parameters as set up by the
CREATE.

(2)The value of E7 is not available to the called routine on the 1st
EXCHJ to it.

1-34 February 1974

the value of the EXCHJ operation is defined dynamically by the
co-routine which at some later time re-activates execution of the
current co-routine, (2)

Initialization of the main BLISS program is, in fact, equivalent to a
CREATE followed by an EXCHJ with E6 being the STACK parameter as
specified in the module head.

Should a process, the body of which is necessarily that of a routine
(or function), execute a 'return', either explicitly or implicitly,
the expression E4 (following the 'then' in the 'create' expression of
the creating process) is executed in the context of the created
process. The normal responsibilities of E4 include making the stack
space used for the created context available for other uses and
performing an EXCHJ to some other process.

The facilities described above, namely 'CREATE' and 'EXCHJ', are
adequate either for use directly as co-routine linkages or for use as
primitives in constructing more sophisticated co-routine facilities
with macros and/or procedures. It should be noted in the context that
if the created processes are functions (rather than routines) the
resulting processes continue to have access to lexically global
variables which may be local to an embracing function (access to
lexically local variables which have been declared 'own' is available
in either case). In such a case the resulting structure is a stack
tree in which all segments of the tree below the lexical level of the
(function) process are available to it.

Two additional complexities are added if the CREATE and EXCHJ are to
be used for asynchronous, and possibly parallel, execution of
processes. One is synchronization, by which we mean a mechanism by
which a process can coordinate its execution with that of one or more
others. A typical example of the need for synchronization occurs when
two processes independently update a common data base; and each must
be sure that the entire updating process is complete before any other
process attempts to use the data base. The second complexity arises
in connection with interrupts, and in particular from the fact - that
certain operations must not be interrupted (some EXCHJ operations for
example) . It is possible that certain situations require
synchronization mechanisms but do not need to be concerned about the
interrupt problem--as for example, a user program with asynchronous
processes, which is 'blind' to interrupts, and which some monitor
systems view as a single 'job'.

The nature of "appropriate" synchronization primitives and mechanisms
for temporarily blinding the processor to interrupts (or interrupts in
a certain class) are highly dependent upon the nature of the processes
being used and the operating system, or lack of one, underlying the
BLISS~-10 program. As a consequence, no syntax for dealing with either
problem is included in the language; in any case, the amount of code
necessary for these facilities is quite small.

The co-routine user is well advised to read and understand the

material on the run-time representation of BLISS-10 programs contained
in Chapter 4.

Version 4 BLISS . 1-35 February 1974

Example

<l>

The coroutine mechanism described above is illustrated by
the following skeletal example.

BEGIN
OWN PA,PB,S1[100],S52[100];
FUNCTION A=
BEGIN LOCAL LA,X;

4. X=EXCHJ (PB,LA) ;

END;
FUNCTION B(Z)=
BEGIN LOCAL LB,Y;

5. Y=EXCHJ (.Z,LB) ;

END;
1. PA=CREATE A() AT S1 LENGTH 100 THEN EXIT;
2, PB=CREATE B(.PA) AT S2 LENGTH 100 THEN EXIT;
3. EXCHJ (.PA,O0);
END

Execution flow (corresponding to statement numbering)

Create a coroutine context for the function A, and store a
pointer to this context in PA.

Create a coroutine context for the function B and initialize
its one formal parameter to a pointer to an incarnation of A.
Store a pointer to the created context in PB.

Start A; the E6 parameter, in this case 0, is discarded on
the initial activation of a coroutine.

A is suspended as a result of the EXCHJ at the point Jjust
prior to the store operation. This suspension is exactly the
semantics if the EXCHJ were a function call. The EXCHJ, like
a function, has a value; its value equals the value returned
on reactivation of the coroutine. B is activated, and on its
first activation, the value LA is discarded.

B now reactivates A (.2 is a pointer to A). Suspension of B
occurs prior to the store. On the reactivation of A, the
value LB is stored into X in A.

Version 4 BLISS 1-36 February 1974

1.19 DECLARATIONS.

All declarations, except MAP and SWITCH, introduce names, each of
which is unique to the block in which the declaration appears; and
with two exceptions (i.e., STRUCTURE and MACRO declarations), the name
introduced has a pointer bound to it.

The declarations are:

decl::=routn-decl/
fnctn-decl/
strc=-decl/
bind=-decl/
macro-decl/
alloc~-decl/
map-decl/
label-decl/
un-decl/
ext=-fwd-decl/
swtch=-decl/
reqre~decl/

Before proceeding with a detailed discussion of the declarations, we
shall give an intuitive overview of the effect of these declarations.

1.19.1 Scope and the Concept of GLOBAL in a Block Structured Language

As in ALGOL, the concept of GLOBAL scope conflicts with BLISS-10 block
structure. This section attempts to delineate the lines of conflict,

The following types of identifiers will be classed under the general
heading GLOBAL, and the word GLOBAL as it appears below will refer to
this class unless specifically noted otherwise, An identifier is
considered. GLOBAL if it is declared in any of the following types of
declarations: .

GLOBAL

GLOBAL ROUTINE
GLOBAL BIND
GLOBALLY INDEXES
GLOBALLY NAMES

Whereas the BLISS-10 compiler distinguishes identifiers by using up to
the first 10 characters, limitations in the current DECsystem~10
loader prevent the loader from handling names which are over six
characters in length. As a result beginning with version 3 of
BLISS-10, the compller will\ flag the declaration of any GLOBAL name if
that GLOBAL name is identical in the flrst six characters to any other
previously declared GLOBAL name.

Bear in mind that the BLISS=-10 compiler is a single pass compiler. As

a result, the scope of a GLOBAL name extends from the point at which
it is declared as a GLOBAL through the end of the module, regardless

Version 4 BLISS 1-37 February 1974

of the block in which it is declared.

Ideally we would like to say that a name declared GLOBAL is treated as
if it were declared in an imaginary block external to the outermost
block of the module. This ideal could be realized if the BLISS~10
compiler were not a single pass compiler.

In any case, a name declared GLOBAL is available to the loader in
order to resolve external requests at load time. GLOBAL names and
routine names are the only non-system names within a BLISS-10 source
program that generate symbol table entries.

A name declared as a GLOBAL may be redeclared at lower block levels as
a non=GLOBAL in accordance with standard scope rules.

Examples follow in which all BLISS-10 source is omitted except for
BEGIN-END pairs and certain illustrative source lines.

BEGIN I!START OF MODULE

BEGIN
{X=.GLOB; A
- BEGIN
GLOBAL GLOB;
Scope Scope 2 OWN 0;
of of O END
GLOB
END
X=.GLOB B
1 END !OF MODULE

Note that in example 1 the scope of the GLOBAL name extends beyond the
block in which it is declared; whereas the OWN name obeys the
standard scope rules. At point (A) the reference to GLOB would result
in the generation of a warning message since GLOB has not yet been
declared. At (B) GLOB is declared.

"BEGIN
T BEGIN
GLOBAL GLOB;
- BEGIN
Scope of Scope of LOCAL GLOB
GLOBAL LOCAL i
_F END
END
4 END

In example 2, within the standard scope of the LOCAL declaration, all
references to GLOB will be to the LOCAL. Outside this scope
references to GLOB refer to the GLOBAL, Note again that the scope of
the GLOBAL extends beyond the block in which it was declared.

1.20 STORAGE (AN INTRODUCTION)

A BLISS-10 program operates with and on a number of storage
"segments". A storage segment consists of a fixed and finite number of
words, each of which is composed of a fixed and finite number of bits
(36) .

In practice a segment generally contains either program or data; if
the latter, it is generally integer numbers, floating point numbers,
characters, or pointers to other data. To a BLISS-=10 progran,
however, a segment merely contains a pattern of bits.

Segments are introduced into a BLISS-10 program by declarations,
called allocation declarations (alloc-decl), For example:

GLOBAL G;

OWN X,Y[51,2%;

LOCAL P[100];

REGISTER R1,R2;

ROUTINE F(A,B) = .A+.B;

Each of these declarations introduces one or more segments and binds
the identifiers mentioned (e.g., G, X, Y, etc.) to the name of the
first byte of the associated segment. (The ROUTINE declaration
(routn-decl) also initializes the segment named "F" to the appropriate
machine code.)

The segments introduced by these declarations contain one or more
words, where the size may be specified (as in LOCAL P[100]), or
defaulted to one (as in GLOBAL G;). The identifiers introduced by a
declaration are lexically local to the block in which the declaration
is made, with one exception - namely, GLOBAL identifiers are made
available to other, separately compiled modules. Segments created by
OWN, GLOBAL, and ROUTINE declarations are created only once and are

1-39

preserved for the duration of the execution of a program. Segments
created by LOCAL and REGISTER declarations are created at the time of
block entry and are preserved only for the duration of the execution
of that block. REGISTER segments differ from LOCAL segments only in
that they are allocated from the machine's array of 16 general purpose
(fast) registers. Re-entry of a block before it is exited (by
recursive routine calls, for example) results in the dynamic
allocation of LOCAL and REGISTER segments on each incarnation
(reentry) of the block.

There are two additional declarations whose effect is to bind
identifiers to names, but which do not create segments; examples are:

EXTERNAL S;
BIND Y2 = Y+2, PA = P+.A;

An EXTERNAL declaration binds one or more identifiers to the names
represented by the same identifier declared GLOBAL in another,
separately compiled module. The BIND declaration binds one or more
identifiers to the value of an expression at block entry time, At
least potentially, the value of this expression may not be calculable
until run time - as in 'PA = P+.A' above.

1.21 INTERLUDE 2

We have reached the point where we must discuss one of the most
important BLISS-10 concepts--that of structures. Understanding the
structure mechanism directly involves the complete declaration syntax
and indirectly the understanding of BLISS=-10 routines. Our exposition
will proceed as follows

1. Discuss BLISS-10 routines and functions;
2. Discuss structures, omitting complete syntactical details;

3. Discuss complete declaration syntax.

1.22 FUNCTIONS AND ROUTINES

Fctn=decl: :=FUNCTION name (name-1lst)=E/
FUNCTION name=E/
ROUTINE name (name-lst)=E/
ROUTINE name=E/
GLOBAL ROUTINE name (name-lst)=E/
GLOBAL ROUTINE name=E

The FUNCTION declaration (fctn-decl) defines the name to be that of a
potentially recursive and re-entrant function whose value is the
expression E. The syntax of a normal function call is

fctn=-call : :=fctn-expr (exp~-lst) /fctn-expr ()

fctn-expr ::=literal/name/cmpnd=-expr/block/
name [expr-1list]

expr-1lst ::=E/ expr-l1lst,E

1-40

where fctn-expr is a primary expression, and must evaluate, either at
compile time or runtime, to a name which has been declared as a
FUNCTION. The names in the name-lst of the declaration define
(lexically 1local) names of formal parameters whose actual values on
each incarnation are determined by the expr-lst at the call site. All

parameters are implicitly call-by=-value; but notice that
call-by-reference is achieved by simply presenting addresses at the
call site. Parentheses are required at the call site even for a

routine or function with no formal parameters since the name on its
own is simply a pointer to the ROUTINE and not a request for an
invocation. Extra actual parameters above the number mentioned in the
namelist of the FUNCTION (or ROUTINE) declaration are always allowed;
however, too few actual parameters can cause erroneous results at run
time. (1) A ROUTINE differs from a FUNCTION in having an abbreviated
and hence faster prolog. Restriction: a ROUTINE may not refer
directly to 1local variables declared outside it, nor may it call a
FUNCTION. '

To eliminate possible misunderstanding on the BLISS-10 parameter
passing mechanism for those readers familiar with other higher level
languages, and to make the process explicit for others, we need to
examine it in more detail.

BLISS-10 FUNCTIONS have one memory location set aside for each formal
parameter declared (allocated dynamically on the stack). When a call
on the function occurs, an evaluation of the actual parameters takes
place, and the value resulting from expression evaluation becomes the
contents of the 1location in the routine established for the
corresponding formal. Because every expression in BLISS-~10 computes a
value, and because the value thus computed in a routine call
establishes the contents of the formal parameter, we say that all
BLISS~10 calls occur as calls-by-value.

Examples:

<1> !The routine ARITHSUM calculates the arithmetic
fsum of the first n integers.
ROUTINE ARITHSUM(N)=(.N* (.N+1))/2

Call:
Y=ARITHSUM(10)

The call mechanism evaluates the actual parameter and deposits it
in the location, N, in the called routine; then invokes the
routine. The routine then operates on the passed value. Note
the formal, N, has the dot operator applied.

Call:
Y=ARITHSUM (A) {A names the location of the
largument

(1)Note: If extra parameters are presented, and say, n are expected,
then the rightmost n actual will correspond to the formal parameters;
if too few actual parameters are presented they will correspond to
the rightmost n formals. See Chapter 4 for details of the access
mechanism,

<2>

In this case A, as a value, becomes the address of A and the call
mechanism deposits this value into the location reserved for the
formal, N. The value returned then equals the arithmetic sum of
the address treated as an integer--hardly the outcome intended.
To achieve the desired result requires the call:

Y=ARITHSUM(.A)

This deposits the contents of A into the location of the formal,
No

The above example amplifies the strict call-by=-value parameter
passing in BLISS-10. Specifically, we have a routine with a list
of formal names and for each formal name a location. At the call
site, each actual parameter (any expression except a block) is
evaluated and the contents of the corresponding formal receives
the value. The caller, using the requirements of the routines,
sets up the call to effect the proper initialization of the
formals.

The occurrence of a primary expression followed by a parameter
list enclosed in parentheses triggers a function call; an
identifier by itself, even one declared as the name of a routine
merely denotes an address.

The value of a routine call results from the execution of the
body of the routine. Consider:

BEGIN
GLOBAL X,Y,Z;
ROUTINE F(A,B)=(.A=.B);
Y=5;
Z=F;
(.2) (X,.Y);
X
END

This block has as its value, 5.

Z=F stores the address of F into Z but does not trigger a call.
The expression

(.2) (X,.Y);

is actually a routine call which results in storing the contents
of Y into X. It's worth emphasizing thiat a routine call need not
explicitly name a routine by its associated identifier, only that
the primary expression evaluate to a routine segment which can
properly accept the arguments.,

Version 4 BLISS 1-42 February 1974

1.22.1 GLOBAL

A routine name is like an OWN name in that its scope is limited to the
block in which it is declared and its value is already initialized at
block entry. The prefix GLOBAL changes the scope of ' the routine to
that of the outer block of the program enveloping all the modules.
Note that this inhibits a GLOBAL routine from access to register names
declared outside it.

1.22.2 EXTERNAL and FORWARD Declarations

ext-fwd-decl : :=EXTERNAL name-par=-lst/
FORWARD name=-par-lst

name=-par-=lst::= name-par / name=-par-lst, name-par
name=-par: := name (E) / name

EXTERNAL and FORWARD each tell the compiler how many parameters, given
by E(l), are expected by an undeclared routine name. FORWARD is for
routines declared later in the current block; and EXTERNAL is for
routines from another module. The compiler permits the number of
actual parameters in a routine call to be greater than, equal to, or
less than the number of formals declared. This argument may be
entirely omitted.

1.23 DATA STRUCTURES (AN INTRODUCTION)

Two principles were followed in the design of the data structure
facility of BLISS-10:

1. The user must be able to specify the accessing algorithm for
the elements of a structure.

2. The representational specification and the . specification of
algorithms which operate on the information represented must
be separated in such a way that either can be be modified
without affecting the other.

The definition of a class of structures (i.e., of an accessing
algorithm to be associated with certain specific data structures) may
be made by a declaration of somewhat the following form:

STRUCTURE name [strc=frml-lst]=E

Particular names may then be associated with a structure class (i.e.,
with an accessing algorithm) by another declaration of somewhat the
same form:

MAP strc-name name-lst
consider the following example:

<l> BEGIN
STRUCTURE ARY2[I,J]=
<ARY2+ (,I=-1)*10+(.J~-1)
OWN X[100],Y[100],2[100];
MAP ARY2 X:Y:2;

X[.A,.B] = .Y[.B,.Al;

END;

In this example we introduce a very simple structure, ARY2, for two
dimensional (10x10) arrays, declare three segments with names X, Y,
and Z bound to them, and associate the structure class ARY2 with these
names. The syntactic forms X[El,E2] and Y{E3,E4] are valid within
this block and denote evaluation of the accessing algorithm defined by
the ARY2=-structure declaration (with an appropriate substitution of
actual for formal parameters).

The access algorithm on the right of the equal sign in a STRUCTURE
declaration is just another expression and it computes a value.
Although they are not implemented in this way, for purposes of
exposition one may think of the STRUCTURE declaration as defining a
routine with one more formal parameter than is explicitly mentioned.
For example, the STRUCTURE declaration in the previous example.

STRUCTURE ARY2([I,J] = (.ARY2+ (., I=-1)*10+(.J=1));
conceptually is identical to the ROUTINE declaration
ROUTINE ARY2(FO0,Fl,F2) = (,FO+(.F1l=1)*10+(.F2-1)); -

The expressions X[.A,.B] and Y[.B,.A] correspond to «calls on this
routine - i.e., to ARY2(X,.A,.B) and ARY2(Y.,B,.A).

Since in a STRUCTURE declaration there is an implicit, unnamed formal
parameter, the name of the structure class itself is used to denote
this zero=-th parameter. This convention maintains the positional
correspondence of actuals and formals. Thus, in the example above,
.ARY2 denotes the value of the name of the particular segment being
referenced, and X[.A,.B] is equivalent to:

(X+(.A=1)*10+(.B~1))

The value of this expression is a pointer to the designated element of
the segment named by X. Remember, routines have locations assigned to
each of their formals. To continue the analogy three locations ARY2,
I, J, would exist, and on call invocation, ARY2 would contain the
value of X, I the value of .A, and J the value of .B as shown in
figure 1-1l4. Readers should view the above example relating STRUCTURES
and ROUTINES as a pedagogical aid and not as a literal description of
an implementation since valid STRUCTURE accesses can be constructed
where the analogy does not hold.
ACCESS SITE

v IMAGINARY ROUTINE X ACCESS
ROUTINE ARY2()=

ARY2

INDEX

INDEX

@ >
. -

Figure 1-14
Imaginary ROUTINE to Describe a STRUCTURE Access

In the following example the STRUCTURE facility and BIND declaration
have been used to encode a matrix product (Z(I,J) = X*Y (vector
multiplication)). In the inner block the names XR and YC are bound to
pointers to the base of a specified row of X and column of Y
respectively. These identifiers are then associated with structure
classes which allow one-dimensional access.

BEGIN
STRUCTURE ARY2[I,J]=(.ARY2+(.I-1)*10+(.J-1)),
STRUCTURE ROW[I] = (.ROW+(.I-1)),
STRUCTURE COL[J] = (.COL+(.J=1)*10);
OWN X[100],Y[100],2([100];
MAP ARY2 X:Y:2;

INCR I FROM 1 TO 10 DO !Starts a new row
BEGIN BIND XR=X[.I,1]], Z2R=%[.I,1];
MAP ROW XR:ZR;
INCR J FROM 1 TO 10 DO !Steps to next column
BEGIN _
REGISTER T; BIND ¥C=Y[l,.J]; MAP COL YC;
T = 0;
IPerform vector multiply to establish
lone element of Z
INCR K FROM 1 TO 10 DO T = T+,XR[.K]*.,YC[.K];
ZR[.J] = .T;
END;
END;

END

Version 4 BLISS 1-45 February 1974

Notes:
The XR BIND establishes a row pointer in X
The YR BIND establishes a column pointer in ¥
The ZR BIND establishes a row pointer in 2
T accumulates the vector multiply for a given row and column
ZR[.J] establishes a unique element in Z; ZR via the BIND selects
the row and .J the element within the row. Figure 1-15 shows
memory at the beginning of the calculation for % (2,3)

YR
‘ /—2(2,3)

/

xr—=||q ZR-»| [

B \ \

Ji1 J2 J3

¥

¥y

ROW 1 ﬂA ROW 2 -k ROW 3

Figure 1-15
Memory at the Beginning of Calculation z(2,3)

1.24 THE ACTUAL DECLARATION SYNTAX

The example declarations in the preceding two sub-sections are valid
BLISS=10 syntax; however, they do not reflect the complete power of
the declarative facilities. The following sections (1.24-1.31) are
definitive presentations of the actual syntax and semantics of these
declarations. The actual declarations presented in the following
sections differ from the examples given previously in that they admit
greater interaction between the allocation declarations and structure
declarations. Indeed, allocation declarations and structure
declarations always interact either explicitly or by default, For
example, the declaration:

OWN X[100]
interacts with a default structure of the following form:

STRUCTURE VECTOR{I]}=[I] (.VECTOR+.I)<0,36>;
The allocation declaration, OWN X[100], will result in the allocation
of 100 words permanently allocated to the block in which it appears.
Let's examine how this simple declaration interacts with the default

structure declaration. To do this we neced to examine the detailed
declaration syntax for structures.

Version 4 BLISS 1

46 February 1974

1.24.1 Structures

strc~decl: :=STRUCTURE name strc-fml=-lst=strc-size E
strc=-fml-lst::=[name-1lst]/empty
strc-size::=[E] /empty

In the structure of 1.24 we can make the following equivalences:

name==VECTOR
strc~fml=lst==[I]
strc-size==[I]
E==(,VECTOR+.I)<0,36>

Given these components of a structure declaration, how does the
interaction between structure and allocation declarations occur?

Structure declarations serve to define a class of data structures by
defining an explicit access algorithm, E, to be used in accessing
elements of that structure. The class of structures introduced by
such a declaration is given a name which may be used as the structure
name in an allocation declaration or MAP declaration.

The accessing algorithm may contain declarations or blocks. However,
the occurrence of a block will force compilation of the structure as
if it were a ROUTINE. '

The names in the structure formal 1list (strc-fml-lst) are formal
parameter identifiers which are used in two distinct ways:

1. Dotted occurrences of the formal names positionally correlate
with the values of expr-lst elements at the site of a
structure access. (Recall that a structure access is
syntactically <name>[expr-lst]}.) These are referred to as
access formals and access actuals respectively.

2. Undotted occurrences of the formal names positionally
correlate with the values of the expr-lst elements at the
site of the declaration which associated the variable name
with the structure class, These are referred to as
incarnation formals and incarnation actuals respectively.

In addition to the explicit formal names, the structure name in dotted
form is used as an access formal to denote the name of the specific
segment being accessed (that is, to denote the pointer to the base of
the segment).

In the declaration OWN X{[100]

X==name
100==expr-1st

and the interaction between the default structure, VECTOR, and X as
follows:

The incarnation actual, 100, replaces all undotted occurrences of the

incarnation fommal, I, which in turn determines the segment size
requirement for the structure.

Version 4 BLISS 1-47 February 1974

An access of the structure, like
Y=X[10]

causes replacement of dotted occurrences of the formal parameters’
(access formals) with access actuals, in this case 10. The name
itself, namely X, replaces the name VECTOR to provide a base pointer
to the structure.

The default structure may be defined by the STRUCTURE declaration.
Defining a structure with the name "VECTOR" causes that structure to
become the default for the scope of the name. Note also that if the
compiler is stopped by the 4C4C procedure and then STARTed, the
default VECTOR structure is not redefined. In other words, if a
program redefines the VECTOR structure, and the user +C+C STARTs while
VECTOR has been redefined, it will retain the user defined structure
until after redefined explicity within the program, or re-initialized
by the "R" or "RUN" monitor commands. In this instance, the +CtC
START procedure is not identical to the "R BLIS10" sequence.

This example shows the interaction of a simple allocation declaration
with a syntactically complete structure declaration; it remains now
to discuss the complete syntax of allocation declarations,

Limitation:

The compiler will not accept more than 15 formal parameters in a

structure declaration. The appearance of more than 15 parameters will
result in a fatal syntax error.

1.25 MEMORY ALLOCATION
To simplify our description we present two forms of the allocation
declaration. The syntax used to describe statements in other DEC
manuals (like PDP=-11 DOS) and BNF.
Allocation Declaration

OWN

LOCAL

GLOBAL alloc=-decl-arg-list

EXTERNAL
REGISTER

where

alloc-decl=arg=lst::=name:name...[eXpr,exXpr...l/
alloc-decl-arg-lst,name:name...[expr,expr...]

struc-name: :=name/empty

Version 4 BLISS 1-48 February 1974

BNF Description

alloc~decl::=alloc-typ msid-lst
alloc-typ::=OWN/LOCAL/GLOBAL/EXTERNAL/REGISTER
msid=1lst::=msid-elmt/msid=-elmt,msid-1lst
nmsid-elmt::=strc sized=-chnks
strc:s=strc-name/empty
size-chnks::=size~chnk/size~chnk:size-chnks
size~ chnk::=id-chnk/id-chnk [expr-1st]
id=-chnk: :=name/name: id-chnk

As with most other declarations, the allocation declarations introduce
names whose scope is the block in which the declarations occur.
REGISTER and LOCAL declarations cause allocation of storage at each
block entry (including recursive and quasi-parallel ones), and
corresponding de-allocation on block exit. Storage for OWN and GLOBAL
declarations is made once (before execution begins) and remains
allocated during the entire execution of the program. EXTERNAL
declarations do not allocate storage, but cause a linkage to be
established to storage declared with the same name in a GLOBAL
declaration of another module. Space for allocation is taken from
core for LOCAL, OWN, and GLOBAL declarations, and from the machine's
high speed registers for REGISTER declarations.

The initial contents of allocated memory is not defined and should not
be presumed.

Each msid-elmt defines a set of identifiers and simultaneously maps
these identifiers onto a specified structure. (If the structure part
is empty, the default structure VECTOR is assumed.) Each sized chunk
(sized-chnk) allows, by interaction with the associated structure of
the msid-elmt, specification of the size of the segment to be
allocated, and the values of the undotted structure formal to be used
in accessing an instance of the structure.

If present, the structure size, i.e., [E], is used to calculate (from
the incarnation actuals) the size of the segment to be allocated by an
allocation declaration. After substitution of incarnation actuals,
this expression must evaluate to a constant at compile time. If the
structure size is omitted, it defaults to the product of the structure
formals.

The example <1> in section 1.23 of a two-dimensional array might now
be written:

<1l> BEGIN
STRUCTURE ARY2([I,J]l=
=[I*J] (ARY2+ (I=1)*J+(.J=~1));
OWN ARY2 X:Y:Z[10,10];

X[.A,.B] = .Y[.B,.Al;

END;

Version 4 BLISS 1-49 February 1974

Here the mapping occurs in the OWN declaration and the segment size
determination occurs by evaluating the access formals [I*J] after
substituting the access actuals [10,10] and performing the size
computation, In addition to the general svntax described above, for
REGISTER declarations only, the following is permitted:

REGISTER spec-reg~lst
where

spec-reg-lsts::=spec-reg/spec-reg~lst,spec-reqg
spec~reg::=struc=-name size=E
size: :=[expr-lst]/empty

The expression, E, must evaluate to a constant at compile time such

that 0 LEQ E LEQ 15 and the E(th) register has been reserved in the
module head (see section 3.5)., Thus, for example, the following
declaration is legal:

REGISTER R=5,RX=10;
and will cause the specific registers 5 and 10 to be given names 'R'

and ‘'RX', respectively. This mechanism may, for example, be used for
global register communication between modules.

More Examples:
<2> LOCAL A,B,C;

Dynamically allocates 3 locals on the stack and binds the
names A,B, and C to them.

<3> OWN A:B:C[3]

Allocates 9 words, binds the names A, B, and C to the first,
fourth and seventh word, respectively and maps the default
"VECTOR" structure onto them.

<4> STRUCTURE BITVECTOR[I]=[I4(=5)+1]...;
GLOBAL BITVECTOR A:B[300]:C[200],X[20];

Allocates 4 chunks of global storage with sizes (300/32+1),
(300/32+1), (200/32+1) and 20, respectively, binds the names
A, B, C and X to them, and maps BITVECTOR onto A, B, and C
and then default VECTOR structure onto X, making the names
A, B, C and X globally available to other loaded modules.

Version 4 BLISS 1-50 February 1974

1.26 MAP DECLARATION
map-decl: :=MAP msid~-lst/MAP link-name msid-lst

The MAP declaration is syntactically and semantically similar to an
allocation declaration except that no new storage or identifiers are
introduced. The purpose of the MAP declaration is to permit
redefinition of the structure and expr-lst information associated with
an identifier (or set of identifiers) for the scope of the block in
which the MAP declaration occurs.

Examples
<1l> MAP A:B[1l0];

Maps the default structure VECTOR onto A and B, associating
10 with the first incarnation formal.

<2> MAP A;

Maps the default structure VECTOR onto A, associating the
default value 1 with the first incarnation formal.

<3> MAP SOMESTRUCT A:B:C,
ANOTHERSTRUCT X[3]:Y:2[5,4]

SOMERSTRUCT is mapped onto A, B, and C, with default
incarnation actuals of 1; ANOTHERSTRUCT is mapped onto X, Y
and Z. Incarnation actuals 3 and (default) 1 are associated
with X; 5 and 4 with both Y and Z,

NOTE

In the above, A, B, C, X and Y must have
been declared previously.

1.27 BIND DECLARATIONS

bind-decl::=BIND equ-lst/GLOBAL BIND equ~lst
equ~lst::=equ/equ, equ-lst
equ::=nsid-elmt=E

A BIND declaration introduces a new set of names whose scope 1is the
block in which the BIND declaration occurs, and binds the value of
these names to the value of the associated expressions at the time
that the block is entered. Note that these expressions need not
evaluate at compile time.

Syntax for GLOBAL BIND is the same as that for the ordinary BIND
declaration with two exceptions. The word GLOBAL precedes the word
BIND and all expressions to which names are bound must be constants at
compile time.

If an expression to be globally bound is not a compile time constant,
a warning message will be generated and the bind will be treated as an

Version 4 BLISS 1-51 February 1974

ordinary non-global bind. The effect of the GLOBAL BIND is to

generate a symbol with an associated 36 bit value which is available
to separately compiled modules.

The user is warned that although BLISS=-10 generates 36 bit values for
GLOBAL BINDs, current loader limitations may result in the use of only
the right half of the value at load time,

Example

<l> BIND ONE=1l,CTWO=.2<0,36>,NAME=ALOCAL,
Y[5]1=QQ[20] ,R:L:M=7;

Future references to:

"ONE" will be equivalent to using "1%;

"R", "L", and "M" to using 7;

"NAME" to using "ALOCAL";

"CTWO" to the contents of register 2 at the time the
bind is executed;

"Y[E]" to "QQ[20+El]" (assuming QQ was also mapped with
the vector structure).

NOTE

The Y[5] only indicates that the default
vector structure should be mapped with
incarnation actual of 5 =~ not that of
(Y+5)=00[20].

1.28 LABEL DECLARATION

labl=decl::=ILABEL
labl-1st labl-lst::=name/name, labl-lst

Labels are used solely in conjunction with the LEAVE expressions.
Each name to be used as a label must be so declared at the head of the
block containing that usage. Any specific label may be used only once
within the lexical scope of its definition.

1.29 REQUIRE DECLARATION

reqre-decl : :=REQUIRE file-spec

file-spec s:=file-name-spec/device:file~name~-spec
device ¢ :=name

file-name-spec ::=file-name/file-name[ppn-spec]
file-name : :=name/name.name

ppn=spec ¢ :=DECppn

DECppn s:=octal,octal

The REQUIRE declaration instructs the compiler to read the text of the
file named by the <file-spec> as if that text had been copied into the
source file immediately following the semicolon which follows the
declaration. A REQUIREd file may in turn REQUIRE another file to a
total depth of six REQUIREd files.

Version 4 BLISS 1

52 February 1974

A word about the defaults for omitted parts of a <file-spec>: <device>
is defaulted to DSK, [<ppn-spec>] is defaulted to the
project=-programmer number of the job which is running the compiler,
and omitted parts of a <filename> are defaulted to blank,

The following restrictions should be noted:

1. Everything between the semicolon which follows a REQUIRE
declaration and the next carriage return will be ignored.

2. Only the first six (six, three) characters of the <name>
given for a device (file, extension) will be used. These
names should refer to existing devices and files.

3. The <ppnspec> should refer to a valid account number on the
system being used.

4., Recursive use of REQUIRE is illegal as a result of the depth
restriction,

1.30 MACROS

In order to facilitate program readibility and modifiability, a macro
system is embedded in BLISS-10. The system allows nested macro
definition as well as iterative and recursive forms of evaluation.

1.30.1 sSyntax for Macro Declarations

mac-decl: :=MACRO dfn=1lst

dfn-1lst::=dfn/dfn-1lst,dfn

dfn: :=name(name-1lst)=strng-no=-$ $/
name=strng-no-3$ $

The essential function of the macro system is to replace the macro
name and 1its actual=-parameter list (wherever the name occurs within
the scope of the macro definition in the program) by its body, with
actual-parameters substituted for formals. The body is considered to
be a string of "atoms"--names, literals and delimiters--and is
therefore independent of editing symbols--blanks, CR,LF, and BLISS=-10
comments=-once the atoms are determined at macro declaration time.
Atoms are the smallest recognizable syntactic elements in the BLISS=-10
language.

The format of the macro call is simply the macro-name followed by the
bracketed actual-parameter list. The brackets must be the pair:)
and the actual-parameters must be separated by commas. The actual
parameters themselves may be arbitrary strings of atoms; however,
occurrences qQf the brackets: ¢, [, <>, and components of a
parameter must Dbe properly balanced and nested. All macros in
actual-parameter lists are expanded bhefore formal/actual binding; we
can say BLISS=-10 expands macros from the inside out.

Version 4 BLISS 1-53 February 1974

A balanced string is any string for which the number of right brackets
",", "l", or ">") in the string equals or exceeds the number of
corresponding left brackets. This includes the null string, A
balanced string is associated with the formal parameter in the
corresponding ordinal position in the definition. Caution: "(" is
not a balanced string; there is no matching close parenthesis.

Macros effect a text substitution process, involving a definition and
a call. The actual parameters in the call serve as the 'working text'
for formal parameters in the definition and, on call, the definition
serves as a template for a text substitution process resulting in a
macro expansion.

Note that

1. "extra" balanced strings will be simply ignored, but parsed
as described above.

2. Null balanced strings are accepted.

3. The macro call may present fewer balanced strings than the
definition, in which case the null string will be used for
the "missing" arguments,

4, A call must have a balanced string list if the definition had
a namelist.

The expanded string from a macro replaces the macro call in the
program prior to lexical processing, and scanning resumes at the head
of this string. Hence macro calls may be nested. Indeed, parts of a
"nested" call may come from the actual parameter(s) of the containing
macro, from the body of the containing macro or even from the text
following the containing macro.

As with other declarations, macros have a scope given by the block in
which they are defined - with this exception: any macro being
expanded at the end of a block will, in effect, be purged, but its
expansion will run to completion. This might occur, for example, if a
macro contained an END as in:

BEGIN
MACRO QQSV=END B«"TQ" $;
QQSV

END

This may lead to anomalous behavior depending on the specific program.

l EXAMPLES :

Macros may be used to provide names to bit fields so as to improve
readability.

MACRO EXPONENT = 27,
MACRO MANTISSA = 0,2
MACRO SIGN = 35,1 $;
LOCAL X;

X<SIGN>+0; X<EXPONENT>+27; X<MANTISSA><.I;

8
7

~ we

$
$

Macros may be used to extend the syntax in a limited way.

MACRO NEG = 0 GTR §;
MACRO UNLESS (X)=IF NOT (X) $;

Macros may be used to effect in-line coding of a function.
MACRO ABSOLUTE (X)=BEGIN REGISTER TEMP;
IF NEG(TEMP+«X) THEN -,.TEMP ELSE .TEMP END §$;

! HERE THE ACTUAL PARAMETER SUBSTITUTED FROM X MAY NOT
! INCLUDE THE NAME TEMP,

1.31 UNDECLARE DECLARATION
un=-decl: :=UNDECLARE name-lst

The identifiers in the name-lst become undefined within the scope of
the declaration.

1-55 February 1974

CHAPTER 2
ADDITIONAL LANGUAGE FEATURES

2.0 SPECIAL LANGUAGE FEATURES

The previous chapter described the basic features of +the BLISS-10
language. In this chapter we describe additional features which are
highly machine and implementation dependent.,

2.1 SPECIAL FUNCTIONS

A number of features have been added to the basic BLISS-10 language
which allow greater access to the PDP-10 hardware features. These
features have the syntactic form of function calls and are thus
referred to as “Special Functions". Code for Special Functions is
always generated in-line. The names of all special functions are
reserved words.

2.2 CHARACTER MANIPULATION FUNCTIONS

Nine functions have been specified to facilitate character (any list
of ordered bytes) manipulation operations. They are:

SCANN (AP) COPYNN (APl, AP2)

SCANI (AP) COPYNI (APl, AP2)

REPLACEN (AP, E) COPYIN (APl, AP2)

REPLACEI (AP, E) COPYII (APl, AP2)
 INcP (aP)

For each of these E is an arbitrary expression, and AP is an
expression whose value is a pointer to a byte pointer. The second of
these byte pointers is assumed to point to a character in a string.

SCANN (AP) ~"is a function whose value is the
character ..AP.

SCANI (AP) is like SCANN except that, as a side
effect, the string pointer is set to
point at the next character of the
string before the character is scanned.
T.e. is equivalent to
(INCP (AP) ; SCANN (AP))

REPLACEN (AP, E) is a function whose value is E and which
as a side effect, replaces the string
character by E. Equivalent to .AP=E.

REPLACEI (AP, E) is similar to REPLACEN except that the
string pointer is set to point at the

Version 4 BLISS 2-1 February 1974

next character of the string before the
value of E is stored. Equivalent to
(INCP (AP) ; REPLACEN (AP,E))

COPYNN (APl, AP2) these functions are similar in

COPYNI (APl, AP2) that they each effect a copy

COPYIN (APl, AP2) of one character from a source

COPYII (APl, AP2) string (pointed at by .APl) to a

INCP (AP)

destination string (pointed at by .AP2).
However, COPYNN advances neither
pointer, while COPYNI advances .AP2,
COPYIN advances +AP1, and COPYII
advances both., In each case the pointer
is advanced before the copy is effected.
The value of each function is the
character that is copied.

advances .AP to point to the next
character in the string. This function
has the value zero.

Suppose that a string (of 7-bit ASCII characters) is stored in memory

beginning at 1location

S. The string is terminated by a null (zero)

character. The following skeletal code will transform it into a
string of 6-bit (SIXBIT) characters with blanks deleted:

BEGIN

REGISTER P7,

Pe, C;

P7 « (s8-1) <1, 7>; P6 +« (S-1) <0,6>;
WHILE (C « SCANI (P7)) NEQ 0 DO
IF .C NEQ " " THEN REPLACEI (P6, .C=#40);

END;

2.3 MORE SPECIAL FUNCTIONS

1. SIGN(E)==

2, ABS(E)==

3. FIRSTONE (E)==

4., OFFSET (name) ==

Version 4 BLISS

-1 if E < O
0 ifF E=0
+1 if E > 0
E1if E > 0
Eif E =0
-E if E < O
-1 if E=0

number of zero-bits to the left of the first
one-bit in the value of E otherwise.

36 bit value of the stack offset of the
argument (a local or formal symbol name) with
respect to the stack address to which FREG 1is
intialized wupon routine or function entry.
Any other type argument to the OFFSET function
will generate a warning message (#422) and
OFFSET will return the value 0.

2-2 February 1974

2.4 MACHINE LANGUAGE

It is possible to insert DECsystem=-10 machine language instructions
into a BLISS-10 program in the syntactic form of a special function

OopP (El1, E2, E3, E4)
where

oP is one of the DECsystem-10 machine language mnemonics
(see table below).

El is an expression whose least significant 4 bits will
become the accumulator (A) field of the compiled
instruction. This expression must yield a value at
compile time of a register name or a literal.

E2 is an expression whose least significant 18 bits will
become the address (Y) field of the compiled
instruction.

E3 is an expression whose least significant 4 bits will
become the index (X) field of the compiled instruction.

E4 is an expression whose least significant bit will

become the indirect (I) bit of the compiled
instruction. E4 must evaluate to a constant at compile
time.

(A table of machine language instruction mnemonics follows. Defaults
for E1-E4 are 0.)

The 'value' of these machine language instructions is uniformly taken
to be the contents of the register specified in the accumulator (A)
field of the instruction. (This makes little sense in a few cases,
but was adopted for uniformity.)

In order for the compiler to conserve space during compilation, the
mnemonics for the machine language operators are not normally
preloaded into the symbol table. Therefore, in order to wuse this
feature of the language, it is necessary for the programmer to include
one of the following special declarations

mach=-decl ::= MACHOP mlist / ALLMACHOP
mlist ::= name ='e / mlist , name = e

in the head of a block which embraces occurrences of these special
functions.

NOTE
The e's in an mlist must be +the high
order nine bits of the actual values of

the machine operation and must evaluate
at compiler time.

Version 4 BLISS 2~3 February 1974

DECsystem=10

Instruction Mnemonics

E ADD
e Negative SUBract
Mov|® & o MULtiply
€ Magnitude 1o AC Integer MULtiply ~
¢ Swapped [mmediate to ac DIVide J Immediate
no effect to 1;6;_“0")’ Integer DIVide to Memory
i i t 1
Half word ﬁ%ﬁ"} © E%’h(| (Z)nes o and Roundd | to Both
t Eeros » Floating AdD ~
xtend sign Floating SuBtract Long
BLock Transfer Floating MultiPly to Memory
EXCHange Ac and memory Floating DiVide to Both
Floating SCale
use present poinler, LoaD Byte into ac Double Floating Negate
Increment pointer DePosit Byte in memory Unnormalized Floating Add
Increment Byte Pointer
PUSH downl { ~
POP up and Jump
Zeros
Ones
Ac
SET to Memory
Complement of Ac
Compl tol M .
omplement of Memory AC 1o SubRoutine
~ Liol 2¢ Immediate and Save Pe
AND with Complement of Ac Memory and Save Ac
welusive OR § | with Complement of Memory [7| Both and Restore Ac
Complements of Both if Find First One
Inclusive OR on Flag and CLear it
eXclusive OR Jumpd ©0 OVerflow (JECL 10,)
EQuiValence PYon CaRrY 0 (JFCL 4
on CaRrY 1 (JFCL 2)
never on CaRrY (JFCL 6.)
SKIP il memory Less on Floating OVerflow (JFCL 1,)
JUMP if ac T Equal and ReSTore
Add One 10 memory and Skip] . Less or Equal and ReSTore Flags (JRST 2,)
. . o if o {and ENable pr channel (JRST 12))
Subtract One from | { ac and Jump Always
Greater - HALT (JRST 4,)
B {Immediate .
Compare Ac and skip il ac Greater or Equal
with Memory {
Not equal eXeCuTe
Add One to Both halves of ac and Jump if PNUS“WC
egalive DATA
BLocK In
Arithmetic. SHift Out
Logical SHift ‘Curnbmcd CONditions in and Skip if all masked bits Zero
ROTate P\ some masked bit One
with Direct mash never

Test ac and skip

Right with £ set masked bits to Ones

No modification
with Swupped mask set masked bits to Zeros
Lett with £ Complement masked bits

if all inasked bits Equal 0
il Not all masked bits equal 0
Always

Symbol table space for these names is released when the block in which
the declaration occurs is exited. Any name declared in a MACHOP
declaration and not followed = immediately by an open paren will
generate a fatal syntax error., :

NOTE

The description of fields E2, E3, E4
needs some simplification in the case
where E2 is a name. The compiler
attempts to produce a single instruction
for the machine language expression
whenever possible, For example,
consider the expression MOVEM(5,A) where
A is a 1local variable. The compiler,
noting that the index register has been
defaulted to zero, produces a 22 bit
address using the F register for the
index register field of the instruction.

Note also that E4 must be a constant at
compile time.
2.5 COMMUNICATION WITH THE MONITOR

Additional special forms may be introduced to facilitate communication
with particular monitors.

CHAPTER 3
SYSTEMS FEATURES

3.1 COMPILATION CONTROL

The actions of the compiler with respect to a program may be
controlled by specifications:

1. In the initial input string from a TTY,
2. In the module head, or
3. By a special switches declaration.

Not all actions can be controlled from each of these places, but many
can.

Some actions once specified have a permanent effect while the effect
of others can be modified (such as listing control). The table in
section 3.5 gives a 1list of various compiler actions and the
associated switch and/or source language constructs which modify those
actions., This list is subject to change.

3.2 COMMAND SYNTAX

3.2.1 Normal Use
The general format of the command string is:

OBJDEV: FILE.EXT,LSTDEV: FILE.EXT <« SORCDEV:
FILE.EXT,...,SORCDEV:FILE ,EXT

The OBJDEV: FILE.EXT and/or LSTDEV: FILE.EXT may be omitted with the
implication that the corresponding file is not to be generated. The
.EXT may be omitted on any of the file specifications and the
following defaults assumed:

object file: -REL
listing file: .LST
source file: .BLI, .B10. (null extension)

The three source file defaults are all tried in the order given if no
extension is explicitly typed for a source file. To specify a null
file extension, a period must by typed after the filename; otherwise,
a default extension will be supplied. Switches may be included in the
command string as either /x or /-x (where x is a letter). A switch of
the form /-x has the opposite effect of a switch of the form /x (for
the same x). A switch may be included anywhere; however, some
switches particularly affect the file with which they appear (and
usually all those to its right).

Version 4 BLISS 3-1 February 1974

Project-programmer numbers (PPN's) may be specified in one of two
ways: 1if a PPN appears to the left of a file name, it applies to that
file and all files to its right (unless changed by having a different
PPN appear to the left of another file later); if it appears to the
right of a file name, it applies only to that file, A PPN to the
right of a file name always applies to that file, even if a PPN has
appeared to the left of an earlier file name.

3.2.2 Use From CCL

If the COMPIL CUSP has been modified to allow BLISS-10 programs to be
processed, then the COMPILE, EXECUTE, LOAD, and DEBUG commands may be
used. A few words of warning, however, are necessary.

l. The BLISS-10 cross-reference switch (/C switch in the command
string) is invoked by the /CREF switch, However, BLISS=-10
directly generates its own cross-reference listing.
Therefore, further processing with CREF is unnecessary and
will produce unpredictable results,

2. The name of the REL file in the "+" construction is the name
of the last file given, i.e., "A+B+C" generates files "“C.LST"
and "C.REL"., Some BLISS-coded systems use a declaration file
which forms an outer block, and an "end" file to close the
outer block, with the desired programs sandwiched between,
e'gu r

"BEGIN+H1DECL+END"

The .REL and .LST files will be END.REL and END,LST, To
obtain the proper results, use the "=" construction, i.e,

"H1DECL=BEGIN+H1DECL+END"

3.3 MODULE HEAD
As explained in 1,8 the syntax for a module is

module ::= MODULE name (parms) = block ELUDOM
The <parms> field may contain various information which will affect
the compiler's action with respect to the current program. The syntax
of this field is

parms ::= parm / parm,parms

The allowed forms of <parm> are given in tabular form in section 3.5
under the column headed Module Head.

Version 4 BLISS 3-2 February 1974

3.4 SWITCHES DECLARATION

swtch-decl ::= switches swtch-lst

switch list ::= swtch / swtch, swtch-1lst

swtch ::= (see entries in the "SWITCHES"
column in section 3.5)

The SWITCHES declaration allows the user to set various switches which
control the compiler's actions. The effect of a SWITCHES declaration
is limited to the scope of the block in which the declaration is made.
The allowed forms of SWITCH are given in tabular form in section 3.5
under the column headed "SWITCHES". Note that switch keywords are not
necessarily reserved words.

3-3 February 1974

3.5 ACTIONS

I Command Module Head

I /L LIST

l /K,/-L NOLIST

I /N NOERS

l /=N ERRS

I /M MLIST

I /=M NOMLIST

I /H HISEG

I /1 INSPECT

' /-1 NOINSPECT

I /X SYNTAX
DREGS=E

Version 4 BLISS

Switches

LIST

NOLIST

NOERS

ERRS

MLIST

NOMLIST

INSPECT

NOINSPECT

Initial
Setting

ON

OFF

OFF

ON

OFF

ON

OFF

OFF

ON

OFF

Action

Enable listing of the
source test. This switch
is assumed true
initially.

Disable listing of the
source text.

Do not print error
messages on the TTY,

(Re) -enable error
messages on TTY,

Enable listing of the
machine code generated.

Suppress listing of
generated machine code.

Force entire compilation
into high segment.
Initially modules are
assumed to be two
segments. (see 3,7).

When true, this switch
will cause a special word
to be emitted immediately
prior to each function or
routine body. This word
contains information to
facilitate a SIMULA-like
inspection mechanismn.

This sets the inspection
switch false.

Syntax check only! No
code will be

generated - this speeds
the.compilation process
and is therefore useful
during the initial stages
of program development.
'/=X' is illegal.

'E' specifies the number

of 'declared'-type
registers to be used.

February 1974

1

I /U or
/=0

/C
/=-C

/R
/=R

RESERVE (El,...En) -

OPTIMIZE

NOOPTIMIZE

EXPAND

NOEXPAND

SREG
VREG
FREG

o
[oRoRol

XREF
NOXREF

NORSAVE
RSAVE

Version 4 BLISS

OPTIMIZE

none

ON

NOOPTIMIZE OFF

EXPAND

NOEXPAND

XREF
NOXREF

OFF

ON

chosen by
compiler

OFF

OFF
ON

Registers with absolute
names El,...,En are
reserved (usually for
inter-module
communication) .

Because of the
possibility of computed
addresses in BLISS-~10
programs, it is not
possible for the compiler
to determine whether
optimization of
sub-expressions is
possible across ";"'s in
a compound expression.
Therefore the compiler
operates in two modes -
one in which it does
optimize such common
sub~expressions and one
in which it does not.
When the 'optimize'
switch is true the
compiler attempts to
optimize across a ";".

Sets the optimization
switch (see above) to
false.

Give trace of macro
expansions.

Turn off trace of macro
expansion.

The user may use these
to choose specific
registers to be used as
the S, V, and F,
respectively.

Print a cross-reference
to all identifiers at the
end of compilation
(assumes a listing is
being printed).

The compiler normally
generates code to save
all declarable registers
around an EXCHJ
operation. This default
may be overriden by a /R,
or NORSAVE., RSAVE
reverts to the default.

February 1974

LOWSEG - OFF
STACK -
(see text
at right)
GLOROUTINES GLOROUTINES OFF

NOGLOROUTINES NOGLOROUTINES ON

- ENTRIES=(nl..,nm) - none
l /P FSAVE FSAVE OFF
l /=F NOFSAVE NOFSAVE
| - TIMER - OFF
Version 4 BLISS 3-6

Force entire compilation
into the low segment.
'/=V' is illegal. (see
3.7).

The syntax of the module
head permits automatic
allocation and
initialization of the
run-time stack. The
syntax is

stack deal =->
STACK/STACK=
explicit=-stack

where

explicit-stack =--> stype
S=name=-sz
stype =~>
GLOBAL/OWN/EXTERNAL
s-name=-sz =-=> (ss=0PTN)
SS=OPTN ==> / e

The defaults are

'STACK'=
STACK=0OWN (STACK,#1000)
'STACK(e)' =
STACK=OWN (STACK,e) etc.

All routine names are
forced to be 'global'.

Non-global routines are
not. forced to be global.

An ‘'entry' block is
created at the beginning
of the '.REL' file for
the names nl,n2,...nm,
These names must
subsequently be declared
'global' in the module.
This permits FUDGE2 to be
used to create a library.

Use of /F insures that
FREG will be set up
properly on every routine
entrance and exit whether
or not FRIEG is accessed
within the routine.

The syntax of the module

head permits automatic
inclusions of code to

February 1974

l /T TIMING

Version 4 BLISS

OFF

facilitate tracing and
timing.

timerdecl =->
TIMER/TIMER(e)/
TIMER=explicit=timer

explicit-timer =--> trtype
tname~-size

trtype ==->

FORWARD /EXTERNAL
tname-size =--> (name
size~optn)

size~optn =--> /e

The defaults are
'"TIMER==TIMER =

EXTERNAL (TIMER,4)
'TIMER(e) '==TIMER =

EXTERNAL (TIMER,e)
etc.

If /T appears in the
command string and there
is no TIMER switch in the
module head, the default
TIMER declaration is
assumed.

February 1974

l /=T NOTIMING NOTIMING ON
. - - TIMING OFF
I - CCL - OFF
l /s - - OFF
Version 4 BLISS 3-8

If the TIMER declaration
is given in the module
head, timing routine
linkages will be
generated.

Turns off generation of
timing linkages.

If timing linkages were
being generated and have
been suppressed by the
NOTIMING switch in the
SWITCHES declaration,
this re-enables
generation. Otherwise it
has no effect.

Generates a
CCL-compatible entry
linkage as the first two
instructions of the main
program. A STACK
declaration must also be
present to enable
generation of these
instructions,

Results in the display on
the TTY of each routine
after its Macro code has
been generated in the
expanded listing file.
If an expanded listing
file has not been
specified and /S is used
the routine names will
not be displayed. /S
also prints:

l. The number of entries
used in the literal
table along with the
size of the literal
table. One word per
entry.

February 1974

OFF

ON

OFF

OFF

/P PROLOG -
- VERSION=<vno> =
/A ENGLISH ENGLISH
/=A NOENGLISH NOENGLISH ® OFF
/B START START
/D DEBUG -
/=D) NODEBUG -
- HEADFILE
file-spec -

Version 4 BLISS

2. The approximate
maximum number of
words used in the
stack since the
compiler was started
via a START command
along with the size
of the stack.

3. The maximum compiler
size during
compilation in K as
<low segment size> +
<high segment size>
K.

Causes generation of
PROLOG- EPILOG code in
this module.

Causes generation of the
specified version number
in location .JBVER.

<vno> is a version number
in the standard
DECsystem~10 format.

Prints error messages in
long form (mnemonic plus
message) if on, short
form (mnemonic only) if
off.

Causes generation of a
start block in the REL
file if on. This switch
is also enabled by the
STACK declaration.

Causes DEBUG linkage to
debugging routine. The
routine name of the
debugging routine is
assumed to be the name of
the TIMER routine
(specified by the TIMER
module declaration

This entry is the
equivalent to a REQUIRE
declaration, but within
the module head. See the
REQUIRE declaration for
details.

February 1974

3.6 UNENFORCED RESTRICTIONS

There are certain language restrictions that are not (some cannot be)
enforced by the BLISS~10 compiler. Let the user take note!

1. BLISS-10 itself uses only the first ten characters of
identifiers = distinct identifiers with the same initial ten
characters will not be distinguished.

In particular, the module name is used to construct certain
GLOBAL symbols as explained in section 4.4 and hence should
be unique from other global symbols in their first four

characters. Also GLOBAL symbols must be unique in their
first six characters (current LOADER/LINK restrictions).

2. The BLISS-10 compiler distinguishes between two classes of
temporary registers - savable (used for declared registers,
etc.) and nonsavable. The number of savable registers is
determined by the DREGS command and its default declaration
is DREGS=5, All BLISS=-10 modules to be combined by the loader
into a load-module must be compiled with identical DREGS
declarations - otherwise run-time routine 1linkage may . not
work correctly.

3. Care must be exercised in invoking a FUNCTION in an improper
environment. This might occur if a FUNCTION name is passed
as a parameter to a ROUTINE which then invokes the FUNCTION.
Displays required by the FUNCTION execution will not be set
up'

3.7 SEGMENT DECLARATIONS

The HISEG and LOWSEG switches both produce one-segment programs - both
pure (code, literals) and impure (local, global, own) data go into the
same segment. These declarations cannot be reset once specified.

The "pure" area consists of XXXX.C, 0, F, L,., P; the "impure" area
consists of XXXX.G, O. Basically, this means that all portions of core
that are modified during an execution are "impure", and = all sections
that are fixed (constants, program code, etc.) are ‘"pure". The
following table specifies segment usage for particular switch
settings. -

SWITCH PURE IMPURE

No Switch: high low .

HISEG: high high

LOWSEG: low low

Version 4 BLISS 3-10 February 1974

3.8 SIX12
SIX12

SIX12 is a module containing a driver to allow interactive debugging
of a BLISS program, essentially the service provided by this module
is:

1. Monitor the TTY to allow the user to 'interrupt' his program
and enter the debugging mode.

2. Provide analysis of the syntax of 1lines input to the
debugger, and switching to any of several specific debug
routines, A few generally useful debug routines are included
in this package -- the intention, however, is that the user
will build his own routines tailored to the problem and use
this package merely to provide a standard interface.

The syntax of input lines is:

<LINE> == <EMPTY>/<ROUTINE><PARM=LIST>
<ROUTINE> == <* ANY PRINT STRING WITHOUT EMBEDDED BLANKS *>
<PARM-LIST> == <EMPTY>/<PARM>/<PARM=-LIST>,<PARM>
<PARM> == <EMPTY>/<ATOM>/<PARM>+<ATOM>/<PARM>=<ATOM>
<ATOM> == <NUMBER>/<DDT-NAME>/*/S$/,<ATOM>/
<ATOM> [<PARM>]/ (<PARM>))

<NUMBER> == <INPUT-BASE=-NUMBER>/#<OCTAL=-NUMBER>/
#<DECIMAL-NUMBER~IF~INPUT-BASE~OCTAL>
<DDT~-NAME> == <IDENTIFIER>/<IDENTIFIER> (<NUMBER>)

For example, the following are valid lines:

= X,.X,.13

+« X(3),2

GLOP+ 3,#14,.X[.Y]*+1
THUD e (Z[.X+1-.P]-.Y) ,46

The intended interpretation of an input 1line is that the name
debugging routine be called and the specified parameter values passed
to it. The interpretation of the various atoms is:

1. Decimal and octal constants represent themselves
2. DDT-names are locked up in the DDT symbol table, the
interpretation of such names is as in BLISS - that is, they

are an address! ’

3. The symbol "*" is the value of the positionally corresponding
parameter of the immed. previous debug line.

4, The symbol "$" is the address of a special "result area" --
may be used by some specific debug routines, displacements
from the. "result area" may be addressed for convenience as $N
where N is a number.

5. The "." operator is interpreted as the "@" in BLISS.

Version 4 BLISS

w
I

11 February 1974

6.

The symbols "([" and "]" denote integral word displacements =-

iE, E1[E2] = (E1+E2),.

If, at any time

NOTE

during execution, any

character is typed on the TTY, the debug

package will shortly
and wait for
debug line.

intercept control
the user to complete the

,

User-specific debugging routines may be easily added to the collection

currently provided as follows:

l.

2.

The.set of

Write the routine to accept its
"DEBUGPARMS" .

array
"NDEBUGPARMS" .

Add to the PLIT, "DEBUGROUTS", a print-name

routine name.

Pl'l..'PN
P1,P2

P1,P2

<EMPTY>

DDT

GO

BREAK Pl,...,PN

N |}

DBREAK P1l,..,PN
ABREAK P1,,,PN

DABREAK P1,,,PN
CALLS
CALL+

CALL N

LCALL N
IBASE N

OBASE N

Version 4 BLISS

from the
is in the

input parameters

Note the number of parms

and the actual

debug routines provided in this version are:

Print the values of Pl,...,PN

Print the values of Pl,...,Pl+P2-1
Assign Pl<«P2

No action

Call DpDT

Resume executing user program

Set break points at the heads of
routines Pl,...,PN, This is a break

to this debug system (not DDT).

Remove break points set as above.

Set break points at the exit of routines
pl,,,PN., This is a break to the debug
system (not DDT). The VREG is printed.
Remove ABREAK points set as above.
Display the stack of routine calls
Display call stack and locals --

the latter may not be very useful

unless the user is very familiar

with the BLISS run-time environment.
Print the last N calls on stack. If

N is omitted, print last call.

Same as above but also displays locals.
Sets the input number base to N (N is
always decimal) (1<N<1ll). Note that #
immediately preceeding a number always

means octal input except when the
default base 1is octal, in which case #
means decimal. If N is omitted it
prints the current input base in
decimal. .

Sets the output number base to N (N is
always decimal) (1<N<1ll), If N is

omitted it prints the output Dbase in

3-12 February 1974

WBASE N

SETTRACE

EX Pl'.on,PN

EV Pl,...,PN

PRS P1,,,PN

DISABLE

OPAQUE Pl,..,PN

DOPAQUE P1,.,PN
MONITOR P1,,PN

DMONITOR P1,,PN

In order to

decimal.
Sets the maximum size of displacement
that will be printed in
'BASE+DISPLACEMENT' output to N. (w is
for Wulf for historical reasons.)
initially set 1000 (octal). If N is
omitted, the current WBASE is printed in
the current output base.
Turns on trace mode., Will display call
stack for routines as they are entered
and left. Trace equivalent to SETTRACE
+ GO . EXECUTION IS RESUMED IN TRACE
MODE. TRACE MODE ENDS WHEN ANYTHING IS
TYPED AT THE TERMINAL OR A BREAK POINT
IS REACHED.,

Call the procedure - named Pl with
parameters P2,...,PN. (N<6) returns the

value in "S$",

Call the procedure named P2 with
parameters P3,...,PN. (N<7) the value
is placed in the location specified by
P1l,

Prints a list of all DDT symbol table
entries for P1,,,PN.

Turns off typein monitoring. Allows
type-ahead. to resume typein
monitoring, enter DDT and do PUSHJ
SIXENABLESX.

Makes the named routines opaque to
tracing, i.e., if the routine is entered
with tracing turned on, tracing is
turned off until the matching routine
exit is encountered. All opaque flags
are reset if a break or TTY interrupt
occurs.

Undoes the effect of opaque, i.e. the
named routines are no longer opaque.
Monitors the locations Pl,,PN, If value
changes, tells where and how.

Turns off monitoring.

NOTE

use this package, the

modules to be debugged must be compiled
with the proper compilation control,

namely:

1. "TIMER=EXTERNAL (SIX12)" must
appear in the module head.

2. Either "/F/T" must be used in

the

command string, or

"FSAVE,TIMING" must appear in
the module head.

Version 4 BLISS

3-13 February 1974

Use Notes :

l. Because it is sometimes useful to enter this package
immediately upon the start of execution (after stack
initialization), a facility to do this has been provided.
Enter DDT and type:

SIXl..5: STARTFLG! 1 <CRLF>
$G

If your program does not use the name STARTFLG, then the
SIXl..$* can be eliminated. (Note: $ is altmode)

Version 4 BLISS 3

14 February 1974

CHAPTER 4 :
RUN TIME REPRESENTATION OF PROGRAMS

4,1 INTRODUCTION TO CALLING SEQUENCES

In order to make fullest possible use of BLISS-10 it is dimportant to
understand the run=-time environment in which BLISS-10 programs
execute, The address space is occupied by various types of
information:

l. Programs
2, Constants

3. Static size variable areas
(GLOBALS and OWNS)

4. Stacks

Programs are 'pure' - they do not unintentionally modify themselves.
Programs and constant areas can be placed in contiguous read only
memory. Static variable storage and stack areas must be placed in
read/write memory.

4.2 REGISTERS
The sixteen registers are divided into three main classes:
1. Reserved registers:

These registers are declared in the module head. Their scope
is the entire module (they may be accessed from within any
routine). They are never saved.

2. BLISS-10 run-time registers:

After the reserved registers have been allocated, the lowest
three remaining addresses are assigned as the run-time
registers unless specified by XREG= in the module head. In
particular, if there are no reserved registers, 0, 2, and 3
are assigned as the S, F, and V registers respectively. The
names SREG, FREG, and VREG are available at the outermost
blocks of the module and, as in the case of reserved
registers, these names are accessible from within any
routine.

Note that only SREG can be defined as register 0; a warning

nessage is otherwise generated and the declaration is
ignored.,

Version 4 BLISS 4-1 February 1974

3. Temporary registers:

All the remaining registers fall into this class and are
divided into two subclasses:

a. Ssavable:

These registers are used for declared registers, control
registers in incr-decr 1loops, and when necessary for
computing temporary values. Any of these registers used
in the body of a function or routine is saved in the
prolog and restored in the epilog. Of course if F is not
a global routine and F is within the scope of register R,
then R is not preserved. The user must declare the size
of this block of registers in the module head. (DREGS
=). These registers are allocated from the highest
addresses.,

b. non-savable:

These are the registers used for calculating intermediate
results. They are saved at the call site of a function
or routine only if they contain a needed result and are
never saved in the prolog or epilog.

Comments:

1. If one wishes to 1load a collection of BLISS-10 modules
together, they must request precisely the same reserved
registers and request the same number of savable temporaries.

2. The two classes of temporary registers are managed quite
differently in that the savable registers obey a stack
discipline (to minimize saving and restoring) and the
non-savable are used in round-robin fashion (to lengthen the
life of intermediate results). The present version of the
compiler requires a minimum of 4 non-savable registers--i.e.,
the maximum value of DREGS = 9 = # of reserved regs. In
general the compiler can produce better code if DREGS is kept
to the minimum value which the lexical scope of declared
registers and/or incr-decr loops allow.

Version 4 BLISS 4-2 February 1974

4,3 THE STACK AND FUNCTIONS

The first 17 locations of each stack are reserved for state
information (registers plus program counter) for a process when it is
inactive. The configuration above these 17 state words depends upon
the depth of nesting of function calls, but each such nested call
involves a similar (not identical) use of the stack. Figure 4-1
illustrates a typical stack configuration after several nested
functional calls. At a time when one of these functions is executing

1. The S~-register points to the highest assigned cell in the
stack; the S-register is used to control the allocation of
the stack area.

2. The F-register points to the 'local base of stack'. Below (1)
the F=-register are the parameters to the function and the
return address. The stack cell actually pointed to by the
F-register contains the previous value of the F-register at
the time at which the current function was entered.

3. The calling sequence which is used to enter a function (or
routine) is

PUSH S,pl ; push 1lst parameter onto the
stack

PUSH S,p2 H push 2nd parameter onto the
stack

PUSH S,pn ; push nth parameter onto the
stack

PUSHJ s,FCN ; jump to the called function

SUB s, [n,,n] H delete the parameters

4. Above the F-register are stored the "displays", Dl...Df., One
display is used for each 1lexically embracing FUNCTION
declaration. The value of each display is the F-register
value for the most recent recursive entry for that lexically
embracing function. The displays are needed and used to
access variables global to the current function but local to
embracing function. Such access is prohibited in routines,
and consequently no displays are saved on a routine entry.

(1) 'below' in the sense of decreasing address values.

Version 4 BLISS 4-3 February 1974

YUl
(" ’ L,
Local Variables :
¥ Lo

L
Register Save Area
+ R
1 i

sl
vee | N

[

Stack Configuration for a Function Call

< Display :
I —
— prev F reg
return addr
P, 17
- [— Declared
: and
Parameters P2 Working
L- * 4 Registers
P1 3
L —— 2
S
The stack con- prev F reg
figuration shown return addr Registers
above is repeated
for each nested
T ——

call.

i ? 20
Register. save 17—/
area when process ——

is" inactive

5
¥ "
State info for 3 S
. . 2 PC
inactive process
1 temp
¢ 0 WASTE
STACK
Figure 4-1

Typical Stack Configuration

Version 4 BLISS 4-4 February 1974

5. Above the displays are saved any savable registers which are
destroyed by the execution of the function body. These
registers are restored before the function exits.

6. Any local variables in the function are stored on top of the
saved registers. Space 1is acquired/deleted for locals on
block entry/exit by simply adding/subtracting a constant to
the S~-register. some of these locals are automatically
generated by the compiler, for example: An excessive number
of declared registers, or the evaluation of an extremely
complex expression exhausting the available registers, may
force the area above the locals to be used for storing
partial results of an expression evaluation.

7. The V-register is used to return the value of the function or
routine.

Figure 4-2 illustrates the code generated surrounding the body of a
function. The code surrounding a routine body is identical, with the
exception that the displays are never saved. In this illustration the
S, F, and V registers are shown occupying physical registers 0,2 & 3.
In practice other registers may be chosen if these registers are
reserved in the module head.

Version 4 BLISS 4-5 February 1974

Function Prolog and Epilog
FCN: PUSH s,F : save old F=-register
PUSH S,1(F) H copy display zero
PUSH S,f(F) H copy display £
HRRZ F,S H set up new F
suBI F,f : subtract no. displays
PUSH S,F ; new display created
PUSH S,Ra] save register
® o e oo Not
PUSH S,Rz : save register Generated
-=For
BODY OF FUNCTION OR ROUTINE Routines
POP S,Rz ; restore register
POP S,Ra ; restore register
SUB S,[(f+1),,(£f+1)] ; eliminate displays
POP S,F
POPJ S,
Figure 4-2
Function Prolog and Epilog
Block Entry and Exit
BENTER: MOVEM R1l,1+1(F) ; save in-use working
registers
MOVEM Rj,1+j(F) ; save in-use working
registers
ADD S ,I[n,,n] ;s INCR S-register by no.
locals in blk
BEXIT: SUB S, [(n+3),, (n+j)] : DECR S-register by no.
locals in blk
; (note: inuse reg's left in
stack,

re-loaded only when used)

Figure 4-3
BLOCK ENTRY and EXIT

February 1974

4.4 ACCESS TO VARIABLES

This section briefly indicates the mechanism by which generated code
accesses various types of variables (formals, owns and globals,
locals, etc.) the exact addressing scheme used by the compiler in any
particular case is highly dependent upon the context; however, the
following material should aid in understanding the overall strategy.

l. OWN and GLOBAL variables are accessed directly.

2. Formal parameters of the current routine are accessed
negatively with respect to the F-register. If the current
routine has n formals, then the ith one is addressed by

(=n + i = 2) (F)

3. Local variables of the current routine are accessed
positively with respect to the F-register. To access the ith
local cell, one uses

(i +d+x + 1)(F)

where d is the number of displays saved and r is the number
of registers saved on function entry.

4., Formal parameters and local variables which are not declared
in the currently executing function are accessed through the
display. The appropriate display is copied into one of the
working registers then accessed by indexing through that
register in a manner similar to that shown in (2) or (3)
above,

The first four characters of the name introduced in the module head is
used to name various regions in the produced code. These names are
declared global and therefore are available in DDT. If 'XXXX' are the
first four characters of the module name, then

XXXX.C is the location of the start of the constant pointer
area which contains relocatable constants generated by
the compiler.

XXXX.0 is the location of the first code word (not necessarily
starting address) of this module.

XXXX.F is the location of the first instruction in the main
' body of the module, i.e., it is the starting address of
the module.

XXXX.L is the location of the "literal" area which contains
compile-time, unrelocated constants generated by the
compiler.

XXXX.0 is the location of the "own" area in which is stored

all variables declared 'own' in the module.

XXXX.G is the location of the "global" area in which is stored
all variables declared "global" in the module.

Version 4 BLISS : 4-7 February 1974

XXXX.. is the module name (recognized by DDT).
XXXX.P is the first location of the "plit" area.

Note that with (normal) two-segment conventions, XXXX.C, XXXX.0,
XXXX.F, XXXX.L, XXXX.., and XXXX.P will be high~segment addresses
while XXXX.0 and XXXX.G will be low-segment addresses.

4.5 MAIN PROGRAM CODE

4.5,1 CCL Entry Linkage

instructions are generated as the first two executable instructions:

I If the "CCL" switch is declared in the module head, the following two

TDZA $V, SV
MOVEI $V,1

Linkage via a RUN UUO with an offset of 1 causes entry to the second
instruction of the program (i.e., the MOVEI) whereas normal entry (via
a RUN, R, START command) is to the first instruction. The first
evaluated expression in the program must be of the form "X <« .VREG"
[assuming the user has not declared the name VREG, and it retains the
meaning of the value register], which stores the value set by one of
the two instructions. A "0" (false) indicates normal entry while a
"1" (true) indicates a CCL-type entry.

4.5,2 Stack Initialization

If a STACK declaration occurred in the module head, the following code
is generated to initialize the F, S, and B registers. This code
follows the CCL entry code, if any (see 4.5.1).

HRRZI §F, stack=address

MOVEM SF, .BREG

HRLI $s, <[stack-length]-[coroutlne-preflx—lenqth]>
HRRZI $F, [coroutine-prefix-length] ($F)

HRR $S, SF

4,5.3 Program Termination
All modules terminate with the instruction
CALLI 0,#12

which is the EXIT UUO for the DECsyvstem-l10 monitors. This is the
standard terminating execution of user programs.

Version 4 BLISS 4-8 February 1974

4.6 TIMER CODE

If there is a TIMER declaration in the module head, and it has been
activated by the /T switch in the command string or the TIMING switch
in the module head, the routine calls below are generated. The entry
routine-call precedes the standard prolog code (see figure 4-2), and
the exit routine-call precedes the standard epilog code.

entry call: TIMER-routine (routine=~descriptor<0,0>)

exit call: TIMER-routine
((=1418) or routine-descriptor<0,0>)

The actual code generated is:

entry call: HRRZI R, routine~descriptor
i PUSH $S, R
PUSHJ $S, timer=-routine
SUB $s, [000001,,000001]

exit call: PUSH $S, sv
HRROI R, routine-descriptor
PUSH $S, R
PUSHJ $s, [000001,,000001}
POP $S, SV

Note that the value of the V-register is preserved across the call.
Hence any value returned by the timer=-routine is lost.

As of this writing, no routine-descriptor is produced, and the address
of the routine-descriptor is always 0.

If the module contains a STACK declaration, then additional code is
generated in the main body of the program. An entry call is generated
following stack dinitialization, and an exit call is generated
immediately preceding the CALLI which terminates the program. If the
CCL switch occurs in the module head, additional code is generated to
save the V~-register across the entry call.

CHAPTER 5
BLISS-10 EXAMPLES

This section contains a set of examples which illustrate the use of
BLISS-10. Each example is intended to be fairly complete and self
contained and to illustrate one or more features of the language.

The authors would like to invite others to contribute further examples
for inclusion in this section. New examples will be included if they
clearly illustrate features and/or uses of the language which are not
already adequately illustrated.

Example 1l: A TT-Call I/O Package

The following set of declarations defines a set of Teletype
input/output routines using the DECsystem=10 monitor TT-call
mechanism. The set of functions is not complete, but adequate to
illustrate the approach.

The declarations below provide the following functions:

INC Input one character - wait for EOL before returning.
ouTc Output one character.
 OUTSA Output ASCIZ-type string beginning at specified
address.,
OuTs Output ASCIZ~-type string specified as the parameter.
OUTM Output multiple copies of a specified character.
CR Output carriage return,
LF Output line f%ed.
NULL Output null character.
CRLF Output carriage return and line-feed followed by 2
nulls.
TAB Output tab.
OUTN output number in specified base and minimum number of
digits.
ouTDh Output decimal number with at least one digit.
OUTO Output octal number with at least one digit.
OUTDR ggtput decimal number with at least specified number of
igits.

OUTOR Same as OUTDR except octal.

MODULE TTIO (STACK)=BEGIN
MACHOP TTCALL=#51;

MACRO INC= (REGISTER Q; TTCALL(4,Q); .Q)S,
OUTC(Z)= (REGISTER Q; Q+«(2); TTCALL(1,Q))S,
OUTSA(2)=TTCALL(3,2)$,
OUTS (2)= OUTSA (PLIT ASCIZ 2)$,
OUTM(C,N)= DECR I FROM (N)=-1 TO 0 DO OUTC(C)S,
CR= OUTC(#15)$, LF= OUTC(#12)$, NULL= OUTC(0)S,
CRLF= OUTS('?M?2J2020")S,
TAB= OUTC (#11)3;

ROUTINE OUTN (NUM,BASE,REQD)=
BEGIN OWN N,B,RD,T;
ROUTINE XN=

BEGIN LOCAL R;
IF .N EQL 0 THEN RETURN OUTM("0",.RD=.T);
R<,N MOD .B; N«.N/.B; T«,T+l; XN();
OUTC (L R+"0")

END;

IF .NUM LSS 0 THEN OUTC("=");
B«.BASE; RD+«.REQD; T<0; N<«ABS(,NUM); XN()
END;

MACRO OUTD(Z)= OUTN(Z,10,1)$,
OUTO(Z)= OUTN(Z,8,1)$,
OUTDR(Z,N)= OUTN(Z,10,N)$,
OUTOR (Z ,N)= OUTN(Z,8,N)$;

Version 4 BLISS 5-2 February 1974

! THE PROGRAM BELOW PRINTS A TABLE OF INTEGERS, THEIR
! SQUARES, AND THEIR CUBES:

OWN N,C;

CRLF; OUTS('INPUT AN INTEGER PLEASE ...'):
N«0; WHILE (C+INC) GTR "O" AND .C LSS "9" DO
N=,N*10+(.C="0"); '

CRLF; OUTS('A TABLE OF THE SQUARES AND CUBES OF 1-');
OUTD (.N) ;

CRLF; INCR I FROM 1 TO 3 DO (TAB; OUTS(' Xt');
OUTD(.I));

CRLF; INCR I FROM 1 TO 3 DO (TAB; OUTM("=",5));:

INCR I FROM 1 TO .N DO
BEGIN OWN X;
X<«.I; CRLF;
DECR J FROM 2 TO 0 DO (TAB; OUTD(.X); X+«.X*,I)
END;

END ELUDOM

Although the example is guite simple, there are several things about
it which should be noted:

1. The use of a MACHOP declaration and embedded assembly code.

2. The use of macros to add a level of "syntactic sugar" and
general cleanliness to the code.

3. The use of the escape character "?" in the CRLF macro to
obtain control characters (e.g., carriage-return) in strings.

4. Parenthesization of macro parameters, as in OUTM, to insure
proper hierarchy relations in the expansion.

5. The use of "DECR-TO-ZERO" in OUTM because it produces better
code than "INCR=-TO~EXPRESSION".

6. The use of own variables and the parameterless procedure XN
in OUTN in order to avoid passing redundant parameters
through the recursive levels of XN.

7. The fact that the local wvariabhle "R" 1is local to each

recursive level of XN and hence its value is preserved at
each level.

Example 2: Queue Management Model
This module contains routines to insert and delete items on

doubly-linked queues, In addition it contains space management
routines implementing the "Buddy System" (cf: Knuth: Vol. 1).

Version 4 BLISS 5-3 February 1974

Buddy System

This is not intended to be a detailed description of the buddy system
model of space management. We will simply give a brief description of
this implementation of the scheme. The vector of allocatable space is
called MEM. Space is allocated and deallocated from MEM by the
routines GET and RELEASE, respectively. The basic unit of allocatable
space is an item. Items are of size 2**ITEMSIZE where 0 < ITEMSIZE <=
LOG2MEMSIZE. The first two words of an item are formatted:

ITEMSIZE RLINK

<NOT-USED > LLINK

Available items of size N are elements of a doubly linked 1list whose
header is the two word cell SPACE[N]. The routines LINK and DELINK are
called to enter and remove items from lists. The routine COLLAPSE 1is
used to compact two adjacent available items of size 2**N into an item
of size 2**(N+1l). The COLLAPSE routine iterates this process until nc
more compaction can take place.

Queue Model

In this model a queue is defined to be a doubly-linked list suspended
m a header whose first three words are formatted as follows:

0 1718 36
HEADER SIZE RLINK
(not used) LLINK
REMOVE ENTER

The fields REMOVE and ENTER contain the addresses of the routines to
be invoked when removing and entering items on the queue. To enter
item X on queue Q, one simply makes the call ENQ(X,Q). ENQ then

~invokes the enter routine in Q's header which returns the address of
the item in Q after which X is to be inserted. In a similar manner
one removes the "next" item from queue Q by the call DEQ(Q). DEQ then
invokes the remove routine in Q's header to return the address of the
"next" item, The advantage of +this scheme is that the queueing
discipline is queue specific, and the same primitives (ENQ and DEQ)
may be used independent of the discipline wused for that queue.
Examples of the enter and remove routines for LIFO, FIFO, and PRIORITY
type queues appear at the end of this example module.

MODULE QMS (STACK) =

! BUDDY SYSTEM

Version 4 BLISS 5-4 February 1974

BEGIN
BIND MEMSIZE=1+412;

GLOBAL VECTOR MEM[MEMSIZE];
BIND LOGZMEMSIZE=35-FIRST-ONE(MEMSIZE) ;
STRUCTURE ITEM[I,J,P,S]=
CASE .I OF
SET
(.ITEM)<.P,.S>;
(@, ITEM+.J)<.P,.S>;
(@@, TIEM+.J)<.P,.S>;
(@{@. ITEM+1)+.J)<.P,.S>
TES;

STRUCTURE VECTOR2[I]=
[2*T] (,VECTOR2+2% ,1)<0,36>;

MACRO BASE=0,0,0,18$,
RLINK=1,0,0,18S,
LLINK=1,1,0,18%,
ITEMSIZE=1,0,18,18S,
NXTRLINK=2,0,0,18%,
NXTLLINK=2,1,0,18$,
PRVRLINK=3,0,0,18$,
PRVLLINK=3,1,0,18%,

GLOBAL VECTOR2 SPACE[LOG2MEMSIZE+1];

BIND VECTOR SIZE =

PLIT(140,141,142,143,144,145,1+6,147,148,149,1+10,

1411,1+12);

MACRO PARTNER (B1,B2,S)= ((((Bl)-MEM<0,0>)
XOR ((B2)=-MEM<0,0>))
EQL .SIZE[S])S,
REPEAT= WHILE 1 DOS, :
BASEADDR (B, S) = MEM[((B)-MEM<0,0>)
AND NOT .SIZE[S]1<0,0>$,
ERRMSG (S) = ERROR(PLIT ASCIZ S)S§;

! SPACE-MANAGEMENT-ROUTINES
!

FORWARD EMPTY,ERROR,LINK,DELINK,COLLAPSE;

GLOBAL ROUTINE GET(N)=
!RETURNS THE ADDRESS OF AN ITEM OF SIZE 2**N

BEGIN REGISTER ITEM R;
IF .N LEQ 0 OR .N GTR LOG2MEMSIZE
THEN ERRMSG ('INVALID SPACE REQ');
IF' NOT EMPTY(SPACE[.N<0,0>)
THEN R[BASE]<DELINK(.SPACE[.N])
ELSE

February 1974

BEGIN
R[BASE] «GET (JN+1) ;

COLLAPSE(.R[BASE]+.SIZE{[.N],.N)
END;

R[ITEMSIZE]+.N;
.R[BASE]
END;

ROUTINE COLLAPSE (A,N)=

{CALLED BY RELEASE AND GET TO ATTEMPT TO COMPACTIFY SPACE
!TF ADJACENT ITEMS ARE FREE

BEGIN MAP ITEM A; REGISTER ITEM L; LABEL CYCLE;
REPEAT

CYCLE: BEGIN
L[BASE]+SPACE[.N]<0,0>;
WHILE .L[RLINK] NEQ SPACE[.N]<0,0> DO

IF PARTNER(.L[RLINK],.A[BASE],.N)
THEN

BEGIN

A[BASF]*BASLADDR(DELINK(L[RLINK]),.N);
N+ ,.N+1;

LEAVE CYCLE
LEND
ELSE L[BASE]+.L[RLINK];

RETURN (A[ITEMSIZE]<«.N; LINK(.A[BASE].,L[BASL]}))
END;

END;
GLOBAL ROUTINE RELEASE(A)=

ICALLED TO RELEASE ITEM A

BEGIN
MAP ITEM A;

COLLAPSE(.A[BASE].,A[ITEMSIZE])
END;

! SIMPLE~-LIST-ROUTINES

S

ROUTINE DELINK(A)=

IREMOVES ITEM A FROM THE LIST TO WHICH IT IS APPENDED

BEGIN MAP ITCM A;
A[PRVRLINK]+«.A[RLINK]; A[NXTLLINK]+.,A[LLINK];

A[RLINK]+A[LLINK]+.A[BASE]
END;

ROUTINE LINK(Z,TOO)=

! INSERTS ITEM A INTO A LIST IMMEDIATELY AFTER THE ITEM
! TOO

BEGIN
MAP ITEM A:TOO;
A[LLINK]<«.TOO[BASE]; A[RLINK]+«,TOO[RLINK];
TOO [NXTLLINK]+«TOO[RLINK]+.A[BASE]

END;

ROUTINE RELINK(A,TOO)=

! REMOVES ITEM FROM ITS PRESENT LIST AND INSERTS IT AFTER
! TOO

LINK (DELINK(.A),.TOO) ;

ROUTINE EMPTY(L)=
| PREDICATE INDICATING EMPTY LIST
BEGIN MAP ITEM L;

.L[BASE] EQL .L[RLINK]
END;

!
[

QUEUE~HANDLING-ROUTINES

MACRO

MACRO

QHDR-ITEMS;

ENTER=1,2,0,18$,

REMOVE=1,2,18,18$;

GLOBAL ROUTINE ENQ(A,Q)=

! ENTERS ITEM A ON QUEUE Q ACCORDING TO THE INSERTION
! DISCIPLINE EVOKED BY Q'S ENTER ROUTINE

BEGIN

MAP QDR Q;

RELINK(.A, (.Q[ENTER]) (.Q[BASE],.A))
END;

GLOBAL ROUTINE DEQ(Q)=

! REMOVES AN ITEM FROM QUEUE Q ACCORDING TO THE REMOVAL
! DISCIPLINE EVOKED BY Q'S REMOVE ROUTINE

BEGIN
MAP QHDR Q;
DELINK((.Q[REMOVE]) (.Q[BASE]))

END;

! MISC SERVICE ROUTINES

ROUTINE ERROR(A)=
BEGIN MACHOP TTCALL=#051;
TTCALL(3,.A)
END;

ROUTINE INITIALIZE=
{INITIALIZES THE SPACE MANAGEMENT DATA

BEGIN REGISTER ITEM X;
X [BASE]«MEM<0,0>;
X [RLINK]«X[LLINK]<SPACE [LOG2MEMSIZE]<0,0>;
X[ITEMSIZE]<+LOG2MEMSIZE;
.DECR I FROM LOG2MEMSIZE-l1 TO 0 DO
SPACE[.I]«(SPACE[.I]+1)<0,36>«SPACE[.I]<0,0>;
SPACE [LOG2MEMSIZE]+ (SPACE [LOG2MEMSIZE] +1)<0,36>«MEM<0,0>
END;

! LIFO QUEUE

1 - oo

ROUTINE LIFOREMOVE (Q)=
BEGIN
MAP QHDR Q;
IF EMPTY(.Q[BASE]) THEN
ERRMSG ('INVALID DEQ REQUEST');
«Q[RLINK]
END;

ROUTINE LIFOENTER(Q,A)=
BEGIN
MAP QHDR Q;
.Q[BASE]
END;

! FIFO QUEUE

ROUTINE FIFOREMOVE (Q)=
BEGIN
MAP QHDR Q;
IF EMPTY(.Q[BASE]) THEN
ERRMSG (* INVALID DEQ REQUEST');
.Q[RLINK]
END;

ROUTINE FIFOENTER(Q,A)=
BEGIN
MAP QIDR Q;
+«Q[LLINK]
END;

! PRIORITY QUEUE

MACRO PRIOIRITY=1,1,18,18%;

ROUTINL PRIREMOVE (Q)=
BEGIN
MAP QHDR Qj;
IF EMPTY(.Q[BASE]) THEN
ERRMSG (' INVALID DEQ REQUEST');
- Q[RLINK]
END;

ROUTINE PRIENTER(Q,A)=
BEGIN
MAP QHDR A; MAP ITEM A; REGISTER ITEM L;
IF EMPTY(.Q[BASE]) THEN RETURN .Q[BASE];
L{BASE]+«.Q[LLINK];

UNTIL .L[PRIORITY] GEQ .A[PRIORITY] DO
L[BASE]+.L[LLINK];
.L[BASE]

END ELUDOM

Comments on the Use of BLISS in the Implementation

l.

The structure ITEM is particularly interesting and perhaps at
first a bit obscure.

To illustrate, consider a variable X structured by item:

Assuning that the right half of X contains a:

AND THAT .
Y:
a a b——a—»0b b |-
f c) [}
Then:
.X[BASE] == a «X [NXTRLINK] = @
«X[RLINK] == b X [NXTLLINK]} = a
«X[LLINK] == c «X[PRVRLINK] = a
«X[PRVLLINK] = f

The structure ITEM uses the "constant case" expression to
distinguish between the pointer, the pointee, and the
pointee's predecessor and successor.

The structure VECTOR2 has a size expression [2*I] which is
used in the allocating declaration:

GLOBAL VECTORZ2 SPACE [LOG2MEMSIZE+1];

Since the addresses of the 'remove' and 'enter' routines are
stored in the queue header, the expression

(.Q[REMOVE]) (.Q[BASE])

is a call of the routine whose address is .Q[REMOVE] and
passes it to the base address of the queue or its parameter.

4, The macro 'REPEAT = WIILE 1 DO' defines an infinite
loop =~ its only exit is defined by the RETURN expression in
its body.

5. Notice the 'BIND VECTOR SIZE = PLIT(140,141,142,...' in the
space -allocator. The value of SIZE is a pointer to this
sequence of values, and in particular the value of
'.SIZE[.N]' is 24N,

Example 3: Discrimination Net

A discrimination net is a mechanism used to associate "information"
with "names". The net is actually a tree, each node of which consists
of a name and the information associated with that name, as well as a
set of pointers to other nodes. To look up a name in the net we start
at the root node and see if the name in the node matches our target
name, If it does, we return the associated information.

Otherwise, we use a "discrimination function" which determines which
subnode to examine next (usually as a function of the target name and
the name of the current node). If there is no corresponding subnode, a
new node must be created.

For example, a binary net (two subnodes/node) with a discrimination
function which chooses the 1left branch if the target name is
alphabetically smaller than th name in the node, is illustrated
below: -

Name: j, 9, 1, a, b, r, p, n, s, k
Inf: 4, 7, 9, 8, 5, 20,3, 9, 7, 12

In the implementation which follows, there are three globally defined

routines:

l.

DSCINIT <(String address) == returns a pointer to the
information field of the node associated with the string.
This must be called first to initialize the net. (The
information field will be zeroed when the node is new.)

DSCLKP (String address) =- the "lookup" routine. Value
returned as above.

DSCPNAME (Information field address) =-- returns a pointer to
the print name associated with the particular information
field.

The implementation is designed to allow the user to create a module

somewhat

5.

"tailored" to his needs. The module is created by passing:

the estimated number of entries +to be inserted into the
table;

the average number of words each name will occupy:
the number of words in the "information field";

the number of subnodes of each node (e.g., binary example
above, 2);

a string which executes an error routine

in that order, to a macro "DSCRIMINET". Two macros must be defined
previous to the DSCRIMINET expansion:

l.

DSCIMINATE (Target string address, current node string
address) mnust have a wvalue of =1 if the strings match.
Otherwise, its value must be between 0 and 1 less than the
number of subnodes.

DSCCOPY (To address, From address) copies the string from the
"from address" to the "to address", returning the number of
words occupied by the copy.

MODULE NET (STACK=GLOBAL (STABK,#400))=
BEGIN
MACRO
DSCRIMINET (MAXNUMENT ,AVNAMESIZE, INFSIZE,NOSUBNODES , ERROR) =

BEGIN
$N.B.: ALL VECTOR ACCESSES INDIRECT THROUGH BASE%
STRUCTURE VECTOR[I]=(.VECTOR+,I)<0,36>;

% NET SPACE ALLOCATION, STRUCTURE DEFINITION AND
INITIALIZATION DEFINITIONS %
BIND TABLELEN=MAXNUMENT* ((NOSUBNODES+1) /2+INFSIZE
+AVNAMESIZE) ;
OWN BASENODE [TABLELEN] ;
BIND MAXADD=BASENODE+TABLELEN;

BIND SUBNODE=0, INF=1, PNAME=2,
INFOFFSET= (NOSUBNODES+1) /2,
PNAMEOFFSET=INFOFFSET+INFSIZE;

STRUCTURE NODE [SUBFIELD,INDEX]=CASE .SUBFIELD OF
SET .NODE[,INDEX* (=1)]<IF .INDEX THEN 18,18>;
* +NODE [INFOFFSET] ;
.NODE [PNAMEOFFSET] TES;

GLOBAL ROUTINE DSCPNAME (INFPOS)=
(. INFPOS+INFSIZE)<0,36>;

OWN NODE NEXTCELL;

ROUTINE INITNODE (CELL,STRING)=
BEGIN
DECR I FROM PNAMEOFFSET=1 TO 0 DO CELL[.I]+«0;
IF MAXADD LEQ (NEXTCELL=,NEXTCELL+PNAMEOFFSET+
(MAP NODE CELL; DSCCOPY (CELL{PNAME],.STRING)))

THEN ERROR ELSE .CELL
END;

GLOBAL ROUTINE DSCINIT (STRING)=
BEGIN
LOCAL NODE RETVAL;
NEXTCELL=BASENODE;
RETVAL=INITNODE (BASENODE, . STRING) ;
RETVAL [INF]
END;

ROUTINE NEWCELL (STRING)=INITNODE (,NEXTCELL,.STRING) ;

% THE LOOKUP ROUTINE ITSELF %
GLOBAL ROUTINE DSCLKP (STRING) =
BEGIN
LOCAL DISCIND, NODE CURRENT:NEXT;
NEXT<«BASENODE;

DO

BEGIN
CURRENT« ,NEXT ;

Version 4 BLISS . 5-13 ' February 1974

IF (DISCIND<«DSCIMINATE (.STRING,
CURRENT [PNAME])) LSS 0
THEN RETURN CURRENT [INF] ;
NEXT+ .CURRENT [SUBNODE, .DISCIND]
END

UNTIL .NEXT EQL O0;

NEXT<«CURRENT [SUBNODE , .DISCIND]«NEWCELL (STRING) ;
NEXT[INF]
END;
END; $;

ROUTINE DESCIMINATE (L,R)=
BEGIN
STRUCTURE VECTOR([I]}=(@.,VECTOR+.I)<0,36>; LABEL LOOP;
LOOP: INCR I FROM 0
DO BEGIN
BIND LEFT=.L[.I], RIGHT=.,R[.I];
IF LEFT NEQ RIGHT THEN
LEAVE LOOP WITH (LEFT LSS RIGHT);
IF (LEFT AND #376) EQL 0 THEN
LEAVE LOOP WITH -1
END
END;

ROUTINE DSCCOPY (INTO,FRO)=
BEGIN
STRUCTURE VECTOR[I])=(@.VECTOR+.I)<0,36>; LABEL LOOP;
LOOP: INCR I FROM O DO
IF ((INTO[{.I}=.FRO[.I]) AND #376) EQL 0
THEN LEAVE LOOP WITH .I+1
END;

EXTERNAL ERROR;
DSCRIMINET (500,3,1,2,ERROR(PLIT 'LOOKUP TABLE OVERFLOW'))

BEGIN
BIND NAMES=PLIT (

PLIT ASCIZ 'FIRSTNAME',
PLIT ASCIZ 'SECOND',
PLIT ASCIZ 'ssS',
PLIT ASCIZ 'A LONGISH NAME',
PLIT ASCIZ 'L',
PLIT ASCIZ '77788()34');

EXTERNAL DSCLKP, DSCINIT;

DSCINIT (PLIT 'ZEROTH NAME')=-3;

INCR I FROM 0 TO .NAMES[=1]-1 DO DSCLKP (.NAMES[.I])=.I;

INCR I FROM 0 TO .NAMES[-1]-1 BY 2 DO DSKLKP(.NAMES[.I])=.I+1435;
END;
END ELUDOM; ;

Notes on the Implementation

The BLISS module above implements the example described at the
beginning of this section. The test program portion of the module
simply initializes the table, inserts the six strings in the plit into
the table (associating as information, the index in the plit), and
runs through the evenly indexed items in the plit, turning on the sign
bit in the information word.

Of interest:

l. The vector structure (which defaults as the structure for all
unmapped variables and expressions) is redefined
"indirectly"; this is fairly dangerous in any program, and
represents an after-the-fact programming decision.

2, The physical structure of the table is kept independent of
the logical structure as wused by the lookup routine; no
reference is made from the lookup routine to the structure
other than through the structured nodes.

3. The binds, structures, own declarations and even the
initialization function = requiring knowledge of the physical
structure - are kept grouped and separate. Note, for
example, that INITNODE uses both a vector mapping on
contiqguous fields of CELL and NODE structure,

4. The physical structure of the tree is kept isolated from the
user of the routines to the extent that only knowledge that
the mechanism is associative 1is of importance =-- the
particular lookup algorithm and storage management are
independent of the functional use of the module.

5., BLISS~10 programming "tricks":

a. Use of the constant case expression for subfields of
structures (NODE in this case);

b, Default use of 0 for the omitted else in the structure
case defining the SUBNODE field;

c. CELL remapped in the INITNODE routine to take advantage
of knowledge of the physical 1layout of the NODE's
storage.

d. "Dynamic" binds of LEFT and RIGHT inside the loop in the
test version discrimination function;

e. The bind to a plit (of NAMES) in the test portion, to
prevent duplicate storage allocation for the twice=-used
plit;

f. Stores into routine cells in the test program loops;

g. Use of the plit length word preceding the plit
(NAMES [-1]) .

Example 4: Simple Monitor I/0

These routines supply low-level support for programs which run in the
user mode under the DECsystem-10 timesharing monitor. Although not
all I/0 facilities are shown in this example, the same methods may be
used to provide any I/0O facility in BLISS~10.

These routines compile to about 75 words of code, and form about the
smallest set of routines required to read and write files. The
restriction they impose is that there may be only one input file and
one output file, and the channels associated with these files must be
specified at compile time,

MODULE IO (ENTRIES=(LOOKUP,ENTER,OPENIN,OPENOUT,CLOSEIN,
CLOSEOUT, PURGEOUT , OUTMSG ,READ ,WRITE)) =

BEGIN
$3
%
THIS MODULE PROVIDES SOME I/0 EXAMPLES USING
BLISS=10. ! FOR THIS SET OF EXAMPLES, WE WILL ASSUME A
STATIC CHANNEL ASSIGNMENT. ALL INPUT WILL BE ON
CHANNEL "INCH", AND ALL OUTPUT ON CHANNEL "OUTCH".
THE THREE=-WORD BUFFER HEADER AREAS WILL BE "IBUFH"
AND "OBUFH" AND ARE DECLARED GLOBAL IN SOME OTHER
MODULE.
£
%%
BIND
INCH=1,
OUTCH=2,
£33
%
HERE ARE SOME USEFUL MACHINE OPERATIONS
3
%3
MACHOP
CALLI=%#047,
OPEN=#050,
TTCALL=#051,
IN=#056,
ouUT=#057,
GETSTS=#062,
STATZ=#063,
CLOSEUUO=#070,
RELEAS=#071,
LOOKUPUUO=%#076,
ENTERUUO=#077,
XCT=#256;
%%

THE FOLLOWING MACRO RETURNS "TRUE" IF THE
EXPRESSION GIVEN AS ITS PARAMETER SKIPS, "FALSE"
IF NOT

%

3

MACRO SKIP(OP)=IFSKIP (OP) THEN 1 ELSE 0$;

%3
%
HERE ARE SOME USEFUL MACROS
%
%%
MACRO
RESET=CALLI(0) S,
COUNT (BUFH) =BUFH[2] §,
PTR(BUFH) =BUFH[1]$;
%
%
IBUFH AND OBUFH MUST BE DECLARED GLOBAL IN
ANOTHER MODULE
% .
%%
EXTERNAL
IBUFH([3],
OBUFH[3];
3%
%
"OPENIN" AND "OPENOUT" TAKE THREE PARAMETERS:
THE DEVICE STATUS (INCLUDING DATA MODE), THE LOGICAL
DEVICE NAME, AND THE BUFFER POINTERS, PRECISELY AS
SPECIFIED FOR THE OPEN UUO., THESE ROUTINES RETURN
"TRUE" IF THEY SUCCEEDED, AND "FALSE" IF THEY
FAILED.,
%
%3

GLOBAL ROUTINE OPENIN(STATUS,LDEV,BUF)=
(SKIP (OPEN (INCH,STATUS)));

GLOBAL ROUTINE OPENOUT (STATUS,LDEV,BUF)=
(SKIP (OPEN (OUTCH,STATUS))) ;

THE PARAMETER PASSED TO LOOKUP OR ENTER MUST BE
THE ADDRESS OF A FOUR-WORD CONTROL BLOCK, AS
SPECIFIED IN THE MANUAL. THE CONTENTS OF THIS
CONTROL BLOCK WILL BE ALTERED BY THE UUO, AND
CONSEQUENTLY MUST NOT RESIDE IN THE HISEG. THESE
ROUTINES RETURN "TRUE" IF THEY SUCCEED AND "FALSE"
IF THEY FAIL.

Version 4 BLISS 5-17 February 1974

%
%%

GLOBAL ROUTINE LOOKUP (LOOKUPBLOCK) =
SKIP (LOOKUPUUO (INCH,LOOKUPBLOCK,0,1));

GLOBAL ROUTINE ENTER (ENTERBLOCK)=
SKIP (ENTERUUO (OUTCH,ENTERBLOCK,0,1));

%%
%
THE ROUTINE "READ" RETURNS ONE OF THE FOLLOWING
VALUES: =1 IF END-OF-FILE; =2 IF OTHER I/O ERROR; A
POSITIVE NUMBER IS THE CHARACTER RETURNED.
%
%3
GLOBAL ROUTINE READ=
BEGIN
IF (COUNT (IBUFH)<+.,COUNT (IBUFH)~-1) LEQ 0
THEN

IFSKIP IN(INCH) THEN RETURN
IFSKIP STATZ (INCH,#740000)

THEN
-1
ELSE
-2;
SCANI (PTR (IBUFH))
END;
%%
%
THE ROUTINE "WRITE" RETURNS "TRUE" IF IT
SUCCESSFULLY WROTE OUT THE CHARACTER GIVEN AND
"FALSE" IF IT DID NOT.
%
2%
GLOBAL ROUTINE WRITE (CHAR)=
BEGIN
IF (COUNT (OBUFH (+.COUNT (OBUFH)=-1) LEQ 0
THEN

IFSKIP OUT (OUTCH)) THEN RETURN O0;
REPLACEI (PTR (OBUFH) , .CHAR) ;

1
END;
%%
%
THE FOLLOWING ROUTINE PURGES THE OUTPUT BUFFER.
THIS IS PARTICULARLY USEFUL FOR TTY OUTPUT.
%
%3
Version 4 BLISS 5-18 ' February 1974

GLOBAL ROUTINE PURGEOUT=
NOT SKIP(OUT(OUTCH)) ;

%
%
THE FOLLOWING ROUTINES CLOSE THE CHANNELS AND
RELEASE THE DEVICES. THEIR VALUE IS UNDEFINED.
%
%

GLOBAL ROUTINE CLOSEIN= (CLOSEUUO (INCH); RELEAS (INCH)) ;

GLOBAL ROUTINE CLOSEOUT=(CLOSEUUO(OUTCH); RELEAS(OUTCH)) ;

%
%
THIS ROUTINE IS USEFUL FOR OUTPUTTING MESSAGES

TO THE TELETYPE. IT TAKES ONE PARAMETER, THE
POINTER TO AN ASCIZ STRING (E.G., PLIT ASCIZ
'"TEXT..."'). ITS VALUE IS UNDEFINED.,

3

%%

GLOBAL ROUTINE OUTMSG (TEXT) =
TTCALL (3, TEXT,,1);

END ELUDOM;

Notes:

1. The MACHOP feature is used to provide the opcodes for the
UUO's, Note that the names and values need not correspond to
existing instruction names,

2. The SKIP macro is used to detect if the machine operation
which is its argument skips upon return. Note the use of
IFSKIP construct to detect this condition.

3. Note the use of SCANI and REPLACEI in the READ and WRITE
routines, respectively.

4, Note the fact that the parameter lists to OPENIN and OPENOUT
appear on the stack in the correct format for the OPEN UUO,
which merely has to point to the first parameter of the list.

5. Indirect addressing is used in the LOOKUP, ENTER and OUTMSG
routines. This produces slightly better code,

6. The ENTRIES declaration is used in the module head to make
the routine names available for library search by the loader.

7. The macros defining the count and pointer fields are used to

make the code read clearly. Thus the essence of the
operations is seen without the details.

Version 4 BLISS 5-19 February 1974

Example 5: A Sample Program Using Example 4

This is a somewhat trivial example of a program which transfers an
ASCII file from the disk to the printer, We will assume in this
example that the name of the file is "FILE.EXT"". Note that no test is
made for the existence of the file. If it does not exist (i.e.,
LOOKUP fails) this will appear as an input error to READ. '

MODULE DSKLPT (STACK) =

BEGIN
%%
%
THIS MODULE TRANSFERS ASCII FILES TO THE
PRINTER. FOR ILLUSTRATIVE PURPOSES HERE, THE INPUT
FILE IS ALWAYS CALLED "FILE.EXT".
%
2%
EXTERNAL
CLOSEIN, CLOSEOUT,
OPENIN, OPENOUT, LOOKUP, OUTMSG, READ, WRITE;
OWN
LBLOCK[4],
T;
GLOBAL
OBUFH[3], IBUFH[3];
MACRO
RESET=CALLI(0,0)S$,
STOP=CALLI(1,#12)5;
MACHOP

CALLI=#047;
LABEL TRANSFERS;
%3
%
HERE IS THE MAIN PROGRAM
%
%3

RESET;

UNTIL OPENOUT (1, SIXBIT 'LPT', OBUFH+18) DO
(OUTMSG (PLIT ASCIZ '?2? NO LPT?M?J'); STOP);

UNTIL OPENIN(1l, SIXBIT 'DSK', IBUFH<0,0>) DO
(OUTMSG (PLIT ASCIZ '?? NO DSK?M?J'); STOP);

LBLOCK[0]+SIXBIT 'FILE';
LBLOCK[1]«SIXBIT 'EXT';
LBLOCK[2]+LBLOCK[3]+«0;

END;

Notes:

1.

6.
7.

LOOKUP (LBLOCK<0,0>) ;

TRANSFER: WHILE (T<READ()) GEQ 0 DO
(IF .T NEQ 0 THEN IF NOT WRITE(.T)
THEN LEAVE TRANSFER
WITH(T+~3));
CLOSEIN() ; CLOSEOUT() ;

CASE .T+3 OF
SET
$ -3 % OUTMSG(PLIT ASCIZ '??LPT ERROR?M?J');
% =2 % OUTMSG(PLIT ASCIZ '??DSK ERROR?M?J'):
% -1 % OUTMSG(PLIT ASCIZ 'DONE?M?2J');
TES;

The STACK declaration is used because this 1is the main
progran, Since no parameters are given, the stack is an OWN
array, size 1000 words, with the name STACK.

Macros define the CALLI UUO's for RESET and EXIT ("STOP").

The STOP macro is used in loops, which allows the user to
issue an ASSIGN command and type CONT to resume if an error
occurs.,

The LEAVE expression is used to terminate processing in the
case of an output error. The loop condition is used to
terminate processing in the case of an input error.

The CASE expression is used to output the appropriate
message. Note the use of comments to show which value of T
will execute a given expression within the CASE. This method
of commenting CASE expressions makes them very readable.

The attributes SIXBIT and ASCIZ are used to define strings.

The escape convention (? character) is used in the messages
to obtain control characters. Note the use of the double
question mark(??) to obtain a single question mark.

Example 6: Monitor I/O

These routines supply low-level support for programs which run in the
user mode under the DECsystem=-l0 timesharing monitor., Although not
all I/0 facilities are shown in this example, the same methods may be
used to provide any I/0 facility in BLISS-10.

These routines differ from those in Example 4 in that they allow the
channel number to be supplied as one parameter to each routine. There
is no restriction to doing input or output on only one channel. These
routines use about 128 words.

MODULE IO (ENTRIES=(LOOKUP,ENTER,OPEN,CLOSE,
PURGEOUT ,OUTMSG,READ ,WRITE))=

BEGIN
3%
3
THIS MODULE PROVIDES SOME I/0 EXAMPLES USING
BLISS-10. FOR THIS SET OF EXAMPLES, WE WILL USE
DYNAMIC CHANNEL ASSIGNMENT.
3
%3
$%
%
HERE ARE SOME USEFUL MACHINE OPERATIONS
%
%3
MACHOP
CALLI=#047,
TTCALL=#051,
XCT=#256;
BIND
OPENUUO=#050,
IN=#056,
OUT=#057,
GETSTS=#062,
STATZ=#063,
CLOSEUUO=#070,
RELEAS=#071,
LOOKUPUUO=#076,
ENTERUUO=#077;
%%
%
THE FOLLOWING MACRO RETURNS "TRUE" IF THE
EXPRESSION GIVEN AS ITS PARAMETER SKIPS, AND FALSE
IF IT DOES NOT.
%
3%
MACRO
SKIP (OP)=IFSKIP (OP) THEN 1 ELSE 0$;
%%
%
HERE ARE SOME USEFUL MACROS
5
%%
MACRO

RESET=CALLI(0)S§,

ICOUNT (CHNL) = (. BUFH [CHNL] <0,18>+2) <0, 36>$,
IPTR (CHNL) = (.BUFH [CHNL] <0,18>+1) <0,36>5,

Version 4 BLISS 5-22 February 1974

%
%%

OCOQUNT (CHNL) =(,BUFH [CHNL]<18,18>+2)<0,37>$§,
OPTR (CHNL) = (. BUFH[CHNL] <18,18>+1) <0, 36>$;

THIS VECTOR KEEPS THE BUFFER HEADER POINTERS
PASSED TO "OPEN".

BUFH[16];

THE FOLLOWING MACROS ARE USED TO CONSTRUCT
INSTRUCTIONS AND EXECUTE THEM.

MAKEOP (OP , REG,ADDR) = (OP) <0,0>427+ (REG) <0 ,0>423+ (ADDR) <0.0>$,
EXECUTE (X) = (REGISTER Q; Q«X;SKIP (XCT(0,Q)))$,
IND=0,0,0,1$;

""OPEN" TAKES FOUR PARAMETERS: THE CHANNEL
NUMBER, THE DEVICE STATUS (INCLUDING DATA MODE), THE
LOGICAL DEVICE NAME, AND THE BUFFER POINTERS, THE
LATTER THREE PRECISELY AS SPECIFIED FOR THE OPEN
UUO. THIS ROUTINE RETURNS "TRUE" IF IT SUCCEEDED,
AND "FALSE" IF IT FAILED.

GLOBAL ROUTINE OPEN (CHNL,STATUS,LDEV,BUF)=

%
%%

(BUFH[.CHNL] «.BUF;
EXECUTE (MAKEOP (OPENUUO, .CHNL, STATUS))) ;

THE SECOND PARAMETER PASSED TO LOOKUP OR ENTER
MUST BE' THE ADDRESS OF FOUR=-WORD CONTROL BLOCK, AS
SPECIFIED IN THE MANUAL. THE CONTENTS OF THIS
CONTROL BLOCK WILL BE ALTERED BY THE UUO, AND
CONSEQUENTLY MUST NOT RESIDE IN THE HISEG. THESE
ROUTINES RETURN "TRUE" IF THEY SUCCEED AND "FALSE"
IF THEY FAIL.

"GLOBAL ROUTINE LOOKUP (CHNL,LOOKUPBLOCK)=

EXECUTE (MAKEOP (LOOKUPUUO, ,CHNL, LOOKUPBLOCK<IND>)) ;

Version 4 BLISS 5-23 February 1974

GLOBAL ROUTINE ENTER (CHNL,ENTERBLOCK) =
EXECUTE (MAKEOP (ENTERUUO, .CHNL , ENTERBLOCK<IND>)) ;

%%
%
THE ROUTINE "READ" RETURNS ONE OF THE FOLLOWING
VALUES: =1 IF END=-OF-FILE; =2 IF OTHER I/0 ERROR; A
POSITIVE NUMBER IS THE CHARACTER RETURNED.
%
%%
GLOBAL ROUTINE READ (CHNL)=
BEGIN
IF (ICOUNT (.CHNL)<+,ICOUNT(.CHNL)=1) LEQ 0
THEN
BEGIN
IF EXECUTE (MAKEOP (IN, .CHNL,O0))
THEN
RETURN
(IF EXECUTE (MAKEOP (STATZ, .CHNL,#740000))
THEN
-1
ELSE
-2)
END;
SCANI (IPTR(.CHNL))
END;
%
%
THE ROUTINE "WRITE" RETURNS "TRUE" IF IT
SUCCESSFULLY WROTE OUT THE CHARACTER GIVEN AND
"FALSE" IF IT DID NOT.
%
%%
GLOBAL ROUTINE WRITE (CHNL,CHAR)=
BEGIN
IF (OCOUNT (.CHNL)<«,OCOUNT (.,CHNL)~-1) LEQ 0
THEN

(IF EXECUTE (MAKEOP (OUT,.CHNL,0)) THEN RETURN 0) ;
REPLACEI (OPTR(.CHNL) , .CHAR) ;

1
END;
3%
£
THIS ROUTINE PURGES THE OUTPUT BUFFER. THIS IS
PARTICULARLY USEFUL FOR TTY OUTPUT,
$
%3

GLOBAL ROUTINE PURGEOUT (CHNL) =
NOT EXECUTE (MAKEOP (OUT, .CHNL,O0));

5-24

%
%

THE FOLLOWING ROUTINE CLOSES THE CHANNEL AND

RELEASES THE DEVICE. ITS VALUE IS UNDEFINED.

GLOBAL ROUTINE CLOSE (CHNL)=

%
%%

(EXECUTE (MAKEOP (CLOSEUUO, .CHNL, 0

):

)
EXECUTE (MAKEOP (RELEAS, .CHNL,0)))

THIS ROUTINE IS USEFUL FOR OUTPUTTING MESSAGES

TO THE TELETYPE., IT TAKES ONE PARAMETER, THE
POINTER TO AN ASCIZ STRING (E.G., PLIT ASCIZ
'TEXT..."'). ITS VALUE IS UNDEFINED.

GLOBAL ROUTINE OUTMSG (TEXT)=

TTCALL(3,TEXT,,1):

END ELUDOM;

Notes:

l-

2.

The MACHOP feature is used to provide the opcodes for the
UUO's CALLI and TTCALL, as well as the machine operation XCT.

The BIND declaration is used to associate names with the
values of the UUO opcodes. The reason this is done, instead
of declaring these names as MACHOPs (as is done in example 4)
will be discussed below.

The SKIP macro is used to detect whether the machine
operation which is its argument skips upon return. Note the
use of the IFSKIP construct.

In any UUO dealing with I/0, the register field is the
channel number. In order to provide for varying channel
numbers, the value of this field must be evaluated at this
tinme. However, the BLISS-10 compiler requires that this
field evaluate to a constant at compile time. In order to
allow this field to vary at execution time, we construct the
instruction and execute it by means of the XCT instruction.
The macro MAKEOP constructs an instruction, given the
parameters of its opcode, register field, and address field.
The macro EXECUTE takes the expression given as its
parameter, considers it an instruction, and executes it.
Note that EXECUTE assumnes the possibility that the
instruction will skip upon return, and its value is the value
of the SKIP macro. A minor restriction is that the name"Q"
may not be used in the argument to the EXECUTE macro.

Version 4 BLISS 5-25 February 1974

However, the choice of this name is arbitrary and any name
may be used in coding the macro.

5. Note the use of SCANI and REPLACEI in the READ and WRITE
routines, respectively.

6. Note the fact that the parameter list to OPEN appears on the
stack in the correct format for the OPEN UUO, which merely
has to point to the first parameter of the list.

7. Indirect addressing is used in the LOOKUP, ENTER and OUTMSG
routines. This produces slightly better code.

8. The ENTRIES declaration is used in the module head to make
the routine names available for library search by the loader.

9. The macros defining the count and pointer fields are used to
make the code read clearly. The essence of the operations is
seen without the details.

Example 7: A Sample Program Using Example 6

This is a somewhat trivial example of a program which transfers an
ASCII file from the disk to the printer. We will assume in this
example that the name of the file is "FILE.EXT". This program is
basically similar to the program in example 5.

MODULE DSKLPT (STACK) =

BEGIN
$%
%
THIS MODULE TRANSFERS ASCII FILES TO THE
PRINTER. FOR ILLUSTRATIVE PURPOSES HERE, THE INPUT
FILE IS ALWAYS CALLED "FILE.EXT".
%
3%
EXTERNAL
CLOSE, OPEN, LOOKUP, OUTMSG, READ, WRITE;
BIND
INCH=1, % INPUT CHANNEL NUMBER $%
OUCH=2; $ OUTPUT CHANNEL NUMBER %
OWN
LBLOCK[4], .
T,
OBUFH[3], IBUFH[3];
MACRO

MSG (X) =OUTMSG (PLIT ASCIZ X)S§,
RESET=CALLI(0,0)$,
HALT=CALLI(0,#12)S,
STOP=CALLI(1,#12)S$;

MACHOP
CALLI=#047;
LABEL TRANSFER;
%
%
HERE IS THE MAIN PROGRAM
%
%3

RESET;

UNTIL OPEN(OUCH,l, SIXBIT 'LPT', OBUFH+18) DO
(MSG('?? NO LPT?M?J'); STOP);

UNTIL OPEN(INCH,l, SIXBIT 'DSK', IBUFH<0,0>) DO
(MSG('?2? NO DSK?M2J'); STOP);

LBLOCK[0]+«SIXBIT 'FILE';
LBLOCK[1]«SIXBIT 'EXT';
LBLOCK[2]«LBLOCK{[3]+0;

IF NOT LOOKUP (INCH,LBLOCK<0,0>)

THEN
(MSG (' ?2FILE.EXT NOT FOUND?M?J');
HALT) ; '
TRANSFER: WHILE (T<+READ(INCH)) GEQ 0 DO

(IF .T NEQ 0 THEN
IF NOT WRITE (OUCH,.T)
THEN LEAVE TRANSFER WITH (T<«-3));

CLOSE (INCH) ; CLOSE (OUCH) ;

CASE ,T+3 OF
SET
% =3 % MSG('??LPT ERROR?M2J');
% =2 % MSG('??DSK ERROR?M?2J');
$ =1 % MSG('DONE?M?J');
TES;
END;

Notes:

1. The STACK declaration is used because this is the main
program. Since no parameters are given, the stack is an OWN

array, size 1000 words, with the name STACK.

2. Macros define the CALLI UUO's for RESET and EXIT ("STOP"

YHALT"). Note that the EXIT UUO is given two different names,
depending on whether its accumulator field is zero or nonzero
(see the DECsystem=-10 monitor manual for the significance of
this).

The STOP macro is used in the loops, which allows the user to
issue an ASSIGN command and type CONT to resume if an error
occurs.,

The LEAVE expression is used to terminate processing in the
case of an output error. The loop condition is used to
terminate processing in the case of an input error.

The CASE expression is used to output the appropriate message
after the 1loop is terminated. Note the use of comments to
show which value of T will execute a given expression within
the CASE. This method of commenting CASE expressions makes
them very readable.

The attributes SIXBIT and ASCIZ are used to define strings.

The escape convention (? character) is used in the messages
to obtain control characters. Note the use of the double
question mark (??) to obtain a single question mark.

Note the use of the MSG macro, which reduces a great deal of
clutter in coding the messages. Compare the messages in this
example with those of example 5.

module

module-head
mdle=-parms
mdle=parm

lst-parm
err-parm
opt=parm
mach-lst=-parm
hi-seg
inspct=parm
syntx

dregs

resrv
expnd=parm
reg-save=-parm
lo=-seg=-parm
glbl=-rtn-parm
entry-parm
timer-parm
timing=parm
ccl=-parm
sreg

vreg

freg
fsv~-parm
xrf-parm
eng-parm
strt

prlog

headf
deb-parm
vnum

vno

major

minoxr

edit

who

block

blockbody
decls
cmpdh-exprs
exprs

Version 4 BLISS

APPENDIX A
BLISS=10 SYNTAX

: :=block/
module-head block/
module~head block ELUDOM/block ELUDOM
modulename (mdle=-parms)=

s :=mdle-parm,mdle-parm,mdle-parms

s :=lst~parm/err-parm/opt-parm/
mach-list~parm/hi-seg/
inspct=~parm/syntx/dregs/-resrv
expnd-parm/reg-save-parm/
lo-seg=-parm/glbl-rtn=-parm/stack-parm
entry-parm/timer=-parm/timing=-parm
ccl=-parm/sreg/vreg/breg/freg

fsv-parm/xrf-parm/eng-parm/

strt/prlog/headf/deb/parm

vnum

: :=LIST/NOLIST

: :=ERRS/NOERRS

=0PTIMIZE/NOOPTIMIZE

=MLIST/NOMLIST

HISEG

INSPECT/NOINSPECT

SYNTAX

DREGS=E

RESERVE (Ei.,«...En)

EXPAND/NOEXPAND

NORSAVE/RSAVE

LOSEG

GLOROUTINES/NOGLOROUTINES

ENTRIES=(ni,...nm)

TIMER

TIMING/NOTIMING

CCL

SREG=E

VREG=E

FREG=E

FSAVE/NOFSAVE

XREF/NOXREF

ENGLISH/NOENGLISH

START

PROLOG

HEADFILE file-spec

DEBUG/NODEBUG

VERSION=VNO

<major><minor> (<edit>)-<who>

octal in range 0-777

letter A-2

octal in range 0~777777

oit

BEGIN blockbody END/

(blockbody)

:=decls exprs

:=decl/decls;decl

:=BEGIN exprs END/(exprs)

:=E/label:E/E; exprs

E semicolon exprs/empty

.
.
-
-
.
.
.
.
H
.
.
.
.
.
.
.
.
.
.
.
.
I3
.
'3
.
.
.
.
.
°
.
-
-
.
.
3
.
.
.
.
.
.
H
.
.
-
.
.
.
.
.
-
.
.
.
°
.
.
1
.
.
.
.

€0 S0 00 00 65 60 60 90 S8 06 48 €8 . ST G0 40 S0 00 G0 60 S0 00 20 08 W0 g ¢ 00 B0 00 00 we o

A-1 February 1974

comnment s:=restofline end-in=-sym/%$strng=no~pctg/empty
E s :=smpl=-expr/cntrl-expr
smpl=-expr ::=P1l1=E/Pl1l
P11l ::=P10/P1l1l XOR P1l0/Pll EQV P10
P10 ::=P9/P10 OR P9
P9 ::=P8/P9 AND P8
P8 ::=P7/NOT P7
P7 t:=P6/P6 rel-op P6
p6 t3=P5/=P5/P6+P5/P6=P5
P5 2 :=P4/P5*P4/P5/P4/P5 MOD P4
P4 ::=P3/P4+4P3
P3 :1:=P2/.P3
P2 ::=P1/Pl<pntr-parms>
I Pl s:=literal/name/E[expr-lst}/
Pl (expr-1lst)/P1()/block/
cmpnd=-expr
pntr-parms :=pos,size,indx,indrct
rel-op :2=EQL/NEQ/LSS/LEQ/GTR/GEQ/
EQLU/NEQU/LSSU/GTRU/GEQU
literal ¢ :=number/string/plit
string t:=string-type quoted-string
strng=-type $:=ASCII/ASCIZ/RADIX50/SIXBIT/enpty
quoted-string ::= left adjusting/right adjusting
left-adj=string ::= 'string'
right-adj-string ::= "string"
nunber s:=decimal/octal
decimal s:=digit/decimal digit
floating s :=decimal, decimal/
I decimal,decimal exponent/
exponent ::=E decimal/E+decimal/E-decimal (1)
l octal s :=foit/octal oit
oit ::=0/1/2/3/4/5/6/7
digit 2:=0/1/2/3/4/5/6/7/8/9
plit ¢ :=PLIT plitarg
plitarg s :=load~-time~expr/long-string/triple
triple t:=(triple-~item-1lst)
triple-item-1st ::=triple-item/triple-itemn, trlple-ltem-lst
triple~item : :=load-time-expr/long-string/
dup-fctr:plitarg
dup=fctr s s=cmpl-time-expr
name s:=letter/name letter/name digit
letter t:=A/A/B/C/.../%2/a/b/C.s./2
plit-name=bind s :=name names/
name globally names/
name indexes/
name globally indexes
cntrleexpr s :=cndtl=expr/loop~expr/choice~expr/
escp-expr/co~rtn-expr
cndtl=expr ::=IF E1 THEN E2 ELSE E3/
IF E1 THEN E2
IFSKIP E1 THEN E2 ELSE E3/
IFSKIP E1 THEN E2

l (1) E in this case is the letter E rather than an expression.

Version 4 BLISS A-2 February 1974

loop=-expr s +=WHILE E1 DO E2/
UNTIL E1 DO E2/
DO E1 WHILE E2/
DO El UNTIL E2
INCR name FROM E1 TO E2 BY E3 DO E4/
DECR name FROM E1 TO E2 BY E3 DO E4

esc=-expr s :=LEAVE label WITH E
EXITLOOP E
RETURN E
LEAVE label
SIGNAL E
escpe=-expr s :=envt=-lvl escp~val/RETURN escp-val
envt ::=EXIT/EXITBLOCK/EXITCOMPOUND/EXITLOOP/EXITCOND
EXITCASE/EXITSET/EXITSELECT/BREAK
/EXITCOMP/EXITCONDIT
lvl ::=E/enmpty
escp-~-val : :=E/empty
choice=-expr ::=CASE E OF SET expr-set TES/
SELECT E OF NSET a-expr—-set TESN
expr-set s :=L/;expr-set/E;expr-set/empty
a-expr-set s :=a-E~E;a-expr-set/empty
a=E s :=E:E/OTHERWISE: ELWAYS:E
decl s :=routn-decl/
fetn-decl/
strc-decl/
macro-decl/
alloc~dec/
map=decl/
labl=decl/
un-decl/
ext-fwd=decl/
bind-decl/
swtch~decl/
reqre~decl/
alloc=-decl s:=alloc-typ msid=-lst
alloc-typ : :=0OWN/LOCAL/GLOBAL/EXTERNAL/REGISTER
msid-1lst s:=msid-elmt/msid-elmt,msid-1lst
msid-elmt ::=strc sized=-chnks
strc : :=strc-name/empty
sized=-chnks : :=size-chnk/size-chnk,sized~chnks
size=chnk ¢ :=id-chnk/id=chnk[expr-1st]
id=chnk ¢ :=name/name : id-chnk
strc=-decl : :=STRUCTURE name strc=frml-lst=strc-size E
stre-frml-1st s :=[name~lst] /empty
strc-~size 1:=[E] /empty
fctn=-decl : :=FUNCTION name (name-lst)-E/
FUNCTION name=E/
ROUTINE name (name-lst)=E/
ROUTINE name=E/
GLOBAL ROUTINE name (name-lst)=E/
GLOBAL ROUTINE name=E
fctn-call s s=fctn-expr (exp-1lst) /fctn=-expr ()
fctn-expr s:=literal/name/cmpnd~expr/block/
name [expr~list]
expr-lst ::=E/ expr-lst,E
ext=fwd=decl ¢ :=EXTERNAL name-par=-lst/

name=-par-lst
name-parm

mac~decl
dfn-1st
dfn

map=decl
bind=-decl
equ=lst
equ
equ=-lst
equ

label-decl
labl-1lst

undecl-

swtch=~decl
swtch=1lst
swtch

lst-parm
err-parm
mach=lst-parm
inspct=parm
opt-parm
expnd-parm
GLBL=-RTN~-PARM
reg-save-parn
lo-seg=-parm
timing=-parm
regre-decl
file-spec
device
file-nane-spec
file=-name
ppn-spec
DECppn

Version 4 BLISS

5 8¢ 65 88 se s en s 08 ue e se ee s se ee ee

FORWARD

name (E) /name

=MACRO dfn-1lst
=dfn/dfn-1st,dfn

name-par-1lst
name-par/name-par-list,name-par

=name (name=1st)=strng=-no=-$ $/

=UNDECLARE name=-lst

Il

Wouuuwuwnn

name=strn-no-$ $

MAP msid-lst/MAP link-name msid-lst
BIND equ-lst/GLOBAL BIND equ~lst

equ/equ, equ-lst
nsid-elmt=E
equ/equ,equ=-lst
msid~elmt=E

LABEL labl-1lst

name/name,labl-1st

n

wtch/swtch-1st

WITCHES swtch-1st

lst-parm/err-parmn/mach-lst=parm/inspct parm/
opt=parm/expnd-parm/glbl-rtn-parm/reg-save-parm

lo=seg~parm/timing=-parm

LIST/NOLIST
NOERS
MLIST/NOMLIST

INSPECT/NOINSPECT
OPTIMIZE/NOOPTIMIZE

EXPAND/NOEXPAND

GLOROUTINES/NOGLOROUT INES

NORSAVE/RSAVE
LOSEG
TIMING/NOTIMING

name

DECppn
octal, octal

REQUIRE file=-spec
file=name-spec/device=£file~name=-spec

file=name/file-name [ppn=-spec]
name/name-name/empty

February 1974

APPENDIX B
DESCRIPTION OF NON-~-TERMINALS OF BLISS-10

The following list of non-terminals attempts to describe text for the
mnemonic uses of the syntax of BLISS=10 constructs. The non-terminal
mnemonics appear in an order which corresponds to the definition of
the construct in the specification proper.

module:
An independently compliable and linkable entity.

module=-head
The beginning of a module consisting of a module name and
parameters which affect the tyvpe of module produced.

mdle=-parms
module=-parameters

ndle=-parm
A module-~parameter, taken from the set LIST, NOLIST, NOERS,
OPTIMIZE, NOOPTIMIZE, MLIST, NOMLIST, HISEG, INSPECT, NOINSPECT,
SYNTAX, DREGS=e, RESERVE(ei,...en), EXPAND, NOEXPAND, SREG=e,
- VREG=e, FREG=e, NORSAVE, RSAVE, LOSEG, STACK, GLOROUTINES,
NOGLOROUTINES, ENTRIES=(ni,...nm), TIMER, TIMING, NOTIMING,CCL.

block
Declarations and expressions, or compound expressions bracketed by
either BEGIN-END or ().

blockbody
Declarations and expressions or compound expressions.

decls
Declarations; declarations establish relationships, allocate
storage, and define data structures of a program.

cmpnd-exprs
Compound-expressions; a compound-expression consists of a string
of expressions separated by semicolons <;> or semicolon and
enclosed in a BEGIN-END pair or (). Note compound-expressions
differ from a block in that they do not contain declarations.

exprs
Expressions; Atoms connected by operators possibly labeled,
possibly strung together, and separated by semi=-colons.
Expressions become compound-expressions when enclosed in BEGIN-END

or ().

E
Expressions: either a string of atoms connected by operators with
no intervening punctuations, or a control expression,

smpl-expr

Simple-expression; A string of primaries (language elements
reduceable to a single value) connected by operators with no
intervening punctuation.

Version 4 BLISS B-1 February 1974

Pn where n has some integer value.
Primary; An irreduceable language element which computes to a
single value. These consist of literals, names, structure names,
routine calls, blocks, and compound-expressions,

rel-op
Relational operators.

Comment
A string enclosed by a percent symbols (%...%) or a string which
begins with an exclamation point (!) and terminates with a
carriage return.

restofline
The string following an exclamation point terminated by the
end-of-line-symbol.

end-ln-sym

End-of-line-symbol; The character or characters which constitute
line termination, (currently a carriage return; 1line feeds are
ignored).

strng=-no-pct
String-with-no-percent; A string of characters which does not
contain a percent.

literal
An atom which represents itself at compile time.

decimal
A decimal integer consisting of any number of the digits 0 thru 9.

floating
A floating point number in either decimal or exponential format.

exponent
A floating point exponent in the form E+decimal or E-decimal.

octal
An octal integer consisting of any number of the digits 0 thru 7.

oit
Octal digit.

digit
Decimal digit.

quoted-string
A string of any length enclosed in quotes.

left-adj=-string
A string enclosed in single quotes which is left adjusted in a
word.

right-adj=-string
A string enclosed in double quotes which is right adjusted in a
word. :

plit
A pointer to a literal.

plitarg
The arguments of a PLIT. ' :

load=-time=expr
A load-time-expression; An expression whose value must be known
at the completion of the loading process., Can serve as a PLIT
argument.

long=-string
A string enclosed in quotes which has a length greater than one
word (7 «characters for SIXBIT ; 6 characters for ASCII; 5
characters for ASCIZ). Can serve as a PLIT argument.

triple
An argument type to a PLIT enclosed in parentheses ().

triple~item~lst
One or more PLIT arguments separated by commas.

dup=£fctr
Duplication factor; A repeat count applicable to any of argument
types of a PLIT.

cmple-time-expr
Compile-time~expression; An expression whose value is determined
at the completion of a compilation.

cntrl-expr
Control-expression; expressions which may alter the standard
sequential execution sequence within BLISS-10 programs.

cndtl~-expr
Conditional~expression

loop=-expr .
Loop-expression

esc-expr
Escape=-expression; Expression which enables the ordinary
termination of one context and the entry to another,

choice=expr
Choice=expression

expr-set
Expression set; The argument list of a CASE expression.

expr-lst
A list or expressions separated by commas.

a-expr-set
Associative=-expression-set; the argument 1list for a SELECT
expression,

a-E
Associative-expression

decl
Declaration

alloc-decl
Allocation-declaration; establishes names for storage segments;
specifies their type and size.

alloc-typ
Allocation-type; a specification of the type of storage the
compiler should set aside for units of the specified structure.

msid=-1lst
Main-structure-identifier-list; specifies names and sizes for
structures.

strc-name
structure-name; a name associated with a structure declaration.

strc-decl .
Structure-declaration; establish a data structure via size
specifications and an accessing algoritim. ‘

strc-frml-lst
Structure-formal-list; a list of the formal parameters used in
the structure-size (strc-size) specification and the accessing
algorithm for the structure.

fctn=-decl
Routine=declaration; define a function or routine.

glbl-decl
Global~declaration; specifies a routine name as GLOBAL.

ext-fwd-decl
External, or forward declaration; provides a mechanism for
specifying the number of arguments required by a routine either
defined externally, or a routine defined such that its body
contains a call on a second routine not yet declared.

name-parm-lst
Name-parameter-list; 1list of name-parms acceptable in an EXTERNAL
or FORWARD declaration.

name~-parm
Name-parameter; name or a routine which may or may not carry a
specification of the number of parameters expected by a routine
call.

macro=-decl
Macro=-declaration; define a macro

dfn-1st
Definition=-list; an argument list in a macro definition

fxd-parms
Fixed=-parameters;

map-decl
Map-declaration; redefine access algorithm for a storage segment.

bind=-decl
Bind-declaration; establishes a name-value correspondence the
value being established at block entry.

equ-lst
Equivalence-list; 1list of atoms permitted in a BIND declaration.

labl=-decl
Label-declaration; establish a 1label for wuse in a LEAVE
expression,

labl-1st

Label-list; a list of names which the compiler will interpret as
labels.

un-decl
Un-declare-declaration; render names undefined within a block.

swtch=-decl

Switch-declaration; provide compilation control at the block
level.

swtch=lst
Switch-lst; a list of arguments valid in a switch=-declaration

reqgre-decl
Require declaration; enables the programmer to include a
previously stored text file in his source during compilation.

file=-spec
File specification; a pointer to a file where the text to be
included can be found.

APPENDIX C

BLIS10 RESERVED WORDS

The following 1list
BLISS=10 version 4:
ABS ELSE
ALLMACHOP ELUDOM
ALWAYS END
AND EQL
AT EQV
EXCHJ
BEGIN EXIT
BIND EXITCASE
BREAK EXITCOMP
BY EXITCOMPOUND
EXITCOND
CASE EXITCONDIT
COPYII EXITLOOP
COPYIN EXITSELECT
COPYNI EXITSET
COPYNN EXTERNAL
CREATE
FIRSTONE
FIX
. DEBUG FLOAT
DECR FORWARD
DIV . FROM
DO FUNCTION

Version 4 BLISS

contains

all reserved words

GEQ
GLOBAL
GLOBALLY
GTR

IF
IFSKIP

INCP

INCR
INDEXES

LABEL

LEAVE
LENGTH
LEQ
LOCAL
LSS

MACHOP
MACRO
MAP
MOD
MODULE

NAMES
NEQ
NOT
NSET

which appear

OF WHILE
OFFSET WITH
OR

OTHERWISE XOR
OWN

PLIT

REGISTER
REPLACEI
REPLACEN
REQUIRE
RETURN
ROUTINE

SCANI
SCANN
SELECT
SEMICOLON
SET
SIGN
STRUCTURE
SWITCHES

TES
TESN
THEN
TO
TRAP

UNDECLARE
UNTIL

in

February 1974

APPENDIX D
WORD FORMATS

<P,S> refers to a field S bits wide and P bits up from the right
end of the word, thus:

The

The

The

The

-—{ 36-5-P)—+———S —+—p —
7777

referenced partial word

format of a pointer is

P = <30,6> Position

S = <24,6> Size

I = <22,1> Indirect address
X = <18,4> Index

Y = <0,18> Word address

format of a non-I/0 instruction is
F = <27,9> ‘ Function code
A = <23,4> Accumulator
1,X,Y as above : .

format of an integer number is

SIGN
MAGNITUDE

<35,1>
<0,35>

non

format of a floating point number is

SIGN = <35,1>
EXPONENT = <27,8>
MANTISSA = <0,27>

hand

Version 4 BLISS D-1 February 1974

APPENDIX E
BLISS~10 ERROR MESSAGES

Error Message Notes

The following is a complete list of compiler error numbers with
explanations. Unless otherwise noted, an error is a fatal syntax
error.

* indicates that this is a warning message and code generation, if
requested, will continue.

indicates that the compiler itself has made an error and will
attempt to reinitialize itself. It is recommended that a new core
image of the compiler be obtained before another compilation 1is
attempted. Please report these errors via SPR.

The majority of the errors are fatal syntax errors. Code generation
is terminated on any of these conditions.

NUMBER MESSAGE

o* Undeclared identifier.

1 Error in simple expression.

2 Not the correct matching close bracket.

3 Expressions must be separated by a delimiter.

4 An operator must be followed by a simple expression.

5 A relational expression must not be followed by a relational
operator.,

6 A unary (binary) operator must (not) - be preceded by a
delimiter.

7 A control expression must not be used as a subexpression.

10 Left part of an assignment is incorrect.

11 Too many <'s (current implementation allows 8).

12 Right hand side of an assignment is incorrect.

13 An actual parameter expression should not be empty.

14 A simple expression should be followed by a delimiter.

15 A subscript expression should not be empty.

16 Too many subscripts (current implementation allows 8).

17
20
21
22
23

25

30

31

36
37

40

41

42

43*
44
45
46
47
50
51

A null selector in CASE expression is illegal.
OF must be followed by SET in CASE statement.
Incorrect escape expression.

Missing control variable in INCR or DECR.

The constituent expressions of a complex expression should
not be empty.

Declarations are only allowed in a block head.

Current close bracket does not match marked open bracket
(paired with error 31). This pointer marks the open
parenthesis,

This pointer marks the incorrect close parenthesis (paired
with error 30).

Illegal control variable name in INCR or DECR.

Empty condition in WHILE=DO, UNTIL-DO, DO-WHILE, or
DO-UNTIL.

Illegal up 1level addressing. Specifically, when the
compiler sees a reference to an identifier of type local,
formal, function, structure formal, or a bind which is not a
compile time constant expresion, it tests to insure that the
identifiers have not been declared at a level outside (lower
than) that of the latest routine declaration. Since all the
above types are referenced via the stack, displays are
required: in order to keep track of the stack reference
pointer at outer levels. Since the displays are not
available within a routine, it is impossible to reference
specific stack positions which are set aside in outer
blocks.

Too many parameters in a pointer expression.

Too many close brackets, or not enough open brackets
(compiler exited to highest level before the EOF on input
file).

As 42, except warning only, recovery attempted.
FROM=TO=-BY=-DO out of order in INCR/DECR expression.

Empty DO: part, may not be defaulted in INCR/DECR expression.
Empty condition in IF-THEN-ELSE not permitted.

Missing THEN.

Empty FROM, TO, or BY expression in INCR/DECR.

Number of levels in escape expression is not a literal.

52
53

54
55
56
57
60
61
62
63
64
65
66
67
70
71
72
74
75

76

77
100
101
103
104
105*

106*

Missing ']' in number levels part of an escape expression.

Empty expression not permitted as pointer=-pointer in special
function.

Missing ')' in a special function.

Missing 'OF' in select expression.

Missing or misplaced 'NSET' in SELECT expression.
Labeling expression of nset~element may not be empty.
Missing or misplaced ":" in a SELECT expression.
Missing or misplaced TESN in SELECT expression.
Empty list element in SELECT expression,

'SET' is not an allowed expression beginner.

No '(' after EXCHJ.

Empty new-base expression in EXCHJ.

Missing ')' in EXCHJ.

Missing AT in CREATE.

Missing AT~-expression or LENGTH in CREATE.
Missing LENGTH=-expression or THEN in CREATE.
Missing ' (' after CREATE,

Symbol to be declared is not an identifier.

Missing "=" on a routine, function, or structure
declaration.
Missing formal parameter 1list right delimiter, i.e.,

")"Il]""'ll'

Missing right bracket on the size portion of a "namesize".

Missing delimeter on a list, i.e., "," oxr ";"
Missing ")" on a name par.

Missing "=" in a MACHOP declaration.

Missing "," ":" ";" in allocation declaration.

An idenfifier precedes a declaration, The identifier is
ignored.

Structure access not to an identifier, e.g., lle], ‘'vector'
assumed.

Version ‘4 BLISS E-3 February 1974

126*

127%
130
131%*

132*
133
134
135
136
137
140
141

142

143

144
145%*

146

147

150

170
171
172
173*
174*
175%*

Register is neither reserved nor 'system' type, see MODULE
declaration,

Register value out of range (0-15).
Register number is not a literal.

Attempted structure access to a variable which has not been
mapped, 'vector' assumed.

Extra incarnation actuals...ignored.

Size expression must not be a block.

Symbol may not be addressed, and hence may not be mapped.
Invalid expression in a FORWARD declaration.

Invalid expression in a MACHOP declaration.

May not map a symbol of this type.

Attempting to map onto an undeclared structure.

Incarnation actual or resulting size expression is not a
literal.

Delimiters for this balanced string of 'macro arguments do
not match,

Symbol previously declared in the current context
(blocklevel).

Invalid attempt to escape from routine or function.
Warning: Using a temporary register may invalidate code.

Register position of a machine operation must be register
name or literal.

The indirect field in a machine language statement must be a
compile time constant.

A machine language expression involving a name declared as a
MACHOP is missing its close parenthesis,

Illegal macro name,

Empty formal list in macro definition.

More than 31 formals in macro formal 1list.

Illegal formal parameter.

Macro definition during macro expansion suppressed.

Recursive macro call.

Version 4 BLISS E-4 February 1974

176*
177*
200%*
201
400

401

402%

403#

404 %

405

406*#

407

410*

411%*

Version 4

Macro in use at block purge time.

"(" missing on macro call,

Missing exponent on floating constant: 0 assumed.
Compile time (floating) division by zero.

A special unary operator appeared in the text, and it was
not followed by an open parenthesis. The special unary
operators are the character manipulation functions (SCANN,
REPLACEI, etc.). MACHOP not in declarations, and the special
functions SIGN, ABS, FIRSTONE and OFFSET. Since the special
unary operators are analogous to function calls, they
require an argument list. Since they are special functions,
there is no machine address associated with the name;
therefore, the name alone has no meaning and is illegal.

While evaluating a compound expression or block, we find an
expression whose close bracket is "ELSE". This is illegal.
BLISS-10 makes the assumption that it was the intent of the
writer to close the compound expression before the ELSE was
encountered. Therefore, BLISS-10 closes the compound
expression on recovery and continue processing at the ELSE
operator.

An OTHERWISE or ALWAYS was encountered in a SELECT
expression after an NSET element which was not followed by a
semicolon as required. BLISS=-10 assumes the semicolon and
continues as if it were there all along.

"The compiler has attempted to generate a machine address for

an identifier of an illegal type (such as a special
operator). If this problem is encountered, it will most
likely be the result of the compiler's failure to detect an
earlier syntax error.

A GLOBAL BIND must be to a compile time constant expression.
Since this expression is not, we assume that this is a
non-global BIND and process it as such.

Over 15 formal parameters appear in this structure
declaration. 15 is the maximum,

The compiler can't shrink back to original size after a
compilation.

This input line contained more than 135 characters. It
won't fit into the line buffer. Shorten it and try again.
There is no name preceding this NAMES or INDEXES bind. This
NAMES or INDEXES bind is ignored.

This name has already been declared at this block level.
This NAMES or INDEXES bind is ignored.

BLISS E-5 February 1974

412*

413*

414*

415*

416*

417

420*

421

422 %

423%*

424*

425%

500

501
502
503
504

505

Cannot do NAMES or INDEXES bind in a portion of a PLIT
subject to duplication., Attempt at binding is ignored.

This identifier has been declared as a GLOBAL symbol in
another context. This GLOBAL declaration is ignored.
Non-global declaration still takes place.

The symbol NAMES or INDEXES must follow the symbol GLOBALLY
in a PLIT.

On a structure access, the number of actual parameters
passed was less than the number of formals in the structure
declarations. Zeroes are assumed for missing actuals.

It is illegal to use a label in this context. The label is
ignored.

The atom following LEAVE is not a proper label.

This label has already been used in this block. This
attempt to use it is ignored.

We are outside the scope of the expression so labeled; thus
this reference is illegal.

The parameter to the OFFSET function must be a local or
formal variable name. If not, the value 0 will be returned
for the value of the OFFSET function.

This construct is scheduled to be removed from this compiler
and possibly the BLISS-10 language at some future date. We
suggest that you use an alternate implementation which does
not require this construct.

An attempt has been made to declare a name which is
identical to a previously declared global type name in the
first six characters. The compiler recovers by considering
this instance an OWN ROUTINE declaration.

An attempt has been made to declare a name which is
identical to a previously declared global in the first six

characters. The compiler recovers by considering this
instance an OWN declaration,

Input error while reading a source file (the name of the
source file is printed).

Invalid CMU userid, i.e. the CMUDEC algorithm failed.
File not found.

Invalid PPN format.

Device not found or could not do ASCII input.

REQUIRE declarations nested more than six levels.

Version 4 BLISS E-6 February 1974

601
602
603

606*

610*

612

613
614
615
616
617
620
621
622

623

624
625
626
627
630
631
632
633
634

635

Improper switch use.

Switches declaration is missing its terminating semicolon.

This switch name is unknown by this compiler.

The RESERVE statement in the module head must ‘be bracketed
by parentheses, and it is not.

The DREGS switch in the module head must be followed by an
equals sign, and it is not.

An attempt has been made to use a register name which is not
a compile time constant in the range 0-15.

Module declaration within module body.

Invalid type in stack or timer declaration.

4Syntax error in stack or timer declaration.

Invalid size expression in stack or timer declaration.
Trying to reserve a register in use already.

Special register register-number not valid.

Trying to declare a special register already in use.

Module errors; compilation starts at pointer.

Number of reserved registers plus number of special
registers (4) plus number of declarable registers (DREGS)
exceeds 12. This register reservation is, therefore,
ignored. The compiler requires at least four temporaries in
addition to reserved plus special plus declarable registers.
Missing equals in a special register declaration.

Module declaration errors with a trivial program.

Syntax errors in entries switch,

Déclared entry point is not defined.

Plit missing right parenthesis.

Compile time expression error.

Load time expression error.

Negative PLIT duplication factor.

May not use long string in this context.

String missing right quote.

636
637
760
761
762
770

771%
772#%
773%
7744
775%
776

7774

Invalid‘escape character in string.,

Extra actuals passed to structure access.

No temporary register available,

No declared registers available (INCR/DECR).
No declared registers available (declaration).

The compiler is unable to acquire the additional core
for this compilation.

GT SAVEF overflow,

Reg. table use field overflow,

Graph table UCCF overflow,

Literal table capacity exceeded,

Pointer table capacity exceeded.

Operand pair without intervening delimiter.

Compiler error.

needed

INDEX

- (Minus sign), 1-4 E, A-2, B-1
Edit, A-1
.BLI, 3-1 ELUDOM, 1-19
LLST, 3-1 END, 1-20
.REL, 3-1 End-ln-sym, B-2
Eng-parm, A-1
A-E, A-3, B-4 Entry-parm, A-1
A-expr-set, A-3, B-3 Envt, A-3
Access to variables, 4-7 EQL, 1-4
Accessing algorithm, 1-47 Equ, A-4
Actions, 3-4 Equ-1lst, 1-51, A-4, B-5
Actual parameters, 1-41 : EQV, 1-5
ALLMACHOP, 2-3 Err-parm, A-1, A-4
Alloc-decl, 1-49, A-3, B-4 Error messages, E-1
Alloc-decl/, 1-37 Exc-expr, A-3, B-3
Alloc-typ, 1-49, A-3, B-4 Escape expressions, 1-28
AND, 1-5 Escp-val, A-3
Expnd-parm, A-1, A-4
BEGIN, 1-20 Exponent, A-2, B-2
BIND, 1-40 Expr-lst, A-3, B-3
Bind declarations, 1-51, A-4, B-5 Expr-set, 1-31, A-3, B-3
Bind~decl, 1-37 Expressions, 1-2
Block, 1-19, A-1, B-1 Exprs, A-1, B-1
Blockbody, 1-20, A-1, B-1 Ext-fwd-decl, A-3, B-4
BYTE, 1-48 Ext-fwd-decl/, 1-37

EXTERNAL, 1-40, 1-43
Call-typ, 1-49

CASE, 1-31 FADR, 1-4
Ccl-parm, A-1. Fctn-call, A-3
Choice expressions, 1-31 Fctn~decl, A-3, B-4
Choice-expr, 1-31, A-3, B-3 Fctn-expr, A-3
Cmple-time-expr, B-3 FDVR, 1-4
Cmpnd-expr, 1-3, A-1, B-1 File-spec, B-5
Cndtl-expr, 1-26, A-3, B-3 Floating, A-2, B-2
Cntrl-expr, 1-2, A-2, B-3 FMPR, 1l-4
Co-routine expressions, 1-34 Fnctn-decl/, 1-37
Command syntax, 3-1 FNEG, 1-4
Comment, 1-19, A-2, B-2 Formal parameter, 1-41
Communication with monitor, 2-5 Formal-param-1lst, 1-43
Compilation control, 3-1 FORWARD, 1-43
Compile-time constants, 1-33 Freg, A-1
Conditional expressions, 1~26 FROM, 1-27
Contents of operator, 1-10 FSBR, 1-4
COPYII, 2-1 Fsv-parm, A-1
COPYIN, 2-1 Fxd-parms, B-5
COPYNI, 2-1
COPYNN, 2-1 GEQ, 1-4
Glbl-decl, B-4
Glbl-rtn-parm, A-1, A-4
Data representation, 1-18 GLOBAL, 1-39, 1-48
Deb-parm, A-1 GTR, 1-4
Decimal, A-2, B-2
Decl, A-3, B-4 Headf, A-1
Declarations, 1-37 Hi-seg, A-1
Decls, 1-20, A-1, B-1l
DECR, 1-28 . Id-chnk, 1-49, A-3
Delimiters, 1-9 INCP, 2-1
Dfn, 1-53, A-4 INCR, 1-27
bfn-1st, 1-53, A-4, B-4 Inspct-parm, A-1l, A-4
Digit, A-2, B-2 Introduction to calling
po, 1-27 sequences, 4-1
DO-WHILE, 1-27
Dregs, A-1 Label declaration, 1-52
Dup-fectr, 1-22, A-2, B-3 Label-decl, 152, A-4, B-5

INDEX-1

Label-decl/, 1-37
Labl-1st, 1-52, a-4,
LEAVE, 1-28
Left-adj-string, A-2
LEQ, 1-4

Letter, A-2
Literals, 1-21, A-2,
Lo-seg-parm, A-l1, A-
Load-time-expr, B-3
LOCAL, 1-39, 1-48
Long-string, B-3
Loop expressions, 1-
Loop-expr, 1-27, A-3
LSS, 1-4

Lst-parm, A-1, A-4
Lvl, A-3

Mach-decl, 1-53, 2-3

B-5

, B-2

B-2

4

27

, B-3

, A-4

Mach-lst-parm, A-1, A-4

Machine language, 2-
MACHOP, 2-3
Macro-decl, B -4
Macro-decl/, 1-18
Macros, 1-53

Main program code, 4
Major, A-1

Map declaration, 1-51, A-4,

Map-decl/, 1-37
Mdle-parms, A-1l, B-1
Minor, A-~-1l

Mlist, 2-3

Module head, 1-19, 3

Msid-elmt, 1-49, 1-51, A-3
B-4

Msid-lst, 1-49, A-3,

Name-1lst, 1-55
Name-parm-lst, A-4,
Names, 1-9, A-2
NEQ, 1-4

NOT, 1-5

Null extension, 3-1
Number, A-2

Octal, A-2, B-2
oit, a-2, B-2
Opt-parm, A-1l, A-4
OR, 1-5 :

Order of expression evaluation, 1-6

OWN, 1-39, 1-48

Pll, A-2

Parms, 1-19

Plit, 1-22, A-2, B-3
Plit-name-bind, A-2
Plitarg, A-2, B-3
Pn, B-2

Pntr-parms, A-2
Pointer, 1-9
Pointers to literals,
Prlog, A-1

Program termination,

3

-8

-2,

B-4

1-22

4-8

Quoted-string, A-2, B-2

Reg-save~-parm, A-1, A-4

Register, 1-39

Rel-op, B-2

REPLACEI,
REPLACEN,
Regqre-decl

2-1
2-1
, 1-37, B-

Reserved registers,
Resrv, A-1

Restofline
RETURN, 1

, B-2

-28

Right-adj-string, A-

Routines,

1-39, 1-40

Routn-decl/, 1-37
Run-time registers,

SCANI, 2-1

SCANN, 2-
SET, 1-31

1

Side-effect, 1-6

Size-chnk,
Smpl-expr,

1-49, A-3
1-2, A-2,

Special functions, 2
Special language features,
Sreqg, A-1

Storage,

1-39

Strc, 1-49, A-3

Strc-decl,
Strc-fml-1
Strc-name,
Strc-size,

1-47, A-3

st, 1-47, A-3,

B-4
1-47, A-3

Strng-no-pct, B-2

Strt, Aa-1

Structur decl/, 1-37

Structure,
Switches,

1-43
3-4

Switches declaration,

Swtch-decl
Swtch-1st,
Syntx, A-
System fea

Timer code

, 1-37, 3-
3-3, A_4,

1

tures, 3-1

, 4-9

Timer parm, A-1, A-4

TO, 1-27

Triple item, A-2
Triple-item-1lst, 1-2

Un-decl,
Un-decl/,
UNDECLARE,
UNTIL, 1-

Vno, A-1

Vnum, A-1

Vreg, A-1l

WHILE, 1-
WHILE-NOT,
Who, A-1

WITH, 1-2

XOR, 1-5

Xrf-parm,

INDEX-2

1-55, n»-4,
1-37

1-55
27

27
1-27

8

A-1

5
4-1

2, B-2

4-1

B-1
-1

, B-4

3-3

3, A-4,
B-5

2, A-2,

B-5

B-4

2-1

B-5

B-3

BLISS=-10
Programmer's Reference Manual
DEC-10-LBRMA~A-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form (see the HOW TO OBTAIN
SOFTWARE INFORMATION page).

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs,
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer

Higher-level language programmer

Occasional programmer (experienced)

User with little programming experience

Student programmer

Non-programmer interested in computer concepts and capabilities

000000

Name Date
Organization
Street
City State Zip Code
or
Country

If you do not require a written reply, please check here. Ej

Fold Here

- Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P, O. Box F
Maynard, Massachusetts 01754

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	01-30
	01-31
	01-32
	01-33
	01-34
	01-35
	01-36
	01-37
	01-38
	01-39
	01-40
	01-41
	01-42
	01-43
	01-44
	01-45
	01-46
	01-47
	01-48
	01-49
	01-50
	01-51
	01-52
	01-53
	01-54
	01-55
	01-56
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	A-1
	A-2
	A-3
	A-4
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	C-1
	C-2
	D-1
	D-2
	E-1
	E-2
	E-3
	E-4
	E-5
	E-6
	E-7
	E-8
	I-1
	I-2
	replyA
	replyB

