
PDP-10
TIME-SHARING MONITORS:
MULTIPROGRAMMING DISK MONITOR (10/40)
MULTIPROGRAMMING NONDISK MONITOR (10/40)
SWAPPING MONITOR (10/50)
PROGRAMMER'S REFERENCE MANUAL

For additional copies order No. DEC-T9-MTZA-D from Program Library,

Digital Equipment Corporation, Maynard, Massachusetts Price $3.00

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

Original Printing April 1967
Reprinted July 1967
Revised November 1967
Reprinted March 1968
Revised May 1968
Revised October 1968
Revised August 1969

Copyright@ 1967, 1968, 1969 by Digital Equipment Corporation

Instruction times, operating speeds and the like are in­
cluded in this manual for reference only; they are not to
be taken as specifications,

The fol lowing are registered trademarks of Digital
Equipment Corporation, Maynard, Massachusetts:

DEC
FLIP CHIP
DIGITAL

ii

PDP
FOCAL
COMPUTER LAB

CONTENTS

CHAPTER 1 INTRODUCTION

1. 1

1.2

1.3

Monitor Functions

User Facilities

Operating Technique

CHAPTER 2 MONITOR COMMANDS

2. 1

2.2

2.2. 1

2.2.2

2.2.3

2.2.4

2.2.5

2.2.6

2.2.7

2.2.8

2.3

2.3. 1

2.3.2

2.4

2.4. 1

2.4.2

2.4.3

2.4.4

2.4.5

2.4.6

2.4.7

2.4.8

2.5

2.5. 1

2.5.2

2.5.3

Console Control

Command Interpreter and Command Format

Command Names

Arguments

Login Check (10/50 Monitor)

Job Number Check (10/40 Monitor)

Core Storage Check

Delayed Command Execution

Completion-of-Command Signal

Program Searching

System Access Control Commands (10/50 Monitor System Only)

LOGIN Command {Swapping or Multiprogramming Disk Monitor)

SYSTAT Command (10/50 Monitor)

Facility Allocation Commands

Device Descriptors

ASSIGN dev ldev 0

DEASSIGN ldev 0

REASSIGN dev job

FINISH ldev

TALK tty

CORE core 0

RESOURCES

Run Control Commands

File Descriptors

RUN ldev file ext 0 [p,p] 0 core 0

R file.ext 0 core 0

iii

Page

1-1

1-2

1-2

2-1

2-1

2-1

2-1

2-2

2-4

2-4

2-4

2-4

2-4

2-5

2-5

2-5

2-6

2-6

2-6

2-7

2-8

2-8

2-8

2-8

2-9

2-9

2-9

2-10

2-10

2.5.4

2.5.5

2.5.6

2.6

2.6. l

2.6.2

2.6.3

2.6.4

2.7

2.7. l

2.8

2.8. l

2.8.2

2.9

CONTENTS (Cont)

GET, START, HALT (tC), and CONT Commands

DDT, REENTER, E and D

SAVE ldev file ext 0 core 0

Background Job Control

PJOB

CST ART and CCONT

DETACH

ATTACH job [p,p]

Job Termination

KJOB

System Timing

DAYTIME

TIME job 0

Comment Entries (;)

CHAPTER 3 LOADING USER PROGRAMS

3. l

3.2

3.2. l

3.2.2

Memory Protection and Relocation

User's Core Storage

Job Data Area

Loading Relocatable Binary Files

CHAPTER 4 USER PROGRAMMING

4. l

4.2

4.2. l

4.2.2

4.2.3

4.2.4

4.3

4.3. l

4.3.2

4.3.3

User Mode

Programmed Operators (UUO 's)

Operation Codes 001-037 (User UUO's)

Operation Codes 040-077, and 0 (Monitor UUO 's)

Operation Codes 100-127 (Unimplemented Op Codes)

I 11 ega I Opera ti on Codes

Program Control

Starting

Stopping

Trapping

iv

Page

2-10

2-11

2-12

2-13

2-13

2-13

2-14

2-14

2-15

2-15

2-15

2-15

2-15

2-16

3-1

3-1

3-1

3-4

4-1

4-1

4-2

4-2

4-2

4-2

4-3

4-3

4-3

4-7

CONTENTS (Cont)

4.3.4 Timing Control

4.3.5 Identification

4.3.6 Direct User 1/0

4.4 Input/Output Programming

4.4. 1 File

4.4.2 In it i a I i za ti on

4.4.3 Data Transmission

4.4.4 Status Checking and Setting

4.4.5 Terminating A File (CLOSE)

4.4.6 Synchronization of Buffered 1/0 (CALL D, [SIX BIT /W AITJ)

4.4.7 Relinquishing A Device (RELEASE)

4.5 Core Control (CALL AC, [SIX BIT/CORE/I)

CHAPTER 5 DEVICE DEPENDENT FUNCTIONS

5. 1 Teletype

5. 1. 1 Data Modes

5. 1.2 DDT Submode

5. 1.3 Special Programmed Operator Service

5. 1 .4 Special Status Bits (Full Duplex Software only)

5. 1.5 Paper Tape Input from the Teletype (Full Duplex Software only)

5. 2 Paper Tape Reader

5.2. 1 Data Modes (Input Only)

5. 3 Paper Tape Pun ch

5.3. 1 Data Modes

5.3.2 Special Programmed Operator Service

5 .4 Line Printer

5.4. 1 Data Modes

5.4.2 Special Programmed Operator Service

5.5 Card Reader

5.5. 1 Data Modes

5.6 Card Punch

5.6. 1 Data Modes

v

Page

4-7

4-8

4-12

4-13

4-13

4-19

4-27

4-31

4-31

4-32

4-32

4-33

5-1

5-2

5-3

5-5

5-6

5-9

5-9

5-9

5-9

5-10

5-10

5-11

5-11

5-11

5-11

5-12

5-12

5-13

5-13

CO NT ENTS (Cont)

Page

5.6.2 Special Programmed Operator Service 5-14

5.7 DECtape 5-14

5.7. l Data Modes 5-14

5.7.2 DECtape Block Format 5-15

5.7.3 DECtape Directory Format 5-16

5.7.4 DECtape File Format 5-16

5.7.5 Specia I Programmed Operators Service 5-17

5.7.6 Specia I Status Bits 5-19

5.7.7 Important Considerations 5-19

5.8 Magnetic Tape 5-20

5.8. l Data Modes 5-20

5.8.2 Magnetic Tape Format 5-21

5.8.3 Special Programmed Operator Service 5-21

5.8.4 9-Channel Magtape 5-23

5.8.5 Specia I Status Bits 5-25

5.9 Disk 5-25

5. 9. l Data Modes 5-25

5.9.2 Structure of Files on Disk 5-26

5.9.3 User Programming for the Disk 5-30

5.10 Incremental Plotter 5-34

5. 10. l Character Decoding 5-34

5.10.2 Data Modes 5-34

5. 10.3 Pen-up Commands 5-35

5.11 Display with Light Pen (Type 30 and Type 340) 5-35

5. 11. l Data Words 5-35

5. 11. 2 Background 5-35

5. 11. 3 Display UUO's 5-35

5. 12 CALL AC, [SIXBIT/DEVCHR/J or CALLI AC, 4 5-37

APPENDIX l

APPENDIX 2

vi

CONTENTS (Cont)

APPENDIX 3

2-1

3-1

3-2

4-1

4-2

4-3

2-1

3-1

4-1

4-2

4-3

4-4

5-1

5-2

5-3

5-4

5-5

ILLUSTRATIONS

Console Teletype Modes

User's Core Area

Loading User Core Area

User's Ring of Buffers

Detailed Diagram of Individual Buffer

File Protection Key

Monitor Commands

Job Data Area Locations

Monitor Operation Codes

CALL and CALLI Monitor Operations

Data Modes

File Status

Device Summary

PDP-10 Card Codes

DECtape Programmed Operators

MTAPE Functions

Magnetic Tape Special Status Bits

TABLES

vii

Page

2-2

3-2

3-4

4-17

4-17

4-25

2-3

3-2

4-4

4-5

4-14

4-18

5-1

5-13

5-17

5-22

5-25

FOREWORD

This manual covers the use of the Time Sharing Monitors, which include the
Multiprogramming non-disk Monitor and the Multiprogramming disk Monitor
(formerly known as 10/40) and the Swapping Monitor (formerly known as 10/50).

The Single-User Monitor (formerly known as l 0/20, l 0/30) is covered in the
manual Single User Monitor Systems.

The two most recent software releases, the Concise Command Language for the
Monitor and the 4-Series Re-Entrant User Capability, have been included as
Addendum I and Addendum II in the back of this manual. The addenda are
written from the point of view of someone al ready fa mi lar with the body of the
manual. It is suggested that the user read the addenda after becoming acquainted
with the body of the manual. This material wil I be incorporated into the next
revised edition of this manual.

CHAPTER 1

INTRODUCTION

This manual covers commands, program loading and programming of the PDP-10 Time­

Sharing Monitors -- three multiprogramming, time-sharing systems designed to al low many independent

user programs to share the facilities of the computing system. Such users can access the computer at

the same time from consoles located at the computer site, at nearby offices and laboratories, or even at

remote consoles connected by telephone I ines.

Operating concurrently under Monitor control, these diverse users may access available 1/0
device and system software to compile, assemble, and execute their programs, or perform this sequence

automatically for many jobs by using the batch control processor (Batch). Real-time jobs can operate

either as independent user programs or as fully integrated Monitor subroutines.

The Multiprogramming non-disk (10/40) Monitor is a multiprogramming, time-sharing system

which includes an 1/0 controller, run-time selection of 1/0 devices, job-to-job transition, job save

and restore features, and memory dump facilities. Al I of these features are incorporated with concurrent

realtime processing, batch processing, and time sharing. The Multiprogramming disk (10/40) Monitor

adds a comprehensive file system with both sequential and random access of shared, named files to the

Multiprogramming non-disk system. The Swapping (10/50) Monitor incorporates all of the features of

the Multiprogramming disk system and, in addition, swaps programs between high speed disk and core.

1. 1 MONITOR FUNCTIONS

All Monitors schedule multiple-user time sharing of the system, allocate available facilities

to user programs, accept input from and direct output to all system 1/0 devices, and relocate and pro­

tect user programs in core memory.

The Monitors utilize the PDP-10 hardware features of memory protection, memory relocation,

executive/user mode, and real-time clock to provide an advanced, third-generation, multiprogramming,

time-sharing environment. System facilities start with a minimum configuration of 16K core and two

DECtapes, and can accommodate magnetic tapes, disks, communication line controllers, card readers,

paper tape readers and punches I I ine printers I displays I plotters, and user Teletype consoles. Other

special devices, including real-time digitizers and analog converters, easily interface with the system.

Several programs are loaded into core. The Monitors allow each program to run for a cer­

tain length of time, based on a scheduling algorithm which permits the most efficient use of system

facilities. The Monitors process input/output commands from the programs, making them device inde­

pendent, and perform 1/0 operations concurrently with computation for high system efficiency.

1-1

1.2 USER FACILITIES

Users gain access to the system from a console at the facility or remotely located at any

point with telephone facilities. Three levels of communication are available at the consoles. Initially,

the console communicates with the Monitor Command Interpreter, which provides the system with access

protection (LOGIN); al locates and protects memory (CORE) and peripherals (ASSIGN, REASSIGN) re­

quested by the user; provides communication to the operator (TALK) for mounting of special tapes; pro­

vides the user with run control (RUN, GET, START, HALT, CONT) over programs stored in the system;

allows the user to initiate background jobs (CSTART, CCONT, DETACH, ATTACH); provides the user

with job monitoring and debugging (E, D, DDT, REENTER) facilities, and returns facilities to the system

(KJOB, DEASSIGN) when the job is finished.

With this set of Monitor commands, the user at his console has access to the system file, which

contains programs such as TECO, EDITOR and PIP, for creating and editing program source files, assem­

bling or compiling (MACRO, FORTRAN) program source files, and loading relocatable binary files.

The core image of a loaded relocatable binary file may be stored on a retrievable storage device (SAVE)

and thereafter be available through the Monitor Command Interpreter. Many other programs are avail­

ab le in the system file to facilitate file management and translation.

1.3 OPERATING TECHNIQUE

When a user starts a program, his console serves as an input/output device, which provides

a control and data path to his private program. The console is switched back to the Monitor Command

Interpreter by either the program (HALT, EXIT) or by the user striking both the CTRL and C keys (t C)

at the console. The user can exercise another dimension of control over his program by loading it with

the powerful Dynamic Debugging Technique (DDT) available in the system file. Entry to DDT is through

the Monitor Command Interpreter or by break points from the program. While program control is in DDT,

the console permits examining intermediate results and modifying the program (symbolically).

The user's program communicates with the Monitors by means of the PDP-10 operation codes

040 through 077. With these calls, the Monitors provide the program with complete device-independent

input/output services, which relieves the programmer of the arduous task of I/O programming, as well

as freeing him from dependence on the availability of particular devices at run time. In addition, the

user's program may exercise control over central processor trapping (overflow, underflow, pushdown

overflow, clock), modify its memory allocation (CORE), and monitor its own running time. Provision

exists for inter-job communication and control, reentrant user programs, and, in selected cases, direct

user I/O control.

1-2

2.1 CONSOLE CONTROL

CHAPTER 2

MONITOR COMMANDS

From the user's point of view, his time-sharing console is in one of three modes: the Monitor

mode, the user mode, or the detached mode. In the Monitor mode, characters typed in are presented

to the Monitor Command Interpreter. In the user mode, the console acts as an ordinary input/output

device under control of the user's program (the DDT submode, a special user mode, is used when running

under control of the Dynamic Debugging Technique program). The console is in the detached mode if

nothing has been typed on it since the Monitor was started or if the DETACH command is typed. The

ATTACH command places it back in Monitor mode.

If the console is in the detached mode and a character is typed in, the console either enters

the Monitor mode or immediately responds with "X" or "JOB CAPACITY EXCEEDED," both indicating

that the system is at maximum job capacity. It remains in the detached mode. Once in the Monitor

mode, each I ine of text typed in is sent to the Monitor Command Interpreter for processing. If the

command is not understood by the Monitor Command Interpreter, an error message is typed out and the

console mode is unchanged. Figure 2-1 indicates the console mode at the successful completion of each

command.

2.2 COMMAND INTERPRETER AND COMMAND FORMAT

Table 2-1 I ists the commands and their characteristics. Each command is a I ine of ASCII

characters in upper and/or lower case. Spaces and nonprinting characters preceding the command

name are ignored. The Monitor Command Interpreter ignores a line preceded by a semicolon.

2 .2. l Command Names

Command names are strings of from one to six letters. Characters after the sixth are ignored.

Only enough characters to uniquely identify the command need be typed.

2.2.2 Arguments

Arguments follow the command name, separated from it by a space or any printing character

that is not a letter or a numeral. Argument formats are described under the associated commands.

2-1

If the Monitor Command Interpreter recognizes the command name, but a necessary argument

is missing, the Monitor responds with

TOO FEW ARGUMENTS

Extra arguments are ignored.

@ CONT,HELP,REENTER,
RUN, START ASSIGN,ATT ACH,CCONT ,CORE,CSTART
~~ D, DAYTIME, DEASSIGN, E, FINISH, GET,

" '-' . KJOB, PJOB,REASSIGN,RESOURCES,SAVE,
~ '" TALK, TIME, ERRONEOUS COMMANDS ' ,,,..,
~ '" I '

tC ' I I
EXIT ~' " I I ,DETACH,
ERROR ' ' "
MESSAGES " - - - - - - - - --

/

DDT /

/

/
/

/
/

/
~c

/
/

/

I ATTACH'

Figure 2-1 Console Teletype Modes

2 .2 .3 Login Check (10/50 Monitor)

I
I I
I I ,_,

ILL. COMMANDS
II JOB CAPACITY
EXCEEDED" 11 X11

If a user who has not logged in (see "LOGIN Command") types a command requiring the user

to be logged in, the l0/50 Monitor responds with

LOGIN PLEASE

The user's command is not executed. Login is not required by the l 0/40 Monitor.

2-2

Table 2-1

Monitor Commands (See Addendum I and II)

Abbre-
Arguments

Console
Name vi at ion 1 2 3 4 5 Mode Characteristics

ASSIGN AS dev ldev0 m L,J
ATTACH AT job [p,p] m
ATTACH AT .dev m :L

CCONT cc m L,J,C,I
CONT CON u L,J,C,I
tC - m
CORE COR core 0 m J ,A,I
CST ART cs addr 0 m L,J,C,I

D D lh rh addr m L,J,C,I
DAYTIME DA m
DDT DD u (DDT) L,J,C,I
DEASSIGN DEA ldev0 m L
DETACH DET dev 0 d L

E E addr 0 m L,J,C,I
FINISH F ldev m L,J,C,A,I

GET G ldev file ext 0 [p ,p] 0 core 0 m L,J ,A
HA H m
KJOB K m A

LOG L u I
PJOB p m L,J

R R file ext0 0 L core u
REASSIGN REA ldev job m L,J,I
REENTER REE u L,J,C,I
RESOURCES RES m L
RUN RU ldev file ext 0 [p ,p] 0 core 0 u L

SAVE SA ldev file ext 0 [p ,p] 0 core 0 m L,J,C,A,I
START ST addr 0 u L,J,C,A,I
SYSTAT SYS u

TALK TA tty m
TIME TI job0 m
0 optional argume·nt [p ,p] [project number, programmer number]
addr octa I address (see "LOGIN Command 11

)

core decimal number of 1 K blocks tty CTY, OPR, TTYO, ••• , TTYn
dev CDR,CTY ,DIS,DSK,DTAO, ••• ,DTA7 d detached

LPT ,MTAO I ••• ,MTA7 ,OPR, PTP, PTR m Monitor
PTYO, ••• PTYn, SYS, TTYO, ••• , TTYn u user

ldev dev or a logical device name. L LOGIN required (10/50 Monitor)
ext filename extension, 1 to 3 characters, A no active devices

must be preceded by a point (.) c core required
file filename, 6 characters or less I must be in core
job job number assigned by Monitor J requires job number (10/40 Monitor)
lh rh octal value of fen and right half words.

2-3

2 .2 .4 Job Number Check (10/40 Monitor)

If the 10/40 Monitor recognizes a command name which requires a job number and no job

number is assigned, the Monitor assigns a job number, n, and responds with,

JOBn

together with a I ine identifying the Monitor version, and proceeds to execute the command.

2.2.5 Core Storage Check

If the Monitor Command Interpreter recognizes a command name which requires core storage

to have been al located to the job and the job has no core, the Monitor responds with

NO CORE ASSIGNED

The user's command is not executed.

2.2.6 Delayed Command Execution

If the Monitor Command Interpreter recognizes the command name and the job has devices

actively transmitting data to or from its core area and the command requires that al I devices be in­

active, or if the job is swapped out to the disk and the command requires core residence, the Monitor

delays execution of the command until the devices are inactive or the job is in core. If another com­

mand is typed while a command is waiting, the first command is ignored.

2.2.7 Completion-of-Command Signal

Most commands are processed instantly. The completion of each command is signaled by the

output of a carriage return, I ine feed. If the console is left in Monitor mode, a period fol lows the

carriage return, line feed. If the console is left in user mode, any response other than the carriage

return, line feed must come from the user's program.

2.2.8 Program Searching

If the Monitor Command Interpreter does not recognize the command name, the Monitor as­

sumes that it is the name of a program in the system file. If the Monitor cannot find the program in the

system file, it responds with the name, followed by

NOT FOUND

If the program is found, the Monitor loads the program into core and starts it with the console in user

mode.

2-4

2.3 SYSTEM ACCESS CONTROL COMMANDS (10/50 Monitor System Only)

Access to the system is I imited to authorized personnel. The system administrator provides

each user with a project number, a programmer number, and a password. The project and programmer

numbers are octal numbers up to nine digits each. The password is a sequence of from one to five ASCII

characters, which must match the password stored in the system accounting file to LOGIN successfully.

2.3. l LOGIN Command (Swapping or Multiprogramming Disk Monitor)

LOGIN waits for the user to type in the project and programmer numbers on a line, separated

by a comma (,) and terminated by a carriage return. LOGIN then responds with the word PASS WO RD:

and turns off the Teletype printer. The user types in his password which is not printed on the paper. If

the typed-in project-programmer number and password match a project-programmer number and password

stored in the system accounting file (ACCT. SYS [l, ll), LOGIN admits the user to the system and re­

sponds with the time of day, date, Teletype number, and message of the day, if any (file NOTICE. TXT

[1, l]), and finally, tC and a period, leaving the console in Monitor mode ready to accept commands.

If the password does not match or the project-programmer number does not exist, LOGIN responds with

the error message

II ?INVALID ENTRY-TRY AGAIN"

and waits for the project-programmer number, password combination to be typed again.

Example:

2.3.2

. LOGIN)

JOB n

proj,prog)

PASSWORD:

1045

tC

Ol-AUG-69 TTY7

SYSTAT Command (10/50 Monitor)

User issues LOGIN command .

Monitor responds with job number assigned,
fol lowed by Monitor name and version number.

System types out a number sign to indicate user
should type his project-programmer number.

User types in his project-programmer number
(each number can contain up to nine octal
digits).

System requests user to type in his password.
The password wil I not be printed on the paper.

If the user entries are correct, the Monitor
responds with the time of day, date, Tele­
type number, message of the day (if any),
Control C, and a period.

SYSTAT prints a summary of the current system status on the user's console.

2-5

2 .4 FACILITY ALLOCATION COMMANDS

One of the functions of the Monitor is to allocate peripheral devices and core memory to

users upon request, and to protect al located foe ii ities from interference by other users. To th is end,

the Monitor maintains a pool of available facilities from which a user can draw and restore by request.

A user should never abandon a time-sharing console without returning allocated facilities to

the pool.

2 .4.1 Device Descriptors

The devices controllable by the system are listed in Table 5-1. Associated with each device

is a physical name, made up of three letters and zero to three numerals to specify unit (transport) num­

ber. Al I references to devices in the Monitor are made by these physical names or by assigned logical

names.

2.4.2 ASSIGN dev ldev
0

ASSIGN has one required argument, dev (device), and one optional argument, ldev. Dev

must be a physical device name, or DTA or MTA. If dev is DTA or MTA, the Monitor searches the de­

vice pool for a free unit. Monitor responses are:

DEVICE dev ASSIGNED (physical device dev was free and has been
assigned to the user)

NO SUCH DEVICE (all units are in use)

ALREADY ASSIGNED TO JOB n (dev is al located to another job, n)

2 .4.2. 1 Logical Device Names (ldev) - The second argument, ldev, is optional. It represents a

logical device name of one to six alphanumeric characters of the user's choice, usable synonymously

with dev in all references to the device. Logical device names take precedence over physical device

names. Thus, a user may write programs to use arbitraily named devices which he assigns to the most

convenient physical devices at run time.

If the user has the name ldev assigned to another device, the Monitor responds with

2 .4 .2 .2 Examples

User types

Monitor responds

LOGICAL NAME ALREADY IN USE

DEVICE dev ASSIGNED

ASSIGN DTA, ABC

DEVICE DTA6 ASSIGNED

2-6

(successfu I)

User then types ASSIGN DTA,DEF (find another unit)

Monitor responds NO SUCH DEVICE (al I in use)

User then types ASSIGN PTP I ABC (reserve paper tape punch)

Monitor responds LOGICAL NAME ALREADY IN USE (paper tape punch is reserved,

DEVICE PTP ASSIGNED
but ABC stil I refers to DTA6 only)

User then types ASSIGN DTAl, DEF

Monitor responds ALREADY ASSIGNED TO JOB 2 (another user has it)

2.4.2.3 ASSIGN SYS: dev - This command is used to change the systems device (SYS:) from its cur­

rently al located device to some other device (dev). In order to issue th is command, the user must be

logged in under either [l,l] or [l,2].

2 .4.2 .4 Device Protection - When a device is assigned to a job, it is removed from the Monitor's

pool of available devices. Any attempt by another job to reference the device fails. The device is

returned to the pool when the user deassigns it or kil Is the job.

2.4.2.5 Special Functions - The ASSIGN command applied to DECtapes clears the copy of the direc­

tory currently in core, forcing any directory references to read a new copy from the tape. This is es­

pecially important when changing reels. (See Chapter 5 for fUrther details.)

2.4.3 DEASSIGN ldev
0

This command cancels device reservations made via the ASSIGN command and returns the

device(s) to the Monitor pool. The command may be typed alone or with one argument, ldev. When

an argument is typed, it must be the logical or physical name of some device previously reserved by the

ASSIGN command. If no argument is typed, al I devices currently reserved by the user via the ASSIGN

command are affected. The DEASSIGN command may be typed, even though the user's program con­

tinues to use the devices affected.

Monitor error responses are:

NO SUCH DEVICE

DEVICE WASN'T ASSIGNED

2 .4.3. l Special Functions - The DEASSIGN command applied to DECtapes performs the same special

function as ASSIGN, section 2.4.2.5.

2-7

2.4.4 REASSIGN dev job

REASSIGN allows one job to pass a device to a second job without going through the Monitor

pool. Two arguments are required: the physical device name, dev, and the job number of the second

job. Dev is deassigned from the current job and assigned to the second job. Al I devices except user

consoles can be reassigned.

2.4.5

Monitor error responses are:

FINISH ldev

DEVICE dev WASN'T ASSIGNED

JOB NEVER WAS INITIATED

NO SUCH DEVICE

DEVICE CAN'T BE REASSIGNED

FINISH terminates any input or output currently in progress on device ldev and relinquishes

it (see RELEASE).

Monitor error response is:

NO SUCH DEVICE

2.4.6 TALK tty

The TALK command al lows a user to type directly on another user's console, and the latter to

type back. If device tty is in the detached mode or in Monitor mode and at the left margin, the user's

console is inserted into a talk "ring 11 with tty. Otherwise the Monitor responds with BUSY. Any num­

ber of consoles can be in the same talk ring. Each character typed on any console in the ring is print­

ed on all other consoles in the ring. Any console is removed from the ring by typing tC. The required

argument, tty, can be any of the physical device names CTY, TTYO, ••• , TTYn or the special device

name OPR.

2.4.6. l Operator's Console - When the Monitor is started, one console, usually CTY, is designated

as the operator's console and given the name OPR. All requests for local operations such as mounting

and unmounting tapes, etc., can be performed with TALK OPR.

2.4.7 CORE core 0

The CORE command has one optional argument, core. Without the argument, the Monitor

responds with the decimal number of 1024-word blocks of unallocated core in its pool if 10/40 system

and with the maximum size of user's core if l 0/50 system. The optional argument, core, is the total

2-8

decimal number of 1024-word blocks of core memory allocated to the job upon successful completion of

the command. If it is smaller than the current allocation, the difference is removed from the top of the

user's core area, and returned to the Monitor pool. If it is larger than the current a I location, the dif­

ference, if available, is removed from the pool and appended to the top of the user's core area. In the

10/40 (nonswapping) system, if the difference is not available, the user's current core area is unchanged,

and the Monitor responds with the decimal number of 1024-word blocks in the pool. In the 10/50

(swapping) system, if the difference is not available, the user program is swapped out and brought back

a short time later when it can fit. The user need not know if his program is swapped out or not.

2.4.8 RESOURCES

Th is command causes the typeout of a 11 avai I able devices (except Teletypes) and the number

of free blocks on the disk.

2.5 RUN CONTROL COMMANDS

Core image files located on retrievable storage devices such as disk, DECtape, and magnetic

tape can be retrieved and control led from the user's console. The process of creating such files is de­

scribed in Chapter 3. Files stored on disk and DECtape are addressable by name. Files on magnetic

tape require prepositioning the tape by the user.

2 .5. 1 Fi le Descriptors

2 .5. 1. 1 Filenames - Filenames are from one to six letters or digits. Al I letters and digits after the

· sixth are ignored. A filename is terminated by any character that is not a letter or digit.

2.5. 1.2 Filename Extension - If the filename is terminated by a period, a filename extension is as­

sumed to follow. A filename extension is from one to three letters or digits. It is generally used to in­

dicate file format. The filename extension is terminated by any character not a letter or a digit. If

a filename extension is not specified with the RUN, GET, and SAVE commands, an extension of SAY

is assumed.

2 .5. 1.3 Project-Programmer Numbers - If a user wants to perform a RUN or GET command on a disk

file belonging to another user, he must specify the user's project-programmer numbers. The format is

[project-number, programmer-number]

2-9

2.5.2 RUN ldev file ext 0 [p ,p] 0 core 0

The RUN command loads a core image from a retrievable storage device (DECtape, disk, and

magnetic tape), ldev, and starts it at a location specified within the file (see JOBSA, 11Job-Data Area 11
,

Chapter 3). The arguments file, ext, and [p,p] are used to select the file. The minimum amount of

core required to load the file is allocated. After the file is loaded, core is reallocated if the optional

fifth argument, core, is specified or if the file was saved with a core argument. If both were specified,

the RUN command core argument takes precedence. The optional argument is ignored if it is less than

the size of the file. If ldev is a magnetic tape, the fifth argument must be specified, and be at least

as large as the core image file to assure proper loading.

2.5.3

Monitor error responses are:

ldev NOT AVAILABLE

NO SUCH DEVICE

nK OF CORE NEEDED

NOT A DUMP FILE

TRANSMISSION ERROR

(ldev is al located to another job)

(ldev is undefined)

(where n is a decimal number of 1024-word
blocks, if there is insufficient free core to
load the file or to satisfy the optional core
argument on the reallocation) - 10/40
Monitor only.

(the selected file is not a core image file)

(a parity or device error occurred during
data transmission)

R file. ext 0 core 0
- The R command is equivalent to the command

RUN SYS file.ext 0 core 0

and is provided as a convenience for the user. In other words, the R command is the usual command

for running one of the CUSPs (Commonly Used System Programs) in the system library. Note that R is

not an abbreviation for RUN; if the program is on a device other than SYS, the user must use the RUN

command (abbreviated RU).

2.5.4 GET, ST ART, HALT (tC), and CONT Commands

The GET, START, HALT, and CONT commands permit the user to control the running of his

program from the console.

2.5.4.1 GET ldev file ext0 [p,p] 0 core0
- The GET command is the same as the RUN command, ex-

cept that the Monitor responds with

JOB SETUP

instead of starting the program. The assignment of core is also similar to that of the RUN command.

2-10

2 .5.4. 2 START addr 0
- The START command begins execution of the user's program. If the optional

argument, addr, is not specified, the starting address is found in the core area (right half of JO BSA as

set up by the LOADER from an END statement in the source program, see Chapter. 3). The optional

argument, addr, is an octal number and, if specified, the program is started at that location. Monitor

error responses are:

NO CORE ASSIGNED

NO START ADR (if the content of JOBSA is O).

The user must supply a starting address on his END statement.

2.5.4.3 HALT and tC - Typing a tC (hold down the CTRL key and strike 11C 11
) on the console puts the

console in Monitor mode and transmits a HALT command to the Monitor Command Decoder. The HALT

command stops the job and stores the program counter in the job's core area (JOBPC, "Job-Data Area, II

Chapter 3).

2.5.4.4 CONT - The CONT command starts the program at the location specified by the contents of

the saved program counter in the job's core area (JOBPC, see 11Job-Data Area, 11 Chapter 3), and puts
'

the console in user mode. If the CONT command is given to a job which was stopped as a result of a

Monitor-detected error, the Monitor responds with

CAN'T CONTINUE

The CONT command is applicable only if the job was stopped by the HALT (tC) command or

the HALT instruction.

2.5.5 DDT, REENTER, E and D

The DDT, REENTER, E, and D commands are used primarily for program debugging and ex­

ception handling. The DDT and REENTER commands provide alternate program entry points. E and D

provide a means of examining and modifying locations in the user's core area from the console.

2.5.5. 1 DDT - The DDT command copies the saved value of the user's program counter (JOBPC) into

a second location in his core area (JO BO PC, see "Job Data Area, 11 Chapter 3), and starts his program

at an alternate entry point specified by another location (JOBDDT, see "Starting Addresses, 11 Chapter 3)

in his core area. This alternate entry point is set to the beginning address of DDT by the loader, if the

program was loaded with DDT. Alternately, the user may set this address to any desired location. To

resume computation following the DDT command interruption, execute a tC and START (JRST 2, @

JOBOPC). The Monitor error response is:

2-11

NO START ADR (if the content of JOBSA is O).

The user must supply a starting address on his END statement.

2.5.5.2 REENTER - The REENTER command is similar to the DDT command. The alternate entry point

is specified by a different location (JO BREN, see 11Job Data Area, 11 Chapter 3) in the job core area,

and must be set by the user or his program. The Monitor error response is:

NO START ADR (if the content of JO BSA is O).

The user must supply a starting address on his END statement.

A typical use of this command is interrupting a long computation to examine intermediate

results. The user types t C, and then REENTER, which transfers to his routine to print intermediate re­

sults. This routine should preserve the state of his main program, and return to the interrupted compu­

tation by executing a JRST 2, @ JOBOPC.

2.5.5.3 E addr 0
- The E command allows the user to examine locations in his core area. If the op­

tional argument, addr, which is an octal number, is specified, the octal contents of the left and right

halves of location addr are typed. Leading zeros in the half words are suppressed. The half-word values

are separated by a space, and the right half value is followed by a horizontal tab. If the optional

argument, addr, is not specified, the contents of the next location are typed. If the location to be

examined lies outside the user's allocated core area, the Monitor responds with

OUT OF BOUNDS

2.5.5.4 D lh rh addr 0
- The D command allows a user to deposit into his core area. The required

arguments lh and rh are the octal values of the left and right half words to be deposited. If the optional

argument, addr, which is an octal number, is specified, the word is deposited at location addr. If it is

not specified, the word is deposited at the location following the last location examined or deposited.

If the location is above the user's core area, or in the protected part of the job data area (see Table 3-1)

above user AC 17, the Monitor responds with

OUT OF BOUNDS

2.5.6 SAVE ldev file ext 0 core 0

The SAVE command writes a core image file of the user's core area. The Monitor saves space

by compressing core and eliminating words of zeroes before writing. It expands core back again after

the output operation has completed. If DDT is loaded, i.e., if JOBDDT is nonzero (see Chapter 3),

the entire core area, except the user's ACS, is written. Otherwise, the area starting from JOBDDT

and extending up through the program break (as specified by the contents of JOBFF, see Chapter 3) is

2-12

written. If the optional argument, ext, is not specified, the filename extension is SAV. The optional

argument, core, specifies the minimum number of 1024-word blocks in which the program is to be run.

This parameter is stored in the job's core area (JOBCOR, see Table 3-1), and is used by the RUN and

GET commands. The state of the users accumulators and input/output devices are not saved.

After the output is completed, the Monitor responds with:

Monitor error responses are:

n lK BLOCKS OF CORE NEEDED

DEVICE NOT AVAILABLE

TRANSMISSION ERROR

DIRECTORY FULL

JOB SAVED

(where n is the contents of JO BFF modulo
1024, if the user's current core allocation
is less than the contents of JOBFF)

(device ldev is allocated to another user)

(an error was detected while writing)

(the maximum number of files already exists
for device ldev)

2.6 BACKGROUND JOB CONTROL

A job is a 11 background 11 job if it is not under control of a user console. Any console can in­

itiate any number of background jobs. Input/output to the console while a job is running in background

mode causes the job to stop unti I a console is attached.

2.6. l PJOB

The PJOB command responds with the job number to which the user's console is attached. If

the console is not attached to a job, the 10/40 Monitor assigns a job number, and responds with the job

number and a line identifying the Monitor version; the 10/50 Monitor responds with the message

LOGIN PLEASE

The job number is a necessary argument for the ATTACH command.

2.6.2 CST ART and CCO NT

The RUN, START, and CONT commands always leave the user console in user mode. tC

switches the console to Monitor mode, but also stops the job. The CSTART and CCONT commands are

identical to the START and CONT commands, respectively, with the exception that the console is left

in Monitor mode.

In general, to start a job running with the console in Monitor mode, it is necessary to begin

with the console in user mode; type control information to the program; type tC, which stops the job

with console in Monitor mode; and, finally, type the CCONT command, which allows the job to con-

2-13

tinue running with the console in Monitor mode. Further commands may now be executed while the job

is running.

2.6.3 DETACH

The DETACH command disconnects the user's ·console from the job, placing the console in the

detached mode without affecting t~e status of the job. For instance, if the job was running, it remains

running in the background mode. The user console is now free to control another job, either by creat­

ing a new job or ATTACHing to a background job.

2.6.3. 1 DETACH dev - This command causes the assignment of device dev to JOB 0, thus making it

unavai I able to the system. In order to issue this command, the user must be logged in under [1, 1] .

2.6.4 ATTACH job [p,p]

The ATTACH command allows a user to connect a console to a background job. Two argu­

ments are required. The first argument, job, is the job number of the job to which the user desires to

attach. In Multiprogramming disk systems and Swapping systems, the second argument, [p, p] , is

the project-programmer number pair of the originator of the desired job. Following the ATTACH com­

mand, the console is always left in the Monitor mode. If the lob happens to be running, typing CONT

places the console in the user mode without affecting the operation of the job. It is not necessary to

execute the DETACH command before the ATTACH command, in order to switch the console between

two jobs, since the current job is automatically DETACHed.

If [p, p] is omitted, the user's project-programmer number will be assumed. This speeds up

the usual case when the user has LOGGED in twice under the same project-programmer number. The

operator (device OPR) may always attach to a job even though another console is attached, provided

he specifies the proper project-programmer number. This gives the operator complete control of the

system in case of mishap in a particular job.

If an error condition occurs, the console is left attached to the job to which it was connected

before the ATTACH was typed.

Monitor error responses are:

TTYn ALREADY ATTACHED

NOT A JOB

CAN'T ATTACH TO JOB

(either t~e job number typed is erroneous
and by coincidence is attached to another
console, or another user is attached to the
job number spedfied)

(the specified job number is not assigned to any
job)

(the second argument, [p,p] is not the project­
programmer pair of the job originator)

2-14

2.6.4.1 ATTACH dev -This command returns a detached device to the Monitor pool and makes it

available to the system. In order to issue this command, the user must be logged in under [1, 1] .

2 .7 JOB TERMINATION

When a user leaves the system, all facilities allocated to his jobs must be returned to the

Monitor foci I ity pool, thereby making them available to other users.

2.7. 1 KJOB

The KJO B command performs the fol lowing functions on the job to which the console is

attached:

a. Stops all allocated input/output devices and returns them to the Monitor pool;

b. Returns all allocated core to the Monitor pool;

c. Returns the job number to the Monitor pool;

d. Performs a TIME command; and

e. Leaves the console in Monitor mode.

2.8 SYSTEM TIMING

Al I system times are kept in increments of one 60th (or 50th) of a second. The DAYTIME and

TIME commands print time in the format

hhmm:ss.ss

where hhmm is a 4-digit representation of hours and minutes and ss.ss is seconds to the nearest hundreth.

2.8. 1 DAYTIME

The DAYTIME command prints the data followed by the time of day.

2.8.2 TIME job 0

The TIME command prints the incremental running time, i.e., the running time since the last

TIME command, followed by the total running time used by the job. Interrupt level and job scheduling

times are charged to the job running when the interrupt or rescheduling occurred. If the optional argu­

ment, job, is not specified, the job to which the console is attached is used. If the optional argument

is zero, the Monitor prints 5 quantities about system utilization as

HH:MM:SS:HH

2-15

SHFL

ZCOR

LOST

- Time spent in BLT shuffling core

- Time spent in BLT zeroing core

- Time spent in NULL job when other jobs wanted to run but could not
because they were swapped out, on the way in or out; they were stopped,
waiting to be shuffled; or they were being swapped because of expand­
ing core.

NULL - Total time in NULL job (including LOST)

UP - Total time since system was loaded

2. 9 COMMENT ENTRIES (;)

The operator may type a line of comments on the Teletype by preceding the line with a

semicolon. This line will not be interpreted or executed by the Monitor.

2-16

CHAPTER 3

LOADING USER PROGRAMS

3.1 MEMORY PROTECTION AND RELOCATION

A user's program runs while the computer is in a special mode known as the user mode. In

this mode, the contents of the memory relocation register in the central processor are automatically

added to each memory address before the address is sent to the memory system. The address, before this

addition takes place, is called the relative address; after the addition, the address is called the abso­

lute address. The contents of the memory protection register are compared with the eight high-order bits

of each relative address. If the relative address exceeds the contents of the memory protection register,

the memory violation flag is set in the central processor and control traps to the Monitor.

Thus, the contents of the memory protection and relocation registers define a contiguous area

of core with the fol lowing properties:

a. Al I memory references from within the region are relative to the beginning of the region.

b. It is impossible to address a location outside the region from within the region.

When the Monitor schedules a user's program to run, it sets the memory protection and relo­

cation registers to the bounds of the user's al located core area and switches the central processor to the

user mode.

In this manual, all addresses in the user's area are relative addresses.

To take advantage of the fast accumulators, memory addresses 0 through 17 are not relocated.

Thus, relative locations 0 through 17 cannot be referenced by the user's program. The Monitor saves

the user's accumulators in this area when the user's program is not running and while the Monitor is ser­

vicing a program call from the user.

3.2 USER'S CORE STORAGE

A user's core storage consists of a single contiguous block of memory whose size is an integral

number of 1024 words (see Figure 3-1 }. There are two methods available to the user for loading his core

area. The simplest way is to load a core image stored on a retrievable device (see RUN and GET,

Chapter 2); the second is to use the relocatable binary loader to link-load binary files. The user may

then write the core image on a retrievable device for future usage (see SAVE, Chapter 2).

3 .2. 1 Job Data Area

The first 140
8

locations of the user's core area comprise the job data area reserved for

storing specific information concerning the job, such as the starting address of the user's program (JOBSA),

3-1

highest legal address (JOBREL), etc. Locations in this area have been given mnemonic assignments

whose first three characters are JOB, e.go, JOBSA, JOBFF, JOBDDT, etc (see Table 3-1). As a con­

sequence all mnemonics in this manual with a JOB prefix refer to locations in the job data area.

Name

JOBUUO

JOB41

JOBREL

JOB DDT

JOBPFI

JOBSYM

JO BSA

MEMORY
PROTECTION

REGISTER

MEMORY
RELOCATION

REGISTER

RELATIVE ADDRESS

I---___...---------. - - 0
USER'S ACCUMULATORS

WHILE USER IS
NOT RUNNING

1----------1 - - 17

HIGHEST LEGAL
..__ ____ __.1 RELATIVE

ADDRESS

Figure 3-1 User's Core Area

Table 3-1
Job Data Area Locations (See Addendum II)

Relative
Location(s)

Octal

40

41

44

74

114

116

120

Description

User's location 408 . Used for processing user UUO 's (001
through 037).

User's location 4lg. Contains the beginning address of the
user's programmed operator service routine.

Left half: 0
Right half: The highest relative core location available to the
user (i.e., the contents of the memory protection register when
this user is running).

Contains the starting address of DDT. If contents are 0, DDT
has not been loaded.

Highest location in the job data area protected from 1/0, that
is, the Monitor wi II not perform 1/0 into or out of locations 0
through JOBPFI.

Contains a pointer to the symbol table created by Linking
Loader.
Left half: Negative count of the length of the symbol table.
Right half: Lowest register used.

Left half: First free location in user area (set by Loader).
Right half: Starting address of user's program.

3-2

Table 3-1 (Cont)
Job Data Area Locations

Relative
Name Location(s) Description

Octal

JOB FF 121 Left half: 0
Right half: Address of the first free location fol lowing the
user 1s program. Set to C(JOBSA)LH by RESET UUO.

JO BREN 124 Set by user and used by REENTER command as an alternate
entry point.

JO BA PR 125 Contains user location to be trapped to when APR trap
occurs (see APRENB UUO, Section 4.3.3.1).

JOBCNI 126 Set by CONI APR when an APR trap occurs to user program
so that it can see APR flags (see APRENB UUO).

JOBTPC 127 APR trap PC stored here on APR trap to user program so that
execution can be continued (see APRENB UUO).

JOBOPC 130 The previous (old) contents of the user 1s program counter are
stored here by Monitor upon execution of a DDT, REENTER
START, or CST ART command.

JOBCHN 131 Left half: 0
Right half: Address of first location after first FORTRAN IV
Block Data.

JOBCOR 133 Left half: Unused
Right half: Highest core address for SAVE, GET, and RUN
(i • e • , user 1s 3rd argument) •

NOTE: Only those JOBDAT locations of significant importance to the user are given in this table.
JOBDAT locations not listed include those which are used by the Monitor and those which
are unused at the present time.

Some locations in the job data area, such as JOBSA and JOB DDT, are set by the user 1s

program for use by the Monitor. Others, such as JOBREL, are set by the Monitor for use by the user's

program. In particular, the right half of JOBREL contains the highest legal address set by the Monitor

whenever the user 1s core al location changes.

User programs must reference locations in the job data area with the assigned mnemonics,

which must be declared as EXTERNAL references to the assembler. The values are assigned when the

loader performs an automatic library search for undefined global references. The specific library sub­

file, in which these symbols are defined, is called JOBDAT .•

3-3

3.2.2

command

Loading Relocatable Binary Files

The relocatable binary loader {LOADER) resides in the system file, and is started by the

R LOADER core 0 Example: R LOADER 5

The PDP-10 Systems User's Guide contains a description of the loader command string.

Figure 3-2 shows the user's core area with the loader resident.

0

LOAD

OFFSET
(LOC 0 OF

OBJECT PROGl

HIGHEST
LOCATION

LOADED

BOTTOM OF
SYMBOL

TABLE

SYMBOL
TABLE

0
JOB DATA AREA

---- NEW JOB DATA AREA

PROGRAM ----

---- CODE

I/O BUFFERS ----
---- HIGHEST

LOCATION
LOADED

NEW JOB DATA AREA

CODE

---- ----

DURING LOADING AFTER LOADING

Figure 3-2 Loading User Core Area

3.2.2. l Program Origin - The new program code is loaded upward from an offset above the resident

loader. The program origin {i.e., the first location loaded) is 140
8

, unless the user changes it by the

assembler LOC pseudo-instruction. The symbol table is built down from the top of the allocated core

area. If the code and symbol table overlap, the core area is expanded by 1024 words and the symbol

table is moved up to the top of the expanded area. Upon completion of loading, the loader stores some

values in the new job data area, and moves the area from the offset to the highest location loaded (top

of new code) down to zero. The symbol table remains at the top of the allocated core.

3.2.2.2 Program Break - After loading, the address of the first location above the new code area

{i.e., the program break) lies in the left half of location JOBSA and in the right half of JOBFF. The

left half of JOBFF contains 0.

3-4

3.2.2.3 Starting Addresses - The right half of JOBSA contains the program starting address. The

value is the last nonzero address field of the assembler END pseudo-instruction to be loaded, or 0.

Th is is the address used by the RUN and ST ART commands.

If DDT was loaded by means of the D switch in the loader command string, the right half of

JOBDDT is set by DDT to the starting address of DDT; the left half is O; otherwise, the contents of

JOB DDT are zero, the DDT command uses this address as the starting address. Location JO BREN may

be set by the user's program for use with the REENTER command (see Chapter 2).

3.2.2.4 Symbol Table - JOBSYM contains a pointer to the bottom of the symbol table. The left half

is the negative word length of the table, and the right half is the address of the lowest location used.

The top of the symbol table is the top of the user's allocated core area, pointed to by the contents of

the right half of JOBREL. DDT uses this symbol table for printing and interpreting symbolic values.

The right half of JOBUSY is the beginning address of the list of undefined global symbols.

If some symbols are undefined after loading is complete, DDT may be used to define their values. These

values are automatically substituted by DDT in all locations referencing them.

3-5

CHAPTER 4

USER PROGRAMMING

The central processor operates in one of three modes: executive mode, user 1/0 mode, or

user mode. The Monitor operates in executive mode, which is characterized both by the lack of mem­

ory protection and relocation (see Chapter 3) and by normal execution of all defined operation codes.

The user 1/0 mode is a special mode, wherein memory protection and relocation are in effect, as well

as the normal execution of all defined operation codes. (This mode is not used by the Monitor, and is

not normally available (see TRPSET) to the time-sharing user.) User programs are run in user mode, to

guarantee the integrity of both the Monitor and each user program.

4. 1 USER MODE

The user mode of the central processor is characterized by the following features:

a. Automatic memory protection and relocation (see Chapter 3)

b. Trap to absolute location 40 on

(1) Operation codes 40 through 77 and O;

(2) Input/output instructions (DATAI, DATAO, BLKI, BLKO, CONI, CONO, CONSZ,
and CONSO);

(3) HALT (i.e., JRST 4,); or

(4) Any JRST instruction that attempts to enter executive mode or user 1/0 mode.

c. Trap to relative location 40 on execution of operation codes 001 through 037.

Since user programs run in user mode, the Monitor must perform all input/output operations

for the user, as well as any other operations required by the user not available in the user mode.

4.2 PROGRAMMED OPERATORS (UUO's)

Operation codes 000 through 077 are programmed operators (sometimes referred to as UUO's -

Unimplemented User Operators); some trap to the Monitor and the rest trap to the user program.

After the effective address calculation is complete, the contents of the instruction register

are stored in user or Monitor location 40, along with the effective address, and the instruction in user

or Monitor location 41 is executed out of normal sequence. Location 41 must contain a JSR instruction

to a routine to interpret the contents of location 40.

4-1

4.2. 1 Operation Codes 001-037 (User UUO's)

Operation codes 001 through 037 do not effect the mode of the central processor. Thus, when

executed in user mode, they trap to user location 40, which allows the user complete freedom in the use

of these programmed operators.

4.2.2 Operation Codes 040-077, and 0 (Monitor UUO's)

Operation codes 040 through 077 and 0 trap to absolute location 40, with the central pro­

cessor in executive mode. These programmed operators are interpreted by the Monitor to perform input/

output operations and other control functions for the user's program.

4.2.3

Table 4-1 lists the operation codes and their mnemonics.

Operation Codes 100-127 (Unimplemented Op Codes)

Op code 100-UJEN

Op codes 101-127

Dismisses realtime interrupt from user mode
(see 4. 3. 6. 2) •

Monitor prints ILL INST AT USER n and stops
job.

4.2.3.1 CALL and CALLI - Operation codes 040 through 077 limit the Monitor to 40
8

operations.

The CALL operation extends this set by specifying the name of the operation by the contents of the

location specified by the effective address, e.g., CALL [SIXBIT/EXIT/J. This provides for indefinite

extendabi I ity of the Monitor operations, at the overhead cost to the Monitor of a table lookup.

The CALLI operation eliminates the table lookup of the CALL operation by having the pro­

grammer perform the lookup once, and specifying an index to the operation in the effective address of

the CALLI. Table 4-2 I ists the Monitor operations specified by the CALL and CALLI operations

The customer is allowed to add his own CALL and CALLI calls to the Monitor. A negative

CALLI effective address (starting with -2) should be used to specify such customer added operations.

4.2.4 II legal Operation Codes

The eight input/output instructions (DATAI, etc.) and JRST instructions attempting to enter

executive or user 1/0 mode from the user mode are interpreted by the Monitor as illegal instructions.

The job is stopped and the following error message is printed on the user's console.

ERROR IN JOB n

ILL INST AT USER LOC addr

4-2

4.3 PROGRAM CONTROL

4.3. l Starting

All program starting is accomplished by the Monitor commands RUN, START, CSTART, CONT,

CCONT, DDT, and REENTER (see Chapter 2). The starting address is either an argument of the com­

mand or stored in the user's job data area (see Chapter 3).

4.3. 1. l CALL AC, [SIXBIT/SETDDT/J or CALLI AC, 2 - This UUO causes the contents of the AC to

replace the DDT starting address, which is stored in the protected job data area location, JOB DDT.

This starting address is used by the Monitor command, DDT.

4.3.2 Stopping

Any one of the following procedures can stop a running program:

a. One tC from user console if user program is in a Teletype input wait; otherwise, two
tC's from user console (See Chapter 2);

b. A Monitor detected error; or

c. Program execution of HALT, CALL [SIXBIT/EXIT;J, or CALL [SIXBIT/LOGOUT;J.

4.3.2. l Illegal Instructions (700-777, JRST 10, JRST 14) and Unimplemented Op codes (101-127) -

Illegal instructions trap to the Monitor, stop the job, and print

ERROR IN JOB

ILL. INST. AT USER n

Note that the program cannot be continued by typing the CONT or CCONT commands.

4. 3. 2.2 HALT or JRST 4, - The HALT instruction is an exception to the illegal instructions; it traps

to the Monitor, stops the job, and prints

ERROR IN JOB

HALT AT USER n

However, the CONT and CCONT commands are still valid and, if typed, will continue the program at

the effective address of the HALT instruction. HALT is useful for impossible error returns such as INIT

on TTY.

4-3

Operation Code

040

041

042

043

044

045

046

047

050

051

052

053

054

055

056

057

060

061

062

063

064

065

066

067

070

071

072

073

074

075

076

077

100

Table 4-1
Monitor Operation Codes

Mnemonic

CALL

INIT

CALLI

OPEN

TT CALL

RENAME

IN

OUT

GETSTS

STATO

STATUS

STATZ

INBUF

OUTBUF

INPUT

OUTPUT

CLOSE

RELEASE

MT APE

UGETF

USETI

USETO

LOOKUP

ENTER

UJEN

4-4

Function

Operation code extension (See 4.2.3. 1)

Initialize 1/0 device (See 4.4.2.2)

No operation """'

No operation

No operation

No operation

No operation

Reserved for

installation-

dependent

calls

Operation code extension (See 4.2. 3.1)

Open file (See 4.4.2.2)

Special Teletype Operations (See 5. 1.3)

No operation) Reserved for

No operation future

No operation expansion

Rename or delete a file (See 4.4. 2. 5)

Input and Skip (See 4.4. 3)

Output and Skip (See 4. 4. 3)

Set file status (See 4.4.4)

Skip on file status one (See 4.4.4)

Read file status (See 4. 4.4)

Skip on file status zero (See 4.4.4)

Set up input buffer ring (See 4.4.2.3)

Set up output buffer ring (See 4.4.2.3)

Read (See 4.4.3)

Write (See 4.4.3)

Close file (See 4.4. 5)

Re I ease device (See 4. 4. 7)

Position tape (See 5. 8. 2 and 5 .7 .5)

Get next free block number (See 5. 7 .5)

Set next input block number (See 5. 7. 5)

Set next output block number (See 5. 7. 5)

Select file (Se~ 4.4.2.4)

Create file (See 4.4. 2. 4)

Dismiss real-time interrupt (See 4.3.6.2)

Table 4-2
CALL and CALLI Monitor Operations

CALLI AC, x CALL AC, [SIXBIT/y/I Function

x= -2, ..• , -n Customer defined Reserved for definition by each customer
installation.

-1 DAT AO Displays AC in console I ights.

0 y= RESET Reset I/O devices (See 4.4.2. 1)

l DD TIN DDT mode console input (See 5. 1. 2)

2 SETDDT Set protected DDT starting address {See 4. 3. l. l)

3 DDTOUT DDT mode console output {See 5. 1. 2)

4 DEVCHR Get device characteristics {See 5. 11)

5 (DDTGT) No operation

6 (GETCHR) Same as DEVCHR(4)

7 (DDTRL) No operation

10 WAIT Wait until device inactive {See 4.4. 6)

11 CORE Al locate core (See 4. 5)

12 EXIT Release devices, stop job {See 4. 3. 2. 3)

13 UTPCLR CI ear directory {See Table 5-2)

14 DATE Return data {See 4. 3 .4. l)

15 LOGIN Special operation for LOGIN {See 4.3.5.3)

16 APRENB Enab I e centra I processor traps {See 4. 3. 3. 1)

17 LOGOUT Kill job (See 4.3.2.4)

20 SWITCH Read processor console switches (See 4.3.6.3)

21 REAS SI Reassign device {See 2.4.4)

22 TIMER Read clock in ticks {See 4.3.4.2)

23 MS TIME Read clock in milliseconds {See 4.3.4.3)

24 GETPPN Read project-programmer pair (See 4. 3. 5. 2)

25 TRPSET Set trap for user I/O mode (See 4. 3 • 6. 1)

26 TRPJEN Illegal UUO

27 RUNTIM Return job running time (See 4.3.4.4)

30 PJOB Return job number (See 4.3.5. 1)

31 SLEEP Stop job for specified time (See 4.3.4.5)

32 (SET POV) Set pushdown overflow trap (this command has
been superceded by APRENB (16).

33 PEEK Return specified Monitor location (See 4. 3. 5 .4)

4-5

Table 4-2 (Cont)
CALL and CALLI Monitor Operations

CALLI AC, x CALL AC, [SIX BIT/y,/.I Function

34 GET LIN Return physical name of attached Teletype con-
sole. (See 4. 3.5.5)

35 RUN Call new program (both high and low)
(See Addendum III)

36 SETUWP Set user's mode write protect {See Addendum III)

37 REMAP Remap top of low segment into high segment
(See Addendum III)

40 GETSEG Replace high segment only (See Addendum III)

41 GETT AB Examine contents of specified Monitor location
(See 4.3.5.6)

42 SPY Make physical core be high segment for efficient
looking at Monitor {See Addendum III)

43 SET NAM Set program name (See 4.3.6.4)

Note: Other CALLI UUOs wil I be implemented from time to time and wil I be documented in Software
Manual Updates and in revised editions of this manual. Execution of a CALLI UUO with an address
higher than the last implemented operator will result in an ILLEGAL UUO message.

4.3.2.3 CALL [SIXBIT/EXIT,/.I or CALLI 12 - All input/output devices are RELEASed (see Section

4. 4. 7), and the job is stopped .

EXIT
tC

is printed on the user's console, which is left in Monitor mode. The CONT or CCONT commands can­

not continue the program.

4.3.2.4 CALL N, [SIXBIT/EXIT,/.I or CALLIN, 14 - When N = 1, the job is stopped but devices

are not released. The carriage return-linefeed operation will be performed and

is printed on the user's console and the CONT command wil I return after the UUO instead of printing

CAN'T CONTINUE.

4.3.2.5 CALL [SIXBIT/LOGOUT,/.I or CALLI 17 - All input/output devices are RELEASed (see Section

4.4.7), and returned to the Monitor pool, along with the allocated core and the job number. The ac-

4-6

cumulated running time of the job is printed on the user's console, which is left in the detached mode.

This UUO is not available to user programmers. It is only for use of the LOGOUT CUSP. If a user

program executes a LOGOUT UUO, the Monitor will treat it like EXIT (See 4.3.2.3).

4.3.3 Trapping

4.3.3. l CALL AC, [SIXBIT/APRENB/l or CALLI AC, 16 - APR trapping allows a user to handle any

and all traps that occur on the central processor, including illegal memory references, nonexistent

memory references, pushdown list overflow, arithmetic overflow, floating point overflow, and clock

flag. To enable for trapping a CALL AC, [SIXBIT/APRENB;1 or CALLI AC, 16 is executed, where the

AC contains the central processor flags to be tested on interrupts, as defined below:

19
22
23
26
29
32

AC Bit

200000
20000
10000

1000
100
10

Trap On

pushdown overflow*
memory protection violation *
nonexistent memory flag*
clock flag*
floating point overflow
arithmetic overflow

When one of the specified conditions occurs while the central processor is in user mode, the

state of the central processor is Conditioned !nto (CONI) location JOBCNI, and the PC is stored in lo­

cation JO BT PC in the job data area (see Table 3-1). Then control is transferred to the user trap­

answering routine specified by the contents of the right half of JOBAPR, after the arithmetic overflow

flag has been cleared. The user program must set up location JOBAPR before executing the CALL AC

[SIXBIT/APRENB;1 or CALLI AC, 16. To return control to his interrupted program, the user's trap an­

swering routine must execute a JRST 2, @ JOBTPC to restore the state of the processor.

4.3.3.2 Console-Initiated Traps - Program control can be changed from the user's console by use of

the tC, START, DDT, and REENTER commands (see Chapter 2).

4.3.4 Timing Control

The central processor clock, which generates interrupts at the power-source frequency (60 Hz

in North America, 50 Hz in most other countries), keeps time in the Monitor. Each clock interrupt

(tick) corresponds to l/60th (or l/50th) of a second of elapsed real time. The clock is set initially to

the current time of day by console input when the system is started, as is the current date. When the

clock reaches midnight, it is reset to zero, and the date is advanced.

*The Monitor is always enabled for these.

4-7

4.3.4. 1 CALL AC, [SIXBIT/DATE/1 or CALLI AC, 14 - A 12-bit binary integer computed by the

formula

date=((year-1964)xl2+(month- l))x3l+day- l

represents the date.

This integer representation is returned right-justified in accumulator AC.

4.3.4.2 CALL AC, [SIXBIT/rIMER/1 or CALLI AC, 22 - These return the time of day, in clock ticks

(jiffies), right-justified in accumulator AC.

4.3.4.3 CALL AC, [SIXBIT/MSTIME/1 or CALLI AC, 23 - These return the time of day, in milli­

seconds right-justified in accumulator AC.

4.3.4.4 CALL AC, [SIXBIT/RUNTIM/1 or CALLI AC, 27 - The accumulated running time, in milli­

seconds, of the job whose number is in accumulator AC, is returned right-justified in accumulator AC.

If the job number in AC is zero, the running time of the currently running job is returned. If the job

whose number is in AC does not exist, zero is returned.

4.3.4.5 CALL AC, [SIXBIT/SLEEP/1 or CALLI AC, 31 - These stop the job, and continue automatically

after an elapsed real time of

[c(AC)xclock frequency] modulo 2
12

jiffies.

The contents of the AC are thus interpreted as the number of seconds the job wishes to sleep; however,

there is an implied maximum of approximately 68 seconds or one minute.

4.3.5 Identification

4.3.5. 1 CALL AC, [SIXBIT/PJOB/1 or CALLI AC, 30 - These return the job number right-justified

in accumulator AC.

4.3.5.2 CALL AC, [SIXBIT/GETPPN/1 or CALLI AC, 24 - These return in AC the project-programmer

pair of the job. The project number is a binary number in the left half of AC, and the programmer num­

ber is a binary number in the right half of AC. If the program being run is LOGIN or LOGOUT from

the system device, the current project-programmer number is changed to 1,2 so that all files are acces­

sible for reading and writing, and a skip return is given if the old project-programmer number is also

logged in on another job.

4-8

4.3.5.3 CALL AC, [SIXBIT/LOGIN/1 or CALLI AC, 15 - This programmed operator is intended for

use with the LOGIN command only. Accumulator AC contains XWD -n, TABLE, where TABLE is the

first location of n words to be stored in the Monitor's job tables for this user. The first table is project­

programmer number (PRJPRG); the second is the job privilege bits (J BT PRY). If LH is less than -2, the

extra words are ignored. If LH is - 1, only the first table is set.

4.3.5.4 CALL AC, [SIXBIT/PEEK/1 or CALLI AC, 33 - This UUO allows a user program to examine

any location in the Monitor. Some customers may want to restrict the use of this UUO to project 1.

The cal I is: MOVE! AC, exec address ;TAKEN MODULO l 6K

CALL AC, [SIXBIT/PEEK/1 ;OR CALLI AC, 33

This call returns with the contents of the Monitor location in AC. It is used by SYSTAT and could be

used for on-I ine Monitor debugging.

4.3.5. 5 CALL AC, [SIXBIT/GETLIN/1 or CALLI AC, 34 - This UUO returns the SIX BIT physical

name of the Teletype console that the program is attached to.

The call is: CALL AC, [SIXBIT/GETLIN/J ;OR CALLI AC, 34

The name is returned left justified in the AC.

Example: CTY or TTY3 or TTY30

This UUO is used by the LOGIN program to print the TTY name.

4.3.5.6 CALL AC, [SIXBIT/GETTAB/J or CALLI AC, 41 -This UUO provides a mechanism for user

programs to examine the contents of certain Monitor locations in a way which will not vary from Mon­

itor to Monitor.

The call is: CALL AC, [SIXBIT/GETTAB/J ;OR CALLI AC, 41

The left half of AC contains a job number or an index to a table. Some job numbers may refer to high

segments of programs by using arguments greater than JOBN for the current Monitor. A negative LH

means the current job number. The right half of AC contains a table number from the following list of

Monitor data tables and parameters. The entries in these tables are all globals in the Monitor subroutine

COMMON. The actual values of the core addresses of these locations are subject to change and can be

found in the LOADER storage map for the Monitor.

The complete descriptions of these globals will be found in the I istings of COMMON and

S. The I ist of entries is as fol lows, with brief description.

Entries in CNFTBL (Configuration Table)- Table 11

4-9

ITEM

0

4
5
6
7
10
11
12
13
14
15
16
17

20

LOCATION

CON FIG

CONFIG+4
SYS DAT
SYSDAT+l
SYSTAP
TIME
TH SD AT
SYSSIZ
DEVOPR
DEVLST
SEGPTR
TWO REG
STATES

SERIAL

USE

Name of systen in ASCIZ

Date of system in ASCIZ

Name of the system device (SIX BIT)
Time of day in jiffies
Todays date (12-bit format)
Highest location in the monitor+ l
Name of the OPR TTY console
LH is start of DDB chain
LH=-H of high segments, RH=+* of JOBS (counting NULL job)
Non-zero if system has two-register hardware and software
Location describing feature switches of this system in LH,
and current state in RH.

Assembled according to MONG EN dialog and S. MAC:

Bit O=l If disk system (FTDISK)
Bit l=l If swap system (FTSWAP)
Bit 2=1 If LOGIN system (FTLOGIN)
Bit 3=1 If full duplex software (FTTTYSER)
Bit 4= l If privilege feature (FTP RV)
Bit 5=1 If assembled for choice of reentrant or non-reentrant

software at monitor load twice (FT2REL)
Bit 6= l If clock is 50 cycle instead of 60 cycle

Deposited by operator any time:

Bit 34=1 Means no remote LOGINS
Bit 35=1 Means no more LOGINS
Serial number of PDP processor
Set by MONGEN dialog

Entries in ODPTBL (once only disk parameters) - Table 15

ITEM

0
l
2
3

LOCATION

SWPHGH
K4SWAP
PROT
PROTO

Highest logical block# in the swapping space
K of disk words set aside for swapping
In-core protect time multiplies size of job in K-1
In-core protect time added to above result after multiply

Entries in NSWTBL (non-swapping data) - Table 12

ITEM LOCATION USE

0 CORT AB Map of physical core
l bit for each K of core

7 CORTAB+7

4-10

10
11
12
13
14
15
16
17
20
21
22

CORMAX
CORLST
CORT AL
SHFWAT
HOLEF
UPTIME
SHFWRD
STUSER
HIGHJB
CLRWRD
LSTWRD

Size in words of largest legal user job (low seg+high seg}
Byte pointer to last free block in CORTAB
Total free+dormant+idle K physical core left
Job no. shuffler has stopped
Abs. adr. of job above I owest hole, 0 if no job
Time system has been up in jiffies
Tot. no. of words shuffled by system
Number of job using sys if not a disk
Highest job number currently assigned
Total no. of words cleared by CLRCOR
Total no. of clock ticks when null job ran and other
jobs wanted to but couldn't, because:

1 . Swapped out or on way in or out
2. Monitor waiting for IO to stop so can shuffle or swap
3. Job being swapped out because expanding core

Entries in SWPTBL (swapping data} - Table 13

ITEM LOCATION

0 BIGHOL
1 FINISH

2 FORCE
3 FIT
4 VIRTAL

5 SWPERC

Table Numbers (RH of AC)

USE

No. of K in biggest hole in core
+Job no. of job being swapped out
-Job no. of job being swapped in
Job being forced to swap out
Job waiting to be fit into core
Amount of virtual core left in system in K (initially set to
No. of K of swapping space)
L H=no. of swap read or write errors
RH=error bits (bits 18-21 same as status bits)+no. of K discarded

00-JBTSTS-Index by job or segment number
01-JBTADR-Index by job or segment number
02-PRJPRG-Index by job or segment number
03-JBTPRG-Index by job or segment number
04-TTIME-Index by job number
05-J BTK CT -Index by job number
06-JBTPRV-Index by job number
07-JBTSWP-Index by job or segment number
10-TTYT AB-Index by I ine number
11-CNFTBL-Index by item number (see above)
12-NSWTBL-Index by item number (see above)
13-SWPTBL-Index by item number (see above)
14-JBTSGN-Index by job number
15-0DPTBL-Index by item number (see above)

An error return leaves the AC unchanged. This means that the job number or index number in the left

half of AC was too high, or the table number in the right half of AC was too high, or that the user does

not have the privilege of accessing that table.

4-11

A skip return supplies the contents of the requested table in AC, or a zero if the table is

not defined in the current Monitor.

The SYSTAT CUSP makes heavy use of this UUO.

4.3.6 Direct User 1/0

The user 1/0 mode (bits 5 and 6 of PC word= 11) of the central processor allows running

privileged user programs with automatic protection and relocation in effect. This mode provides some

protection against partially debugged Monitor routines, and permits running infrequently used device

service routines as a user job. Direct control by the user program of special devices is particularly

important in realtime applications.

To utilize this mode, the job number must be 1. CALL [SIXBIT/RESET/I or CALLI 0

terminates user 1/0 mode.

4.3.6. l CALL AC, [SIXBIT/fRPSET/I or CALLI AC, 25 - This UUO is a privileged UUO which

temporarily stops time sharing and al lows the user program to gain control of the interrupt locations.

This UUO is temporary until some 11 knave-proof 11 realtime UUOs are implemented which will not stop

time sharing and which cannot crash the system. If the user is not job 1, or if AC contains either zero

or the left half is not in the range 40 through 57, control returns to the next location after the CALL.

Otherwise, all other jobs are stopped and, if AC contains zero, the central processor is placed in user

1/0 mode and control returns to the second location following the CALL. If the left half of AC con­

tains a number between 40 and 57 inclusive, the contents of the relative location specified in the right

half of AC are fetched; the job relocation address is added to the address field, and the result is stored

in the absolute location (40-57) specified in the left half of AC; the central processor is placed in the

user 1/0 mode; and control is returned to the second I ocation fol lowing the CALL. Thus, the user can

set up a priority interrupt trap into his relocated core area.

The call is: MOVE AC, XWD N, ADR
CALL AC, [SIXBIT/fRPSET/I
ERROR RETURN
NORMAL RETURN

The Monitor assumes that user location ADR contains either a JSR U or BLKI U, where U is a user ad­

dress. Consequently, the Monitor will add the job's relocation to the contents of location U to make

it an absolute IOWD. Therefore, a user should reset the contents of U before every TRPSET call.

4.3.6.2 UJEN (Op code 100) - This unimplemented op code dismisses a user 1/0 mode interrupt if

one is in progress. If the interrupt is from user mode, a JRST 12, instruction can dismiss the interrupt.

4-12

If the interrupt was from executive mode, however, this operator must be used to dismiss the interrupt.

The program must restore all accumulators, and execute

UJEN U

where user location U contains the program counter as stored by a JSR instruction when the interrupt

occurred.

4.3.6.3 CALL AC, [SIXBIT/SWiTCH,/J or CALLI AC, 20 - These return the contents of the central

processor data switches in AC. Caution must be exercised in using the data switches since they are not

an allocated device and are always available to all users.

4.3.6.4 CALL AC, [SIXBIT/SETNAM,/J or CALLI AC, 43 - The contents of AC contain a left

justified SIXBIT program name, which is stored in a Monitor job table. This UUO is used by the

LOADER. The information in the table is used by the SYSTAT CUSP (See GETTAB UUO 4. 3.5.6).

4.4 INPUT/OUTPUT PROGRAMMING

All user input/output operations are controlled by the use of Monitor programmed operators.

These are device independent, in the sense that if an operator is not pertinent to a given device, the

operator is treated as a no-operation code. For example, a rewind directed to a line printer does

nothing. Devices are referenced by logical names or physical names (see ASSIGN command, Chapter

2), and the characteristics of a device can be obtained from the Monitor. Properly used, these systems

characteristics permit the programmer to delay the device specification for his program from program­

generation until program-run time. 1/0 is accomplished by associating a device, a file, and a ring

buffer or command list with one of a user's 1/0 channels.

4.4. 1 Fi le

A file is an ordered set of data on a peripheral device. Its extent on input is determined by

an end-of-file condition dependent on the device. For instance, a file is terminated by reading an

end-of-file gap from magnetic tape, by an end-of-file card from a card reader, or by depressing the

end-of-file switch on a card reader (see Chapter 5). The extent of a file on output is determined by

the amount of information written by the OUT or OUTPUT programmed operators up through and in­

cluding the next CLOSE or RELEASE operator.

4.4.1.1 Device -To specify a file, it is necessary to specify the device from which the file is to be

read or onto which the file is to be written. This specification is made by an argument of the INIT or

4-13

OPEN programmed operators. Devices are separated into two categories--those with no filename

directory, and those with one or more filename directories.

a. Nondirectory Devices - For nondirectory devices, e.g., card reader, line printer, paper

tape reader and punch, and user console, the only file specification required is the device name. All

other file specifiers, if given, are ignored by the Monitor. Magnetic tape, which is also a nondirectory

device, requires, in addition to the name, that the tape be properly positioned. Even though LOOKUP

is not required to read and ENTER is not required to write, it is advisable to always use them so that a

directory device may be substituted for a nondirectory device at run time {using the Monitor command,

ASSIGN). Only in this way can user programs be truly device independent.

b. Directory Devices - For directory devices, e.g., DECtape and disk, files are addressable

by name. If the device has a single file directory, e.g., DECtape, the device name and filename are

sufficient information to determine a file. If the device has multiple file directories, e.g., disk, the

name of the file directory must also be specified. These names are specified as arguments to the LOOK­

UP, ENT ER, and RENAME programmed operators.

4.4. l. 2 Data Modes - Data transmissions are either unbuffered (dump) or buffered. The mode of

transmission is specified by a 4-bit argument to the INIT, OPEN, or SETSTS programmed operators.

Table 4-3 summarizes the data modes.

Octal Code

Buffered Modes

0

2-7

10

11-12

13

14

Mnemonic

A

AL

IB

B

Table 4-3
Data Modes

Meaning

ASCII. 7-bit characters packed left justified, five characters
per word.

ASCII line. Same as 0, except that the buffer is terminated by
a FORM, VT (vertical tab), LINE-FEED or ALTMODE character.

Unused.

Image. A device dependent mode. The buffer is filled with data
exactly as supplied by the device.

Unused.

Image binary. 36-bit bytes. This mode is similar to binary mode,
except that no automatic formatting or checksumming is done by
the Monitor.

Binary. 36-bit byte. This is a blocked format consisting of a
word count, n (the right half of the first data word of the buffer),
followed by n 36-bit data words. Checksumming is done for cards
and paper tape.

4-14

Octal Code Mnemonic

Table 4-3 (Cont)
Data Modes

Meaning

Unbuffered Modes

15 ID Image Dump. A device dependent dump mode.

16 DR Dump as records without core buffering. Data is transmitted
between any contiguous blocks of core and one or more standard
length records on the device for each command word in the
command I ist.

17 D Dump one record without core buffering. Data is transmitted be-
tween any contiguous block of core and exactly one record of
arbitrary length on the device for each command word in the
command I ist.

a. Unbuffered Data Modes - Data modes 15, 16 and 17 utilize a command list to specify

areas in the user's allocated core to be read or written. The effective address of the IN, INPUT, OUT,

and OUTPUT programmed operators points to the first word of the command I ist. Three types of entries

may occur in the command I ist.

(1) IOWD n, loc - Causes n words from loc through loc+n-1 to be transmitted. The

next command is obtained from the next location fol lowing the IOWD. The assembler

pseudo-op IOWD generates XWD -n, loc-1.

(2) XWD 0, y - Causes the next command to be taken from location y. Referred to as

a GOTO word.

(3) 0 - Terminates the command list.

The Monitor does not return program control to the user unti I the command I ist has been

completely processed. If an illegal address is encountered while processing the list, an APR trap occurs

if the user has enabled the central processor for "ii legal memory" references; otherwise, the job is

stopped and the Monitor prints

ADDRESS CHECK AT USER LOC addr

on the user's console, leaving the console in Monitor mode.

b. Buffered Data Modes - Data modes 0, 1, 10, 13, and 14 utilize a ring of buffers in the

user area and the priority interrupt system to permit the user to overlap computation with his data trans­

mission. Core memory in the user's area serves as an intermediate buffer between the user's program and

the device. A ring of buffers consists of a 3-word header block for bookkeeping and a data storage area

subdivided into one or more individual buffers linked together to form a ring. During input operations,

the Monitor fills a buffer, makes the buffer available to the user's program, advances to the next buffer

4-15

in the ring and fills it if it is free. The user's program follows along behind, emptying the next buffer

if it is ful I, or waiting for the next buffer to fi 11. During output operations, the user's program and the

Monitor exchange roles, the user filling the buffers and the Monitor emptying them.

(1) Buffer Structure - A ring of buffers consists of a 3-word header block and a data

storage area subdivided into one or more individua I buffers I inked together to form a

ring. The ring buffer layout is shown in Figure 4-1, and explained in the paragraphs

which follow.

(a) Buffer Header Block - The location of the 3-word buffer header block is speci­

fied by an argument of the INIT and OPEN operators. Information is stored in the

header by the Monitor in response to user execution of Monitor programmed oper­

ators. The user's program finds all the information required to fill and empty buf­

fers in the header. Bit position 0 of the first word of the header is a flag which,

if 1, means that no input or output has occurred for this ring of buffers. The right

half of the first word is the address of the second word of the buffer currently in use

by the user's program. The second word of the header contains a byte pointer to

the current byte in the current buffer. The byte size is determined by the data

mode. The third word of the header contains the number of bytes remaining in the

buffer.

(b) Buffer Data Storage Area - The buffer data storage area is established by the

INBUF and OUTBUF operators, or, if none exists when the first IN, INPUT, OUT,

or OUTPUT operator is executed, a 2-buffer ring is set up. The effective address

of the INBUF and OUTBUF operators specifies the number of buffers in the ring.

The location of the buffer storage area is specified by the contents of the right half

of JOBFF in the user's job data area. The Monitor updates JOBFF to point to the

first location past the storage area.

All buffers in the ring are identical in structure. As Figure 4-2 shows, the

right half of the first word contains the file status at the time that the Monitor ad­

vanced to the next buffer in the ring. Bit 0 of the second word of a buffer, called

the use bit, is a flag that indicates whether the buffer contains active data. This

bit is set to 1 by the Monitor when the buffer is ful I on input or being emptied on

output, and set to 0 when the buffer is empty on output or is being filled on input.

The use bit prevents the Monitor and the user's program from interfering with each

other by attempting to use the same buffer simultaneously. Bits 1 through 17 of the

second word of the buffer contain the size of the data area of the buffer which im­

mediately follows the second word. The size of this data area depends on the device.

4-16

USE FLAG

BUFFER HEADER BLOCK

RING
USE
BIT

CURRENT
BUFFER

BYTE POINTER

BYTE COUNT

DATA STORAGE AREA

I r FILE sTATus u l SIZE 1 BUF2
BUF1: 1--1---'----~

DATA

•
USE FLAG •

I r~_F_1_LE~:_TA_T_u_s_~ u SIZE BUFj+1
BUF j: 1---'--~----<

DATA

• USE FLAG •

I r FILE :TATus

u~
BUFn: ,__.J~s_1z_E~I_B_u_F_1____,

DATA

Figure 4-1 User's Ring of Buffers

FILE STATUS FIRST WORD

I I SIZE OF
ADDRESS OF SECOND

WORD OF NEXT
DATA AREA

BUFFER IN RING

USE BIT__. SECOND WORD

BOOKKEEPING WORD COUNT, N THIRD WORD

N DATA WORDS DATA AREA

!---------- - ___,

UNUSED

Figure 4-2 Detailed Diagram of Individual Buffer

4-17

The right half of the first word of the data area of the buffer, i.e., the third

word of the buffer, is reserved for a count of the number of words (excluding itself)

that actually contain data. The left half of this word is reserved for other book­

keeping purposes, depending on the particular device and the data mode.

4. 4. l. 3 Fi le Status - The file status is a set of 18 bits (right half word), which reflects the current

state of a file transmission. The initial status is a parameter of the INIT and OPEN operators. Thereafter,

bits are set by the Monitor, and may be tested and reset by the user via Monitor programmed operators.

Table 4-4 defines the file status bits. Al I bits, except the end-of-file bit, are set immediately by the

Monitor as the conditions occur, rather than being associated with the buffer that the user is currently

working on. However, the file status is stored with each buffer so that the user can determine which

bufferful produced an error. A more thorough description of bits 18 through 29 is given in Chapter 5.

Bit

18

19

20

21

22

23

24-29

30

31

32-35

Table 4-4
File Status

Meaning

Improper mode, e.g., attempt to write on a write-locked tape.

Device detected error, other than hardware checksum or parity. Checksum,
and/or parity error detected by hardware and/or software.

Data error, e.g., a computed checksum failed or invalid data was received.

Block too large. A block of data from a device is too large to fit in a buffer,
or a block number is too large.

End of file.

Device is actively transmitting or receiving data.

Device dependent parameters. (See Chapter 5.)

Synchronous input. Stop the device after each buffer is filled.

Forces the Monitor to use the word count in the first' data word of the buffer (output
only). The Monitor normally computes the word count from the byte pointer in the
buffer header.

Data mode. See Tab le 4-3.

4-18

4.4.2 Initialization

4.4.2. 1 Job Initialization - The Monitor programmed operator

CALL [SIXBIT/RESET/J or CALLI 0

should be the first instruction in each program. It immediately stops all input/output transmissions on

all devices without waiting for the devices to become inactive. All device allocations made by the

INIT and OPEN operators are cleared, and, unless the devices have been assigned by the ASSIGN

command (see Chapter 2), the devices are returned to the Monitor foci lities pool. The content of the

left half of JOBSA (program break) is stored in the right half of JOBFF so that the user buffer area is

reclaimed if the program is starting over. The left half of JOBFF is cleared. Any files which have not

been closed will be deleted on disk. Any older version having the same filename will remain.

4.4.2.2 Device Initialization

OPEN D,SPEC
error return
norma I return

SPEC:EXP STATUS
SIXBIT/ldev/
YmD OBUF ,IBUF

INIT D,STATUS
SIXBIT/ldev/
YmD OBUF I IBUF
error return
norma I return

The OPEN (operation code 050) and INIT (operation code 041) programmed operators initialize a file

by specifying a device, ldev, and initial file status, STATUS, and the location of the input and output

buffer headers.

a. Data Channel - OPEN and INIT establish a correspondence between the device, ldev,

and a 4-bit data channel number, D. Most of the other input/output operators require this channel

number as an argument. If a device is already assigned to channel D, it is released. (See RELEASE in

this chapter.) The device name, ldev, is either a logical or physical name, with logical names taking

precedence over physical names. (See ASSIGN command, Chapter 2.) If the device, ldev, is not the

system device, SYS, and is allocated to another job or does not exist, the error return is taken. If the

device is the system device, SYS, the job is stopped in a system device wait queue, and will continue

running when SYS becomes available.

b. Initial Fi le Status - The file status, including the data mode, is set to the value of the

symbol STATUS. If the data mode is not legal (see Chapter 5) for the specified device, the job is

stopped and the Monitor prints

ILL DEVICE DATA MODE FOR DEVICE dev AT USER addr,

4-19

where dev is the physical name of the device and addr is the location of the OPEN or INIT operator,

on the user's console and leaves the console in Monitor mode.

c. Buffer Header - Symbols OBUF and IBUF, if nonzero, specify the location of the first

word of the 3-word buffer header for output and input respectively. Only those headers which are to

be used need to be specified. For instance, the output header need not be specified, if only input is

to be done. Also, modes 15, 16, and 17 require no header. If either of the buffer headers of the 3-

word block starting at location SPEC lies outside the user's allocated core area
1
, an illegal memory vio­

lation occurs. If the user has enabled the central processor for illegal memory traps (see APRENB in

this chapter}, the trap occurs. Otherwise, the job is stopped and the Monitor prints

ADDRESS CHECK FOR DEVICE dev AT USER LOC addr

where addr is the address of the OPEN or INIT operator, on the user's console and leaves the console

in Monitor mode.

The first and third words of the buffer header are set to zero. The left half of the sec­

ond word is set up with the byte pointer size field in bits 6 through 11 for the selected device-data

mode combination.

4.4.2.3 Buffer Initialization - Buffer data storage areas may be established by the INBUF and OUT­

BUF programmed operators, or by the first IN, INPUT, OUT, or OUTPUT operator, if none exists at

that ti me, or the user may set up his own buffer data storage area.

a. Monitor Generated Buffers - Each device has associated with i~ a standard buffer size

(see Chapter 5). The Monitor programmed operators INBUF D, n (operation code 064) and OUTBUF D, n

(operation code 065} set up a ring of n standard size buffers associated with the input and output buffer

headers, respectively, specified by the last OPEN or INIT operator on data channel D. If no OPEN or

INIT operator has been performed on channel D, the Monitor stops the job and prints.

I/OTO UNASSIGNED CHANNEL AT USER LOC addr

where addr is the location of the INBUF or OUTBUF operator, on the user's console leaving the console

in Monitor mode.

The storage space for the ring is taken from successive locations, beginning with the lo­

cation specified in the right half of JOBFF. This is set to the program break, which is the first free lo­

cation above the program area, by RESET. If there is insufficient space to set up the ring, an 11 illegal

memory" violation occurs, which will cause a trap, if the user has enabled for it (see APRENB in this

chapter), or the Monitor wil I stop the job and print

ADDRESS CHECK FOR DEVICE ldev AT USER LOC addr

1
Buffer headers may not be in the user's AC's. However, they may be in locations above JOBPFI.

4-20

where ldev is the physical name of the device associated with channel D and addr is the location of the

INBUF or OUTBUF operator, on the user's console and leaves the console in Monitor mode.

The ring is set up by setting the second word of each buffer with a zero use bit, the ap­

propriate data area size, and the I ink to the next buffer. The first word of the buffer header is set with

a l in the ring use bit, and the right half contains the address of the second word of the first buffer.

b. User Generated Buffers - The fol lowing code i I lustrates an alternative to the use of the

INBUF programmed operator. Analogous code may replace OUTBUF. This user code operates similarly

to INBUF. SIZE must be set equal to the greatest number of data words expected in one physical record.

GO:

MAGBUF:
BUFl:

BUF2:

BUF3:

INIT l, 0
SIXBIT /MT AO/
XWD 0 I MAGBUF
JRST NOTAVL
MOVE 0, {XWD 400000,BUFl+lJ

MOVEM 0 I MAGBUF
MOVE 0, [POINT BYTSIZ,0,35]
MOVEM 0, MAGBUF+l
JRST CONTIN
BLOCK 3
0
XWD SIZE+2 ,BUF2+1

BLOCK SIZE+ l

0
XWD SIZE+2, BUF3+ l
BLOCK SIZE+ l
0
XWD SIZE +2, BUF l+ l
BLOCK SIZE+ 1

;INITIALIZE ASCII MODE
;MAGNETIC TAPE UNIT 0
;INPUT ONLY

;THE 400000 IN THE LEFT HALF MEANS THE
;BUFFER WAS NEVER REFERENCED.

;SET UP NONSTANDARD BYTE SIZE

;GO BACK TO MAIN SEQUENCE
;SPACE FOR BUFFER HEADER
;BUFFER l, l ST WORD UNUSED
;LEFT HALF CONTAINS BUFFER SIZE,
;RIGHT HALF HAS ADDRESS OF NEXT BUFFER
;SPACE FOR DATA, 1 ST WORD RECEIVES
;WORD-COUNT. THUS ONE MORE WORD
;IS RESERVED THAN IS REQUIRED
;FOR DATA ALONE
;SECOND BUFFER

;THIRD BUFFER
;RIGHT HALF CLOSES THE RING

4 .4 .2 .4 Fi le Selection - The LOOKUP {operation code 076) and ENTER (operation code 077)

programmed operators select a file for input and output respectively. Although these operators are not

necessary for nondirectory devices, it is good programming practice to always use them so that directory

devices may be substituted at run time. (See ASSIGN, Chapter 2.)

a. LOOKUP D, E

error return
normal return

.
E: SIXBIT/fi le/

SIXBIT/ext/
0

;filename, 1 to 6 characters.
;filename extension, 0 to 3 characters.

XWD project number, programmer number,

4-21

LOOKUP selects a file for input on channel D. If no device is associated with channel

D, 7 is stored in bits 33 through 35 of location E+ l, and the error return is taken. If the input side of

channel Dis not closed (see CLOSE, in this chapter}, it is now closed. The output side of channel D

is not affected. If the device associated with channel D does not have a directory, the normal return

is now taken. If the device has multiple directories, e.g., disk, the Monitor searches the master file

directory of the device for the user's file directory whose number is in location E+3 and whose extension

is UFO. If E+3 contains zero, the project-programmer pair of the current job is used as the name of the

user's file directory. If this file is not found in the master file directory, l is stored inl:its 33 through

35 of location E+ l and the error return is taken.

The user's file directory or the device directory in the case of a single-directory device

(e.g., DECtape) is searched for the file whose name is in location E and whose extension is in the left

half of location E+ l • If the file is not found, 0 is stored in the right half of E+ l and the error return is

taken. If the device is a multiple-directory device (e.g., disk) and the file is found, but is read pro­

tected (see Fi le Protection in this chapter), 2 is stored in the right half of location E+ l and the error re-

. turn is taken. Otherwise, location E+ l through E+3 are fi I led by the Monitor with the fol lowing data

concerning the file, and the normal return is taken.

(1} The left half of location E+ l is set to the filename extension.

(2) If the device is a multiple-directory device, bits 24 through 35 of location E+l are

set to the date (in the format of DAYTIME programmed operator) that the file was 1.ast

referenced •

If the device is a single-directory device, the right half of location E+l is set to the

device block number of the first block of the file.

(3) If the device is a multiple-directory device, bits 0 through 8 of location E+2 are

set to the fi I e protection. (See "File Protection, 11 this chapter.}

(4) Bits 9 through 12 of location E+2 are set to the data mode in which the file was written.

(5) Bits 13 through 23 of location E+2 are set to the time, in minutes, and bits 24

through 35 of location E+2 are set to the date (in the format of the DAYTIME program-

med operator) of the file's creation, i.e., of the last ENTER or RENAME programmed

operator.

(6) If the device is a multiple-directory device, the left half of location E+3 is set to

the negative of the number of words in the file, and the right half is unchanged • If

the file contains more than 2
17

words, then the left half contains the positive number

of 128-word blocks in the file.

4-22

If the device is a single-directory device, location E+3 is used only for SAVed files

(see Chapter 3), and contains the IOWD of the core image, i.e., the left half is the

negative word length of the file and the right half is the core address of the first word

minus l.

b. ENTERD,E

error return
normal return

E: SIXBIT/file/
SIX BIT/ext/
EXP<TIME>B23+DATE

;filename, l through 6 characters.
;filename, extension, 0 through 3 characters.

XWD project number, programmer number.

ENTER selects a file for output on channel D. If no device is associated with channel D,

7 is stored in bits 33 through 35 of location E+ l and the error return is taken. If the output side of

channel D is not closed (see CLOSE in this chapter), it is now closed. The input side of channel D is

not affected. If the device does not have a directory, the normal return is now taken.

If the device has multiple directories, e.g., disk, the Monitor searches the master file

directory of the device for the user's file directory whose name is in location E+3 and whose extension

is UFD. If E+3 contains 0, the project-programmer pair of the current job is used as the name of the

user's file directory. If this file is not found in the master file directory, l is stored in bits 33 through

35 of location E+ 1, and the error return is taken. If the filename in location E is 0, 0 is stored in bits

33 through 35 of location E+ 1, and the error return is taken. The user's file directory, or the device

file directory in the case of a single-directory device, such as DECtape, is searched for the file whose

name is in location E and whose extension is in the left half of location E+ l .

If the device is a multiple-directory device and the file is found but is being written or

renamed, 3 is stored in bits 33 through 35 of location E+l, and the error return is taken. If the file is

write protected (See 11 Fi le Protection 11
, this chapter), 2 is stored in bits 33 through 35 of location E+ 1,

and the error return is taken.

If the file is found, and is not being written or renamed and is not write protected, then

the file is deleted, or marked for later deletion after all read references are completed, and the storage

space on the device is recovered.

The Monitor then makes the file entry by recording the fol lowing information concerning

the file and takes the normal return.

(1) The filename is taken from location E.

(2) The filename extension is taken from the left half of location E+ l .

4-23

(3) If the device is a multiple-directory device, then

(a) the current date is taken as the date of last reference;

(b) the fi I e protection key is set to 055 (see 11 Fi le Protection, 11 this chapter);

(c) the current data mode is taken as the mode in which the file is to be written;

(d) the project number of the current job is taken as the file owner's project

number; and

(e) if bits 13 through 35 of location E+2 are nonzero, bits 13 through 23 are taken

as the time of creation, in minutes, and bits 24 through 35 are taken as the date of

creation (in the format of the DAYTIME programmed operator) of the file. Other­

wise, the current time and date are used.

If the device is a single-directory device, then, if bits 24 through 35 of location E+2 are

nonzero, they are taken as the date of creation; otherwise, the current date is used.

4.4.2.5 File Protection - File protection on nondirectory and single-directory devices is obtained by

use of the ASSIGN command (see Chapter 2). Multiple-directory devices have a master file directory

for the device which contains entries for each u.,ser's file directory. Fil.e selectio.n (see LOOKUP and
@f £:/ ure;- -1-v /ir;ofe h1r +i/e d1,r~c:fr>11y

ENTER in this chapter) requires specification of t~e Aetfl'le ef a ttser's file directory and a filename with-
"17s

in):.haf'directory. This permits each user to access all files on the device, and necessitates a file pro-

tection scheme to prevent unauthorized references. For this purpose users are divided into three

categories:

a. The file owner is the user whose project-programmer pair is the same as that in the NAME

field of the user's file directory in which the file is entered.

b. Project members are users whose project number is the same as that of the file owner.

c. Al I other users.

There are three types of protection against each of the three categories of users.

a. Protection-protection - the protection cannot be altered

b. Read protection - the file may not be read.

c. Write protection - the file may not be rewritten, RENAMEd, or deleted.

The file protection key, shown in the following figure, is a set of nine bits which specify the

three types of protection for each of the categories of users. (Also see Section 5 .8 .2 .4, "Protection 11
.)

4-24

OWNER PROJECT OTHER

'---+--+----'---+---+-_.__- ~:6~~CTION

'----+-----'------+-----'------- ~~~~ECTION

~--.ffl--A--7'9-~1-L-----L__ ____ PROTECTION
PROTECTION

Figure 4-3 File Protection Key

When a file is created by an ENTER programmed operator, the file protection key is set to 055, indi­

cating that the file is protection-protected and write-protected against al I users except the owner.

The protection key is returned by the LOOKUP D, E programmed operator in bits 0 through 8 of loca­

tion E+2. It can be changed by the RENAME programmed operator. The owner's protection-protection

and read-protection bits are ignored by the Monitor, thereby preventing a file from becoming inacces­

sible to everyone. However, the LOGIN CUSP sets the protection-protection bit if a user indicates

he wishes to selectively protect his file for future logouts. This feature is handled completely by the

LOGOUT CUSP.

a. RENAMED ,E

E:

error return
normal return

SIX BIT /fi I e/
SIXBIT/ext/
EXP <PROT>B8+<TIME>B23+DATE

;filename, l through 6 characters.
;filename extension, 0 through 3 characters.

XWD project number, programmer number.

The RENAME programmed operator (operation code 055) is used to alter the filename, the

filename extension, and the file protection key, or to delete a file associated with channel Don a

directory device.

If no device is associated with channel D, 7 is stored in bits 33 through 35 of location E+ 1,

and the error return is taken. If the device is a nondirectory device, the normal return is taken. If

no file is currently selected on channel D, 5 is stored in bits 33 through 35 of location E+ 1, and the

error return is taken.

4-25

If the device has multiple directories, e.g., disks, the Monitor searches the master file

directory of the device for the user's file directory whose name is in location E+3 and whose extension

is UFO. If E+3 contains 0, the project-programmer pair of the current job is used as the name of the

user's file directory. If this file is not found in the master file directory, l is stored in bits 33 through

35 of location E+ 1, and the error return is taken. The user's file directory, or the device file directory

in the case of a single-directory device, is searched for the file currently selected on channel D. If

the file is not found, 0 is stored in bits 33 through 35 of location E+ 1, and the error return is taken.

If the device is a multiple-directory device and the file is found, but is being written or re­

named, 3 is stored in bits 33 through 35 of location E+ l, and the error return is taken. If the file is

owner write-protected or if the protection key is being modified, i.e., bits 0 through 8 of location E+2

differ from the current protection key, and the file is owner protection-protected, 2 is stored in bits 33

through 35 of location E+ 1, and the error return is taken.

If the new filename in location E is 0, the file is deleted, or marked for deletion, after al I

read references are completed, and the normal return is taken. If the filename in location E and the

filename extension in the left half of location E+ l are the same as the current filename and filename

extension, respectively, the protection key is set to the contents of bits 0 through 8 of location E+2,

and the normal return is taken.

If the new filename in location E and/or the filename extension in the left half of location

E+l differ from the current filename and/or filename extension, the user's file directory (or the device

directory) is searched for the new filename and extension, as in LOOKUP. If a' match is found, 4 is

stored in bits 33 through 35 of location E+ 1, and the error return is taken. If no match is found, the

file is changed to the new name in location E, the filename extension is changed to the new filename

extension in the left half of location E+l, the protection key is set to the contents of bits 0 through 8 of

location E+2, the access date is set to the current date, and the normal return is taken.

4.4.2.6 Examples

General Device Initialization

INIDEV: 0 ;JSR HERE
INIT 3, 14 ;BINARY MODE, CHANNEL 3
SIXBIT/DT A5/ ;DEVICE DECTAPE UNIT 5
XWD OBUF, IBUF ;BOTH INPUT AND OUTPUT
JRST NOT AVL ;WHERE TO GO IF DTA5 IS BUSY

;FROM HERE DOWN IS OPTIONAL DEPENDING ON THE DEVICE AND PROGRAM
;REQUIREMENTS

MOVE 0, JOBFF
MOVEM 0, SV JBFF ;SAVE THE FIRST ADDRESS OF THE BUFFER

;RING IN CASE THE SPACE MUST BE
;RECLAIMED.

4-26

OBUF:
IBUF:
IN NAM:

OUT NAM:

4.4.3

INBUF 3,4
OUTBUF 3, l
LOOKUP 3, INNAM
JRST NOTFND

ENTER 3 I OUT NAME
JRST NOROOM

JRST@INIDEV
BLOCK 3
BLOCK 3
SIXBIT /NAME/
SIXBIT/EXT/

0
0
SIXBIT /NAME/
SIXBIT/EXT/
0
0

Data Transmission

The programmed operators

INPUT D ,E

;SET UP 4 INPUT BUFFERS
;SET UP l OUTPUT BUFFER
;INITIALIZE AN INPUT FILE
;WHERE TO GO IF THE INPUT FILE NAME IS
;NOT IN THE DIRECTORY
;INITIALIZE AN OUTPUT FILE
;WHERE TO GO IF THERE IS NO ROOM IN
;THE DIRECTORY FOR A NEW FILE NAME.
;RETURN TO MAIN SEQUENCE
;SPACE FOR OUTPUT BUFFER HEADER
;SPACE FOR INPUT BUFFER HEADER
;FILE NAME
;FILE NAME EXTENSION (OPTION ALL y O) I

;RIGHT HALF WORD RECEIVES THE
;FIRST BLOCK NUMBER
;RECEIVES THE DATE
;UNUSED FOR NONDUMP 1/0
;SAME INFORMATION AS IN INNAME

and IN D,E
normal return
error return

transmit data from the file selected on channel D to the user's core area. The programmed operators

OUTPUT D, E and OUT D,E
norma I return
error return

transmit data from the user's core area to the file selected on channel D.

If no OPEN or INIT operator has been performed on channel D, the Monitor stops the job

and prints

1/0 TO UNASSIGNED CHANNEL AT USER LOC addr

where addr is the location of the IN, INPUT, OUT, or OUTPUT programmed operator, on the user's

console leaving the console in Monitor mode. If the device is a multiple-directory device and no file

is selected on channel D, bit 18 of the file status is set to l, and control returns to the user's program.

Control always returns to the location immediately following an INPUT (operation code 066) and an

OUTPUT (operation code 067). A check of the file status for end-of-file and error conditions must

then be made by another programmed operator. Control returns to the location immediately following

an IN (operation code 056) and an OUT (operation code 057), if no end-of-file or error condition

4-27

exists, i.e., if bits 18 through 22 of the file status are all 0. Otherwise, control returns to the second

location fol lowing the IN or OUT. Note that IN and OUT UUOs are the only ones in which the error

return is a skip and the normal return is not a skip.

4.4.3.1 Unbuffered (Dump) Modes - In data modes 15, 16, and 17, the effective address E of the

INPUT, IN, OUTPUT, and OUT programmed operators is the address of the first word of a command

I ist (see Section 4 .4. 1). Control does not return to the program unti I the transmission is terminated or

an error is detected.

DMPINI:

DMPOUT:

DMPDON:

OUTLST:

BUFFER:

Example -

Dump Output

Dump input is similar to dump output. This routine outputs fixed-length records.

0
INITO, 16
SIXBIT/MTA2/
0
JRST NOTAVL
JRST@ DMPINI
0
OUTPUT 0 I OUTLST

STATZ 0, 740000
CALL [SIXBIT/EXIT/J
JRST @DMPOUT
0
CLOSE 0,
STATZ 0, 740000

CALL [SIXBIT/EXIT/J
RELEAS 0,
JRST@DMPDON
IOWD BUFSIZ, BUFFER

0

BLOCK BUFSIZ

;JSR HERE TO INITIALIZE A FILE
;CHANNEL 0, DUMP MODE
;MAGNETIC TAPE UNIT 2
;NO RING BUFFERS
;WHERE TO GO IF UNIT 2 IS BUSY
;RETURN
;JSR HERE TO OUTPUT THE OUTPUT AREA
;SPECIFIES DUMP OUTPUT ACCORDING
;TO THE LIST AT OUTLIST
;CHECK ERROR BITS
;QUIT IF AN ERROR OCCURS
;RETURN
;JSR HERE TO WRITE AN END OF FILE
;WRITE THE END OF FILE
;CHECK FOR ERROR DURING WRITE
;END OF FILE OPERATION
;QUIT IF ERROR OCCURS
;RELINQUISH THE DEVICE
;RETURN
;SPECIFIES DUMPING A NUMBER OF
;WORDS EQUAL TO BUFSIZ, STARTING
;AT LOCATION BUFFER
;SPECIFIES THE END OF THE COMMAND
;LIST
;OUTPUT BUFFER, MUST BE CLEARED
;AND FILLED BY THE MAIN PROGRAM

4.4.3.2 Buffered Modes - In data modes 0, 1, 10, 13, and 14 the effective address E of the INPUT,

IN, OUTPUT, and OUT programmed operators may be used to alter the normal sequence of buffer ref­

erence. If E is 0, the address of the next buffer is obtained from the right half of the second word of

the current buffer. If E is nonzero, it is the address of the second word of the next buffer to be refer­

enced. The buffer pointed to by E can be in an entirely separate ring from the present buffer. Once a

new buffer location is established, the fol lowing buffers are taken from the ring started at E.

4-28

a. Input - If no input buffer ring is established when the first INPUT or IN is executed, a

2-buffer ring is set up. (See INBUF, Section 4.4.2.3.)

Buffered input may be performed synchronously or asynchronously at the option of the

user. If bit 30 of the file status is 1, each INPUT and IN programmed operator

(1) Clears the use bit in the second word of the buffer whose address is in the right

half of the first word of the buffer header, thereby making it available for refi 11 ing by

the Monitor;

(2) Advances to the next buffer by moving the contents of the second word of the cur­

rent buffer to the right half of the first word of the 3-word buffer header;

(3) If an end-of-file or an error condition exists, control is returned to the user's pro­

gram. Otherwise, the Monitor starts the device which fills the buffer and stops trans-

mission;

(4) Computes the number of bytes in the buffer from the number of words in the buffer

(right half of the first data word of the buffer} and the data mode, and stores the result

in the third word of the buffer header;

(5) Sets the position and address fields of the byte pointer in the second word of the

buffer header, so that the first data byte is obtained by an ILDB instruction; and

(6) Returns control to the user's program.

Thus, in synchronous mode, the position of a device, such as magnetic tape, relative to

the current data is easily determined. The asynchronous input mode differs in that once a device is

started, successive buffers in the ring are fi I led at the interrupt level without stopping transmission unti I

a buffer whose use bit is l is encountered. Control returns to the user's program after the first buffer is

filled. The position of the device relative to the data currently being processed by the user's program

depends on the number of buffers in the ring and when the device was last stopped.

GETCHR:
GETCNT:

GETNXT:

Example -

General Subroutine to Input One .Character

0
SOSG
JRST

IBUF+2
GETBUF

ILDB AC, IBUF+ l
JMPN AC, @GETCHR
JRST GETCNT

;JSR HERE AND STORE PC
;DECREMENT THE BYTE COUNT
;BUFFER IS EMPTY (OR FIRST CALL AFTER
;INIT

;GET NEXT CHAR FROM BUFFER
;RETURN TO CALLER IF NOT NULL CHAR l
;IGNORE NULL AND GET NEXT CHAR

lfor some devices in ASCII mode, the item count provided wil I always be a multiple of five characters.
Since the last word of a buffer may be partially full, user programs which rely upon the item count
should always ignore nul I characters.

4-29

GETBUF: IN 3,
JRST GETNXT

JRST ENDTST

ENDTST: STATZ 3, 740000
JRST INERR
JRST ENDFIL

;CALL MONITOR TO REFILL THIS BUFFER
;RETURN HERE WHEN NEXT BUFFER IS
;FULL (PROBABLY IMMEDIATELY)
;RETURN HERE ONLY IF ERROR OR EOF

;CHECK FOUR ERROR BITS FIRST
;WHERE TO GO ON AN ERROR
;WHERE TO GO ON AN END OF FILE

b. Output - If no output buffer ring has been established, i.e., if the first word of the

buffer header is 0, when the first OUT or OUTPUT is executed, a 2-buffer ring is set up (see OUTBUF,

this chapter). If the ring use bit (bit 0 of the first word of the buffer header) is 1, it is set to 0, the

current buffer is cleared to all Os, and the position and address fields of the buffer byte pointer (the

second word of the buffer header) are set so that the first byte is properly stored by an IDPB instruction.

The byte count (the third word of the buffer header) is set to the maximum of bytes that may be stored

in the buffer, and control is returned to the user's program. Thus, the first OUT or OUTPUT initializes

the buffer header and the first buffer, but does not result in data transmission.

If the ring use bit is 0 and bit 31 of the file status is 0, the number of words in the buf­

fer is computed from the address field of the buffer byte pointer (the second word of the buffer header)

and the buffer pointer (the first word of the buffer header), and the result is stored in the right half of

the first data word of the buffer. If bit 31 of the file status is l, it is assumed that the user has already

set the word count in the right half of the first data word. The buffer use bit (bit 0 of the second word

of the buffer) is set to l, indicating that the buffer contains data to be transmitted to the device. If the

device is not currently active, i.e., not receiving data, it is started. The buffer header is advanced to

the next buffer by setting the buffer pointer in the first word of the buffer header. If the buffer use bit

of the new buffer is 1, the job is put into a wait state until the buffer is emptied at the interrupt level.

The buffer is then cleared to all Os, the buffer byte pointer and byte count are initialized in the buffer

header, and control is returned to the user's program.

PUTCHR:

PUTNXT:

PUTBUF:

OUT ERR:

Example -

General Subroutine to Output One Character

0
SOSG
JRST

OBUF+2
PUTBUF

IDPB AC I OBUF+ 1
JRST @PUTCHR

OUT 3,
JRST PUTNXT

JRST OUT ERR

GETSTS 3,AC

;JSR HERE AND STORE PC
;INCREMENT BYTE COUNT
;NO MORE ROOM (OR FIRST CALL AFTER INIT)

;STORE THIS CHARACTER
;AND RETURN TO CALLER

;CALL MONITOR TO EMPTY THIS BUFFER
;RETURN HERE WHEN NEXT BUFFER IS
;EMPTY (PROBABLY IMMEDIATELY)
;RETURN HERE ONLY IF OUTPUT ERROR

;GET THE ERROR STATUS TO LOOK AT

4-30

4.4.4 Status Checking and Setting

The file status (see Table 4-4) is manipulated by the GETSTS (operation code 062), STATZ

(operation code 063), ST ATO (operation code 061) and SETSTS (operation code 060) programmed oper­

ators. In each case the accumulator field of the instruction selects a data channel. If no device is

associated with the specified data channel, the Monitor stops the job and prints,

1/0 TO UNASSIGNED CHANNEL AT USER LOC addr

where addr is the location of the GETSTS, STATZ, STATO, or SETSTS programmed operator, on the

user 1s console leaving the console in Monitor mode.

GETSTS D, E stores the file status of data channel D in the right half and 0 in the left half

of location E.

STATZ D,E skips, if all file status bits selected by the effective address E are 0.

STATO D,E skips, if any file status bit selected by the effective address Eis 1.

SETSTS D, E waits until the device on channel D stops transmitting data and replaces the cur­

rent file status, except bit 23, with the effective address E. If the new data mode, indicated in the

right four bits of E, is not legal for the device, the job is stopped and the Monitor prints

ILL DEVICE DATA MODE FOR DEVICE dev AT USER addr

where dev is the physical name of the device and addr is the location of the SETSTS operator, leaving

the console in Monitor mode. If the user program changes the data mode, it must also change the byte

size for the byte pointer in the input buffer header (if any) and the byte size and item count in the out­

put buffer header (if any). Changing the output item count should be done using the count already

placed there by the Monitor and dividing or multipling by the appropriate conversion factor, rather than

assuming the length of a buffer.

4.4.5 Terminating A File (CLOSE)

Fi le transmission is terminated by the CLOSE D, N (operation code 070) programmed operator.

If no device is associated with channel D or if bits 34 and 35 of the instruction are both 1, control re­

turns to the user 1s program immediately.

If bit 34 is 0 and the input side of data channel D is open, it is now closed. In data modes

15, 16, and 17, the effect is to execute a device dependent function and clear the end-of-file flag,

bit 22 of the file status. Data modes 0, 1, 10, 13, and 14 have the additional effect, if an input buf­

fer ring exists, of setting the ring use bit (bit 0 of the first word of the buffer header) to 1, setting the

buffer byte count (the third word of the buffer header) to 0 and setting the buffer use bit (bit 0 of the

second word of the buffer) of each buffer to 0.

If bit 35 of the instruction is 0 and the output side of channel D is open, it is now closed.

In data modes 15, 16, and 17, the effect is to execute a device dependent function. In data modes 0,

1, 10, 13, and 14, if a buffer ring exists, all buffers that have not yet been transmitted to the device

4-31

are now written, device dependent functions performed, the ring use bit is set to 1, the buffer byte

count is set to 0, and control returns to the user after transmission is complete.

DROPDV:

4.4.6

Example:

0
CLOSE 3,

STATZ 3, 740000
JRST OUTERR
RELEAS 3,

MOVE 0, SVJBFF
MOVEM 0, JOBFF
JRST @ DROPDV

Terminating A File

;JSR HERE
;WRITE END OF FILE AND TERMINATE
;INPUT
;RECHECK FINAL ERROR BITS
;ERROR DURING CLOSE
;RELINQUISH THE USE OF THE
;DEVICE, WRITE OUT THE DIRECTORY

;RECLAIM THE BUFFER SPACE
;RETURN TO MAIN SEQUENCE

Synchronization of Buffered 1/0 (CALL D, [SIXBIT/WAIT/J

In some instances, such as recovery from transmission errors, it is desirable to delay unti I a

device completes its input/output activities. The programmed operators,

CALL D, [SIX BIT/WAIT /J and CAL LI D, 10

return control to the user's program when al I data transfers on channel D have finished. This UUO does

not wait for a Magtape spacing operation, since no data transfer is in progress. An MT APE D, 0 (see

Section 5 .7 .2) should be used to wait for spacing and 1/0 activity to finish on Magtape. If no device

is associated with data channel D, control returns immediately. After the device is stopped, the posi­

tion of the device relative to the data currently being processed by the user's program can be deter­

mined by the buffer use bits.

4.4.7 Relinquishing A Device (RELEASE)

When all transmission between the user's program and a device is finished, the program must

relinquish the device by performing a

RELEASE D,

RELEASE (operation code 071) returns control immediately, if no device is associated with

data channel D. Otherwise, both input and output sides of data channel D are CLOSEd and the cor­

respondence between channel D and the device, which was established by the INIT or OPEN program­

med operators, is terminated. If the device is neither associated with another data channel nor as­

signed (see ASSIGN, Chapter 2) by command, it is returned to the Monitor's pool of available facilities.

Control is returned to the user's program.

4-32

4 .5 CORE CONTROL (CALL AC I [SIXBIT /CORE/])

CALL AC I [SIX BIT /CORE/]
error return
norma I return

CALLI AC, 11
error return
normal return

These programmed operators provide a user program with the abi I ity to expand and contract

its core size as its memory requirements change. Accumulator AC should contain the desired highest

relative address. The Monitor wil I s.et JOBREL to this new value before returning to the user, provided

that the request can be satisfied. If AC contains 0, the number of free 1024-word blocks is returned

right-justified in AC, and the error return is taken. If core is being increased, the error return is

taken, and the current allocation remains in effect if the request cannot be satisfied. Otherwise,

core is appended to or removed from the top of the user's current core area, and the normal return is

taken. In al I cases the number of free 1024-word blocks is returned right-justified in AC.

4-33

CHAPTER 5

DEVICE DEPENDENT FUNCTIONS

This chapter explains the unique features of each standard 1/0 device.
1

Al I devices accept

the programmed operators explained in Chapter 4 unless otherwise indicated. Buffer sizes are given in

octal and include two bookkeeping words. Table 5-1 is a summary of the characteristics of all devices.

Table 5-1
Device Summary

Hardware
2

Physical Name Name Prog. Op. Data Modes
Buffer

Type Number Size (octal)

CTY Console 626 INPUT, IN A, AL 23
Teletype Models 33,35, OUTPUT, OUT

37

TTYO, TTYl Teletype 630,680,or INPUT, IN A, AL 23
... , TTY77 DClO OUTPUT, OUT, TTCALL

PTY Pseudo-Tele- None INPUT, IN, OUTPUT, A, AL 23
type OUT

PTR Paper Tape 760 INPUT, IN A, AL, IB, 43
Reader B, I

PTP Paper Tape 761 OUTPUT, OUT A, AL, IB, 43
Punch B, I

PLT Plotter XY 10 OUTPUT, OUT A, AL, I, B, 46
IB

LPT or LPTO, Line Printer 646, LPl 0 OUTPUT, OUT A, AL 34
... , LPT7

CDR Card Reader 461, CR 10 INPUT, IN A, AL, B, I 36

CDP Card Punch CP 10 OUTPUT, OUT A, AL, IB, B 34

DTAO, DTAl, DECtape 551/555, INPUT, IN A, AL, IB, B, 202
... , DTA7 TD10/TD55 OUTPUT, OUT I, DR, D

LOOKUP
ENTER
MT APE
USETO
USETI
UGETF
CALL [SIXBIT/UTPCLR/J

1The user may determine the physical characteristics associated with a logical device name by executing
a DEVCHR UUO. See 5. 11.
2Buffer sizes are subject to change and should be calculated rather than assumed by user programs. A
dummy INBUF or OUTBUF may be employed for this purpose.

5-1

Physical Name Name

MTAO, MTAl, Magnetic
••• I MTA7 Tape

DSK Disk

DIS Display

5. l TELETYPE

Table 5-1 (Cont)
Device Summary

Hardware
Prog. Op.

Type Number

516, TMlO, INPUT I IN
TU20, TU79 OUTPUT I OUT

MT APE

RClO INPUT I IN
OUTPUT, OUT
LOOKUP
ENTER
RENAME
USETO

30, 340 INPUT
OUTPUT

Device Name - TTYO, TTYl, ..• , TTY76, TTY77, CTY

Data Modes
Buffer

Size (octal)

A, AL, IB, 203
B, I, DR, D

A, AL, I, IB, 203
B, DR, D

ID Dump only

Line number n of the Type 630 Data Communications System, Data Line Scanner DClO,

PDP-8 680 System, or PDP-8 68i System is referred to as TTYn. The console Teletype is CTY. The

Time-Sharing Monitor automatically gives the logical name, TTY, to the user's console whenever a

job is i n i ti a I i zed •

Teletype device names are assigned dynamically. For interconsole communication by program"

it is necessary for one of the two users to type DEASSIGN TTY in order to make his Teletype available

to the other user's program as an output or input device. Typing ASSIGN TTYn is the only way to re­

assign a Teletype that has been deassigned. Also see TALK command, Section 2.4.6.

Buffer Size - 25
8

words.

Two choices of Teletype routines are provided, a newer, full duplex software routine and an

older, half duplex software routine. Use of the full duplex software is encouraged.

With a full duplex Teletype service, the two functions of a console, typein and typeout,

are handled independently and need not be handled in the strict sense of output first and then input.

For example, if two operations are desired from PIP, the request for the second operation can be typed

before receiving the asterisk after the completion of the first. The echo of characters typed in wil I

disappear since the keyboard and the printing operations are independent. To stop output that is not

wanted, a "Control 0 11 is typed. Also, the command "Control C 11 wi 11 not stop a program instantly.

Rather, the Control C wil I be delayed unti I the program requests input from the keyboard, and then the

program will be stopped. When a program must be stopped instantly, as when it gets into a loop,

Control C typed twice wi 11 stop the program.

5-2

Programs waiting for Teletype output wi II be awakened eight characters before the output

buffer is empty, causing them to be swapped in sooner and preventing pauses in typing. Programs

waiting for Teletype input wi II be awakened ten characters before the input buffer is filled, thus re­

ducing the probability of lost typein.

5. 1. 1 Data Modes

5.1.1. 1 Full-Duplex Software A(ASCII) and AL(ASCII Line)

The input handling of all control characters is as follows:
(All are passed to program except as noted below).

000
001
002

003

004

005
006

007
010

011

012

013

014

015

NULL
tA
tB

tC

t D (EOT)

t E (WRU)
tF

tG (Bell)
t H (Back-

space)

ti (TAB)

tJ (Line-
feed)

tK (Vertical
Tab)

tL (Form)

tM (Carriage
Return)

Ignored on input, suppressed on output.
Echoes as t A. Passed to program.
Complements switch control I ing echoing,
not passed to program. Used on I oca 1-
copy data phones and TWX 's.
The Teletype mode is switched to Monitor mode
the next ti me input is requested by the program.
Two successive tC's cause the mode to be switched
to Monitor mode immediately.

004 Passed to program. Not echoed, so typing in a "Control D"
(EOT) will not cause a full duplex dataphone to hang up.
No special action.
Complements switch control I ing translation
of lower case letters to upper case. Used when
lower case input is desired to programs. Not sent
to program, but program can sense the state of
this switch by the TTCALL UUO .

007 Passed to program, and is a break character.
Acts as a RUBOUT, unless either DDT mode or full
character set mode is true, or the t F switch is on.
In these cases, 010 is sent to the program.

011 Passed to program. Echoed as spaces if Teletype is a
model 33 (determined by tP switch). Spaces are not
passed to program .
Is a break character. No other special
action.

013 Passed to program. Echoes as four linefeeds, if a model
33. Is a break character. Linefeeds are not passed
to program.

014 Passed to program. Echoes as 8 Ii nefeeds on a 33. Is a
break character. Linefeeds are not passed to program.
If Teletype is in paper-tape input mode, 015 is simply
passed to program. Otherwise, supplies a linefeed echo,
and is passed to program as a CR and LF, and is a break
character (due to LF).

5-3

016 tN
017 to

020 tP

021 tQ (XON)

022 tR
023 ts

024 tT
025 tU

026 tV
027 tW
030 tX
031 tY
032 tZ

033 t [

034 t\
035 t]
036 t t
037 t~

040-137
140-174

175 and 176
177

(TAPE)
(XOFF)

(NO TAPE)

(ESC)

No special action.
Suppresses output until an INPUT, or an INIT or
OPEN UUO occurs. Not passed to program.
Typed by as tO followed by carriage return-linefeed.
Does not appear in the input buffer. Some Teletype
units (usually Models 35 and 37) have horizontal tab,
vertical tab, and form feed mechanisms while other units
(usually Model 33s) do not. The Monitor assumes that
all Teletype units in the system either do or do not have
these mechanisms depending upon how the system was
built (System Builder). If the user finds that his particular
Teletype unit is different from the Monitor's assumption,
he should type t P. Otherwise, tabs will not be printed
at all or spaces will be substituted for a tab depending
upon the Monitor's assumption. Alternate uses of tP
simulate hardware tabs with multiple spaces on and off.
Starts paper-tape-mode, as described above. Passed to
program.
No special action.
Ends paper-tape mode, as described above. 023 is
passed to program •
No special action.
Deletes input line back to last break character. Typed
back as t U followed by carriage return-I inefeed.
No special action.
No specia I action.
No special action.
No special action.
Acts as end-of-file on Teletype input. Echoes as tZ
followed by carriage-return, I inefeed. Is a break
character. Appears in buffer as 032.
This is the ASCII altmode these days, but is translated
to 175 before being passed to the program, unless in full
character set mode (bit 29 in INIT). 1/5 is the 1963
altmode. Echoes as a dollar sign. Always, is a break
character.
No special action.
No special action.
No special action.
No special action.
Printing characters, no special action.
"Lower case" ASCII. Translated to upper case, unless
t F switch is set. Echoes as upper case if translated to
upper case.
Old versions of altmode. See description of "ESC" (033).
RUBOUT or DELETE:
A) Completely ignored if in papertape mode (XON).
B) Is a break character, passed to program if either

DDT mode or ful I character-set mode is true.
C) Otherwise (ordinary case) causes a character to be

deleted for each rubout types. All the characters deleted
are echoed between a single pair of backslashes. If no
characters remain to be deleted, echoes as a carriage­
return, I inefeed.

5-4

On output, al I characters are typed just as they appear in the output buffer with the excep­

tions, TAB, VT, and FORM, which are processed the same as on type in.

5. 1. 1.2 Half-Duplex Software A(ASCII) - If, during output operations, an echo-check failure occurs

(the transmitted character was not the same as the intended character), the 1/0 routine suspends output

unti I the user types the next character. If that character is tC, the console is placed in Monitor mode

immediately. If it is tO, all Teletype output buffers that are currently full are ignored, thus cutting

the output short. Al I other characters cause the service routines to continue output. The user may

cause a deliberate echo check by typing in while typeout is in progress. For example, to return to

Monitor control mode while typeout is in progress, the user must type any character ("X 11
, for example)

until an echo check occurs and output is suspended; then and only then he types tC.

The buffer is terminated when it fills up or when the user types tz.

5. 1. 1.3 Half-Duplex Software AL(ASCII Line) - Same as ASCII mode (usually preferred) with the

addition that the input buffer is terminated by a CR/LF pair, FF, VT, or ALTMODE.

5. 1.2 DDT Submode

To allow a user's program and the DDT debugging program to use the same Teletype without

interfering with one another, the Teletype service routine provides the DDT submode. This mode does

not affect the Teletype status if it is initialized with the INIT operator. It is not necessary to use INIT

in order to do 1/0 in the DDT submode. 1/0 in DDT mode is always to the user's Teletype and not to

any other device.

In the DDT submode, the user's program is responsible for its own buffering. Input is usually

one character at a time, but if the typist types characters faster than they are processed, the Teletype

service routine supplies bufferfuls of characters at a time.

To input characters in DDT mode, use the sequence

MOVEI AC,BUF
CALL AC, [SIXBIT/DDTIN/1

BUF is the first address of a 21-word block in the user's area. The DDTIN operator delays, if necessary,

until one character is typed in. Then al I characters (in 7-bit packed format) typed in since the previous

occurrence of DDTI N are moved to the user's area in locations BUF, BUF+ 1, etc. The character string

is always terminated by a null character (000). RUBOUTs are not processed by the service routine but

are passed on to the user. The special control characters tO and tU have no effect. Other characters

are processed as in ASCII mode.

5-5

To perform output in DDT mode, use the sequence

MOVEI AC, BUF
CALL AC, [SIX BIT/DDTOUT/I

BUF is the first address of a string of packed 7-bit characters terminated by a nul I (000) character. The

Teletype service routine delays until the previous DDTOUT operation is complete, then moves the entire

character string into the Monitor, begins to output the string, and restarts the user's program. Character

processing is the same as for ASCII mode output.

5. 1.3 Special Programmed Operator Service

TTCALL UUO is (and will always be) implemented only in the "full duplex scanner service",

SCNSRF.

The general form of this UUO is as follows:

OPDEF
TT CALL

TTCALL [51 BS]
AC, ADR

The AC field describes the particular function desired, and the argument (if any) is

contained in ADR. ADR may be an AC or any address in low segment above JOB AREA

(137). It may be in high segment for AC fields 1 and 3. The functions are:

AC Field

0
1
2
3
4
5
6
7

10
11
12
13
14
15-17

INCHRW

Mnemonic Action

INCHRW Input character and wait
OUTCHR Output a character
INCHRS Input character and skip
OUTSTR Output a string
INCHWL Input character, wait, I ine mode
INCHSL Input character, skip, line mode
GETLIN Get line characteristics
SETLIN Set line characteristics
RESCAN Reset input stream to command
CLRBFI Clear typein buffer
CLRBFO Clear typeout buffer
SK PINC Skips if a character can be input
SKPINL Skips if a line can be input
(Reserved for Expansion)

TTCALL O,ADR

This command inputs a character into location ADR. ADR may be an AC or any other
location in the user's low segment. If there is no character yet typed, the program waits
for it.

OUTCHR TTCALL l ,ADR

This command outputs a character to the teletype, from location ADR. Only the low order 7
bits of the contents of ADR are used, the rest need not be zeroes.

5-6

If there is no room in the output buffer, the program waits until room is available. ADR
may be in high segment.

INCHRS TTCALL 2,ADR

This command is similar to INCHRW, except that it skips on a successful return, and does
not skip if there is no character in the input buffer, it never puts the job into a wait.

TT CALL
JRST
JRST

OUTSTR

2,ADR
NONE
DONE

TTCALL 3,ADR

;NO TYPEIN
;CHARACTER IN ADR

This command outputs a string of characters in ASCIZ format:

TT CALL 3,MESSAGE

MESSAGE: ASCIZ /TYPE THIS OUT/

ADR may be in high segment

INCHWL TTCALL 4,ADR

This command is the same as INCHRW, except that it decides whether or not to wait on
the basis of lines rather than characters, as such, it is the preferred way of inputting
characters, since INCHRW causes a swap to occur for each character rather than each I ine
(compare DDT and PIP input, for instance).

INCH SL TTCALL 5,ADR

This command is the same as INCHRS, except that its decision whether to skip is made on
the basis of I ines rather than characters.

GET LIN TT CALL 6 I ADR

This command takes one argument, from location ADR, and returns one word, also in ADR,
the argument is a number, representing a teletype line. If the argument is negative, the
line number controlling the program is assumed. If the line number is greater than those
defined in the system, a zero answer is returned.

The normal answer format is as follows:

Right half of ADR: The line number.
Bits, as follows: Left half of ADR:

Bit

0
l
2
3

Meaning

Line is a pseudo-teletype.
Line is the CTY.
Line is a display console.
Line is a dataset data line.

5-7

Bit

4
5
11
12
13
14
15
16
17

SETLIN

Meaning

Line is a dataset control line.
Line is half-duplex.
A line has been typed in by the user
A rubout has been typed.
"Control F" switch is on.
"Control P" switch is on.
"Control B" switch is on.
"Control Q" (paper tape) switch is on.
Line is in a "talk" ring.

TTCALL 7 ,ADR

This command allows a program to set and clear some of the bits described for GETLIN.
They may be changed only for the control I ing teletype. The bits which may be modified are
bits 13, 14, 15 and 16. Example:

SETO AC,O
TT CALL 6,AC
TLZ AC, BIT 13
TLO AC, BIT 14
TT CALL 7,AC

RESCAN TT CALL 14,0

This command is intended for use only by the CCL CUSP. It causes the Input Buffer to be
re-scanned from the point where the last command began. Obviously, if it is executed
other than before the first input, that command may no longer be in the buffer. ADR is
not used, (but is address checked).

CLRBFI TTCALL 11,0

This command causes the Input Buffer to be cleared (as if the user had typed a number of
"Control U's"). It is intended to be used when an error has been detected, such that a
user probably would not want any commands to be executed which he might have typed
ahead.

CLRBFO TTCALL 12,0

This command causes the output buffer to be cleared, as if the user had typed 11 CONTROL
0 11

• It should be used only rarely, since usually one wants to see all output, up to the
point of an error. It is included primarily for completeness.

SK PING TTCALL 13,0

This command skips if the user has typed at least one character. It does not skip if no
character have been typed, however it never inputs a character. It is useful for a compute
based program which wants to occasionally check for input and, if any, go off to another
routine (such as FORTRAN Operating System) to actually do the input.

5-8

SKPINL TTCALL 14,0

This command is the same as SK PING except that a skip occurs if a line has been typed.

5. 1.4 Special Status Bits (Ful I Duplex Software only)

An INIT or OPEN, with bit 28 a one, suppresses echoing on the Teletype. This is useful

for LOGIN to eliminate the mask for the password.

5.1.5 Paper Tape Input from the Teletype (Full Duplex Software only)

Paper tape input is possible from a Teletype equipped with a paper tape reader, controlled

by the XON and XOFF characters. When commanded by the XON character, the Teletype service

will read paper tapes, starting and stopping the paper tape as needed and continuing until the XOFF

character is read or typed in. While in this mode of operation, any RUBOUTS will be discarded and no

free line feeds will be inserted after carriage returns. Also, TABS and FORMFEEDS will not be simulated

on Model 33's, to insure output of the reader control characters. In order to use paper tape processing,

the Teletype with paper tape reader must be connected by a ful I duplex connection and only ASCII

paper tapes are intended to be used •

The correct operating sequence for reading a paper tape in this way is as fol lows:

. R PIP <RETURN>
*DSK: FILE~TTY: <XONXRETURN><LINEFEED>
THIS IS WHAT IS ON TAPE
MORE OF SAME
LAST LINE
tZ
*<XOFF>

5.2 PAPER TAPE READER

5.2. 1

Device Mnemonic - PTR

Buffer Size - 43
8

words

Data Modes (Input Only)

NOTE: To initialize the paper tape reader, the input tape
must be threaded through the reading mechanism and the
FEED button depressed.

5.2.1. 1 A (ASCII) - Blank tape (000), RUBOUT (377), and null characters (200) are ignored. All

other characters are truncated to seven bits and appear in the buffer. The physical end of the paper tape

5-9

serves as an end-of-file and results in the character 032 t Z) appearing in the buffer.

5.2.1.2 AL (ASCII Line) - Character processing is the same as for the A mode. The buffer is termin­

ated by LINE FEED, FORM, or VT.

5.2.1.3 I (Image) - There is no character processing. The buffer is packed with 8-bit characters ex­

actly as read from the input tape. Physical end of tape is the end-of-file indication but does not cause

a character to appear in the buffer.

5.2. 1.4 IB (Image Binary) - Characters not having the eighth hole punched are ignored. Characters

are truncated to six bits and packed six to the word without further processing. This mode is useful for

reading binary tapes having arbitrary blocking format.

5.2. 1.5 B (Binary) - Checksummed binary data is read in the following format. The right half of the

first word of each physical block contains the number of data words that fol low and the left contains

half a folded checksum. The checksum is formed by adding the data words using 2s complement arith­

metic, then splitting the sum into three 12-bit bytes and adding these using ls complement arithmetic

to form a 12-bit checksum. The data error status flag (IO DERR) is raised if the checksum miscompares.

Because the checksum and word count appear in the input buffer, the maximum block length is 40. The

byte pointer, however, is initialized so as not to pick up the word count and checksum word.

Again, physical end of tape is the end-of-file indication but does not result in putting a

character in the buffer.

5.3 PAPER TAPE PUNCH

5.3. 1

Device Mnemonic - PTP

Buffer Size - 43
8

words

Data Modes

5.3. 1. 1 A (ASCII) - The eighth hole is punched for all characters. Tape-feed without the eighth hole

(000) is inserted after form-feed. A rubout is inserted after each vertical or horizontal tab. Null char­

acters (000) appearing in the buffer are not punched.

5. 3. 1 . 2 AL (ASCII Line) - The same as A mode. Format control must be performed by the user's

program.

5-10

5.3. 1.3 I (Image) - Eight-bit characters are punched exactly as they appear in the buffer with no ad­

ditional processing.

5.3. 1.4 IB (Image Binary) - Binary words taken from the output buffer are split into six 6-bit bytes and

punched with the eighth hole punche~ in each I ine. There is no format control or checksumming per­

formed by the 1/0 routine. Data punched in this mode is read back by the paper tape reader in the IB

mode.

5.3. 1.5 B (Binary) - Each bufferful of data is punched as one checksummed binary block as described

for the paper tape reader. Several blank lines are punched after each bufferful for visual clarity.

5.3.2 Special Programmed Operator Service

The first output programmed operator of a file causes about two fanfolds of blank tape to be

punched as leader. Fol lowing a CLOSE, an additional fanfold of blank tape is punched as trailer. No

end-of-file character is punched automatically.

5.4 LINE PRINTER

Device Mnemonic - LPT

Buffer Size - 34
8

words

5.4. 1 Data Modes

5.4. l. l A (ASCII) - ASCII characters are transmitted to the line printer exactly as they appear in the

buffer. See the PDP-10 System Reference Manual, for a list of the vertical spacing characters.

5.4.1.2 AL (ASCII Line) -This mode is exactly the same as A and is included for programming con­

venience. All format control must be performed by the user's program; this includes placing a RETURN,

LINE-FEED sequence at the end of each I ine.

5.4.2 Special Programmed Operator Service

The first output programmed operator of a file and the CLOSE at the end of a file cause an

extra form-feed to be printed to keep files separated.

5-11

5.5 CARD READER

Device Mnemonic - CDR

Buffer Size - 36
8

words

5.5. l Data Modes

5.5. l. l A (ASCII) - Al I 80 columns of each card are read and translated to 7-bit ASCII code. Blank

columns are translated to spaces. At the end of each card a carriage-return/line-feed is appended. A

card with the character 12-11-0-1 punched in column l is an end-of-file card. Columns 2 through 80

are ignored, and an end-of-file character 032 appears as the last character in the input buffer. The

end-of-file button on the card reader has the same effect as the end-of-file card. As many complete

cards as can fit are placed in the input buffer, but cards are not split between two buffers. Using the

standard-sized buffer, only one card is placed in each buffer.

Cards are normally translated as IBM 026 card codes. If a card containing a 12-0-2-4-6-8

punch in column l is encountered, any following cards are translated as 029 codes (see Table 5-2

PDP-10 Card Codes) unti I the 029 conversion mode is turned off. The 029 mode is turned off either by

a RELEASE command or by a card containing a 12-2-4-8 punch in column 1. Columns 2 through 80 of

both of these cards are ignored.

5.5. 1.2 AL (ASCII Line) - Exactly the same as the A mode.

5.5. l .3 I (Image) - All 12 punches in all 80 columns are packed into the buffer as 12-bit bytes. The

first 12-bit byte is column 1. The last word of the buffer contains columns 79 and 80 as the left and

middle bytes respectively. The end-of-file card and the end-of-file button are processed the same as

in the A mode with the character 0032 appearing in the buffer as the last character of the file. Cards

a re not sp Ii t between two buffers.

5.5. 1.4 B (Binary) - Card column 1 must contain a 7-9 punch to verify that the card is in binary format.

The absence of the 7-9 punch results in raising the IOIMPM (improper mode) flag in the card reader

status word. Card column 2 must contain a 12-bit checksum as described for the paper tape reader

binary format. Columns 3 through 80 contain binary data, 3 columns per word for .up to 26 words.

Cards are not split between two buffers. The end-of-file card and the end-of-file button are processed

the same as in the A mode with a word containing 003200000000 appearing as the last word in the file.

5-12

CHAR PDPlO DEC
ASCII 029

SPACE 040
! 041 11 8 2
II 042 87
043 83
$ 044 11 8 3
% 045 084
& 046 12
I 047 85
(050 12 8 5
) 051 11 8 5
* 052 11 8 4
+ 053 12 8 6
, 054 083
- 055 11

056 12 8 3

I 057 0 l
0 060 0
l 061 l
2 062 2
3 063 3
4 064 4
5 065 5
6 066 6
7 067 7
8 070 8
9 071 9
: 072 82

; 073 11 8 6
< 074 12 8 4
= 075 86

> 076 086
? 077 087

5 .6 CARD PUNCH

Device Mnemonic - CDP

Buffer Size - 35
8

words

5.6. l Data Modes

Table 5-2
PDP-10 Card Codes

DEC CHAR
026

@

12 8 7 A
085 B
086 c
11 8 3 D
087 E
11 8 7 F
86 G
084 H
12 8 4 I
11 8 4 J
12 K
083 L
11 M
12 8 3 N
0 l 0
0 p

l Q

2 R
3 s
4 T
5 u
6 v
7 w
8 x
9 y
11 8 2 z
OR 11 0
082 [

12 8 6 \
83]

11 8 6 t
12 8 2 +-

OR 12 0

5-13

PDPlO DEC DEC
ASCII 029 026

100 84 84
101 12 1 12 1
102 12 2 12 2
103 12 3 12 3
104 12 4 12 4
105 12 5 12 5
106 12 6 12 6
107 12 7 12 7
110 12 8 12 8
111 12 9 12 9
112 11 l 11 l
113 11 2 11 2
114 11 3 11 3
115 11 4 11 4
116 11 5 11 5
117 11 6 11 6
120 11 7 11 7
121 11 8 11 8
122 11 9 11 9
123 02 02
124 03 03
125 04 04
126 05 05
127 06 06
130 07 07
131 08 08
132 09 09

133 12 8 2 11 8 5
134 11 8 7 87
135 082 12 8 5
136 12 8 7 85
137 085 82

5. 6. l . l A (ASCII) - ASCII characters are converted to card codes and punched (up to 80 characters

per card). Tabs are simulated by punching from l to 7 blank columns; form-feeds and carriage returns

are ignored. Line-feeds cause a card to be punched. All other nontranslatable ASCII characters

cause a question mark to be punched. Cards can be split between buffers. Attempting to punch more

than 80 columns per card causes the error bit IO BK TL to be raised.

Cards are normally punched with DEC026 card codes. If bit 26 (octal 1000) of the status

word is on (from INIT, OPEN, or SETSTS), cards are punched with DEC029 codes. The first card of

any file indicates the card code used (12-0-2-4-6-8 punch in column l for DEC029 card codes;

12-2-4-8 punch in column l for D EC026 card codes).

5.6. l. 2 AL (ASCII Line) - The same as A mode.

5.6. l .3 IB Omage Binary) - Up to 26 2/3 data words will be punched in columns 1-80. The buffer

set up by the Monitor will only contain room for 26 data words. Image binary will cause exactly one

card to be punched for each output. The CLOSE will punch the last partial card, and then punch an

EOF card (12-11-0-1 in column l).

5.6. 1.4 B (Binary) - Column l will contain the word count in rows 11-2. A 7-9 punch will also be

in column l. Column 2 will contain a checksum; columns 3-80 will contain up to 26 data words, 3

columns per word. Binary will cause exactly one card to be punched for each output. The CLOSE

will punch the last partial card, and then punch an EOF card (12-11-0-1 in column 1).

5.6.2 Special Programmed Operator Service

Following a CLOSE, an end-of-file card is punched.

Both the first card of the file (the one that identifies the card code used) and the end-of-file

card are laced in columns 2 through 80 for easy identification of files. These laced punches are ignored

by the card reader service routine.

5.7 DECTAPE

5.7. l

Device Mnemonic - DTAO, DTAl, ..• , DTA7

Buffer Size - 202
8

words

Data Modes

5-14

5. 7. l. l A (ASCII) - Data is written on DECtape exactly as it appears in the buffer. No processing

of checksumming of any kind is performed by the service routine. The self-checking of the DECtape

system is sufficient assurance that the data is correct. See the description of DECtape format below

for further information concerning blocking of information.

5.7. 1.2 AL (ASCII Line) - Same as A.

5.7. l .3 I (Image) - Same as A. Data consists of 36-bit words.

5.7.1.4 IB (Image Binary) - Same as I.

5.7. 1.5 B (Binary) - Same as I.

5.7. 1.6 DR (Dump Records) - This mode is accepted but actually functions as dump mode 17.

5. 7. l. 7 D (Dump) - Data is read into or written from anywhere in the user's core area without

regard to the standard buffering scheme. Control for read or write operations must be via a command

I ist in core memory. The command I ist format is as described in Chapter 4, "Unbuffered (Dump)

Modes;" any positive number appearing in a command list terminates the list. Dump data is automatically

blocked into standard-length DECtape blocks by the DECtape control. Unless the number of data

words is an exact multiple of the standard length of a DECtape block (128
10

), after each output pro­

grammed operator, the remainder of the last block written is wasted. The input programmed operator

must specify the same number of words that the corresponding output programmed operator specified in

order to skip over the wasted fractions of blocks.

5.7.2 DECtape Block Format

A standard reel of DECtape consists of 578 (1102
8

) prerecorded blocks each capable of

storing 128 (200
8

) 36-bit words of data. Block numbers which label the blocks for addressing purposes

are recorded between blocks. These block numbers run from 0 to 1101
8

. Blocks 0, 1, and 2 are

normally not used during time-sharing and are reserved for a bootstrap loader. Block l 00
10

(144
8

) is

the directory block which contains the names of al I files on the tape and information relating to each

file. Blocks 1
10

through 99
10

(l-143
8

) and 101
10

through 577
10

(145-1101
8

) are usable for data.

If in the process of DECtape I/O, the I/O service routine is requested to use a block number

larger than 1101
8

or smaller than 0, the Monitor sets the Block Too Large flag (bit 21) in the file

status and returns.

5-15

5.7.3 DECtape Directory Format

The directory block (block 100
10

) of a DECtape contains directory information for al I files

on that tape; a maximum of 22 files can be stored on any one DECtape.

Words 0 through 82
10

Words 83 through 104
10

Words 105 through 126
10

Word 127
10

The message

The first 83 words of the directory contain "slots, 11

each 11slot 11 representing one of the 577 (blocks l
through 1101 a are represented in these 83 words)
blocks on the DECtape. Each slot occupies five bits
(seven slots are stored per word) and contains the
number of the file (l-268) to which the block the
slot represents is assigned.

The next 22 words contain the fi I enames of the 22
files residing on the DECtape. Word 83 contains the
filename for fi I e # 1, word 84 the fi I ename # 2, etc.
Filenames are stored in 6-bit code.

The next 22 words contain the extension names and
dates of the 22 files, in the same relative order as
their filenames above.

Bits 0 through 17
10

Bits 18 through 23 10

Bits 24 through 35
10

The extension name of the
file (in 6-bit code)

Number of lK blocks minus
l needed to I oad the file
(maximum value=53). This
information is stored for
SAVEd files only.

The date the fl le was last
updated, according to the
formula:

((year- l 964)*12+(month- l))*3l+day- l

Unused.

BAD DIRECTORY FOR DEVICE DTAn: EXEC CALLED FROM USER LOC n

is produced whenever any of the fol lowing conditions are detected.

a. A parity error while reading the directory block.

b. No 11slots 11 are assigned to the file number of the file.

c. The tape block which may possibly be the first block of the file (i.e., the first block for

the file encountered while searching backwards from the di rectory block) cannot be read.

5.7.4 DEC tape Fi I e Format

A file consists of any number of DECtape blocks. Each block contains:

Word 0 Left half The link. The link is the block number of the next
block in the file. If the link is zero, this block is
the last in the file.

5-16

Right half

Words l through 177
8

Bits 18 through 27: The block number of the first
block of the file.

Bits 28 through 35: A count of the number of words
in this block which are used (maximum 177

8
).

Data packed exactly as the user placed in his buffer
1

or in Dump Mode files, the next 127 words of memory.

5.7.5 Special Programmed Operators Service

Several programmed operators are provided for manipulating DECtape. These allow the user to

manipulate block numbers and to handle directories.

In addition to the operators above, INPUT, OUTPUT, CLOSE, and RELEAS have special ef­

fects. When performing nondump input operations, the DECtape service routine reads the links in each

block to determine the next block to read and when to raise the end-of-file flag.

When an OUTPUT is given, the DECtape service routine examines the left half of the first data

word in the output buffer (the word containing the word count in the right half). If this half word contains

-1, it is replaced with a 0 before being written out, and the file is thus terminated. If this half word is

greater than -1, it is not changed and the service routine uses it as the block number for the next OUTPUT.

Programmed Operator

USETI D, E

USETO D, E

UGETF D, E

ENTER D, E

Table 5-3
DECtape Programmed Operators

Effect

Sets the DECtape on device channel D to input block E next. Input
operations on this DECtape must not be active because otherwise the
user has no way of determining which buffer contains block E.

Similar to USETI but sets the output block number USETO waits until
the device is inactive before setting up the new output block number.

Places the number of the first free block of the file in user's location E.

User's location E, E+l, E+2, and E+3, must be reserved for a directory
entry. The DECtape service routine searches the directory for a filename
and extension that match the contents of E and the left half of E+ l. If
no match is found and there is room in the directory, the service routine
places the first free block number into the right half of E+ l, places the
date in E+2 (unless already non-zero), and places the necessary infor­
mation into the directory. If a match is found, similar actions occur,
but the new entry replaces the old. If there is no room in the directory,
ENTER returns to the next location. Otherwise, ENTER skips one
location.

1
The Monitor compresses the user's core image by squeezing out blocks of two or more consecutive zeroes

before creating the SAVed files; files with extension . SAV may be read in Dump Mode, but must be re­
expanded before being run. The Monitor takes this action after input on a RUN or GET.

5-17

Programmed Operator

LOOKUP D, E
error return

Table 5-3 (Cont)
DECtape Programmed Operators

Effect

Similar to ENTER but sets up an input file. The contents of E and E+ l
are matched against the filenames and extension names in the DECtape
directory. If a match is found, information about the file is read from
the directory into the appropriate portions of the 4-word block begin­
ning at E. The first block of the file is then found as follows.
1. The first 83 words of the DECtape directory are searched in a back­

wards manner, beginning with the slot immediately prior to the
directory block, until the first slot containing the desired file
number is found .

2. The block associated with this slot is then read in and bits 18 through
27 of the first word of the block (these bits contain the block number
of the first block of the file) are checked. If they are equal to the
block number of this block, then this block is the first block of the
file; if not, then the block with that block number is read as the
first block of the file.

LOOKUP then skips one location.
If no match is found, LOOKUP returns to the user's program at the next
location.

CALL D, [SIXBIT/UTPCLR,11 UTPCLR clears the directory of the DECtape on device channel D. A
cleared directory has zeroes in the first 83 words except in those slots
related to blocks 0, 1, 2, and 100

10
and nonexistent blocks 1102

through 11058. Only the directory block (block l 00) is affected by
UTPCLR; the other blocks are unaffected. This programmed operator
does nothing if the device on channel D is not DECtape.

RENAMED, E This programmed operator is used to alter the name and extension of a
file or to delete it from the DECtape. Locations E to E+3 are as in
LOOKUP and ENTER. To be RENAMEd a file must first be CLOSEd on
channel D, in order to identify for the RENAME UUO. RENAME then
seeks out this file and enters the information specified in E through E+2
into the retrieval information and proper directory. If the contents of
E is zero, RENAME has the effect of deleting the file. The error return
is given if the new file name and extension already exist or if neither
a LOOKUP nor an ENTER has been done to identify the file to be
renamed.

For both INPUT and OUTPUT, block 100 (the directory) is treated as an exception case. If

the user's program gives

USETI DI 1448

to read block l 00, it is treated as a 1-block file.

The CLOSE operator places a -1 in the left half of the first word in the last output buffer,

thus, terminating the file.

5-18

The RELEAS operator writes the copy of the directory which is normally kept in core onto

block 100, but only if any changes have been made. Certain console commands, such as KJOB or

CORE 0, perform an implicit RELEAS of all devices and, thus, write out a changed directory even

though the user's program failed to give a RELEAS.

Two other special programmed operators are available: MTAPE D, land MTAPE D, 11.

MT APE D, l rewinds the DECtape and moves it into the end zone at the front of the tape. MT APE D,

11 rewinds and unloads the tape, pul I ing the tape completely onto the lefthand reel. These commands

affect only the physical position of the tape, not the 11 logical 11 position. When either is used, the

user's job can be swapped out while the DECtape is rewinding; however, the job cannot be swapped out

if an INPUT or OUTPUT is done while the tape is rewinding.

5.7.6 Special Status Bits

If an attempt is made to write on a unit with the WRITE-LOCK switch on, the improper mode

flag (bit 18) is set in the file status word.

5.7.6. l Special DECtape Status Bits - An INIT or SETSTS to a DECtape with bit 29 ON informs

DTASER (the DECtape service routine) that the DECtape is in nonstandard format. This implies that no

file-structured operations wil I be performed on that tape. Blocks wi 11 be read or written sequentially;

no I inks wil I be generated (output) or recognized (input). The first block to be read or written must be

set by a USETI or USETO. In Dump Mode, 200
8

data words per block will be read or written (as op­

posed to the normal 177
8

words). No 11dead reckoning 11 will be used on a search for a block number,

as the tape may be composed of blocks shorter than 200 words. The ENTER, LOOKUP, and UTPCLR

UUOs are treated as no-ops. Block 0 of the tape may not be read or written in Dump Mode if bit 29 is

ON, as the data must be read in a forward direction and block 0 normally cannot be read forward.

5.7.7 Important Considerations

The DECtape service routine reads the directory from a tape the first time it is required to

perform a LOOKUP, ENTER, or UGETF; the directory image remains in core until a new ASSIGN com­

mand is executed from the console. To inform the DECtape service routine that a new tape has been

mounted on an assigned unit, the user must use an ASSIGN command. The directory from the old tape

could be transferred to the new tape, thus destroying the information on that tape unless the user re­

assigns the DECtape transport every time he mounts a new reel.

5-19

5.8 MAGNETIC TAPE

Magnetic tape format is industry compatible, 7- or 9-channel 200, 556, and 800 bpi (see

description below).

Device Mnemonic - MTAO, MTAl, ... ,MTA7

Buffer Size - 203
8

words

5. 8. l Data Modes

5.8. 1. l A (ASCII) - Data appears to be written on magnetic tape exactly as it appears in the buffer.

No processing or checksumming of any kind is performed by the service routine. The parity checking of

the magnetic tape system is sufficient assurance that the data is correct. Normally, all data, both

binary and ASCII, is written with odd parity and at 556 bits per inch. A maximum of 200 words per

record is standard. The word-count is not written on the tape.

5.8. 1. 2 AL (ASCII Line) - Same as A.

5.8.1.3 I (Image) - Same as A but data consists of 36-bit words.

5.8. 1.4 IB (Image Binary) - Same as I.

5.8. 1.5 B (Binary) - Same as I.

5.8. 1.6 DR (Dump Records) - Standard fixed length records (128 words is the standard unless installa­

tion standard is changed with MO NG EN) are read into or written from anywhere in the user's core

area without regard to the standard buffering scheme. Control for read or write operations must be via a

command list in core memory. The command list format is as described in Chapter 4, "Unbuffered

(Dump) Modes. 11 For input operations a new record is read for each word in the command list (except

GOTO words); if the record terminates before the command word is satisfied, the service routine reads

the next records. If the command word runs out before the record terminates, the remainder of the

record is ignored. For each output command word, as many standard length records are written fol lowed

by one short record to exactly write all of the words onto the tape.

5.8.1.7 D (Dump) - Variable length records are read into or written from anywhere in the user's

core area without regard to the standard buffering scheme. Control for read or write operations must

5-20

be via a command list in core memory. The command I ist format is as described in Chapter 4, "Unbuffered

(Dump) Modes. 11 For input operations a new record is read for each word in the command list (except

GOTO words); if the record terminates before the command word is satisfied, the service routine skips

to the next command word. If the command word runs out before the record terminates, the remainder

of the record is ignored. For each output command word, exactly one record is written. See Section

4.4. l. 2 for command I ist format.

5.8.2 Magnetic Tape Format

Magnetic tape format can be generally described as unlabelled, industry compatible format.

That is, as far as the user is concerned, the tape contains only data records and end-of-file marks

which signal the end of the data set or the end of the file. Files are read from and written on the tape

in a sequential manner.

An end-of-file mark consists of a record containing a 17
8

(for 7-channel tapes) or a 23
8

(for 9-channel tapes). End-of-file marks are used in the following manner.

a. No end-of-file mark precedes the first file on a magtape.

b. An end-of-file mark follows every file.

c. Two end-of-file marks follow a file if that file is the last or only file on the tape.

Files are written on and read from a magtape in a sequential manner. A file consists of an

integral number of physical records, separated from each other by interrecord gaps (area on tape in

which no data is written). There may or may not be more than one logical record in each physical

record.

5.8.3 Special Programmed Operator Service

CLOSE performs a special function for magnetic tape. When an output file is closed (both

dump and nondump), the 1/0 service routine automatically writes two end-of-file marks and backspaces

over one of them. If another file is now opened, the second end-of-file is wiped out leaving one

end-of-file between files. At the end of the in-use portion of the tape, however, there appears a

double end-of-file character which is defined as the logical end of tape. When an input dump file is

closed, the I/O service routine automatically skips to the next end-of-file.

A special programmed operator called MT APE provides for such tape manipulation functions

as rewind, backspace record, backspace file, 9-channel tape initialization, etc. The format is

MT APE DI FUNCTION

where Dis the device channel on which the magnetic tape unit is initialized. FUNCTION is

selected according to the fol lowing table:

5-21

Table 5-4
MT APE Functions

Function Action

0 No operation; wait for spacing
and I/O to finish

l Rewind to load point

11 Rewind and unload
1

7 Backspace record

17 Backspace file

3 Write end of file

6 Skip one record

13 Write 3 inches of blank tape

16 Skip one file

10 Space to logical end of tape

100 Digital Compatible; 9-channel
2

l 01 Initialize for 9-channel tape
3

MT APE waits for the magnetic tape unit to complete whatever action is in progress before performing the

indicated function, including no operation (O). Bits 18 through 25 of the status word are then cleared,

the indicated function is initiated, and control is returned to the user's program immediately. It is

important to remember that when performing buffered input/output, the I/O service routine can be

reading several blocks ahead of the user's program. MTAPE affects only the physical position of the

tape and does not change the data that has already been read into the buffers.

5.8.3. l Backspace File on Magtape - Issuing a backspace file command to a magtape unit will move

the tape in the reverse direction until the tape has A) passed the end of file mark or B) reached the

beginning of the tape. This means that the end of the backspace file operation wil I position the tape ~

heads either immediately in front of a file mark or at the beginning of the tape. D£S ~~"<".~~.~. ,~
~~~we' .. ~'"\\.~ ~~·\·A, 

~· ""1~ . (, ~ ~ '~"' 'X" Q; '¢) i,J i'J; •. 
1
0n ~he 516 Control, this function is~ ~~implemented~~'~~~~,,~ Qi'\ 
~~~~ 
2

Digital Compatible mode writes (or reads) 36 data bits in five frames of a 9-track magtape. It can
be any density, any parity, and is not industry compatible. This mode is in effect until a RELEASED,
or an MT APE D, l 00 is executed.
3

Industry compatible 9-channel mode writes (or reads) 32 data bits per word in four frames of a 9-track
magtape and ignores the last four bits of a word. It must be 800 bpi density, odd parity.

5-22

In most cases it is desireable to skip forward over this file mark. This is decidedly not the

case if you've reached the beginning of the tape; in this case giving a skip file command would indeed

skip the entire first file on the tape stopping at the beginning of the second file, rather than leaving

the tape positioned at the beginning of the first file.

Therefore a typical (incorrect) sequence for backspace file would be:

MTAPE MT, 17
CALLI WAIT
STATO MT, 4000
MT APE MT, 16

;Backspace file
;*Wait for completion*
;Beginning of tape?
;No, skip over file mark

Note that it is necessary to wait after the backspace file instruction in order to insure that

the tape is moved to the end of fl le mark or the beginning of the tape before testing to see whether or

not it is the beginning of the tape. The instruction CALLI WAIT cannot be used for this purpose; it

waits only for the completion of 1/0 transfer operation. (Backspace file is a spacing operation, not

an 1/0 transfer operation.)

Instead, use the following sequence for backspace file:

MT APE
MT APE
STATO
MT APE

MT, 17
MT, 0
MT, 4000
MT, 16

;Backspace file
;Wait for completion
;Beginning of tape?
;No, skip over file mark

In this case the device service routine waits until the magtape controller is free and proceeds

to issue the MT APE MT, 0 command which tells the tape control to do nothing. Thus the service

routine has waited unti I the completion of the previous operation before issuing the MT APE MT, 0 and

the appropriate wait sequence has been achieved.

5.8.4 9-Channel Magtape

Nine-channel magtape may be written and read in two ways: normal Digital Compatible

format, and industry compatible format.

5.8.4. l Digital Compatible Mode - Digital Compatible mode is the usual mode and will allow old

7-channel user mode programs to read and write 9-channel tapes with no modification. Digital

Compatible mode writes 36 data bits in five bytes of a nine track magtape. It can be any density, and

parity, and is not industry compatible. The software mode is specified in the usual manner during

initialization or with a setsts. User mode 1/0 is handled precisely as in the case of 7-track magtape.

It is assumed that most DEC magtapes wi 11 be written and read this way.

5-23

Data Word on Tape

Tracks

9 8 7 6 5 4 3 2 l

BO Bl B2 B3 B4 B5 B6 B7 p
88 B9 BlO Bll Bl2 Bl3 Bl4 Bl5 p
816 Bl7 Bl8 819 B20 B21 B22 B23 p
824 B25 B26 B27 B28 B29 (B30) (B31) p
0 ff (B30) (B31) B32 B33 B34 B35 p

P=Parity
BN=Bit N in core

Data Word in Core - 5 magtape bytes/ 36-bit word. Parity bits are unavailable to the user.

Bits are written on tape as shown in diagram, note that bits 30 and 31 get written twice and that tracks

8 and 9 of byte 5 contain 0. On reading parity bits and tracks 8 and 9 of byte 5 are ignored, the or

of bits (B30) is read into bit 30 of the data word, the or of bits (B31) is read into bit 31.

5. 8.4. 2 Industry Compatible Mode - For reading and writing industry compatible 9-channel magtapes,

an MT APE D, 101 UUO must be executed to set the status. MT APE D, 101 is meaningful for 9-channel

magtape only and is ignored for all other devices. In the left half of the status word, bit 2 (which

cannot be read by the user program) may be cleared (which returns the device to 9-channel Digital

Compatible status) by a RELEAS, a call to EXIT, or an MTAPE D, 100 UUO. These MTAPE UUO's

act only as a switch to and from industry compatible mode and in no other way affect 1/0 status,

except to set the density to 800 BPI and odd parity.

On INPUT, four 8-bit bytes are read into each word in the buffer, left justified with the

remaining four bits of the word containing error checking information.

On OUTPUT, the leftmost four 8-bit bytes of each word in the buffer are written out in

four frames, with the remaining four rightmost bits of the word being ignored.

Data Word on Tape

Tracks

9 8 7 6 5 4 3 2 l
BO Bl B2 B3 B4 BS B6 B7 B32
B8 B9 BlO Bll Bl2 Bl3 Bl4 Bl5 B33
816 Bl7 Bl8 Bl9 B20 B21 B22 B23 B34
824 B25 B26 B27 B28 B29 B30 B31 B35

Data Word in Core - four magtape bytes carry 4 8-bit bytes from data word, parity bits

are obtained as shown when reading. Rightmost four bits are ignored on writing. (bits 32-35)

5-24

5.8.4.3 Changing Modes - MTAPE CH, 101 automatically sets density at 800 bits (or 808 eight­

bytes) per inch and sets odd parity. Note that buffer headers are set up when necessary by the

Monitor in the usual manner according to the I/O mode the device is initialized in. Byte pointers and

byte counts in buffer header wil I have to be changed by the user in order to operate on eight-bit bytes.

5.8.5 Special Status Bits

Special bits of the status word are reserved for selecting the density and parity mode of the

magnetic tape. Table 5-4 lists the bits that are set and cleared by INIT or SETSTS.

Bit

26

27-28

29

Table 5-5
Magnetic Tape Special Status Bits

Action

Improper mode. When set to one during an output operation means that
the write enable ring is out.

I/O Beginning of Tape. The tape is at the load point.

I/O Tape END. The tape is at or past the end point.

I/O Parity. 0 for odd parity, l for even parity.
2

I/O Density. 00 or 10 = 556 bpi
01 = 200 bpi
11 = 800 bpi

I/O No Read Check. Suppress automatic error correction if bit 29 is a l .
Normal error correction is to repeat the desired operation 10 times before
setting an error status bit.

1
These bits indicate special magnetic tape conditions and are set by the magnetic tape service routine

when the conditions occur.
2
0dd parity is preferred. Even parity should be used only when creating a tape to be read in BCD

(Binary Coded Decimal) on another computer.

5. 9 DISK

Device Mnemonic - OSK

Buffer Size - 203
8

words (of which 200
8

words are data)

5. 9. l Data Modes

5. 9. l. l A (ASCII) - Data is written on the disk exactly as it appears in the buffer. Data consists of

36-bit words.

5-25

5. 9. 1. 2 AL (ASCII Line) - Same as A.

5.9.1.3 I (Image) - Same as A.

5. 9. 1. 4 IB (Image Binary) - Same as I.

5. 9. 1. 5 B (Binary) - Same as I.

5. 9. 1 . 6 DR (Dump Records) - Functions exactly the same as Do

5. 9. 1. 7 D. Dump - Data is read into or written from anywhere in the user's core area without regard

to the normal buffering scheme. Control for read or write operations must be via a command list in core

memory. The command list format is as described in Chapter 4, uunbuffered (Dump) Modes. u The disk

control automatically measures dump data into standard-length disk blocks of 200 octal words. Unless

the number of data words is an exact multiple of the standard length of a disk block (200 words) after

each command word in the command list, the remainder of that block is wasted.

5.9.2 Structure of Fi I es on Disk

The file structure of the disk system has been designed to minimize the number of disk seeks

for sequential or random accessing using either buffered or dump mode 1/0. The assignment of physical

space for data is performed automatically by the Monitor as logical files are written or deleted by user

programs. Files may be of any length, and each user may have as many files as he wishes, as long as

disk space is avai I able. No initial estimate of file length or number of files need be given by users or

their programs. Files may be simultaneously read by more than one user at a time, thus allowing data

sharing. A new version of a file may be recreated by one user while other users continue to read the

old version, thus allowing for smooth replacement of shared programs and data files. Finally, one user

may selectively update portions of a file, rather than creating a new one (see 11General Notes, 11

5. 9 .3 .3).

5.9.2. l Addressing by Monitor - The file structure described in this section is generally transparent to

the user, and a detailed knowledge of this material is not essential for effective user-mode use of the

disk. There are two programs in the Time-Sharing Monitor that service the disk, DSKSER and DSKINT.

DSKSER is the device service routine for a disk and references a disk by symbolic addressing only. This

routine is essentially independent of what physical disk is attached to the system. DSKINT serves only

5-26

two functions: l} that of translating the logical addressing used elsewhere in the system to the physical

addressing of the particular disk being utilized, and 2) controlling the physical disk. The monitor can

be thought of as seeing all disks in the same manner; a change of disks requires only a change in DSKINT

to provide the proper software interface between the physical device and the rest of the system.

Al I references made herei1, to addresses on the disk refer to the logical or relative addresses

used by the system and not to any physical addressing scheme involving records, sectors, tracks, etc.,

that may pertain to a particular physical device. The basic unit which may be addressed is a logical

disk block which consists of 200
8

36-bit words.

5.9.2.2 Storage Allocation Table (SAT) Blocks - There is a storage allocation table on the disk, which

reflects the current status of every addressable block on the disk. These SAT blocks are contained in a

file with the name "*SAT* .SYS". This file may be used by any user, but can only be modified by the

Monitor. Each addressable block on the disk is represented by one particular bit within the SAT blocks.

If a particular bit is on, it indicates that the corresponding block is fi I led with data (all blocks on the

disk are filled when any information is written on them}; if the bit is off, it indicates that the corre­

sponding block is empty or available to be written on. The disk can be wiped out by zeroing the SAT

blocks (which is exactly what is done when the disk is refreshed). The disk may optionally be "refreshed 11

whenever the Monitor is reloaded.

5. 9. 2. 3 Fi le Directories - There are two levels of directories on the disk; one is referenced mainly

by the system and the other is referenced by individual users. There is only one higher level directory,

known as the Master Fi le Directory (MFD). One of the functions of the MFD is to serve as a directory

for individual User's Fi le Directories (UFD's). A UFD is a particular user's own directory and wi II con­

tain the names of files he has written on the disk. The UFD itself is a file like any other file except

that its filename is a binary number combination (project-programmer) rather than a 6-bit code and its

extension is always UFD in SIXBIT. The binary combination consists of a left half, which is the project

number, and a right half, which is cal led the programmer number. When a user is logged in under a

specific project-programmer number and references the disk, he is actually referencing his own area

through the UFD having his project-programmer number as its name. He may, of course, specifically

code his routine to reference files listed in the UFD's of other users or the MFD; whether he is success­

ful or not will then depend upon the type of protection that has been specified for the file he is trying

to reference.

5-27

5.9.2.4 File Format - All disk files (including MFD and UFOs) are composed of two parts: 1) pure

data, and 2) information needed by the system to retrieve this data. Each data block contains exactly

200 (octal) words. If a partially fi I led buffer is output to the disk by a user, a ful I block is written

with trailing zeros filling in to make 200
8

words. Word counts associated with individual blocks are

not retained by the system. If such a partial block is input later, it will appear to have a full 2008
data words.

There are three links in 'the chain by which the system references data on the disk. The first

link is the 2-word directory entry in the UFO, which points to the Retrieval Information block(s), which

in turn points to the individual pure data blocks. This chain is transparent to the user, who may look

upon the directory as having 4-word entries analogous to DECtapes.

NAME

Size= n

NAME

DIRECTORY ENTRY
(MFD or UFO)

EXT LOC

RETRIEVAL INFORMATION

LOC NAME

LOC + 1 t----=EX:..:..:.T_~------1fllllU4---=-_:_::_:_---1
LOC+2

1--_:_-'----'----=---'---'--~

LOC+3 SIZE

NONCONTIGUOUS BLOCK
OF PURE DATA

ADR1~

ADR1+1" ~Ael . . .
ADRo[i~

ADRo+1"~
Directory Entry

- Filename in 6-bit ASCII, unless the directory is the MFD and the file is a UFD; in that

case, NAME is a project-programmer number in binary.

EXT - Filename extension in 6-bit ASCII; if NAME is a project-programmer number, EXT is UFO.

LOC - Address of the first block on the disk that contains Retrieval Information for this file.

Retrieval Information

NAME and EXT as above; used to check hardware for possible read error, and to check against software

malfunctions. (A failure to match NAME and EXT results in the message "INCORRECT RETRIEVAL

INFORMATION".)

DATEl - In format of DATE UUO; date file last referenced (RENAME, or ENTER, or INPUT done).

(Bits 24-35)

5-28

DATE2

PROT.

M

TIME

SIZE

- Same format as DAT El; date file originally created (ENTER) (bits 24-35).

- Protection; see below (bits 0-8).

- Data Mode (ASCII, Binary, Dump, etc.) (bits 9-12).

- 24-hour time (in minutes) that file was originally created (bits 13-23).

- If negative, this portion indicates the number of words in the file, where al I blocks with

the possible exception of the last are assumed to contain a full 200
8

words. If positive,

this is a count of the number of 200
8

-word blocks contained in the file. For files of less

than 2
17

words, the negative word count is used; for larger files, the positive block count

is used instead.

NUMBER - Programmer Number.

SUM l,
••• SUMn

ADRl I

••• ADRn

- Checksum; two's complement, end-around-carry, sum of data in data-block whose disk

address is ADR l.

- Address of data block (logical block number on disk).

Protection

The first nine bits of the third word of a file's retrieval information are used to specify the

protection of the file. This is a necessary procedure since the disk is shared by many users, who may

each desire to keep certain files from being written over, read, or deleted by other users.

The total number of users is divided into three categories:

a. Owner of file; (person whose programmer number is the same as that in the right half of

the NAME field of the UFD in which the file is entered).

b. Project members; (users whose project number is the same as that in the left half of the

NAME field of the UFD in which the file is entered).

c. All other users.

There are three types of protection against each of the three categories of users:

(l) Protection - The protection itself cannot be altered.

(2) Read protection - The file may not be read.

(3) Write Protection - The file may not be rewritten, renamed, or deleted.

The protection mask (see above) consists of the first nine bits of the third word of retrieval

information; each bit (when on) represents a particular type of protection against a specific category of

user, according to the fol lowing scheme. However, owner protection-protection and owner read­

protection are ignored lest the file become totally inaccessible.

5-29

OWNER PROJECT OTHERS

0

LOCH 2 I I I I 9

t r t r r , r r , :::, :.:~::~:::
~-----'-----------'------- PROTECTION PROTECTION

All files created with an ENTER are given the protection, 055
8

by the Monitor; if some other

protection mask is desired, the RENAME UUO must be employed by the user. (Also see Section

4 .4 .2 .5, 11Fi le Protection 11
.)

5. 9. 3 User Programming for the Disk

5. 9. 3. l Format - The actual file structure of the disk is generally transparent to the user. In pro­

gramming for input/output on the disk, a format analogous to that of DECtapes is used; that is, the user

assumes a 4-word directory entry similar in form to the first four words of retrieval information. The

UUO format is approximately the same as for DECtapes:

UUO D, E

Where UUO is an input/output programmed operator and D specifies the user channel associated with

this device. E points to a 4-word directory entry in the user's program which has the following format:

E NAME

E+ 1 EXT

E+2 PROT

E+3

DATE1

DATE2

OR I -WORD COUNT I 0

(Note that E+3 differs from the fourth word of retrieval information)
(See Retrieval Information, Paragraph 5.8.2.4 for description)

5. 9. 3 .2 Special Functions of Programmed Operators (UUO's) -

ENTER D,E
error return

Causes the Monitor to store away the 4-word directory entry for later entry into the

proper UFD when user channel D is CLOSEd or RELEASed.

NAME - The filename must be non-zero, if not, an error return resu Its.

5-30

LOOKUP D, E
error return

EXT - The file extension may be zero; if so, the Monitor will leave it zero.

DAT El - The correct date is always filled in by the Monitor.

PROT - The protection is always supplied by the Monitor as 055. The RENAME may

be used to change protection after file has been completely written and a CLOSE

done.

M - The data mode is supplied by the Monitor as set by the user in the last INIT,

or SETSTS UUO on channel D.

TIME, DATE2 - If both of these are 0, the Monitor supplies the current date and

time as the creation date and time for the file. If either is non-zero, the Monitor

will use the TIME and DATE2 supplied by the user in E+2; thus files may be copied

without changing the original creation time and date.

PROJECT-NUMBER, PROGRAMMER-NUMBER - If both of these are 0, the project­

number and programmer-number (binary) under which the user is logged-in is sup­

plied by the Monitor. Otherwise the Monitor will use the project-number and

programmer-number supplied by the user in E+3, however, it is generally not

possible to create (ENTER) files in another user's area of the disk, since UFDs are

usually write-protected against all but the owner.

With certain types of error returns peculiar to the disk, the right half of E+l is set

to a specific number to indicate which type of error caused the return. These num­

bers have the following significance:

0 - E contained a zero file name

1 - E+3 contained an incorrect (or nonexistent) project-programmer number.

2 - File already exists, but is write-protected.

3 - Fi le was being created, recreated, updated, or renamed.

No user, except an administrator with project number l, may create a UFD, since

the MFD is universally write-protected. The LOGIN CUSP (running under the ad­

ministrator project number) creates a UFD for any user the first time he logs into

the system.

When an ENTER is executed by the Monitor on a file that already exists, a new file

by that name is written, and those bits in the SAT blocks that correspond to the

blocks of the old file are zeroed when the CLOSE (or RELEASE) UUO is executed

thereby retrieving space and making it available to any other user.

Causes the Monitor to read the appropriate UFD. If a later version of the file is

beinQ written, the old version pointed to by the UFD will be read.

5-31

RENAMED, E
error return

USETO D, A

USETI D, A

NAME - The filename in SIXBIT

EXT - The file extension in SIXBIT. A zero extension is not treated in any special

manner.

DATEl, PROT, M, TIME, DATE2 are ignored. The Monitor returns these quantities

to the user in E+ 1 and E+2.

PROJECT-NUMBER, PROGRAMMER-NUMBER - If both of these are 0, the project­

number and programmer-number (binary) under which the user is logged-in is supplied

by the Monitor. Otherwise the Monitor wi 11 use the project-number, programmer­

number supplied by the user in E+3. Thus, it is possible to read files in other user's

directories, provided that the file's protection mask permits reading. The Monitor

returns the negative word count (or positive block count for large files) in the LH

of E+3, 0 in RH of E+3.

The numbers placed by the Monitor in the right half of E+ 1 upon an error return

have a significance analogous to that described for the ENTER UUO:

0 - Fi le was not found

l - Incorrect project-programmer number in E+3

2 - Protection failure

3 - File was being created (no earlier version existed).

If the file is currently being recreated, the old file is used.

This programmed operator is used to alter the name, extension, and/or protection of

a file or to delete a file from the disk. Locations E through E+3 are as described

above. RENAME is the only UUO that can set the protection of a file to that speci­

fied in E+2. To be RENAMEd a file must first be CLOSEd on channel D, in order

to identify for the RENAME UUO. RENAME then seeks out th is file and enters the

information specified in E through E+2 into the retrieval information and proper

directory. If the contents of Eis zero, RENAME has the effect of deleting the file.

The error return numbers in the right half of E+ 1 are the same as for ENTER, with

the added possibilities:

4 - Tried to RENAME file to already-existing name.

5 - Neither LOOKUP nor ENTER has been done to identify the file to be

renamed.

These programmed operators are treated identically by the disk service routines.

Their function is to notify the service routine that a particular block is to be used

on the next INPUT or OUTPUT on channel D. A is a number that designates a

5-32

particular block relative to the beginning of the file. If A is greater than the cur­

rent size of the file (in blocks), the next OUTPUT wi 11 write a block immediately

after the file; the next INPUT will cause the end-of-file flag to be set. A=l refers

to the first block of the file (i. e., block 0).

If A= 0 or if no previous LOOKUP or ENTER has been done, this UUO will set

the improper mode error bit (see bit 18, Table 4-4, and Section 4.4.4).

5.9.3.3 General Notes - Three types of "writing" on the disk may be distinguished. If a user does

an ENTER with a filename which did not previously exist in his UFD, he is said to be "creating 11 that

file. If the filename did previously exist in his UFD, he is said to be superceding that file; the old

version of the file stays on the disk (and is available to anyone who wants to read it) until the user does

the output CLOSE (at this point, his UFD is changed to point to the new version of the file and the old

version is either deleted immediately or marked for deletion later if someone is currently reading it; the

space occupied by deleted files is always reclaimed in the SAT tables - see Section 5.8.2.2). Finally,

if a user does a LOOKUP followed by an ENTER (the order is important) on the same filename on the

same user channel, he wi II be able to modify selected blocks of that file, using USETO and USETI UUOs,

without creating an entirely new version of it; this third type of writing is called "updating" and elim­

inates the need to copy a file when making only a small number of changes.

As a standard practice, user programs should read, create, and supercede (new file with same

filename) files on different user channels. However, for compatibility with DECtapes, it is possible to

read and create, or read and supercede, two files on the same user channel as long as all OUTPUTs and

the CLOSE output are done before the LOOKUP and the first input, or vice versa. In other words, a

CLOSE UUO is required between successive LOOKUPs and ENTERs unless updating is intended.

When issuing a RENAME UUO, the user must insure that the status at locations E through

E+3 are as he desires them to be. Since an ENTER or LOOKUP, as well as CLOSE, must have preceded

the RENAME; the contents of E through E+3 wi 11 have been altered, or fi I led if the E is the same for

all UUO's.

CALL [SIXBIT/RESET/J - Any files which are in the process of being written, but

have not be CLOSEd or RELEASed, wi II be deleted and the space rec I aimed. If a

previous version of the file with the same name and extension existed, it wi II re­

main on the disk (and in the UFD) unchanged.

If the programmer wants to retain the newly created file and have the older version

deleted, he must CLOSE or RELEASE the file before doing a RESET UUO.

5-33

5. 10 INCREMENTAL PLOTTER

Device Mnemonic - PLT

Buffer Size - 43 (octal) words

5. 10. l The plotter takes 6-bit characters with the bits of each character decoded as follows:

-X +X +Y -Y
Pen Pen Drum Drum Carr- Carr-

Raise Lower Up Down iage iage
Left Right

Do not combine pen raise or lower with any of the position functions. (For more detai Is on

the incremental plotter, see the PDP-10 System Reference Manual, DEC-10-HGAA-D.)

5.10.2 Data Modes

5. 10. 2. l A (ASCII) Five, 7-bit characters per word are transmitted to the plotter exactly

as they appear in the buffer. Since the plotter is a 6-bit device,

the leftmost bit of each character is ignored.

5. 10. 2. 2 AL (ASCII LINE) This mode is identical to the A mode.·

5. 10.2.3 I (IMAGE) Six, 6-bit characters per word are transmitted to the plotter exactly

as they appear in the buffer.

5. 10. 2.4 B (BINARY) This mode is identical to the I mode.

5. 10. 2. 5 IB (IMAGE BINARY) This mode is identical to the I mode.

5.10.2.6 DR (DUMP RECORDS) Not available.

5. 10.2.7 D (DUMP) Not available.

5-34

5. 10. 3 The first OUTPUT operator causes the plotter pen to be lifted from the paper before any user

data is sent to the plotter. The CLOSE operator causes the plotter pen to be I ifted after all user data is

sent to the plotter. These two pen-up commands are the only modifications the monitor makes to the

user output fi I e •

5. 11 DISPLAY WITH LIGHT PEN (TYPE 30 and TYPE 340)

Device Mnemonic - DIS

Buffer Size - None (uses device-dependent dump mode only - 15)

5.11.l Data Words

5. 11. 1. l ID (Image Dump - 15)

An arbitrary length area in the user area may be displayed on the scope. The command list

format is as described in Chapter 4, "Unbuffered (Dump) Modes, 11 with the addition for the Type 30

display, that, if RH = 0, and LH -J 0, then LH specifies the intensity for the fol lowing data (4 to 13).

5.11.2 Background

The purpose of the monitor service routine for the VR-30 is to maintain a flicker-free picture

on the display during time-sharing. To do this, the picture data must be available for display at least

every two jiffies. This necessitates that the display data remain in core. At present, this means that

the user program must also remain in core. To minimize swapping of other programs and to make avail­

able a larger block of free core for other users, the user program is shuffled toward the top of core be­

tween pictures.

5.11.3 Display UUO 's

The input/output UUO 1s for hoth displays operate as fol lows:

INIT D, 15
SIXBIT /DIS/
0
ERROR RETURN
NORMAL RETURN

CLOSE D,
or

RELEAS D,

;MODE 15 ONLY
;DEVICE NAME
; NO BUFFERS USED
;DISPLAY NOT AVAILABLE

;STOPS DISPLAY AND
;RELEASES DEVICE AS
;DESCRIBED IN MANUAL

5-35

5.11.3. l

5. 11.3.2

INPUT D, ADR

If a light pen hit has been detected since the last INPUT command, then C(ADR) is set to the

location of last light pen hit.

If no light pen hit has been detected since last INPUT command, then C(ADR) is set to -1.

OUTPUT DI ADR

ADR specifies the first. address of a table of pointers. This table is composed of pointers

with the following format:

0 17 18 35

LH RH

For the VR-30 Display:

If LH = 0 and RH= 0, then this is the end of the command list.

If LH I 0 and RH = 0, then LH is the desired intensity for the fol lowing data or
commands. The intensity ranges from 4 to 13, where 4 is
the dimmest and 13 is the brightest.

If LH = 0 and RH I 0, then RH is the address of the next pointer. Successive pointers
are interpreted beginning. at RH.

If LH I 0 and RH I 0, then -LH words beginning at address RH+ l are output as data to
the display. The format of the data word is the following:

0 7 8 17 18 25 26 35

y-coord x-coord

For the 340 Display:

If RH = 0, then this is the end of the command list.

If LH = 0 and RH I 0, then RH is the address of the next pointer. Successive pointers
are interpreted beginning at RH.

If LH I 0 and RH I 0, then -LH words beginning at address RH+ 1 are output as data to
the display. The format of the data word is described in the
340 programming manual.

An example of a valid pointer list for the VR-30 Display is:

LIST:

OUTPUT

')0ND

IOWD
IOWD

D, LIST

5, 0
1, A
5, SUB Pl

5-36

;OUTPUT DATA
;POINTED TO BY LIST
;INTENSITY 5 (DIM)
;PLOT A
; PLOT SUBPICTURE l

'JN/D 13,0 ;INTENSITY 13 (BRIGHT)
IOWD 1 ,C ;PLOT C
IOWD 2,SUBP2 ;PLOT SUBPICTURE 2
'JN/D o ,usn ;TRANSFER TO LIST 1

LISTl: 'JN/D 10,0 ;INTENSITY 10 (NORMAL)
IOWD 1,B ;PLOT B
IOWD 1, D ;PLOT D
'JN/D 0,0 ;END OF COMMAND LIST

A: 'JN/D 6,6 ;Y = 6, x = 6
B: XWD 70 I 105 ;Y = 70, x = 105
C: XWD 105,70 ;Y = 105, x = 70
D: XWD 1000,200 ;Y = 1000, X = 200

SUBPl: BLOCK 5 ;SUBPICTURE l
SUBP2: BLOCK 2 ;SUBPICTURE 2

An example of a valid pointer list for the 340 Display is:

OUTPUT DI LIST ;OUTPUT DATA POINTED
;TO BY POINTER IN LIST

LIST: IOWD 1,A ;SET STARTING POINT TO (6,6)
IOWD 5, SUBPl ; DRAW A CIRCLE
IOWD l ,C ;SET STARTING POINT TO (70, 105)
IOWD 5 ,SUBPl ;DRAW A CIRCLE
IOWD l,B ;SET STARTING POINT TO (105, 70)
IOWD 2,SUBP2 ;DRAW A TRIANGLE
XWD 0 I LISTl ;TRANSFER TO LISTl

LISTl: IOWD 1, D ;SET STARTING POINT TO (1000, -200)
IOWD 5 I SUB Pl ;DRAW A CIRCLE
IOWD l ,A ;SET STARTING POINT TO (6,6)
IOWD 2, SUBP2 ;DRAW A TRIANGLE
XWD 0,0 ;STOP

A: X=6 Y=6
B: x = 105 y = 70
C: X= 70 y = 105
D: x = 1000 y = -200

SUBPl: BLOCK 5 ; DRAW A CIRCLE
SUBP2: BLOCK 2 ;DRAW A TRIANGLE

The example shows the flexibi I ity of th is format. The user can display a subpicture by merely

setting up a pointer to it. He can also display the same subpicture in many different places by setting

up pointers to the subpicture, each preceded by a pointer to commands for the display to reset its

coordinates.

5. 12 CALL AC, [SIXBIT/DEVCHR/J or CALLI AC, 4

The user may determine the physical characteristics associated with a logical device name

5-37

by executing a DEVCHR UUO. The DEVCHR UUO returns the following information in. the AC referred.

(AC)L:

(AC)R:

2'

4

10

20

40

100

200

400

1000

2000

4000

10000

20000

40000

100000

200000

400000

400000

200000

Device can do output

Device can do input

Device has a directory (DT A or DSK)

Device is a TTY

Device is a magnetic tape

Device is available to this job or is already assigned to this job

Device is a DECtape

Device is a paper tape reader

Device is a paper tape punch

Device has a long dispatch table (that is, UUO's other than INPUT,
OUTPUT, CLOSE, and RELEASE perform real actions)

Device is a display

TTY in use as an 1/0 device

TTY in use as a user console (even if detached)

TTY attached to a job

Device is a line printer

Device is a card reader

Device is a disk

DECtape directory is in core (this bit is cleared by an ASSIGN or DEASSIGN
command to that unit)

Device assigned by a console command

Device assigned by program (INIT UUO)

Remaining Bits: If bit 35-n contains a 1, then mode n is legal for the device.

NOTE

The mode number (O through 17) must be converted to dee i­
ma I; for examp I e, mode 17

8
is represented by bit 35- 1510

or bit 20.

5-38

APPENDIX l

DECtape Compatibility Between DEC Computers

Written

By \

~

Read~---?>-
By

PDP-4

PDP-5

PDP-6

PDP-7

PDP-8
552
PDP-8
TCOl
PDP-8/1

PDP-9

PDP-10

A = Can be done

PDP
4

550&
555
TU55

PDP PDP
5 6

552& 551&
555 555&
TU55 TU55

PDP PDP PDP
7 8 8

550& 552& TCOl
555 555 &
TU55 TU55 TU55

A A

I
B =Can not be done because of difference in writing checksum ,

C = Can be done with programmed checksum

\Y' '

PDP PDP

8/1 9
TCOl TCOl

& &
TU55 TU55

A A

A A

A

A A

D =Can probably be done as in (C) except that PDP-4 is too slow for calculating the
exclusive or checksum in line - this must be done before writing.

NOTE: PDP-10 will not allow search to find first or last blocks when searching from the
end-zon~-

~

A 1-1

TD to

\\
\

)

APPENDIX 2

Size of Multiprogramming non-disk Monitor (Reentrant 4 series, Version 50) June, 1969

There are three components to the Monitor:

1) Required code (4.7K)

2) Optional device code (0-4.4K)

3) Tables and buffers per job (73 words per job)

A. Required code (Assuming all features)

Lower core 96.

COMMON 409.

CLKCSS 82.

CLOCKl 367.

COMCON 1322.

COREl 182.

DLSINT 48.

ERRCON 214.

SCNSRF 1260.

SEGCON 602.

SYSINT 78.

UUOCON 1144.

4692. words (Deci ma I)

B. Optional devices Comp I ete system

DTA 1284. +N (1)*146. N(l) = 8 2612.

MTA 452. +N (2)*9. N(2) = 2 470.

PTY 176. +N(3)*10. N(3) = 2 196.

CDR 220. 220.

CDP 308. 308.

DIS 190. 190.

LPT 100. 100.

PLT 65. 65.

A2-1

Optional devices

PTP

PTR

167.

105.

Complete system

167.

105.

3067. +N(l)=l46.+N(2)*9.N(3)*10.

C. Tables and buffers

18. words of tables per job

55. word of TTY device data block space per job

73. words per job

Total for complete 8 user system= 4692. + 443. + 8. *73. = 9709.

4433.

WARNING: The Monitor will continue to grow despite our best efforts to prevent it.
Most new features are put in with conditional assembly so that a customer
can reduce this size of the Monitor by giving up some of the new features.

These sizes are subject to change without notice and should not be construed as a commitment

by Digital Equipment Corporation.

A2-2

APPENDIX 3

Size of Swapping Monitor (Reentrant 4 series, Version 50) June, 1969

There are three components to the Monitor:

l) Required code (l OK)

2) Optional device code (0-4K)

3) Tables and buffers per job (l K for every 8 jobs)

A. Required code (Assuming all features)

Lower core 96.

COMMON 475.

CLOCK l 376.

COMCON 1592.

COREl 214.

DLSINT 48.

DSKINT 130.

DSKSRB 2448.

ERRCON 211.

SCHEDB 741.

SCNSRF 1264.

SEGCON 709.

SYSINI 81.

UUOCON 1190.

10375. words (Decimal)

B. Optional devices Comp I ete system

DTA 1286. +N(l)*146. N(l) = 8 2454.

MTA 452. +N (2)*9. N(2) = 2 470.

PTY 166. +N(3)*10. N (3) = 2 196.

CDR 220. 220.

CDP 308. 308.

DIS 191. 191.

LPT 104. 104.

A3-l

Optional Devices

PLT

PTP

PTR

80.

167.

105.

Comp I ete system

80.

167.

105.

3089. +N(l)=l46.+N(2)*9.+N(3)*10. 4295.

C. Tables and buffers

21. words of tables per job

54. words of DSK device data block space per job

(1.5 files/job)

55. word of TTY device data block space per job

130. words per job

Total for complete 16 user system= 10375. + 3987. + 16. *130. = 16442.

WARNING: The Monitor will continue to grow despite our best efforts to prevent it.
Most new features are put in with conditional assembly so that a customer
can reduce this size of the Monitor by giving up some of the new features.

For a complete Swapping System (all devices):

8 JOBS 15.7K

16 JOBS 16.7K

24 JOBS 17.7K

32 JOBS 18.7K

40 JOBS 19.7K

48 JOBS 20.7K

56 JOBS 2l.7K

64 JOBS 22.7K

These sizes are subject to change without notice and should not be construed as a commitment

by Digital Equipment Corporation.

A3-2

ADDENDUM 1
Concise Command Language (CCL) for the PDP-10 Time-Sharing Monitors

l.

,, fO'J,1(~-s ~~~ ~ {_f;e ::J
/ i c~: ~ f!LfL

SCOPE u:-;;;
This document describes the use of the Concise Command Language 1 (CCL) features of the~ fl.v,, l ·.

PDP-10 Time-Sharing Systems. rn·.:
The discussion in this document assumes that the reader is at least slightly fami I iar with the

8f (
use of the PDP-10 Time-Sharing system. Each section begins with fairly simple concepts and progresses o·~'

toward more comp I ex cases •

It is assumed that the reader has some knowledge of the fol lowing PDP-10 CUSPs {Commonly

Used System Programs):

FORTRAN IV or MACRO l 0,

LOADER,

PIP, and either of the editing programs, TECO or
LINED (a version of EDITOR).

Detailed information of the implementation of the CCL system is also included in this document.

2. INTRODUCTION

The CCL {Concise Command Language) ~s+en: La3 bee11 added lo 1 l:e fi'Dfi' 10 =F-i111e S~eri~

Sple111 Willi Ille pfimdiy pu1pese e~ reduc~the amount of typing {both input and output), required for

a user to accomplish common tasks, such as the translation, loading, and execution of source language

programs. A secondary result is that routine operations can be performed more rapidly by using the

CCL system, since there is much less machine time spent waiting for type-in from the user. There are

fewer typing errors, since there is less type-in, and there is less to learn, for the beginning user, before

programs can successfully be run.

CCL commands are to all intents and purposes new Monitor commands as far as the user is

concerned. They are typed at the Monitor level.

The CCL system is implemented only for PDP-10 configurations containing a disk, and relies

heavily on temporary disk files {which can be ignored by the user).

At the same time, an attempt has been made to maintain within the CCL system much of the

generality of the more detailed use of the PDP-10 CUSPs. Much of this document is devoted to those

more complex uses of the CCL system.

1
COMPIL, the CCL control cusp, was developed by William F. Weiher, of the Artificial Intelligence
Project, Stanford University.

The beginning user can make good use of the CCL system without knowing al I of these detai Is,

as will be shown in the simple examples in Section 3.

3. SIMPLE EXAMPLES 1

Perhaps the best example of the simplicity of the use of the CCL system is the following:

Assume that a user has one, and only one, file on his disk area, a file called PROG .F4,

whose contents are:

TYPE lOOJ
100 FORMAT (1 HELLO I),;

ENDJ

This program can be compiled, loaded and executed by typing simply:

1) .EXECUTE PROGJ

The typeout wi II be:

FORTRAN: PROG
LOADING
LOADER 5K CORE
HELLO
EXIT
tC

Operations requiring PIP are also greatly simplified. To type out the contents of the above

file, one need only type:

2) ..:.. TYPE PROG . F4 J

To list one's disk directory, the command is:

3) ..:..DIRECT J

Si mi larly, to edit the text file above, the command

4) ..:..EDIT PROG. F4 ,J

will initialize the line editor to that file, or

5) ..:..TECO PROG. F4 J

wi II initialize TECO to that file.

1
Throughout this document, computer typeouts are indicated by underscoring, and the J

used to represent the RETURN key.

/\\~,,~ 2

symbol is

4.

4.1

4.1 .1

The equivalent commands for the previous examples without CCL are (type-in only):

l) . R F40J
* DSK: PROG~DSK: PROGJ
~tc
. R LOADERJ --­
~ /E PROG (ALTMODE)

2) • R PIPJ
~TTY: - DSK: PROG .f4J

3) . R PIP J
:: TTY: - DSK: /LJ

4)

5)

. R LINED.,;
~SPROG .F4J

.R TECO,;
*EBPROG .F4 (ALTMODE) y (ALTMODf) (ALTMODE)

COMMAND DESCRIPTION

COMPILE-Class Commands

General

This section describes the use of the following group of commands:

COMPILE, LOAD, EXECUTE, and DEBUG

The COMPILE command wi II be described first, then the other three commands wi II be

explained as extensions of COMPILE.

The argument of a COMPILE command is, in its simplest case, a filename or a list of file­

names. In more complex cases, there are many optional switches. While reading these sections the

reader should be careful to distinguish between "compile-switches", 11 processor-switches 11
, and 11 loader­

switches11. They wi II be distinctly separated by these names.

4.1 .2 The COMPILE Process

4.1 .2. l General - The purpose of the COMPILE command is to produce one or a group of relocatable

binary files, representing the specified program(s). This process may require the use of the MACRO

assemb !er, or of the FORTRAN compi !er, or both. (Other translators may be added to this list in the

future). If the list of programs is extensive, there may be both source and binary versions of some

programs, and some of them may not require recompilation while others may. The COMPIL program

3

makes these decisions and directs the compilations and assemblies, according to the rules and commands

which wi II be described here.

4.1.2.2 Program Names - A file on the PDP-10 disk is identified by a filename of up to six

characters, and a filename extension of up to three characters. Associated with each such file is a

creation date and ti me. (DECtape files have a date, but no time). Certain file extensions imply

particular forms of programs:

Extension

.MAC

.F4

.REL

.SAY
blank

Meaning

MACRO language source file
FORTRAN IV source file
RE Locatable binary file
Core dump, from SAVE command
Source file, unspecified language

The compile process uses these extensions and dates to direct the compilations.

4. l .2. 3 COMPILING a Program - The command

..:_COMPILE FI LE J

causes the fol lowing actions:

1) Determine whether a file named FI LE. REL exists, and if so determine its date and time.

2) Determine whether a source file exists by the name FILE (with a null extension) or
failing that) by the names FILE .MAC or FILE .F4.

3) If there is a source file, and its date and ti me are at least as recent as those of the
.REL file (if any), then have it translated to a .REL file. Select the correct translator as follows:

If the source is .MAC, use MACRO.
If the source is . F4, use FORTRAN IV.
If the source has another extension (or a nul I extension), use the "standard processor. 11

The 11standard processor" is FORTRAN IV at the beginning of each command, but may
be changed by the use of COMPILE switches (see below).
Ambiguity of processors can most easily be avoided by always using the conventional
extensions of . MAC or . F4 for source files.

Input files may appear on devices other than the disk, if so specified, or on disk areas

belonging to other users. Output files, both binary and listing (see below), wi 11 be placed on the

user's disk area. The user's own area wi 11 be searched for . REL files during the process of checking

for the most recent . REL file. For example, if the user is logged in as [20,20], and the command

..:. COMPILE PROG [30 ,30] J

4

is executed, both PROG. REL [30 ,30] and PROG. REL [20 ,20] wi II be searched for before compiling

the source file. If a compilation does occur, the output will be PROG.REL [20,20].

4. 1 .2 .4 Lists of Programs - The argument of the COMPILE command may be a string of program names,

separated by commas. Programs in both FORTRAN and MACRO languages may be mixed in such a list.

For example, if the user had files named A.MAC, B.F4 and C.MAC, then either of the following

commands would cause the three programs to be translated, by the proper translator:

1) .:_COMPILE A.MAC, B.F4, C.MAC,;

or more simply,

2) .:_COMPILE A, B, CJ

4 .1 .2 .5 COMPILE Switches - The COMPILE-class commands may be modified by a number of switches.

These switches are words preceded by slashes (11
/

11
), as opposed to letters preceded by slashes more

commonly found in other command strings. The switches are delimited by any non-alphanumeric

character, usually space or comma. The names of the switches may be abbreviated to the first letter

or letters, provided that the abbreviation uniquely identifies a particular switch.

Compile-switches may be either 11 temporary 11 or 11 permanent 11
• A temporary switch is

appended to the end of a filename, without an intervening space, and has effect only on the processing

of that file. Example:

.:_COMPILE A,B/SWITCH ,CJ

In this case, the action implied by 11SWITCH 11 would be applied only to file B.

A permanent switch is set off from filenames by a space or comma. It takes effect on all

following files, unless modified by another, later switch. Example:

.:_COMPILE A,/SWITCH B,CJ

Here, 11SWITCH 11 applies to both file Band file C.

Specific compile-switches wi 11 be discussed in the fol lowing sections. Some are relevant

only to the LOAD, EXECUTE, and DEBUG commands, and will be discussed in those sections.

4.1 .2 .6 Compilation Listings - Listing files may be generated by use of switches. The listings may

be of the ordinary or the cross-reference type.

The compile-switches 11 LIST 11 and 11 NOLIST 11 cause listing and non-listing of programs.

These switches may be used as either temporary or permanent switches:

.:_COMP_ILE /LIST A,B,CJ

5

wi II generate Ii stings of a II three programs .

.:.COMPILE A/LIST, B,C J

wi II generate a listing only of program A .

.:.COMPILE /LIST A, B/NOLIST, CJ

wi II generate listings of programs A and C.

The compile-switch 11 CREF 11 is just like 11 LIST 11
, except that a cross-reference listing is

generated, which must be processed by the program 11 CREF 11
•

In either case, the result of the listing is a disk file, with the extension . LST, which must

be listed later. (See the 11 LIST 11 and 11 CREF 11 commands).

Since the 11 LIST 11
,

11 NOLIST 11
, and 11 CREF 11 switches are so commonly used, the switches

11 L11
,

11 N 11
, and 11 C 11 are defined with the corresponding meanings, even though there are (for instance)

other switches beginning with the letter 11 L11
• Thus the command

.:.COMPILE /L AJ

produces a listing file 11A.LST 11 {as well as, of course, 11A.REL 11
).

4. 1 .2. 7 The "Standard Processor" - The "standard processor 11 is used to compile or assemble programs

which do not have the extensions .MAC, .F4, or .REL. There are a number of switches for setting the

"standard processor". It should be emphasized here, however, that this subject can be disregarded if

all source files are kept with the appropriate extensions.

If the command

.:.COMPILE AJ

is executed, and there is a file named 11 A. 11
, that is, with a blank extension, then 11A. 11 will be

translated to 11A .REL11 by the "standard processor". Similarly, if the command

.:. COMPILE FILE. NEWJ

is executed, the extension 11 .NEW 11
, although meaningful to the user, does not specify a language,

so the "standard processor" wil I be used. For these cases the user must be able to control the setting

of the 11standard 11
•

The "standard processor" is FORTRAN IV at the beginning of each COMPILE-class command.

The "standard processor" may be changed by the fol lowing compile-switches:

6

MACRO
M
FORTRAN
F
REL

change standard to MACRO
same as MACRO
change standard to FORTRAN IV
same as FORTRAN
change standard to use RELocatable binary; i.e.,
use existing . REL files, even though a newer
source file may be present. (Useful primarily
in LOAD, EXECUTE, DEBUG commands).

These switches may be used as 11 temporary 11 or 11 permanent 11
• For example, assume that

programs A, B, and C exist on the disk, with blank extensions. Then

..:.. COMPILE A, B/M, C,;

wi 11 cause A and C to be translated by FORTRAN, B by MACRO .

..:.. COMPILE A, /MB, CJ

wi 11 cause A to be translated by FORTRAN, B and C by MACRO.

NOTE

Programs with .MAC and .F4 extensions are always translated
by the extension implied processor, regardless of the "standard
processor. 11

4.1 .2 .8 Forced Compilation - It was stated earlier that the compilation (or assembly) occurs if the

source file is at least as recent as the relocatable binary file. If the binary is newer than the source,

there is not norma I ly any need to perform the translation.

There are cases, however, where such extra translation may be desirable, as for instance,

when one desires a listing of the assembly. To force such an assembly, the switch "COMPILE 11 is

provided, again in both temporary and permanent form. For example:

.COMPILE /CREF /COMPILE A, B, CJ

wi 11 create cross-reference listing files A. LST, B. LST, and C. LST, even though current . REL files may

exist. In fact, the binary files will als.o be recreated.

The corresponding switch 11 NOCOMPILE 11 is also provided, to turn off the forced-compile

mode. Note that this differs from the /REL switch which turns off even the normal compilation caused

by a source file newer than the .REL file.

7

4 .1 .3 LOAD Commands

4 .1 .3. l Genera I - The LOAD command is an extension of the COMPILE command. It takes as its

argument the same sort of list of program names and switches as does the COMPILE command, with the

addition of some further optional switches, to be described below.

The first action of the LOAD command is to invoke the COMPILE process, as described in

Section 4.1.2. That is, the program names are checked for the existence of source and binary files,

and assemblies and compilations are performed as required by the dates and times of the files and by

the compile-switches in the command.

The second action of the LOAD command is the running of the LOADER, and the loading

of the .REL files specified in the LOAD command.

Various loader actions can be directed by means of switches to be described below.

At the end of loading, the LOADER EXITs to the Monitor.

4. l .3 .2 Compile-Switches for the LOAD Process

4 .1 .3 .2. l Library Searches - The LOADER normally performs a library search of the FORTRAN library.

Sometimes it is necessary to search other files as libraries. To do this, the compile-switches 11 LIBRARY 11

and (its complement) 11 NOSEARCH 11 are provided.

These switches may be used as either 11 permanent 11 or "temporary" (review Section 4.1 .2 .5).

For example, suppose a special library file named SPCLIB .REL were kept on device SYS at

a particular installation. Then to compile and load a user program, library search the special library,

and then search the norma I FORTRAN library, the fol lowing command could be used:

.:.LOAD MAIN ,SYS: SPCLIB/LIB J

At this point, it should be noted that the program SPCLIB is not assembled simply because its source

file is presumably not on device SYS. The COMPILE process will compile any program named in the

command string, if its source is present and not older than the .REL file, unless prevented by the

/REL switch.

4 .1 .3 .2 .2 Loader Maps - Loader maps are produced during the loading process by the compile-switch

11 MAP 11
• When this switch is encountered, a loader map is requested from the Loader. The map will

be written with filename MAP .MAP, in the user's disk area.

This compile-switch is the one exception to the "permanent compile-switch 11 rule, in that

it causes only one map to be output, even though it may appear as a permanent switch.

8

4.1 .3.3 Loader-Switches in a CCL Command - In unusually complex loading processes, it may be

necessary to pass loader-switches to the LOADER to direct its operation. The most common examples

are: loading with symbols (loader-switch /S), setting a program origin (loader-switch /no), causing

an early search of the FORTRAN library (loader-switch /F), or preventing the library search (Ioader­

switch /P).

These switches must be passed to the LOADER, but not to the assembler or compi fer. This

is accomplished by the% character. The syntax of% is the same as that of 11
/

11 in the Loader's

command string; that is it takes one letter following it, or a sequence of digits and one letter. Thus

to set a program origin of 6000 for program C, one might type:

..:.LOAD A, B, %60000C, DJ

The relation between loader-switches and filenames is maintained, so that, for instance

4 .1 .4 EXECUTE Command

%SFILE
FILE%S

is passed as /SFILE while
is passed as FI LE/S

(These have different meanings to the LOADER.)

4.1.4. l General - The EXECUTE command is a further extension of the COMPILE-class commands.

It causes a II of the actions of the LOAD command, and takes the same arguments. In addition, however,

the EXECUTE command causes the LOADER to begin execution of the program at its starting address at

the completion of loading. Thus, in one command, the CCL system proceeds from compilation of the

source files, through the loading process, and into execution of the program.

4.1 .4.2 Error Comment - The assembler, compiler, and LOADER keep a count of errors encountered

during their operation. If an EXECUTE command encounters any errors, the loading wi 11 occur, but

the message "EXECUTION DELETED 11 wi II be printed, and the LOADER wi II EXIT to the Monitor with­

out starting the program.

4 .1 .5 DEBUG Command

The DEBUG command is nearly identica I to the EXECUTE command. It takes the same

arguments and switches as both EXECUTE and LOAD, and invokes the COMPILE and LOAD processes

as previously described. The one difference is that loading is begun with the 11/T 11 switch to the Loader.

That is, the debugging program DDT is loaded as the first program, subsequent programs are loaded

with local symbols, and DDT is entered at the completion of loading (rather than either an EXIT or START

operation) .

9

4.1 .6 Remembered Arguments

Each ti me a COMPILE-class CCL command is performed, it is 11remembered 11 as a file on the

disk, so that its arguments may be re-used by a later COMPILE-class command. If a COMPILE-class

command is executed with no argument, the previous argument wi II be reca lied and substituted into

the command .

For example, suppose that the following command is performed:

..:..EXECUTE A, B, CJ

and that a syntax error is found while compiling program C, so that the execution is deleted. The

user should edit program C, and then type simply

The system wi II recall the arguments (A, B, C), recompile program C, and then load and execute the

three programs.

If the use of DDT seems required, the command

would also recall the necessary arguments.

4.2 EDIT-Class Commands

4.2 .1 General

These commands call in the PDP-10 editing programs, and cause them to open a specified

text file for editing. There are four of these commands; two address TECO, and two address LINED

(a disk-oriented version of EDITOR). For each editor, one command causes an existing file to be

opened for changes, and the other causes a new file to be created. Each command requires as its

argument a filename, with an (optional) extension. This file-name may be implied (see below,

Section 4 .2 .4).

4.2.2 LINED Commands

4.2.2. l EDIT Command - This command causes LINED to open a file for modifications. The file

must already exist, and be a sequence-numbered text file. Example:

..:..EDIT NAME .MAC J

10

This is equivalent to:

. R LINED J
:SNAME .MAC J

4 .2 .2 .2 CREATE Command - This command causes LINED to open a new file for creation. Example:

..:.CREATE NAME .F4,_.,

This is equivalent to:

.R LINED J
*SNAME .F4 (ALT MODE)

4.2 .3 TECO Commands

4 .2 .3. l TECO Command - This causes TECO to open a file for modifications. The file must a I ready

exist. Example:

..:.TECO NAME .MAC,i

This is equivalent to:

. R TECO ,J
*EBNAME.MAC (ALTMODE) Y (ALTMODE) (ALTMODE)

4.2.3.2 MAKE Command - This command causes TECO to open a file for creation. Example:

..:. MAKE NAME . F4 ,J

This is equivalent to:

..:.R TEco,

*EWNAME .F4 (ALT MODE) (ALTMODE)

4.2.4 Implied EDIT-Files

Each time an EDIT-class CCL command is performed, it is 11remembered 11 as a file on the

disk, so that the filename last edited may be recalled for the next edit. For example, if the command

..:.CREATE PROG l .MAC J

is performed, then later in the operating session, the command

11

may be used in place of

..:.EDIT PROG l .MAC J

assuming no other EDIT-class command was used in the interim.

4.3 PIP-Class Commands

These commands use PIP. and CREF to perform common file-handling operations, with new

abbreviated commands.

4.3. l TYPE Command

The TYPE command causes PIP to type the contents of a file, or files, on the user's

Teletype. For example, the command

..:.TYPE FILE l. F4 J

wi II cause the program FILE 1 • F4 on the disk to be printed.

The TYPE command also accepts a list of filenames, or the 11wi ld 11 filename 11 *11
• Filenames

may include device names and project-programmer numbers. For example

..:.TYPE DTA l :A .F4,DSK:B .MAC,*. DAT,/

will cause typing, in sequence, of file A.F4 from DECtape l, then B.MAC from the disk and finally

a II disk files with the extension DAT.

4.3.2 LIST Command

The LIST command is exactly the same as the TYPE command (4.3. 1) except that the named

files are listed on the line-printer (device LPT) instead of the user's console (device TTY).

4 .3 .3 DIRECTORY Command

4 .3 .3. l Genera I - The DIRECTORY command produces a directory listing of the user's disk files,

listed on the Teletype. If a device name is supplied, with an optional colon, the directory of that

device wi 11 be listed. For example, either

.DIRECT DTAl: ,J or
~DIRECT DTA 1 J

wi 11 produce a directory listing of DECtape l .

12

4 .3 .3 .2 DIRECTORY Switches - The DIRECTORY command accepts two optional switches, which

may appear either before or after the device name.

4 .3 .3 .2. l /F Switch - The /F switch causes the short form of the directory to be listed (omitting dates).

Example:

..:..DIRECT/F J

4 .3 .3 .2 .2/L Switch - The /L switch causes the listing to be sent to the LPT. For example,

..:.DIRECT SYS:/L)

lists the system directory on the line printer.

4.3.4 DELETE Command

The DELETE command may be used to delete a file or files from the disk or a DECtape. The

argument of DELETE is a list of filenames, which may include device names. If no device is supplied,

DSK is assumed. The 11wild 11 filename 11 *11 is allowed.

Examples:

..:.DELETE ABC .MAC (deletes DSK:ABC .MAC)

..:.DELETE DTAl :ABC .MAC,DEF .MACJ
(deletes two DECtape files)

. DELETE DTA l :A,B ,DSK:*. TMP J
- (deletes two DECtape files,

and a II . TMP files from the disk)

Note that a device name remains in effect until changed or until the end of the command.

Thus in the second example, DEF.MAC, and in the last example, B, are deleted from the DECtape.

4.3.5 REt-.lAME Command

The RENAME command changes the names of files on the disk or (if specified) on DECtapes.

The argument is a pair of filenames separated by an equals sign, or a list of such pairs, separated by

commas. The old filename appears at the right of the equa Is sign: the new name is at the left. If a

device name is included, it is specified with the new name, and remains in effect unti I explicitly

changed, or until the end of the command. The device is initially assumed to be the DSK.

13

Examples:

4.3.6 C REF Command

.RENAME NEW= OLDJ
~RENAME DTAl:NEWl .MAC= OLDl .MAC,N2 = 02,J
.RENAME* .MAC=* .XYZ,;
~RENAME DTAl :N = 0, DSK: N =OJ

The CREF command takes no arguments. It causes the CREF cross-reference program to be

run, and produces any cross-reference listings which have been generated by previous COMPILE-class

commands. The CREF program then deletes its file of listing names, so that subsequent CREF commands

wi II not produce these same listings again.

5. EXTENDED COMMAND FORMS

The commands described in the preceding section are sufficient for the compilation and

execution of one or a few programs at a time. By use of the extended forms of the CCL commands to

be described in this section, it becomes a simple task to assemble large groups of programs such as the

FORTRAN library or the Time-Sharing Monitor itself.

5 .1 Command Files

5 .1 .1 The@ File

When the number of program names and switches is large, it is desirable to place them in

a file rather than typing them in for each compilation. This is accomplished by the 11@file 11 construc­

tion. At any point in a CCL command, after the first word, the "@fi le 11 may appear, where "file"

may include a filename, extension, and project-programmer number. If the extension is blank, the

command file will be looked for with both the blank extension, and the extension 11 .CMD 11
• The

information in the command file is then "plugged in", replacing the characters "@file".

For example, if a file "DSK:NAMES .CMD" contains the following line,

/LIST A, BI c I DI E

then the command

..:..COMPILE /LIST A, B, c, DI E, F J

could be replaced by

..:.. COMPILE @NAMES I F .i

14

Command files may themselves contain the 11@ 11 construction, and this process may continue

to a depth of nine files. If this indirecting process should result in files pointing in a loop, the maximum

depth wi II rapidly be exceeded and an error message wi II be produced.

5.1 .2 Formatting within a Command File

In a very large command file, such as one used to assemble the Time-Sharing Monitor,

questions of format and commentary must be defined. The following rules describe the handling of

format characters in command files.

a. Except that they delimit words, spaces are ignored. Si mi larly, the characters TAB,
VTAB, and FORM are treated like spaces.

b. The characters CARRIAGE RETURN, LINE-FEED, and ALT MODE are ignored if the
first non-blank character after a sequence of returns, linefeeds and altmodes is a comma. Otherwise,
they are treated as commas by the COMPILE-class commands, and as command terminators by the EDIT
and PIP class commands.

c. Since strings of returns and linefeeds are considered together, blank lines are completely
ignored.

d. Comments may be inc I uded in command files by the use of a semi col on . A 11 text from
a semi col on through the following linefeed, inclusive, is ignored.

e. Command files may be sequenced. The sequence numbers are ignored.

5 .2 The 11 +11 Construction (COMPILE-class commands only)

In many cases, a sing le MACRO program may be produced from a collection of input files.

The most common case of this is the Time-Sharing system, where most files consist of a parameter file,

S .MAC, possibly a switch file such as FT50SB.MAC, and a file which is the body of the program,

such as AP RS ER. MAC. This is specified by the following command:

..:.COMPILE S+FT50SB+APRSER;

In this construction, the name given to the output files, . REL and . LST (if any), is that of the last of

the input files, i .e., AP RS ER in th is example.

The individual source files in the 11 +11 construction may each contain device, extension,

and project-programmer number information as well as a filename.

5 .3 The 11 = 11 Construction (COMPILE-class commands only)

Normally, the filename of the binary file is the same as that of the source file, with the

extension specifying the difference between them. It is sometimes desirable to suspend this convention,

and this can be done via the 11 = 11 construction, best shown by example: Suppose a source program is

15

named SOURCE. MAC, and a binary file is desired with the name BINARY. REL rather than SOURCE. REL.

The following command accomplishes this:

..:.COMPILE BINARY =SOURCE J

This same technique may be used to specify an output name to the file produced via the 11 +11 construc­

tion. To give the name WHOLE.REL to the binary produced by PARTl .MAC and PART2.MAC, type

the fol lowing:

..:.COMPILE WHOLE =PARTl +PART2J

5.4 The 11 < > 11 Construction (COMPILE-class commands only)

A further simplification can be introduced when a number of programs are to be assembled

with the same parameter file. To assemble the three monitor files LPTSER.MAC, PTPSER.MAC, and

PTRSER.MAC, each with the parameter file S.MAC, one could type

..:.COMPILE S + LPTSER,S +PTPSER,S +PTRSERJ

This can be simplified by the use of angle brackets, as follows:

..:.COMPILE S+<LPTSER,PTPSER,PTRSER>.1

It is not permissible to place a 11 +11 term after the angle brackets, such as:

..:.COMPILE <LPTSER,PTPSER,PTRSER>+S J

or

..:.COMPILE S+<LPTSER,PTPSER,PTRSER>+ FT50SBJ

5 .5 Processor Switches

The LIST and CREF operations are implemented by passing switches to the assembler and

compiler in their commands. It is occasionally necessary to pass other switches to these processors,

such as tape positioning commands. A mechanism is provided for this in the CCL system.

First, recall that for each translation (assembly or compilation) a command string is sent to

the translator, containing three parts: source files, binary output file, and listing file. The CCL

system passes these command strings to the processor without the user's being concerned with the detai Is.

However, if the user does wish to add switches to these files, the following technique may be used.

First, group the switches according to the three files, and according to each source file if

the 11 +11 construction is used .

16

Secondly, group the switches with commas and a pair of parentheses for each source filename,

as follows:

If only source switches are present, place them in parentheses:

(SSSS)

If binary switches are present, place them after the source switches and a comma:

(SSSS I BBBB)

If listing switches are present, place them after the binary switches and another comma:

(SSSS ,BBBB I LLLL)

Finally, place this parenthesized string immediately after the source-fl le name. For example,

to assemble the first two files on MTAO, naming the output files A and B, type

..:_COMPILE/MACRO A=MTAO: 0/11) ,B =MTAO:;

This wi II cause the following MACRO command strings to be generated:

6. IMPLEMENTATION

6.1 General

A .. MTA0:0/I/)
B .. MTAO:

The CCL system is implemented as a combination of additions to the Time-Sharing Monitor,

modifications to the PDP-10 cusps (MACRO, F40, PIP, TECO, LINED, LOADER and CREF), and a

new cusp (COMPIL) which deciphers the CCL commands and constructs commands for the cusps. These

commands are written as temporary files on the disk, as are the monitor-level commands. COMPIL

and the other cusps transfer control directly from one to another without requiring typed-in commands.

6.2 Temporary Files

This section describes the uses of the various temporary files, their names and their contents.

The first three characters of each filename are the job number of the controlling job, in decima I, with

leading zeroes to make three digits. The names listed here wi 11 assume job number one.

17

6 .2 .1 OOlSVC. TMP

This file contains the most recent COMPILE-class command which included arguments. It

is used to remember those arguments, as described in Section 4.1.6.

6.2.2 OOlEDS. TMP

This file contains the most recent EDIT-class command which included an argument. It is

used to remember that argument, as described in Section 4.2.4.

6.2.3 OOlMAC.TMP

This file contains commands to MACRO. It is written by COMPIL, and read by MACRO. It

contains one line for each program to be assembled, and (if required) the command

NAME!

to cause MACRO to transfer control to the named cusp {11 name 11 may be F40, LOADER, etc.).

6.2.4 OOlFOR.TMP

This file corresponds exactly to the one described in the preceding paragraph, except that

it is read by the FORTRAN IV compiler, F40.

6.2.5 001 PIP. TMP

This file is written by COMPIL and read by PIP. It contains ordinary PIP commands to

implement the DIRECTORY, LIST, TYPE, RENAME, and DELETE commands.

6.2.6 OOlCRE.TMP

This file is written by COMPIL and read by CREF. It contains commands to CREF correspond­

ing to each file which has produced a CREF listing on the disk.

COMPIL also reads this file, if it exists, each time a new CREF listing is generated, to

prevent multiple requests for the same file, and to prevent discarding other requests which may not

yet have been Ii sted •

The commands are of the form:

- PROGl
-PROG2

etc. That is, the default devices are assumed by CREF.

18

6.2.7

or TECO.

6.2.8

OOlEDT.TMP

This file is written by COMPIL for each EDIT-class command, and is read by either LINED

For the commands MAKE or CREATE, it contains the command

Sfile.ext (ALTMODE)

For the commands TECO or EDIT, it contains the command

Sfile .ext (RETURN) (LINEFEED)

Other Uses of these Files

These command files are read by the CUSPs when the CUSPs are started at C(JOBSA) + 1,

as described below. Thus it is possible to utilize this feature of the CUSPs without using COMPIL.

For example, the CCL system does not allow putting listings from the translators on any

device except the disk. Since this may be undesirable at times, one could place MACRO commands

in a file named OOlMAC.TMP, directing the listing files to a magnetic tape, and then have MACRO

read this file for its commands.

6 .3 The Run Process

The cusps have been modified to allow sequential running of cusps without user intervention,

and reading of commands from disk files. The command to run another program is

NAME!

This causes the program named NAME to be read from SYS, and started at C(JOBSA) +1.

Using this starting address causes the CUSP to read commands from the command file,

rather than the user's console.

6 .4 Error Count

The translators and LOADER cause location JOBERR (42) to be incremented for each error

they detect. Then this location is tested by the LOADER when an EXECUTE command causes it to

attempt execution. If it finds JOBERR non-zero, it types "EXECUTION DELETED" rather than start­

ing the program.

19

7. ERRORS

The COMPIL program makes various checks to see that the CCL commands are consistent,

and (in the COMPILE-class commands) that the required source files exist. There are also some

11 impossible 11 errors, which imply some sort of system failure.

The error messages generated by the COMPIL program are listed below. In addition, the

programs called by COMPIL may generate error messages, such as assembly or compilation errors.

Those typeouts are described in th~ relevant manuals for MACRO, FORTRAN, LOADER, PIP, and

CREF. The message 11 EXECUTION DELETED 11 will be produced by the LOADER if either it or one of

the translators has detected any errors.

Errors detected by COMPIL cause an EXIT to the Monitor.

Table 7-1
COMPIL Program Error Messages

Message Meaning

SYNTAX AND TYPING ERRORS

COMMAND ERROR COMPI L cannot decipher the command.

UNRECOGNIZABLE SWITCH An embiguous or undefined word fol lowed
a slash (11

/
11
).

PROCESSOR CONFLICT Use of the 11 +11 construction has resulted
in a mixture of source languages.

RESOURCE AND FILE FAILURES

DEVICE NOT AVAILABLE The specified device could not be referenced.

NO SUCH FILE - file.ext The specified file could not be found. This
file may be one specified as a source, or one
required for COMPIL 's operation.

NOT ENOUGH CORE The system cannot supply sufficient core
for COMPIL's to use for buffers, or to
read in a cusp.

20

Table 7-1 (Cont)
COMPIL Program Error Messages

Message Meaning

COMMAND COMPLEXITY TOO GREAT

TOO MANY SWITCHES or
TOO MANY NAMES The command complexity exceeds table

space in the COMPIL program.

NESTING TOO DEEP The@ construction has exceeded a depth of
nine. This may be due to a loop of@ files.

"IMPOSSIBLE" ERRORS

DISK NOT AVAILABLE Cannot reference device DSK.

INPUT ERROR An 1/0 error occurred while reading a
temporary command fi I e from the disk

LINKAGE ERROR An 1/0 error occurred while reading a
cusp from SYS.

FILE IN USE OR PROTECTED A temporary command file could not be
entered in the user's UFD.

OUTPUT ERROR An I/O error occurred while writing a
temporary command file on the disk.

8. SUMMARY

The various components of the CCL commands are summarized here, with references to their

descriptions in the body of this document.

8 .1 Commands

Commands
Minimal

1
Abbreviation

COMPILE COM 4.1.2
CREATE CREA 4.2.2.2
CREF CREF 4.3.6
DEBUG DEB 4. 1 .5
DELETE DEL 4.3.4
DIRECTORY DI 4.3.3
EDIT ED 4.2.2.1
EXECUTE EX 4. L4
LIST LI 4.3.2

1 These abbreviations may change if additional Monitor commands are added.

21

Commands

LOAD
MAKE
RENAME
TECO
TYPE

8 .2 Compile-Switches

Compile-Switches
c
COMPILE
CREF
F
FORTRAN
L
LIBRARY
LIST
M
MACRO
MAP
N
NOCOMPILE
NO LIST
NOSEARCH
REL

8 .3 Special Characters

,
[]
I
%
=
@

+
<>
()

Minimal
1

Abbreviation

LOA
M
REN
TE
TY

4.1.3
4.2.3.2
4.3.5
4.2.3. l
4 .3. l

4.1.2.5
4.1.2.6
4.1.2 .8
4.1.2.6
4.1.2.7
4.1.2.7
4.1.2.6
4. l . 3 .2
4.1.2.6
4.1.2.7
4.1.2.7
4.1.3.2
4.1.2.6
4.1.2.8
4. 1.2 .6
4.1.3.2
4.1.2 .7

4.1.2.2
4.1.2.4
4.1.2.3
4.1.2.5, 4.3.3.2
4.1.3.3
4.3.5, 5.3
5. l
5 .1
5.2
5.4
5.5
6.3

1
These abbreviations may change if additional Monitor commands are added.

22

8.4 Fi le-Naming Conventions

8 .4 .1 Temporary Files for COMPIL Program:

Files are named nnnxxx. TMP, where nnn is the user's iob number in decimal, and xxx

specifies the use of the file. Assuming job number 1, the files are:

8.4.2

OOlMAC.TMP
OOlFOR.TMP
OOlPIP. TMP
OOlCRE. TMP
OOlEDT. TMP
OOlSVC. TMP
OOlEDS .TMP

Passes commands to MACRO
Passes commands to FORTRAN IV
Passes commands to PIP
Passes commands to CREF
Passes commands to LINED and TECO
Saves COMPILE-class commands
Saves EDIT-class commands

Standard Meanings for Fi le Extensions:

.TMP

.MAC

.F4

.LST

.REL

.CMD

.SAY
blank

Temporary file
Source file in MACRO language
Source file in FORTRAN IV language
Listing or CREF data
Relocatable binary file
Command file, for@ construction
Core dump, from SA VE command
Unspecified ASCII text file

23

ADDENDUM II

Re-entrant User Ca pa bi I ity for PDP-10 Time Sharing System

RE-ENTRANT USER CAPABILITY
~OR PDP-10 TIME SHARING SYSTEM

T. HASTINGS 30 JUN 1969

CHANGES LISTED IN ORnER OF MOST RECENT FtRST

100-118-2105-C-H

FIRST VERSION IN WHICH CHANGE APPEARED WILL BE PUT ON EVERY LlNr
SO CHANGED.

CHANGED FROM VERSION v001c~01> 11 APR 69 TO VERSION V0~2<-01) 30 JUN 69

21. WRITING REENTRANT USER PROGRAMS.
ADDED SECTION 8 HOW TO WRITE PROGRAM AS ONE SOURCE FILE,
WHICH IS MORE CONVENIENT,

TABLE OF CONTENTS

1. BACKGROUND

2, MOTIVATION

3, DESIGN GOALS

4. DEFINITIONS

5. RESTRICTIONS ON UUOS AND MONITOR COMMANDS

6, SAVE,SSAVE COMMANDS

;, MODIFYING S~AREO SEGMENTS DURING EXECUTION

8, SET USER-MODE W~ITE PROTECT UUO CSETUMP> C36)

S .1 RESET UUO

9. THE ALLOCATION OF VIRTUAL CORE

9,1 CORE UUO

9,2 CORE co~MAND

10, GET COMMAf\JD

11, REMAP UUO (37)

12, RUN UUO (35)

13, GETS!G UUO (40>

14, SPY UUO (42)

15, SUPERCEnING SHAPED SEGMENTS

16, USING THE LINKING LOADER

17, ASSrMBLER PSEUOOP-HISEG

18, MODIFICATIONS TO LINKING LOADER

19, USING DDT

20, JOB DATA AREA CJOBOAT>

21, WRITING REENTRANT USER PROGRAMS

22, MONITOR ALLOCATION OF SWAPPING SPACE

23, MONITOR ALLOCATION OF PHYSICAL CORE

24, MONGEN DIALOG QUESTIONS
ONC~ ONLY DIALOG QUESTIONS

25, GLOSSARY

2

1. BACKGROUND

A GLOSSARY OF UNFAMILIAR TERMS OR TERMS WHOSE MEANINGS
MAY RE U~IIQut WITHIN PDP-10 LITERATURE MAY BE FOUND AT
THE FNO OF T~E DOCUMENT, SORTED IN ORDER OF THEIR AP·
PEARANCE IN THE TEXT. WHEREVER POSSIBLE TERMS HAVE
8EEN SFLECTEO TO CORRESPOND TO COMMON USAGE IN THE TECM·
NICAL LITERATURE, ONE WORD IN PARTICULAR, THE WORD
"RE-ENTRANT", DESERVES SOME COMMENT: RE~ENTRANT IS AN
ADJECTIVE RE~ERRING TO A SEQUENCE OF INSTRUCTIONS WHICH
MAY PE ENTER~D BY MORE THAN ONE USER PROCESS AT A TIME,
THUS A SINGLE COPY OF A REENTRANT PROGRAM MAY BE SHARED·
BY A NUMBER nF USERS AT THE SAME TIME, THEREBY INCREASw
ING SYSTEM ECONOMY, AS SUCH, THE POP-10 TIM~ SHARING
MONITOR HAS ALWAYS BEEN LARGELY "RE-ENTRANT", NEVERTHE­
LESS, POP-10 LITERATURE NOW USES THE PHRASE "REENTRANT
MONITOR" TO REFER TO THE 4 SERIES MONITOR WHICH PROVIDES
THE RE-ENTRA~T USER PROGRAM CAPABILITY, AS DESCRIBED
IN THIS DOCUMENT.

THE OLD ONE RELOCATION REGISTER HARDWARE ON PDP·6'S ANO
EARLY PQP~10'S REQUIRED THAT A USER AREA BE A SINGLE
SEGMENT OF LOGICAL AND PHYSICAL CORE, THIS MEANT THAT
EACH USER HA~ TO HAVE A SEPARATE COPY OF A PROGRAM
EVEN THOUGH A LARGE PART OF IT WAS THE SAME AS FOR OTHER
USERS. T4E NEW TWO RELOCATION REGISTER HARDWARE PERMITS
A USER AREA TO BE DIVIDED INTO TWO SEGMENTS OF LOGICAL
AND PHYSICAL CORE, THE MONITOR WILL ALLOW ONE OF THE
SEGMENTS OF EACH USER AREA TO BE THE SAME AS ONE OR MORE
OTHER USERS, SO THAT ONLY ONE PHYSICAL COPY OF SUCH
A SHARED SEGMENT NEED EXIST NO MATTER HOW MANY USERS ARE
USING IT, THIS SHARED SEGMENT WILL USUALLY BE WRITE
PROTECTED BY HARDWARE TO GUARRANTEE THAT IT IS NOT
ACCIDENTALLY MODlrIEO, A PROGRAM COMPOSED DF A SHARABLE
AND A NON-SHARABLE SEGMENT IS SAID TO BE RE-ENTRANT, roR
HARDWARE DESCRIPTION SEE PDP~10 RErERENCE MANUAL DEC~10
~GAA-01 DECEMBER 1968 SUPPLEMENT OR PROGRAMMING
DEPARTMENT MEMO 100-118~001-03

THIS MANUAL SUPERSEDES PROGRAMMING DEPARTMENT MEMOS:

100-118-002-02 PDP•10 REENTRANT SOFTWARE
100-118-003-00 WRITING REENTRANT PROGRAMS
1~0-118-004-00 REENTRANT SOrTWARE - MODlFICATIONS

AND ADDITIONS

3

2. MOTIVATION

THE MOTIVATION FOR ADDING A RE-ENTRANT CAPABILITY IS TO
I N CR E AS E T HE NU M BER 0 F US E R S W H I CH C A N BE H A N D L ED .8 Y
A GIVEN Sl~E TIME-SHARING CONFIGURATION, THIS IS
ACCOMPLISHED BY MORE EFFECTIVE USE OF THE FOLLOWING
SYSTFM RESOURCES:

1) MORE EFFECTIVE USE OF CORE MEMORY SINCE ONLY ONE
COPY OF A SHARED SEGMENT WILL EXIST FOR THE ENTIRE
SYSTEM, INSTEAD OF ONE COPY FOR EACH USER USING THE
SEGMt:NT.

2) MORE EFFECTIVE USE OF THE SWAPPING STORAGE SINCE
uNE COPY OF A SHARED SEGMENT CAN BE SHARED BY ALL
USERS USiNG IT.

3) ~ORE EFFECTIVE USE OF THE SWAPPING CHANNEL SINCE
A SHARED SEGMENT WILL ONLY BE READ ONCE NO MATTER
HOW MANY USERS lN CORE ARE USING IT,

4) MORE EFFECTIVE USE OF THE SWAPPING CHANNEL SINCE
MOST SHARED SEGMENTS WILL NOT BE MODIFIED DURING
EXECUTION SO THAT THEY WILL NOT NEED TO BE
WRITTEN 8ACK ONTO SWAPPING STORAGE.

5) MORE EFFECTIVE USE OF THE STORAGE CHANNEL SINCE
A SHARED SEGMENT WILL ONLY BE READ ONCE FROM THE
STORAGE DEVICE WHEN THE PROGRAM IS ACCESSED FOR THE
FIRST TIME BY ANYONE. THEREAFTER IT WILL EXIST ON THE
FASTER SWAPPING STORAGE.

3, INITIAL DESIGN GOALS

1· THE CHANGES FOR RE·ENTRANT SOFTWARE WILL NOT
iNVALIDATE ANY EXISTING SOFTWARE. THIS MEANS THAT ALL

1) SAVED FILES (,OMP AND ,SAV) WILL STILL RUN AS
USUAL

2) RELOCATABLE BINARY (.REL) WILL STILL LOAD
AND RUN AS USUAL

3) MACRO SOURCE (,MAC) WILL ASSEMBLE- LOAD AND RUN
AS USUAL

4) FORTRAN SOURCE <.F4) WILL COMPILE, LOAD AND RUN
.AS USUAL

THIS MEANS THAT THE MONITOR MUST HANDLE TWO TYPES OF
PROGRAMS:

2) NEW~STYLE RE-ENTRANT PROGRAMS

4

2. THE RE-ENTRANT MODIFICATION WILL BE USEFUL FOR THE
10/40 SY$TEM WITH DECTAPE AND NO DISK, AS WELL AS THf
10/4~ SYSTEM WITH DISK AND THE 10/50 SWAPPING SYSTEM,

3. MINIMI~E THE CHANGES TO CUSP•S REQUIRED ro:

1) ~AKE THEM RE-ENTRANT THEMSELVES

2) MAKE THEM GENERATE OTHER RE-ENTRANT PROGRAMS

4. MAKE THE TERMINAL OPERATING CHARACTERISTICS OF RE~
ENTRANT PROGRAMS BE THE SAME AS THE CURRENT SYSTEM, THUS
THE USER DOES NOT NEED TO KNOW WHETHER A PROGRAM HE IS
RUNNING IS RE-ENTRANT OR NOT, <OBVIOUSLY A PROGRAMMER
WILL HAVE TO KNOW WHEN HE WRITES THE PROGRAM,)

5. WRITING RE-ENTRANT PROGRAMS WILL BE EASY ENOUGM SO
THAT CUSTOMERS WILL WANT 10 WRITE THEM. ALSO CUSTOMERS
MUST Bf ABLE TO SHARE RE-ENTRANT PRG~RAMS WHIC~ ARE IN
THEIR OWN DIRECTORIES, THUS SHARING WILL NOT BE
RESTRICTED TO PROGRAMS IN THE SYSTEM CUSP DIRECTORY,

6. WHEN HE WRITFS HIS PROGRAM, A PROGRAMMER CAN
CHOOSE WHETH~R OR NOT ft GET (ALSO R, AND RUN> IS
TO JNTIALI~E THE IMPURE SEGMENT FROM SECONDARY STORAGE.
POR EXAMPLE, MACRO WILL WANT TO MAVE THE INITIAL SYMROL
TABL~ LOADED INTO THE IMPURE SEGMENT, WHILE TECO WILL
PROBABLY WANT NOTHING LOADED INTO IT AND WILL CLEAR THE
fMPURE SEGMENT ITSELF,

7, MAKE IT EASY TO MOOIPY THE MONITOR TO HANDLE
RE-ENTRANT USER PROGRAMS.

8. LIMIT A USER AREA TO ONLY ONE SMARABLE SEGMENT AT
A TIME. IN ADDITION THE SEGMENT WILL EXIST IN ITS
ENTIRETY IN ROTH LOGICAL AND PHYSICAL CORE AND ON THE
SWAPPING DEVICE. ALSO NOT MAKE FORTRAN OBJECT PROGRAMS BE
SHARABLE, HOWEVER, WE WILL NOT DO ANYTHING TO PREVENT
THIS POSSIBILITY A rEW YEARS FROM NOW, DDT NOT SHARAeLE
BY ITSELr INITIALLY EITHER. MAYBE EVENTUALLY AN
INVISIBLE, SHARABLE DDT,

9. RE-rNTRANT PROGRAMS WILL CONTINUS TO BE SELr
INITIALirING, AS ARE THE EXISTING CUSP'S, IT MUST ALWAYS
BE POSSIBLE TO TYPE CONTROL C START AT ANY TIME AND HAVE
THE PROGRAM START OVER CORRECTLY. THIS IS GOOD
PROGRAMMING PRACTICE, MAKES OEBUGGING EASIER ANO MEANS
THAT THE MONITOR WILL NOT HAVE TO DO I/0 TO INITIALI~E

IMPURE SEGME~T ON A START COMMAND.

10. RE-ENTRANT PROGRAMS NEED NOT BE DEBUGGED IN ORDER
TO BE SHARED. THE SYSTEM WILL NOT FAIL, WHEN ONE USER
~NCOUNTERS A BUG WHILE SHARING A SEGMENT, IN rACT, THE
OTHER USERS WILL BE UNAFFECTED BY A BUG ENCOUNTERED RY
ONLY ONE USER.

5

11, AS SOON AS A NEW REMENTRANT PROGRAM IS CREATED BV
ANY USER WHILE THE SYSTEM IS RUNNING, IT WILL BE ABLE TO
BE SHARED BY ALL USERS SO AUTHORI~ED BY THE OWNER OF THE
PROGRAM, THE MONITOR WILL NOT HAVE TO BE REASSEMBLED,
RELOADED WITH THE LINKING LOADER, OR RESTARTEO IN ORDER
TO START SHARING THE NEW PROGRAM, USER'S WHO ARE IN THE
PROCESS OF SHARING THE OLDER VERSION WILL NOT SE AFFECTEO
UNTIL THEY ARE THROUGH.

12. CTHIS DESIGN GOAL HAS NOT BEEN MET YET>
ON SYSTEMS EMPLOYING T~E SMALL, FAST BURROUGHS
DISK FOR BOT~ SWAPPING AND FOR STORAGE, THE SAVED FILE
AND THE SHARED SEGMENT WILL BE SAME INSTEAD OF DIFFERENT
COPIES, THUS USING THE DISK MORE EFFICIENTLY, THIS ~EANS
tHAT THE FORMAT FOR SAVED FILES AND SHARED SEGMENTS WILL
PROBABLY HAVE TO BE THE SAME,

13. AVOID DESIGN WHICH CLOSES THE DOOR TO FUTURE
EXTENSIONS ANO IMPROVEMENTS WHEREVER POSSIBLE,

14, MAKE IT EASY FOR ALL PROGRAMMERS TO WRITE
RE~ENTRANT PROGRAMS IN SUCH A WAY THAT THE SOURCES AND
BINARY ARE THE SAME rOR A RE-ENTRANT VERSION roR PDP~10
AND A NON-RE-ENTRANT VERSION FOR PDP-6. THE DECISION TO
PRODUCE A NON-RE-ENTRANT VERSION WILL BE POST-PONED TO
LINKING LOAD TIME,

4, DErINITIONS

A SEGMENT IS A CONTIGUOUS REGION or A USER'S CORE IMAGE
WHICH THE MONITOR MAINTAINS AS A CONTIGUOUS UNIT IN
PHYSICAL CORE AND/OR AS A POSSIBLY fRAGMENTED UNIT ON THE
SWAPPING DEVICE. A SEGMENT MAY CONTAIN INSTRUCTIONS OR
DATA OR BOTH. IT IS THE TASK OF THE MONITOR TO DETERMINE
THE ALLOCATION ANO MOVEMENT O~ SEGMENTS IN CORE AND TH~
SWAPPING DEVICE. A PROGRAM OR USER JOB IS COMPOSED O~ ONE
OR TWO SEGMENTS,

A SHARABLE SEGMENT IS A SEGMENT WHICH IS THE SAME rOR ALL
USERS, SO THAT THE MONITOR KEEPS ONLY ONE COPY FOR TME
SYSTEM IN CORE ANO/OR ON THE SWAPPING DEVICE, NO MATTER
HOW MANY USERS ARE USING IT. ON THE OTHER HAND A NON•
SHARABLE SEG~ENT IS A SEGMENT WHtCM IS otFFERENT roR EACM
USER IN CORE AND/OR ON THE SWAPPING DEVICE.

THE TWO RELOCATION AND PROTECTION REG!,STERS OF THE POP·1~
PERMIT A USER PROGRAM TO BE COMPOSED OF ONE OR TWO
SEGMENTS AT ANY POINT IN TIME. TMESE REGISTERS OIVIDE
A USER'S CORE INTO TWO PARTS, THE REQUIRED LOW SEGMENT
STARTING AT USER 0 AND THE OPTIONAL HIGH SEGMENT SEGMENT
STARTING AT USER 400000 OR THE END or THE LOW SEGMENT
WHICHEVER IS GREATER. THE LOW SEGMENT ALWAYS CONTAINS THE
USERS ACCUMULATORS, JOB DATA AREA
(JOBOAT), INSTRUCTIONS AND/OR DATA, I/0 BUFrERS, AND DOT
SYMBOLS, THUS A USER CORE IMAGE IS COMPOSED OF A LOW
SEGMENT rROM 1K TO 256K WORDS IN MULTIPLES OF 1K AND
A HIGH SEGMENT FROM ~K TO 128K WORDS, ALSO IN MULTIPLES
OF 1K. A HIGH SEGMENT MAY BE SHARABLE OR NON-SHARABLE
WHILE A LOW SEGMENT IS ALWAYS NON~SHARABLE· THE HIGH
SEGMt.NT ALSO MAY OR MAV NOT BE WRITE LOCKED.

6

THERE ARE JUST THREE TYPES or USER PROGRAMS, RE·ENTRANT
PROGRAMS, ONE SEGMENT NON-RE-ENTRANT PROGRAMS, AND TWO
SEGMENT NON-RE-ENTRANT PROGRAMS. A RE-ENTRANT PROGRAM
IS ALWAYS COMPOSED or TWO SEGMENTS, A LOW SEGMENT WHICH
USUALLY CONTAINS JUST DATA AND A SHARABLE (HIGH) SEGMENT
WHICH USUALLY CONTAINS INSTRUCTIONS AND CONSTANTS,

THE Low SEGMENT IS SOMETIMES LOOSELY REFERRED TO AS THE
IMPURE SEGMENT AND THE SHARABLE MIGH SEGMENT Ir WRITE
PROTFCTEO IS CALLED THE PURE SEGMENT, HOWEVER, IMPURE
~UGG~STS MODIFIABLE RATHER THAN NON-SHARABLE AND PURE
SUGG~ST WRIT~ PROTECTED RATHER THAN SHARABLE. MENCE,
A HIGH SEGMENT CAN BE PURE OR IMPURE AND SHARABLE OR
NON-SHARABLE WHILE A LOW SEGMENT IS ALWAYS IMPURE AND
NON-SHARABLE.

A ONE SEGMENT NON-RE-ENTRANT PROGRAM IS COMPOSED OF
A SINGLE LOW SEGMENT CONTAINING iNSTRUCTIONS AND DATA.
THIS TYPE CORRESPONDS TO USER PROGRAMS WRITTEN FOR
A MACHINE WITH ONLY A SINGLE RELOCATION AND PROTECTION
REGISTER. A TWO SEGMENT NON-RE-ENTRANT PROGRAM IS
COMPOSED OF A LOW SEGMENT AND A NON-SHARABLE HIG~
SEGM~NT, THIS TYPE OF PROGRAM IS USEFUL FOR T~E RARE
CASES WHEN THERE IS REQUIREMENT rOR TWO f IXED ORIGINrD
nATA AREAS TO GROW AND SHRINK INDEPENDENTLY DURING
EXECUTION.

VIRTUAL ADDRESSING SPACE OF THE 3 TYPE OF PROGRAMS:
RE-ENTRANT NON-RE-ENTRANT

0
0-MAXL
NON-SHARABLE
401ZH?J01ZJ-MAXH
SHARABLE

ONE SEGMENT TWO SEGMENT

0
0-MAXL
NON-SHARABLE

0
~-MAXL
NQN ... SHARABLE
40000121-MAXi..i
NON·SHARABLE

WHERE MAXL AND MAXH ARE THE HIGHEST LEGAL ADDRESS
IN TME LOW AND HlGM SEGMENTS RESPECTIVELY,

A r1LE IS A COLLECTION OF 36 BIT WORDS COMPRISING
COMPUTER INSTRUCTIONS ANO/OR DATA, A FILE CAN 8£ Or
ARBITRARY LE~GTH, LIMITED ONLY BY THE AVAILABLE SPAC~ ON
THE DEVICE AND THE USERS MAXIMUM ALLOTMENT ON TT, A NAMED
rILE IS A FILE WHICH IS UNIQUELY IDENTIFIED IN THE SYSTEM
BY ITS FILE NAME CUP TO 6 CHARACTERS), AND THE DIRECTORY
NAME <PROJECT, PROGRAMMER NUMBERS Or OWNER FOR
DISKS; PHYSICAL DEVICE NAME FOR DECTAPE ANp MAGTAPE) IN
WHIC~ THE FILE NAME AND EXTENSION APPEAR, THE r!LE NAME
IS ARBITRARY AND IS SPECIFIED BY THE OWNER AT TH£
TERMINAL WHILE THE EXTENSION IS USUALLY ONE Or A SMALL
NUMB~R or STANDARD NAMES WHICH IDENTirIES THE TYPE or
INroRMATION IN THE rILE AND IS USUALLY SPECirlEO BY
PROGRAM, A NAMED FILE MAY BE WRITTEN BY A USER PROGRAM
IN BUF~ERED QR DUMP MOOE OR A MIXTURE ANO MAY BE REAn
ANO/OR MODIFIED SEQUENTIALLY OR RANDOMLY WITH BUrrER~D OR
OUMP MOOE INDEPENDENT Or HOW IT WAS WRITTEN. NAMED rILES
ARE STORED ON THE STORAGE DEVICE WHICH MAY BE THE
OISK, ANO/OR

7

DECTAPE. FURTHERMORE, EACH NAMED FILE HAS CERTAIN ACCESS
PRIVILEGES ASSOCIATED WITH IT WHICH SAY WHICH USERS
CANNOT READ THE FILE, WRITE THE rlLE, OR CHANGE THE
ACCESS PRIVILEGES OF THE FILE. FOR PURPOSES OF SIMPLICITY
THE lJNIVERSE or USERS IS DIVIDED INTO THREE GROUPS: THE
OWNER OF THE FILE, TME OTHER USERS IN HIS PROJECT, AND
THE REST OF THE USERS,

FILES AND SEGMENTS HAVE CERTAIN SIMILARITIES AND
DIFFERENCES, BOTH ARE NAMED, ONE DIMENSIONAL ARRAYS O~
36 BTT WORDS. A FILE CAN BE ARBITRARILY LONG UP TO SI~E
OF DISK OR DECTAPE, WHILE THE ENT!RITY OF A SEGMENT MUST
rIT INTO PHYSICAL CORE. BOTH MAY BE SHARED FOR READING,
MOWEVER ONLY ONE USER IS ALLOWED TO RECREATE OR UPDATE
A FILE AT A TIME, WMILE MANY USER'S COULD SHARE
A SEGMENT FOR WRITTlNG
(PROVIDED THEY ESTABLISH A WELL DEFINED INTERLOCK
DISCIPLINE ANO USE THE SLEEP UUO WHEN BLOCKED),

ALTHOUGH USERS CAN SHARE NAMED FILES CONCURRENTLY, THE
SHARING IS MUCH DIFFERENT THAN THE SHARING OF SEGMENTS,
WHEN MANY USERS ARE READING FROM THE SAME OR DIFFERENT
PORTIONS OF A FILE AT THE SAME TIME, EACH USER IS GIVEN HIS
OWN COPY OF THE PORTION OF THE FILE HE IS READING CIT IS
READ INTO HIS LOW SEGMENT VIA AN INPUT UUO), A FILE MAY BE READ,

CREATED, RECREATED OR UPDATED. A FILE IS
CREATEO IF NO FILE BY THE SAME NAME EXISTED WHEN THE
~ILE WAS OPENED FOR WRITING. A FILE IS RECREATED IF
ANOT~ER FILE BY THE SAME NAME ALREADY EXISTED, A POP~
TinN OF A CREATED OR RECREATED FILE MAY BE SUBSEQUENTLY
UPDATED BY MODIFYING (IN PLACE> OF ONE OR MORE OF THE
BLOCKS OF THE FILE. OTHER USERS MAY BE READING A
FILE WHILE ONE USER IS RECREATING IT, THE OLDER VERSION
OF THE ~ILE IS DELETED ONLY WHEN ALL THE READERS HAVE
rINISHED. ONLY ONE USER CAN OPEN A rILE FOR RECREATiON
AND UPDATING AT A TIME, SUBSEQUENT USERS GET AN
ERROR RETURN. THUS A FILE EXISTS ON THE STORAGE
OEVICE AND PIECES OF IT AND OTHER FILES CAN EXIST IN
DIFFERENT PARTS OF THE LOW SEGMENT OF ONE OR MORE USERS,

A SEGMENT DIFFERS FROM A FILE IN THAT IT NEVER EXISTS ON
THE STORAGE DEVICEJ IT EXISTS ONLY IN CORE OR ON THE
SWAPPING DEVICE. FUTHERMORE, A SEGMENT ALWAYS EXISTS IN
ITS ENTIRETY AS A CONTIGUOUS UNIT, IN ORDER TO SAVE
A SEGMENT SO THAT IT CAN BE REC~LLED AND RUN AT A LATER
tIME, THE USER USES THE SAVE <SSAVE> CONSOLE COMMAND WHICH WRITES
A COPY OF ONE OR BOTH SEGMENTS ONTO THE STORAG~ DEVICE AS
NAMED FILES. TO RECALL THE PROGRAM LATER, THE USER TYPES
THE GET, R, OR RUN COMMANDS, RUN OR GETSEG UUOS WHICH
IN!TTALI~E ONE QR BOTH SEGMENTS FROM THE APPROPRIATE
NAMED FILES, THESE COMMANDS MUST KNOW WHETHER OR NOT
A HIGH SEGMENT IS SHARABLE, A HIGH SEGMENT WILL BE
SHARABLE, If THE FILE WHICH INITIALI~EO IT HAD EXTENSION
,SHR. A FILE EXTENSION OF .HGH WILL INDICATE THAT THE
HIGH SEGMENT IS TO BE NON-SHARABLE.

8

5. RESTPICTION ON uuo•s ANO MONITOR COM~ANDS

THERE WILL BE A NUMBER OF RESTRICTIONS ON THE INVOLVEMENT
OF A HIGH SEGMENT IN MONITOR uuo•s AND MONITOR COMMANDS,
THESE RESTRICTIONS ARE MOTIVATED BY A DESIRE TO PROTECT
NAIVE ANO MALICIOUS USERS FROM CLOBBERING OTHERS WHILE
SHARING SEGMENTS ANO BY A DESIRE TO MINIMI~E MONITOR
CHANGES TO HANDLE TWO SEGMENT PROGRAMS. HOWEVER, ALL
UUO'S CAN BE EXECUTED FROM EITHER TH~ LOW OR HIGM
SEGMENT. ALTHOUGH, SOME OF THEIR ARGUMENTS CANNOT BE IN
OR RFFER TO THE HIGH SEGMENT,
1) NO BUFFERS, BUFFER HEADERS, OR DUMP MODE COMMAND

LISTS MAY EXIST JN THE HIGH SEGMENT FOR READING OR
WRITING WITH ANY DEVICE. NO !/O WILL BE DONE INTn OR
OUT OF T~E HIGH SEGMENT EXCEPT SAVE, SSAVE COMMANDS,

2) NO STATUS, CALL, OR CALLI UUO WILL ALLOW A STORE INTO
THE HIGH SEGMENT. THE EFFECTIVE ADDRESS OF LOOKUP,
ENTER, INPUT, OUTPUT, AND RENAME UUOS MUST NOT BE IN
THE HIGH SEGMENT (ADDRESS CHECK ERROR MESSAGE IF
ATTEMPTED).

3) HOWEVER, AS A CONVENIENCE lN WRITING USER PROGRA~S,
THE MONITOR WILL MAKE A SPECIAL CHECK SO T~AT TH~
INIT UUO CAN BE EXECUTED FROM THE HIGH SEGMENT
EVEN THOUGH THE CALLING SEQUENCE IS IN THE HIGH
SEGMENT. ANO THE MONITOR WILL ALSO ALLOW T~E
EFFECTIVE ADDRESS OF THE CALL UUO (CONTAINS
THE SIXBIT MONITOR FUNCTION NAME) AND THE
EFFECTIVE ADDRESS OF THE OPEN UUO (CONTAINS
THE STATUS BITS, DEVICE NAME ANO BUFFER HEADER
ADDRESSES) TO BE IN THE HIGH SEGMENT, HOWEVER,
THF RUFFER HEADERS THEMSELVES MUST BE IN THE LOW
SEGMENT.

4) THE MONITOR COMMANDS E <EXAMINE USER AREA> AND D
(DEPOSIT USER AREA) WILL WORK ~OR BOTH LOW AND HIGH
SEGMENTS, PROVIDtD THE USER HAS THE ACCESS RIGHT
TO READCE) AND WRITECD> THE MIGH FILE WHICH INITIALI-
2ED THE MIGH SEG~ENT. SEE MODIFYING SHARABLE SEGMENTS
FOR DEFINITION OF ACCESS PRIVILEGES,

6, THE SAVE AND SSAVE COMMANDS

THE SAVE COMMAND WILL SAVE ANY USER PROGRAM <I.E,,
RE-ENTRANT, ONE SEGMENT NON-RE-ENTRA~T. OR TWO-SEGMENT
NON-RE-ENTRANT, AS ONE OR TWO FILES, SUCH THAT WHEN
LOADED BY A GET, R, OR RUN COMMAND IT WILL BECOME
A NON-RE-ENTRANT (!,E,, NON-SHARABLE) PROGRAM, THUS
A USER CAN ALWAYS SAVE THE PROGRAM HE !S RUNNING WITHOUT
KNOWING WHETHER IT IS RE~ENTRANT OR NOT AND COME SACK
LATER AND START IT UP AGAIN. HE NEED NOT WORRY THAT
SOMEONE ELSE HAS REPLACED THE ORIGINAL FILE WITH A
DIFFERENT VERSION,

9

Ir TME JOB ·CONTAINS ONLY A LOW SEGMENT, SAVE WILL WRITE
ONE FILE WITH EXTENSION OF .SAV, AS IN 3 SERIES
MONITORS, HOWEVER Ir THE JOB HAS TWO SEGMENTS, SAVE WILL
WRITF THE HIGH SEGMENT WITH rILE EXTENSION o~ .HGM AND
THE LOW SEGMENT WITH rILE EXTENSION ,LOW, T~US IT IS
POSSIBLE TO HAVE BOTH A TWO SEGMENT AND A ONE SEGMENT

VERSION OF T~E SAME PROGRAM CMACRO.HGH+ MACRO.LOW AND
MACRO.SAV), LOW S~GMENT FJLtS. WILL BE tERO COMPRESSED
ON ALL DEVICES CDTA,MTA, AND OSK), BUT HIGH SEGMENT rIL[S
WILL NOT BE SINCE THE MIGH SEGMENT MAY BE SHARED AT THE
TIME OF SAVE AND SO CANNOT BE COMPRESSED, THUS SAVED
rILES ARE JUST ORDINARY BINARY FILES ON ALL DEVICES ANO
so CAN BE COPIED WITH PIP (USING/8 SWITCH, or
COURSE>. HOWEVER, FILES WHICH ARE TO BE LOADED BY TENOMP
rROM DECTAPE MUST STILL BE WRITTEN USING SAVE OR SSAVE
COMMAND SINCE TENDMP REQUIRES THAT THE fIRST BLOCK Or
~ FILE ALSO BE THE LOWEST. IN ORDER TO SAVE FILE SPACE,
THE SAVE COMMAND WILL NOT WRITE THE ENTIRE HIGH
SEGMENT. IT WILL ONLY WRITE UP THROUGH THE HIGHEST
<RELATIVE TO HIGH SEGMENT ORIGIN> LOCATION LOADED BY
LINKING LOADER AS SPECIFIED BY CCLH) OF JOBHRL<ANALOGOUS
TO LH OF JOBSA FOR LOW SEGMENT>. IF LH IS 0 <HIGH
~EGMENT CREATED BY CORE OR REMAP UUO) OR DDT IS IN
USE THE ENTIRE HIGH SEGMENT WILL BE WRJTTEN, SO THAT
PATCHES WILL BE SAVED,

IN ORDER TO SAVE FILE SPACE AND to TIME ON GETS, IT IS
POSSIBLE FOR MOST PROGRAMS TO BE WRITTEN SO THAT ONLY
THE HIGH SEGMENT CONTAINS NON-~ERO DATA. WHtN THIS rs
THE CASE, SAVE WILL ONLY WRITE TME HIGH
SEGMENTCEXTENSION,HGH), THE LINKING LOADER INDICATES
TO TME SAVE COMMAND THAT NOTHING WAS LOADED ABOVE THE
JOB DATA AREA (FIRST 140 LOCATIONS> IN THE LOW SEGMENT
BY SETTING THE LH OF JOBCOR IN THE JOB DATA AREA TO iHE
MIGHEST LOCATION LOADED IN THE LOW SEGMENT WITH NON-~ERO
OATA. SEE srcTION ON WRITING RE~NTRANT USER PROGRAMS
BELOW. HOWEVER THERE ARE A NUMBER or LOCATIONS 1N THE
JOB DATA AREA WHICH NEED TO BE INITIALI~EO ON A GET EVEN
THOUGH THERE IS NO OTHER DATA IN THE LOW SEGMENT, THE
SAVE COMMAND COPIES THESE LOCATIONS INTO THE rIRST 10
<OCTAL> LOCATIONS OF THE HIGH SECMENT, PROVIDED THAT
THE HIGH SEGMENT IS NOT SHARABLE <SEE BELOW), THESE 10
LOCATIONS ARE REFERRED TO AS THE VESTIGIAL JOB
DATA AREA. CONSEQUENTLY, THE LINKING LOADER WiLL LOAD
MIGH SEGMENT PROGRAMS STARTING AT 400010, SEE THE JOB
DATA AREA SECTION BELOW FOR THE DESCRIPTION Or LOCATIONS
SAVED IN THIS MANNER,

IN O~DER TO SAVE A PROGRAM SO THAT THE HIGH SEGMENT WILL
BE SHARABLE ON SUBSEQUENT GETS, A N£W SAVE COMMAND HAS
BEEN ADDED, CALLED SSAVECS FOR SMARABL£), IT WORKS
~XACTLY LIKE.SAVE EXCEPT THAT, Ir A HIGH SEGMENT EXISTS,
YT WRITES A PILE WITH EXTENSION .SHR INSTEAD OP ,HGH, A
suesrQUENT GET WILL CAUSE THE HIGH SEGMENT TO BE SHAR•
ABLE. I~ THE PROGRAM OOES NOT HAV£ A HIGH SEGMENT, NO
£RROR MESSAGE IS GIVEN, THIS ALLOWS TME USER TO ALWAYS
USE THE SSAVE COMMAND WHEN SAVING CUSPS WITHOUT HAVING TO
KNOW WHICH ONES ARE SHARABLE.

10

IN ORDER TO PREVENT USER CONFUSION, SAVE ANO SSAVE Dt.L~TE
A PREVIOUS FILE WITH ,SHR OR ·HG~ THE EXTENSION WHICH THE
OTHER COMMAND WOULD HAVE CREATED AFTER A succEssruL
WRITE. T~US SAVE DELETES .SHR AND SSAVE DELETES

.HGH. BOTH COMMANDS ALSO DELETE A FILE WITH EXTENSION
,LOW IF THE HIGH SEGMENT WAS WRITTEN AND THE LOW SEGMENT
WAS ~J 0 T,

THE FOLLOWING TABLE COMPARES SAVE AND SSAVE:

SEGMENTS I.JR I TTEN
LOW HIGH •
x
x x

x

SSAVE SAVE
WRITES
SAV

DELETES WRITES DELETES

LOW+HGH SHR
HGj..j $HR

SAV
LOW+SHR HGH
SHR HGH

THE REGULAR ACCESS RIGHTS OF THE SAVED FILE
INDICATE WHETHER A USER CAN DO A GET, R, OR RUN COMMAND,
THE GET, R, AND RUN COMMANDS WILL ASSUME T~AT THE USER
WANTS TO READ cr.E., EXECUTE BUT NOT MODirY) THE HIG~
SEGMENT INDEPENDENT Or THE ACCESS RIGHTS or THE FILE USED
TO INITIALI2E THE SEGMENT. THEREFORE THE MONITOR WILL
ALWAYS ENABLE THE HARDWARE USER-MODE WRITE PROTECT TO
PREVENT THE USER PROGRAM FROM STORING INTO THE SEGMENT
INADVERTENTLY. THE PROGRAM MAY TURN OFF THE WRITE PROTECT
IF IT WISHES. SEE SETUWP UUO BELOW,

IN ORDER TO DEBUG A RE"ENTRANT CUSP WHICH IS IN THE
SYSTEM DIRECTORY, THE USER SHOULD MAKE A PRIVATE,
NON-SHARABLE COPY, RATHER THAN MODIFYING TME SHARED
VERSION AND POSSIBLY CAUSING OTH~R USERS HARM, A PR?•
VATE, NON-SHARABLE COPY CAN BE MADE IN THREE EASY STEPSI

1. GET SYS CUSP

2, SAVE DEV CUSP

:.5. GET DEV CUSP

STEP 2 WRITES A FILE IN THE USER DIRECTORY MARKEO AS NON•
SHARABLE. HOWEVER THE HIGH SEGMENT IN THE USER'S AOORESS?NG
SPACE REMAINS SHARABLE. STEP 3 OVERLAYS THE SHARABL~
PROGRAM WITH THE NON-SHARABLE ONE' rROM THE USER'S DIRECTORY,
THEN THE USER CAN MAKE PATCHES AND lNSERT BREA~POINTS WH?LE
OTHER USERS SHARE THE VERSION IN THE SYSTEM
DIRECTORY. SINCE THE SEGM~NT NAME INCLUDES THE DIRECTORY
NAME, THE MONITOR WILL KEEP THE SHARED ANO THE NON"SMAREO
VERSIONS SEPARATE FROM EACH OTHER, A SHARABLE PROGRAM
~AV BE SUPERCEEDED IN THE DIRECTORY AT ANV TIME BY USING
AN SSAVE COMMAND, THE MONITOR WILL CEAR THE HIGH
SEGMENT NAME IN ITS TABLE OF STORABLt SEGMENTS IN
USf, BUT WILL NOT REMOVE THE SEGMENT rROM OTHER
USER•S ADDRESSING SPACE, ONLY USERS DOING A GET,R,RUN
COMMAND OR RUN.GETSEG uuo WILL GET THE NEW SHARABLE VERsioN.

11

AN OBSCURE RESTRICTION EXITS WHEN SAVING A SHARABLE
PROGRAM WITH ONLY A HIGH FILE WITH EITHER SAVE OR SSAVE. THE
MONITOR WILL NOT MODIFY THE VESTIGIAL JOB DATA AREA tJNLESS
THE USER HAS WRITE PRIVILE~ES TO THE FILE WHICH ORIGINALLY
!NITtALILltEO THE SHARED SEGMENT, OTHERWISE UNAUTHORirED
USERS COULD MODIFY THE FIRST 10 WORDS OF A SHARED SEGMENT,
THIS MEANS TµAT EVEN THOUGH THE USER CHANGES TME STARTING
ADDRESS(JOBSA), THE VERSION NUMBER(JnBVER), THE CORE SI~r
FOR LOW SEG ON GETCR~ OF JOBCOR SET BY SAVE OR GET THIRD
ARG) OR THE HIGHEST LOCATION IN LOW SEGMENT LOADED WITH
NON-~ERO DATA CLH OF JOBCOR> ORR THE REENTER ADDRESS(RM
JORRFN> BY USING THE DEPOSIT COMMAND OR SAVE 3RD ARG, IT
WILL HAVE NO EFFECT ON SAVE AND SUBSEQUENT GET,

THIS RESTRICTION DOES NOT EXIST IF A LOW FILE IS WRITTEN
TOO, SINCE GET READS LOW FILE AFTER HIGH FILE, SO THAT
iHE REAL JOB DATA AREA LOCATIONS ARE SET FROM THE LOW PILE,

?, MODIFYING SHARED SEGMENTS DURING EXECUTION

USUALLY A HIGH SEGMENT WILL BE WRITE PROTECTED,
HOWEVER, IT IS POSSIBLE FOR A USER PROGRAM TO TURN OFF
UWP CUSER WRITE PROTECT) OR TO INCREASE OR DECREASE CORE
ASSIGNMENTS OF A SHARED SEGMENT USING THE SETUWP AND CORE
uuo•s. THESE TWO uuo•s WILL BE LEGAL rRoM EITHER HIGH OR
LOW SEGMENT PROVIDED THAT THE SHARABLE PROGRAM HAS NOT
8 EE N " M E 0 D L E I') W IT H '' , TH I S M E ANS TH A T E V E N T H E M A LI C I 0 US
USFR CAN HAVE THE PRIVILEGE OF RUNNING SUCM A PROGRAM
EVEN THOUGH HE DOES NOT HAVE THE ACCESS RIGHTS TO MODltV
THE FILE USED TO INIT!ALI~E THE SHARABLE SEGMENT,

MEDDLING IS DEPINED AS ANY OF THE FOLLOWING,EVEN
IF THE USER HAS PRIVILEGES TO WRITE THE rILE W~ICH
INITJALitES THE HIGH SHARABLE SEGMENT:
<IT IS NOT CONSIDERED MEDDLING TO DO ANY Or THE
rOLLnWING TO A NON-SHARABLE PROGRAM <ONE QR TWO
SEGMENT>)

1. START AND CSTART COMMANDS WITH AN ARGUMENT,

2. nEPOSIT COMMAND IN EITHER LOW OR HIGH SEGMENT,

3. RUN uuo WITH ANYTHING BUT 0 OR 1 IN LH or AC
CSTARTING ADDRESS INCREMENT)

4, GETSEG UUO

IT WILL NEVER BE CONSIDERED "M£DOLINGn TO TVPE <CONTROL>C
rOLLOWEO BY START(WITH NO ARG>, CONT, CCONT, CSTART
CWIT~ NO ARG), REENTER, DDT, SAVE, E

12

AS SOON AS A SHARABLE PROGRAM IS MEDDLED WITH1THE MONITOR
SETS A BIT CMEDDLE> FOR THIS USER WHICH MAKES THE CLEARING
OF U~P WITH SETUWP UUO AND THE REASSIGNMENT OF CORE ~OR
THE HIGH SEGMENT WITH THE CORE uuo,CEXCEPT TO REMOVE IT
COMPLETELY> GIVE AN ERROR RETURN, ALSO AN ATTEMPT TO
MODIFY THE HIGH SEGMENT WITH THE DEPOSIT WILL PRINT "OUT
OF BOUNDS". UWP IS ALSO SET FOR THIS USER, IN CASE IT WAS
OFF WHEN USE~ MEDDLED, AN EXCEPTION IS MADE AND THESE
uuns ANO COMMAND ARE ALLOWED, IN SPITE OF MEDDLING, TF
THE USER HAPPENS TO HAVE THE ACCESS PRIVILEGES TO WRITE
iHF FILE WHICH INITIALI~ED THE SHARABLE SEGMENT. THUS A
SYSTEMS PROGRAMMER COULD LOG IN UNDER 111 AND PATCH
THE HIGH SEGMENT OF A SHARABLE CUSP WHILE IT WAS BEI~G
SHAR~D. MORE USEFULLY THIS EXCEPTION ALLOWS USERS TO WRITE
PROGRAMS WHICH ACCESS SHARABLE HIGH DATA SEGMENTS VIA THE
GETSEG UUOCWHICH IS MEDDLING) AND TH~N TURN OFF UWP USIN~
SETU~P UUO TO THAT STORES WILL NOT TRAP, IN THE
CASE OF DECTAPE, WRITE PRIVILEGE~ EXIST IF DECTAPE IS
ASSIGNED TO THIS JOB (CANNOT BE SYSTEM TAPE> OR NOT
ASSIGNED TO ANY JOB CANO IS NOT SYSTFM TAPE>, OTHER
NON-MEDDLING USERS CAN CONTINUE TO RUN THIS SHARED
PROGRAM WITH PEACE OF MINO, KNOWING THAT ONLY AUTHORJ~ED
USER'S OR THE PROGRAM ITSELF IS ALLOWED TO MODI~Y THE
SHARED SEGMENT THAT THEY ARE USING.

IN MULTICS THIS TECHNIQUE IS CALLED PROTECTED ENTRY
POINTS INTO A SHARED PROGRAM. IF CONTROL CAN ONLY BE
TRANSFERRED TO A SMALL NUMBER OF ENTRY POINTS WHICH THE
SHARED PROGRAM IS PREPARED TO HANDLE, THEN IT CAN 00
ANYTHING IT HAS THE PRIVILEGES TO DO, EVEN THOUGH THE
PERSON RUNNING THE PROGRAM DOES NOT HAVE THESE
PRIVILEGF.S.

THE ASSIGN CANO DEASSIGN, FINISH, KJOS IF DEVICE
PRFVIOUSLY ASSIGNEO BY CONSOLE) MONITOR COMMAND CLEARS
ALL SHARED SEGMENT NAMES CURRENTLY IN USE WHICH WERE
iNITIALirED rROM THAT DEVICE, IF THE DEVICE rs REMOVABLE
COTA,MTA), OTHERWISE NEW USERS COULD CONTINUE TO S~ARE
THE OLD SEGMENT INOEFINITELY, EVfN IF A NEWER VERSION
WERE MOUNTED ON THE DEVICE, OBVJOUSLY USERS WMO ARE IN
THE MIDDLE OF SHARING A SHARABLE SEGMENT WILL CONTINUE TO
DO SO UNTIL THEY ARE FINISHED, EVEN THOUGH THE SEGME~T
NAME HAS BEEN CLEARED, THEREFORE, IT IS POSSIBLE TO
UPDATE THE LIBRARY DURING REGULAR TIME SHARING, IF ONE

HAS THE COURAGE AND THE ACCESS PRIVILEGES. IN A DECTAPE
SYSTEM A NEW CUSP TAPE CAN BE MOUNTEO ~OLLOWED BY AN
ASSIGN SYS WHICH WILL CLEAR SEGMENT NAMES ~OR THE
PHYSTCAL DEVICE <USUALLY DTA0>, BUT NOT ASSIGN T~E DEVICE
SINCF EVFRYONE NEEDS TO SHARE IT,

13

8. SET USER~MOOE WRITE PROTECT UUO

IF A USER PROGRAM WISHES TO STORE INTO A HIGH SEGMENT, IT
WILL HAVE TO USE T~E SET llSER MOOE WRITE PROTECT UUO
CSETUWP>, THE SETUWP UUO ALLOWS THE USER PROGRAM TO S~T
OR CLEAR THE HARDWARE USER-MODE WRITE PROTECT BIT CUWP)
roR THAT JOB AND TO OBTAIN THE PREVIOUS SETTING. IF THE
SYST~M (MONITOR AND HARDWARE) HAS A TWO REGISTER
CAPARILITY. THIS UUO WILL ALWAYS GIVE THE OK RETURN
UNLESS THE USER HAS BEEN MEDDLING WITHOUT WRITP­
PRIVILEGES. WHETHER THE PROGRAM HAS A HIGH SEGMENT OR
NOT. THIS FOLLOWS DESIGN GOAL 14 WHICH ALLOWS USERS
TO wRITE PROGRAMS FOR TWO REGISTER MACHINES WHICH WILL
STILL RUN UNDER ONE REGISTER MACMINES, THEREBY MAINTAINING
COMPATIBILITY OF SOURCE AND RELOCATABLE BINARY CBUT NOT
SAVED FILES) BETWEEN PDP~10'S ANO PDP-6'S (QR PDP~10'S
WITHOUT SECOND RELOCATION REGISTER), IF THE SYSTEM HAS
ONLY A ONE REGISTER CAPABILITY, THIS UUO WILL ALWAYS GIVE
THE ERROR RETURN <BIT 35 OF AC=0 ON RETURN), THIS
ALLOWS THE RARE UStR PROGRAM TO FIND OUT WHETHER TME SYS•
TEM ~AS A TWO SEGMENT CAPABILITY OR NOT (PROBABLY ONLY
THE LOADER WILL WANT TO KNOW)·

THE USER PROGRAM SPEcirIES THE DESIRED SETTING o~ UWP IN
BIT 35 OF AC C1 MEANS WRITE PROTECT, 0 MEANS WRITES nK),
THE PREVIOUS SETTING OF UWP IS RETURNED IN BIT 35 OF AC,
SO THAT ANY USER SUBROUTINE CAN PRESERVE THE PREVIOUS
SETTING BEFORE CHANGING IT, THUS NESTED USER SUBROUTINES
CAN 8E WRITTEN WHICH EACH SET OR CLEAR UWP AS DESIRED,
P.ROVIDED THEY SAVE THE PREVIOUS VALUE RETURNED BV SETUWP
UUO AND RESTORE IT WHEN THEY RETURN TO THEIR .
CALLERS, THE ERROR RETURN WILL BE GIVEN IN A TWO
RELOCATION REGISTER SYSTEM, IF T~E USER HAS MEDDLED WITH
THE PROGRAM AND DOES NOT HAVE WRITE ACCESS PRIVILEGES,
SEE SECTION ON MODI~YING SHARABLE SEGMENT DURING EXECUTION.
THIS UUO MAY BE EXECUTED FROM THE LOW OR HIGH SEGMENT, AS
A CONVENIENC~, THE CALL CSIXBIT/RESET/J UUO WILL ALWAYS
SET THE USER MODE WRITE PROTECT ON IF A HIGH SEGMENT
EXISTS, WHETHER IT IS SHARABLE OR NOT, SO THAT PROGRAMS
ALWAYS BEGIN PROTECTED,

CALL AC, CSIXBIT/SETUWP/J
ERROR REiURN
OK RETURN

8.1 RESET UUO

CALLI AC,36

THE CALL CSIXBIT /RESET/J OR CALLI 0 UUO(WHICH EVERY USER
PROGRAM SHOULD BEGIN WITH> AUTOMATICALLY TURNS ON TH£
USER-MODE WRITE PROTECT BIT (UWP) SO THAT A PROGRAM
CANNOT INADVERTENTY STORE INTO THE HIGH SEGMENT, SEE SET
USER-MODE WRITE PROTECT UUO ABOV~.

14

9, THE ALLOCATION OF VIRTUAL CORE

THE 4 SERIES MONITOR CAN MAKE USE Or ALL OF THE SWAPPING
~PACE BY FRAGMENTING SEGMENTS WHEN SPACE RUNS OUT, THUS
THE MONITOR KEEPS TRACK OF THE TOTAL VIRTUAL CORE
ASSIGNED TO ALL JOBS, SHAREABLE SEGMENTS COUNT ONLY ONCE
AND nORMANT CSEE BELOW) no NOT COUNT AT ALL. THE MONITOR
WILL NOT ALLOW MORE VIRTUAL CORE TO BE GRANTED BY TH~
CORE UUO OR CORE COMMAND THAN THE SYST~M HAS CAPACITY TO
HANDLE. WHE~ THE MONITOR IS STARTED T~E UNUSED VIRTUAL
CORE IS SET EQUAL TO THE AMOUNT OF SWAPPING SPACE PRE•
ALLO~ATED ON THE DISK, THUS THERE IS ALWAYS ROOM TO SWAP
CUT. THE LARGEST POSSIBLE JOB IN CORE AND SWAP IN ANt)THER
J08. THE CORE COMMAND WITH NO ARGUMENTS WILL ?RINT THE
VIRTUAL CORE LEFT IN THE SYSTEM.

9.1 THE r.ORE UUO

IN ORDER TO ALLOCATE CORE IN EITHER OR BOTH SEGMENTS THE
LEFT HALF OF THE AC SPECIFIED IN THE CORE uuo WILL sr
USED TO SPECIFY THr HIGHEST USER ADDRESS TO BE ASSIGNED
IN THE HIGH SEGMENT, A LEPT HALF OF ~ERO WILL MEAN THAT
THE HIGH SEGMENT CORE ASSIGNMENT IS NOT TO BE CHANGED, A
NON-~ERO LEFT HALF LESS THAN 400~0~, OR THE LENGTH 0' TH£
Low SEGMENT WHICHEVER IS GREATER, WILL ELIMINATE THE
HIGH SEGMENT AND WILL ALWAYS BE LEGAL. OBVIOUSLY tr IT
IS EXECUTED FROM THE HIGH SEGMENT, THERE WILL BE AN
ILLEGAL MEMORY ERROR MESSAGE PRINTED WHEN THE MONITOR
A.TTEMPTS TO RETURN CONTROL T·O THE: ·y LLEGAL MEMORY, Tl-IE
ERROR RETURN WILL BE GIVEN I~ LH IS GREATER OR EQUAL TO
400000 AND EITHER SYSTEM DOES NOT HAVE TWO SEGMENT CAPA~
BILITY OR THE USER HAS BEEN MEDDLING WITMOUT WRITE ACCESS
PRIVILEGES - SEE SECTIQN ON MODI~YING SHARABLE SEGMENTS
DURING EXECUTION. THUS EXISTING PROGRAMS WILL CONTINUE
TO WORK SINCE THEY HAV~ 0 IN THE LErT HALr OF THE AC ON
CORE uuo•s. A RH OF 0 WILL CONTINUE TO LEAVE THE LOW
SEGMENT CORE ASSIGNMENT UNAFFECTED. THE MONITOR WILL
CLEAR NEWLY ASSIGNED CORE, SO THAT PRIVACY OF INrORMATION
WILL BE INSURED.

THE CORE UUO IS BEING CHANGED IN SWAPPING SYSTEMS SO THAT
!T WILL RETURN THE MAXIMUM NUMBER OF 1K CORE BLOCKS
AVAILABLE TO A USER. THIS WILL RE ALL OF CORE M?NUS THE
MONITOR, UNLESS AN INSTALLATION CHOOSES TO RESTRICT THE
AMOUNT USING MONGEN DIALOG AND/OR ONCE ONLY DIALOG, NON•
SWAPPING SYSTEMS WILL STILL RETURN THE NUMBER Or rRE£
+ DORMANT 1K BLOCKS, THIS MAKES THE UUO ANO THE CONSOLE
COMM~ND RETURN THE SAME INFORMATION, RESTRICTING TH£
MAXIMUM AVAILABLE USER CORE IMPROVES SYSTEM EFrICIENCY
BY INCREASING NUMBER Or JOBS IN CORE SIMULTANEOUSLY,

MOVE Ac,cxwo HIGH ADR OR 0,LOW AOR OR 0J
CALL AC,CSIXBIT /CORE/J OR CALLI AC,11
ERROR RETURN
NORMAL RETURN
CCAC>=MAX, NO, or 1K BLOCKS POSSIBLE rOR THIS USER

15

THE CORE UUO WORKS IN TWO DISTINCT STEPS, OF WHICH T~E
PROGRAMMER MUST BE AWARE. FIRST, THE LOW SEGMENT IS
REASSIGNED <IF RH NON-~ERO), ANO THEN THE HIGH SEGMENT
IS REASSIGNEDCIF LH NON-2ERO). DURING THE FIRST STEP IF THE SUM
OF THE NEW LOW SEGMENT AND THE OLD HIGH SEGMENT EXCEEDS THE
MAXIMUM SI~E OF CORE ALLOWED To A USER, THE ERROR RETURN IS GIVEN,
THF CORE ASSIGNMENT IS UNCHANGED, ANn THE MAXIMUM TOTAL OF CORE
AVAILABLE TO THIS USER FOR LOW AND HIGH SEGMENTS IN 1K BLOCKS
IS RETURNED IN THE AC, CFOR NON"SWAPPING SYSTEMS, THE NUMAER
OF FREE AND OORMANT 1K BLOCKS IS RETURNEQ). DURING THE
SECOND STEP IF THE SUM OF THE NEW LOW SEGMENT AND THE NEW
HIGH SEGMENT EXCEEDS THE MAXIMUM SI2E OF CORE ALLOWE~
TO A USER, THE ERROR RETURN rs GIVEN,THE NEW LOW SEGMENT
REMAINS ASSIGNED, BUT THE OLD HIGH SEGMENT IS UNCHANGED, AND
THE MAXIMUM POSSIBLE SI2E OF CORE FOR THIS USER IN iK BLOCKS
IS RETURNED IN THE AC, THUS A PROGRAM WHICH IS INCR~ASING THE
Low SEGME~T AND DECREASING THE HIGH SEGMENT AT THE SAME TIME,
SHOULD DO IT WITH TWO SEPARATE CORE UUO'S RATHER THAN JUST ONE,

IF THE NEW LOW SEGMENT IS SO LONG AS TO EXTEND BEYOND 377777,
THE HIGH SEG~ENT WILL BE SHIFTED UP IN THE VIRTUAL ADDRESSING
~PACE RATHER THAN BE OVERLAYED, SUBSEQUENTLY, Ir su~H A LONG
LOW SEGMENT IS SHORTENED TO 377777 OR LESS, THE HIGH SEGMENT
WILL BE SHIFTED DOWN IN THE VIRTUAL ADDRESSING SPACE TO 400000
RATHER TMN GROW LONGER IN LENGTH OR REMAIN WMERE IT WAS, OBVJ~
OUSLY IF THE HIGH SEGMENT IS A PROGRAM, IT WILL NOT EX[CUTE
~ROPERLY AFTER BEING SHifTEO, UNLESS IT GOES TO GREAT PAINS TO
BE A SELf-RELOCATING PROGRAM IN WHICH ALL TRANSrER INSTRUCTIONS
ARE INDEXED.

IF THE HIGH SEGMENT IS ELIMINATED BY A CORE UUO, A SUBSEQUENT
CORE UUO WIT~ THE LEFT HALF GREATER THAN 40000~ WILL CREATE
A NEW, NON-SHARABLE SEGMENT. SUCH A SEGMENT CAN ONLY BECOME
SHARED AFTER IT HAS BEEN NAMED BY THE APPROPRIATE ENTER UUO
TO HAVE AN EXTENSION ,SHR, WRITT~N ONTO THE STORAGE DEVICE
WITH OUTPUT UUOS, CLOSED SO THAT DIRECTORY ENTRY IS MADE,
AND INITIALI~EO FROM THE STORAGE DEVICE WITH
A GET, R, OR RUN COMMAND OR RUN OR GETSEG UUO. THIS IS PRECISELY

THE ~EQUENCE or EVENTS WHICH TME LOADER, SAVE ANO GET
USE TO CREATE AND INITIALI~E NEW SHARABLE SEGMENTS,

9.2. iHE CORE COMMAND

THE CORE CONSOLE COMMAND WILL NOT BE MODIFIED, IT WILL
CONTINUE TO OPERATE ON THE LOW SEGMENT ONLY, CORE
ALLOCATION SHOULD BE DONE BY PROGRAMS RATHER THAN
PEOPLE. ~OWEVER, A CORE 0 WlLl CAUSE BOTH THE LOW AN~ TH~
MIGH SEGMENT TO DISAPPEAR ~ROM THE JOBS VIRT.UAL
ADDRESSING SPACE, TME CORE COMMAND IS NOT CONSIDERED TO
BE MEDDLING. AS IN TME CORE UUO, THE MONITOR WILL CLEAR
NEW CORE BErORE ASSIGNING IT TQ THE USER,

THE CORE CONSOLE COMMAND WITH NO ARGUMENTS WILL TYPE BACK
MORE INrORMATION. roR MONITORS WITH TWO R£LOCAT?ON
REGISTER HARDWARE AND sorTWARE IT WILL RESPOND WITH:

16

L+H/M CORE
VIR. CORE LEFT=N
WHERE L=# 1K BLOCKS IN LOW S~GMENT
H=# 1K BLOCKS IN HIGH SEGMENT
M=MAX!MUM ~ORE AVAILABLE TO A USER.

(SWAP SYSTEMS=MAX PHYSICAL USER CORE UNLESS

tNb~~~~~~I~~s~t~~§f~t~>+ DORMANT CORE)
N=AMOUNT OF UNASSIGNED VIRTUAL CORE LEFT IN SYSTEM.

NON-S~APPING SYSTEMS WILL RESPONn WITH JUST:

LIM CORE

WHER(M:rREE+DORMANT CORE
IN ALL CASES THE NUMBER AFTER THE SLASH IS THE SAME AS THE
NUMB~R RETURNED IN THE USER'S AC FOR THE CORE UUO,

10, GET,R, RUN COMMANDS

GET WILL ALWAYS ASSIGN THE PROPER AMOUNT OF CORE CONE OR
TWO SEGMENTS> NO MATTER WHAT THE PREVIOUS CORE
ASSIGNMENT WAS, IT IJSED TO DO THI~ ONLY IF THE USER HAD
NO CORE. BECAUSE IT WILL FIRST GIVE BACK PREVIOUS CORE
TO M1NIMI2E SWAP TIME, GET FROM MAGTAPE MUST ALWAYS HAVE
A THIRD ARGUMENT SAYING HOW MUCH CORE POR LOW SEGMENT
(SINCE THERE IS NO DIRECTORY TO TELL LENGTH),

11, THE REMAP UUO

THE PEMAP uun WILL TAKE THE TOP PART OP A LOW SEGMENT AND
MAKE IT BE THE NEW HIGH SEGMENT. THE PREVIOUS HIGH
~EGMENTCIF ANY) WILL BE REMOVED FROM THE USER'S ADDRESSING
SPACF, THE LOW SEGMENT WILL BE AUTOMATICALLY SHORTENED BY
THE AMOUNT REMAPPED. THE AMOUNT REMAPPED MUST BE IN
MULTIPLES OF 1K DECIMAL WORDS. TO INSURE THIS THE MONITOR
WILL OR IN 1777 INTO THE USERS REQUE~T. IF THE ARGUMENT
EXCEFDS LOW SEGMENT, NO REMAPPING WILL OCCUR, THE OL~
MIGH SEGMENT WILL REMAIN IN ADDRrSSING SPACE, AND THE
ERROR RETURN WILL BE TAKEN, THE ERROR RETURN WILL ALSO
8E GIVEN IF THE SYSTEM DOES NOT HAVE TWO REGISTER
CAPABILITY,

MOVE! AC, DESIRED HIGHEST ADR IN LOW SE~
CALL AC, CSIXBIT /REMAP/J CALLI AC,37

ERROR RETURN
OK RETURN

WHERE AC CONTAINS THE NEW HIGHEST LEGAL ADDRESS IN LOW
SEGMFNT, AFTER THE PART ABOVE IT HAS BEEN REMAPPED INTO
THf HIGH SEGMENT, THE CONTENTS CF JOBREL WILL BE SET TO
THE NEW HIGHEST LEGAL RELATIVE <USER) ADDRESS IN LOW
SEGMENT, THE CONTENTS OF RH OF JOBHRL IN THE JOB DAT~
AREA WILL BE SET TO THE NEW HIGHEST LEGAL RELATIVE (USER)
ADDRESS (401777 OR GREATER OR 0), THE HARDWARE RELOCATION
WILL BE CHANGED AND UWP WILL BE SET ON.

17

THIS UUO HAS BEEN INCLUDED PRIMARILY FOR THE LOADER SO
tHAT IT CAN LOAD RE-ENTRANT PROGRAMS WMICH USE UP ALL or
PHYSICAL CORE. THE LOADER MIGHT EXCEED CORE IP IT HAO TO
ASSIGN MORE r.ORE AND MOVE THE DATA FROM THE LOW TO THE
HIGH SEGMENT WITH A BLT INSTRUCTION, GET WILL ALSO USE
REMAP, SO THAT IT CAN DO 1/0 INTO LOW SEGMENT RATHER T~AN
HIGH SEGMENT,

12, A RUN UUO, A~ALOGOUS TO THE RUN CONSOLE COMMAND, HAS
BEEN IMPLEMENTED SO THAT PROGRAMS CAN TRANSFER CONTROL TO
ONr ANOTHER, THIS UUO REPLACES BOTH THE LOW AND HIGH
S~GMENTS OF THE USER'S ADDRESSING SPACE WITH THE PROGRAM
BEING CALLEO.

MOVSI AC,STARTING ADDRESS INCREMENT
HRRI AC,ADR or 6 WORD ARG BLOCK
CALL AC,CSIXBIT /RUN/J OR CALLI AC,35
ERROR RETURNCUNLESS MALT IN LH)
CNGRMAL RETURN IS NOT HERE, BUT TO STARTING
ADDRESS + INCREMENT OF NEW PROGRAMJ

THE SIX ARGUMENTS ARE, THE LOGICAL DEVICE NAME IN SIXBIT,
A FILE NAME CEXTENSION AND PROJECT PROGRAMMER NUMBER ARE
OPT!0NAL) AND AN OPTIONAL CORE ASSIGNMENT,

E/ SIXBIT LOGICAL DEVICE NAME
E+1/ SIXBIT rILE NAME (FOR EITHER OR BOTH HIGH

AND LOW FILES>
E+2/ LH=SIXBIT EXTENSION rOR LOW rILE (IF 0,

.LOW ASSUMED IP HIGH SEG EXISTS AND ,SAV
ASSUMED IF NO HIGH SEG)

E+3/
E+4/ PROJECT-PROGRAMM(R NUMBER (IF 0, USE

CURRENT USER'S)
E+5/ RH =NEW HIGHEST USER ADDRESS TO BE ASSIGNED

TO LOW SEGMENT L~ IS IGNORED RATHER THAN
SETTING HIGH SEGMENT.>

USUALLY A USER PROGRAM WILL SPECIFY ONLY E AND E+1 ANO
WILL SET E+2, E+4, AND E+5 TO 0. THESE OTHER ARGUMENTS
HAVE BEEN INCLUDED FOR COMPLETENESS, NOTE THAT ~+1
THROUGH E+4 ARE SAME AS LOOKUP BLOCK,

UNFORTUNATELY, THE AC'S ARE DESTROYED BY THE RUN UUO SO
THAT ARGUMENTS CANNOT BE PASSED TO THE NEXi
PROGRAM, ALSO ALL THE USER !/O CHANNELS ARE RELEASEO, SO
THAT DEVICES CANNOT BE PASStD EITHER.

NOTE THAT PROGRAMS ON THE SYSTEM LIBRARY <CUSPS) SHOULD
BE CALLED BY USING DEVICE SYS WITH THE
PROJECT-PROGRAMMER NUMBER CE+4) OF 0 RATHER THAN OEVIC~
OSK AND PROJECT-PROGRAMMER NUMBER 1,1, THIS tS ~OR 2
REASONS I

1, THE LIBRARY MAY BE ON DECTAPE.

2, WE WANT TO MOVE THE CUSPS PROM 1,1 TO 1,3 COR
SOME OTHER ONE> SO THAT 1.1 IS ONLY TH~ MfO,

18

THE EXTENSION CE+2) SHOULD ALSO BE 0 SO THAT THE USER
PROGRAM DOES NOT NEED TO KNOW WHETHER THE CUSP IS
REENTRANT OR NOT
(EXTENSION .LOW VERSUS ,SAV>. TME LEFT HALF Or AC WILL

BE ADDED TO AND STORED IN THE STARTING ADDRESS Or TH£ NEW
PROGRAM (I.E. ADDEO TO CCJ08SA)) BEfORE TRANSFERRING
CONTROL TO THE NEW PROGRAM, THUS <CONTROL> C START WILL
RESTART PROGRAM AT THE SAME LOCATION AS SPECIPIED BY THE
RUN UUO, IN r,ASE THE USER WI SHES TO START THE CURRENT
CUSP OVER AGA~N. THE USER WILL 8E CONSIDERED TO BE
MEDDLING WITH THE PROGRAM IF TME LH OF AC IS NOT 0 OR 1,
SEE SECTION ON MODIFYING SHARABLE SEGMENTS DURING
EXFCUTION.

AS A SYSTEM WIDE CONVENTION, PROGRAMS WHICH ACCEPT
COMMANDS FROM A TELETYPE OR A FILE DEPENDING ON HOW THEY
ARE STARTED, WILL DO SO AS CONTROLLED BY THE CALLING
PROGRAM (I.E. PROGRAM DOING THE RUN UUO>. 0 IN LH OF" AC
MEANS TYPE * AND ACCEPT COMMANDS FROM TTY, ANO 1 MEANS
ACCEPT TMEM FROM A COMMAND FILE, 1r IT EXISTS, OTHERWISE
TYPE * AND ACCEPT COMMANDS FROM TTY, AS A CONVENTION SUCH
PROGRAMS SHOULD LOOKUP THEIR COMMAND rILE WITH NAME or
F"ORM ###III.TMP WHERE III IS Ho!E FIRST 3 (OR F'EWER IF"
3 00 NOT EXIT) OF THE CUSP DOING THE LOOKUP, "###" IS TH£
LAST 3 CHARACTERS OF THE DECIMAL CHARACTER EXPANSION
<WITM LEADING 0•S IF NECESSARY TO MAKE 3 CHARACTERS) OF"
THE BINARY JOB NUMBER, THE PURPOSE Or INCLUDING THE JOB
NUMBER IS TO ALLOW A USER TO RUN 2 OR MORE JOBS UNDER THE
SAME PROJECT-PROGRAMMER NUMBER.
EXAMPLE: 009PIP.TMP,039MAC.TMP. DECIMAL SHOULD
RE USED RATHER THAN OCTAL, SQ THAT A USER LISTING HIS
DIRECTORY WILL SEE THE SAME NUMBER AS THE PJOB COMMAND
TYPES. SUCH COMMAND FILES ARE TEMPORARY AND AR~ DELETED
SY LnGOUT SINCE THE EXTENSION IS ,TMP.

JROUTINE TO CREATE DECIMAL JOB NUMBER EXTENSION rROM JOB
NUMBER

LUP:

CALLI
MOVE!
ID IV t
ADDI
LSHC
SOJG
HLLM

.AC,30
T,3
AC112
AC+1, "0"·40
AC+1,-~

T1LUP
AC+2,E

JGET JOB# rRoM MONITOR
JINIT DIGIT COUNT
JGET RIGHT DIGIT INTO AC•1
:CONVERT TO SlXBtT
JSAVE DIGIT IN AC•2
JFORCE 3 DIGITS
JSAVE AS NAME CLH>

IN ORDER TO rACILITATE THE IMPLEMENTATION Or THE CONCISE
COMMAND LANGUAGE, THE RUN UUO WILL GIVE AN ERROR RETURN
WITH ONE OF 13 ERROR CODES IN AC Ir ANY ERRORS ARE
OETECTED, RATHER THAN STOPPING TME JOB AND PRINTING
A MONITOR ERROR MESSAGE, IN THIS WAY THE USER ~ROGRAMS
CAN ATTEMPT TO RECOVER rROM THE ERROR OR GIVE THE USER
~ MORE INFORMATIVE MESSAGE ON HOW TO PROCEED, BECAUSE
SOME USER PROGRAMS WILL NOT WANT TO GO TO THE BOTHER O~
ERROR RECOVERY (SAY DURING CHECKOUT>, THE MONITOR WILL
NOT GIVE AN ERROR RETURN Ir THE LH or THE ERROR. RETU~N
~OCATION IS A HALT INSTRUCTION. THIS ALSO ALLOWS TKE
CONSCIENTIOUS USER PROGRAM TO EXECUTE A SECOND RUN UUO
WITH A HALT Ir THE ERROR CODE IS ~OR AN ERROR ~OR WHICH
THE MONITOR MESSAGE IS SUFricIENTLV INrORMATtV~ ANO ~OR
WHICH THE USER PROGRAM CANNOT RECOVER,

19

THE FRROR CODES ARE AN E~TENSION OF THE LOOKUP ENTER, AND
RENAME UlJO ERROR CODES AND ARE DEFINED ON THE S,MAC
MONITOR FILE.

FNFERR 0
IPPERR 1
PRTERR 3
AErERR 4*
NLEERR 5*
TRNERR 6
NSFERR 7
NECEPR 10
DNAERR 11
NSDERR 12
ILUERR 13•

FILE NOT FOUND
INCORRECT PROJ-PROG NO. CNON"EXISTENT)
FILE BEING MODIFIED
ALREADY EXISTING FILE
NEITHER LOOKUP NOR ENTER
TRANSMISSION ERROR
NOT A SAVE FILE
NOT ENOUGH CORE
DEVICE NOT AVAILABLE
NO SUCH DEVICE
ILLEGAL UUO CGETSEG UUO ONLY ON 1 REG SYSTEM>

~NOT POSSIBLE ON RUN UUO,

THE MONITOR IS CAREFUL NOT TO ATTEMPT TO ERROR RETURN TO
A USER PROGRAM AFTER THE HIGH DR LOW SEGMENT CONTAINING
THE RUN UUO HAS BEEN OVERLAYED,

IN ORDER TO SUCCESSFULLY PROGRAM THE RUN UUO FOR ALL SI~E
SYSTEMS AND ALL CUSPS WHOSE Sl~E IS NOT KNOWN AT THE TIMr
RUN UUO IS CODED, IT IS NECESSARY TO UNDERSTAND THE
SEQUENCE OF OPERATION Of THE RUN UUO, CtT IS THE SAME AS
roR l.ET, R, ANO RUN COMMANDS, EXCEPT THAT THE COMMANDS
REMOVE THE OLD HIGH SEGMENT FROM THE LOGICAL ADDRESSING
SPACE AND REDUCE THE LOW SEGMENT TO 1K BEFORE PROCEEDING
WITH THE FOLLOWING,)

ASSUME THAT THE JOA EXECUTING THE RUN UUO HAS BOTH A LOW
AND A HIGH SEGMENT, (THE RUN UUO CAN BE EXECUTED FROM
EITHER SEGMENT, HOWEVER rEWER ERRORS CAN BE RETURNED TO
USER IF RUN UUO IS EXECUTED FROM HIGH SEGMENT,

STEPS 1-44 FOR RUN UUO, 1-31 FOR GETSEG UUO

1. DOES A HIGH SEG ALREADY EXIST BY SAME NAME? (IP YES,
GO TO 30)

2, INIT AN~ LOOKUP FILE NAME .SHR(IF NOT FOUND, GO TO 10),

3. READ HIGH FILE INTO TOP OF LOW SEGMENT BY EXTENDING IT,
CHERE THE OLD LOW SEG AND NEW HIGH SEG AND OLD MlGH SEG
MAY NOT EXCEED THE CAPACITY or CORE,)

4, REMAP THE TOP Or LOW SEGMENT REPLACING OLD HIGH SEG IN
LOGICAL ADDRESSING SPACE.

5, STORE NAME OF THIS NEW SHARABLE HIGH SEG SO QTH~RS
CAN SHARE <GO TO 40 OR RETURN TO USER Ir GETSEG UUQ),

10. LOOKUP rILE NAME .HGH, (IF NOT rOUNo, GO TO 35 OR ERROR
RETURN TO USER IF GETSEG UUO)

11. READ HIGH FILE INTO TOP OF LOW SEGMENT BY EXTENDING
IT. CHERE AGAIN THE OLD LOW SEG AND NEW HIG~ SEG AND
OLD HIGH SEG MAY NOT EXCEED TME CAPACITY OF CORE)

20

12. CHECK F0R IO ERRORS. CIF YES, ERROR RETURN TO U~ER
UNLESS HALT IN LH OF RETURN) (GO TO 41)

30. REMOVE OLD HIGH SEG FROM LOGICAL ADDRESSING SPACE,
IF ANY.

31. PLACE THE SHARABLE SEGMENT IN USER'S LOGICAL ADDRESSING
SPACE (GO TO 40 OR RETURN TO USER Ir GETSEG UUQ),

35. REMOVE OLD HIGH SEG FROM LOGICAL ADDRESSING SPACE,
IF ANY, CGO TO 41)

40. COPY VESTIGIAL JOB DATA AREA INTO JOB DATA AREA,
DOES THE NEW ~IGH SEG HAVE A LOW FILE CLH JOBCOR>137),
CIF NO, GO TO 45)

41. LOOKUP rrLE NAME,SAV OR .LOW OR USER SPECIFIED
<ERROR IF NOT FOUND, RETURN TO USER IF CALL FROM
LOW SEG ANO NOT HALT IN L~ OF ERROR RETURN),

42. REASSIGN LOW SEG CORE ACCORDING TO SI~E OF
FILE OR USER SPECIFIED CORE ARGUMENT WHICHEVER tS
LARGER, PREVIOUS LOW S[GMENT IS OVERLAYED

43. READ IN LOW FILE. INTO BEGINNING or LOW SEGMENT

44. CHECK FOR IO ERRORS <YES, PRINT ERROR MESSAGE,
DO NOT RETURN TO USER>

45. REASSIGN LOW SEGMENT CORE ACCORDING TO LARGER O~
USER'S CORE ARGUMFNT OR ARGUMENT WHEN FILE SAVED
CRH JOBCOR)

IN ORDER TO ALWAYS BE GUARANTEED OF HANDLING THE MOST
NUMB~R O~ ERRORS, THF. CAUTIOUS USER SHOULD REMOVE HI~
MIGH SEGMENT FROM HIGH LOGICAL ADDRESSING SPACE (USE CORE

UUO WITH A ONE IN LH OF AC). T~E ERROR HANDLING CODE
SHOULD BE PUT IN Tj..jE LOW SEGMENT ALONG WITH THE RUN UUO
AND THE Sl~E OF OF THE LOW SEGMENT REDUCED TO 1K, AN EVEN
BETTER IDEA wOULD BE TO ~AVE THE ERROR HANDLING CODE BE
WRITTEN ONCE ANO PUT lN A SELDOM USED <PROBABLY ~ON­
SHARABLE) HIGH SEGMENT WHICH COULD BE GOTTEN IN MIGH
SEGMENT USIN~ GETSEG UUO <SEE BELOW) WHEN AN ERROR
RETUPN OCCURS TO LOW SEGMENT ON A RUN UUQ,

13, A GETSEG UUO<CALLI 40) HAS BEEN IMPLEMENTED SO THAT JUST
A HIGH SEGMENT CAN BE INITIALl~EO FROM A FILE OR SHARED
WITHOUT AFFECTING THE LOW SEGMENT, T~IS UUO IS BEING
f MPLEMENTED FOR SHARED DATA SEGMENTS AND SHARED PROGRAM
OVERLAYS. IT IS ALSO BEING USED FOR RUN TIME ROUTINES
SUCH AS FORTRAN OR COBOL OPERATING SYSTEMS CRUT NOT THE
SELECTIVE LIBRARY ROUTINES> THIS UUO WORKS EXACTLY LtKr
THE RUN UUO EXCEPT THAT

1) NO ATTEMPT IS MADE TO READ A LOW rlLE.

21

2) NO CHANGE IS MADE TO LOW SEGMENT OR JOB DATA
AREA EXCEPT BOTH HALVES OF JOBHRL,
(ONLY JOBDAT LOCATIONS DESCRIBING HIGH SEGMENT)

3> IF AN ERROR OCCURS CONTROL IS RETURNED TO THE
ERROR RETURN, UNLESS LH=~ALT,

4) IF EVERYTHING CK, CONTROL IS RETURNED 2 LOCATIONS
rOLLOWING UUO WHETHER IT IS CALLED FROM LOW OR
HIGH SEGMENT, (SO GENERALLY IT SHOULD BE CALLED
FROM LOW SEGMENT UNLESS THE NORMAL RETURN HA~PENS
TO COINCIDE WITH THE STARTING ADDRESS OF THE NEW
HIGH SEGMENT.)

5) SEE STEPS 1 THROUGH 31 IN RUN UUO DESCRIPTION,

6) USER CHANNELS 1 THRU 17 ARE NOT RELEASED,
THIS IS SO GETSEG UUO CAN BE USED FOR PROGRAM
OVERLAYS SUCH AS COBOL COMPILER, CHANNEL 0
IS RESET ANO USED BY THE GETSEG UUO,

14, FOR EFFICIENT EXAMINING OF THE MONITOR. A SPY UUO HAS
REEN IMPLEME~ITED WHICH PLACES ANY NUMBER or K OF PHY~ICAL
CORE IN THE USER'S HIGH ADDRESSING SPACE, THE SO-CALLED
SPY SEGMENT CANNOT BE ~AVED <NO ERROR IF TRIED), ~ANNOT
BE INCREASED OR DECREASED RY CORE UUQ, (ERROR RETURN) ANO
CANNnT HAVE UWP TURNED OFF <ERROR RETURN>,

MOVEI AC, HIGHEST PHYSICAL CORE LOCATION DESIRED
CALL AC, CSIXBIT /SPY/J OR CALLI AC,42
ERROR RETURN (DO NOT HAVE PRIVILEGES)
OK RETURN

ANY PROGRAM WRITTEN TO USE SPY UUO SHOULD TRY ?Et.K UUO Ir
IT GETS AN EPROR RETURN rRCM SPY UUO. THIS PROGRAM WILL
STILL RUN, ALTHOUGH LESS EPFICIENTLY, ON PDP-6'S AND
POP-10'5 WITHOUT KT10A OPTION.

15, SUPERCEOING SEGMENTS AND RELEASE UUO

OCCASIONALLY IT WILL BE DESIRABLE TO SUPERCEOE A SHARABL~
PROGRAM OR DATA SEGMENT WHICH IS IN THE PROCESS OF BEING
SHARED BY A NUMBER OF USERS CSEE DESIGN GOAL 11).
WHENEVER A SUCCESSFUL CLOSE OUTPUT UUO OR RENAME UUO IS
EXECUTED FOR A FILE WITH THE SAME DIRECTORY NAME ANO 7ILE
NAME <PREVIOUS NAME Ir RENAME UUO> AS A SEGMENT BEING
SHARED, THE SEGMENT'S NAME WILL BE SET TO 0, SO THAT NO
NEW USERS CAN SHARE THE OLDER VERSION WHEN THEY DO AN
R, RUN, GET COMMAND OR RUN, GETSEG UUO. INSTEAD THEY WILL
~TART SHARING THE NEWER VERSION WHICH WILL REQUIRE
THE MONITOR TO READ THE NEWLY CREATED rILE ONCE TO
INITTALI2E THE NEWER SEGMENT. TME OLDER SEGMENT WILL
BE DF.LETED WHEN ALL THE USERS AR£ rtNISHED SHARING IT,

22

16, USING THE LINKING LOADER

ONE nF THE OF.SIGN GOALS OF WRITING REENTRANT USER
SOFTWARE, IS TO MINIMI~E THE EFFORT REQUIRED TO SUPPORT
RE-ENTRANT SOFTWARE WHICH MUST ALSO RUN ON A MACHINE
HAVING ONLY ~SINGLE RELOCATION REGISTER (PDP-6), TO
00 THIS, BOTH THE SOURCES AND RELOCATABLE BINARIES CAN
RE THE SAME FOR A PROGRAM WHICH WANTS TO BE REENTRANT ON
THE POP-10 BUT WHICH ALSO SHOULD RUN ON THE POP-6,

THE DECISION THAT A PROGRAM WRITTEN TO BE RE-ENTRANT IS
TO 8~ ONE SE~MENT INSTEAD OF TWO CAN BE POSTPONED TO
LINKING LOAD TIME (RATHER THAN EARLIER AT CODING QR
ASSEMBLY TIME). THUS, THE LOADER WILL HAVE A SWITCH
CH MEANING NO HIGH SEGMENT), WHICH WILL BE USED ONLY WHEN
A TWO SEGMENT PROGRAM IS TO BE LOADED INTO ONE
SEGM~NT INSTEAD OF THE USUAL TWO. ORVIOUSLY, ONE SEGMENT
?ROGRAMS WILL CONTtNUE TO BE LOAOEO INTO ONE SEGMENT AND
THE H SWITCH WILL NOT AE REQUIREn. IT IS HOPED THAT OUR
cusrnMERS WILL FOLLOW THIS PRACTICE ALSO,

TO FURTHER MINIMI~E THE USE OF THE H SWITCH ON SINGLE
REGISTER MACHINES, THE LOADER WILL CHECK TO SEE IF THE
SYSTF.M HAS THE TWO SEGMENT CAPABILITY, Ir THE MONITOR
HAS A TWO SEGMENT CAPABILITY, BUT, THE MACHINE DOES NOT,
THE SYSTEM WILL BEHAVE AS IF IT DOES NOT, IP IT DOES
NOT, THE LOADER WILL AUTOMATICALLY LOAD A TWO SEGMENT
PROGRAM INTO JUST ONE SEGMENT, JUST AS IF THE USER HAO
TYPEn THE H SWITCH. THUS, THE ONLY USE or THE H SWITCH
WILL BE TO LOAD A TWO SEGMENT PROGRAM ON A TWO SEGMENT
SYSTFM WHICH rs INTENDED TO RUN ON A ONE SEGMENT
SYSTEM. TO FIND OUT IP THE SYSTEM HAS A TWO SEGMENT
CAPARILITY, THE LOADER WILL USE THE CALL SETUW? UUO ANO
iTTEMPT TO SET ITS USER MODE PROTECT BIT TO ONE CEVEN IF
IT DOESN'T HAVE A HIGH SEGMENT), AN ERROR RETURN WILL
tNDICATE THAT THE SYSTEM HAS ONLY A SINGLE REGISTER
CAPARILITY. NOTE THAT ON A ONE S~GMENT SYSTEM, THE
LOADER WILL NOT BE ABLE TO PRODUCE A TWO SEGMENT PROGRAM
ANO THE MONITOR WILL NOT BE ABLE TO SAVE IT AS TWO S~GMENTS,

SINCE THE DECISION AS TO WHETHER A RE-ENTRANT PROGRAM IS
NOT GOING TO BE LOADED INTO A HIGH SEGMENT WILL BE
POSTPONED TO LINKING LOAD TIME, THE CODE EXECUTEO CIN•
CLUOING MONITOR uuo•s) WILL BE THE SAM~ rOR EITHER CASE.
THE MONITOR uuo•s HAVE BEEN DESIGNED WITH THIS OBJECTIVE
IN MIND; ANY INCONSISTENCIES IN THE MONITOR UUO SHOULD
BE POINTED OUT SO THAT THEY CAN SE FIX~O.

17, ASSEMBLER PSEUDO-OP~HISEG

EACH SUBPROGRAM ASSEMBLED BY MACRO MUST BE EITHER LOADED
£NTIRELY INTO THE LOW SEGMENT OR ENTIRELY INTO THE HIGH
SEGMENT, TO INDICATE THAT A SUBPROGRAM IS TO BE LOADEO
INTO THE HIGH SEGMENT, USE THE HJSEG PSEUDO-OP ANYWH£R~
IN T~E PROGRAM. (AT THE BEGINNING IS BEST SINC£ IT T£LLS
THE READER THAT THIS IS DESTINED FOR THE HIGH
SEGMENT,) MACRO GENERATES BLOCK TYPE 3 NEAR THE
BEGINNING OF THE BINARY OUTPUT W~ICH TELLS THE LOADER TO
LOAD THIS SUBPROGRAM INTO THE HIGH SEGMENT,

23

18, MODIFICATIONS TO LINKING LOADER

THE LOADER IS ITSELF REENTRANT, SO THAT ITS INSTRUCTIONS
EXIST IN THE HIGH SEGMENT.
THE LOADER HAS BEEN MODIFIED TO LOAD TWO SEGMENTS INSTEAD

OF ONE. HOWEVER, SINC(BOTH SEGMENTS ARE DATA WITH
RESP~CT TO THE LOADER, THE TWO SEGMENTS MUST BOTH EXIST
IN T~E LOW SEGMENT DURING LOAD TIME, THUS, THE LOAD£R
MUST DUPLICATE THE FOLLOWING LOAnER VARIABLES, AND HAVE
ONE FOR EACH SEGMENT.

ORIGIN 1LOW=14~. HIGH=400010)
OFFSET
LOCATION COUNTER

THE LOADER LOADS AN ENTIRE RELOCATABLE SUBPROGRAM INTO
THE HIGH SEGMENT OR LOW SEGMENT DETERMINED BY WHETHER
THEY CONTAIN A HISEG PSEUDO-OP OR NOT. ~URTHERMORE, ALL
SUBPROGRAMS TO BE LOADED INTO THE LOW SEGMENT MUST BE
LOADED BEFORE ANY SUBPROGRAMS ARE LOADED INTO THE HIGH
SEGMENT. IF THE LOAnER ENCOUNTERS A SUBPROGRAM (OF NON·
rERO LENGTH)WITHOUT HISEG PSEUDO-OP AFTER IT HAS SEEN
ONE WITH HISEG PSEuoo~op, IT WILL PRINT THE FOLLOWING
~RROR MESSAGE:

LOW SEG PROG XXXXXX PRECEDED BY HISEG PROG

AN REINITIALI~E ITSELF SO THAT NO PROGRAMS HAVE BEEN LOADED.
THE FXCEPTION rOR 0 LENGTH FILES TO BE OUT OF ORDER rs so
THAT JOBOAT CAN BE LOADED DURING USUAL LIBRARY SEARCH ArTER
SOME HIGH ROUTINES HAVE BEEN LOADED.

SINCE VERY OCCASIONALLY IT WILL BE DESIRABLE TO LOAD
A PROGRAM IN WHICH THE LOW SEGMENT IS LONGER THAN 400000
OCTAL WORDS, THE SWITCH NNNNNNH ALLOWS THE USER TO CHANGE
THE ORIGIN O~ THE HIGH Sf~MENT FROM ITS INITIAL SETTING
OF 400000 TO NNNNNN, WHERE NNNNNN SHOULD BE
LARGER. RECALL THAT IF NNNNNN IS MISSING, THE LOADE~
WILL LOAD EVERYTHING INTO THE LOW SEGMENT,

AFTER LOADING IS COMPLETE, THE REENTRANT LOADER WILLI

1> SET LH OF JOBHRL IN THE JOB DATA AREA TO TME NEW
HIGHEST RELATIVE USER ADDRESS (RELATIVE TO HIGM SEGMENT
ORIGIN> IN HIG~ SEGMENT, OR 0 Ir NO HIGH SEGMENT.

2) SET THE LH or JOBCOR TO THE ~IGHEST LOCATION IN LOW
SEGMENT LOADED WITH NON-~ERO DATA,

3) EXCHANGE THE SYMBOL TABLE WITH THE ~ART DESTINED FOR
THE HIGH SEGMENT

4) USE REMAP uuo TO MAKE TOP PART or LOW SEGMENT WHICM
CONTAINS THE INT~NDED HIGH SEGMENT REPLACE THE LOADER AS
THE HIGH SEGMENT.

5) CALL EXIT OR START UP PROGRAM,

24

19, USING DDT

DOT CLEARS A~D SAVES UWP USING SETUWP BEFORE WRITING INTO
A HI~H SEGMENT WHICH CAN BE SHARABLE (PROVIDED THAT THE
USfR HAS NOT MEDDLED WITH THE PROGRAM UNLESS HE HAS WRITE
PRIVILEGES>. HOWEVER, THE BEST WAY TO DEBUG A SHARAeLE
PROGRAM IS TO MAKE A PRIVATE COPY:

GET
SAVE
GET

SYS
OSK
OSK

CUSP
CUSP
CUSP

IN FACT IT IS A BAD IDEA TO PUT A CUSP IN sys
DIRECTORY WHICH HAS A DOT IN IT, SINCE A MALACIOUS
USER COULD MODIFY THE SHARABLE HIGH SEGMENT USING
DOT. DOT WILL RESTOqE UWP BEFORE EXECUTION. DDT WILL
NOT RE RE-ENTRANT INITIALLY ANO SO WILL BE LOADEn INTO
LOW SEGM~NT. THE SYMBOL TABLE WILL CONTINUE TO RE AT THE
TOP OF THE LOW SEGMENT,

20, JOB nATA AREA(JOBDAT)

THE SYMBOLIC LIBRARY FILE WHICH DEFINES THE USER'S JOB
CATA AREA <FIRST 140 LOCATIONS) HAS ONE NEW ENTRY,

LOCATION J08HRL=115 IS ANALOGOUS TO JOBREL AND ITS
RH CONTAINS THE HIGHEST LEGAL USER ADORrss IN THE HIGH
SEGMFNT. OBVIOUSLY IT IS GREATER THAN OR EDUAL TO 401777,
UNLESS THERE IS NO HIGH SEGMENT, IN WHICH CASE IT WILL BE
~. THE RH OF JOBHRL IS SET BY THE MONITOR (LIKE JOBREL
WHOSE LH IS ALWAYS 0) EVERY TIME THE USER STARTS TO RUN,
OR on.ES A CORE QR REMAP uuo. THE PROPER WAY TO TEST xr
A HIGH SEGMENT EXISTS IN THE ADDRESSING SPACE JS TO TEST
IF JOBHRL IS NON-~ERO (BOTH HALVES>. NOTE THAT THIS
IS A MUCH DIFFERENT TEST THAN WHETHER OR NOT THE SYSTEM
HAS A TWO REGISTER CAPABILITY. <SEE SETUWP UUO),

THE LH OF JOBHRL=115 IS ANALOGOUS TO JOBFF AND CONTAINS
THF FIRST RELATIVE FREE LOCATION IN THE HIGH SEGMENT,

(RELATIVE TO THE HIGH SEGMENT ORIGIN SO IT IS SAME AS
~IGH SEGMENT LENGTH), THE LH OF JOB~RL IS SET BY THE
LINKING LOADER AND SUBSEQUENT GETS, EVEN IF THERE IS NO
FILE TO INITIALI~E THE LOW SEGMENT.

THE REASON THAT THE LH IS A RELATIVE QUANTITY IS THAT TH~
SAME SHARED SEGMENT CAN APPEAR AT DIFFERENT USER ORIGINS
AT T~E SAME TIME, THE SAVE COMMANn USES THIS QUANTITY TO
KNOW. HOW MUCH TO WRITE FROM THE HIGM SEGMENT CALL I~
WRITTEN IF LH=0 (LIKELY IF USER CREATED HIGH .SEG USING
CORE OR REMAP UUOS), .

THE RH OF JOBERR C=42) WILL BE USED TO PASS THE
ACCUMULATED ERROR COUNT FROM ONE CUSP TO THE NEXT DURING
A CCL SEQUENCE OF CUSPS, THE LH WILL NOT BE USED AND
WILL BE SAVED FOR FUTURE EXPANSION, SO CUSPS SHOULD qE
WRITTEN TO LOOK ONLY AT THE RH OF JOBERR, EVEN T~OUGH
THIS MEANS ANOTHER INSTRUCTION,

25

THr VERSION ~UMBER OF A CUSP WILL BE STORED IN THE
RH LOCATION JOBVER(:137) SO THAT THE E COMMAND CAN BE
USED TO FINO THE VERSION NUMBER AFTER A GET, R, OR
RUN. THE LH WILL CONTAIN THE PROGRAMMER NUMBER or THE
PROGRAMMFR WHO LAST MADE A CHANGE CTHE PERSON WHO
INCREASEn THE RH), DIGITAL WILL ALWAYS nISTRIBUTE CUSPS
WITH THE LH:0, SO IT IS SUGGESTED THAT CUSTOMERS MAKING
MODirICATIONS TO CUSPS, CHANGE ONLY THE LH, SO THAT THE
RH RFMAINS A~ A RECORD or THE DEC VERSION

THE LOADER USES 3 CONSECUTIVE LOCATIONS (J088Li=45) IN
THE JOB nATA AREA WHIC~ THE USER WOULD NEVER WANT TO LOAD
INTO. THE LOADER PUTS A BLT INSTRUCTION AND A CALLI UUO
TO MOVE THE PROGRAM DOWN ON TOP OF THE LOADER, THESE
LOCATIONS ARE DESTROYED ON EVERY EXEC UUO BY THE EXEC
PUSH DOW~ LI ST,
CHAIN PROGRAM (FORTRAN RUNTIME ROUTINE> NEEDS 6 TEMP LOCATIONS
IN JOB DATA AREA FOR ITS OVERLAY, SINCE CHAIN ALWAYS
RELEASES ALL IO CHANNELS, J08CN6:106 IS OEPINED TO
8E IN JOBJDA TABLE,

JOBERR=42

JOBCOR=133

JORVER=137

J08BLT=45

JOBCN6=106

:LH UNUSED AT PRESENT, RH CUSP ACCUMULATED
;ERROR COUNT
JLH=FIRST FREE LOC <RELATIVE> IN HIGH SEG,
;RH=HIGHEST LEGAL AOR IN HIGH SEG
;LH=HIGHEST LOC IN LOW SEG LOADED WITH
JNON-~ERO DATA, SET BY LOADER RH•USER
;ARG ON LAST SAVE OR GET COMMAND, SET
;BY MONITOR
JLH=PROGRAMMER NO, MAKING
;CHANG, RH=VERSION NUMBER
;3 LOCATIONS WHERE T~E LOADER CAN PUT
;INSTRUCTIONS TO MOVE PROGRAM
JDOWN ON TOP or ITSELF. THESE
JLOCS DESTROYED ON EXEC UUOS.
;6 LOCATIONS USEO BY CHAIN ArTER
;IT RELEASES ALL IO CHANNELS

THERE ARE A FEW "CONSTANT" DATUM IN THE JOB DATA AREA
WHICH A TWO-SEGMENT, ONE FILE PROGRAM MIGHT LIKE TO LOAD
WITHOUT HAVING TO USE INSTRUCTIONS ON A GET:

JOB41
JOB REN

JOB VER

JUSER L0CATION41
JRH IS REENTER STARTING ADDRESS
JLH IS UNUSED <SET TO 0) SAVE roR
J F U T URE E X PAN s. I 0 N
JRH IS V~RSION NUMBER, LH IS
JPROGRAMMER NO. Or PROGRAMMER
JWHO LAST CHANGED THE PROGRAM,
JOR CUSTOMER SUB-VERSION NUMBER

AND THERE ARE A NUMBER Or LOCATIONS WHICH THE MONITO~
MUST LOAD ON A GET,

26

J08SA

J08COR

JOBHRL

;LH=FIRST FREE LOC IN LOW SEG

;RH=STARTING ADDRESS
;LH=LAST LOC IN LOW SEG WITH DATA

<SET BY LOADER)
;RH=SI2E OF CORE TO BE ASSIGNED
JON GET CSAVE'S THIRD ARG Ir ANY
JOR Sl~E or r.oRE NEE~ED)
;LH=FIRST FREE LOC IN HIGH SEG
;RELATIVE TO ITS USER ORIGIN, I,E,
;LENGTH

IN ORDER TO DO THIS, THE FIRST 10 (OCTAL) LOCATIONS OF
HIGH SEGMENT WILL BE RESERVED FOR THESE LOW SEGMENT
CONSTANTS. THUS, A HIGH PROGRAM WILL BE LOADED BY THE
LOADER INTO 400010 INSTEAD OF 400000,

WITH THE VESTIGIAL DATA AREA IN THE HIGH SEGMENT, THE
MONITOR WILL AUTOMATICALLY LOAD THE ABOVE CONSTANT
DATA INTO THE JOB DATA AREA WITHOUT REQUIRING A LOW
rrLE ON A GET,R,RUN COMMAND QR RUN UUOCBUT NOT GETSEG
UUO). SAVE WILL WRITE A LOW FILE FOR A TWO SEGMENT
PROGRAM ONLY IF THE LH OF JOBCOR <HIGHEST LOCATION
LOADED WITH DATA BY LOADFR) IS 14i OR GREATER4 SEE
EXAMPLE BELOW WHICH SETS VERSION NUMBER, SINCE NO
nATA WAS LOAOED ABOVE 137, SAVE WOULD NOT WRIT~ LOW
FILE. JOBHRL IS SET BY THE LINKING LOADER AND SUB•
SEQUENT GETS, EVEN I~ THERE IS NO FILE TO INITIALI~E
THE LOW SEGMENT,

21, WRITING REENTRANT USER PROGRAMS

A. DEFINING VARIABLES AND ARRAYS FOR THE LOW SEGMENT

THE LOADER SIMPLIFICATION MAKES IT SOMEWHAT MORE
DIFFICULT TO DEFINE VARIABLES ANO ARRAYS, THE EASIEST
WAY TO DEFINE VARIABLES AND ARRAYS SO THAT THE RESULTING
RELOCATARLE AINARY CAN BE LOADED ON A ONE OR TWO S~GMENT
MACHINE, IS TO PUT THEM ALL IN A SEPARATE SUBPROGRAM AS
INTERNAL GLOBAL SYMBOlS USING BLOCK 1 AND BLOC~
N PSt.UDO-OPS. ALL OTHER SUBPROGRAMS MUST RErER TO THE
DATA AS EXTERNAL GLOBAL LOCATIONS, THUS, MOST REENTRANT
PROGRAMS WILL HAVE AT LEAST TWO SUBPROGRAMS, ONE rOR
OEFINITION or LOW SEGMENT LOCATIONS ANO THE OTHER <NEEOS
HISEG PSEUDO-OP> rOR INSTRUCTIONS AND CONSTANTS roR TH£
MIGH SEGMENT, SINCE PROGRAMS MUST BE SEL~ INITIALI~ING,
THEY MUST CLEAR THE LOW SEGMENT WHENEVER THEY
ARE STARTED, (EVEN THOUGH THE MONITOR CLEARS CORE WH£N•
EVER IT ASSIGNS IT TO A USER,)

USING BLOCK 1 AND BLOCK N PSEUDO-OPS WILL CAUSE TH~
LOADER TO LEAVE TRACKS IN THE JOB DATA AREACLH or JOBCOR)
SO THAT A MONITOR SAVE COMMAND WILL NOT NEED TO WRIT~ TH~
LOW SEGMENT, SINCE IT CONTAINS NO INSTRUCTIONS, DATA, OR
CONSTANTS, THIS IS ADVANTAGEOUS IN SHARABLE PROGRAMS FOR
TWO REASONS, IT REDUCES THE NUMB~R or ~ILES IN OUR SMALL
DECTAPE DIRECTORIES (22 FILES MAXIMUM) ANO MOR~
IMPORTANT IT MEANS THAT I/O MUST BE DONE ONLY rOR THE
rIRST USER'S GET (TO INITIALI~E HIGH SEGMENT) BUT NOT ro~
ANY ~UBSEQUENT USER'S GETS
<EITHER HIGH OR LOW SEGMENT.)

27

AN EXAMPLE O~ A REENTRANT PROGRAM:

LOW SEGMENT SUBPROGRAM:

TITLE LOW - EXAMPLE OF LOW SEGMENT SUB-PROGRAM

JOBVER=137
LOC JOBVER
3 ;vERSION3
RELOC f2l
INTERNAL LOW8EG,OATA,DATAl10ATA2,TABLE,TABLE1

LOWBEG:
DA TA:
DATA1:
DA TA2:

RLOCK
RLOCK
RLOCK

TABLE: RLOCK
"!'ABLE1: BLOCK
LOWEf\!D=. -1

END

1
1
1

JLAST LOCATION TO BE CLEARED

HIGH SEGMENT SUBPROGRAM:

TITLE HIGH - EXAMPLE OF HIGH SEGMENT SUB-PROGRAM

8EGP.J:

HISEG
EXTERN
T=1
SEHM
MOVE I
HRLI
BLT
MOVE
ADDI
MOVEM T,

•
END

LOWBEG', LOWEND

LOWBEG
T1LOWBEG+1
T,LOWBEG
T,LOWEND
T,OATAl
1, 1,
DATA2

JCLEAR DATA AREA

JCOMPUTE

BEGIN JSTARTING ADDRESS

VERY FEW REENTRANT PROGRAMS REQUIRE THAT SOME LOCATIONS
IN THE LOW SEGMENT CONTAIN SOME "CONSTANT" DATA WHICH
DOES NOT CHANGE DURING EXECUTIQN, WMILE THIS ?RACTICE IS
TO BE DISCOURAGED, OCCASIONALLY THERE ARE GOOD R~ASONS
FOR IT (AN INITIAL ASSEMBLER SYMBOL TABLE), SINCE THE
INITIALI~ATION OF THIS "CONSTANT" DATA NEED HAPPEN ONLY
ONCE ArTER EACH GET RATHER THAN AFTER EACH START, THE
TEMPTATION IS TO PUT

THESE CONSTANTS INTO THE SAME SUBPROGRAMS AS THE ONE
CONTAINING THE OErINITION OF THE VARIABLE DATA LOCATIONS.
~OWEVER, THIS WOULD REQUIRE THAT SAVE WRITE THEM OUT ANO
GET LOAD THEM BACK IN AGAIN. SO, SUCH CONSTANT DATA
SHOULD SE MOVED BY THE PROGRAMS rROM THE HIGH SEGMENT TO
THE LOW SEGMENT AT THE SAME TIME THAT THE REST Or THE LOW
SEGMENT IS BEING INITIALI2ro WHENEVER THE PROGRAM IS
STARTED. CTHE EXTRA EXECUTION TIME IS NEGLIGIBLE,)
OBVIOUSLY TH~RE IS AN EXCEPTION TO THIS RULEJ Ir THE
AMOUNT Or CODE AND CONSTANTS IN THE HIGH SEGMENT NEEOEO

28

TO INITIALI2E LOW SEGMENT CONSTANTS TAKES UP TOO MUCH
ROOM IN THE HIGH SEGMENT, IT IS SETTER TO SUFFER T~E
PENALTY OF I/0 INTO THE LOW SEGMENT ON EACH GET.

A SIMPLE RULE OF THUMB TO DECIDE BETWEEN THIS HIGH
SEGMFNT CORE SPACE VS LOW SEGMENT GET I/O TIME TRADEOFF
IS Tn PUT THE CODE IN THE HIGH SEGMENT IF IT DOESN'T PUT
THE HIGH SEGMENT OVER THF NEXT 1K BOUNDARY,

8, A ~ORE CONVENIENT WAY TO WRITE REENTRANT PROGRAMS

V2 A SECOND WAY OF WRITING SINGLE SAVE FILE REENTRANT PROGRAMS MAS
V2 SEEN DEVELOPED IN WHICH THE SOURCE FILE CAN BE A SINGLE rILE
V2 INSTEAD OF TWO SEPARATE ONES AS INDICATED IN THE DISTRIBUTED
V2 RENNON.MAN WRITEUP (100-118-005-01),

V2 THIS MEMO IS BEING PRINTED IN THE SOFTWARE BULLETIN WHICH GOES
V2 TO ALL CLJSTOMERS EVERY TWO WEEKS AND WILL BE ADDED TO RENMON,MAN
V2 iO MAKE 100-118-005-02,

V2 THE NEW TECHNIQUE IS MORE CONVENIENT, ALTHOUGH IT oars INVOLVE
V2 CONDITIONAL ASSEMBLY ANO THEREFORE PRODUCES TWO O!FF~RENT
V2 RELOtATABLE BINARIES, A NUMBER nF CUSPS HAVE BEEN WRITTEN
V2 THIS WAY CTECQ, LOGIN, LOGOUT, SRCCOM, CREP),

V2 THE IDEA IS TO HAVE A CONDITIONAL SWITCH, SAY PURE, WHICH IS 1
V2 IF REENTRANT ASSEMALY, AND 0 IF NON-REENTRANT, THE OATA AREA IS
V2 PUT LAST IN THE SOURCE FILE FOLLOWING A LIT PSEUDO~OP AND CON•
V2 SISTS ONLY OF BLOCK 1 ANn BLOCK N STATEMENTS, ALONG WITH DATA
V2 LOCATION TAGS. IF A REENTRANT PROGRAM IS DESIRED A LOC 140 IS
V2 ASSEMBLED, PLACING THE DATA AREA AT ABSOLUTE 140 IN THE LOW
V2 SEGM~NT, BECAUSE OF THE LOC, NO OTHER RELOCATABLE PROGRAM CAN
V2 BE LOADED INTO LOW SEGMENT, THEREFORE T~E PROGRAM S~OULD 8E
V2 DEBUGGED AS A NON-REENTRANT PROGRAM WITH DDT SINCE DDT IS A LOW
V2 SEGMENT RELOCATABLE FILE. ALSO USE THE /8 LOADER SWITCH TO PRO·
V2 TECT THE SYMBOLS. BECAUSE THE USUSAL WAY OF ASSEMBLY IS REEN~
V2 TRANT, PURE IS DEFINED TO BE 1 IF NOT ALREADY OErINEn,

V2 SINCE THE SYSTEM WASN'T DESIGNED TO RUN THIS WAY, THE PROGRAM
V2 MUST FIX UP ONE LOCATION IN THE JOB DATA AREA WHEN IT IS AS-
V2 SEMBLED TO BE REENTRANT SO THAT THE MONITOR WILL START AS·
V2 SIGNING BUFFERS AT THE END OF THE DATA AREA IN TME LOW SEGMENT
V2 RATHER THAN AT LOCATION 140. THIS CAN BE DONE BY CHANGING TME
V2 LH OF J08SA BEFORE CALLI 0 CRESET) OR CHANGING C(JOBrr) AFTER
V2 CALLI 0. THE CHOICE WILL DEPEND ON HOW THE PROGRAM REIN!TIAL•
V2 ItES ITSELF ON ERRORS AND UPON COMPLETION, IT SHOULO BE REMEM-
V2 BERED THAT CALLI 0 MOVES THE LH OF JOBSA TO CCJOBFr), THE PRO-
V2 GRAM SHOULD NOT CHANGE THESE LOCATIONS, IF IT IS ASSEMBLED AS
V2 NON-REENTRANT SQ THAT THE SYMBOL TABLE CAN BE ~ROTECTED USING
V2 THE LOADER /8 SWITCH WHICH PLACES THE SYMBOLS NEXT TO THE LAST
V2 PROGRAM LOADED AND SETS LH or J08SA APPROPIATELY HIG~ER, HENC~
V2 THIS CODE IS UNDER CONTROL OF PURE CONDITIONAL ASSEM~LV, NOTE
V2 THAT THE PERSON DEBUGGING DOES NOT NEED TO USE T~E /R SWITCH
V2 IF HE DOESN'T WANT TO,

29

V2 TITLE DEMO - DEMO ONE SOURCE REENTRANT PROGRAM ~V001
V2 SUBTTL T, HASTINGS 25 JUN 69
V2 JOBEVER=137
V2 LOC 137
V2 EXP 001 ;VERSION NUMBER

V2 INTERN JOBVER,PURE
V2 EXTERN JOBSA,JOBFF

V2 IFNDEF PURE,<PURE=1> ;ASSUME REENTRANT IF PURE UNnErINED
JTELL LOADER TO LOAD IN HIGH S~GMENT
;IF REENTRANT

V2 IFN PURE,<HISEG>
V2

BEG:
IF'N PURE,<

V2
V2
V2
V2
V2
V2 >
V2
V2
V2
V2
V2
V2
V2
V2
V2
V2
V2
V2
V2
V2
V2
V2
V2
V2
V2
V2
V2
V2

MOVSI
HLLM

CALLI
MOVE
CALLI
JRST
MOVE
SEHM
BLT

.
LIT

;DATA AREA:
IFN PURE,<LOC
DAT AB I
DATA:
TABLE:

•
DATAEI

T,DATAE
T,JOBSA

0
T,J08FF"
T ,11
ERRO!~

;ONLY NEED IF REENTRANT
JCNOT NEEDED IF TWO FILES)
;SET FIRST FREF LOCATION IN LOW SEG,
;RESET SETS JORFF FROM LH OF JOBSA

;DO CALL RESET
;ASSIGN AT LFAST ENOUGH CORE FOR DATA
JCORE UUO

r,cxwo DATAB,DATA8+1J JNOW CLEAR DATA REGION
DATA8
T,DATAE-1

140>

BLOCK 1
BLOCK 128

END BEG

JLAST LOCATION CLEARED

JPUT LITERALS IN HIGH SEG

;START DATA AREA AT 140 IN LOW SEG Ir REENTR~
JFIRST LOCATION CLEARED F.VERY START UP

JDEFINE FREE LOCATION

22, MONITOR USE OF SWAPPING SPACE

THE RE-ENTRANT CAPABILITY IMPROVES SYSTEM THRUPUT BY
REnucING THE DEMANDS ON:

1. CORE MEMORY - SHARING
2. SWAPPING STORAGE - SHARING
3. SWAPPING CHANNEL - READS
4. SWAPPING CHANNEL - WRITES
5. STORAGE CHANNEL - READS <GET)

HOWEVER, 2 COMPETES WITH 5 IN THAT TO REDUCE TME
DEMANDS 5, COPIES or THE SEGMENTS ARE KEPT ON THE
SWAPPING DEVICE, T~EREBY INCREASING THE DEMAND rOR SWAP•
PING STORAGE (2), THE QUESTION NATURALLY ARISES, MOW DOES
THE SYSTEM DETERMINE THIS SPACE-TIME TRAOEOFF?

30

THE MONITOR ACHIEVES THE BALANCE DYNAMICALLY, AfTER THE
OPERATOR ESTABLISHES THE SI~E OF THE SWAPPING SPACE WHEN

THE SYSTEM IS STARTEO ANO THE DISK IS REFRESHED CONCE
ONLY DIALOG>. THE MONITOR ASSUMES THAT THERE IS NO
SHORTAGE OF SWAPPING SPACE, AND so KEEPS A SINGLE COPY or
AS MANY HIGH SHARABLE SEGMENTS IN THE SWAPPING SPACE AS
THERF AR~ HIGH SEGME~T NUMBERS, EVEN THOUGH NO ONE MAV
BE USING THE HIGH SEGMENT. IF THE SEGMENT IS UNUSED. IT
IS CALLED DORMANT, (THE MAX. NUMBER OF HIGH SEG. tS
ESTABLISHED llSING MONGEN ANO IS EQUAL TO OR GREATER THAN
THE NUMBER OF.JOBS (COUNTING NULL JOB)), THUS DEMAND
5 IS MINIMI~FD. HOWEVER, IF THE MONITOR CANNOT FIND
CONTIGUOUS FREE SPACE ON THE SWA~PING DEVICE, IT WILL rRAG•
MENT THE HIGH OR LOW SEGMENT ON THE SWAPPING SPACE. THrN
IF SWAPPING SPACE RUNS our, THE MONITOR WILL
TRY ~ELETING A DORMANT SEGMENT AND WILL CONTINUE
FRAGMENTING THE USER. WHEN THE DELETED SEG IS NEXT
NEEDED CA GET OCCURRED), IT WILL BE GOTTEN FROM
STORAGE DEVICE, INCREASING DEMAND 5,

TO RESTATE: THE MONITOR USES ALL THE SWAPPING SPACE
AVAILABLE. IF IT RUNS our, IT INCREASES STORAGE CHANNEL
READS CGET>, IN ORDER TO OVERCOME THE SWAPPING SPACE
SHORTAGE,

23, MONITOR USE OF CORE

THE SAME IDEA IS BEING EXTENDED TO PHYSICAL CORE IN BOTH
THE SWAPPING AND NON-SWAPPING SYSTEMS, A DORMANT SEGMENT
WILL STAY IN CORE UNTIL CORE IS NEEDED. IN SWAPPING
SYSTEMS THE MONITOR WILL LEAVE AN ACTIVE WRITE LOCKED
SEGMF.NT IN CORE EVEN THOUGH NO ONE IN CORE IS USING IT
CSOMr SWAPPED OUT USER IS USING OR ELSE IT WOULD BE
DORMANT RATHER THAN IDLE>,

IN OTHER WORDS, THE MONITOR ALLOCAJES LOGICAL CORE
INDEPENDENTLY FROM PHYSICAL CORE,

24, QUESTIONS IN MONGEN DIALOG

REENTRANT SOPTWARE? IF ANSWERED Y MONGEN WILL ASKI

HOW MANY MORE HIGH SEGMENrS THAN JOBS?

AND WILL GENERATE THE REQUIRED MONITOR TABLES TO HANDLE
HIGH SEGMENTS. UNTIL A SYSTEM HAS MORE SHARABLE PROGRAMS
THAN MAX NUMBER OF JOBS, THIS ANSWER SHOULD BE 0,
ONLY WHEN THE MONITOR RUNS OUT or HIGH SEGMENT
NUMBrRS WILL IT DELETE A DORMANT SEGMENT, fOUR
MONITOR TABLES (JBTSTS, JBTADR, JBTSWP, JBTCHK)
ARE LENGTHENED BY THE MAXIMUM NUMBER or HIGH SEGMENTS
CAT LEAST EQUAL TO MAXIMUM NUMBER O~ JOBS, COUNTING NULL
JOB, SO THAT EACH JOB CAN HAVE A DIF~ERENT HIGH SEGMENT),
ONE NEW TABLE (JBTSGN) IS GENERATED EQUAL TO THE MAX,
NUMBER Or JOAS ALLOWED. TWO NEW TABLES (JBTOIR, JBTNAM)
ARE GENERATEn WHOSE LENGTH WILL SE EQUAL TO TH£ MAX,
NUMBER Or HIGH SEGMENTS, THESE TABLES HAPPEN TO BE
~XTENSIONS or PRJPRG AND JBTPRG TABL~S. SEE MONITOR
SUB·PROGRAMS COMMON AND SEGCON FOR O~TAILS•

31

GLOSSARY OF TERMS C!N ORDER OF APPEARANCE)
-------~----------------------------------

SEGMENT A CONTINUOUS REGION OF A USER'S CORE IMAGE
WHICH THE MONITOR MAINTAINS IN PHYSICAL CORE
AN/OR ON THE SWAPPING DEVICE, MOST FIT IN CORE
ALL AT ONCE,

SHARABLE SEGMENT A SEGMENT WHICH IS APPEARING OR HAS
---------------- POTENTIAL OF APPEARING IN MORE TMAN

ONE USER CORE IMAGE AT THE SAME TIME,
SHARABLE SEGMENTS ALWAYS HAVE NAMES UNTIL
THEY ARE SUPERCEDED. T~EY ARE ALWAYS
INITIALI~EO FROM FILES

NON-SHARABLE SEGMENT A SEGMENT FOR WHICH EACH USER HAS HIS OWN
-------------------- COPY. NON-SHARABLE SEGMENTS NEVER HAVE

LOW SEGMENT
-~------~--

HIGH SEGMENT

NAMES EVEN IF INITIALI~ED FROM A FILE, THEY
MAY ALSO BE CREATED BY CORE OR REMAP UUO,

A 1 TO 256K NON·SHARABLE SEGMENT STARTING AT
USER 0. ALWAYS REQUIRED.

A 0 TO 128K SHARABLE OR NON·SHARABLE SEGMENT
STARTING AT USER 400000 OR ENO OF LOW SEGMENT,
WHICH EVER IS GREATER. OPTIONAL.

RE-ENTRANT PROGRAM A TWO SEGMENT PROGRAM COMPOSED O~ A SHARABLE
------------------ AND NON-SHARABLE SEGMENT

NON-RE-ENTRANT PROGRAM A ONE OR TWO SEGMENT PROGRAM IN WHICM
---------------------- NEITHER SEGMENT IS SHARABLE

IMPURE S~GMENT A SEGMENT WHICH IS OR CAN BE MODIVIED
-------------- WHILE PART OF A USER CORE IMAGE

PURE SEGMENT A SEGMENT WHICH CANNOT BE MODIFIED WHILE PART or
------------ A USER CORE IMAGE

riiE A NAMED OR UNNAMED COLLECTION OF 36 BIT WORDS
<INSTRUCTIONS AND/OR DATA). LENGTH NOT
RESTRICTED BY SI~E or CORE. ONE Or TH~ USES
OF FILES IS TO INITIALI~E SEGMENTS wHEN THEY
ARE CREATED WITH INSTRUCTIONS ANO/OR DATA,

NAMED PILE A NAMED COLLECTION Of 36 BIT WORDS <INSTRUCTIONS
·-------"- AND/OR DATA) STORED BY T~E FILE SYSTEM AND THE

STORAGE DEVICE (BURROUGHS DISK, BRYANT DISK,
OR DECTAPE)

DIRECTORY NAME PROJECT, PROGRAMMER NUMBER PAIR WHICH UNIQUELY
-------------- IDENTirIES A DIRECTORYJ THE DEVICE NAME IN THE

CASE Or DECTAPr OR MAGTA?E

rILE NAM~ 1 TO 6 ALPHANUMERIC CHARACTERS CMOSEN BY THE USER
--------- TO IDENTirV THE PILE

32

rILE EXTENSION 1 TO 3 ALP~ANUMERIC CHARACTERS USUALLY CHOSEN
-------------- BY THE PROGRAM TO DESCRIBE THE CLASS OF IN·

FORMATION IN FILE

STORAGE DEVIrE THE DEVICE USED TO STORE NAMED FILES BY THE
-------------- GET, R, OR RUN COMMANDS. IF THE FILE IS MARKED

AS A SHARABLE (EXTENSION= "SHR"), THE MONITOR
WILL GIVE THE SEGMENT THE SAME NAME AS THE FILE,
THIS IS THE ONLY WAY THAT A SEGMENT CAN
RE SHARED,

CREATE A FILE IS CREATED WHEN IT HAS BEEN OPENED FO~
·----- WRITING, WRITTEN ANO CLOSED FOR THE FIRST

TIME. ONLY ONE USER MAY BE CREATING THE FILE
AT A TIME,

RECREATE A FILE IS RECREATED WHEN IT HAS BEEN OPENED
-------- FOR WRITING, WRITTEN AND CLOSED ONE OR MORE

SUBSEQUENT TIMES. THE OLDER COPY IS DELETED
WHEN ALL READERS ARE FINISHED, ONLY ONE USER
CAN BE RECREATING THE FILE AT A TIME,

UPDATE A FILE IS UPDATED, OPENED FOR READING AND
"----- WRITING, ONE OR MORE BLOCKS REWRITTEN IN PLACE,

AND ~LOSEO, ONLY ONE USER MAY BE UPDATING T~E
FILE AT A TIME.

VESTIGAL J08 DATA AHEA THE FIRST 10 OCTAL LOCATIONS OF THE HIGH
---------------------- SEGMENT USED TO CONTAIN DATA FOR INITIAL!•

~ING CERTAIN LOCATIONS IN THE JOB DATA AREA,

CREATE

MEf)OL I NG

DORMANT

IDLE

A SEGMENT IS CREATED BY THE CORE OR REMAP UUO,
LOGICALLY, GET. R, AND RUN COMMANDS ALSO DO
CORE UUO'S,

A PROGRAM WITH A SHARABLE HIGH SEGMENT IS
SAID TO BE MEDDLED WITH IF THE USER HAS DONE SOME·
THING WHICH PREVENTS THE PROGRAM FROM BEING IN
~OMPLETE AND PREDICTABLE CONTROL or ITSELr. A
PROGRAM WHICH HAS BEEN MEDDLED WITH, CANNOT BE
ALLOWED TO TURN OFF ITS USER MODE WRITE
PROTECT BIT OR CHANGE ITS HIGH SEGMENT CORE
ASSIGNMENT WITH THE CORE UUQ, EXCEPT R~MOVE IT
ENTIRELY. SEE SECTION VI MODirYING SHARED
SEGMENTS DURING EXECUTION

A SHARABLE HIGH SEGMENT KEPT ON SWAPPING SPACE
AND POSSIBLY CORE WHICH IS IN NO USER ADDRESSING
SPACE.

A SHARABLE HIGH SEGMENT WHICH IS IN CORE BUT
roR WHICH NO USERS IN CORE ARE USING. HOWEVER
AT LEAST ONE SWAPPED OUT USER IS USING, ELSE IT
WOULD BE A DORMANT SEGMENT.

33

READER'S COMMENTS

PDP-10/40 PDP-10/50
TIME SHARING MONITORS
REFERENCE MANUAL
DEC-T9-MTZA-D

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its publica­
tions. To do this effectively we need user feedback: your critical evaluation of this document. Please give specific
page and line references when appropriate.

ERRORSNOTEDINTHISPUBLICATION: ----------------------

SUGGESTIONS FOR IMPROVEMENT OF THIS PUBLICATION:---------------

DEC also strives to keep its customers informed about current DEC software and publications. Thus, the following periodically
distributed publications are available upon request. Please check the publication(s) desired.

0 PDP-10 User's Bookshelf, a bibliography of current programming documents.

0 Program Library Price List, a list of available software documents and programs.

Name Date -----

Organization---------------------------------------

ne~ede~ribeyourpo~tion ________________________________ _

Street --------------------

City----------------- State ------------- Zip Code -------

- - - - - - - - - - - - - - - - - - Fold Here -

- - - - - - - - - - - - - - Do Not Tear - Fold Here and Staple - - - - - - - - - - - - -

BUSINESS REPLY MAIL

NO POST AGE ST AMP NECESSARY IF MAILED IN THE UNITED ST ATFS

Postage will be paid by:

mnmnama
Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

Digital Equipment Corporation
Maynard, Massachusetts

printed in U.S.A.

