ALLAN ROYCE KENT

PDP-10
TIME-SHARING MONITORS:
MULTIPROGRAMMING DISK MONITOR (10/40)

MULTIPROGRAMMING NONDISK MONITOR (10/40)
SWAPPING MONITOR (10/50)
PROGRAMMER’'S REFERENCE MANUAL

For additional copies order No. DEC-T9-MTZA-D from Program Library,
Digital Equipment Corporation, Maynard, Massachusetts Price $3.00

DIGITAL EQUIPMENT CORPORATION ¢ MAYNARD, MASSACHUSETTS

Original Printing April 1967
Reprinted July 1967

Revised November 1967
Reprinted March 1968
Revised May 1968

Revised October 1968
Revised August 1969

Copyright©1967, 1968, 1969 by Digital Equipment Corporation

Instruction times, operating speeds and the like are in-
cluded in this manual for reference only; they are not to
be taken as specifications.

The following are registered trademarks of Digital
Equipment Corporation, Maynard, Massachusetts:
DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

CONTENTS

CHAPTER T INTRODUCTION

1.1
1.2
1.3

Monitor Functions
User Facilities

Operating Technique

CHAPTER 2 MONITOR COMMANDS

2.1

2.2

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8
2.3

2.3.1
2.3.2
2.4

2.4.1
2.4.2
2.4.3
2.4.4
2.4.5
2.4.6
2.4.7
2.4.8
2.5

2.5.1
2.5.2
2.5.3

Console Control

Command Interpreter and Command Format
Command Names

Arguments

Login Check (10/50 Monitor)

Job Number Check (10/40 Monitor)

Core Storage Check

Delayed Command Execution
Completion-of-Command Signal

Program Searching

System Access Control Commands (10/50 Monitor System Only)
LOGIN Command (Swapping or Multiprogramming Disk Monitor)
SYSTAT Command (10/50 Monitor)
Facility Allocation Commands

Device Descriptors

ASSIGN dev Idev®

DEASSIGN Idev®

REASSIGN dev job

FINISH ldev

TALK tty

CORE core®

RESOURCES

Run Control Commands

File Descriptors

RUN lIdev file ext® [p,pl® core®

R file.ext® core®

2-10
2-10

CONTENTS (Cont)

2.5.4 GET, START, HALT (tC), and CONT Commands
2.5.5 DDT, REENTER, Eand D
2.5.6 SAVE Idev file ext® core®
2.6 Background Job Control
2.6.1 PJOB

2.6.2 CSTART and CCONT
2.6.3 DETACH

2.6.4 ATTACH job [p,pl

2.7 Job Termination

2.7.1 KJOB

2.8 System Timing

2.8.1 DAYTIME

2.8.2 TIME job®

2.9 Comment Entries (;)

CHAPTER 3 LOADING USER PROGRAMS

3.1 Memory Protection and Relocation
3.2 User's Core Storage

3.2.1 Job Data Area

3.2.2 Lloading Relocatable Binary Files

CHAPTER 4 USER PROGRAMMING

4.1 User Mode

4.2 Programmed Operators (UUOs)

4.2.1 Operation Codes 001-037 (User UUQ's)

4.2.2 Operation Codes 040-077, and 0 (Monitor UUO's)
4.2.3 Operation Codes 100-127 (Unimplemented Op Codes)
4.2.4 lllegal Operation Codes

4.3 Program Control

4.3.1 Starting

4.3.2 Stopping

4.3.3 Trapping

Page
2-10
2-11
2-12
2-13
2-13
2-13
2-14
2-14
2-15
2-15
2-15
2-15
2-15
2-16

3-1
3-1
3-1
3-4

4-1
4-1

CONTENTS (Cont)

4.3.4 Timing Control

4.3.5 Identification

4.3.6 Direct User 1/O

4.4 Input/Output Programming

4.4.1 File

4.4.2 Initialization

4.4,3 Data Transmission

4.4.4 Status Checking and Setting

4.4.5 Terminating A File (CLOSE)

4.4.6 Synchronization of Buffered 1/O (CALL D, [SIXBIT/WAITI)
4.4.7 Relinquishing A Device (RELEASE)

4.5 Core Control (CALL AC, [SIXBIT/CORE/1)

CHAPTER 5 DEVICE DEPENDENT FUNCTIONS

5.1 Teletype

5.1.1 Data Modes

5.1.2 DDT Submode

5.1.3 Special Programmed Operator Service

5.1.4 Special Status Bits (Full Duplex Software only)
5.1.5 Paper Tape Input from the Teletype (Full Duplex Software only)
5.2 Paper Tape Reader

5.2.1 Data Modes (Input Only)

5.3 Paper Tape Punch

5.3.1 Data Modes

5.3.2 Special Programmed Operator Service

5.4 Line Printer

5.4.1 Data Modes

5.4.2 Special Programmed Operator Service

Card Reader
.1 Data Modes
Card Punch
.1 Data Modes

(S NS, |
(S NS, |

O O
o O

Page
4-7

4-8

4-12
4-13
4-13
4-19
4-27
4-31
4-31
4-32
4-32
4-33

5-1

5-2

5-3

5-5
5-6
5-9
5-9
5-9
5-9
5-10
5-10
5-11
5-11
5-11
5-1
5-12
5-12
5-13
5-13

CONTENTS (Cont)

5.6.2 Special Programmed Operator Service
5.7 DECtape

5.7.1 Data Modes

5.7.2 DECtape Block Format

5.7.3 DECtape Directory Format

5.7.4 DECtape File Format

5.7.5 Special Programmed Operators Service
5.7.6 Special Status Bits

5.7.7 Important Considerations

5.8 Magnetic Tape

5.8.1 Data Modes

5.8.2 Magnetic Tape Format

5.8.3 Special Programmed Operator Service
5.8.4 9-Channel Magtape

5.8.5 Special Status Bits

5.9 Disk

5.9.1 Data Modes

5.9.2 Structure of Files on Disk

5.9.3 User Programming for the Disk

5.10 Incremental Plotter

5.10.1 Character Decoding

5.10.2 Data Modes

5.10.3 Pen-up Commands

5.11 Display with Light Pen (Type 30 and Type 340)
5.11.1 Data Words

5.11.2 Background

5.11.3 Display UUO’s

5.12 CALL AC, [SIXBIT/DEVCHR/] or CALLI AC, 4
APPENDIX 1

APPENDIX 2

vi

Page
5-14
5-14
5-14
5-15
5-16
5-16
5-17
5-19
5-19
5-20
5-20
5-21
5-21
5-23
5-25
5-25
5-25
5-26
5-30
5-34
5-34
5-34
5-35
5-35
5-35
5-35
5-35
5-37

CONTENTS (Cont)

Page

APPENDIX 3
ILLUSTRATIONS
2-1 Console Teletype Modes 2-2
3-1 User's Core Area 3-2
3-2 Loading User Core Area 3-4
4-1 User's Ring of Buffers 4-17
4-2 Detailed Diagram of Individual Buffer 4-17
4-3 File Protection Key 4-25
TABLES

2-1 Monitor Commands 2-3
3-1 Job Data Area Locations 3-2
4-1 Monitor Operation Codes 4-4
4-2 CALL and CALLI Monitor Operations 4-5
4-3 Data Modes 4-14
4-4 File Status 4-18
5-1 Device Summary 5-1
5-2 PDP-10 Card Codes 5-13
5-3 DECtape Programmed Operators 5-17
5-4 MTAPE Functions 5-22
5-5 Magnetic Tape Special Status Bits 5-25

vii

FOREWORD

This manual covers the use of the Time Sharing Monitors, which include the
Multiprogramming non-disk Monitor and the Multiprogramming disk Monitor
(formerly known as 10/40) and the Swapping Monitor (formerly known as 10/50).

The Single-User Monitor (formerly known as 10/20, 10/30) is covered in the
manual Single User Monitor Systems.

The two most recent software releases, the Concise Command Language for the
Monitor and the 4-Series Re-Entrant User Capability, have been included as
Addendum I and Addendum II in the back of this manual. The addenda are
written from the point of view of someone already familar with the body of the
manual. It is suggested that the user read the addenda after becoming acquainted
with the body of the manual. This material will be incorporated into the next
revised edition of this manual.

CHAPTER 1
INTRODUCTION

This manual covers commands, program loading and programming of the PDP=10 Time-
Sharing Monitors -- three multiprogramming, time-sharing systems designed to allow many independent
user programs to share the facilities of the computing system. Such users can access the computer at
the same time from consoles located at the computer site, at nearby offices and laboratories, or even at
remote consoles connected by telephone lines.

Operating concurrently under Monitor control, these diverse users may access available 1/0
device and system software to compile, assemble, and execute their programs, or perform this sequence
automatically for many jobs by using the batch control processor (Batch). Real-time jobs can operate

either as independent user programs or as fully integrated Monitor subroutines.

The Multiprogramming non-disk (10/40) Monitor is a multiprogramming, time-sharing system
which includes an I/O controller, run-time selection of 1/O devices, job-to-job transition, job save
and restore features, and memory dump facilities. All of these features are incorporated with concurrent
realtime processing, batch processing, and time sharing. The Multiprogramming disk (10/40) Monitor
adds a comprehensive file system with both sequential and random access of shared, named files to the
Multiprogramming non-disk system. The Swapping (10/50) Monitor incorporates all of the features of

the Multiprogramming disk system and, in addition, swaps programs between high speed disk and core.

1.1 MONITOR FUNCTIONS

All Monitors schedule multiple-user time sharing of the system, allocate available facilities
to user programs, accept input from and direct output to all system 1/O devices, and relocate and pro-
tect user programs in core memory.

The Monitors utilize the PDP-10 hardware features of memory protection, memory relocation,
executive/user mode, and real-time clock to provide an advanced, third-generation, multiprogramming,
time-sharing environment. System facilities start with a minimum configuration of 16K core and two
DECtapes, and can accommodate magnetic tapes, disks, communication line controllers, card readers,
paper tape readers and punches, line printers, displays, plotters, and user Teletype consoles. Other
special devices, including real-time digitizers and analog converters, easily interface with the system.

Several programs are loaded into core. The Monitors allow each program to run for a cer-
tain length of time, based on a scheduling algorithm which permits the most efficient use of system
facilities. The Monitors process input/output commands from the programs, making them device inde-

pendent, and perform 1/O operations concurrently with computation for high system efficiency.

1-1

1.2 USER FACILITIES

Users gain access to the system from a console af the facility or remotely located at any
point with telephone facilities. Three levels of communication are available at the consoles. Initially,
the console communicates with the Monitor Command Interpreter, which provides the system with access
protection (LOGIN); allocates and protects memory (CORE) and peripherals (ASSIGN, REASSIGN) re-
quested by the user; provides communication to the operator (TALK) for mounting of special tapes; pro-
vides the user with run control (RUN, GET, START, HALT, CONT) over programs stored in the system;
allows the user to initiate background jobs (CSTART, CCONT, DETACH, ATTACH); provides the user
with job monitoring and debugging (E, D, DDT, REENTER) facilities, and returns facilities to the system
(KJOB, DEASSIGN) when the job is finished.

With this set of Monitor commands, the user at his console has access to the system file, which
contains programs such as TECO, EDITOR and PIP, for creating and editing program source files, assem-
bling or compiling (MACRO, FORTRAN) program source files, and loading relocatable binary files.

The core image of a loaded relocatable binary file may be stored on a retrievable storage device (SAVE)
and thereafter be available through the Monitor Command Interpreter. Many other programs are avail-

able in the system file to facilitate file management and translation.

1.3 OPERATING TECHNIQUE

When a user starts a program, his console serves as an input/output device, which provides
a control and data path to his private program. The console is switched back to the Monitor Command
Interpreter by either the program (HALT, EXIT) or by the user striking both the CTRL and C keys (t C)
at the console. The user can exercise another dimension of control over his program by loading it with
the powerful Dynamic Debugging Technique (DDT) available in the system file. Entry to DDT is through
the Monitor Command Interpreter or by break points from the program. While program control is in DDT,
the console permits examining intermediate results and modifying the program (symbolically).

The user's program communicates with the Monitors by means of the PDP-10 operation codes
040 through 077. With these calls, the Monitors provide the program with complete device-independent
input/output services, which relieves the programmer of the arduous task of 1/O programming, as well
as freeing him from dependence on the availability of particular devices at run time. In addition, the
user's program may exercise conirol over central processor trapping (overflow, underflow, pushdown
overflow, clock), modify its memory allocation (CORE), and monitor its own running time. Provision
exists for inter-job communication and control, reentrant user programs, and, in selected cases, direct

user I/O control.

1-2

CHAPTER 2
MONITOR COMMANDS

2.1 CONSOLE CONTROL

From the user's point of view, his time=-sharing console is in one of three modes: the Monitor
mode, the user mode, or the detached mode. In the Monitor mode, characters typed in are presented
to the Monitor Command Interpreter. In the user mode, the console acts as an ordinary input/output
device under control of the user's program-(the DDT submode, a special user mode, is used when running
under control of the Dynamic Debugging Technique program). The console is in the detached mode if
nothing has been typed on it since the Monitor was started or if the DETACH command is typed. The
ATTACH command places it back in Monitor mode.

If the console is in the detached mode and a character is typed in, the console either enters
the Monitor mode or immediately responds with "X" or "JOB CAPACITY EXCEEDED, " both indicating
that the system is at maximum job capacity. It remains in the detached mode. Once in the Monitor
mode, each line of text typed in is sent to the Monitor Command Interpreter for processing. If the
command is not understood by the Monitor Command Interpreter, an error message is typed out and the
console mode is unchanged, Figure 2-1 indicates the console mode at the successful completion of each

command.

2.2 COMMAND INTERPRETER AND COMMAND FORMAT

Table 2-1 lists the commands and their characteristics. Each command is a line of ASCII
characters in upper and/or lower case. Spaces and nonprinting characters preceding the command

name are ignored. The Monitor Command Interpreter ignores a line preceded by a semicolon.

2.2.1 Command Names

Command names are strings of from one fo six letters, Characters after the sixth are ignored.

Only enough characters to uniquely identify the command need be typed.

2,2.2 Arguments

Arguments follow the command name, separated from it by a space or any printing character

that is not a letter or a numeral. Argument formats are described under the associated commands.

If the Monitor Command Interpreter recognizes the command name, but a necessary argument
is missing, the Monitor responds with

TOO FEW ARGUMENTS

Extra arguments are ignored,

CONT, HELP,REENTER,
RUN, START ASSIGN,ATTACH,CCONT,CORE, CSTART
N D, DAYTIME, DEASSIGN, E, FINISH, GET,
AN KJOB, PJOB,REASSIGN,RESOURCES, SAVE,
N

- TALK, TIME, ERRONEOUS COMMANDS
/
tC

EXIT DETACH
ERROR —
MESSAGES =\ / X
"ATTACH" |
oot |
/ |
/ N/
ILL. COMMANDS
/ / " JOB CAPACITY
/ J/ EXCEEDED" "X"
/
pDT
UBMODE

Figure 2-1 Console Teletype Modes

2.2.3 Login Check (10/50 Monitor)

If a user who has not logged in (see "LOGIN Command") types a command requiring the user
to be logged in, the 10/50 Monitor responds with

LOGIN PLEASE

The user's command is not executed. Login is not required by the 10/40 Monitor.

Table 2-1
Monitor Commands (See Addendum I and II)

Arguments
Abbre- Console
Name viation 1 2 3 5 Mode Characteristics

ASSIGN AS dev Idev® m L,J
ATTACH AT job Cp,pl m
ATTACH AT . dev m L
CCONT CcC m L,J,C,1I
CONT CON u L,J,C,1
tC - m
CORE COR core® m J,A,I
CSTART Cs addr® m L,J,C,1
D D Ih rh addr m L,J,C,I
DAYTIME DA m
DDT DD u (DDT) L,J,C,1
DEASSIGN DEA Idev® m L
DETACH DET dev® d L
E E addr® m L, J,C,I
FINISH F ldev m L,J,C,A,l
GET G Idev file ext® lo,pl® | core® | m L,J,A
HA H m
KJOB K m A
LOG L u I
PJOB P m L,J
R R file ext® core® u L
REASSIGN REA Idev job m L,J,1
REENTER REE u L,J,C,1
RESOURCES | RES m L
RUN RU Idev file ext® [p,pl® | core® | u L
SAVE SA Idev file ext® lp,pl® | core® | m L,J,C,A,I
START ST addr® U L,J,C,A,I
SYSTAT SYS u
TALK TA tty m
TIME TI job® m
° optional argument [p,p] [project number, programmer number]
addr octal address (see "LOGIN Command")
core decimal number of 1K blocks tty CTY,OPR,TTYO,...,TTYn
dev CDR,CTY, DIS,DSK,DTAO, ...,DTA7 d detached

LPT,MTAO, ... ,MTA7,OPR,PTP,PTR m Monitor

PTYO,...PTYn,SYS,TTYO,...,TTYn v user
Idev dev or a logical device name. L LOGIN required (10/50 Monitor)
ext filename extension, 1to3characters, A no active devices

must be preceded by a point (.) C core required
file filename, 6 characters or less | must be in core
job job number assigned by Monitor J requires job number (10/40 Monitor)
Ih rh octal value of left and right half words.

2-3

2.2.4 Job Number Check (10/40 Monitor)

If the 10/40 Monitor recognizes a command name which requires a job number and no job
number is assigned, the Monitor assigns a job number, n, and responds with,
JOBn

together with a line identifying the Monitor version, and proceeds to execute the command.

2.2.5 Core Storage Check

If the Monitor Command Interpreter recognizes a command name which requires core storage
to have been allocated to the job and the job has no core, the Monitor responds with
NO CORE ASSIGNED

The user's command is not executed.

2.2.6 Delayed Command Execution

If the Monitor Command Interpreter recognizes the command name and the job has devices
actively transmitting data to or from its core area and the command requires that all devices be in-
active, or if the job is swapped out to the disk and the command requires core residence, the Monitor
delays execution of the command until the devices are inactive or the job is in core. If another com-

mand is typed while a command is waiting, the first command is ignored.

2.2.7 Completion=of=Command Signal

Most commands are processed instantly. The completion of each command is signaled by the
output of a carriage return, line feed. If the console is left in Monitor mode, a period follows the
carriage return, line feed. If the console is left in user mode, any response other than the carriage

return, line feed must come from the user's program.

2.2.8 Program Searching

If the Monitor Command Interpreter does not recognize the command name, the Monitor as—
sumes that it is the name of a program in the system file. If the Monitor cannot find the program in the
system file, it responds with the name, followed by

NOT FOUND
If the program is found, the Monitor loads the program into core and starts it with the console in user

mode.

2.3 SYSTEM ACCESS CONTROL COMMANDS (10/50 Monitor System Only)

Access to the system is limited to authorized personnel. The system administrator provides
each user with a project number, a programmer number, and a password. The project and programmer
numbers are octal numbers up to nine digits each. The password is a sequence of from one to five ASCII

characters, which must match the password stored in the system accounting file to LOGIN successfully.

2.3.1 LOGIN Command (Swapping or Multiprogramming Disk Monitor)

LOGIN waits for the user to type in the project and programmer numbers on a line, separated
by a comma (,) and terminated by a carriage return. LOGIN then responds with the word PASSWORD:
and turns off the Teletype printer. The user types in his password which is not printed on the paper. If
the typed-in project-programmer number and password match a project-programmer number and password
stored in the system accounting file (ACCT. SYS [1,11), LOGIN admits the user to the system and re-
sponds with the time of day, date, Teletype number, and message of the day, if any (file NOTICE. TXT
[1,11), and finally, tC and a period, leaving the console in Monitor mode ready to accept commands.
If the password does not match or the project-programmer number does not exist, LOGIN responds with
the error message

"2INVALID ENTRY-TRY AGAIN"
and waits for the project-programmer number, password combination to be typed again.
Example:
.LOGIN) User issues LOGIN command.

JOBn Monitor responds with job number assigned,
followed by Monitor name and version number.

System types out a number sign to indicate user
should type his project-programmer number.

proj,prog) User types in his project-programmer number
(each number can contain up to nine octal
digits).

PASSWORD: System requests user fo type in his password.
The password will not be printed on the paper.

1045 01-AUG-69 TTY7 If the user entries are correct, the Monitor
‘C responds with the time of day, date, Tele-
type number, message of the day (if any),
Control C, and a period.

2.3.2 SYSTAT Command (10/50 Monitor)

SYSTAT prints a summary of the current system status on the user's console.

2.4 FACILITY ALLOCATION COMMANDS

One of the functions of the Monitor is to allocate peripheral devices and core memory to
users upon request, and to protect allocated facilities from interference by other users, To this end,
the Monitor maintains a pool of available facilities from which a user can draw and restore by request.

A user should never abandon a time~sharing console without returning allocated facilities to

the pool.

2.4.1 Device Descriptors

The devices controllable by the system are listed in Table 5-1. Associated with each device
is a physical name, made up of three letters and zero to three numerals to specify unit (transport) num-
ber. All references to devices in the Monitor are made by these physical names or by assigned logical

names,

2.4.2 ASSIGN dev ldev®

ASSIGN has one required argument, dev (device), and one optional argument, ldev. Dev
must be a physical device name, or DTA or MTA. If dev is DTA or MTA, the Monitor searches the de-

vice pool for a free unit. Monitor responses are:

DEVICE dev ASSIGNED (physical device dev was free and has been
assigned to the user)

NO SUCH DEVICE (all units are in use)

ALREADY ASSIGNED TO JOBn (dev is allocated to another job, n)

2.4.2.1 Logical Device Names (ldev) - The second argument, ldev, is optional. It represents a

logical device name of one to six alphanumeric characters of the user's choice, usable synonymously
with dev in all references to the device. Logical device names take precedence over physical device
names. Thus, a user may write programs to use arbitraily named devices which he assigns to the most
convenient physical devices at run time.
If the user has the name ldev assigned to another device, the Monitor responds with
LOGICAL NAME ALREADY IN USE
DEVICE dev ASSIGNED

2,4.2.2 Examples

User types ASSIGN DTA, ABC
Monitor responds DEVICE DTA6 ASSIGNED (successful)

User then types ASSIGN DTA,DEF (find another unit)
Monitor responds NO SUCH DEVICE (all in use)
User then types ASSIGN PTP, ABC (reserve paper tape punch)

Monitor responds LOGICAL NAME ALREADY IN USE (paper tape punch is reserved,
DEVICE PTP ASSIGNED but ABC still refers to DTA6 only)

User then types ASSIGN DTAT, DEF
Monitor responds ALREADY ASSIGNED TO JOB 2 (another user has it)

2.4.2.3 ASSIGN SYS: dev = This command is used to change the systems device (SYS:) from its cur-

rently allocated device to some other device (dev). In order to issue this command, the user must be

logged in under either [1,11 or [1,2].

2.4.2.,4 Device Protection ~ When a device is assigned to a job, it is removed from the Monitor's

pool of available devices. Any attempt by another job to reference the device fails. The device is

returned to the pool when the user deassigns it or kills the job.

2.4.2,5 Special Functions = The ASSIGN command applied to DECtapes clears the copy of the direc-

tory currently in core, forcing any directory references to read a new copy from the tape. This is es-

pecially important when changing reels. (See Chapter 5 for further details.)

2.4.3 DEASSIGN Idev®

This command cancels device reservations made via the ASSIGN command and returns the
device(s) to the Monitor pool. The command may be typed alone or with one argument, Idev. When
an argument is typed, it must be the logical or physical name of some device previously reserved by the
ASSIGN command. If no argument is typed, all devices currently reserved by the user via the ASSIGN
command are affected, The DEASSIGN command may be typed, even though the user's program con-
tinues to use the devices affected. ‘

Monitor error responses are:

NO SUCH DEVICE
DEVICE WASN'T ASSIGNED

2.4,3.1 Special Functions = The DEASSIGN command applied to DECtapes performs the same special
function as ASSIGN, section 2.4.2.5.

2.4.4 REASSIGN dev job

REASSIGN allows one job to pass a device to a second job without going through the Monitor
pool. Two arguments are required: the physical device name, dev, and the job number of the second
job. Dev is deassigned from the current job and assigned to the second job. All devices except user
consoles can be reassigned.

Monitor error responses are:
DEVICE dev WASN'T ASSIGNED
JOB NEVER WAS INITIATED
NO SUCH DEVICE
DEVICE CAN'T BE REASSIGNED

2.4.5 FINISH Idev

FINISH terminates any input or output currently in progress on device Idev and relinquishes
it (see RELEASE).
Monitor error response is:
NO SUCH DEVICE

2.4,6 TALK ty

The TALK command allows a user to type directly on another user's console, and the latter to
type back. If device tty is in the detached mode or in Monitor mode and at the left margin, the user's
console is inserted into a talk "ring" with tty. Otherwise the Monitor responds with BUSY. Any num-
ber of consoles can be in the same talk ring. Each character typed on any console in the ring is print-
ed on all other consoles in the ring. Any console is removed from the ring by typing 1C. The required
argument, tty, can be any of the physical device names CTY, TTYO,...,TTYn or the special device
name OPR.

2.4,6.1 Operator's Console = When the Monitor is started, one console, usually CTY, is designated

as the operator's console and given the name OPR. All requests for local operations such as mounting

and unmounting tapes, etc., can be performed with TALK OPR.

2.4,7 CORE core®

The CORE command has one optional argument, core. Without the argument, the Monitor
responds with the decimal number of 1024-word blocks of unallocated core in its pool if 10/40 system

and with the maximum size of user's core if 10/50 system. The optional argument, core, is the total

2-8

decimal number of 1024-word blocks of core memory allocated to the job upon successful completion of
the command. If it is smaller than the current allocation, the difference is removed from the top of the
user's core area, and returned to the Monitor pool. If it is larger than the current allocation, the dif-
ference, if available, is removed from the pool and appended to the top of the user's core area. In the
10/40 (nonswapping) system, if the difference is not available, the user's current core area is unchanged,
and the Monitor responds with the decimal number of 1024-word blocks in the pool. In the 10/50
(swapping) system, if the difference is not available, the user program is swapped out and brought back

a short time later when it can fit. The user need not know if his program is swapped out or not.

2.4.8 RESOURCES

This command causes the typeout of all available devices (except Teletypes) and the number

of free blocks on the disk.

2.5 RUN CONTROL COMMANDS

Core image files located on retrievable storage devices such as disk, DECtape, and magnetic
tape can be retrieved and controlled from the user's console. The process of creating such files is de-
scribed in Chapter 3. Files stored on disk and DECtape are addressable by name. Files on magnetic

tape require prepositioning the tape by the user.

2.5.1 File Descriptors

2.5.1.1 Filenames - Filenames are from one to six letters or digits. All letters and digits after the

“sixth are ignored. A filename is terminated by any character that is not a letter or digit.

2.5.1.2 Filename Extension - If the filename is terminated by a period, a filename extension is as-

sumed to follow. A filename extension is from one to three letters or digits. It is generally used to in-
dicate file format. The filename extension is terminated by any character not a letter or a digit. If
a filename extension is not specified with the RUN, GET, and SAVE commands, an extension of SAV

is assumed.

2,5,1.3 Project-Programmer Numbers - If a user wants to perform a RUN or GET command on a disk

file belonging to another user, he must specify the user's project-programmer numbers. The format is
P proj prog

[project-number, programmer-number]

2.5.2 RUN Idev file ext® [p,pl ® core®

The RUN command loads a core image from a retrievable storage device (DECtape, disk, and
magnetic tape), ldev, and starts it at a location specified within the file (see JOBSA, "Job-Data Area",
Chapter 3). The arguments file, ext, and [p,pl are used to select the file. The minimum amount of
core required to load the file is allocated. After the file is loaded, core is reallocated if the optional
fifth argument, core, is specified or if the file was saved with a core argument. If both were specified,
the RUN command core argument takes precedence. The optional argument is ignored if it is less than
the size of the file. If Idev is a magnetic tape, the fifth orgume‘ni'.must be specified, and be at least
as large as the core image file to assure proper loading.

Monitor error responses are:

Idev NOT AVAILABLE (Idev is allocated to another job)
NO SUCH DEVICE (Idev is undefined)
nK OF CORE NEEDED (where n is a decimal number of 1024-word

blocks, if there is insufficient free core to
load the file or to satisfy the optional core
argument on the reallocation) - 10/40
Monitor only.

NOT A DUMP FILE (the selected file is not a core image file)

TRANSMISSION ERROR (a parity or device error occurred during
data transmission)

2.5.3 R file.ext® core® - The R command is equivalent to the command

RUN SYS file.ext® core®

and is provided as a convenience for the user. In other words, the R command is the usual command
for running one of the CUSPs (Commonly Used System Programs) in the system library. Note that R is
not an abbreviation for RUN; if the program is on a device other than SYS, the user must use the RUN

command (abbreviated RU).

2.5.4 GET, START, HALT (1C), and CONT Commands

The GET, START, HALT, and CONT commands permit the user to control the running of his

program from the console.

2.5.4,1 GET Idev file ext® [p,pl° core® - The GET command is the same as the RUN command, ex-
cept that the Monitor responds with k
JOB SETUP

instead of starting the program. The assignment of core is also similar o that of the RUN command.

2-10

2.5.4.2 START addr® - The START command begins execution of the user's program. If the optional
argument, addr, is not specified, the starting address is found in the core area (right half of JOBSA as
set up by the LOADER from an END statement in the source program, see Chapter. 3). The optional

argument, addr, is an octal number and, if specified, the program is started at that location. Monitor

error responses are:

NO CORE ASSIGNED

NO START ADR (if the content of JOBSA is 0).

The user must supply a starting address on his END statement.

2.5.4.3 HALT and tC - Typing a tC (hold down the CTRL key and strike "C") on the console puts the
console in Monitor mode and transmits @ HALT command to the Monitor Command Decoder. The HALT

command stops the job and stores the program counter in the job's core area (JOBPC, "Job-Data Area, "

Chapter 3).

2.5.4.4 CONT - The CONT command starts the program at the location specified by the contents of
the saved program counter in the job's core area (JOBP\C, see "Job-Data Area," Chapter 3), and puts
the console in user mode. If the CONT command is given to a job which was stopped as a result of a
Monitor-detected error, the Monitor responds with
CAN'T CONTINUE
The CONT command is applicable only if the job was stopped by the HALT (*C) command or
the HALT instruction.

2.5.5 DDT, REENTER, E and D

The DDT, REENTER, E, and D commands are used primarily for program debugging and ex-
ception handling. The DDT and REENTER commands provide alternate program entry points. E and D

provide a means of examining and modifying locations in the user's core area from the console.

2.5.5.1 DDT - The DDT command copies the saved value of the user's program counter (JOBPC) into
a second location in his core area (JOBOPC, see "Job Data Area," Chapter 3), and starts his program
at an alternate entry point specified by another location (JOBDDT, see "Starting Addresses, " Chapter 3)
in his core area. This alternate entry point is set to the beginning address of DDT by the loader, if the
program was loaded with DDT. Alternately, the user may set this address to any desired location. To
resume computation following the DDT command interruption, execute a 1C and START (JRST 2, @

JOBOPC). The Monitor error response is:

NO START ADR (if the content of JOBSA is 0).

The user must supply a starting address on his END statement.

2.5.5.2 REENTER - The REENTER command is similar to the DDT command. The alternate entry point
is specified by a different location (JOBREN, see "Job Data Area," Chapter 3) in the job core areq,
and must be set by the user or his program. The Monitor error response is:
NO START ADR (if the content of JOBSA is 0).

The user must supply a starting address on his END statement.

A typical use of this command is interrupting a long computation to examine intermediate
results. The user types 1C, and then REENTER, which transfers to his routine to print intermediate re-
sults. This routine should preserve the state of his main program, and return to the interrupted compu-

tation by executing a JRST 2, @ JOBOPC.

2.5.5.3 E addr® - The E command allows the user to examine locations in his core area. If the op-
tional argument, addr, which is an octal number, is specified, the octal contents of the left and right
halves of location addr are typed. Leading zeros in the half words are suppressed. The half-word values
are separated by a space, and the right half value is followed by a horizontal tab. If the optional
argument, addr, is not specified, the contents of the next location are typed. If the location to be

examined lies outside the user's allocated core area, the Monitor responds with

OUT OF BOUNDS

2.5.5.4 D lh rh addr® - The D command allows a user to deposit into his core area. The required
arguments lh and rh are the octal values of the left and right half words to be deposited. If the optional
argument, addr, which is an octal number, is specified, the word is deposited at location addr. If it is
not specified, the word is deposited at the location following the last location examined or deposited.

If the location is above the user's core area, or in the protected part of the job data area (see Table 3-1)

above user AC 17, the Monitor responds with
OUT OF BOUNDS

2.5.6 SAVE ldev file ext® core®

The SAVE command writes a core image file of the user's core area. The Monitor saves space
by compressing core and eliminating words of zeroes before writing. It expands core back again after
the output operation has completed. If DDT is loaded, i.e., if JOBDDT is nonzero (see Chapter 3),
the entire core area, except the user's ACS, is written. Otherwise, the area starting from JOBDDT

and extending up through the program break (as specified by the contents of JOBFF, see Chapter 3) is

2-12

written. If the optional argument, ext, is not specified, the filename extension is SAV. The optional
argument, core, specifies the minimum number of 1024-word blocks in which the program is to be run.
This parameter is stored in the job's core area (JOBCOR, see Table 3-1), and is used by the RUN and
GET commands. The state of the users accumulators and input/output devices are not saved.
After the output is completed, the Monitor responds with:
JOB SAVED
Monitor error responses are:

n 1K BLOCKS OF CORE NEEDED (where n is the contents of JOBFF modulo
1024, if the user's current core allocation
is less than the contents of JOBFF)

DEVICE NOT AVAILABLE (device ldev is allocated to another user)
TRANSMISSION ERROR an error was detected while writing)

(
DIRECTORY FULL (the maximum number of files already exists
for device Idev)

2.6 BACKGROUND JOB CONTROL

A job is a "background" job if it is not under control of a user console. Any console can in-
itiate any number of background jobs. Input/output to the console while a job is running in background

mode causes the job to stop until a console is attached.

2.6.1 PJOB

The PJOB command responds with the job number to which the user's console is attached. If
the console is not attached to a job, the 10/40 Monitor assigns a job number, and responds with the job
number and a line identifying the Monitor version; the 10/50 Monitor responds with the message

LOGIN PLEASE

The job number is a necessary argument for the ATTACH command.

2.6.2 CSTART and CCONT

The RUN, START, and CONT commands always leave the user console in user mode. 1C
switches the console to Monitor mode, but also stops the job. The CSTART and CCONT commands are
identical to the START and CONT commands, respectively, with the exception that the console is left
in Monitor mode. ‘

In general, to start a job running with the console in Monitor mode, it is necessary to begin
with the console in user mode; type control information to the program; type tC, which stops the job

with console in Monitor mode; and, finally, type the CCONT command, which allows the job to con-

2-13

tinue running with the console in Monitor mode. Further commands may now be executed while the job

is running.

2.6.3 DETACH

The DETACH command disconnects the user's console from the job, placing the console in the
detached mode without affecting the status of the job. For instance, if the job was running, it remains
running in the background mode. The user console is now free to control another job, either by creat-

ing a new job or ATTACHing to a background job.

2.6.3.1 DETACH dev - This command causes the assignment of device dev to JOB 0, thus making it

unavailable to the system. In order to issue this command, the user must be logged in under [1,1].

2.6.4 ATTACH job [p,pl

The ATTACH command allows a user to connect a console to a background job. Two argu-
ments are required. The first argument, job, is the job number of the job to which the user desires to
attach. In Mulfiprogramhing disk systems and Swapping systems, the second argument, [p,pl, is
the project-programmer number pair of the originator of the desired job. Following the ATTACH com-
mand, the console is always left in the Monitor mode. If the job happens to be running, typing CONT
places the console in the user mode without affecting the operation of the job. It is not necessary to
execute the DETACH command before the ATTACH command, in order to switch the console between
two jobs, since the current job is automatically DETACHed.

If [p,pl is omitted, the user's project-programmer number will be assumed. This speeds up
the usual case when the user has LOGGED in twice under the same project-programmer number. The
operator (device OPR) may always attach to a job even though another console is attached, provided
he specifies the proper project-programmer number. This gives the operator complete control of the
system in case of mishap in a particular job.

If an error condition occurs, the console is left attached to the job to which it was connected
before the ATTACH was typed.

Monitor error responses are:

TTYn ALREADY ATTACHED (either the job number typed is erroneous
and by coincidence is attached to another
console, or another user is attached to the
job number specified)

NOT A JOB (the specified job number is not assigned to any
job)
CAN'T ATTACH TO JOB (the second argument, [p,pl is not the project-

programmer pair of the job originator)

2-14

2.6.4.1 ATTACH dev - This command returns a detached device to the Monitor pool and makes it

available to the system. In order to issue this command, the user must be logged in under [1,1].

2.7 JOB TERMINATION

When a user leaves the system, all facilities allocated to his jobs must be returned to the

Monitor facility pool, thereby making them available to other users.

2.7.1 KJOB

The KJOB command performs the following functions on the job to which the console is

attached:
a. Stops all allocated input/output devices and returns them to the Monitor pool;
b. Returns all allocated core to the Monitor pool;
c. Returns the job number to the Monitor pool;
d. Performs a TIME command; and
e. Leaves the console in Monitor mode.
2.8 SYSTEM TIMING

All system times are kept in increments of one 60th (or 50th) of a second. The DAYTIME and
TIME commands print time in the format
hhmm:ss.ss

where hhmm is a 4-digit representation of hours and minutes and ss.ss is seconds to the nearest hundreth.

2.8.1 DAYTIME

The DAYTIME command prints the data followed by the time of day.

2.8.2 TIME job®

The TIME command prints the incremental running time, i.e., the running time since the last
TIME command, followed by the total running time used by the job. Interrupt level and job scheduling
times are charged to the job running when the interrupt or rescheduling occurred. If the optional argu-
ment, job, is not specified, the job to which the console is attached is used. If the optional argument
is zero, the Monitor prints 5 quantities about system utilization as

HH:MM:SS:HH

2.9

SHFL - Time spent in BLT shuffling core
ZCOR - Time spent in BLT zeroing core

LOST - Time spent in NULL job when other jobs wanted to run but could not
because they were swapped out, on the way in or out; they were stopped,
waiting to be shuffled; or they were being swapped because of expand-
ing core.

NULL - Total time in NULL job (including LOST)

up - Total time since system was loaded

COMMENT ENTRIES (;)

The operator may type a line of comments on the Teletype by preceding the line with a

semicolon. This line will not be interpreted or executed by the Monitor.

2-16

CHAPTER 3
LOADING USER PROGRAMS

3.1 MEMORY PROTECTION AND RELOCATION

A user's program runs while the computer is in a special mode known as the user mode. In
this mode, the contents of the memory relocation register in the central processor are automatically
added to each memory address before the address is sent to the memory system. The address, before this
addition takes place, is called the relative address; after the addition, the address is called the abso-
lute address. The contents of the memory protection register are compared with the eight high-order bits
of each relative address. If the relative address exceeds the contents of the memory protection register,
the memory violation flag is set in the central processor and control traps to the Monitor.

Thus, the contents of the memory protection and relocation registers define a contiguous area
of core with the following properties:

a. All memory references from within the region are relative to the beginning of the region.

b. It is impossible to address a location outside the region from within the region.

When the Monitor schedules a user's program to run, it sets the memory protection and relo-
cation registers to the bounds of the user's allocated core area and switches the central processor to the
user mode.

In this manual, all addresses in the user's area are relative addresses.

To take advantage of the fast accumulators, memory addresses O through 17 are not relocated.
Thus, relative locations O through 17 cannot be referenced by the user's program. The Monitor saves
the user's accumulators in this area when the user's program is not running and while the Monitor is ser-

vicing a program call from the user.

3.2 USER'S CORE STORAGE

A user's core storage consists of a single contiguous block of memory whose size is an integral
number of 1024 words (see Figure 3-1). There are two methods available to the user for loading his core
area. The simplest way is to load a core image stored on a retrievable device (see RUN and GET,
Chapter 2); the second is to use the relocatable binary loader to link-load binary files. The user may

then write the core image on a retrievable device for future usage (see SAVE, Chapter 2).

3.2.1 Job Data Area

The first 1408 locations of the user's core area comprise the job data area reserved for

storing specific information concerning the job, such as the starting address of the user's program (JOBSA),

3-1

highest legal address (JOBREL), etc. Locations in this area have been given mnemonic assignments
whose first three characters are JOB, e.g., JOBSA, JOBFF, JOBDDT, etc (see Table 3-1). As a con-

sequence all mnemonics in this manual with a JOB prefix refer to locations in the job data area.

py— MEMORY RELATIVE ADDRESS
PROTECTION RELOCATION > -—o0
REGISTER REGISTER USER'S ACCUMULATORS
WHILE USER 1S
NOT RUNNING
- =7
1 HIGHEST LEGAL
R RELATIVE

ADDRESS

Figure 3-1 User's Core Area

Table 3-1
Job Data Area Locations (See Addendum II)
Relative
Name Location(s) : Description
Octal
JOBUUO 40 User's location 40g. Used for processing user UUO's (001
through 037).
JOB41 41 User's location 41g. Contains the beginning address of the
user's programmed operator service routine.
JOBREL 44 Left half: O

Right half: The highest relative core location available to the
user (i.e., the contents of the memory protection register when
this user is running).

JOBDDT 74 Contains the starting address of DDT. If contents are 0, DDT
has not been loaded.

JOBPFI 114 - Highest location in the job data area protected from I/0, that

is, the Monitor will not perform 1/O into or out of locations 0
through JOBPFI.

JOBSYM 116 Contains a pointer to the symbol table created by Linking
Loader.

Left half: Negative count of the length of the symbol table.
Right half: Lowest register used.

JOBSA 120 Left half: First free location in user area (set by Loader).
Right half: Starting address of user's program.

Table 3-1 (Cont)
Job Data Area Locations

Relative
Name Location(s) Description
Octal
JOBFF 121 Left half: O

Right half: Address of the first free location following the
user's program. Set to C(JOBSA)| y by RESET UUO.

JOBREN 124 Set by user and used by REENTER command as an alternate
entry point.

JOBAPR 125 Contains user location to be trapped to when APR trap
occurs (see APRENB UUO, Section 4.3.3.1).

JOBCNI - 126 , Set by CONI APR when an APR trap occurs o user program
so that it can see APR flags (see APRENB UUO).

JOBTPC 127 APR trap PC stored here on APR trap fo user program so that

execution can be continued (see APRENB UUQ).

JOBOPC 130 The previous (old) contents of the user's program counter are
stored here by Monitor upon execution of a DDT, REENTER
START, or CSTART command.

JOBCHN 131 Left half: O
Right half: Address of first location after first FORTRAN IV
Block Data.

JOBCOR 133 Left half: Unused

Right half: Highest core address for SAVE, GET, and RUN
(i.e., user's 3rd argument).

NOTE: Only those JOBDAT locations of significant importance to the user are given in this table.
JOBDAT locations not listed include those which are used by the Monitor and those which
are unused at the present time.

Some locations in the job data area, such as JOBSA and JOBDDT, are set by the user's
program for use by the Monitor, Others, such as JOBREL, are set by the Monitor for use by the user's
program. In particular, the right half of JOBREL contains the highest legal address set by the Monitor

‘whenever the user's core allocation changes.

User programs must reference locations in the job data area with the assigned mnemonics,
which must be declared as EXTERNAL references to the assembler. The values are dssigned when the
loader performs an automatic library search for undefined global references. The specific library sub-

file, in which these symbols are defined, is called JOBDAT.

3-3

3.2,2

Loading Relocatable Binary Files

The relocatable binary loader (LOADER) resides in the system file, and is started by the

command

R LOADER core®

Example:

R LOADER 5

The PDP-10 Systems User's Guide contains a description of the loader command string.

Figure 3-2 shows the user's core area with the loader resident.

LOAD

OFFSET
(LOC O OF
OBJECT PROG)

HIGHEST
LOCATION
LOADED

BOTTOM OF

JOB DATA AREA

NEW JOB DATA AREA

HIGHEST
LOCATION
LOADED

SYMBOL
TABLE

SYMBOL
TABLE

DURING LOADING AFTER LOADING

Figure 3=2 Loading User Core Area

3.2.2.1 Program Origin - The new program code is loaded upward from an offset above the resident

loader. The program origin (i .e., the first location loaded) is 1408, unless the user changes it by the
assembler LOC pseudo-instruction. The symbol table is built down from the top of the allocated core
area. If the code and symbol table overlap, the core area is expanded by 1024 words and the symbol
table is moved up to the top of the expanded area. Upon completion of loading, the loader stores some
values in the new job data area, and moves the area from the offset to the highest location loaded (top

of new code) down to zero. The symbol table remains at the top of the allocated core.

3.2.2.2 Program Break ~ After loading, the address of the first location above the new code area
(i.e., the program break) lies in the left half of location JOBSA and in the right half of JOBFF. The
left half of JOBFF contains 0.

3.2.2,3 Starting Addresses - The right half of JOBSA contains the program starting address. The

value is the last nonzero address field of the assembler END pseudo-instruction to be loaded, or 0.
This is the address used by the RUN and START commands.

If DDT was loaded by means of the D switch in the loader command string, the right half of
JOBDDT is set by DDT to the starting address of DDT; the left half is O; otherwise, the contents of
JOBDDT are zero, the DDT command uses this address as the starting address. Location JOBREN may
be set by the user's program for use with the REENTER command (see Chapter 2).

3.2.2.4 Symbol Table - JOBSYM contains a pointer to the bottom of the symbol table. The left half
is the negative word length of the table, and the right half is the address of the lowest location used.
The top of the symbol table is the top of the user's allocated core area, pointed to by the contents of
the right half of JOBREL. DDT uses this symbol table for printing and interpreting symbolic values.

The right half of JOBUSY is the beginning address of the list of undefined global symbols.
If some symbols are undefined after loading is complete, DDT may be used to define their values. These

values are automatically substituted by DDT in all locations referencing them.

CHAPTER 4
USER PROGRAMMING

The central processor operates in one of three modes: executive mode, user /O mode, or
user mode. The Monitor operates in executive mode, which is characterized both by the lack of mem-
ory protection and relocation (see Chapter 3) and by normal execution of all defined operation codes.
The user I/O mode is a special mode, wherein memory protection and relocation are in effect, as well
as the normal execution of all defined operation codes. (This mode is not used by the Monitor, and is
not normally available (see TRPSET) to the time-sharing user.) User programs are run in user mode, to

guarantee the integrity of both the Monitor and each user program.

4.1 USER MODE

The user mode of the central processor is characterized by the following features:
a. Avutomatic memory protection and relocation (see Chapter 3)
b. Trap to absolute location 40 on

(1) Operation codes 40 through 77 and 0;

(2) Input/output instructions (DATAI, DATAO, BLKI, BLKO, CONI, CONO, CONSZ,
and CONSO);

(38) HALT (i.e., JRST 4,); or
(4) Any JRST instruction that attempts to enter executive mode or user /O mode.
c. Trap torelative location 40 on execution of operation codes 001 through 037.
Since user programs run in user mode, the Monitor must perform all input/output operations

for the user, as well as any other operations required by the user not available in the user mode.

4.2 PROGRAMMED OPERATORS (UUO')

Operation codes 000 through 077 are programmed operators (sometimes referred to as UUO's -
Unimplemented User Operators); some trap to the Monitor and the rest trap fo the user program.

After the effective address calculation is complete, the contents of the instruction register
are stored in user or Monitor location 40, along with the effective address, and the instruction in user
or Monitor location 41 is executed out of normal sequence. Location 41 must contain a JSR instruction

to a routine 'to interpret the contents of location 40.

4-1

4.2.1 Operation Codes 001-037 (User UUO's)

Operation codes 001 through 037 do not effect the mode of the central processor. Thus, when
executed in user mode, they frap to user location 40, which allows the user complete freedom in the use

of these programmed operators.

4.2.2 Operation Codes 040-077, and 0 (Monitor UUQ's)

Operation codes 040 through 077 and 0 trap to absolute location 40, with the central pro-
cessor in executive mode. These programmed operators are interpreted by the Monitor to perform input/
output operations and other control functions for the user's program.

Table 4~1 lists the operation codes and their mnemonics.

4,2.3 Operation Codes 100-127 (Unimplemented Op Codes)

Op code 100-UJEN Dismisses realtime interrupt from user mode
(see 4.3.6.2).

Op codes 101-127 Monitor prints ILL INST AT USER n and stops
job.

4.2.3.1 CALL and CALLI - Operation codes 040 through 077 limit the Monitor to 408 operations.
The CALL operation extends this set by specifying the name of the operation by the contents of the
location specified by the effective address, e.g., CALL [SIXBIT/EXIT/I. This provides for indefinite

extendability of the Monitor operations, at the overhead cost to the Monitor of a table lookup.

The CALLI operation eliminates the table lookup of the CALL operation by having the pro-
grammer perform the lookup once, and specifying an index to the operation in the effective address of
the CALLI. Table 4-2 lists the Monitor operations specified by the CALL and CALLI operations

The customer is allowed to add his own CALL and CALLI calls to the Monitor. A negative
CALLI effective address (starting with ~2) should be used to specify such customer added operations.

4.2.4 Illegal Operation Codes

The eight input/output instructions (DATAI, etc.) and JRST instructions attempting to enter
executive or user I/O mode from the user mode are interpreted by the Monitor as illegal instructions.
The job is stopped and the following error message is printed on the user's console.

ERROR IN JOB n
ILL INST AT USER LOC addr

4-2

4.3 PROGRAM CONTROL

4.3.1 Starting

All program starting is accomplished by the Monitor commands RUN, START, CSTART, CONT,
CCONT, DDT, and REENTER (see Chapter 2). The starting address is either an argument of the com-

mand or stored in the user's job data area (see Chapter 3).

4.3.1.1 CALL AC, [SIXBIT/SETDDT/] or CALLI AC, 2 - This UUO causes the contents of the AC to

replace the DDT starting address, which is stored in the protected job data area location, JOBDDT.
This starting address is used by the Monitor command, DDT.

4.3.2 Stopping

Any one of the following procedures can stop a running program:

a. One 1tC from user console if user program is in a Teletype input wait; otherwise, two
tC's from user console (See Chapter 2);

b. A Monitor detected error; or

c. Program execution of HALT, CALL [SIXBIT/EXIT/1, or CALL [SIXBIT/LOGOUT/I.

4.3.2,1 Illegal Instructions (700-777, JRST 10, JRST 14) and Unimplemented Op codes (101-127) -

Illegal instructions trap to the Monitor, stop the job, and print
ERROR IN JOB
ILL. INST. AT USER n

Note that the program cannot be continued by typing the CONT or CCONT commands.

4.3.2,2 HALT or JRST 4, - The HALT instruction is an exception fo the illegal instructions; it traps

to the Monitor, stops the job, and prints

ERROR IN JOB

HALT AT USER n
However, the CONT and CCONT commands are still valid and, if typed, will continue the program at
the effective address of the HALT instruction. HALT is useful for impossible error returns such as INIT

on TTY.

Table 4-

1

Monitor Operation Codes

Operation Code Mnemonic Function
040 CALL Operation code extension (See 4.2.3.1)
041 INIT Initialize 1/O device (See 4.4.2.2)
042 No operation ™
043 No operation Reserved for
044 No operation > installation-
045 No operation dependent
046 No operation _/ calls
047 CALLI Operation code extension (See 4.2.3.1)
050 OPEN Open file (See 4.4.2.2)
051 TT CALL Special Teletype Operations (See 5.1.3)
052 No operation Reserved for
053 No operation future
054 No operation expansion
055 RENAME Rename or delete a file (See 4.4.2.5)
056 IN Input and Skip (See 4.4.3)
057 out Output and Skip (See 4.4.3)
060 GETSTS Set file status (See 4.4.4)
061 STATO Skip on file status one (See 4.4.4)
062 STATUS Read file status (See 4.4.4)
063 STATZ Skip on file status zero (See 4.4.4)
064 INBUF Set up input buffer ring (See 4.4.2.3)
065 OUTBUF Set up output buffer ring (See 4.4.2.3)
066 INPUT Read (See 4.4.3)
067 OUTPUT Write (See 4.4.3)
070 CLOSE Close file (See 4.4.5)
071 RELEASE Release device (See 4.4.7)
072 MTAPE Position tape (See 5.8.2 and 5.7.5)
073 UGETF Get next free block number (See 5.7.5)
074 USETI Set next input block number (See 5.7.5)
075 USETO Set next output block number (See 5.7.5)
076 LOOKUP Select file (See 4.4.2.4)
077 ENTER Create file (See 4.4.2.4)
100 UJEN Dismiss real-time interrupt (See 4.3.6.2)

4-4

Table 4-2
CALL and CALLI Monitor Operations

CALLI AC, x CALL AC, [SIXBIT/y/ Function
X= =2,.00,mn Customer defined Reserved for definition by each customer
installation.
-1 DATAO Displays AC in console lights.
0 y = RESET Reset 1/O devices (See 4.4.2.1)
1 DDTIN DDT mode console input (See 5.1.2)
2 SETDDT Set protected DDT starting address (See 4.3.1.1)
3 DDTOUT DDT mode console output (See 5.1.2)
4 DEVCHR Get device characteristics (See 5.11)
5 (DDTGT) No operation
6 (GETCHR) Same as DEVCHR (4)
7 (DDTRL) No operation
10 WAIT Wait until device inactive (See 4.4.6)
11 CORE Allocate core (See 4.5)
12 EXIT Release devices, stop job (See 4.3.2.3)
13 UTPCLR Clear directory (See Table 5-2)
14 DATE Return data (See 4.3.4.1)
15 LOGIN Special operation for LOGIN (See 4.3.5.3)
16 APRENB Enable central processor traps (See 4.3.3.1)
17 LOGOUT Kill job (See 4.3.2.4)
20 SWITCH Read processor console switches (See 4.3.6.3)
21 REASSI Reassign device (See 2.4.4)
22 TIMER Read clock in ticks (See 4.3.4.2)
23 MSTIME Read clock in milliseconds (See 4.3.4.3)
24 GETPPN Read project-programmer pair (See 4.3.5.2)
25 TRPSET Set trap for user 1/O mode ‘(See 4.3.6.1)
26 TRPJEN Illegal UUO
27 RUNTIM Return job running time (See 4.3.4.4)
30 PJOB Return job number (See 4.3.5.1)
31 SLEEP Stop job for specified time (See 4.3.4.5)
32 (SETPOV) Set pushdown overflow trap (this command has
been superceded by APRENB (16).
33 PEEK Return specified Monitor location (See 4.3.5.4)

Table 4-2 (Cont)
CALL and CALLI Monitor Operations

CALLI AC, x CALL AC, [SIXBIT/y/1 Function

34 GETLIN Return physical name of attached Teletype con-
sole. (See 4.3.5.5)

35 RUN Call new program (both high and low)
(See Addendum III)

36 SETUWP Set user's mode write protect (See Addendum III)

37 REMAP Remap top of low segment into high segment
(See Addendum III)

40 GETSEG Replace high segment only (See Addendum I1I)

41 GETTAB Examine contents of specified Monitor location
(See 4.3.5.6)

42 SPY Make physical core be high segment for efficient
looking at Monitor (See Addendum III)

43 SETNAM Set program name (See 4.3.6.4)

Note: Other CALLI UUOs will be implemented from time to time and will be documented in Software
Manual Updates and in revised editions of this manual. Execution of a CALLI UUO with an address
higher than the last implemented operator will result in an ILLEGAL UUO message.

4.3.2.3 CALL [SIXBIT/EXIT/] or CALLI 12 ~ All input/output devices are RELEASed (see Section
4.4.7), and the job is stopped.

EXIT
tC

is printed on the user's console, which is left in Monitor mode. The CONT or CCONT commands can-

not continue the program.

4.3.2.4 CALL N, [SIXBIT/EXIT/1 or CALLI N, 14 - When N =1, the job is stopped but devices

are not released. The carriage return-linefeed operation will be performed and

is printed on the user's console and the CONT command will return after the UUO instead of printing
CAN'T CONTINUE.

4.3.2.5 CALL [SIXBIT/LOGOUT/I or CALLI 17 - All input/output devices are RELEASed (see Section

4.4.7), and returned to the Monitor pool, along with the allocated core and the job number. The ac-

cumulated running time of the job is printed on the user's console, which is left in the detached mode.
This UUO is not available to user programmers. It is only for use of the LOGOUT CUSP. If a user
program executes a LOGOUT UUO, the Monitor will treat it like EXIT (See 4.3.2.3).

4.3.3 Trapping

4.3.3.1 CALL AC, [SIXBIT/APRENB/I or CALLI AC, 16 - APR trapping allows a user to handle any

and all traps that occur on the central processor, including illegal memory references, nonexistent
memory references, pushdown list overflow, arithmetic overflow, floating point overflow, and clock

flag. To enable for trapping a CALL AC, [SIXBIT/APRENB/] or CALLI AC, 16 is executed, where the

AC contains the central processor flags to be tested on interrupts, as defined below:

AC Bit Trap On
19 200000 pushdown overflow*
22 20000 memory protection violation *
23 10000 nonexistent memory flag*
26 1000 clock flag*
29 100 floating point overflow
32 10 arithmetic overflow

When one of the specified conditions occurs while the central processor is in user mode, the
state of the central processor is Conditioned Into (CONI) location JOBCNI, and the PC is stored in lo-
cation JOBTPC in the job data area (see Table 3-1). Then control is transferred to the user trap-
answering routine specified by the contents of the right half of JOBAPR, after the arithmetic overflow
flag has been cleared. The user program must set up location JOBAPR before executing the CALL AC
[SIXBIT/APRENB/I or CALLI AC, 16. To return control to his interrupted program, the user's trap an-

swering routine must execute a JRST 2, @ JOBTPC to restore the state of the processor.

4.3.3.2 Console-Initiated Traps - Program control can be changed from the user's console by use of

the 1C, START, DDT, and REENTER commands (see Chapter 2).

4.3.4 Timing Control

The central processor clock, which generates interrupts at the power-source frequency (60 Hz
in North America, 50 Hz in most other countries), keeps time in the Monitor. Each clock interrupt
(tick) corresponds to 1/60th (or 1/50th) of a second of elapsed real time. The clock is set initially to
the current time of day by console input when the system is started, as is the current date. When the

clock reaches midnight, it is reset to zero, and the date is advanced.

*The Monitor is always enabled for these.

4.3.4.1 CALL AC, [SIXBIT/DATE/] or CALLI AC, 14 - A 12-bit binary integer computed by the

formula

date=((year-1964)x12+(month-1))x31+day-1
represents the date.

This integer representation is returned right-justified in accumulator AC.

4.3.4.2 CALL AC, [SIXBIT/TIMER/] or CALLI AC, 22 - These return the time of day, in clock ticks

(jiffies), right-justified in accumulator AC.

4.3.4.3 CALL AC, [SIXBIT/MSTIME/] or CALLI AC, 23 - These return the time of day, in milli-

seconds right-justified in accumulator AC.

4.3.4.4 CALL AC, [SIXBIT/RUNTIM/] or CALLI AC, 27 - The accumulated running time, in milli-

seconds, of the job whose number is in accumulator AC, is returned right-justified in accumulator AC,
If the job number in AC is zero, the running time of the currently running job is returned. If the job

whose number is in AC does not exist, zero is returned.

4.3.4.5 CALL AC, [SIXBIT/SLEEP/] or CALLI AC, 31 - These stop the job, and continue automatically

after an elapsed real time of

[c(AC)xclock frequencyl modulo 2]2 jiffies.
The contents of the AC are thus interpreted as the number of seconds the job wishes to sleep; however,

there is an implied maximum of approximately 68 seconds or one minute.
4.3.5 Identification

4.3.5.1 CALL AC, [SIXBIT/PJOB/] or CALLI AC, 30 - These return the job number right-justified

in accumulator AC.

4.3.5.2 CALL AC, [SIXBIT/GETPPN/I or CALLI AC, 24 - These return in AC the project-programmer
pair of the job. The project number is a binary number in the left half of AC, and the programmer num-

ber is a binary number in the right half of AC. If the program being run is LOGIN or LOGOUT from

the system device, the current project-programmer number is changed to 1,2 so that all files are acces-
sible for reading and writing, and a skip return is given if the old project-programmer number is also

logged in on another job.

4.3.5.3 CALL AC, [SIXBIT/LOGIN/] or CALLI AC, 15 - This programmed operator is intended for
use with the LOGIN command only. Accumulator AC contains XWD -n, TABLE, where TABLE is the

first location of n words to be stored in the Monitor's job tables for this user. The first table is project-
programmer number (PRJPRG); the second is the job privilege bits (JBTPRV). If LH is less than -2, the

extra words are ignored. If LH is -1, only the first table is set.

4.3.5.4 CALL AC, [SIXBIT/PEEK/] or CALLI AC, 33 - This UUO allows a user program to examine
any location in the Monitor. Some customers may want to restrict the use of this UUO to project 1.
The call is: MOVEI AC, exec address ;TAKEN MODULO 16K

CALL AC, [SIXBIT/PEEK/] ;OR CALLI AC, 33
This call returns with the contents of the Monitor location in AC. It is used by SYSTAT and could be

used for on-line Monitor debugging.

4.3.5.5 CALL AC, [SIXBIT/GETLIN/] or CALLI AC, 34 - This UUO returns the SIXBIT physical

name of the Teletype console that the program is attached to.

The call is: CALL AC, [SIXBIT/GETLIN/I ;OR CALLI AC, 34
The name is returned left justified in the AC.
Example: CTY or TTY3 or TTY30

This UUO is used by the LOGIN program to print the TTY name.

4.3.5.6 CALL AC, [SIXBIT/GETTAB/] or CALLI AC, 41 - This UUO provides a mechanism for user

programs to examine the contents of certain Monitor locations in a way which will not vary from Mon-
itor to Monitor.
The call is: CALL AC, [SIXBIT/GETTAB/] ;OR CALLI AC, 41
The left half of AC contains a job number or an index o a table. Some job numbers may refer to high
segments of programs by using arguments greater than JOBN for the current Monitor. A negative LH
means the current job number. The right half of AC contains a table number from the following list of
Monitor data tables and parameters. The entries in these tables are all globals in the Monitor subroutine
COMMON. The actual values of the core addresses of these locations are subject to change and can be
found in the LOADER storage map for the Monitor.

The complete descriptions of these globals will be found in the listings of COMMON and

S. The list of entries is as follows, with brief description.

Entries in CNFTBL (Configuration Table)- Table 11

ITEM LOCATION
0 CONFIG

4 CONFIG+4
5 SYSDAT

6 SYSDAT+1
7 SYSTAP

10 TIME

11 THSDAT

12 SYSSIZ

13 DEVOPR

14 DEVLST

15 SEGPTR

16 TWOREG
17 STATES

20 SERIAL

UsE

Name of systen in ASCIZ

Date of system in ASCIZ

Name of the system device (SIXBIT)

Time of day in jiffies

Todays date (12-bit format)

Highest location in the monitor + 1

Name of the OPR TTY console

LH is start of DDB chain

LH=-+ of high segments, RH=+ of JOBS (counting NULL job)
Non-zero if system has two-register hardware and software
Location describing feature switches of this system in LH,

and current state in RH.

Assembled according to MONGEN dialog and S.MAC:

Bit O=1 If disk system (FTDISK)

Bit 1=1 If swap system (FTSWAP)

Bit 2=1 If LOGIN system (FTLOGIN)

Bit 3=1 If full duplex software (FTTTYSER)

Bit 4=1 If privilege feature (FTPRV)

Bit 5=1 If assembled for choice of reentrant or non-reentrant
software at monitor load twice (FT2REL)

Bit 6=1If clock is 50 cycle instead of 60 cycle

Deposited by operator any time:

Bit 34=1 Means no remote LOGINS
Bit 35=1 Means no more LOGINS

Serial number of PDP processor
Set by MONGEN dialog

Entries in ODPTBL (once only disk parameters) - Table 15

ITEM LOCATION
0 SWPHGH

1 K4SWAP

2 PROT

3 PROTO

USE

Highest logical block # in the swapping space

K of disk words set aside for swapping

In-core protect time multiplies size of job in K-1
In-core protect time added to above result after multiply

Entries in NSWTBL (non-swapping data) - Table 12

ITEM LOCATION
0 CORTAB
7 CORTAB+7

UsE

Map of physical core
1 bit for each K of core

4-10

10
1
12
13
14
15
16
17
20
21
22

CORMAX
CORLST
CORTAL
SHFWAT
HOLEF
UPTIME
SHFWRD
STUSER
HIGHJB
CLRWRD
LSTWRD

Size in words of largest legal user job (low seg+high seg)
Byte pointer to last free block in CORTAB
Total freetdormant+idle K physical core left
Job no. shuffler has stopped
Abs. adr. of job above lowest hole, 0 if no job
Time system has been up in jiffies
Tot. no. of words shuffled by system
Number of job using sys if not a disk
Highest job number currently assigned
Total no. of words cleared by CLRCOR
Total no. of clock ticks when null job ran and other
jobs wanted to but couldn't, because:
1. Swapped out or on way in or out
2. Monitor waiting for 1O to stop so can shuffle or swap
3. Job being swapped out because expanding core

Entries in SWPTBL (swapping data) - Table 13

No. of K in biggest hole in core

+Job no. of job being swapped out

-Job no. of job being swapped in

Job being forced to swap out

Job waiting to be fit into core

Amount of virtual core left in system in K (initially set to
No. of K of swapping space)

ITEM LOCATION USE
0 BIGHOL

1 FINISH

2 FORCE

3 FIT

4 VIRTAL

5 SWPERC

Table Numbers (RH of AC)

LH=no. of swap read or write errors
RH=error bits (bits 18-21 same as status bits}+no. of K discarded

00-JBTSTS-Index by job or segment number
01-JBTADR-Index by job or segment number
02-PRJPRG -Index by job or segment number
03-JBTPRG -Index by job or segment number
04-TTIME-Index by job number
05-JBTKCT-Index by job number
06-JBTPRV-Index by job number
07-JBTSWP-Index by job or segment number
10-TTYTAB-Index by line number
11-CNFTBL-Index by item number (see above)
12-NSWTBL-Index by item number (see above)
13-SWPTBL-Index by item number (see above)
14-JBTSGN-Index by job number
15-ODPTBL-Index by item number (see above)

An error return leaves the AC unchanged. This means that the job number or index number in the left

half of AC was too high, or the table number in the right half of AC was too high, or that the user does

not have the privilege of accessing that table.

A skip return supplies the contents of the requested table in AC, or a zero if the table is

not defined in the current Monitor.

The SYSTAT CUSP makes heavy use of this UUO.

4.3.6 Direct User 1/O

The user /O mode (bits 5 and 6 of PC word = 11) of the central processor allows running
privileged user programs with automatic protection and relocation in effect. This mode provides some
protection against partially debugged Monitor routines, and permits running infrequently used device
service routines as a user job. Direct control by the user program of special devices is particularly
important in realtime applications.

To utilize this mode, the job number must be 1. CALL [SIXBIT/RESET/]1 or CALLI O

terminates user 1/O mode.

4.3.6.1 CALL AC, [SIXBIT/TRPSET/] or CALLI AC, 25 - This UUO is a privileged UUO which

temporarily stops time sharing and allows the user program to gain control of the interrupt locations.

This UUO is temporary until some "knave-proof" realtime UUOs are implemented which will not stop
time sharing and which cannot crash the system. If the user is not job 1, or if AC contains either zero
or the left half is not in the range 40 through 57, control returns to the next location after the CALL.
Otherwise, all other jobs are stopped and, if AC contains zero, the central processor is placed in user
1/O mode and control returns to the second location following the CALL. If the left half of AC con-
tains a number between 40 and 57 inclusive, the contents of the relative location specified in the right
half of AC are fetched; the job relocation address is added to the address field, and the result is stored
in the absolute location (40-57) specified in the left half of AC; the central processor is placed in the
user 1/O mode; and control is returned to the second location following the CALL. Thus, the user can
set up a priority interrupt trap into his relocated core area.

The call is: MOVE AC, XWD N, ADR
CALL AC, [SIXBIT/TRPSET/]
"ERROR RETURN
NORMAL RETURN

The Monitor assumes that user location ADR contains either a JSR U or BLKI U, where U is a user ad-
dress. Consequently, the Monitor will add the job's relocation to the contents of location U to make

it an absolute IOWD. Therefore, a user should reset the contents of U before every TRPSET call.

4.3.6.2 UJEN (Op code 100) - This unimplemented op code dismisses a user 1/O mode interrupt if

one is in progress. If the interrupt is from user mode, a JRST 12, instruction can dismiss the interrupt.

If the interrupt was from executive mode, however, this operator must be used to dismiss the interrupt.
The program must restore all accumulators, and execute

UJEN U
where user location U contains the program counter as stored by a JSR instruction when the interrupt

occurred.

4.3.6.3 CALL AC, [SIXBIT/SWITCH/] or CALLI AC, 20 - These return the contents of the central

processor data switches in AC. Caution must be exercised in using the data switches since they are not

an allocated device and are always available to all users.

4.3.6.4 CALL AC, [SIXBIT/SETNAM/] or CALLI AC, 43 - The contents of AC contain a left
justified SIXBIT program name, which is stored in a Monitor job table. This UUO is used by the
LOADER. The information in the table is used by the SYSTAT CUSP (See GETTAB UUO 4.3.5.6).

4.4 INPUT/OUTPUT PROGRAMMING

All user input/output operations are controlled by the use of Monitor programmed operators.
These are device independent, in the sense that if an operator is not pertinent to a given device, the
operator is treated as a no-operation code. For example, a rewind directed to a line printer does
nothing. Devices are referenced by logical names or physical names (see ASSIGN command, Chapter
2), and the characteristics of a device can be obtained from the Monitor. Properly used, these systems
characteristics permit the programmer to delay the device specification for his program from program-
generation until program-run time. 1/O is accomplished by associating a device, a file, and a ring

buffer or command list with one of a user's 1/O channels.

4.4.1 File

A file is an ordered set of data on a peripheral device. Its extent on input is determined by
an end-of-file condition dependent on the device. For instance, a file is terminated by reading an
end-of-file gap from magnetic tape, by an end-of-file card from a card reader, or by depressing the
end-of-file switch on a card reader (see Chapter 5). The extent of a file on output is determined by
the amount of information written by the OUT or OUTPUT programmed operators up through and in-
cluding the next CLOSE or RELEASE operator.

4.4.1.1 Device - To specify a file, it is necessary to specify the device from which the file is to be

read or onto which the file is to be written. This specification is made by an argument of the INIT or

4-13

OPEN programmed operators. Devices are separated into two categories—-those with no filename
directory, and those with one or more filename directories.

a. Nondirectory Devices - For nondirectory devices, e.g., card reader, line printer, paper
tape reader and punch, and user console, the only file specification required is the device name. All
other file specifiers, if given, are ignored by the Monitor. Magnetic tape, which is also a nondirectory
device, requires, in addition fo the name, that the tape be properly positioned. Even though LOOKUP
is not required to read and ENTER is not required to write, it is advisable to always use them so that a
directory device may be substituted for a nondirectory device at run time (using the Monitor command,
ASSIGN). Only in this way can user programs be truly device independent.

b. Directory Devices - For directory devices, e.g., DECtape and disk, files are addressable
by name. If the device has a single file directory, e.g., DECtape, the device name and filename are
sufficient information to determine a file. If the device has multiple file directories, e.g., disk, the
name of the file directory must also be specified. These names are specified as arguments to the LOOK-

UP, ENTER, and RENAME programmed operators.

4.4.1.2 Data Modes - Data transmissions are either unbuffered (dump) or buffered. The mode of
transmission is specified by a 4-bit argument to the INIT, OPEN, or SETSTS programmed operators.

Table 4-3 summarizes the data modes.

Table 4-3
Data Modes
Octal Code Mnemonic Meaning
Buffered Modes

0 A ASCII. 7-bit characters packed left justified, five characters
per word.

1 AL ASCII line. Same as 0, except that the buffer is terminated by
a FORM, VT (vertical tab), LINE-FEED or ALTMODE character.

2-7 , Unused.

10 I Image. A device dependent mode. The buffer is filled with data
exactly as supplied by the device.

11-12 Unused.

13 IB Image binary. 36-bit bytes. This mode is similar to binary mode,
except that no automatic formatting or checksumming is done by
the Monitor.

14 B Binary. 36-bit byte. This is a blocked format consisting of a
word count, n (the right half of the first data word of the buffer),
followed by n 36-bit data words. Checksumming is done for cards
and paper tape.

4-14

Table 4-3 (Cont)

Data Modes
Octal Code Mnemonic Meaning
Unbuffered Modes
15 ID Image Dump. A device dependent dump mode.
16 DR Dump as records without core buffering. Data is transmitted

between any contiguous blocks of core and one or more standard
length records on the device for each command word in the
command list.

17 D Dump one record without core buffering. Data is transmitted be-
tween any contiguous block of core and exactly one record of
arbitrary length on the device for each command word in the
command list.

a. Unbuffered Data Modes - Data modes 15, 16 and 17 utilize a command list to specify
areas in the user's allocated core to be read or written. The effective address of the IN, INPUT, OUT,
and OUTPUT programmed operators points to the first word of the command list. Three types of entries
may occur in the command list.

(1) IOWD n, loc - Causes n words from loc through loct+n-1 to be transmitted. The

next command is obtained from the next location following the IOWD. The assembler

pseudo-op IOWD generates XWD -n, loc-1.

(2) XWD 0, y - Causes the next command to be taken from location y. Referred to as

a GOTO word.

(3) O - Terminates the command list.

The Monitor does not return program control to the user until the command list has been
completely processed. If an illegal address is encountered while processing the list, an APR trap occurs
if the user has enabled the central processor for "illegal memory" references; otherwise, the job is
stopped and the Monitor prints

ADDRESS CHECK AT USER LOC addr
on the user's console, leaving the console in Monitor mode.

b. Buffered Data Modes - Data modes 0, 1, 10, 13, and 14 utilize a ring of buffers in the
user area and the priority interrupt system to permit the user to overlap computation with his data trans-
mission. Core memory in the user's area serves as an intermediate buffer between the user's program and
the device. A ring of buffers consists of a 3-word header block for bookkeeping and a data storage area
subdivided into one or more individual buffers linked together to form a ring. During input operations,

the Monitor fills a buffer, makes the buffer available to the user's program, advances to the next buffer

in the ring and fills it if it is free. The user's program follows along behind, emptying the next buffer
if it is full, or waiting for the next buffer to fill. During output operations, the user's program and the
Monitor exchange roles, the user filling the buffers and the Monitor emptying them.
(1) Buffer Structure - A ring of buffers consists of a 3-word header block and a data
storage area subdivided info one or more individual buffers linked together to form a
ring. The ring buffer layout is shown in Figure 4-1, and explained in the paragraphs
which follow.
(a) Buffer Header Block - The location of the 3-word buffer header block is speci-
fied by an argument of the INIT and OPEN operators. Information is stored in the
header by the Monitor in response to user execution of Monitor programmed oper-
ators. The user's program finds all the information required to fill and empty buf-
fers in the header. Bit position O of the first word of the header is a flag which,
if 1, means that no input or output has occurred for this ring of buffers. The right
half of the first word is the address of the second word of the buffer currently in use
by the user's program. The second word of the header contains a byte pointer to
the current byte in the current buffer. The byte size is determined by the data
mode. The third word of the header contains the number of bytes remaining in the
buffer.
(b) Buffer Data Storage Area - The buffer data storage area is established by the
INBUF and OUTBUF operators, or, if none exists when the first IN, INPUT, OUT,
or OUTPUT operator is executed, a 2-buffer ring is set up. The effective address
of the INBUF and OUTBUF operators specifies the number of buffers in the ring.
The location of the buffer storage area is specified by the contents of the right half
of JOBFF in the user's job data area. The Monitor updates JOBFF to point to the
first location past the storage area.

All buffers in the ring are identical in structure. As Figure 4-2 shows, the
right half of the first word contains the file status at the fime that the Monitor ad-
vanced to the next buffer in the ring. Bit O of the second word of a buffer, called
the use bit, is a flag that indicates whether the buffer contains active data. This
bit is set to 1 by the Monitor when the buffer is full on input or being emptied on
output, and set to O when the buffer is empty on output or is being filled on input.
The use bit prevents the Monitor and the user's program from interfering with each
other by attempting to use the same buffer simultaneously. Bits 1 through 17 of the
second word of the buffer contain the size of the data area of the buffer which im-

mediately follows the second word. The size of this data area depends on the device.

4-16

BUFFER HEADER BLOCK

RING
USE
BIT
+ CURRENT
BUFFER

BYTE POINTER

BYTE COUNT

DATA STORAGE AREA
USE FLAG

FILE STATUS
I
> | SIZE J BUF2
BUF1
DATA
L]
USE FLAG .
[]
l FILE STATUS
T
| SIZE | BUF j+1
BUFj:
DATA
L]
USE FLAG .
L
FILE STATUS
¥
>l SIZE l BUF 1
BUFN.

DATA

Figure 4-1 User's Ring of Buffers

FILE STATUS

ADDRESS OF SECOND
USE BIT —9 Di;’iEAzFEA WORD OF NEXT
BUFFER IN RING
BOOKKEEPING WORD COUNT, N

N DATA WORDS

UNUSED

FIRST WORD

SECOND WORD

THIRD WORD

DATA AREA

Figure 4-2 Detailed Diagram of Individual Buffer

4-17

The right half of the first word of the data area of the buffer, i.e., the third
word of the buffer, is reserved for a count of the number of words (excluding itself)
that actually contain data. The left half of this word is reserved for other book-

keeping purposes, depending on the particular device and the data mode.

4,4,1.3 File Status - The file status is a set of 18 bits (right half word), which reflects the current

state of a file transmission. The initial status is a parameter of the INIT and OPEN operators. Thereafter,
bits are set by the Monitor, and may be tested and reset by the user via Monitor programmed operators.
Table 4-4 defines the file status bits. All bits, except the end-of-file bit, are set immediately by the
Monitor as the conditions occur, rather than being associated with the buffer that the user is currently
working on. However, the file status is stored with each buffer so that the user can determine which

bufferful produced an error. A more thorough description of bits 18 through 29 is given in Chapter 5.

Table 4-4
File Status

Bit Meaning

18 Improper mode, e.g., attempt to write on a write-locked tape.

19 Device detected error, other than hardware checksum or parity. Checksum,
and/or parity error detected by hardware and/or software.

20 Data error, e.g., a computed checksum failed or invalid data was received.

21 Block too large. A block of data from a device is too large to fit in a buffer,
or a block number is too large.

22 End of file.

23 Device is actively transmitting or receiving data.

24-29 Device dependent parameters. (See Chapter 5.)

30 Synchronous input. Stop the device after each buffer is filled.

31 Forces the Monitor to use the word count in the first data word of the buffer (output
only). The Monitor normally computes the word count from the byte pointer in the
buffer header.

32-35 Data mode. See Table 4-3.

4-18

4,4,2 Initialization

4.4.2.1 Job Initialization - The Monitor programmed operator
CALL [SIXBIT/RESET/] or CALLI O

should be the first instruction in each program. It immediately stops all input/output transmissions on

all devices without waiting for the devices to become inactive. All device allocations made by the
INIT and OPEN operators are cleared, and, unless the devices have been assigned by the ASSIGN
command (see Chapter 2), the devices are returned to the Monitor facilities pool. The content of the
left half of JOBSA (program break) is stored in the right half of JOBFF so that the user buffer area is
reclaimed if the program is starting over. The left half of JOBFF is cleared. Any files which have not

been closed will be deleted on disk. Any older version having the same filename will remain.

4.,4,2.2 Device Initialization

OPEN D, SPEC INIT D, STATUS

error return SIXBIT/Idev/

normal return XWD OBUF, IBUF
. error return

SPEC:EXP STATUS normal return

SIXBIT/Idev/
XWD OBUF,IBUF
The OPEN (operation code 050) and INIT (operation code 041) programmed operators initialize a file

by specifying a device, Idev, and initial file status, STATUS, and the location of the input and output

buffer headers.

a. Data Channel - OPEN and INIT establish a correspondence between the device, Idev,
and a 4-bit data channel number, D. Most of the other input/output operators require this channel
number as an argument. If a device is already assigned to channel D, it is released. (See RELEASE in
this chapter.) The device name, Idev, is either a logical or physical name, with logical names taking
precedence over physical names. (See ASSIGN command, Chapter 2.) If the device, Idev, is not the
system device, SYS, and is allocated to another job or does not exist, the error return is taken. If the
device is the system device, SYS, the job is stopped in a system device wait queue, and will continue
running when SYS becomes available.

b. Initial File Status - The file status, including the data mode, is set to the value of the
symbol STATUS. If the data mode is not legal (see Chapter 5) for the specified device, the job is
stopped and the Monitor prints. |

ILL DEVICE DATA MODE FOR DEVICE dev AT USER addr,

where dev is the physical name of the device and addr is the location of the OPEN or INIT operator,
on the user's console and leaves the console in Monitor mode. ‘

c. Buffer Header - Symbols OBUF and IBUF, if nonzero, specify the location of the first
word of the 3-word buffer header for output and input respectively. Only those headers which are to
be used need to be specified. For instance, the output header need not be specified, if only input is
to be done. Also, modes 15, 16, and 17 require no header. If either of the buffer headers of the 3~
word block starting at location SPEC lies outside the user's allocated core orea], an illegal memory vio-
lation occurs. If the user has enabled the central processor for illegal memory traps (see APRENB in
this chapter), the trap occurs. Otherwise, the job is stopped and the Monitor prints

ADDRESS CHECK FOR DEVICE dev AT USER LOC addr
where addr is the address of the OPEN or INIT operator, on the user's console and leaves the console
in Monitor mode.
The first and third words of the buffer header are set to zero. The left half of the sec-
ond word is set up with the byte pointer size field in bits 6 through 11 for the selected device~data

mode combination.

4,4,2.3 Buffer Initialization ~ Buffer data storage areas may be established by the INBUF and OQUT-

BUF programmed operators, or by the first IN, INPUT, OUT, or OUTPUT operator, if none exists at
that time, or the user may set up his own buffer data storage area.

a. Monitor Generated Buffers - Each device has associated with it a standard buffer size
(see Chapter 5). The Monitor programmed operators INBUF D, n (operation code 064) and OUTBUF D, n

(operation code 065) set up a ring of n standard size buffers associated with the input and output buffer

headers, respectively, specified by the last OPEN or INIT operator on data channel D. If no OPEN or
INIT operator has been performed on channel D, the Monitor stops the job and prints.

I/O TO UNASSIGNED CHANNEL AT USER LOC addr
where addr is the location of the INBUF or OUTBUF operator, on the user's console leaving the console
in Monitor mode.

The storage space for the ring is taken from successive locations, beginning with the lo=
cation specified in the right half of JOBFF. This is set to the program break, which is the first free lo=
cation above the program area, by RESET. If there is insufficient space to set up the ring, an "illegal
memory " violation occurs, which will cause a trap, if the user has enabled for it (see APRENB in this
chapter), or the Monitor will stop the job and print

ADDRESS CHECK FOR DEVICE Idev AT USER LOC addr

]Buffer headers may not be in the user's AC's. However, they may be in locations above JOBPFI.

4-20

where ldev is the physical name of the device associated with channel D and addr is the location of the
INBUF or OUTBUF operator, on the user's console and leaves the console in Monitor mode.

The ring is set up by setting the second word of each buffer with a zero use bit, the ap-
propriate data area size, and the link to the next buffer. The first word of the buffer header is set with
a 1 in the ring use bit, and the right half contains the address of the second word of the first buffer.

b. User Generated Buffers = The following code illustrates an alternative to the use of the
INBUF programmed operator. Anulogous code may replace OUTBUF. This user code operates similarly

to INBUF. SIZE must be set equal to the greatest number of data words expected in one physical record.

GO: INIT1,0 ;INITIALIZE ASCII MODE
SIXBIT/MTAQO/ ;MAGNETIC TAPE UNIT 0
XWD 0, MAGBUF ;INPUT ONLY

JRST NOTAVL

MOVE 0, [XWD 400000,BUF1+1] ;THE 400000 IN THE LEFT HALF MEANS THE
;BUFFER WAS NEVER REFERENCED.

MOVEM 0, MAGBUF

MOVE 0, [POINT BYTSIZ,0,35] ;SET UP NONSTANDARD BYTE SIZE

MOVEM 0, MAGBUF+1

JRST CONTIN ;GO BACK TO MAIN SEQUENCE
MAGBUF: BLOCK 3 ;SPACE FOR BUFFER HEADER
BUF1: 0 : ;BUFFER 1, 1ST WORD UNUSED
XWD SIZE+2 ,BUF2+1 ;LEFT HALF CONTAINS BUFFER SIZE,
;RIGHT HALF HAS ADDRESS OF NEXT BUFFER
BLOCK SIZE+1 ;SPACE FOR DATA, 1ST WORD RECEIVES

;WORD-COUNT. THUS ONE MORE WORD
;1S RESERVED THAN IS REQUIRED
;FOR DATA ALONE
BUF2: 0 ;SECOND BUFFER
XWD SIZE+2,BUF3+1
BLOCK SIZE+]
BUF3: 0 ;THIRD BUFFER
XWD SIZE +2,BUF1+1 ;RIGHT HALF CLOSES THE RING
BLOCK SIZE+1

4.4.2.4 File Selection ~ The LOOKUP (operation code 076) and ENTER (operation code 077)

programmed operators select a file for input and output respectively. Although these operators are not
necessary for nondirectory devices, it is good programming practice to always use them so that directory
devices may be substituted at run time. (See ASSIGN, Chapter 2.)

a. LOOKUP D, E

error return
normal return

E: SIXBIT/file/ ;filename, 1 to 6 characters.
SIXBIT/ext/ ;filename extension, 0 to 3 characters.
0

XWD project number, programmer number,

4-21

LOOKUP selects a file for input on channel D. If no device is associated with channel
D, 7 is stored in bits 33 through 35 of location E+1, and the error return is taken. If the input side of
channel D is not closed (see CLOSE, in this chapter), it is now closed. The output side of channel D
is not affected. If the device associated with channel D does not have a directory, the normal return
is now taken. If the device has multiple directories, e.g., disk, the Monitor searches the master file
directory of the device for the user's file directory whose number is in location E+3 and whose extension
is UFD. If E+3 contains zero, the project-programmer pair of the current job is used as the name of the
user's file directory. If this file is not found in the master file directory, 1 is stored inkits 33 through
35 of location E+1 and the error return is taken.
The user's file directory or the device directory in the case of a single=~directory device
(e.g., DECtape) is searched for the file whose name is in location E and whose extension is in the left
half of location E+1. If the file is not found, 0 is stored in the right half of E+1 and the error return is
taken. If the device is a multiple-directory device (e.g., disk) and the file is found, but is read pro-
tected (see File Protection in this chapter), 2 is stored in the right half of location E+1 and the error re-
“turn is taken. Otherwise, location E+1 through E+3 are filled by the Monitor with the following data
concerning the file, and the normal return is taken.
(1) The left half of location E+1 is set to the filename extension.
(2) If the device is a multiple-directory device, bits 24 through 35 of location E+1 are
set to the date (in the format of DAYTIME programmed operator) that the file was last
referenced .
If the device is a single~directory device, the right half of location E+1 is set to the
device block number of the first block of the file.
(3) If the device is a multiple~directory device, bits 0 through 8 of location E+2 are
set to the file protection. (See "File Protection," this chapter.)

(4) Bits 9 through 12 of location E+2 are set to the data mode in which the file was written.

(5) Bits 13 through 23 of location E+2 are set to the time, in minutes, and bits 24
through 35 of location E+2 are set to the date (in the format of the DAYTIME program=
med operator) of the file's creation, i.e., of the last ENTER or RENAME programmed
operator.

(6) If the device is a multiple-directory device, the left half of location E+3 is set to
the negative of the number of words in the file, and the right half is unchanged . If

. . 17
the file contains more than 2°° words, then the left half contains the positive number

of 128-word blocks in the file.

4-22

If the device is a single=directory device, location E+3 is used only for SAVed files
(see Chapter 3), and contains the IOWD of the core image, i.e., the left half is the
negative word length of the file and the right half is the core address of the first word
minus 1.
b. ENTER D,E

error return
normal return

E: - SIXBIT/file/ ;filename, 1 through 6 characters.

SIXBIT /ext/ ;filename, extension, O through 3 characters.
EXP<TIME>B23+DATE

XWD project number, programmer number .

ENTER selects a file for output on channel D. If no device is associated with channel D,
7 is stored in bits 33 through 35 of location E+1 and the error return is taken. If the output side of
channel D is not closed (see CLOSE in this chapter), it is now closed. The input side of channel D is
not affected. If the device does not have a directory, the normal return is now taken.

If the device has multiple directories, e.g., disk, the Monitor searches the master file
directory of the device for the user's file directory whose name is in location E+3 and whose extension
is UFD. If E+3 contains 0, the project-programmer pair of the current job is used as the name of the
user's file directory. If this file is not found in the master file directory, 1 is stored in bits 33 through
35 of location E+1, and the error return is taken. If the filename inlocation E is 0, O is stored in bits
33 through 35 of location E+1, and the error return is taken. The user's file directory, or the device
file directory in the case of asingle-directory device, such as DECtape, is searched for the file whose
name is in location E and whose extension is in the left half of location E+1.

If the device is a multiple=directory device and the file is found but is being written or
renamed, 3 is stored in bits 33 through 35 of location E+1, and the error return is taken. If the file is
write protected (See "File Protection", this chapter), 2 is stored in bits 33 through 35 of location E+1,
and the error return is taken.

If the file is found, and is not being written or renamed and is not write protected, then
the file is deleted, or marked for later deletion after all read references are completed, and the storage
space on the device is recovered.

The Monitor then makes the file entry by recording the following information concerning
the file and takes the normal return.

(1) The filenome is taken from location E.

(2) The filename extension is taken from the left half of location E+1.

4-23

(3) If the device is a multiple=directory device, then
(a) the current date is taken as the date of last reference;
(b) the file protection key is set to 055 (see "File Protection," this chapter);
(c) the current data mode is taken as the mode in which the file is to be written;
(d) the project number of the current job is taken as the file owner's project
number; and
(e) if bits 13 through 35 of location E+2 are nonzero, bits 13 through 23 are taken
as the time of creation, in minutes, and bits 24 through 35 are taken as the date of
creation (in the format of the DAYTIME programmed operator) of the file. Other-
wise, the current time and date are used.

If the device is a single=directory device, then, if bits 24 through 35 of location E+2 are

nonzero, they are taken as the date of creation; otherwise, the current date is used.

4.4.2.5 File Protection = File protection on nondirectory and single~directory devices is obtained by

use of the ASSIGN command (see Chapter 2). Multiple~directory devices have a master file directory
for the device which contains entries for each user's file directory. File selection (see LOOKUP and
of @ oser Yo locafe 4is fi/e divetory

ENTER in this chapter) requires specification oﬁ-ﬂae—nem&ef—e—vse:ls—hla-duedaty and a filename with=
in}bc;fj’direcfory. This permits each user to access all files on the device, and necessitates a file pro=-
tection scheme to prevent unauthorized references. For this purpose users are divided into three
categories:

a. The file owner is the user whose project-programmer pair is the same as that in the NAME
field of the user's file directory in which the file is entered.

b. Project members are users whose project number is the same as that of the file owner.

c. All other users.

There are three types of protection against each of the three categories of users.
a. Protection-protection - the protection cannot be altered

b. Read protection - the file may not be read.

c. Write protection = the file may not be rewritten, RENAMEd, or deleted.

The file protection key, shown in the following figure, is a set of nine bits which specify the

three types of protection for each of the categories of users. (Also see Section 5.8.2.4, "Protection".)

4-24

OWNER PROJECT OTHER
A A

WRITE
PROTECTION

READ
PROTECTION

\ &QJ fommed [N A s PROTECTION
&\A}(047\' AV S v vy g PROTECTION

Figure 4-3 File Protection Key

When a file is created by an ENTER programmed operator, the file protection key is set to 055, indi-
cating that the file is protection=protected and write-protected against all users except the owner.
The protection key is returned by the LOOKUP D, E programmed operator in bits 0 through 8 of loca~
tion E+2. It can be changed by the RENAME programmed operator. The owner's protection=protection
and read-protection bits are ignored by the Monitor, thereby preventing a file from becoming inacces-
sible to everyone. However, the LOGIN CUSP sets the protection-protection bit if a user indicates
he wishes to selectively protect his file for future logouts. This feature is handled comple’rély by the
LOGOUT CUSP.

a. RENAMED,E

error return
normal return

E: SIXBIT/file/ ;filename, 1 through 6 characters.
SIXBIT /ext/ ;filename extension, 0 through 3 characters.
EXP <PROT>B8+<TIME>B23+DATE
XWD project number, programmer number.

The RENAME programmed operator (operation code 055) is used to alter the filename, the
filename extension, and the file protection key, or to delete a file associated with channel D on a
directory device.

If no device is associated with channel D, 7 is stored in bits 33 through 35 of location E+1,
and the error return is taken. If the device is a nondirectory device, the normal return is taken. If
no file is currently selected on channel D, 5 is stored in bits 33 through 35 of location E+1, and the

error return is taken.

4-25

If the device has multiple directories, e.g., disks, the Monitor searches the master file
directory of the device for the user's file directory whose name is in location E+3 and whose extension
is UFD. If E+3 contains 0, the project=-programmer pair of the current job is used as the name of the
user's file directory. If this file is not found in the master file directory, 1 is stored in bits 33 through
35 of location E+1, and the error return is taken. The user's file directory, or the device file directory
in the case of a single~directory device, is searched for the file currently selected on channel D. If
the file is not found, 0 is stored in bits 33 through 35 of location E+1, and the error return is taken.

If the device is a multiple-directory device and the file is found, but is being written or re-
named, 3 is stored in bits 33 through 35 of location E+1, and the error return is taken. If the file is
owner write-protected or if the protection key is being modified, i.e., bits 0 through 8 of location E+2
differ from the current protection key, and the file is owner protection=-protected, 2 is stored in bits 33
through 35 of location E+1, and the error return is taken.

If the new filename in location E is 0, the file is deleted, or marked for deletion, after all
read references are completed, and the normal return is taken. If the filename in location E and the
filename extension in the left half of location E+1 are the same as the current filename and filename
extension, respectively, the protection key is set to the contents of bits 0 through 8 of location E+2,
and the normal return is taken.

If the new filename in location E and/or the filename extension in the left half of location
E+1 differ from the current filename and/or filename extension, the user's file directory (or the device
directory) is searched for the new filename and extension, as in LOOKUP. If o match is found, 4 is
stored in bits 33 through 35 of location E+1, and the error return is taken. If no match is found, the
file is changed to the new name in location E, the filename extension is changed to the new filename
extension in the left half of location E+1, the protection key is set to the contents of bits 0 through 8 of

location E+2, the access date is sef to the current date, and the normal return is taken.

4.4.2.6 Examples

General Device Initialization

INIDEV: 0 ;JSR HERE
INIT 3, 14 ;BINARY MODE, CHANNEL 3
SIXBIT/DTA5/ ;DEVICE DECTAPE UNIT 5
XWD OBUF, IBUF ;BOTH INPUT AND OUTPUT
JRST NOTAVL : ;WHERE TO GO IF DTA5 ISBUSY

;FROM HERE DOWN IS OPTIONAL DEPENDING ON THE DEVICE AND PROGRAM
;REQUIREMENTS

MOVE 0, JOBFF

MOVEM 0, SV JBFF ;SAVE THE FIRST ADDRESS OF THE BUFFER
;RING IN CASE THE SPACE MUST BE
;RECLAIMED.

4-26

INBUF 3,4 ;SET UP 4 INPUT BUFFERS

OUTBUF 3,1 ;SET UP 1 OUTPUT BUFFER
LOOKUP 3, INNAM ;INITIALIZE AN INPUT FILE
JRST NOTFND ;WHERE TO GO IF THE INPUT FILE NAME IS
;NOT IN THE DIRECTORY
ENTER 3, OUTNAME ;INITIALIZE AN OUTPUT FILE
JRST NOROOM ;WHERE TO GO IF THERE IS NO ROOM IN
;THE DIRECTORY FOR A NEW FILE NAME.
JRST@ INIDEV ;RETURN TO MAIN SEQUENCE
OBUF: BLOCK 3 ;SPACE FOR OUTPUT BUFFER HEADER
IBUF: BLOCK 3 ;SPACE FOR INPUT BUFFER HEADER
INNAM: SIXBIT/NAME/ ;FILE NAME
SIXBIT/EXT/ ;FILE NAME EXTENSION (OPTIONALLY 0),

;RIGHT HALF WORD RECEIVES THE
;FIRST BLOCK NUMBER
0 ;RECEIVES THE DATE
0 ;UNUSED FOR NONDUMP 1/0
OUTNAM: SIXBIT/NAME/ ;SAME INFORMATION AS IN INNAME
SIXBIT/EXT/
0
0

4.4.3 Data Transmission

The programmed operators

INPUT D,E and IND,E
normal return
error return

transmit data from the file selected on channel D to the user's core area. The programmed operators

OUTPUT D, E and OUT D,E
normal return
error return

transmit data from the user's core area to the file selected on channel D.

If no OPEN or INIT operator has been performed on channel D, the Monitor stops the job
and prints

1/O TO UNASSIGNED CHANNEL AT USER LOC addr

where addr is the location of the IN, INPUT, OUT, or OUTPUT programmed operator, on the user's
console leaving the console in Monitor mode. If the device is a multiple~directory device and no file
is selected on channel D, bit 18 of the file status is set to 1, and control returns to the user's program.
Control always returns to the location immediately following an INPUT (operation code 066) and an
OUTPUT (operation code 067). A check of the file status for end-of-file and error conditions must
then be made by another programmed operator. Control retumns to the location immediately Followi‘ng

an IN (operation code 056) and an OUT (operation code 057), if no end-of-file or error condition

4-27

exists, i.e., if bits 18 through 22 of the file status are all 0. Otherwise, control returns to the second
location following the IN or OUT. Note that IN and OUT UUOs are the only ones in which the error

return is a skip and the normal return is not a skip.

4.4.3.1 Unbuffered (Dump) Modes = In data modes 15, 16, and 17, the effective address E of the
INPUT, IN, OUTPUT, and OUT programmed operators is the address of the first word of a command

list (see Section 4.4.1). Conirol does not return to the program until the transmission is terminated or
an error is detected.
Example =
Dump Output

Dump input is similar to dump output. This routine outputs fixed=length records.

DMPINI: 0 ;JSR HERE TO INITIALIZE A FILE
INITO, 16 ;CHANNEL 0, DUMP MODE
SIXBIT/MTA2/ ;MAGNETIC TAPE UNIT 2
0 ;NO RING BUFFERS
JRST NOTAVL ;WHERE TO GO IF UNIT 2 IS BUSY
JRST@ DMPINI ;RETURN

DMPOUT: 0 ;JSR HERE TO OUTPUT THE OUTPUT AREA
OUTPUT 0,OUTLST . ;SPECIFIES DUMP OUTPUT ACCORDING

;TO THE LIST AT OUTLIST
STATZ 0, 740000 ;CHECK ERROR BITS
CALL [SIXBIT/EXIT/] ;QUIT IF AN ERROR OCCURS
JRST @DMPOUT ;RETURN

DMPDON: 0 ;JSR HERE TO WRITE AN END OF FILE
CLOSE O, ;WRITE THE END OF FILE
STATZ 0, 740000 ;CHECK FOR ERROR DURING WRITE

;END OF FILE OPERATION
CALL [SIXBIT/EXIT/] ;QUIT IF ERROR OCCURS
RELEAS O, ;RELINQUISH THE DEVICE
JRST@DMPDON ;RETURN
OUTLST: IOWD BUFSIZ,BUFFER ;SPECIFIES DUMPING A NUMBER OF

;WORDS EQUAL TO BUFSIZ, STARTING
;AT LOCATION BUFFER

0 ;SPECIFIES THE END OF THE COMMAND
;LIST
BUFFER: BLOCK BUFSIZ ;OUTPUT BUFFER, MUST BE CLEARED

;AND FILLED BY THE MAIN PROGRAM

4.4.3.2 Buffered Modes - In data modes 0, 1, 10, 13, and 14 the effective address E of the INPUT,

IN, OUTPUT, and OUT programmed operators may be used to alter the normal sequence of buffer ref-
erence., If Eis 0, the address of the next buffer is obtained from the right half of the second word of

the current buffer. If E is nonzero, it is the address of the second word of the next buffer to be refer—
enced. The buffer pointed to by E can be in an entirely separate ring from the present buffer. Once a

new buffer locatian is established, the following buffers are taken from the ring started at E.

4-28

a. Input = If no input buffer ring is established when the first INPUT or IN is executed, a
2-buffer ring is set up. (See INBUF, Section 4.4.2.3.)

Buffered input may be performed synchronously or asynchronously at the option of the
user. If bit 30 of the file status is 1, each INPUT and IN programmed operator

(1) Clears the use bit in the second word of the buffer whose address is in the right

half of the first word of the buffer header, thereby making it available for refilling by

the Monitor;

(2) Advances to the next buffer by moving the contents of the second word of the cur-

rent buffer to the right half of the first word of the 3-word buffer header;

(3) If an end-of-file or an error condition exists, control is returned to the user's pro-

gram. Otherwise, the Monitor starts the device which fills the buffer and stops trans-

mission;

(4) Computes the number of bytes in the buffer from the number of words in the buffer

(right half of the first data word of the buffer) and the data mode, and stores the result

in the third word of the buffer header;

(6) Sets the position and address fields of the byte pointer in the second word of the

buffer header, so that the first data byte is obtained by an ILDB instruction; and

(6) Returns control to the user's program.

Thus, in synchronous mode, the position of a device, such as magnetic tape, relative to
the current data is easily determined. The asynchronous input mode differs in that once a device is
started, successive buffers in the ring are filled at the interrupt level without stopping transmission until
a buffer whose use bit is 1 is encountered. Control returns fo the user's program after the first buffer is
filled. The position of the device relative to the data currently being processed by the user's program

depends on the number of buffers in the ring and when the device was last stopped.

Example -
General Subroutine to Input One Character

GETCHR: 0 ; ;JSR HERE AND STORE PC
GETCNT: SOSG IBUF+2 ;DECREMENT THE BYTE COUNT

JRST GETBUF ;BUFFER IS EMPTY (OR FIRST CALL AFTER

;INIT

GETNXT: ILDB AC, IBUF+1 ; GET NEXT CHAR FROM BUFFER

JMPN AC, @GETCHR ;RETURN TO CALLER IF NOT NULL CHAR!

JRST GETCNT ;IGNORE NULL AND GET NEXT CHAR

IFor some devices in ASCII mode, the item count provided will always be a multiple of five characters.
Since the last word of a buffer may be partially full, user programs which rely upon the item count
should always ignore null characters.

4-29

GETBUF: IN 3, ;CALL MONITOR TO REFILL THIS BUFFER

JRST GETNXT ;RETURN HERE WHEN NEXT BUFFER IS
;FULL (PROBABLY IMMEDIATELY)
JRST ENDTST ;RETURN HERE ONLY IF ERROR OR EOF
ENDTST: STATZ 3, 740000 ;CHECK FOUR ERROR BITS FIRST
JRST INERR ;WHERE TO GO ON AN ERROR
JRST ENDFIL ;WHERE TO GO ON AN END OF FILE

b. Output - If no output buffer ring has been established, i.e., if the first word of the
buffer header is 0, when the first OUT or QUTPUT is executed, a 2-buffer ring is set up (see OUTBUF,
this chapter). If the ring use bit (bit O of the first word of the buffer header) is 1, it is set to 0, the
current buffer is cleared to all Os, and the position and address fields of the buffer byte pointer (the
second word of the buffer header) are set so that the first byte is properly stored by an IDPB instruction.
The byte count (the third word of the buffer header) is set to the maximum of bytes that may be stored
in the buffer, and control is returned to the user's program. Thus, the first OUT or OUTPUT initializes
the buffer header and the first buffer, but does not result in data transmission.

If the ring use bit is 0 and bit 31 of the file status is 0, the number of words in the buf-
fer is computed from the address field of the buffer byte pointer (the second word of the buffer header)
and the buffer pointer (the first word of the buffer header), and the result is stored in the right half of
the first data word of the buffer. If bit 31 of the file status is 1, it is assumed that the user has already
set the word count in the right half of the first data word. The buffer use bit (bit 0 of the second word
of the buffer) is set to 1, indicating that the buffer contains data to be transmitted to the device. If the
device is not currently active, i.e., not receiving data, it is started. The buffer header is advanced to
the next buffer by setting the buffer pointer in the first word of the buffer header. If the buffer use bit
of the new buffer is 1, the job is put info a wait state until the buffer is emptied ot the interrupt level .
The buffer is then cleared to all Os, the buffer byte pointer and byte count are initialized in the buffer

header, and control is returned to the user's program.

Example -
General Subroutine to Output One Character

PUTCHR: 0 ;JSR HERE AND STORE PC

SOSG OBUF+2 ;INCREMENT BYTE COUNT

JRST PUTBUF ;NO MORE ROOM (OR FIRST CALL AFTER INIT)
PUTNXT: IDPB AC, OBUF+1 ;STORE THIS CHARACTER

JRST @PUTCHR ;AND RETURN TO CALLER
PUTBUF: ourt 3, ;CALL MONITOR TO EMPTY THIS BUFFER

JRST PUTNXT ;RETURN HERE WHEN NEXT BUFFER IS

;EMPTY (PROBABLY IMMEDIATELY)
JRST OUTERR ;RETURN HERE ONLY IF OUTPUT ERROR

OUTERR: GETSTS 3,AC ;GET THE ERROR STATUS TO LOOK AT

4-30

4.4.4 Status Checking and Setting

The file status (see Table 4-4) is manipulated by the GETSTS (operation code 062), STATZ
(operation code 063), STATO (operation code 061) and SETSTS (operation code 060) programmed oper-
ators. In each case the accumulator field of the instruction selects a data channel. If no device is
associated with the specified data channel, the Monitor stops the job and prints,

I/O TO UNASSIGNED CHANNEL AT USER LOC addr
where addr is the location of the GETSTS, STATZ, STATO, or SETSTS programmed operator, on the
user's console leaving the console in Monitor mode.

GETSTS D, E stores the file status of data channel D in the right half and 0 in the left half
of location E.

STATZ D,E skips, if all file status bits selected by the effective address E are 0.

STATO D, E skips, if any file status bit selected by the effective address E is 1.

SETSTS D, E waits until the device on channel D stops transmitting data and replaces the cur-
rent file status, except bit 23, with the effective address E. If the new data mode, indicated in the
right four bits of E, is not legal for the device, the job is stopped and the Monitor prints

ILL DEVICE DATA MODE FOR DEVICE dev AT USER addr

where dev is the physical name of the device and addr is the location of the SETSTS operator, leaving
the console in Monitor mode. If the user program changes the data mode, it must also change the byte
size for the byte pointer in the input buffer header (if any) and the byte size and item count in the out-
put buffer header (if any). Changing the output item count should be done using the count already
placed there by the Monitor and dividing or multipling by the appropriate conversion factor, rather than

assuming the length of a buffer.

4.4.5 Terminating A File (CLOSE)

File transmission is terminated by the CLOSE D, N (operation code 070) programmed operator .
If no device is associated with channel D or if bits 34 and 35 of the instruction are both 1, control re-
turns to the user's program immediately.

If bit 34 is 0 and the input side of data channel D is open, it is now closed. In data modes
15, 16, and 17, the effect is to execute a device dependent function and clear the end-of-file flag,
bit 22 of the file status. Data modes 0, 1, 10, 13, and 14 have the additional effect, if an input buf-
fer ring exists, of setting the ring use bit (bit O of the first word of the buffer header) to 1, setting the
buffer byte count (the third word of the buffer header) to 0 and setting the buffer use bit (bit O of the
second word of the buffer) of each buffer to 0.

If bit 35 of the instruction is 0 and the output side of channel D is open, it is now closed.
In data modes 15, 16, and 17, the effect is to execute a device dependent function. In data modes 0,

1, 10, 13, and 14, if a buffer ring exists, all buffers that have not yet been transmitted to the device

4-31

are now written, device dependent functions performed, the ring use bit is set to 1, the buffer byte

count is set to 0, and control returns to the user after transmission is complete.

Example:
Terminating A File

DROPDV: 0 ;JSR HERE

CLOSE 3, ;WRITE END OF FILE AND TERMINATE

;INPUT

STATZ 3, 740000 ;RECHECK FINAL ERROR BITS

JRST OUTERR ;ERROR DURING CLOSE

RELEAS 3, ;RELINQUISH THE USE OF THE

;DEVICE, WRITE OUT THE DIRECTORY
MOVE 0, SVJBFF
MOVEM 0, JOBFF ;RECLAIM THE BUFFER SPACE
JRST @ DROPDV ;RETURN TO MAIN SEQUENCE

4.4.6 Synchronization of Buffered /O (CALL D, [SIXBIT/WAIT/]

In some instances, such as recovery from transmission errors, it is desirable to delay until a

device completes its input/output activities. The programmed operators,
CALL D, [SIXBIT/WAIT/1 and CALLI D,10

return control to the user's program when all data transfers on channel D have finished. This UUO does
not wait for a Magtape spacing operation, since no data transfer is in progress. An MTAPE D, O (see
Section 5.7.2) should be used to wait for spacing and 1/O activity to finish on Magtape. If no device
is associated with data channel D, control returns immediately. After the device is stopped, the posi-
tion of the device relative to the data currently being processed by the user's program can be deter-

mined by the buffer use bits.

4.4.7 Relinquishing A Device (RELEASE)

When all transmission between the user's program and a device is finished, the program must

relinquish the device by performing a
RELEASE D,

RELEASE (operation code 071) returns control immediately, if no device is associated with
data channel D. Otherwise, both input and output sides of data channel D are CLOSEd and the cor-
respondence between channel D and the device, which was established by the INIT or OPEN program-
med operators, is terminated. If the device is neither associated with another data channel nor as-
signed (see ASSIGN, Chapter 2) by command, it is returned to the Monitor's pool of available facilities.

Control is returned to the user's program.

4-32

4.5 CORE CONTROL (CALL AC, [SIXBIT/CORE/1)

CALL AC, [SIXBIT/CORE/] CALLI AC, 11
error return error return
normal return normal return

These programmed operators provide a user program with the ability to expand and contract
its core size as its memory requirements change. Accumulator AC should contain the desired highest
relative address. The Monitor will set JOBREL to this new value before returning to the user, provided
that the request can be satisfied. If AC contains 0, the number of free 1024-word blocks is returned
right-justified in AC, and the error return is taken. If core is being increased, the error return is
taken, and the current allocation remains in effect if the request cannot be satisfied. Otherwise,
core is appended to or removed from the top of the user's current core area, and the normal return is

taken. In all cases the number of free 1024-word blocks is returned right-justified in AC.

4-33

This chapter explains the unique features of each standard 1/O device.]

CHAPTER 5
DEVICE DEPENDENT FUNCTIONS

All devices accept

the programmed operators explained in Chapter 4 unless otherwise indicated. Buffer sizes are given in

octal and include two bookkeeping words. Table 5-1 is a summary of the characteristics of all devices.

Table 5-1
Device Summary
2
. Hardware Buffer
Physical Name Name Type Number Prog. Op. Data Modes Size (octal)
1y Console 626 INPUT, IN A, AL 23
Teletype Models 33,35, OUTPUT, OUT
37
TTYO, TTY1 Teletype 630,680,0or |[INPUT, IN A, AL 23
e, TIY77 DC10 OUTPUT, OUT, TTCALL
PTY Pseudo-Tele-| None INPUT, IN, OUTPUT, [A, AL 23
type ouT
PTR Paper Tape 760 INPUT, IN A, AL, IB, 43
Reader B, I
PTP Paper Tape 761 OUTPUT, OUT A, AL, IB, 43
Punch B, I
PLT Plotter XY 10 OUTPUT, OUT A, AL, I, B, 46
IB
LPT or LPTO, Line Printer | 646, LP10 OUTPUT, OUT A, AL 34
«.., LPT7
CDR Card Reader | 461, CR10 INPUT, IN A, AL, B,] 36
CDP Card Punch | CP 10 OUTPUT, OUT A, AL, IB, B 34
DTAO, DTA1, | DECtape 551/555, INPUT, IN A, AL, 1B, B, 202
..., DTA7 TD10/TD55 |OUTPUT, OUT I, DR, D
LOOKUP
ENTER
MTAPE
USETO
USETI
UGETF

CALL [SIXBIT/UTPCLR/]

The user may determine the physical characteristics associated with a logical device name by executing

a DEVCHR UUO. See 5.11.

2Bui:fer sizes are subject to change and should be calculated rather than assumed by user programs. A
dummy INBUF or OUTBUF may be employed for this purpose.

5-1

Table 5-1 (Cont)

Device Summary

. Hardware Buffer
Physical Name Name Type Number Prog. Op. Data Modes Size (octal)
MTAO, MTAT, | Magnetic 516, TM10, | INPUT, IN A, AL, 1B, 203
..., MTA7 Tape TU20, TU79 | OUTPUT, OUT B, I, DR, D

MTAPE
DSK Disk RC10 INPUT, IN A, AL, 1, 1B, 203
OUTPUT, OUT B, DR, D
LOOKUP
ENTER
RENAME
USETO
DIS Display 30, 340 INPUT ID Dump only
OUTPUT
5.1 TELETYPE

Device Name - TTYO, TTY1, ..., TTY76, TTY77, CTY

Line number n of the Type 630 Data Communications System, Data Line Scanner DC10,
PDP-8 680 System, or PDP-8 68i System is referred to as TTYn. The console Teletype is CTY. The
Time-Sharing Monitor automatically gives the logical name, TTY, to the user's console whenever a
job is initialized.

Teletype device names are assigned dynamically. For interconsole communication by program,
it is necessary for one of the two users to type DEASSIGN TTY in order to make his Teletype available
to the other user's program as an output or input device. Typing ASSIGN TTYn is the only way to re-
assign a Teletype that has been deassigned. Also see TALK command, Section 2.4.6.

Buffer Size - 258 words.

Two choices of Teletype routines are provided, a newer, full duplex software routine and an
older, half duplex software routine. Use of the full duplex software is encouraged.

With a full duplex Teletype service, the two functions of a console, typein and typeout,
are handled independently and need not be handled in the strict sense of output first and then input.
For example, if two operations are desired from PIP, the request for the second operation can be typed
before receiving the asterisk after the completion of the first. The echo of characters typed in will
disappear since the keyboard and the printing operations are independent. To stop output that is not
wanted, a "Control O" is typed. Also, the command "Control C" will not stop a program instantly.
Rather, the Control C will be delayed until the program requests input from the keyboard, and then the
program will be stopped. When a program must be stopped instantly, as when it gets into a loop,

Control C typed twice will stop the program.

5-2

Programs waiting for Teletype output will be awakened eight characters before the output
buffer is empty, causing them to be swapped in sooner and preventing pauses in typing. Programs
waiting for Teletype input will be awakened ten characters before the input buffer is filled, thus re-

ducing the probability of lost typein.

5.1.1 Data Modes

5.1.1.1 Full-Duplex Software A(ASCII) and AL(ASCII Line)

The input handling of all control characters is as follows:
(All are passed to program except as noted below).

000 NULL Ignored on input, suppressed on output.
001 tA Echoes as A. Passed to program.
002 tB Complements switch controlling echoing,

not passed to program. Used on local-
copy dataphones and TWX's.
003 tC The Teletype mode is switched to Monitor mode
the next time input is requested by the program.
Two successive 1C's cause the mode to be switched
to Monitor mode immediately.
004 tD (EOT) 004 Passed to program. Not echoed, so typing in a "Control D"
(EOT) will not cause a full duplex dataphone to hang up.
005 tE (WRU) No special action. :
006 tF Complements switch controlling translation
of lower case letters to upper case. Used when
lower case input is desired to programs. Not sent
to program, but program can sense the state of
this switch by the TTCALL UUO.
007 tG (Bell) 007 Passed to program, and is a break character.

010 tH (Back- Acts as a RUBOUT, unless either DDT mode or full
space) character set mode is true, or the tF switch is on.
In these cases, 010 is sent to the program.
on tI (TAB) 011 Passed to program. Echoed as spaces if Teletype is a

model 33 (determined by tP switch). Spaces are not
passed to program.

012 tJ (Line- Is a break character. No other special
feed) action.

013 tK (Vertical 013 Passed to program. Echoes as four linefeeds, if a model
Tab) 33. Is a break character. Linefeeds are not passed

to program.
014 tL (Form) 014 Passed to program. Echoes as 8 linefeeds on a 33. Isa
break character. Linefeeds are not passed to program.
015 tM (Carriage If Teletype is in paper-tape input mode, 015 is simply
Return) passed to program. Otherwise, supplies a linefeed echo,
and is passed to program as a CR and LF, and is a break
character (due to LF).

5-3

016 tN No special action.

017 tO Suppresses output until an INPUT, or an INIT or
OPEN UUOQO occurs. Not passed to program.
Typed by as 1O followed by carriage return-linefeed.

020 tP Does not appear in the input buffer. Some Teletype
units (usually Models 35 and 37) have horizontal tab,
vertical tab, and form feed mechanisms while other units
(usually Model 33s) do not. The Monitor assumes that
all Teletype units in the system either do or do not have
these mechanisms depending upon how the system was
built (System Builder). If the user finds that his particular
Teletype unit is different from the Monitor's assumption,
he should type tP. Otherwise, tabs will not be printed
at all or spaces will be substituted for a tab depending
upon the Monitor's assumption. Alternate uses of tP
simulate hardware tabs with multiple spaces on and off.

021 tQ (XON) Starts paper-tape-mode, as described above. Passed to
program.

022 tR (TAPE) No special action.

023 tS (XOFF) Ends paper-tape mode, as described above. 023 is

passed to program.
024 tT (NO TAPE) No special action.

025 tU Deletes input line back to last break character. Typed
back as tU followed by carriage return-linefeed.

026 tV No special action.

027 tW No special action.

030 tX No special action.

031 tY No special action.

032 V4 Acts as end-of-file on Teletype input. Echoes as tZ

followed by carriage-return, linefeed. Is a break
character. Appears in buffer as 032.

033 t[(ESC) This is the ASCII alimode these days, but is translated
to 175 before being passed to the program, unless in full

character set mode (bit 29 in INIT). 1/5 is the 1963
altmode. Echoes as a dollar sign. Always, is a break

character.

034 ™\ No special action.

035 1] No special action.

036 tt No special action.

037 te No special action.

040-137 Printing characters, no special action.

140-174 "Lower case" ASCII. Translated to upper case, unless
tF switch is set. Echoes as upper case if translated to
upper case.

175 and 176 Old versions of altmode. See description of "ESC" (033).

177 RUBOUT or DELETE:

A) Completely ignored if in papertape mode (XON).

B) Is a break character, passed to program if either
DDTmode or fullcharacter-set mode is true.

C) Otherwise (ordinary case) causes a character to be
deleted for each rubout types. All the characters deleted
are echoed between a single pair of backslashes. If no
characters remain to be deleted, echoes as a carriage-
return, linefeed.

5-4

On output, all characters are typed just as they appear in the output buffer with the excep-

tions, TAB, VT, and FORM, which are processed the same as on type in.

5.1.1.2 Half-Duplex Software A(ASCII) - If, during output operations, an echo-check failure occurs

(the transmitted character was not the same as the intended character), the 1/O routine suspends output
until the user types the next character. If that character is 1C, the console is placed in Monitor mode
immediately. If it is 1O, all Teletype output buffers that are currently full are ignored, thus cutting
the output short. All other characters cause the service routines to continue output. The user may
cause a deliberate echo check by typing in while typeout is in progress. For example, to return to
Monitor control mode while typeout is in progress, the user must type any character ("X", for example)
until an echo check occurs and output is suspended; then and only then he types 1C.

The buffer is terminated when it fills up or when the user types 1Z.

5.1.1.3 Half-Duplex Software AL(ASCII Line) - Same as ASCII mode (usually preferred) with the
addition that the input buffer is terminated by a CR/LF pair, FF, VT, or ALTMODE.

5.1.2 DDT Submode

To allow a user's program and the DDT debugging program to use the same Teletype without
interfering with one another, the Teletype service routine provides the DDT submode. This mode does
not affect the Teletype status if it is initialized with the INIT operator. It is not necessary to use INIT
in order to do I/O in the DDT submode. 1/O in DDT mode is always to the user's Teletype and not to
any other device.

) In the DDT submode, the user's program is responsible for its own buffering. Input is usually
one character at a time, but if the typist types characters faster than they are processed, the Teletype
service routine supplies bufferfuls of characters af a time.

To input characters in DDT mode, use the sequence

MOVEI AC, BUF
CALL AC, [SIXBIT/DDTIN/]

BUF is the first address of a 21-word block in the user's area. The DDTIN operator delays, if necessary,
until one character is typed in. Then all characters (in 7-bit packed format) typed in since the previous
occurrence of DDTIN are moved to the user's area in locations BUF, BUF+1, etc. The character string
is always terminated by a null character (000). RUBOUTs are not processed by the service routine but
are passed on to the user. The special control characters 1O and tU have no effect. Other characters

are processed as in ASCII mode.

5-5

To perform output in DDT mode, use the sequence

MOVEI AC,BUF
CALL AC, [SIXBIT/DDTOUT/]

BUF is the first address of a string of packed 7-bit characters terminated by a null (000) character. The
Teletype service routine delays until the previous DDTOUT operation is complete, then moves the entire
character string into the Monitor, begins to output the string, and restarts the user's program. Character

processing is the same as for ASCII mode output.

5.1.3 Special Programmed Operator Service

TTCALL UUO is (and will always be) implemented only in the "full duplex scanner service",
SCNSRF.

The general form of this UUO is as follows:

OPDEF TTCALL [51B8]
TTCALL AC, ADR

The AC field describes the particular function desired, and the argument (if any) is
contained in ADR. ADR may be an AC or any address in low segment above JOB AREA
(137). It may be in high segment for AC fields 1 and 3. The functions are:

AC Field Mnemonic Action

0 INCHRW Input character and wait

1 OUTCHR Output a character

2 INCHRS Input character and skip

3 QUTSTR Output a string

4 INCHWL Input character, wait, line mode
5 INCHSL Input character, skip, line mode
6 GETLIN Get line characteristics

7 SETLIN Set line characteristics
10 RESCAN Reset input stream to command
11 CLRBFI Clear typein buffer
12 CLRBFO Clear typeout buffer
13 SKPINC Skips if a character can be input
14 SKPINL Skips if a line can be input
15-17 (Reserved for Expansion)

INCHRW TTCALL 0,ADR

This command inputs a character into location ADR. ADR may be an AC or any other
location in the user's low segment. If there is no character yet typed, the program waits
for it.

OUTCHR TTCALL 1,ADR

This command outputs a character to the teletype, from location ADR. Only the low order 7
bits of the contents of ADR are used, the rest need not be zeroes.

5-6

If there is no room in the output buffer, the program waits until room is available. ADR
may be in high segment.

INCHRS TTCALL 2,ADR

This command is similar to INCHRW, except that it skips on a successful return, and does
not skip if there is no character in the input buffer, it never puts the job into a wait.

TTCALL 2,ADR

JRST NONE ;NO TYPEIN

JRST DONE ;CHARACTER IN ADR
OUTSTR TTCALL 3,ADR

This command outputs a string of characters in ASCIZ format:
TTCALL 3, MESSAGE

MESSAGE: ASClIZ /TYPE THIS OUT/
ADR may be in high segment

INCHWL TTCALL 4,ADR

This command is the same as INCHRW, except that it decides whether or not to wait on
the basis of lines rather than characters, as such, it is the preferred way of inputting
characters, since INCHRW causes a swap to occur for each character rather than each line
(compare DDT and PIP input, for instance).

INCHSL TTCALL 5,ADR

This command is the same as INCHRS, except that its decision whether to skip is made on
the basis of lines rather than characters.

GETLIN TTCALL 6,ADR

This command takes one argument, from location ADR, and returns one word, also in ADR,
the argument is a number, representing a teletype line. If the argument is negative, the
line number controlling the program is assumed. If the line number is greater than those
defined in the system, a zero answer is returned.

The normal answer format is as follows:

Right half of ADR: The line number.
Left half of ADR: Bits, as follows:
Bit Meaning

0 Line is a pseudo-teletype.

1 Line is the CTY.

2 Line is a display console.

3 Line is a dataset data line.

Bit Meaning

4 Line is a dataset control line.

5 Line is half-duplex.

11 A line has been typed in by the user
12 A rubout has been typed.

13 "Control F" switch is on.

14 "Control P" switch is on.

15 "Control B" switch is on.

16 "Control Q" (paper tape) switch is on.
17 Line is in a "talk" ring.

SETLIN TTCALL 7,ADR

This command allows a program to set and clear some of the bits described for GETLIN.
They may be changed only for the controlling teletype. The bits which may be modified are
bits 13, 14, 15 and 16. Example:

SETO AC, 0
TTCALL 6,AC
TLZ AC,BIT 13
TLO AC,BIT 14
TTCALL 7,AC

RESCAN TTCALL 14,0

This command is intended for use only by the CCL CUSP. It causes the Input Buffer to be
re-scanned from the point where the last command began. Obviously, if it is executed
other than before the first input, that command may no longer be in the buffer. ADR is
not used, (but is address checked).

CLRBFI TTCALL 11,0

This command causes the Input Buffer to be cleared (as if the user had typed a number of
"Control U's"). It is intended to be used when an error has been detected, such that a
user probably would not want any commands to be executed which he might have typed
ahead.

CLRBFO TTCALL 12,0

This command causes the output buffer to be cleared, as if the user had typed "CONTROL
O". It should be used only rarely, since usually one wants to see all output, up to the
point of an error. It is included primarily for completeness.

SKPING TTCALL 13,0

This command skips if the user has typed at least one character. It does not skip if no
character have been typed, however it never inputs a character. It is useful for a compute
based program which wants to occasionally check for input and, if any, go off to another
routine (such as FORTRAN Operating System) to actually do the input.

SKPINL TTCALL 14,0

This command is the same as SKPING except that a skip occurs if a line has been typed.

5.1.4 Special Status Bits (Full Duplex Software only)

An INIT or OPEN, with bit 28 a one, suppresses echoing on the Teletype. This is useful
for LOGIN to eliminate the mask for the password.

5.1.5 Paper Tape Input from the Teletype (Full Duplex Software only)

Paper tape input is possible from a Teletype equipped with a paper tape reader, controlled
by the XON and XOFF characters. When commanded by the XON character, the Teletype service
will read paper tapes, starting and stopping the paper tape as needed and continuing until the XOFF
character is read or typed in. While in this mode of operation, any RUBOUTS will be discarded and no
free line feeds will be inserted after carriage returns. Also, TABS and FORMFEEDS will not be simulated
on Model 33's, to insure output of the reader control characters. In order to use paper tape processing,
the Teletype with paper tape reader must be connected by a full duplex connection and only ASCII
paper tapes are intended to be used.

The correct operating sequence for reading a paper tape in this way is as follows:

.RPIP <RETURN>

*DSK: FILE<TTY: <XON><RETURN><LINEFEED>
THIS 1S WHAT 1S ON TAPE

MORE OF SAME

LAST LINE

tZ

*<XOFF>

5.2 PAPER TAPE READER

Device Mnemonic - PTR

Buffer Size - 438 words

5.2.1 Data Modes (Input Only)

NOTE: To initialize the paper tape reader, the input tape
must be threaded through the reading mechanism and the
FEED button depressed.

5.2.1.1 A (ASCII) - Blank tape (000), RUBOUT (377), and null characters (200) are ignored. All

other characters are truncated to seven bits and appear in the buffer. The physical end of the paper tape

5-9

serves as an end-of-file and results in the character 032 1Z) appearing in the buffer.

5.2.1.2 AL (ASCII Line) - Character processing is the same as for the A mode. The buffer is termin-
ated by LINE FEED, FORM, or VT.

5.2.1.3 1 (Image) - There is no character processing. The buffer is packed with 8-bit characters ex-
actly as read from the input tape. Physical end of tape is the end-of-file indication but does not cause

a character to appear in the buffer.

5.2.1.4 1B (Image Binary) - Characters not having the eighth hole punched are ignored. Characters

are truncated to six bits and packed six to the word without further processing. This mode is useful for

reading binary tapes having arbitrary blocking format.

5.2.1.5 B (Binary) - Checksummed binary data is read in the following format. The right half of the
first word of each physical block contains the number of data words that follow and the left contains
half a folded checksum. The checksum is formed by adding the data words using 2s complement arith-
metic, then splitting the sum into three 12-bit bytes and adding these using 1s complement arithmetic
to form a 12-bit checksum. The data error status flag (IODERR) is raised if the checksum miscompares.
Because the checksum and word count appear in the input buffer, the maximum block length is 40. The
byte pointer, however, is initialized so as not to pick up the word count and checksum word.

Again, physical end of tape is the end-of-file indication but does not result in putting a

character in the buffer.

5.3 PAPER TAPE PUNCH

Device Mnemonic - PTP

Buffer Size - 438 words

5.3.1 Data Modes
5.3.1.1 A (ASCII) - The eighth hole is punched for all characters. Tape-feed without the eighth hole
(000) is inserted after form-feed. A rubout is inserted after each vertical or horizontal tab. Null char-

acters (000) appearing in the buffer are not punched.

5.3.1.2 AL (ASCII Line) - The same as A mode. Format control must be performed by the user's

program.

5.3.1.3 I (Image) - Eight-bit characters are punched exactly as they appear in the buffer with no ad-

ditional processing.

5.3.1.4 B (Image Binary) - Binary words taken from the output buffer are split infto six 6-bit bytes and

punched with the eighth hole punched in each line. There is no format control or checksumming per-
formed by the I/O routine. Data punched in this mode is read back by the paper tape reader in the IB

mode.

5.3.1.5 B (Binary) - Each bufferful of data is punched as one checksummed binary block as described

for the paper tape reader. Several blank lines are punched after each bufferful for visual clarity.

5.3.2 Special Programmed Operator Service

The first output programmed operator of a file causes about two fanfolds of blank tape to be
punched as leader. Following a CLOSE, an additional fanfold of blank tape is punched as trailer. No

end-of-file character is punched automatically.

5.4 LINE PRINTER

Device Mnemonic - LPT

Buffer Size - 348 words

5.4.1 Data Modes

5.4.1.1 A (ASCII) - ASCII characters are transmitted to the line printer exactly as they appear in the

buffer. See the PDP-10 System Reference Manual, for a list of the vertical spacing characters.

5.4.1.2 AL (ASCII Line) - This mode is exactly the same as A and is included for programming con-

venience. All format control must be performed by the user's program; this includes placing a RETURN,

LINE-FEED sequence at the end of each line.

5.4.2 Special Programmed Operator Service

The first output programmed operator of a file and the CLOSE af the end of a file cause an

extra form-feed to be printed to keep files separated.

5.5 CARD READER

Device Mnemonic - CDR
Buffer Size - 368 words

5.5.1 Data Modes

5.5.1.1 A (ASCII) - All 80 columns of each card are read and translated to 7-bit ASCII code. Blank
columns are translated to spaces. At the end of each card a carriage-return/line-feed is appended. A
card with the character 12-11-0-1 punched in column 1 is an end-of-file card. Columns 2 through 80
are ignored, and an end-of-file character 032 appears as the last character in the input buffer. The
end-of-file button on the card reader has the same effect as the end-of-file card. As many complete
cards as can fit are placed in the input buffer, but cards are not split between two buffers. Using the
standard-sized buffer, only one card is placed in each buffer.

Cards are normally translated as IBM 026 card codes. If a card containing a 12-0-2-4-6-8
punch in column 1 is encountered, any following cards are translated as 029 codes (see Table 5-2
PDP-10 Card Codes) until the 029 conversion mode is turned off. The 029 mode is turned off either by
a RELEASE command or by a card containing a 12-2-4-8 punch in column 1. Columns 2 through 80 of

both of these cards are ignored.

5.5.1.2 AL (ASCII Line) - Exactly the same as the A mode.

5.5.1.3 1 (Image) - All 12 punches in all 80 columns are packed into the buffer as 12-bit bytes. The
first 12-bit byte is column 1. The last word of the buffer contains columns 79 and 80 as the left and
middle bytes respectively. The end-of-file card and the end-of-file button are processed the same as
in the A mode with the character 0032 appearing in the buffer as the last character of the file. Cards

are not split between two buffers.

5.5.1.4 B (Binary) - Card column 1 must contain a 7-9 punch to verify that the card is in binary format.
The absence of the 7-9 punch results in raising the IOIMPM (improper mode) flag in the card reader

status word. Card column 2 must contain a 12-bit checksum as described for the paper tape reader

binary format. Columns 3 through 80 contain binary data, 3 columns per word for‘U|vo to 26 words.

Cards are not split between two buffers. The end-of-file card and the end-of-file button are processed

the same as in the A mode with a word containing 003200000000 appearing as the last word in the file.

Table 5-2
PDP-10 Card Codes

CHAR PDP10 DEC DEC CHAR PDP10 DEC DEC
ASCII 029 026 ASCII 029 026
SPACE 040 @ 100 8 4 84
! 041 1182 1287 A 101 121 121
" 042 87 085 B 102 12 2 12 2
043 83 086 C 103 123 123
$ 044 1183 1183 D 104 124 124
% 045 084 087 E 105 125 125
& 046 12 1187 F 106 126 126
! 047 85 86 G 107 127 127
(050 1285 084 H 110 12 8 12 8
) 051 1185 1284 | 111 129 129
* 052 1184 1184 J 112 111 111
+ 053 1286 12 K 113 112 112
, 054 083 083 L 114 113 113
- 055 11 11 M 115 114 114
. 056 1283 1283 N 116 115 115
/ 057 01 01 O 117 116 116
0 060 0 0 P 120 117 17
1 061 1 1 Q 121 118 118
2 062 2 2 R 122 1ne9 119
3 063 3 3 S 123 02 02
4 064 4 4 T 124 03 03
5 065 5 5 U 125 04 04
6 066 6 6 \' 126 05 05
7 067 7 7 W 127 06 06
8 070 8 8 X 130 07 07
9 071 9 9 Y 131 08 08
: 072 82 1182 Z 132 09 09
OR 110
; 073 1186 082 [133 1282 1185
< 074 1284 128 6 \ 134 1187 87
= 075 86 83 1 135 082 1285
> 076 086 1186 t 136 1287 85
? 077 087 1282 « 137 085 82
OR120
5.6 CARD PUNCH
Device Mnemonic - CDP
Buffer Size - 358 words
5.6.1 Data Modes

5.6.1.1 A (ASCII) - ASCII characters are converted to card codes and punched (up to 80 characters
per card). Tabs are simulated by punching from 1 to 7 blank columns; form-feeds and carriage returns
are ignored. Line-feeds cause a card to be punched. All other nontranslatable ASCII characters
cause a question mark to be punched. Cards can be split between buffers. Attempting to punch more
than 80 columns per card causes the error bit IOBKTL to be raised.

Cards are normally punched with DEC026 card codes. If bit 26 (octal 1000) of the status
word is on (from INIT, OPEN, or SETSTS), cards are punched with DEC029 codes. The first card of
any file indicates the card code used (12-0-2-4-6-8 punch in column 1 for DEC029 card codes;
12-2-4-8 punch in column 1 for DEC026 card codes).

5.6.1.2 AL (ASCII Line) - The same as A mode.

5.6.1.3 1B (Image Binary) - Up to 26 2/3 data words will be punched in columns 1-80. The buffer

set up by the Monitor will only contain room for 26 data words. Image binary will cause exactly one

card to be punched for each output. The CLOSE will punch the last partial card, and then punch an
EOF card (12-11-0-1 in column 1).

5.6.1.4 B (Binary) - Column 1 will contain the word count in rows 11-2. A 7-9 punch will also be
in column 1. Column 2 will contain a checksum; columns 3-80 will contain up to 26 data words, 3
columns per word. Binary will cause exactly one card to be punched for each output. The CLOSE

will punch the last partial card, and then punch an EOF card (12-11-0-1 in column 1).

5.6.2 Special Programmed Operator Service

Following a CLOSE, an end-of-file card is punched.
Both the first card of the file (the one that identifies the card code used) and the end-of-file
card are laced in columns 2 through 80 for easy identification of files. These laced punches are ignored

by the card reader service routine.

5.7 DECTAPE

Device Mnemonic - DTAQ, DTAT1, ..., DTA7

Buffer Size - 2028 words

5.7.1 Data Modes

5-14

5.7.1.1 A (ASCII) - Data is written on DECtape exactly as it appears in the buffer. No processing
of checksumming of any kind is performed by the service routine. The self-checking of the DECtape
system is sufficient assurance that the data is correct. See the description of DECtape format below

for further information concerning blocking of information.

5.7.1.2 AL (ASCII Line) - Same as A.

5.7.1.3 1 (Image) - Same as A. Data consists of 36-bit words.

5.7.1.4 1B (Image Binary) - Same as 1.

5.7.1.5 B (Binary) - Same as I.

5.7.1.6 DR (Dump Records) - This mode is accepted but actually functions as dump mode 17.

5.7.1.7 D (Dump) - Data is read into or written from anywhere in the user's core area without

regard to the standard buffering scheme. Control for read or write operations must be via a command

list in core memory. The command list format is as described in Chapter 4, "Unbuffered (Dump)

Modes;" any positive number appearing in a command list terminates the list. Dump data is automatically
blocked into standard-length DECtape blocks by the DECtape control. Unless the number of data

words is an exact multiple of the standard length of a DECtape block (128 after each output pro-

'IO)’
grammed operator, the remainder of the last block written is wasted. The input programmed operator
must specify the same number of words that the corresponding output programmed operator specified in

order to skip over the wasted fractions of blocks.

5.7.2 DECtape Block Format

A standard reel of DECtape consists of 578 (1102,) prerecorded blocks each capable of

8
storing 128 (2008) 36-bit words of data. Block numbers which label the blocks for addressing purposes
are recorded between blocks. These block numbers run from 0 to 11018. Blocks 0, 1, and 2 are
normally not used during time-sharing and are reserved for a bootstrap loader. Block 100]0 (1448) is

the directory block which contains the names of all files on the tape and information relating to each

file. Blocks 110 through 9910 (1-14-38) and 10]]0 through 577]0 (145—11018

If in the process of DECtape 1/O, the 1/O service routine is requested to use a block number

) are usable for data.

larger than 11018 or smaller than 0, the Monitor sets the Block Too Large flag (bit 21) in the file

status and returns.

5.7.3 DECtape Directory Format

The directory block (block 100,) of a DECtape contains directory information for all files

10)
on that tape; a maximum of 22 files can be stored on any one DECtape.

Words 0 through 82 The first 83 words of the directory contain "slots, "
each "slot" representing one of the 577 (blocks 1
through 1101g are represented in these 83 words)
blocks on the DECtape. Each slot occupies five bits
(seven slots are stored per word) and contains the
number of the file (1 —268) to which the block the

slot represents is assigned.

Words 83 through 10410 The next 22 words contain the filenames of the 22
files residing on the DECtape. Word 83 contains the
filename for file #1, word 84 the filename #2, etc.
Filenames are stored in 6-bit code.

10

Words 105 through 126.'0 The next 22 words contain the extension names and
dates of the 22 files, in the same relative order as
their filenames above.

Bits O through 1710 The extension name of the
file (in 6-bit code)
Bits 18 through 23]0 Number of 1K blocks minus

1 needed to load the file
(maximum value=53). This
information is stored for

SAVE files only.

Bits 24 through 35]0 The date the file was last
updated, according to the
formula:

((year-1964)*12+(month-1))*31+day-1
Word 127]0 Unused.
The message
BAD DIRECTORY FOR DEVICE DTAn: EXEC CALLED FROM USER LOC n
is produced whenever any of the following conditions are detected.
a. A parity error while reading the directory block.
b. No "slots" are assigned to the file number of the file.

c. The tape block which may possibly be the first block of the file (i.e., the first block for

the file encountered while searching backwards from the directory block) cannot be read.

5.7.4 DECtape File Format

A file consists of any number of DECtape blocks. Each block contains:

Word 0 Left half The link. The link is the block number of the next
block in the file. If the link is zero, this block is
the last in the file.

5-16

Right half Bits 18 through 27: The block number of the first
block of the file.

Bits 28 through 35: A count of the number of words
in this block which are used (maximum]778) .

Words 1 through 177 Data packed exactly as the user placed in his buffer

8 or in Dump Mode files, the next 127 words of memory.

5.7.5 Special Programmed Operators Service

Several programmed operators are provided for manipulating DECtape. These allow the user to
manipulate block numbers and to handle directories.

In addition to the operators above, INPUT, OUTPUT, CLOSE, and RELEAS have special ef-
fects. When performing nondump input operations, the DECtape service routine reads the links in each
block to determine the next block to read and when to raise the end-of-file flag.

When an OUTPUT is given, the DECtape service routine examines the left half of the first data
word in the output buffer (the word containing the word count in the right half). If this half word contains
-1, it is replaced with a 0 before being written out, and the file is thus terminated. If this half word is

greater than -1, it is not changed and the service routine uses it as the block number for the next OUTPUT.

Table 5-3
DECtape Programmed Operators
Programmed Operator Effect
USETI D, E Sets the DECtape on device channel D to input block E next. Input

operations on this DECtape must not be active because otherwise the
user has no way of determining which buffer contains block E.

USETO D, E Similar to USETI but sets the output block number USETO waits until

the device is inactive before setting up the new output block number.
UGETF D, E Places the number of the first free block of the file in user's location E.

ENTER D, E User's location E, E+1, E+2, and E+3, must be reserved for a directory
entry. The DECtape service routine searches the directory for a filename
and extension that match the contents of E and the left half of E+1. If
no match is found and there is room in the directory, the service routine
places the first free block number into the right half of E+1, places the
date in E+2 (unless already non-zero), and places the necessary infor-
mation into the directory. If a match is found, similar actions occur,
but the new entry replaces the old. If there is no room in the directory,
ENTER returns to the next location. Otherwise, ENTER skips one
location.

1

The Monitor compresses the user's core image by squeezing out blocks of two or more consecutive zeroes
before creating the SAVed files; files with extension .SAV may be read in Dump Mode, but must be re-
expanded before being run. The Monitor takes this action after input on a RUN or GET.

5-17

Table 5-3 (Cont)
DECtape Programmed Operators

Programmed Operator

Effect

LOOKUP D, E

error return

CALL D, [SIXBIT/UTPCLR/]

RENAME D, E

Similar to ENTER but sets up an input file. The contents of E and E+1
are matched against the filenames and extension names in the DECtape
directory. If a match is found, information about the file is read from
the directory into the appropriate portions of the 4-word block begin-
ning at E. The first block of the file is then found as follows.

1. The first 83 words of the DECtape directory are searched in a back-
wards manner, beginning with the slot immediately prior to the
directory block, until the first slot containing the desired file
number is found.

2. The block associated with this slot is then read in and bits 18 through
27 of the first word of the block (these bits contain the block number
of the first block of the file) are checked. If they are equal to the
block number of this block, then this block is the first block of the
file; if not, then the block with that block number is read as the
first block of the file.

LOOKUP then skips one location.

If no match is found, LOOKUP returns to the user's program at the next

location.

UTPCLR clears the directory of the DECtape on device channel D. A
cleared directory has zeroes in the first 83 words except in those slots
related to blocks 0, 1, 2, and 100] and nonexistent blocks 1102

through 1105g. Only the direcfory%lock (block 100) is affected by
UTPCLR; the other blocks are unaffected. This programmed operator

does nothing if the device on channel D is not DECtape.

This programmed operator is used to alter the name and extension of a
file or to delete it from the DECtape. Locations E to E+3 are as in
LOOKUP and ENTER. To be RENAMEJ a file must first be CLOSEd on
channel D, in order to identify for the RENAME UUO. RENAME then
seeks out this file and enters the information specified in E through E+2
into the retrieval information and proper directory. If the contents of
E is zero, RENAME has the effect of deleting the file. The error return
is given if the new file name and extension already exist or if neither

a LOOKUP nor an ENTER has been done to identify the file to be
renamed.

For both INPUT and OUTPUT, block 100 (the directory) is treated as an exception case. If

the user's program gives

USETI D, 1448

to read block 100, it is treated as a 1-block file.

The CLOSE operator places a -1 in the left half of the first word in the last output buffer,

thus, terminating the file.

The RELEAS operator writes the copy of the directory which is normally kept in core onto
block 100, but only if any changes have been made. Certain console commands, such as KJOB or
CORE 0, perform an implicit RELEAS of all devices and, thus, write out a changed directory even
though the user's program failed to give a RELEAS.

Two other special programmed operators are available: MTAPE D, 1 and MTAPE D, 11.
MTAPE D, 1 rewinds the DECtape and moves it into the end zone at the front of the tape. MTAPE D,
11 rewinds and unloads the tape, pulling the tape completely onto the lefthand reel. These commands
affect only the physical position of the tape, not the "logical"” position. When either is used, the
user's job can be swapped out while the DECtape is rewinding; however, the job cannot be swapped out

if an INPUT or OUTPUT is done while the tape is rewinding.

5.7.6 Special Status Bits

If an attempt is made to write on a unit with the WRITE-LOCK switch on, the improper mode
flag (bit 18) is set in the file status word.

5.7.6.1 Special DECtape Status Bits = An INIT or SETSTS to a DECtape with bit 29 ON informs
DTASER (the DECtape service routine) that the DECtape is in nonstandard format. This implies that no

file=structured operations will be performed on that tape. Blocks will be read or written sequentially;

no links will be generated (output) or recognized (input). The first block to be read or written must be

set by a USETI or USETO. In Dump Mode, 200

data words per block will be read or written (as op~

8

posed to the normal 177 _ words). No "dead reckoning" will be used on a search for a block number,

8
as the tape may be composed of blocks shorter than 200 words. The ENTER, LOOKUP, and UTPCLR
UUO:s are treated as no-ops. Block 0 of the tape may not be read or written in Dump Mode if bit 29 is

ON, as the data must be read in a forward direction and block 0 normally cannot be read forward.

5.7.7 Important Considerations

The DECtape service routine reads the directory from o tape the first time it is required to
perform a LOOKUP, ENTER, or UGETF; the directory image remains in core until a new ASSIGN com-
mand is executed from the console. To inform the DECtape service routine that a new tape has been
mounted on an assigned unit, the user must use an ASSIGN command. The directory from the old tape
could be transferred to the new tape, thus destroying the information on that tape unless the user re-

assigns the DECtape transport every time he mounts a new reel.

5.8 MAGNETIC TAPE

Magnetic tape format is industry compatible, 7- or 9-channel 200, 556, and 800 bpi (see
description below).

Device Mnemonic - MTAQ, MTAT1, ..., MTA7

Buffer Size - 2038 words

5.8.1 Data Modes

5.8.1.1 A (ASCII) - Data appears to be written on magnetic tape exactly as it appears in the buffer.
No processing or checksumming of any kind is performed by the service routine. The parity checking of
the magnetic tape system is sufficient assurance that the data is correct. Normally, all data, both
binary and ASCII, is written with odd parity and at 556 bits per inch. A maximum of 200 words per

record is standard. The word-count is not written on the tape.

5.8.1.2 AL (ASCII Line) - Same as A.

5.8.1.3 1 (Image) - Same as A but data consists of 36-bit words.

5.8.1.4 1B (Image Binary) - Same as 1.

5.8.1.5 B (Binary) - Same as I.

5.8.1.6 DR (Dump Records) - Standard fixed length records (128 words is the standard unless installa-

tion standard is changed with MONGEN) are read into or written from anywhere in the user's core

area without regard to the standard buffering scheme. Control for read or write operations must be via a
command list in core memory. The command list format is as described in Chapter 4, "Unbuffered
(Dump) Modes." For input operations a new record is read for each word in the command list (except
GOTO words); if the record terminates before the command word is satisfied, the service routine reads
the next records. If the command word runs out before the record terminates, the remainder of the
record is ignored. For each output command word, as many standard length records are written followed

by one short record to exactly write all of the words onto the tape.

5.8.1.7 D (Dump) - Variable length records are read into or written from anywhere in the user's

core area without regard to the standard buffering scheme. Control for read or write operations must

5-20

be via a command list in core memory. The command list format is as described in Chapter 4, "Unbuffered
(Dump) Modes. " For input operations a new record is read for each word in the command list (except
GOTO words); if the record terminates before the command word is satisfied, the service routine skips
to the next command word. If the command word runs out before the record terminates, the remainder
of the record is ignored. For each output command word, exactly one record is written. See Section

4.4.1.2 for command list format.

5.8.2 Magnetic Tape Format

Magnetic tape format can be generally described as unlabelled, industry compatible format.
That is, as far as the user is concerned, the tape contains only data records and end-of-file marks
which signal the end of the data set or the end of the file. Files are read from and written on the tape
in a sequential manner.

An end-of-file mark consists of a record containing a 178 (for 7-channel tapes) or a 238
(for 9-channel tapes). End-of-file marks are used in the following manner.

a. No end-of-file mark precedes the first file on a magtape.

b. An end-of-file mark follows every file.

c. Two end-of-file marks follow a file if that file is the last or only file on the tape.

Files are written on and read from a magtape in a sequential manner. A file consists of an
integral number of physical records, separated from each other by interrecord gaps (area on tape in
which no data is written). There may or may not be more than one logical record in each physical

record.

5.8.3 Special Programmed Operator Service

CLOSE performs a special function for magnetic tape. When an output file is closed (both
dump and nondump), the 1/O service routine automatically writes two end-of-file marks and backspaces
over one of them. If another file is now opened, the second end-of-file is wiped out leaving one
end-of-file between files. At the end of the in-use portion of the tape, however, there appears a
double end-of-file character which is defined as the logical end of tape. When an input dump file is
closed, the 1/O service routine automatically skips to the next end-of-file.

A special programmed operator called MTAPE provides for such tape manipulation functions
as rewind, backspace record, backspace file, 9-channel tape initialization, etc. The format is

MTAPE D, FUNCTION
where D is the device channel on which the magnetic tape unit is initialized. FUNCTION is

selected according to the following table:

5-21

Table 5-4
MTAPE Functions

Function Action

0 No operation; wait for spacing

and 1/0O to finish

1 Rewind to load point

11 Rewind and unloqd]

7 Backspace record

17 Backspace file

3 Write end of file

6 Skip one record

13 Write 3 inches of blank tape

16 Skip one file

10 Space to logical end of tape
100 Digital Compatible; ‘?—chcmnel2
101 Initialize for 9-channel fqpe3

MTAPE waits for the magnetic tape unit to complete whatever action is in progress before performing the
indicated function, including no operation (0). Bits 18 through 25 of the status word are then cleared,
the indicated function is initiated, and control is returned to the user's program immediately. It is
important to remember that when performing buffered input/output, the 1/O service routine can be
reading several blocks ahead of the user's program. MTAPE affects only the physical position of the

tape and does not change the data that has already been read into the buffers.

5.8.3.1 Backspace File on Magtape - Issuing a backspace file command to a magtape unit will move

the tape in the reverse direction until the tape has A) passed the end of file mark or B) reached the
beginning of the tape. This means that the end of the backspace file operation will position the tape

A
heads either immediately in front of a file mark or at the beginning of the tape. 0% \(\‘ A W& QJ

A\,\kS &
\\Nq)‘z Sﬁbé’\ \(\ Q 3(\/

] n the ontrol, this function is implemente ‘gj \'
T R R by '

Dlgl’rcl Compatible mode writes (or reads) 36 data bits in five frames of a 9-track magtape. It can
be any density, any parity, and is not industry compatible. This mode is in effect until a RELEASE D,
or an MTAPE D, 100 is executed.

3Indusfry compatible 9-channel mode writes (or reads) 32 data bits per word in four frames of a 9-track
magtape and ignores the last four bits of a word. It must be 800 bpi density, odd parity.

5-22

In most cases it is desireable to skip forward over this file mark. This is decidedly not the
case if you've reached the beginning of the tape; in this case giving a skip file command would indeed
skip the entire first file on the tape stopping at the beginning of the second file, rather than leaving
the tape positioned at the beginning of the first file.

Therefore a typical (incorrect) sequence for backspace file would be:

MTAPE MT, 17 ;Backspace file

CALLI WAIT ;*Wait for completion®
STATO MT, 4000 ;Beginning of tape ?
MTAPE MT, 16 ;No, skip over file mark

Note that it is necessary to wait after the backspace file instruction in order to insure that
the tape is moved to the end of file mark or the beginning of the tape before testing to see whether or
not it is the beginning of the tape. The instruction CALLI WAIT cannot be used for this purpose; it
waits only for the completion of 1/O transfer operation. (Backspace file is a spacing operation, not
an 1/O transfer operation.) ‘

Instead, use the following sequence for backspace file:

MTAPE MT, 17 ;Backspace file

MTAPE MT, O ;Wait for completion
STATO MT, 4000 ;Beginning of tape ?
MTAPE MT, 16 ;No, skip over file mark

In this case the device service routine waits until the magtape controller is free and proceeds
to issue the MTAPE MT, 0 command which tells the tape control to do nothing. Thus the service
routine has waited until the completion of the previous operation before issuing the MTAPE MT, 0 and

the appropriate wait sequence has been achieved.

5.8.4 9-Channel Magtape

Nine-channel magtape may be written and read in two ways: normal Digital Compatible

format, and industry compatible format.

5.8.4.1 Digital Compatible Mode - Digital Compatible mode is the usual mode and will allow old

7-channel user mode programs to read and write 9-channel tapes with no modification. Digital
Compatible mode writes 36 data bits in five bytes of a nine track magtape. It can be any density, and
parity, and is not industry compatible. The software mode is specified in the usual manner during
initialization or with a setsts. User mode 1/0 is handled precisely as in the case of 7-track magtape.

It is assumed that most DEC magtapes will be written and read this way.

5-23

Data Word on Tape

Tracks

9 8 7 6 5 4 3 2 1

BO Bl B2 B3 B4 B5 B6 B7
B8 B9 B10 Bl B12 B13 BI14 B15
Bt6 B17 B18 B19 B20 B21 B22 B23
B24 B25 B26 B27 B28 B29 (B30) (B31)
0 o (830) (B31) B32 B33 B34 B35
P=Parity

BN=Bit N in core

U U U U U

Data Word in Core - 5 magtape bytes/ 36-bit word. Parity bits are unavailable to the user.
Bits are written on tape as shown in diagram, note that bits 30 and 31 get written twice and that tracks
8 and 9 of byte 5 contain 0. On reading parity bits and tracks 8 and 9 of byte 5 are ignored, the or
of bits (B30) is read into bit 30 of the data word, the or of bits (B31) is read into bit 31.

5.8.4.2 Industry Compatible Mode - For reading and writing industry compatible 9-channel magtapes,
an MTAPE D, 101 UUO must be executed to set the status. MTAPE D, 101 is meaningful for 9-channel

magtape only and is ignored for all other devices. In the left half of the status word, bit 2 (which
cannot be read by the user program) may be cleared (which returns the device to 9-channel Digital
Compatible status) by a RELEAS, a call to EXIT, or an MTAPE D, 100 UUO. These MTAPE UUO''s
act only as a switch to and from industry compatible mode and in no other way affect 1/O status,
except to set the density to 800 BPI and odd parity.

On INPUT, four 8-bit bytes are read into each word in the buffer, left justified with the
remaining four bits of the word containing error checking information.

On OUTPUT, the leftmost four 8-bit bytes of each word in the buffer are written out in

four frames, with the remaining four rightmost bits of the word being ignored.

Data Word on Tape

Tracks

9 8 7 6 5 4 3 2 1

BO Bl B2 B3 B4 B5 B6 B7 B32
B8 B9 B10 BI11 B12 B13 B14 B15 B33
B16 B17 B18 B19 B20 B21 B22 B23 B34
B24 B25 B26 B27 B28 B29 B30 B31 B35

Data Word in Core - four magtape bytes carry 4 8-bit bytes from data word, parity bits

are obtained as shown when reading. Rightmost four bits are ignored on writing. (bits 32-35)

5-24

5.8.4.3 Changing Modes - MTAPE CH, 101 automatically sets density at 800 bits (or 808 eight-

bytes) per inch and sets odd parity. Note that buffer headers are set up when necessary by the
Monitor in the usual manner according to the I/O mode the device is initialized in. Byte pointers and

byte counts in buffer header will have to be changed by the user in order to operate on eight-bit bytes.

5.8.5 Special Status Bits

Special bits of the status word are reserved for selecting the density and parity mode of the

magnetic tape. Table 5-4 lists the bits that are set and cleared by INIT or SETSTS.

Table 5-5
Magnetic Tape Special Status Bits
Bit Action
18] Improper mode. When set to one during an output operation means that
the write enable ring is out.

24-'I I/O Beginning of Tape. The tape is at the load point.
25] 1/O Tape END. The tape is at or past the end point.
26 1/O Parity. O for odd parity, 1 for even pclri’ry.2
27-28 1/O Density. 00 or 10 = 556 bpi

01 = 200 bpi

1 = 800 bpi
29 I/0O No Read Check. Suppress automatic error correction if bit 29 is a 1.

Normal error correction is to repeat the desired operation 10 times before
setting an error status bit. -

1 . . ors .
These bits indicate special magnetic tape conditions and are set by the magnetic tape service routine
when the conditions occur.

2Odcl parity is preferred. Even parity should be used only when creating a tape fo be read in BCD
(Binary Coded Decimal) on another computer.

5.9 ISK

Device Mnemonic - DSK

Buffer Size - 2038 words (of which 2008 words are data)

5.9.1 Data Modes

5.9.1.1 A (ASCII) - Data is written on the disk exactly as it appears in the buffer. Data consists of
36-bit words.

5-25

5.9.1.2 AL (ASCII Line) - Same as A,

5.9.1.3 I (Image) - Same as A.

5.9.1.4 IB (Image Binary) - Same as I.

5.9.1.5 B (Binary) - Same as I.

5.9.1.6 DR (Dump Records) - Functions exactly the same as D.

5.9.1.7 D. Dump - Data is read into or written from anywhere in the user's core area without regard
to the normal buffering scheme. Control for read or write operations must be via a command list in core
memory. The command list format is as described in Chapter 4, "Unbuffered (Dump) Modes. " The disk
control automatically measures dump data into standard-length disk blocks of 200 octal words. Unless
the number of data words is an exact multiple of the standard length of a disk block (200 words) after

each command word in the command list, the remainder of that block is wasted.

5.9.2 Structure of Files on Disk

The file structure of the disk system has been designed to minimize the number of disk seeks
for sequential or random accessing using either buffered or dump mode 1/O. The assignment of physical
space for data is performed automatically by the Monitor as logical files are written or deleted by user
programs. Files may be of any length, and each user may have as many files as he wishes, as long as
disk space is available. No initial estimate of file length or number of files need be given by users or
their programs. Files may be simultaneously read by more than one user af a time, thus allowing data
sharing. A new version of a file may be recreated by one user while other users continue to read the
old version, thus allowing for smooth replacement of shared programs and data files. Finally, one user
may selectively update portions of a file, rather than creating a new one (see "General Notes, "

5.9.3.3).

5.9.2.1 Addressing by Monitor - The file structure described in this section is generally transparent to

the user, and a detailed knowledge of this material is not essential for effective user-mode use of the
disk. There are two programs in the Time=-Sharing Monitor that service the disk, DSKSER and DSKINT.
DSKSER is the device service routine for a disk and references a disk by symbolic addressing only. This

routine is essentially independent of what physical disk is attached to the system. DSKINT serves only

5-26

two functions: 1) that of translating the logical addressing used elsewhere in the system to the physical
addressing of the particular disk being utilized, and 2) controlling the physical disk. The monitor can
be thought of as seeing all disks in the same manner; o change of disks requires only a change in DSKINT
to provide the proper software interface between the physical device and the rest of the system.

All references made hereii, to addresses on the disk refer to the logical or relative addresses
used by the system and not to any physical addressing scheme involving records, sectors, tracks, etc.,

that may pertain to a particular physical device. The basic unit which may be addressed is a logical
disk block which consists of 2008 36-bit words.

5.9.2.2 Storage Allocation Table (SAT) Blocks - There is a storage allocation table on the disk, which

reflects the current status of every addressable block on the disk. These SAT blocks are contained in a
file with the name "*SAT* .SYS". This file may be used by any user, but can only be modified by the
Monitor. Each addressable block on the disk is represented by one particular bit within the SAT blocks.

If a particular bit is on, it indicates that the corresponding block is filled with data (all blocks on the
disk are filled when any information is written on them); if the bit is off, it indicates that the corre-
sponding block is empty or available to be written on. The disk can be wiped out by zeroing the SAT
blocks (which is exactly what is done when the disk is refreshed). The disk may optionally be "refreshed"

whenever the Monitor is reloaded.

5.9.2.3 File Directories - There are two levels of directories on the disk; one is referenced mainly

by the system and the other is referenced by individual users. There is only one higher level directory,
known as the Master File Directory (MFD). One of the functions of the MFD is to serve as a directory
for individual User's File Directories (UFD's). A UFD is a particular user's own directory and will con-
tain the names of files he has written on the disk. The UFD itself is a file like any other file except
that its filename is a binary number combination (project-programmer) rather than a 6-bit code and its
extension is always UFD in SIXBIT. The binary combination consists of a left half, which is the project
number, and a right half, which is called the programmer number. When a user is logged in under a
specific project-programmer number and references the disk, he is actually referencing his own area
through the UFD having his project~programmer number as its name. He may, of course, specifically
code his routine to reference files listed in the UFD's of other users or the MFD; whether he is success-
ful or not will then depend upon the fype of protection that has been specified for the file he is trying

to reference.

5-27

5.9.2.4 File Format - All disk files (including MFD and UFDs) are composed of two parts: 1) pure
data, and 2) information needed by the system to retrieve this data. Each data block contains exactly
200 (octal) words. If a partially filled buffer is output to the disk by a user, a full block is written
with trailing zeros filling in to make 2008 words. Word counts associated with individual blocks are
not retained by the system. If such a partial block is input later, it will appear to have a full 2008
data words.

There are three links in the chain by which the system references data on the disk. The first
link is the 2-word directory entry in the UFD, which points to the Retrieval Information block(s), which
in turn points to the individual pure data blocks. This chain is transparent to the user, who may look

upon the directory as having 4-word entries analogous to DECtapes.

DIRECTORY ENTRY NONCONTIGUOUS BLOCK
(MFD or UFD) OF PURE DATA
[naMmE
IS [Loc 1
ADRI | DATA
RETRIEVAL INFORMATION ADRI+177 DATA
toc [~amE .
LOC+1 | EXT DATE 1 .
Loc+2 | PROT. [M] TIME | DaTE2 ADRn [DATA
LOC+3 SIZE NUMBER L=
(__SUM1 ADR 1
AN AT \
Size = n Mn ADRn ADRn+177 DATA |

Directory Entry

NAME - Filename in 6-bit ASCII, unless the directory is the MFD and the file is a UFD; in that

case, NAME is a project-programmer number in binary.
EXT - Filename extension in 6-bit ASCII; if NAME is a project-programmer number, EXT is UFD,

LOC - Address of the first block on the disk that contains Retrieval Information for this file.

Retrieval Information

NAME and EXT as above; used to check hardware for possible read error, and to check against software
malfunctions. (A failure to match NAME and EXT results in the message "INCORRECT RETRIEVAL
INFORMATION",)

DATE] - In format of DATE UUQ; date file last referenced (RENAME, or ENTER, or INPUT done).
(Bits 24-35)

5-28

DATE2 ~ Same format as DATE1; date file originally created (ENTER) (bits 24-35).

PROT. - Protection; see below (bits 0-8).

M - Data Mode (ASCII, Binary, Dump, etc.) (bits 9-12).

TIME - 24-hour time (in minutes) that file was originally created (bits 13-23).

SIZE - If negative, this portion indicates the number of words in the file, where all blocks with

the possible exception of the last are assumed to contain a full 2008 words. If positive,
this is a count of the number of 2008—word blocks contained in the file. For files of less
than 217 words, the negative word count is used; for larger files, the positive block count

is used instead.

NUMBER - Programmer Number.

SUM 1, - Checksum; two's complement, end-around=-carry, sum of data in data-block whose disk
« e« SUMnN)
address is ADR 1.

ADR1, ~ Address of data block (logical block number on disk).
...ADRn

Protection

The first nine bits of the third word of a file's retrieval information are used to specify the
protection of the file. This is a necessary procedure since the disk is shared by many users, who may
each desire to keep certain files from being written over, read, or deleted by other users.

The total number of users is divided into three categories:

a. Owner of file; (person whose programmer number is the same as that in the right half of
the NAME field of the UFD in which the file is entered).

b. Project members; (users whose project number is the same as that in the left half of the
NAME field of the UFD in which the file is entered).

c. All other users.

There are three types of protection against each of the three categories of users:

(1) Protection - The protection itself cannot be altered.
(2) Read protection - The file may not be read.
(3) Write Protection - The file may not be rewritten, renamed, or deleted.

The protection mask (see above) consists of the first nine bits of the third word of retrieval
information; each bit (when on) represents a particular type of protection against a specific category of
user, according fo the following scheme. However, owner protection-protection and owner read-

protection are ignored lest the file become totally inaccessible.

5-29

OWNER PROJECT OTHERS
o] 8

Loc1+2 l I l | 2
L1 L L1

A A 4 |
T T f f ? WRITE PROTECTION

READ PROTECTION

PROTECTION PROTECTION

All files created with an ENTER are given the protection, 0558 by the Monitor; if some other
protection mask is desired, the RENAME UUO must be employed by the user. (Also see Section
4.4.2.5, "File Protection".)

5.9.3 User Programming for the Disk

5.9.3.1 Format - The actual file structure of the disk is generally transparent to the user. In pro-
gramming for input/output on the disk, a format analogous to that of DECtapes is used; that is, the user
assumes a 4-word directory entry similar in form to the first four words of retrieval information. The

UUO format is approximately the same as for DECtapes:
Uuo D, E
Where UUO is an input/output programmed operator and D specifies the user channel associated with

this device. E points to a 4-word directory entry in the user's program which has the following format:

E NAME
E+1 | EXT DATE
E+2 | PROT |M] TIME | DATE2
PROJECT PROGRAMMER
E+3 NUMBER l NUMBER OR [—wono COUNT |)]

(Note that E+3 differs from the fourth word of retrieval information)
(See Retrieval Information, Paragraph 5.8.2.4 for description)

5.9.3.2 Special Functions of Programmed Operators (UUO's) -

ENTER D,E Causes the Monitor to store away the 4-word directory entry for later entry into the
error return proper UFD when user channel D is CLOSEd or RELEASed.

NAME - The filename must be non-zero, if not, an error return results,

5-30

LOOKUP D, E

error refurn

EXT - The file extension may be zero; if so, the Monitor will leave it zero.

DATE1 - The correct date is always filled in by the Monitor.

PROT - The protection is always supplied by the Monitor as 055, The RENAME may
be used to change protection after file has been completely written and o CLOSE
done.

M - The data mode is supplied by the Monitor as set by the user in the last INIT,

or SETSTS UUO on channel D.

TIME, DATE2 - If both of these are 0, the Monitor supplies the current date and
time as the creation date and time for the file. If either is non-zero, the Monitor
will use the TIME and DATE2 supplied by the user in E+2; thus files may be copied
without changing the original creation time and date.

PROJECT-NUMBER, PROGRAMMER~-NUMBER - If both of these are 0, the project-
number and programmer-number (binary) under which the user is logged-in is sup-
plied by the Monitor. Otherwise the Monitor will use the project-number and
programmer-number supplied by the user in E+3, however, it is generally not
possible to create (ENTER) files in another user's area of the disk, since UFDs are

usually write-protected against all but the owner.

With certain types of error returns peculiar to the disk, the right half of E+1 is set
to a specific number to indicate which type of error caused the return. These num-
bers have the following significance:

0 - E contained a zero file name

1 - E+3 contained an incorrect (or nonexistent) project-programmer number.

2 - File already exists, but is write-protected.

3 - File was being created, recreated, updated, or renamed.
No user, except an administrator with project number 1, may create a UFD, since
the MFD is universally write-protected. The LOGIN CUSP (running under the ad-
ministrator project number) creates a UFD for any user the first time he logs into

the system.

When an ENTER is executed by the Monitor on a file that already exists, a new file
by that name is written, and those bits in the SAT blocks that correspond to the
blocks of the old file are zeroed when the CLOSE (or RELEASE) UUO is executed

thereby retrieving space and making it available to any other user.

Causes the Monitor to read the appropriate UFD. If a later version of the file is

being written, the old version pointed to by the UFD will be read.

5-31

RENAME D, E

error return

USETO D, A

USETI D, A

NAME - The filename in SIXBIT

EXT - The file extension in SIXBIT. A zero extension is not treated in any special
manner .,

DATE1, PROT, M, TIME, DATEZ2 are ignored. The Monitor returns these quantities
to the user in E+1 and E+2.

PROJECT-NUMBER, PROGRAMMER-NUMBER - If both of these are 0, the project-
number and programmer-number (binary) under which the user is logged=-in is supplied
by the Monifor. Otherwise the Monitor will use the project-number, programmer-
number supplied by the user in E+3. Thus, it is possible to read files in other user's
directories, provided that the file's protection mask permits reading. The Monitor
returns the negative word count (or positive block count for large files) in the LH

of E+3, 0 in RH of E+3.

The numbers placed by the Monitor in the right half of E+1 upon an error return
have a significance analogous to that described for the ENTER UUO:

0 - File was not found

1 - Incorrect project=-programmer number in E+3

2 - Protection failure

3 - File was being created (no earlier version existed).

If the file is currently being recreated, the old file is used.

This programmed operator is used to alter the name, extension, and/or protection of
a file or to delete a file from the disk. Locations E through E+3 are as described
above. RENAME is the only UUO that can set the protection of a file to that speci-
fied in E+2. To be RENAMEJ a file must first be CLOSEd on channel D, in order

to identify for the RENAME UUO. RENAME then seeks out this file and enters the
information specified in E through E+2 into the retrieval information and proper

directory. If the contents of E is zero, RENAME has the effect of deleting the file.

The error return numbers in the right half of E+1 are the same as for ENTER, with
the added possibilities:

4 - Tried to RENAME file to already-existing name.

5 ~ Neither LOOKUP nor ENTER has been done to identify the file to be

renamed.

These programmed operators are treated identically by the disk service routines.
Their function is to notify the service routine that a particular block is to be used

on the next INPUT or OUTPUT on channel D. A is a number that designates a

5-32

particular block relative to the beginning of the file. If A is greater than the cur-
rent size of the file (in blocks), the next OUTPUT will write a block immediately
after the file; the next INPUT will cause the end-of-file flag to be set. A=l refers
to the first block of the file (i. e., block 0).

If A=0 or if no previous LOOKUP or ENTER has been done, this UUO will set

the improper mode error bit (see bit 18, Table 4-4, and Section 4.4.4).

5.9.3.3 General Notes - Three types of "writing" on the disk may be distinguished. If a user does

an ENTER with a filename which did not previously exist in his UFD, he is said to be "creating” that
file. If the filename did previously exist in his UFD, he is said to be superceding that file; the old
version of the file stays on the disk (and is available to anyone who wants to read it) until the user does
the output CLOSE (at this point, his UFD is changed to point to the new version of the file and the old
version is either deleted immediately or marked for deletion later if someone is currently reading it; the
space occupied by deleted files is always reclaimed in the SAT tables - see Section 5.8.2.2). Finally,
if a user does a LOOKUP followed by an ENTER (the order is important) on the same filename on the
same user channel, he will be able to modify selected blocks of that file, using USETO and USETI UUOs,
without creating an entirely new version of it; this third type of writing is called "updating" and elim-
inates the need to copy a file when making only a small number of changes.

As a standard practice, user programs should read, create, and supercede (new file with same
filename) files on different user channels. However, for compatibility with DECtapes, it is possible to
read and create, or read and supercede, two files on the same user channel as long as all OUTPUTs and
the CLOSE output are done before the LOOKUP and the first input, or vice versa. In other words, a
CLOSE UUO is required between successive LOOKUPs and ENTERs unless updating is intended.

When issuing a RENAME UUO, the user must insure that the status at locations E through
E+3 are as he desires them to be. Since an ENTER or LOOKUP, as well as CLOSE, must have preceded
the RENAME; the contents of E through E+3 will have been altered, or filled if the E is the same for
all UUO's,
CALL [SIXBIT/RESET/] - Any files which are in the process of being written, but
have not be CLOSEd or RELEASed, will be deleted and the space reclaimed. If a
previous version of the file with the same name and extension existed, it will re-

main on the disk (and in the UFD) unchanged.

If the programmer wants to retain the newly created file and have the older version

deleted, he must CLOSE or RELEASE the file before doing a RESET UUO,

5-33

5.10 INCREMENTAL PLOTTER

Device Mnemonic - PLT

Buffer Size - 43 (octal) words

5.10.1 The plotter takes 6-bit characters with the bits of each character decoded as follows:

-X +X +Y =Y
Pen Pen Drum | Drum | Carr~ | Carr-
Raise | Lower Up Down | iage iage
Left Right

Do not combine pen raise or lower with any of the position functions. (For more details on

the incremental plotter, see the PDP~10 System Reference Manual, DEC-10-HGAA-D.)

5.10.2 Data Modes

5.10.2.1 A (ASCII) Five, 7-bit characters per word are transmitted to the plotter exactly
as they appear in the buffer. Since the plotter is a 6-bit device,

the leftmost bit of each character is ignored.

5.10.2.2 AL (ASCII LINE) This mode is identical to the A mode.
5.10.2.3 I (IMAGE) Six, 6-bit characters per word are transmitted to the plotter exactly

as they appear in the buffer.
5.10.2.4 B (BINARY) This mode is identical to the I mode.

5.10.2.5 IB (IMAGE BINARY) This mode is identical to the I mode.

5.10.2.6 DR (DUMP RECORDS) Not available.

5.10.2.7 D (DUMP) Not available.

5-34

5.10.3 The first OUTPUT operator causes the plotter pen to be lifted from the paper before any user
data is sent to the plotter. The CLOSE operator causes the plotter pen to be lifted after all user data is
sent to the plotter. These two pen-up commands are the only modifications the monitor makes to the

user output file,

5.11 DISPLAY WITH LIGHT PEN (TYPE 30 and TYPE 340)

Device Mnemonic - DIS

Buffer Size - None (uses device-dependent dump mode only - 15)

5.11.1 Data Words

5.11.1.1 ID (Image Dump - 15)

An arbitrary length area in the user area may be displayed on the scope. The command list
format is as described in Chapter 4, "Unbuffered (Dump) Modes, " with the addition for the Type 30
display, that, if RH =0, and LH # 0, then LH specifies the intensity for the following data (4 to 13).

5.11.2 Background

The purpose of the monitor service routine for the VR-30 is to maintain a flicker-free picture
on the display during time-sharing. To do this, the picture data must be available for display at least
every two jiffies. This necessitates that the display data remain in core. At present, this means that
the user program must also remain in core. To minimize swapping of other programs and to make avail-
able a larger block of free core for other users, the user program is shuffled toward the top of core be-

tween pictures.

5.11.3 Display UUO's

The input/output UUO's for both displays operate as follows:

INIT D, 15 ;MODE 15 ONLY
SIXBIT /DIS/ ;DEVICE NAME
0 ;NO BUFFERS USED
ERROR RETURN ;DISPLAY NOT AVAILABLE
NORMAL RETURN
CLOSE D, ;STOPS DISPLAY AND
or ;RELEASES DEVICE AS
RELEAS D, ;DESCRIBED IN MANUAL

5-35

5.11.3.1 INPUT D, ADR
If a light pen hit has been detected since the last INPUT command, then C(ADR) is set to the

location of last light pen hit.

If no light pen hit has been detected since last INPUT command, then C(ADR) is set to -1.

5.11.3.2 OUTPUT D, ADR

ADR specifies the first address of a table of pointers. This table is composed of pointers

with the following format:

0 17 18 35
LH RH

For the VR-30 Display:
If LH = 0 and RH = 0, then this is the end of the command list.

If LH # 0 and RH = 0, then LH is the desired intensity for the following data or
commands. The intensity ranges from 4 to 13, where 4 is
the dimmest and 13 is the brightest.

If LH=0and RH#0, then RH is the address of the next pointer. Successive pointers
are interpreted beginning at RH.

If LH #0 and RH #0, then -LH words beginning at address RH+1 are output as data to
the display. The format of the data word is the following:

0 7 8 17 18 25 26 35

y~-coord x-coord

For the 340 Display:
If RH = 0, then this is the end of the command list.

If LH = 0 and RH # 0, then RH is the address of the next pointer. Successive pointers
are interpreted beginning at RH.

If LH# 0 and RH # 0, then -LH words beginning at address RH+1 are output as data to
the display. The format of the data word is described in the
340 programming manual.,

An example of a valid pointer list for the VR-30 Display is:

OUTPUT D, LIST ; OUTPUT DATA
;POINTED TO BY LIST

LIST: XWD 5,0 ;INTENSITY 5 (DIM)
IOWD 1, A ;PLOT A
IOWD 5,SUBP1 ;PLOT SUBPICTURE 1

5-36

XWD 13,0 ;INTENSITY 13 (BRIGHT)
IOWD 1,C ;PLOT C
IOWD 2,SUBP ;PLOT SUBPICTURE 2
XWD 0,LIST1 ;TRANSFER TO LIST 1
LIST1: XWD 10,0 ;INTENSITY 10 (NORMAL)
IOWD 1,B ;PLOT B
1IOWD 1,D ;PLOT D
XWD 0,0 ;END OF COMMAND LIST
A: XWD 6,6 ;Y = 6, X=6
B: XWD 70,105 ;Y= 70, X=105
C: XWD 105,70 ;Y= 105, X=70
D: XWD 1000, 200 ;Y = 1000, X = 200
SUBP1: BLOCK 5 ;SUBPICTURE 1
SUBP2: BLOCK 2 ;SUBPICTURE 2

An example of a valid pointer list for the 340 Display is:

OUTPUT D, LIST ;OUTPUT DATA POINTED
;TO BY POINTER IN LIST

LIST: IOWD 1,A ;SET STARTING POINT TO (6,6)
IOWD 5,SUBP1 ;DRAW A CIRCLE
IOWD 1,C ;SET STARTING POINT TO (70, 105)
IOWD 5,SUBP1 ;DRAW A CIRCLE
IOWD 1,B ;SET STARTING POINT TO (105, 70)
IOWD 2,SUBP2 ;DRAW A TRIANGLE
XWD 0,LIST1 ;TRANSFER TO LIST1

LISTI: IOWD 1,D ;SET STARTING POINT TO (1000, -200)
IOWD 5,SUBP1 ;DRAW A CIRCLE
IOWD 1,A ;SET STARTING POINT TO (6,6)
IOWD 2,SUBP2 ;DRAW A TRIANGLE
XWD 0,0 ;STOP

A: X=6 Y=6

B: X =105 Y =70

C: X=70 Y =105

D: X = 1000 Y = -200

SUBP1: BLOCK 5 ;DRAW A CIRCLE

SUBP2: BLOCK 2 ;DRAW A TRIANGLE

The example shows the flexibility of this format. The user can display a subpicture by merely
setting up a pointer fo it. He can also display the same subpicture in many different places by sefting
up pointers to the subpicture, each preceded by a pointer to commands for the display to reset its

coordinates,

5.12 CALL AC, [SIXBIT/DEVCHR/] or CALLI AC, 4

The user may determine the physical characteristics associated with a logical device name

5-37

by executing a DEVCHR UUO. The DEVCHR UUOQ returns the following information in the AC referred.

(AC)L: 1 Device can do output
Device can do input
4 Device has a directory (DTA or DSK)
10 Device is a TTY
20 Device is a magnetic tape
40 Device is available to this job or is already assigned to this job
100 Device is a DECtape
200 Device is a paper tape reader
400 Device is a paper tape punch
1000 Device has a long dispatch table (that is, UUQ's other than INPUT,
OUTPUT, CLOSE, and RELEASE perform real actions)
2000 Device is a display
4000 TTY in use as an /O device
10000 TTY in use as a user console (even if detached)
20000 TTY attached to a job
40000 Device is a line printer
100000 Device is a card reader
200000 Device is a disk
400000 DECtape directory is in core (this bit is cleared by an ASSIGN or DEASSIGN
command to that unit)
(AC)R: 400000 Device assigned by a console command
200000 Device assigned by program (INIT UUO)

Remaining Bits: If bit 35-n contains a 1, then mode n is legal for the device.

NOTE

The mode number (0 through 17) must be converted to deci-
mal; for example, mode 17, is represented by bit 35-15

8 10
or bit 20.

-5-38

APPENDIX 1
DECtape Compatibility Between DEC Computers \\‘1

PDP PDP PDP PDP PDP PDP

4 5 6 7 8 8

550& 552& 551& 550& 552& TCOI1
Read ..>» 555 555 555& 555 555 &
By TU55 TU55 TUS5

S ES S

" PDP-4
PDP-5
PDP-6
PDP-7

Written PDP-8
By y 552

%/ PDP-8

7 TCO1 3

PDP-8/1 ;

(<) PDP-9
PDP-10

A = Can bé done
B = Can not be done because of difference in wrifing checksum
C = Can be done with programmed checksum

D = Can probably be done as in (C) except that PDP-4 is too slow for calculating the
exclusive or checksum in line ~ this must be done before writing.

vx 1A

NOTE: PDP-10 will not allow search to find first or last blocks when searching from the
' end-zonét:N :

R

APPENDIX 2

Size of Multiprogramming non-disk Monitor (Reentrant 4 series, Version 50) June, 1969

There are three components to the Monitor:

1) Required code (4.7K)

2) Optional device code (0-4.4K)

‘ 3) Tables and buffers per job (73 words per job)

A. Required code (Assuming all features)

Lower core 96.
COMMON 409.
CLKCSS 82.
CLOCKI1 367.
COMCON 1322.
CORE1 182.
DLSINT 48.
ERRCON 214,
SCNSRF 1260.
SEGCON 602.
SYSINT 78.
UUOCON 1144,

4692. words (Decimal)

B. Optional devices Complete system
DTA 1284. +N(1)*146.N(1)=8 2612,
MTA 452. +N(@2)*9. N(2)=2 470.
PTY 176. +N(3)*10. N(@3)=2 196.
CDR 220. 220.
cop 308. 308.
DIS 190. 190.
LPT 100. 100.
PLT 65. 65.

A2-1

Optional devices Complete system
PTP 167. 167.
PTR 105. 105.

3067. +N(1)=146.+N(2)*9.N(3)*10. 4433.

C. Tables and buffers
18. words of tables per job
55. word of TTY device data block space per job

73. words per job
Total for complete 8 user system = 4692. + 443. + 8.*73. = 9709.

WARNING: The Monitor will continue to grow despite our best efforts to prevent it.
Most new features are put in with conditional assembly so that a customer
can reduce this size of the Monitor by giving up some of the new features.

These sizes are subject to change without notice and should not be construed as a commitment

by Digital Equipment Corporation.

A2-2

APPENDIX 3

Size of Swapping Monitor (Reentrant 4 series, Version 50) June, 1969

There are three components to the Monitor:

1) Required code (10K)

2) Optional device code (0-4K)

3) Tables and buffers per job (1K for every 8 jobs)

A. Required code (Assuming all features)

Lower core 96.
COMMON 475.
CLOCK1 376.
COMCON 1592.
CORE1 214.
DLSINT 48.
DSKINT 130.
DSKSRB 2448,
ERRCON 211.
SCHEDB 741.
SCNSRF 1264.
SEGCON 709.
SYSINI 81.
UUOCON 1190.

10375. words (Decimal)

B. Optional devices Complete system
DTA 1286. +N(1)*146. N(1) =8 2454.
MTA 452, +N(2)*9. N(@2)=2 470.
PTY 166. +N(3)*10. N(@3)=2 196.
CDR 220. 220.
CDP 308. 308.
DIS 191. 191.
LPT 104. 104.

A3-1

Optional Devices Complete system

PLT 80. 80.
PTP 167. 167.
PTR 105. 105.

3089. +N(1)=146.+N(2)*9.+N(3)*10. 4295.

C. Tables and buffers
21. words of tables per job
54. words of DSK device data block space per job
(1.5 files/job)
55. word of TTY device data block space per job

130. words per job
Total for complete 16 user system = 10375. + 3987. + 16.*130. = 16442.

WARNING: The Monitor will continue to grow despite our best efforts to prevent it.
Most new features are put in with conditional assembly so that a customer
can reduce this size of the Monitor by giving up some of the new features.

For a complete Swapping System (all devices):

8 JOBS 15.7K
16 JOBS 16.7K
24 JOBS 17.7K
32 JOBS 18.7K
40 JOBS 19.7K
48 JOBS 20.7K
56 JOBS 21.7K
64 JOBS 22.7K

These sizes are subject to change without notice and should not be construed as a commitment

by Digital Equipment Corporation.

A3-2

ADDENDUM 1
Concise Command Language (CCL) for the PDP=10 Time=Sharing Monitors

e wgi&w@w’fﬂz@f
uiat

This document describes the use of the Concise Command Language] (CCL) features of the »

1. SCOPE 7

PDP-10 Time=Sharing Systems. | W
The discussion in this document assumes that the reader is at least slightly familiar with the
use of the PDP-10 Time=Sharing system. Each section begins with fairly simple concepts and progresses W}
.
toward more complex cases.
It is assumed that the reader has some knowledge of the following PDP-10 CUSPs (Commonly

Used System Programs):

FORTRAN IV or MACRO 10,
LOADER,

PIP, and either of the editing programs, TECO or
LINED (a version of EDITOR).

Detailed information of the implementation of the CCL system is also included in this document.

2. INTRODUCTION

The CCL (Concise Command Language) system=trers-reemeddedto-thePDP~10-Fme—~Shearing
Whﬂ#ﬂﬁmrpmmeﬁreduc%fhe amount of typing (both input and output), required for

a user to accomplish common tasks, such as the translation, loading, and execution of source language

programs. A secondary result is that routine operations can be performed more rapidly by using the
CCL system, since there is much less machine time spent waiting for type=in from the user. There are
fewer typing errors, since there is less type~in, and there is less to learn, for the beginning user, before
programs can successfully be run.

CCL commands are to all intents and purposes new Monitor commands as far as the user is
concerned. They are typed af the Monitor level.

The CCL system is implemented only for PDP=10 configurations containing a disk, and relies
heavily on temporary disk files (which can be ignored by the user).

At the same time, an attempt has been made to maintain within the CCL system much of the
generality of the more detailed use of the PDP-10 CUSPs. Much of this document is devoted to those

more complex uses of the CCL system.

] COMPIL, the CCL control cusp, was developed by William F. Weiher, of the Artificial Intelligence

Project, Stanford University.

The beginning user can make good use of the CCL system without knowing all of these details,

as will be shown in the simple examples in Section 3.

3. SIMPLE EXAMPLES!

Perhaps the best example of the simplicity of the use of the CCL system is the following:
Assume that a user has one, and only one, file on his disk area, a file called PROG .F4,

whose contents are:

TYPE 1004
100 FORMAT (* HELLO ')J
ENDJ

This program can be compiled, loaded and executed by typing simply:

)] .EXECUTE PROG,

‘: The typeout will be:

FORTRAN: PROG
LOADING
LOADER 5K CORE
HELLO

EXIT

1c

Operations requiring PIP are also greatly simplified. To type out the contents of the above

file, one need only type:
2) -TYPE PROG .F4,
To list one's disk directory, the command is:
3) .DIRECT,
Similarly, to edit the text file above, the command
4) .EDIT PROG .F4,
will initialize the line editor to that file, or
5) -TECO PROG .F4,

will initialize TECO to that file.

] Throughout this document, computer typeouts are indicated by underscoring, and the ¢ symbol is
used to represent the RETURN key.

‘\@gfl 2

The equivalent commands for the previous examples without CCL are (type-in only):

1) LR F40y

¥ DSK: PROG<-DSK: PROG

Yo

. R LOADER)

* /E PROG (ALTMODE
2) .RPIPy

*TTY: « DSK: PROG .F4,
3) .RPIPy

FTTY: < DSK: /Ly
4) .RLINED »

*SPROG .F4

5) .R TECOy

FEBPROG . F4 v (ALTMODE) (ALTMODE)

4. COMMAND DESCRIPTION

4.1 COMPILE-Class Commands

4.1.1 General
This section describes the use of the following group of commands:
COMPILE, LOAD, EXECUTE, and DEBUG

The COMPILE command will be described first, then the other three commands will be
explained as extensions of COMPILE.

The argument of a COMPILE command is, in its simplest case, a filename or a list of file-
names. In more complex cases, there are many optional switches. While reading these sections the
reader should be careful to distinguish between "compile~switches", "processor-switches", and "loader-

switches". They will be distinctly separated by these names.

4.1.2 The COMPILE Process

4.1.2.1 General - The purpose of the COMPILE command is to produce one or a group of relocatable
binary files, representing the specified program(s). This process may require the use of the MACRO
assembler, or of the FORTRAN compiler, or both. (Other translators may be added to this list in the
future). If the list of programs is extensive, there may be both source and binary versions of some

programs, and some of them may not require recompilation while others may. The COMPIL program

makes these decisions and directs the compilations and assemblies, according to the rules and commands

which will be described here.

4.1.2.2 Program Names - A file on the PDP-10 disk is identified by a filename of up to six
characters, and a filename extension of up to three characters. Associated with each such file is a
creation date and time. (DECtape files have a date, but no time). Certain file extensions imply

particular forms of programs:

Extension Meaning

.MAC MACRO language source file

.F4 FORTRAN 1V source file

.REL RELocatable binary file

SAV Core dump, from SAVE command
blank Source file, unspecified language

The compile process uses these extensions and dates to direct the compilations.

4,1.2.3 COMPILING a Program - The command

. COMPILE FILE

causes the following actions:

1) Determine whether a file named FILE.REL exists, and if so determine its date and time.

2) Determine whether a source file exists by the name FILE (with a null extension) or

failing that) by the names FILE .MAC or FILE.F4.
3) If there is a source file, and its date and time are af least as recent as those of the

.REL file (if any), then have it translated to a .REL file. Select the correct translator as follows:

If the source is .MAC, use MACRO.

If the source is .F4, use FORTRAN IV.

If the source has another extension (or a null extension), use the "standard processor."
The "standard processor" is FORTRAN 1V af the beginning of each command, but may
be changed by the use of COMPILE switches (see below).

Ambiguity of processors can most easily be avoided by always using the conventional
extensions of .MAC or .F4 for source files.

Input files may appear on devices other than the disk, if so specified, or on disk areas
belonging to other users. Output files, both binary and listing (see below), will be placed on the
user's disk area. The user's own area will be searched for .REL files during the process of checking

for the most recent .REL file. For example, if the user is logged in as [20,201, and the command

. COMPILE PROG [30,30]J

is executed, both PROG .REL [30,30] and PROG .REL [20,20] will be searched for before compiling
the source file. If a compilation does occur, the output will be PROG .REL [20,201].

4.1.2.4 Lists of Programs = The argument of the COMPILE command may be a string of program names,

separated by commas. Programs in both FORTRAN and MACRO languages may be mixed in such a list.
For example, if the user had files named A.MAC, B.F4 and C.MAC, then either of the following

commands would cause the three programs to be translated, by the proper translator:

1) .COMPILE A.MAC, B.F4, C.MACy
or more simply,
2) .COMPILE A, B, Cy

4.1.2.5 COMPILE Switches - The COMPILE ~class commands may be modified by a number of switches.

These switches are words preceded by slashes ("/"), as opposed to letters preceded by slashes more
commonly found in other command strings. The switches are delimited by any non-alphanumeric
character, usually space or comma. The names of the switches may be abbreviated to the first letter
or letters, provided that the abbreviation uniquely identifies a particular switch.

Compile=switches may be either "temporary" or "permanent”. A temporary switch is
appended fo the end of a filename, without an intervening space, and has effect only on the processing

of that file. Example:
.COMPILE A,B/SWITCH,C

In this case, the action implied by "SWITCH" would be applied only to file B.
A permanent switch is set off from filenames by a space or comma. If takes effect on all

following files, unless modified by another, later switch. Example:
.COMPILE A, /SWITCH B,Cy

Here, "SWITCH" applies to both file B and file C.
Specific compile=switches will be discussed in the following sections. Some are relevant

only to the LOAD, EXECUTE, and DEBUG commands, and will be discussed in those sections.

4.1.2.6 Compilation Listings - Listing files may be generated by use of switches. The listings may

be of the ordinary or the cross-reference type.
The compile-switches "LIST" and "NOLIST" cause listing and non-listing of programs.

These switches may be used as either temporary or permanent switches:

-COMPILE /LIST A,B,Cy

will generate listings of all three programs.
.COMPILE A/LIST, B,Cy
will generate a listing only of program A.
.COMPILE /LIST A, B/NOLIST, Cy

will generate listings of programs A and C.

The compile-switch "CREF" is just like "LIST", except that a cross-reference listing is
generated, which must be processed by the program "CREF".

In either case, the result of the listing is a disk file, with the extension .LST, which must
be listed later. (See the "LIST" and "CREF" commands).

Since the "LIST", "NOLIST", and "CREF" switches are so commonly used, the switches
"L", "N", and "C" are defined with the corresponding meanings, even though there are (for instance)

other switches beginning with the letter "L". Thus the command
L.COMPILE /L A,

produces a listing file "A LST" (as well as, of course, "A.REL").

4.1.2.7 The "Standard Processor" - The "standard processor” is used to compile or assemble programs

which do not have the extensions .MAC, .F4, or .REL. There are a number of switches for setting the
“standard processor". It should be emphasized here, however, that this subject can be disregarded if
all source files are kept with the appropriate extensions.

If the command
.COMPILE A}

is executed, and there is a file named "A.", that is, with a blank extension, then "A."” will be

translated to "A .REL" by the "standard processor”. Similarly, if the command
.COMPILE FILE.NEW,

is executed, the extension " .NEW", although meaningful to the user, does not specify a language,
so the "standard processor" will be used. For these cases the user must be able to control the setting
of the "standard".
The "standard processor" is FORTRAN 1V at the beginning of each COMPILE-class command.

The "standard processor" may be changed by the following compile-switches:

MACRO change standard fo MACRO

M same as MACRO

FORTRAN change standard o FORTRAN 1V

F same as FORTRAN

REL change standard to use RELocatable binary; i.e.,

use existing .REL files, even though a newer
source file may be present. (Useful primarily

in LOAD, EXECUTE, DEBUG commands).
These switches may be used as "temporary" or "permanent”. For example, assume that

programs A, B, and C exist on the disk, with blank extensions. Then
. COMPILE A, B/M, C

will cause A and C to be translated by FORTRAN, B by MACRO.
- COMPILE A, /MB, CJ

will cause A to be translated by FORTRAN, B and C by MACRO.

NOTE

Programs with .MAC and .F4 extensions are always translated
by the extension implied processor, regardless of the "standard
processor."

4.1.2.8 Forced Compilation = It was stated earlier that the compilation (or assembly) occurs if the

source file is af least as recent as the relocatable binary file. If the binary is newer than the source,
there is not normally any need to perform the translation.

There are cases, however, where such exira translation may be desirable, as for instance,
when one desires a listing of the assembly. To force such an assembly, the switch "COMPILE" is

“provided, again in both temporary and permanent form. For example:
.COMPILE /CREF / COMPILE A, B, Cy

will create cross-reference listing files A.LST, B.LST, and C.LST, even though current .REL files may
exist. In fact, the binary files will also be recreated.

The corresponding switch "NOCOMPILE" is also provided, to turn off the forced-compile
mode. Note that this differs from the /REL switch which turns off even the normal compilation caused

by a source file newer than the .REL file.

4.1.3 LOAD Commands

4.1.3.1 General - The LOAD command is an extension of the COMPILE command. It takes as its
argument the same sort of list of program names and switches as does the COMPILE command, with the
addition of some further optional switches, to be described below.

The first action of the LOAD command is to invoke the COMPILE process, as described in
Section 4.1.2. That is, the program names are checked for the existence of source and binary files,
and assemblies and compilafions are performed as required by the dates and fimes of the files and by
the compile=switches in the command.

The second action of the LOAD command is the running of the LOADER, and the loading
of the .REL files specified in the LOAD command.

Various loader actions can be directed by means of switches to be described below.

At the end of loading, the LOADER EXITs to the Monitor.

4,1.3.2 Compile=Switches for the LOAD Process

4.1.3.2.1 Library Searches - The LOADER normally performs a library search of the FORTRAN library .

Sometimes it is necessary to search other files as libraries. To do this, the compile-switches "LIBRARY"
and (its complement) "NOSEARCH" are provided.

"permanent” or "temporary" (review Section 4.1.2.5).

These switches may be used as either
For example, suppose a special library file named SPCLIB .REL were kept on device SYS at
a particular installation. Then to compile and load a user program, library search the special library,

and then search the normal FORTRAN library, the following command could be used:
.LOAD MAIN,SYS: SPC LIB/LIB

At this point, it should be noted that the program SPCLIB is not assembled simply because its source
file is presumably not on device SYS. The COMPILE process will compile any program named in the
command string, if its source is present and not older than the .REL file, unless prevented by the

/REL switch.

4.1.3.2.2Loader Maps - Loader maps are produced during the loading process by the compile-switch
"MAP". When this switch is encountered, a loader map is requested from the Loader. The map will
be written with filename MAP.MAP, in the user's disk area.

This compile-switch is the one exception to the "permanent compile-switch" rule, in that

it causes only one map to be output, even though it may appear as a permanent switch.

4.1.3.3 Loader-Switches in a CCL Command - In unusually complex loading processes, it may be

necessary to pass loader-switches fo the LOADER to direct its operation. The most common examples
are: loading with symbols (loader-switch /S), setting a program origin (loader-switch /no), causing
an early search of the FORTRAN library (loader-switch /F), or preventing the library search (loader-
switch /P).

These switches must be passed to the LOADER, but not to the assembler or compiler. This
is accomplished by the % character. The syntax of % is the same as that of "/" in the Loader's
command string; that is it takes one letter following it, or a sequence of digits and one letter. Thus

to set a program origin of 6000 for program C, one might type:
.LOAD A, B, %60000C, D,
The relation between loader~switches and filenames is mainfained, so that, for instance

%SFILE is passed as /SFILE while
FILE%S s passed as FILE/S

(These have different meanings to the LOADER.)

4.1.4 EXECUTE Command

4.1.4.1 General - The EXECUTE command is a further extension of the COMPILE-class commands.

It causes all of the actions of the LOAD command, and takes the same arguments. In addition, however,
the EXECUTE command causes the LOADER to begin exécuﬁon of the program at its starting address at
the completion of loading. Thus, in one command, the CCL system proceeds from compilation of the

source files, through the loading process, and into execution of the program.

4.1.4.2 Error Comment - The assembler, compiler, and LOADER keep a count of errors encountered
during their operation. If an EXECUTE command encounters any errors, the loading will occur, but
the message "EXECUTION DELETED" will be printed, and the LOADER will EXIT to the Monitor with-
out starting the program.

4.1.5 DEBUG Command

The DEBUG command is nearly identical to the EXECUTE command. It takes the same
arguments and switches as both EXECUTE and LOAD, and invokes the COMPILE and LOAD processes
as previously described. The one difference is that loading is begun with the "/T" switch to the Loader.
That is, the debugging program DDT is loaded as the first program, subsequent programs are loaded
with local symbols, and DDT is entered at the completion of loading (rather than either an EXIT or START

operation).

4.1.6 Remembered Arguments

Each time a COMPILE~class CCL command is performed, it is "remembered" as a file on the
disk , so that its arguments may be re-used by a later COMPILE-class command. If a COMPILE-class
command is executed with no argument, the previous argument will be recalled and substituted into
the command.

For example, suppose that the following command is performed:
-EXECUTE A, B, C,

and that a syntax error is found while compiling program C, so that the execution is deleted. The

user should edit program C, and then type simply
.EXECUTE,

The system will recall the arguments (A, B, C), recompile program C, and then load and execute the
three programs.

If the use of DDT seems required, the command
-DEBUG,

would also recall the necessary arguments.

4.2 EDIT-Class Commands

4.2.1 General

These commands call in the PDP-10 editing programs, and cause them to open a specified
text file for editing. There are four of these commands; two address TECO, and two address LINED
(a disk-oriented version of EDITOR). For each editor, one command causes an existing file to be
opened for changes, and the other causes a new file to be created. Each command requires as its
argument a filename, with an (optional) extension. This file~name may be implied (see below,

Section 4.2.4).

4.2.2 LINED Commands

4.2.2.1 EDIT Command - This command causes LINED fo open a file for modifications. The file

must already exist, and be a sequence-numbered text file. Example:

LEDIT NAME.MAC

10

This is equivalent to:

.RLINED Y
FSNAME . MAC

4.2.2.2 CREATE Command - This command causes LINED to open a new file for creation. Example:

-CREATE NAME.F4
This is equivalent to:

.R LINED ¢

FSNAME .F4

4.2.3 TECO Commands

4.2.3.1 TECO Command - This causes TECO to open a file for modifications. The file must already

exist., Example:

-TECO NAME.MAC,
This is equivalent to:

.RTECO ¢

FEBNAME . MAC v (ALTMODE) (ALTMODE)

4.2.3.2 MAKE Command - This command causes TECO to open a file for creation. Example:

.MAKE NAME.F4 ,
This is equivalent to:

-RTECOy
*EWNAME.F4 (ALTMODE) (ALTMODE)

4.2.4 Implied EDIT-Files

Each time an EDIT-class CCL command is performed, it is "remembered"” as a file on the

disk, so that the filename last edited may be recalled for the next edit. For example, if the command
-CREATE PROG1.MACy
is performed, then later in the operating session, the command

.EDIT,

LB

may be used in place of
.EDIT PROG1.MAC ,

assuming no other EDIT-class command was used in the interim.

4.3 PIP-Class Commands

These commands use PIP and CREF to perform common file-handling operations, with new

abbreviated commands.

4.3.1 TYPE Command

The TYPE command causes PIP to type the contents of a file, or files, on the user's

Teletype. For example, the command
.TYPE FILE1.F4

will cause the program FILE1.F4 on the disk to be printed.

1%
.

The TYPE command also accepts a list of filenames, or the "wild" filename Filenames

may include device names and project-programmer numbers. For example
-TYPE DTAT:A.F4,DSK:B.MAC, *.DAT

will cause typing, in sequence, of file A.F4 from DECtape 1, then B.MAC from the disk and finally
all disk files with the extension DAT.

4.3.2 LIST Command

The LIST command is exactly the same as the TYPE command (4.3.1) except that the named

files are listed on the line-printer (device LPT) instead of the user's console (device TTY).

4.3.3 DIRECTORY Command

4.3.3.1 General - The DIRECTORY command produces a directory listing of the user's disk files,
listed on the Teletype. If a device name is supplied, with an optional colon, the directory of that

device will be listed. For example, either

.DIRECT DTAl:y or
“DIRECT DTAI1 ,

will produce a directory listing of DECtape 1.

12

4.3.3.2 DIRECTORY Switches - The DIRECTORY command accepts two optional switches, which

may appear either before or after the device name.

4.3.3.2.1/F Switch - The /F switch causes the short form of the directory to be listed (omitting dates).

Example:

_._DIRECT/FJ

4.3.3.2.2 /1 Switch - The /L switch causes the listing to be sent to the LPT. For example,
.DIRECT SYS:/L)

lists the system directory on the line printer.

4.3.4 DELETE Command

The DELETE command may be used to delete a file or files from the disk or a DECtape. The
argument of DELETE is a list of filenames, which may include device names. If no device is supplied,
DSK is assumed. The "wild" filename "*" is allowed.

Examples:

.DELETE ABC.MAC (deletes DSK:ABC .MACQC)

.DELETE DTAT:ABC.MAC, DEF.MAC,
(deletes two DECtape files)

.DELETE DTA1:A,B,DSK:*.TMP
(deletes two DECtape files,
and all .TMP files from the disk)

Note that a device name remains in effect until changed or until the end of the command.

Thus in the second example, DEF.MAC, and in the last example, B, are deleted from the DECtape.

4.3.5 RENAME Command

The RENAME command changes the names of files on the disk or (if specified) on DECtapes.
The argument is a pair of filenames separated by an equals sign, or a list of such pairs, separated by
commas. The old filename appears at the right of the equals sign: the new name is at the left. If a
device name is included, it is specified with the new name, and remains in effect until explicitly

changed, or until the end of the command. The device is initially assumed to be the DSK.

13

Examples:

.RENAME NEW = OLDy

_RENAME DTAT:NEW1.MAC = OLD1.MAC,N2 =02
.RENAME *.MAC = *.XYZy

~RENAME DTA1 :N =0, DSK: N =0y

4.3.6 CREF Command

The CREF command takes no arguments. It causes the CREF cross-reference program to be
run, and produces any cross-reference listings which have been generated by previous COMPILE~class
commands. The CREF program then deletes its file of listing names, so that subsequent CREF commands

will not produce these same listings again.

5. EXTENDED COMMAND FORMS

The commands described in the preceding section are sufficient for the compilation and
execution of one or a few programs at a time. By use of the extended forms of the CCL commands to
be described in this section, it becomes a simple task to assemble large groups of programs such as the

FORTRAN library or the Time-Sharing Monitor itself.
5.1 Command Files

5.1.1 The @ File

When the number of program names and switches is large, it is desirable to place them in
a file rather than typing them in for each compilation. This is accomplished by the "@file" construc-
tion. At any point in a CCL command, after the first word, the "@file" may appear, where "file"
may include a filename, extension, and project=-programmer number. If the extension is blank, the
command file will be looked for with both the blank extension, and the extension ".CMD". The

information in the command file is then "plugged in", replacing the characters "@file".

For example, if a file "DSK:NAMES .CMD" contains the following line,
/USTA,B,C,D,E
then the command
.COMPILE /LISTA, B, C, D, E, Fy
could be replaced by

.COMPILE @NAMES, F

14

Command files may themselves contain the "@" construction, and this process may continue
to a depth of nine files. If this indirecting process should result in files pointing in a loop, the maximum

depth will rapidly be exceeded and an error message will be produced.

5.1.2 Formatting within a Command File

In a very large command file, such as one used to assemble the Time=Sharing Monitor,
questions of format and commentary must be defined. The following rules describe the handling of
format characters in command files.

a. Except that they delimit words, spaces are ignored. Similarly, the characters TAB,
VTAB, and FORM are tfreated like spaces.

b. The characters CARRIAGE RETURN, LINE-FEED, and ALTMODE are ignored if the
first non=blank character after a sequence of returns, linefeeds and altmodes is a comma. Otherwise,
they are treated as commas by the COMPILE~class commands, and as command terminators by the EDIT
and PIP class commands. '

c. Since strings of returns and linefeeds are considered together, blank lines are completely
ignored.

d. Comments may be included in command files by the use of a semicolon. All text from
a semicolon through the following linefeed, inclusive, is ignored.

e. Command files may be sequenced. The sequence numbers are ignored.

5.2 The "+" Construction (COMPILE-class commands only)

In many cases, a single MACRO program may be produced from a collection of input files.
The most common case of this is the Time=-Sharing system, where most files consist of a parameter file,
S.MAC, possibly a switch file such as FT505B.MAC, and a file which is the body of the program,
such as APRSER.MAC. This is specified by the following command:

-COMPILE S+FT50SB+APRSER,

In this construction, the name given to the output files, .REL and .LST (if any), is that of the last of
the input files, i.e., APRSER in this example.
The individual source files in the "+" construction may each contain device, extension,

and project=-programmer number information as well as a filename.

5.3 The "=" Construction (COMPILE-class commands only)

Normally, the filename of the binary file is the same as that of the source file, with the

extension specifying the difference between them. Ii is sometimes desirable to suspend this convention,

and this can be done via the construction, best shown by example: Suppose a source program is

15

named SOURCE.MAC, and a binary file is desired with the name BINARY .REL rather than SOURCE .REL.

The following command accomplishes this:
-COMPILE BINARY =SOURCE

This same technique may be used to specify an output name to the file produced via the "+" construc-
tion. To give the name WHOLE .REL to the binary produced by PART1.MAC and PART2.MAC, type
the following:

-COMPILE WHOLE =PART1 +PART2,

5.4 The "< >" Construction (COMPILE-class commands only)

A further simplification can be introduced when a number of programs are to be assembled
with the same parameter file. To assemble the three monitor files LPTSER.MAC, PTPSER.MAC, and
PTRSER.MAC, each with the parameter file S.MAC, one could type

.COMPILE S +LPTSER,S +PTPSER,S +PTRSER Y
This can be simplified by the use of angle brackets, as follows:

.COMPILE S+<LPTSER,PTPSER,PTRSER>,
It is not permissible to place a "+" term after the angle brackets, such as:

-COMPILE <LPTSER,PTPSER,PTRSER>S

or

-COMPILE S+<LPTSER,PTPSER,PTRSER>+ FTSOSBJ

5.5 Processor Switches

The LIST and CREF operations are implemented by passing switches to the assembler and
compiler in their commands. It is occasionally necessary to pass other switches to these processors,
such as fape positioning commands. A mechanism is provided for this in the CCL system.

First, recall that for each translation (assembly or compilation) a command string is sent to
the translator, containing three parts: source files, binary output file, and listing file. The CCL
system passes these command strings to the processor without the user's being concerned with the details.
However, if the user does wish to add switches to these files, the vFolIowing technique may be used.

First, group the switches according to the three files, and according to each source file if

the "+" construction is used.

16

Secondly, group the switches with commas and a pair of parentheses for each source filename,
as follows:

If only source switches are present, place them in parentheses:
(SSSS)

If binary switches are present, place them after the source switches and a comma:
(SSSS,BBBB)

If listing switches are present, place them after the binary switches and another comma:
(SSSS,BBBB, LLLL)

Finally, place this parenthesized siring immediately after the source~file name. For example,

to assemble the first two files on MTAOQ, naming the output files A and B, type
.COMPILE/MACRO A=MTAO: (W),B=MTAO:
This will cause the following MACRO command strings to be generated:

A < MTAO: (W)
B <~ MTAO:

6. IMPLEMENTATION

6.1 General

The CCL system is implemented as a combination of additions to the Time-Sharing Monitor,
modifications to the PDP-10 cusps (MACRO, F40, PIP, TECO, LINED, LOADER and CREF), and a
new cusp (COMPIL) which deciphers the CCL commands and constructs commands for the cusps. These
commands are written as temporary files on the disk, as are the monitor-level commands. COMPIL

and the other cusps transfer conirol directly from one to another without requiring typed=-in commands.

6.2 Temporary Files

This section describes the uses of the various temporary files, their names and their contents.
The first three characters of each filename are the job number of the controlling job, in decimal, with

leading zeroes to make three digits. The names listed here will assume job number one.

17

6.2.1 001SVC.TMP

This file contains the most recent COMPILE-class command which included arguments. It

is used to remember those arguments, as described in Section 4.1.6.

6.2.2 001EDS .TMP

This file contains the most recent EDIT-class command which included an argument. It is

used to remember that argument, as described in Section 4.2.4.

6.2.3 001MAC.TMP

This file contains commands fo MACRO. It is written by COMPIL, and read by MACRO. It

contains one line for each program to be assembled, and (if required) the command

NAME!

to cause MACRO fto transfer control to the named cusp ("name" may be F40, LOADER, etfc.).

6.2.4 O00TFOR.TMP

This file corresponds exactly to the one described in the preceding paragraph, except that

it is read by the FORTRAN IV compiler, F40.

6.2.5 00TPIP.TMP

This file is written by COMPIL and read by PIP. It contains ordinary PIP commands to
implement the DIRECTORY, LIST, TYPE, RENAME, and DELETE commands .

6.2.6 001CRE.TMP

This file is written by COMPIL and read by CREF. It contains commands to CREF correspond-
ing to each file which has produced a CREF listing on the disk.

COMPIL also reads this file, if it exists, each time a new CREF listing is generated, to
prevent multiple requests for the same file, and to prevent discarding other requests which may not
yet have been listed.

The commands are of the form:

< PROGI
< PROG2

etc. That is, the default devices are assumed by CREF.

18

6.2.7 O001EDT.TMP

This file is written by COMPIL for each EDIT-class command, and is read by either LINED
or TECO.
For the commands MAKE or CREATE, it contains the command

Stile . ex

For the commands TECO or EDIT, it contains the command

Sfile.ext (RETURN) (LINEFEED)

6.2.8 Other Uses of these Files

These command files are read by the CUSPs when the CUSPs are started at C(JOBSA) + 1,
as described below. Thus it is possible to utilize this feature of the CUSPs without using COMPIL.

For example, the CCL system does not allow putting listings from the franslators on any
device except the disk. Since this may be undesirable at times, one could place MACRO commands
in a file named 00TMAC.TMP, directing the listing files fo a magnetic tape, and then have MACRO

read this file for its commands.

6.3 The Run Process

The cusps have been modified to allow sequential running of cusps without user intervention,

and reading of commands from disk files. The command fo run another program is
NAME!

This causes the program named NAME to be read from SYS, and started at C(JOBSA) +1.
Using this starting address causes the CUSP to read commands from the command file,

rather than the user's console.

6.4 Error Count

The translators and LOADER cause location JOBERR (42) to be incremented for each error
they detect. Then this location is tested by the LOADER when an EXECUTE command causes it to
attempt execution. If it finds JOBERR non-zero, it types "EXECUTION DELETED" rather than start-

ing the program.

19

7. ERRORS

The COMPIL program makes various checks to see that the CCL commands are consistent,
and (in the COMPILE-class commands) that the required source files exist. There are also some
"impossible" errors, which imply some sort of system failure.

The error messages generated by the COMPIL program are listed below. In addition, the
programs called by COMPIL may generate error messages, such as assembly or compilation errors.
Those typeouts are described in the relevant manuals for MACRO, FORTRAN, LOADER, PIP, and
CREF. The message "EXECUTION DELETED" will be produced by the LOADER if either it or one of
the franslators has detected any errors .

Errors detected by COMPIL cause an EXIT to the Monitor.

Table 7-1
COMPIL Program Error Messages

Message Meaning

SYNTAX AND TYPING ERRORS

COMMAND ERROR COMPIL cannot decipher the command.

UNRECOGNIZABLE SWITCH An embiguous or undefined word followed
a slash ("/").

PROCESSOR CONFLICT Use of the "+" construction has resulted

in a mixture of source languages.

RESOURCE AND FILE FAILURES

DEVICE NOT AVAILABLE The specified device could not be referenced.
NO SUCH FILE - file.ext The specified file could not be found. This

file may be one specified as a source, or one
required for COMPIL's operation.

NOT ENOUGH CORE The system cannot supply sufficient core
for COMPIL's to use for buffers, or to

read in a cusp.

20

Table 7-1 (Cont)
COMPIL Program Error Messages

Message Meaning
COMMAND COMPLEXITY TOO GREAT
TOO MANY SWITCHES or
TOO MANY NAMES The command complexity exceeds table
space in the COMPIL program.
NESTING TOO DEEP The @ construction has exceeded a depth of

nine. This may be due to a loop of @ files.

"IMPOSSIBLE" ERRORS

DISK NOT AVAILABLE Cannot reference device DSK.

INPUT ERROR An 1/0 error occurred while reading a
temporary command file from the disk

LINKAGE ERROR An 1/0 error occurred while reading a
cusp from SYS.

FILE IN USE OR PROTECTED A temporary command file could not be
entered in the user's UFD.

OUTPUT ERROR An 1/0 error occurred while writing a

temporary command file on the disk.

8. SUMMARY

The various components of the CCL commands are summarized here, with references to their

descriptions in the body of this document.

8.1 Commands
Minimal

Commands Abbreviation

COMPILE COM 4.1.2
CREATE CREA 4.2.2.2
CREF CREF 4.3.6
DEBUG DEB 4.1.5
DELETE DEL 4.3.4
DIRECTORY DI 4.3.3
EDIT ED 4.2.2.1
EXECUTE EX 4.1.4
LIST LI 4.3.2

1 These abbreviations may change if additional Monitor commands are added.

21

Minimal
Commands Abbreviation

LOAD LOA
MAKE M
RENAME REN
TECO TE
TYPE TY

8.2 Compile-Switches

Compile-Switches
C

COMPILE
CREF

F

FORTRAN

L

LIBRARY

LIST

M

MACRO

MAP

N
NOCOMPILE
NOLIST
NOSEARCH
REL

8.3 Special Characters

L
WNWN —
- W 01w W

AbhbAbhbbhbbhbbbbdbAbdhdbAhAsDbNS

C OO D™D

WOBRN = 00—t

bbb

NWMNNMNNWONNNONNNMNDNNDNDNN
NNOCOONNNODNOONNOOOOO

W whaN

]These abbreviations may change if additional Monitor commands are added.

22

8.4 File-Naming Conventions

8.4.1 Temporary Files for COMPIL Program:

Files are named nnnxxx .TMP, where nnn is the user's job number in decimal, and xxx

specifies the use of the file. Assuming job number 1, the files are:

00TMAC.TMP Passes commands to MACRO
O0TFOR.TMP Passes commands to FORTRAN 1V
OOTPIP.TMP Passes commands to PIP

OO1CRE.TMP Passes commands to CREF
O0TEDT.TMP Passes commands to LINED and TECO
001SVC.TMP Saves COMPILE-class commands
OOTEDS.TMP Saves EDIT-class commands

8.4.2 Standard Meanings for File Extensions:

TMP Temporary file

.MAC Source file in MACRO language

.F4 Source file in FORTRAN 1V language
.LST Listing or CREF data

.REL Relocatable binary file

.CMD Command file, for @ construction
.SAV Core dump, from SAVE command
blank Unspecified ASCII text file

23

ADDENDUM 11
Re-entrant User Capability for PDP-10 Time Sharing System

10%-118-205-01

"RENMON,MANY

4 SERIES

- RE-ENTRANT USER CAPABILITY
FOR PDP=-1@ TIME SHARING SYSTEM
T, HASTINGS 32 JUN 19469

Ve o2

CHANGES LISTED IN ORNER OF MOST RECENT FIRST
FIRST VERSION IN WHICH CHANGE APPEARED WILL BE PUT ON EVERY LINF
S0 CHANGED.

CHANGED FROM VERSION VE@@1(~-g1) 11 APR 69 TO VERSION v@@2(-81) 30 JUN 69
21, WRITING REENTRANT USER PROGRAMS.

ADDED SECTION B HOW TO WRITE PROGRAM AS QNE SOURCE FILE,
WHICH IS MORE CONVENTENT,

TABLE OF CONTENTS

1. BACKGRQOUND

2. MOTIVATION

3. DESIGN GOALS

4, DEFINITIONS

5. RESTRICTIONS ON UUOS AND MONITOR COMMANDS
b, SAVE,SSAVE COMMANDS

7. MODIFYING SHARED SEGMENTS DURING EXECUTION
8. SET USER-MODE WRITE PROTECT UUO (SETUMP) (36)
8.1 RESET UUO

9. THE ALLOCATION OF VIRTUAL CORE

9.4 CORE Uyn

9.2 CORE COMMAND

18, GET COMMAND

11, REMAP UUO (37)

12, RUN UUO (35)

13, GETSEG UUO (4@)

14, SPY UUD (42)

15, SUPERCENING SHARED SEGMENTS

16, USING THE LINKING LOADER
17, ASSEMBLER PSEUDOP~HISEG

18, MODIFICATIONS TO LINKING LOADER

19, USING 0DT

20, JOB DATA AREA (JOBDAT)

21, WRITING REENTRANT USER PROGRAMS

22, MONITOR ALLOCATION OF SWAPPING SPACE
23, MONITOR ALLOCATION OF PHYSICAL CORE

24, MONGEN DIALOG QUESTIONS
ONCE ONLY DIALOG QUESTIONS

25, GLOSSARY

RACKGROUND

A GLOSSARY OF UNFAMILIAR TERMS OR TERMS WHOSE MEANINGS
MAY RE UNIGUFE WITHIN POP-13 LLITERATURE MAY BE FQOUND AT
THE FND OF THE DOCUMENT, SORTED IN QORDER OF THEIR AP=
PEARANCE IN THE TEXT, WHEREVER POSSIBLE TERMS HAVE

REEN SELECTED TO CORRESPOND TO COMMON USAGE IN THE TECH=
NICAL LITERATURE. ONE WORD IN PARTICULAR, THE WORD
"RE-CNTRANT", DESERVES SOME CUMMENT: RE-ENTRANT IS AN
ADJECTIVE REFERRING TO A SFQUENCE OF INSTRUCTIONS WHICH
MAY RE ENTERED BY MORE THAN ONE USER PROCESS AT A TIME,
THUS A SINGLE COPY OF A REENTRANT PROGRAM MAY BE SHARED.
BY A NUMBER OF USERS AT THE SAME TIME, THEREBY INCREAS~
ING SYSTEM ECONOMY, AS SUCH, THE PDP-10 TIME SHARING
MONITOR HWAS ALWAYS BEEN LARGELY "RE-ENTRANT", NEVERTHE~
LESS, PDOP~12 LITERATURE NOW USES THE PHRASE "REENTRANT
MONITOR™ TO REFER TO THE 4 SERIES MONITOR WHICH PROVIDES
THE RE-ENTRANT USER PROGRAM CAPABILITY, AS DESCRIBED

IN THIS DOCUMENT.,

THE OLD ONE RELOCATION REGISTER HARDWARE ON PDP~6'S AND
FARLY PDP-1£'S REQUIRED THAT A USER AREA BE A SINGLE
SEGMENT OF LOGICAL AND PHYSICAL CORE. THIS MEANT THAT
FACH USER HAD TO HAVE A SEPARATE COPY OF A PROGRAM

FVEN THOUGH A LARGE PART OF IT WAS THE SAME AS FOR OTHER
USERS. THE NEW TWO RELOCATION REGISTER HARDWARE PERMITS
A USFR AREA TO BE DIVIDED INTO TWO SEGMENTS OF LOGICAL
AND PHYSICAL CORE, THE MONITOR WILL ALLOW ONE OF THE
SEGMFENTS OF EACH USER AREA To BE THE SAME AS ONE OR MORE
OTHER USERS, SO THAT ONLY ONE PHYSICAL COPY OF SUCH

A SHARED SEGMENT NEED EXIST NO MATTER HOW MANY USERS ARE
USING IT, THIS SHARED SEGMENT WILL USUALLY BE WRITE
PROTECTED BY HARDWARE TO GUARRANTEE THAT IT 1S NOT
ACCIDENTALLY MODIFIED, A PROGRAM COMPOSED OF A SHARABLE
AND A NON-SHARABLE SEGMENT IS SAIDC TO BE RE-ENTRANT, FOR
HARDWARE DESCRIPTION SEE PDP-1g REFERENCE MANUAL DEC~-10
HGAA-D, DECEMBER 1968 SUPPLEMENT OR PROGRAMMING
DEPARTMENT MEMO 10@-118-081-03

THIS MANUAL SUPERSEDES PROGRAMMING DEPARTMENT MEMOS:

172-118-022-02 PDP~1@ REENTRANT SOFTWARE

1728-118-023~80 WRITING REENTRANT PROGRAMS

170-118-274-0@ REENTRANT SOFTWARE - MODIFICATIONS
AND ADDITIONS

3,

MOTIVATION

THE MOTIVATION FOR ADDING A RE~ENTRANT CAPABILITY 1S TO
INCRFASE THE NUMBER OF USERS WHICH CAN BE HAND|ED BY

A GIVEN SIZE TIME-SHARING CONFIGURATION, THIS IS
ACCOMPLISHED BY MORE EFFECTIVE USE OF THE FOLLOWING
SYSTEM RESOURCES:?

1) MORE EFFECTIVE USE OF CORE MEMORY SINCE ONLY ONE
COPY OF A SHARED SEGMENT WILL EXIST FOR THE ENTIRE
SYSTEM, INSTEAD OF ONE COPY FOR EACH USER USING THE
SEGMENT,

2) MORE EFFECTIVE USE OF THE SWAPPING STORAGE SINCE
ONE COPY OF A SHARED SEGMENT CAN BE SHARED BY ALL
LUSERS USING IT.

3) MORE EFFECTIVE USE OF THE SWAPPING CHANNEL SINCE
A SHARED SEGMENT WILL ONLY BE READ ONCE NO MATTER
HOW MANY USERS IN CORE ARE USING IT,

4) MORE EFFECTIVE USE OF THE SWAPPING CHANNEL SINCE
MOST SHARED SEGMENTS WILL NOT BE MODIFIED DURING
EXECUTION SO THAT THEY WILL NOT NEED TO RE
WRITTEN BACK ONTO SWAPPING STORAGE,

%) MORE EFFECTIVE USE OF THE STORAGE CHANNEL SINCE
A SHARED SEGMENT WILL ONLY BE READ ONCE FROM THE
STORAGE DEVICE WHEN THE PROGRAM IS ACCESSED FOR THE

FIRST TIME BY ANYONE, THEREAFTER IT WILL EXIST ON THE
FASTER SWAPPING STORAGE.

INITIAL DESIGN GOALS

THE CHANGES FOR RE-ENTRANT SOFTWARE WILL NOT
INVALIDATE ANY EXISTING SOFTWARE, THIS MEANS THAT ALL

1) SAVED FILES (,DMP AND ,SAV) WILL STILL RUN AS
USUAL

2) RELOCATABLE BINARY (,REL) WILL STILL LOAD
AND RUN AS USUAL

3) MACRO SOURCE (.,MAC) WILL ASSEMBLE, LDAD AND RUN
AS USUAL

4) FORTRAN SOQOURCE (.F4) WILL COMPILE, LOAD AND RUN
AS USUAL

THIS MEANS THAT THE MONITOR MUST HANDLE TWO TYPES OF
PROGRAMS:

1) OLD-STYLE NON-RE-ENTRANT PROGRAMS

2) NEW-STYLE RE~ENTRANT PROGRAMS

4

10,

THE RE-ENTRAMT MODIFICATION WILL BE USEFUL FOR THE
10/47 SYSTEM WITH DECTAPE AND NO DISK, AS WELL AS THF
10/47 SYSTEM WITH DISK AND THE 1@/5¢ SWAPPING SYSTEM,

MINIMIZE THE CHANGES TO CUSP'S REQUIRED TO!
1) MAKE THEM RE~ENTRANT THEMSELVES
2) MAKE THEM GENERATE OTHER RE-ENTRANT PROGRAMS

MAKE THE TERMINAL OPERATING CHARACTERISTICS OF RE=
ENTRANT PROGRAMS BE THE SAME AS THE CURRENT SYSTEM. THUS
THE USER DOES NOT NEED TO KNOW WHETHFR A PROGRAM HE IS
RUNNING 1S RE-ENTRANT OR NOT, (ORVIOUSLY A PROGRAMMER
WILL HAVE TO KNOW WHEN HE WRITES THE PROGRAM,)

WRITING RE-ENTRANT PROGRAMS WILL BE EASY ENOUGH SO
THAT CUSTOMERS WILL WANT 70 WRITE THEM. ALSO CUSTOMERS
MUST BF ABLE TO SHARE RE-ENTRANT PRCARAMS WHICH ARE IN
THEIR OWN DIRECTORIES, THUS SHARING WILL NOT BE
RESTRICTED Tn PROGRAMS IN THE SYSTEM CUSP DIRECTORY,

WHEN HE WRITES HIS PROGRAM, A PROGRAMMER CAN

CHOOSE WHETHFER OR NOT A GET (ALSO R, AND RUN) IS

TO INTIALIZFE THE IMPURE SEGMENT FROM SECONDARY STORAGE.
FOR EXAMPLE, MACRO WILL WANT TO HAVE THE INITIAL SYMROL
TARLF LOADED INTO THE IMPURE SEGMENT, WHILE TECO WILL
PROBABLY WANT NOTHING LOADED INTO IT AND WILL CLEAR THE
IMPURE SEGMENT ITSELF,

MAKE IT EASY TO MODIFY THE MONITOR TO HANDLE
RE-ENTRANT USER PROGRAMS,

LIMIT A USER AREA TN ONLY ONE SHWARABLE SEGMENT AT

A TIME. IN ADDITION THE SEGMENT WILL EXIST IN ITS
ENTIRETY IN ROTH LOGICAL AND PHYSICAL CORE AND ON THE
SWAPPING DEVICE. ALSO NOT MAKE FORTRAN OBJECT PROGRAMS BE
SHARABLE, HOWEVER, WE WILL NOT DO ANYTHING TO PREVENT
THIS POSSIBILITY A FEW YEARS FROM NOW, DDT NOT SHARARLE
BY ITSELF INITIALLY FITHER. MAYBE EVENTUALLY AN
INVISIBLE, SHARABLE DDT,

RE-FNTRANT PROGRAMS WILL CONTINUS TO BE SELF
INITTALIZING, AS ARE THE EXISTING CUSP'S, IT MUST ALWAYS
BE POSSIBLE TO TYPE CONTROL € START AT ANY TIME AND HAVE
THE PROGRAM START OVER CORRECTLY, THIS IS G0OD
PROGRAMMING PRACTICE, MAKES DEBUGGING EASIER AND MEANS
THAT THE MONITOR WILL NOT HAVE TO DO I/0 TO INITIALIZE

IMPURE SEGMENT ON A START COMMAND,

RE-ENTRANT PROGRAMS NEED NOT BE DEBUGGED IN ORDER

TO BE SHARED. THE SYSTEM WILL NOT FAIL, WHEN ONE USER
ENCOUNTERS A BUG WHILE SHARING A SEGMENT, IN FACT, THE
OTHER USERS WILL BE UNAFFECTED BY A BUG ENCOUNTERED RY
ONLY ONE USER.

11,

1\3.

14.

AS SOON AS A NEW RE~ENTRANT PROGRAM 1S CREATED BY

ANY USER WHILE THE SYSTEM IS RUNNING, IT WILL BE ABLE TO
BE SHARED BY ALL USERS SO AUTHORIZED BY THE OWNER OF THE
PROGRAM, THE MONITOR WILL NOT HAVE TO BE REASSEMBLED,
RELOADED WITH THE LINKING LOADER, OR RESTARTED IN ORDER
TO START SHARING THE NEW PROGRAM, USER'S WHO ARE IN THE
PRCCESS OF SHARING THE OLOER VERSION WILL NOT BE AFFECTED
UNTILL THEY ARE THROUGH.

(THIS DESIGN GOAL HAS NOT BEEN MET YET)

ON SYSTEMS EMPLOYING THE SMALL, FAST BURROUGHS

DISK FOR BOTH SWAPPING AND FOR STORAGE, THE SAVED FILE
AND THE SHARED SEGMENT WILL BE SAME INSTEAD OF DIFFERENT
COPIES, THUS USING THE DISK MORE EFFICIENTLY. THIS MEANS
THAT THE FORMAT FOR SAVED FILES AND SHARED SEGMENTS WILL
PROBABLY HAVE TO BE THE SAME,

AVOID DESIGN WHICH CLOSES THE DOOR TO FUTURE
EXTENSIONS AND IMPROVEMENTS WHEREVER POSSIBLE,

MAKE IT EASY FOR ALL PROGRAMMERS TO WRITE

RE-ENMTRANT PROGRAMS IN SUCH A WAY THAT THE SOQURCES AND
BINARY ARE THE SAME FOR A RE~-ENTRANT VERSION FOR PDP=10
AND A NON-RE-ENTRANT VERSION FOR PDP~-6. THE DECISION TO
PRODUCE A NON-RE-ENTRANT VERSION WILL BE POST~PONED TO
LINKING LOAD TIME,

DEFINITIONS

A SEGMENT IS A CONTIGUOUS REGION OF A USER'S CORE IMAGE
WHICH THE MONITOR MAINTAINS AS A CONTIGUQOUS UNIT IN
PHYSICAL CORE AND/OR AS A POSSIBLY FRAGMENTED UNIT ON THE
SWAPPING DEVICE. A SEGMENT MAY CONTAIN INSTRUCTIONS OR
DATA OR BOTH. IT IS THE TASK OF THE MONITOR TO DETERMINE
THE ALLOCATION AND MOVEMENT OF SEGMENTS IN CORE AND THE
SWAPPING DEVICE., A PROGRAM OR USER J0OB 1S COMPQSED OF ONE
OR TWO SEGMENTS,

A SHARABLE SEGMENT 1S A SEGMENT WHICH IS THE SAME FOR ALL
USERS, SO THAT THE MONITOR KEEPS ONLY ONE COPY FOR THE
SYSTEM IN CORE AND/OR ON THE SWAPPING DEVICE, NO MATTER
HOW MANY USERS ARE USING IT. ON THE OTHER HAND A NON~
SMARABLE SEGMENT IS A SEGMENT WHICH 1S DIFFERENT FOR EACH
USER IN CORE AND/OR ON THE SWAPPING DEVICE.

THE TWO RELOCATION AND PROTECTION REGISTERS OF THWE PDP=10
PERMIT A USER PROGRAM TO BE COMPOSED OF ONE OR TWO
SEGMENTS AT ANY POINT IN TIME. THESE REGISTERS DIVIDE

A USER'S CORE INTO TWO PARTS, THE REQUIRED LOW SEGMENT
STARTING AT USER @ AND THE OPTIONAL HIGH SEGMENT SEGMENT
STARTING AT USER 42000@ OR THE END OF THE LOW SEGMENT
WHICHEVER 1S GREATER, THE LOW SEGMENT ALWAYS CONTAINS THE
USERS ACCUMULATORS, J0B DATA AREA

{JOBDAT), INSTRUCTIONS AND/OR DATA, 1/0 BUFFERS, AND DDT
SYMBOLS, THUS A USER CORE IMAGE]S COMPOSED OF A LOW
SEGMENT FROM 1K TO 256K WORDS IN MULTIPLES OF 1K AND

A HIGH SEGMENT FROM @K TO 128K WORDOS, ALSO IN MULTIPLES
OF 1K, A HIGH SEGMENT MAY BE SHARABLE OR NON-SHARABLE
WHILE A LOW SEGMENT IS ALWAYS NON-~SHARABLE. THE HIGH
SEGMENT ALSO MAY OR MAY NOT BE WRITE LOCKED,

6

THERE ARE JUST THREE TYPES OF USER PROGRAMS, RE-ENTRANT
PROGRAMS, ONF SEGMENT NON-RE-ENTRANT PROGRAMS, AND TWO
SEGMENT NON-RE~ENTRANT PROGRAMS. A RE-ENTRANT PROGRAM
1S ALWAYS COMPOSED OF TWO SEGMENTS, A LOW SEGMENT WHICH
USUALLY CONTAINS JUST DATA AND A SHARABLE (HIGH) SEGMENT
WHICH USUALLY CONTAINS INSTRUCTIONS AND CONSTANTS,

THE LOW SEGMENT IS SOMETIMES LOOSELY REFERRED TO AS THE
IMPURE SEGMENT AND THE SHARABLE WIGH SEGMENT IF WRITE
PROTFCTED 1S CALLED THE PURE SEGMENT, HOWEVER, IMPURE
SUGGFSTS MODIFIABLE RATHER THAN NON-SHARABLE AND PURE
SUGGFST WRITE PROTECTED RATHER THWAN SHARABLE. HENCE,

A HIGH SEGMENT CAN BE PURE OR IMPURE AND SHARABLE OR
NON-SHARABLE WHILE A LOW SEGMENT 1S ALWAYS IMPURE AND
NON-SHARABLE.

A ONE SEGMENT NON=RE-ENTRANT PROGRAM IS COMPOSED OF

A SINGLE LOW SEGMENT CONTAINING INSTRUCTIONS AND DATA,
THIS TYPE CORRESPONDS TO USER PROGRAMS WRITTEN FOR

A MACHINE WITH ONLY A SINGLE RELOCATION AND PROTECTION
REGISTER, A TWO SEGMENT NON-RE-ENTRANT PROGRAM 1S
COMPOSED OF A LOW SEGMENT AND A NON-SHARABLE HIGH
SEGMENT, THIS TYPE OF PROGRAM IS USEFUL FOR THE RARE
CASES WHEN THERE]S REQUIREMENT FOR TWO FIXED ORIGINFD
NATA AREAS TO GROW AND SHRINK INDEPENDENTLY DURING
EXECUTION,

VIRTUAL ADDRESSING SPACE OF THE 3 TYPE OF PROGRAMS!

RE-ENTRANT NON-RE-ENTRANT

ONE SEGMENT TWO SEGMENT
2 2 2
B=-MAXL Z-MAXL A-MAXL
NON-SHARABLE NON=SHARABLE NON-SHARABLE
400022-MAXH 402088-MAXH
SHARABLE NON-SHARABLE

WHERF MAXL AND MAXH ARE THE HIGHEST LEGAL ADDRESS
IN THE LOW AND HIGH SEGMENTS RESPECTIVELY.

A FILE IS A COLLECTION OF 36 BIT WORDS COMPRISING
COMPUTER INSTRUCTIONS AND/OR DATA, A FILE CAN BE OF
ARBITRARY LENGTH, LIMITED ONLY BY THE AVAILABLE SPACE ON
THE DEVICE AND THE USERS MAXIMUM ALLOTMENT ON IT, A NAMED
FILE IS A FILE WHICH IS UNIQUELY IDENTIFIED IN THE SYSTEM
BY ITS FILE NAME (UP TO & CHARACTERS), AND THE DIRECTORY
NAME (PROJECT, PROGRAMMER NUMBERS OF OWNER FOR

DISKS; PHYSICAL DEVICE NAME FOR DECTAPE AND MAGTAPE) IN
WHICH THE FILE NAME AND EXTENSION APPEAR, THE FILE NAME
1S ARBITRARY AND IS SPECIFIED BY THE OWNER AT THE
TERMINAL WHILE THE EXTENSION IS USUALLY ONE OF A SMALL
NUMBER OF STANDARD NAMES WHICH IDENTIFIES THE TYPE OF
INFORMATION IN THE FILE AND IS USUALLY SPECIFIED BY
PROGRAM, A NAMED FILE MAY BE WRITTEN BY A USER PROGRAM
IN BUFFERED OR DUMP MODE OR A MIXTURE AND MAY BE READ
AND/OR MODIFIED SEQUENTIALLY OR RANDOMLY WITH BUFFERED OR
DUMP MODE INDEPENDENT OF HOW IT WAS WRITTEN, NAMED FILES
ARE STORED ON THE STORAGE DEVICE WHICH MAY BE THE

DISK, AND/OR

NECTAPE, FURTHERMORE, EACH NAMED FILE HAS CERTAIN ACCESS
PRIVILEGES ASSOCIATED WITH IT WHICH SAY WHICH USERS
CANNOT READ THE FILE, WRITE THE FILE, OR CHANGE THE
ACCESS PRIVILEGES OF THE FILE. FOR PURPOSES QF SIMPLICITY
THE UNIVERSE OF USERS IS DIVIDED INTO THREE GROUPS:! THE
DWNER OF THE FILE, THE OTHER USERS IN HIS PROJECT, AND
THE REST OF THE USERS,

FILES AND SEGMENTS HAVE CERTAIN SIMILARITIES AND
DIFFERENCES, BOTH ARE NAMED, ONE DIMENSICNAL ARRAYS OF
36 BIT WORDS. A FILE CAN BE ARBITRARILY LONG UP TO SIZE
OF DISK OR DECTAPE, WHILE THE ENTIRITY OF A SEGMENT MUST
FIT INTOQ PHYSICAL CORE. BOTH MAY BE SHARED FOR READING,
HOWEVER ONLY ONE USER IS ALLOWED TO RECREATE OR UPDATE

A FILE AT A TIME, WHILE MANY USER'S COULD SHARE

A SEGMENT FOR WRITTING

(PROVIDED THEY ESTABLISH A WELL DEFINED INTERLOCK
DISCIPLINE AND USE THE SLEEP UUO WHEN BLOCKED),

ALTHOUGH USERS CAN SHARE NAMED FILES CONCURRENTLY, THE

SHARING 1S MUCH DIFFERENT THAN THE SHARING OF SEGMENTS,

WHEN MANY USERS ARE READING FROM THE SAME OR DIFFERENT

PORTIONS OF A FILE AT THE SAME TIME, EACH USER 1S GIVEN HIS

OWN COPY OF THE PORTION OF THE FILE HWE IS READING (1T IS

READ INTO HIS LOW SEGMENT VIA AN INPUT UUC), A FILE MAY BE READ,

CREATED, RECREATED OR UPDATED. A FILE IS

CREATED IF N0 FILE BY THE SAME NAME EXISTED WHEN THE
FILE WAS OPENED FOR WRITING. A FILE IS RECREATED IF
ANOTHER FILE BY THE SAME NAME ALREADY EXISTED. A POR=~
TION OF A CREATED OR RECREATED FILE MAY BE SUBSEQUENTLY
UPDATED B8Y MODIFYING (IN PLACE) OF ONE OR MQRE OF THE
BLOCKS OF THE FILE. OTHER USERS MAY BE READING A

FILE WHILE ONE USER IS RECREATING IT, THE OLDER VERSION
OF THE FILE 1S DELETED ONLY WHEN ALL THE READERS HAVE
FINISHED, OWLY ONE USER CAN OPEN A FILE FOR RECREATION
AND UPDATING AT A TIME, SUBSEQUENT USERS GET AN

FRROR RETURN. THUS A FILE EXISTS ON THE STORAGE

DEVICE AND PIECES OF IT AND OTHER FILES CAN EXIST IN
DIFFERENT PARTS OF TME LOW SEGMENT OF ONE OR MORE USERS,

A SEGMENT DIFFERS FROM A FILE IN THAT IT NEVER EXISTS ON
THE STORAGE DEVICE3 IT EXISTS ONLY IN CORE OR ON THE
SWAPPING DEVICE. FUTHERMORE, A SEGMENT ALWAYS EXISTS IN
ITS ENTIRETY AS A CONTIGUOUS UNIT, 1IN ORDER TO SAVE

A SEGMENT SO THAT IT CAN BE RECALLED AND RUN AT A LATER
TIME, THE USER USES THE SAVE (SSAVE) CONSOLE COMMAND WHICH WR]TES
A COPY OF ONE OR BOTH SEGMENTS ONTO THE STORAGE DEVICE AS
NAMED FILES., TO RECALL THE PROGRAM LATER, THE USER TYPES
THE GET, R, OR RUN COMMANDS, RUN OR GETSEG UUOS WHICH
INITTALIZE ONE OR BOTH SEGMENTS FROM THE APPROPRIATE
NAMED FILES, THESE COMMANDS MUST KNOW WHETHER QR NOT

A HIGH SEGMENT IS SHARABLE, A HIGH SEGMENT WILL BE
SHARABLE, IF THE FILE WHICH INITIALIZED 17 HAD EXTENS]ON
WSHR, A FILFE EXTENSION OF .HGH WILL INDICATE THAT THE
HIGH SEGMENT IS TO BE NON-SHARABLE,

6.

RESTPICTION ON UUO'S AND MONITOR COMMANDS

THERE WILL BE A NUMBER OF RESTRICTIONS ON THE INVOLVEMENT
NF A HIGH SEGMENT IN MONITOR UUO'S AND MONITOR COMMANDS,
THFSE RESTRICTIONS ARE MOTIVATED BY A DESIRE To PROTECT
NATVE AND MALICIOUS USERS FROM CLOBBERING OTHERS WHILE
SHARING SEGMENTS AND BY A DESIRE TO MINIMIZE MONITOR
CHANGES TO HANDLE TWO SEGMENT PROGRAMS., HOWEVER, ALL
Uyo's CAN BE EXECUTED FROM EITHER THE LOW OR HIGH
SEGMENT, ALTHOUGH, SOME OF THEIR ARGUMENTS CANNOT BE IN
OR RFFER TQ THE HIGH SEGMENT,

1) NO BUFFERS, BUFFER HEADERS, OR pUMP MODE COMMAND
LISTS MAY EXIST IN THE HIGH SEGMENT FOR READING OR
WRITING WITH ANY DEVICE. NO I/0 WILL BE DONE INTQ OR
OUT OF THWE HIGH SEGMENT EXCEPT SAVE, SSAVE COMMANDS,

2) NO STATUS, CALL, OR CALLI UUD WILL ALLOW A STORE INTO
THE HIGH SEGMENT. THE EFFECTIVE ADDRESS OF LOOKUP,
ENTER, INPUT, OUTPUT, AND RENAME UUOS MUST NOT BF IN
THE HIGH SEGMENT (ADDRESS CHECK ERROR MESSAGE IF
ATTEMPTED) .

3) HOWEVER, AS A CONVENIENCE 1IN WRITING USER PROGRAMS,
THE MONITOR WILL MAKE A SPECIAL CHECK SO THAT THE
INIT UUO CAN BE EXECUTED FROM THE HIGH SEGMENT
FVEN THOUGH THE CALLING SEQUENCE 1S IN THE HIGH
QEGMENT. AND THE MONITOR WILL ALSO ALLOW THE
FFFECTIVE ADDRESS OF THE CALL UUD (CONTAINS
THE SIXBIT MONITOR FUNCTION NAME) AND THE
FFFECTIVE ADDRESS OF THE OPEN UUO (CONTAINS
THE STATUS BITS, DEVICE NAME AND BUFFER HEADER
ADDRFSSES) TO BE IN THE HIGH SEGMENT. HOWEVER,
THFE RUFFER HEADERS THEMSELVES MUST BE IN THE LOW
SEGMENT.,

4) THE MONITOR COMMANDS E (EXAMINE USER AREA) AND D
(DEPOSIT USER AREA) WILL WORK FOR BOTH LOW AND HIGH
SEGMENTS, PROVIDFD THE USER HAS THE ACCESS RIGHT
TO READ(E) AND WRITE(D) THE HIGH FILE WHICH INITIALI-
ZED THE HIGH SEGMENT. SEE MODIFYING SHARABLE SEGMENTS
FOR NEFINITION OF ACCESS PRIVILEGES,

THE SAVE AND SSAVE COMMANDS

THE SAVE COMMAND WILL SAVE ANY USER PROGRAM (I,.E.,
RE-ENTRANT, ONE SEGMENT NON-RE-ENTRANT, QR TWO~SEGMENT
NON-RE~-ENTRANT, AS ONE OR TWQO FILES, SUCH THAT WHEN
LOADED BY A GET, R, OR RUN COMMAND IT WILL BECOME

A NON-RE-ENTRANT (1.FE,, NON-SHARABLE) PROGRAM, THUS

A USER CAN ALWAYS SAVE THE PROGRAM HE IS RUNNING WITHOUT
KNOWING WHETHER IT 1S RE-ENTRANT OR NOT AND COME BACK
LATER AND START IT UP AGAIN. HE NEED NOT WORRY THAT
SOMEONE ELSE- HAS REPLACED THE ORIGINAL FILE WITH A

DIFFERENT VERSION,

IF THE J0B CONTAINS ONLY A LOW SEGMENT, SAVE WILL WRITE
ONE FILE WITH EXTENSION OF .SAV, AS IN 3 SERIES

MONITORS, HOWEVER IF THE JOB HAS TWO SEGMENTS, SAVE WILL
WRITE THE HIGH SEGMENT WITH FILE EXTENSION OF ,HGH AND
THE LOW SEGMENT WITH FILE EXTENSION ,LOW, THUS IT IS
POSSIBLE TO HAVE BOTH A TWO SEGMENT AND A ONE SEGMENT

VERSION QOF THE SAME PROGRAM (MACRO.HGH+ MACRO.LOW AND
MACRO.SAV), LOW SFGMENT FILES WILL RE ZERO COMPRESSED
ON ALL DEVICES (DTA,MTA, AND DSK), BUT HIGH SEGMENT FILES
WILL NOT BE SINCE THE HIGH SEGMENT MAY BE SHARED AT THE
TIME OF SAVE AND SO CANNOT BE COMPRESSED, THUS SAVED
FILES ARF JUST ORDINARY BINARY FILFS ON ALL DEVICES AND
S0 CAN BE COPIED WITH PIP (USING/B SWITCH, OF

COURSE), HOWEVER, FILES WHICH ARE TO BE LOADED BY TENDMP
FROM DECTAPE MUST STILL BE WRITTEN USING SAVE OR SSAVE
COMMAND SINCE TENDMP REQUIRES THAT THE FIRST BLOCK OF

A FILE ALSC BE THE LOWEST. IN ORDER TO SAVE FILE SPACE,
THE SAVE COMMAND WILL NOT WRITE THE ENTIRE HIGH

SEGMENT, IT WILL ONLY WRITE UP THROUGH THE HIGHEST
(RELATIVE TO HIGH SEGMENT ORIGIN) LOCATION LOADED BY
LINKING LOADER AS SPECIFIED BY C(LH) OF JOBHRL(ANALOGOUS
TO LH OF JOBSA FOR LOW SEGMENT). IF LH 1S @ (HIGH
SEGMENT CREATED BY CORE OR REMAP UUQ) OR DDT IS IN

USFE THE ENTIRE HIGH SEGMENT WILL BFE WRITTEN, S0 THAT
PATCHES WILL BE SAVED,

IN ORDER TO SAVE FILE SPACE AND 10 TIME ON GETS, IT IS
POSSIBLE FOR MOST PROGRAMS T0 BE WRITTEN SO THAT ONLY
THE HIGH SEGMENT CONTAINS NON-ZERO DATA. WHEN THIS IS
THE CASE, SAVE WILL ONLY WRITE THE HIGH
SEGMENT(EXTENSION,HGH), THE LINKING LOADER INDICATES

TO THE SAVE COMMAND THAT NOTHING WAS LOADED ABOVE THE
JOB DATA AREA (FIRST 149 LOCATIONS) IN THE LOW SEGMENT
BY SETTING THE LH OF JOBCOR IN THWE JOB DATA AREA TO THE
HIGHEST LOCATION LOADED IN THE LOW SEGMENT WITH NON-ZERO
DATA. SEE SECTION ON WRITING REENTRANT USER PROGRAMS
BELOW, HOWEVER THERE ARE A NUMBER OF LOCATIONS IN THE
JOB DATA AREA WHICH NEED TO BE INITIALIZED ON A GET EVEN
THOUGH THERE IS NO OTHER DATA IN THE LOW SEGMENT, THE
SAVE COMMAND COPIES THESE LOCATIONS INTO THE FIRST 10
(OCTAL) LOCATIONS OF THE HIGH SEGMENT, PROVIDED THAT
THE HIGH SEGMENT IS NOT SHARABLE (SEE BELOW), THESE 1@
LOCATIONS . ARE REFERRED TO AS THE VESTIGIAL JOB
DATA AREA. CONSEQUENTLY, THE LINKING LOADER WILL LOAD
HIGH SEGMENT PROGRAMS STARTING AT 4000910, SEE THE JOB
DATA AREA SECTION BELOW FOR THE DESCRIPTION OF LOCATIONS
SAVED IN THIS MANNER,

IN ORDER TO SAVE A PROGRAM SO THAT THE HIGH SEGMENT WILL
BE SHARABLE ON SUBSEQUENT GETS, A NEW SAVE COMMAND HAS
BEEN ADDED, CALLED SSAVE(S FOR SHARABLE), 1IT WORKS
EXACTLY LIKE SAVE EXCEPT THAT, IF A HIGH SEGMENT EXISTS,
IT WRITES A FILE WITH EXTENSION ,SHR INSTEAD OF ,HGH., A
SUBSEQUENT GET WILL CAUSE THE HIGH SEGMENT TO BE SHAR~»
ABLE. IF THE PROGRAM DOES NOT HAVE A WIGH SEGMENT, NO
ERROR MESSAGE]S GIVEN, THIS ALLOWS THE USER TO ALWAYS
USE THE SSAVE COMMAND WHEN SAVING CUSPS WITHOUT HAVING TO
KNOW WHICH ONES ARE SHARABLE,

10

IN ORDER TO PREVENT USER CONFUSION, SAVE AND SSAVE DFLETE
A PREVIOUS FILE WITH ,SHR OR .HGH THE EXTENSION WHICH THE
OTHER COMMAND WOQULD HWAVE CREATED AFTER A SUCCESSFUL
WRITF, THUS SAVE DELETES .SHR AND SSAVE DELETES

«HGH. BOTH COMMANDS ALSO DELETE A FILE WITH EXTENSION
+LOW IF THE HIGH SEGMENT WAS WRITTEN AND THE LOW SEGMENT
WAS MNOT,

THE FOLLOWING TABLE COMPARES SAVE AND SSAVE:

SEGMENTS WRITTEN SAVE SSAVE
LOwW HIGH WRITES DELETES WRITES DELETES
X SAV SAY
X X LOW+HGH SHR LOW+SHR HGH
X HGH SHR SHR HGH

THE REGULAR ACCESS RIGHTS OF THE SAVED FILE

INDICATE WHETHER A USER CAN DO A GET, R, OR RUN COMMAND,
THE GET, R, AND RUN COMMANDS WILL ASSUME THAT THE USER
WANTS TO READ (IE., EXECUTE BUT NOT MODIFY) THE HIGH
SEGMENT INDERPENDENT OF THE ACCESS RIGHTS OF THE FILE USED
TO INITIALIZE THE SEGMENT. THEREFORE THE MONITOR WILL
ALWAYS EMABLE THE HARDWARE USER-MODE WRITE PROTECT TO
PREVENT THE USER PROGRAM FROM STORING INTO THE SEGMENT
INADVERTENTLY. THE PROGRAM MAY TURN OFF THE WRITE PROTECT
1F IT WISHES. SEE SETUWP UUD BELOW,

IN ORDER TO DEBUG A RE-ENTRANT CUSP WHICH IS IN THE
SYSTEM DIRECTORY, THE USER SHOULD MAKE A PRIVATE,
NON-SHARABLE COPY, RATHER THAN MODIFYING THE SHARED
VERSION AND POSSIBLY CAUSING OTHER USERS HARM, A PRI=
VATE, NON-SHARABLE COPY CAN BE MADE IN THREE EASY STEPS}

1, GET SYS CUSP
2. SAVE DEV CUSP
3. GET DEV CUSP

STEP 2 WRITES A FILE IN THE USER DIRECTORY MARKED AS NON=
SHARABLE, HOWEVER THE HIGH SEGMENT IN THE USER'S ADORESSING
SPACE REMAINS SHARABLE., STEP 3 OVERLAYS THE SHARABLE
PROGRAM WITH THE NON~SHARABLE ONE FROM THE USER'S DIRECTORY,
THEN THE USER CAN MAKE PATCHES AND INSERT BREAKPOINTS WHILE
OTHER USERS SHARE THE VERSION IN THE SYSTEM _
DIRECTORY. SINCE THE SEGMENT NAME INCLUDES THE DIRECTORY
NAME, THE MONITOR WILL KEEP THE SHARED AND THE NON=SHARED
VERSIONS SEPARATE FROM EACH OTHER, A SHARABLE PROGRAM

MAY BE SUPERCEEDED IN THE DIRECTORY AT ANY TIME BY USING

AN SSAVE COMMAND,., THE MONITOR WILL CEAR THE HIGH

SEGMENT NAME IN ITS TABLE OF STORABLE SEGMENTS IN

USE, BUT WILL NOT REMOVE THE SEGMENT FROM OTHER

USER'S ADDRESSING SPACE, ONLY USERS DOING A GET,R,RUN .
COMMAND OR RUN,GETSEG UUO WILL GET THE NEW SHARABLE VERSION,

11

AN ORSCURE RESTRICTION EXITS WHEN SAVING A SHARABLE
PROGRAM WITH ONLY A HIGH FILE WITH EITHER SAVE OR SSAVE, THE
MONITOR WILL NOT MODIFY THE VESTIG!AL JOR DATA AREA UNLESS
THE USER HAS WRITE PRIVILEGES TO THE FILE WHICH ORIGINALLY
INITIALILIZED THE SHARED SFGMENT, OTHERWISE UNAUTHORIZED
USERS COULD MODIFY THE FIRST 10 WORDS OF A SHARED SEGMENT,
THIS MEANS THAT EVEN THOUGH THE USER CHANGES THE STARTING
ADDRESS(JOBSA), THE VERSION NUMBER(JUNBVER)., THE CORE SIZF
FOR LOW SEG ON GET(RH OF JOBCOR SET BY SAVE OR GET THIRD
ARG) QR THE WIGHEST LOCATION IN LOW SEGMENT LOADFD WITH
NON-ZERQ DATA (LH OF JOBCOR) ORR THE REENTER ADDRESS(RH
JORREN) BY USING THE DEPOSIT COMMAND OR SAVE 3RD ARG, IT
WILL HAVE NO EFFECT ON SAVE AND SUBSEQUENT GET,

THIS RESTRICTION DOES NOT EXIST IF A LOW FILE IS WRITTEN
TOO, SINCE GET READS LOW FILE AFTER HIGH FILE, SO THAT
THE REAL JOB DATA AREA LOCATIONS ARE SET FROM THE LOW FILE,

MODIFYING SHARED SEGMENTS OURING EXECUTION

UsuatLy A HICH SEGMENT WILL BE WRITE PROTECTED,
HOWEVER, - IT IS POSSIBLE FOR A USER PRGOGRAM TO TURN OFF
UWP (USER WRITE PROTECT) OR TO INCREASE QR DECREASE CORE
ASSIGNMENTS OF A SHARED SEGMENT USING THE SETUWP AND CORE
uuo's. THESE TWO UUQ'S WILL BE LEGAL FROM EITHER HIGH OR
LOW SEGMENT PROVIDED THAT THE SHARABLE PROGRAM HAS NOT
REEN "MEDDLED WITH"™, THIS MEANS THAT EVEN THE MALICIOUS
USFR CAN HAVE THE PRIVILEGE 0OF RUNNING SUCH A PROGRAM
EVEN THOUGH HE DOES NOT HAVE THE ACCESS RIGHTS TO MORIFY
THE FILE USED TO INITIALIZE THE SHARABLE SEGMENT,

MEDDLING IS DEFINED AS ANY OF THE FOLLOWING,EVEN
1F THE USER HAS PRIVILEGES 70 WRITE THE FILE WHWICH
INITIALIZES THE HIGH SHARABLE SEGMENT!

(IT 1S NOT COCNSIDERED MEDDLING TO DO ANY OF THE
FOLLOWING TO A NON-SHARABLE PROGRAM <ONE OR TWQ

SEGMENT>)

1, START AND CSTART COMMANDS WITH AN ARGUMENT,
2, DEPQOSIT COMMAND IN EITHER LOW OR HIGH SEGMENT,

3, RUN UUO WITH ANYTHING BUT @ OR 1 IN LH OF AC
(STARTING ADDRESS INCREMENT)

4, GETSEG UUO

1T WILL NEVER BE:CONSIDERED "MEDDLING" TO TYPE <CONTROL>C
FOLLOWED BY START(WITH NO ARG), CONT, CCONT, CSTART
(WITH NO ARG), REENTER, DOT, SAVE, E

12

AS SOON AS A SHARABLE PROGRAM IS MEDDLED WITH.THE MONITOR
SETS A BI!T (MEDDLE) FOR THIS USER WHICH MAKES THE CLEARING
OF UWP WITH SETUWP UUO AND THE REASSIGNMENT OF CORE FOR
THE HIGH SEGMENT WITH THE CORE UUO,(EXCEPT TO REMOVE IT
COMPLETELY) GIVE AN ERRQOR RETURN, ALSO AN ATTEMPT TO
MODIFY THE HIGH SEGMENT WITH THE DEPOSIT WILL PRINT "OUT
OF BOUNDS"., UWP IS ALSO SET FOR THIS USER, IN CASE IT WAS
OFF WHEN USER MEDDLED, AN EXCEPTION IS MADE AND THESE
UUNS AND COMMAND ARE ALLOWED, IN SPITE OF MEDDLING, TF
THE USER HAPPENS TO HWAVE THE ACCESS PRIVILEGES TO WRITE
THF FILE WHICH INITIALIZED THE SHARABLE SEGMENT, THUS A
SYSTEMS PROGRAMMER COULD LOG IN UNDER 1,1 AND PATCH

THE HIGH SEGMENT OF A SHARABLE CUSP WHILE IT WAS BEING
SHARED. MORE USEFULLY THIS EXCEPTION ALLOWS USERS TO WRITE
PROGSAMS WHIZH ACCESS SHARABLE HIGH DATA SEGMENTS VIA THE
GETSEG UUOD(WHICH IS MEDDLING) AND THEN TURN OFF UWP USING
SETUWP UUC TO THAT STORES WILL NOT TRAP. IN THE

CASE OF DECTAPE, WRITE PRIVILEGES EXIST IF DECTAPE IS
ASSIANED TO THIS JNB (CANNOT BE SYSTEM TAPE) OR NOQT
ASSIGNED TG ANY JOR (AND IS NOT SYSTFM TAPE), OTHER
NON-MEDDLING USERS CAN CONTINUE TO RUN THIS SHARED
PROGRAM WITH PEACE OF MIND, KNOWING THAT ONLY AUTHORIZED
USFR'S OR THE PROGRAM ITSELF IS ALLOWED TO MODIFY THF
SHARED SEGMENT THAT THEY ARE USING.

IN MULTICS THIS TECHNIQUE 1S CALLED PROTECTED ENTRY
POINTS INTO A SHARED PRQOGRAM, IF CONTROL CAN ONLY BE
TRANSFERRED TO A SMALL NUMBER OF ENTRY POINTS WHICH THE
SHARED PROGRAM IS FPREPARED TO HANDLE, THEN IT CAN DO
ANYTHING IT WAS THE PRIVILEGES To 0O, EVEN THOUGH THE
PERSON RUNNING THE PROGRAM DOES NOT HAVE THESE
PRIVILEGFES.

THE ASSIGN (AND DEASSIGN, FINISH, KJ0B IF DEVICE
PRFVIQUSLY ASSIGNED RY CONSOLE) MONITOR COMMAND CLEARS
ALL SHARED SEGMENT NAMES CURRENTLY I[N USE WHICH WERE
INITIALIZED FROM THAT DEVICE, IF THE DEVICE IS REMOVABLE
(DTA,MTA), CTHERWISE NEW USERS COULD CONTINUE TO SHARE
THE OLD SEGMENT INPEFINITELY, EVEN IF A NEWER VERSION
WERE MOUNTED ON THE DEVICE, OBVIQUSLY USERS WHWO ARE [N
THE MIDDLE OF SHARING A SHARABLE SEGMENT WILL CONTINUE TO
DO SO UNTIL THEY ARE FINISHED,» EVEN THOUGH THE SEGMENT
NAME HAS BEEN CLEARED, THEREFORE, !T 1S POSSIBLE TO
UPDATE THE LIBRARY DURING REGULAR TIME SHARING, IF ONE

HAS THE COURAGE AND THE ACCESS PRIVILEGES., IN A DECTAPE
SYSTEM A NEW CUSP TAPE CAN BE MOUNTEN FOLLOWED BY AN
ASSIGN SYS WHICH WILL CLEAR SEGMENT NAMES FQR THE
PHYSTCAL DEVICE (USUALLY DTA®), BUT NOT ASSIGN THE DFVICE
SINCF EVFRYONE NEEDS TO SHARE 1IT,

13

SET USER~-MODE WRITE PROTECT UUO

IF A USER PROGRAM WISHES TO STORE INTO A HIGH SEGMENT, 1IT
WILL HAVE TO USE THE SET USER MODE WRITE PROTECT UUD
(SETUWP), THE SETUWP UUO ALLOWS THE USER PROGRAM TO SET
OR CLEAR THE HARDWARE USER-MODE WRITE PROTECT BIT (UWP)
FOR THAT JOB AND TO OBTAIN THE PREVIOUS SETTING, IF THE
SYSTEM (MONITOR AND HARDWARE) HAS A TWO REGISTER
CAPARILITY, THIS UUO WILL ALWAYS GIVE THE OK RETURN
UNLESS THE USER HAS BEEN MEDDLING WITHOUT WRITE
PRIVILEGES. WHETHER THE PROGRAM HAS A HIGH SEGMENT OR
NOT., THIS FOLLOWS DESIGN GOAL 14 WHICH ALLOWS USERS

TO WRITE PROGRAMS FQR TWO REGISTER MACHINES WHICH WILL
STILL RUN UNDER ONF REGISTER MACHINES, THEREBY MAINTAINING
COMPATIBILITY OF SOURCE AND RELOCATABLE BINARY (BUT NOT
SAVED FILES) BETWEEN PDP~1@'S AND PDP-6'S (OR PDP~1@'S
WITHOUT SECOND RELOCATION REGISTER), IF THE SYSTEM HAS
ONLY A ONE REGISTER CAPABILITY, THIS UUO WILL ALWAYS GIVE
THE ERROR RETURN (BIT 35 OF AC=@ ON RETURN), THIS
ALLOWS THE RARE USER PROGRAM TO0 FIND OUT WHETHER THE SYSw
TEM HAS 4 TWO SEGMENT CAPABILITY OR NOT (PROBABLY ONLY
THE LOADER WILL WANT TO KNOW).

THE USER PROGRAM SPECIFIES THE DFESIRED SETTING OF UWP IN
BIT 35 OF AC (1 MEANS WRITE PROTECT, @ MEANS WRITES nK),
THE PREVIOUS SETTING OF UWP IS RETURNED IN BIT 35 OF AC,
SO0 THAT ANY USER SUBROUTINE CAN PRESERVE THE PREVIOUS
SETTING BEFORE CHANGING IT, THUS NESTED USER SUBROUTINES
CAN RE WRITTEN WHICH EACH SET OR CLEAR UWP AS DESIRED,

| y R W
D08V ARECREEE0REATE THENPFREIORETURRUS o R LERNED BY SETUNP
CALLFRS, THE ERROR RETURN WILL RE GIVEN IN A TWO
RELOCATION REGISTER SYSTEM, IF THE USER HAS MEDDLED WITH
THE PROGRAM AND DOES NOT HAVE WRITE ACCESS PRIVILEGES,
SEE SECTION ON MODIFYING SHARABLE SEGMENT DURING EXECUTION.
THIS UUO MAY BE EXECUTED FROM THF LOW OR HIGH SEGMENT, AS
A CONVENIENCE, THE CALL CSIXBIT/RESET/) UUO WILL ALWAYS
SET THE USER MODE WRITE PROTECT ON IF A HIGH SEGMENT
FXISTS, WHETHER IT 1S SHARABLE OR NOT, SO THAT PROGRAMS
ALWAYS BEGIN PROTECTED,

CALL AC, [SIXBIT/SETUWP/] CALLI AC,36
ERROR RETURN
0K RETURN

RESET UUG

THE CALL [SIXBIT /RESET/] OR CALLI @ UUO(WHICH EVERY USER
PROGRAM SHOULD BEGIN WITH) AUTOMATICALLY TURNS ON THE
USER-MODE WRITE PROTECT BIT (UWP) SO THAT A PROGRAM
CANNOT INADVERTENTY STORE INTO THE HIGH SEGMENT, SEE SET
ISER-MODE WRITE PROTECT UUO ABOVE,

14

THE ALLOCATION OF VIRTUAL CORE

THE 4 SERIES MONITOR CAN MAKE USE OF ALL OF THE SWAPPING
SPACE BY FRAGMENTING SEGMENTS WHEN SPACE RUNS QUT, THUS
THE MONITOR KEEPS TRACK OF THE TOTAL VIRTUAL CORE
ASSIGNED TO ALL JORS, SHAREABLE SEGMENTS COUNT ONLY ONCE
AND NORMANT (SEE BELOW) DO NOT COUNT AT ALL. THE MONITOR
WILL NOT ALLOW MORE VIRTUAL CORE TO BE GRANTED BY THE
CORFE UUO OR CORE COMMAND THAN THE SYSTEM HAS CAPACITY TO
HANDLE, WHEN THE MONITOR IS STARTED THE UNUSED VIRTUAL
CORE IS SET EQUAL TO THE AMOUNT OF SWAPPING SPACE PRE=~
ALLOCATED ON THE DISK, THUS THERE IS ALWAYS ROOM TO SWAP
OUT THE LARGEST POSSIBLE JOB IN CORE AND SWAP IN ANNTHER
JOB, THE CORE COMMAND WITH NO ARGUMENTS WILL PRINT THE
VIRTUAL CORE LEFT IN THE SYSTEM,

THE CORE UUQD

IN ORDER TO ALLOCATE CORE IN EITHER OR BOTH SEGMENTS THE
LEFT HALF OF THE AC SPECIFIED IN THE CORE UUO WILL BE
USED TO SPECIFY THE HIGHEST USER ADDRESS TO BE ASSIGNED
IN THE HIGH SEGMENT, A LEFT HALF OF ZERO WILL MEAN THAT
THE WIGH SEGMENT CORE ASSIGNMENT IS NOT TO BE CHANGED, A
NON-ZERQ LEFT HALF LESS THAN 4p020#%, OR THE LENGTH OF THE
LOW SEGMENT WHICHEVER 1S GREATER, WILL ELIMINATE THE

MIGH SEGMENT AND WILL ALWAYS BE LEGAL. OBVIQUSLY IF IT
IS EXECUTED FROM THE HIGH SEGMENT, THERE WILL RE AN
ILLEGAL MEMORY ERROR MESSAGE PRINTED WHWEN THE MONITOR
ATTEMPTS TO RETURN CONTROL 7O THE TLLEGAL MEMORY, THE
FRROR RETURN WILL BE GIVEN IF LH IS GREATER OR EQUAL TO
AQAZPA2 AND EITHER SYSTEM DOES NOT HAVE TWO SEGMENT CAFA=-
BILITY OR THE USER HAS BEEN MEDDLING WITHWOUT WRITE ACCESS
PRIVILEGES - SEE SECTION ON MODIFYING SHARABLE SEGMENTS
DURING EXECUTION., THUS EXISTING PROGRAMS WILL CONTINUE
TO WORK SINCE THEY HAVE @ IN THE LEFT HALF OF THE AC ON
CORE UUQ'S, A RH OF @ WILL CONTINUE TO LEAVE THE LOW
SEGMENT. CORE ASSIGNMENT UNAFFECTED. THE MONITOR WILL
CLEAR NEWLY ASSIGNED CORE, SO THAT PRIVACY OF INFORMATION
WILL BE INSURED,

THE CORE UUO IS BEING CHANGED IN SWAPPING SYSTEMS SO THAT
1T WILL RETURN THE MAXIMUM NUMBER OF 1K CORE BLOCKS
AVAILABLE TQ A USER, THIS WILL BE ALL OF CORE MINUS THE
MONITOR, UNLESS AN INSTALLATION CHOOSES TO RESTRICT THE
AMOUNT USING MONGEN DIALOG AND/OR ONCE ONLY DIALOG. NON=
SWAPPING SYSTEMS WILL STILL RETURN THE NUMBER OF FREE

+ DORMANT 1K BLOCKS, THIS MAKES THE UUQ AND THE CONSOLE
COMMAND RETURN THE SAME INFORMATION, RESTRICTING THE
MAXIMUM AVAILABLE USER CORE IMPROVES SYSTEM EFFICIENCY

BY INCREASING NUMBER OF JOBS IN CORE SIMULTANEOUSLY,

MOVE AC,[XWD HIGH ADR OR 2,LOW ADR OR @3

CALL AC,CSIXBIT /CORE/] OR CALL! AC,11

ERROR RETURN

NORMAL RETURN

C(AC)=MAX, NO, OF 1K BLOCKS POSSIBLE FOR THIS USER

15

THE CORE UUQ WORKS IN TWO DISTINCT STEPS, OF WHICH THE
PROGRAMMER MUST BE AWARE. FIRST, THE LOW SEGMENT IS

REASSIGNED (IF RH NON-ZERO), AND THEN THE HIGH SEGMENT

IS REASSIGNED(IF LH NON=ZERO). DURING THE FIRST STEP]F THE SUM
OF THE NEW LOW SEGMENT AND THE OLD HIGH SEGMENT EXCEEDS THE
MAXIMUM SIZE OF CORE ALLOWED TO A USER, THE ERROR RETURN IS GIVEN,
THF CORE ASSIGNMENT IS UNCHANGED, AND THE MAXIMUM TOTAL OF CORE
AVAILABLE TOQ THIS USER FOR LOW AND HIGH SEGMENTS IN 1K BLOCKS
IS RETURNEDR IN THE A€, (FOR NON~SWAPPING SYSTEMS, THE NUMBER
OF FREE AND DORMANT 1K BLOCKS IS RETURNED). DURING THE

SECOND STEP IF THE SUM OF THE NEW LOW SEGMENT AND THE NEW

HIGH SEGMENT EXCEEDS THE MAXIMUM SIZE OF CORE ALLOWEN

TO A USER, THE ERROR RETURN IS GIVEN,THE NEW LOW SEGMENT
REMAINS ASSIGNED, BUT THE OLD HIGH SEGMENT IS UNCHANGED, AND
THE MAXIMUM PQSSIBLE SIZE OF CORF FQOR THIS USER IN 1K BLOCKS

IS RETURNED IN THE AC, THUS A PROGRAM WHICH IS INCREASING THE
LOW SEGMENT AND DECREASING THE HIGH SEGMENT AT THE SAME TIME,
SHOULD DO IT WITH TWn SEPARATE CORE UUO'S RATHER THAN JUST ONE,

1F THE NEW LOW SEGMENT IS SO LONG AS TO EXTEND BEYOND 377777,

" THE HIGH SEGMENT WILL BE SHIFTED UP IN THE VIRTUAL ADDRESSING
SPACE RATHER THAN BE OQOVERLAYED, SUBSEQUENTLY, IF SUCH A LONG
LOW SEGMENT 1S SHORTENED TO 377777 OR LESS, THE HIGH SEGMENT
WILL BE SHIFTED DOWN IN THE VIRTUAL ADDRESSING SPACE TO 420082
RATHER THN GROW LONGER IN LENGTH OR REMAIN WHERE 1T WAS, O0BVI~-
QUSLY IF THE HIGH SEGMENT IS A PROGRAM, IT WILL NOT EXECUTE
PROPERLY AFTER BEING SHIFTED, UNLESS IT GOES TO GREAT PAINS TO
BE A SELF-RELOCATING PROGRAM IN WHICH ALL TRANSFER INSTRUCTIONS
ARF INDEXED,

1F THE HIGH SEGMENT IS ELIMINATED BY A CORE UUO, A SUBSEQUENT
CORE UUD WITH THE LEFT HALF GREATER THAN 4929200 WILL CREATE

A NEW, NON-SHARABLE SEGMENT. SUCH A SEGMENT CAN ONLY BECOME
SHARFED AFTER IT HAS BEEN NAMED BY THE APPROPRIATE ENTER UUO

TO HAVE AN EXTENSION ,SHR, WRITTEN ONTO THE STORAGE DEVICE

WITH OUTPUT UUOS, CLOSED SO THAT DIRECTORY ENTRY IS MADE,

AND INITIALIZED FROM THE STORAGE DEVICE WITH ,

A GET, R, OR RUN COMMAND OR RUN OR GETSEG UUO., THIS IS PRECISELY

THE SEQUENCE OF EVENTS WHICH THE LOANER, SAVE AND GET
USE TO CREATE AND INITIALIZE NEW SHARABLE SEGMENTS,

THE CORE COMMAND

"THE CORE CONSOLE COMMAND WILL NOT BE MODIFIED., IT WILL
.CONTINUE TO NPERATE ON THE LOW SEGMENT ONLY. CORE
ALLOCATION SHOULD RE DONE BY PROGRAMS RATHER THAN

PEOPLE. HOWEVER, A CORE @ WILL CAUSE BOTH THE LOW AND THE
HIGH SEGMENT TO0 DISAPPEAR FROM THE JOBS VIRTUAL
ADDRESSING SPACE., THE CORE COMMAND 1S NOT CONSIDERED TO
BE MEDDLING, AS IN THE CORE UUO, THE MONITOR WILL CLFAR
NEW CORE BEFORE ASSIGNING 1T TOQ THE USER,

THE CORE CONSOLE COMMAND WITH NO ARGUMENTS WILL TYPE BACK

MORE INFORMATION., FOR MONITORS WITH TWO RELOCATION
REGISTER HARDWARE AND SOFTWARE IT WILL RESPOND WITHS

16

18,

11,

L+H/M CORE
VIR, CORE LEFT=N
WHERE: L=# 1K BLOCKS IN LOW SEGMENT
H=# 1K BLOCKS IN HIGH SEGMENT
M=MAXMUM CORE AVAILABLE TO A USER.
(SWAP SYSTEMS=MAX PHYSICAL USER CORE UNLESS

INRTAGRARIQVSBERIRERER? + poRMANT CORE)

N=AMOUNT OF UNASSIGNED VIRTUAL CORE LEFT IN SYSTEM.
NOM=-SWAPPING SYSTEMS WILL RESPOND WITH JUST:
L/M CORE '

WHERFE M=FREE+DORMANT CORE
IN ALL CASES THE NUMBER AFTER THE SLASH IS THE SAME AS THE
NUMBER RETURNED IN THE USER'S AC FOR THE CORE LU0,

GET,R, RUN COMMANDS

GET WILL ALWAYS ASSIGN THE PROPER AMOUNT OF CORE (ONE OR
TWO SEGMENTS) NO MATTER WHAT THE PREVIOUS CORE
ASSIGNMENT wAS, 1T USED TO DO THIS ONLY IF THE USER HAD
NO CORE, PRECAUSE 1T WILL FIRST GIVE BACK PREVIOUS CORE
TO MINIMIZE SWAP TIME, GET FROM MAGTAPE MUST ALWAYS HAVE
A THIRD ARGUMENT SAYING HOW MUCH CORE FOR LOW SEGMENT
(SINCE THERE IS NO DIRECTORY T0 TELL LENGTH),

THE REMAP UUO

THE REMAP UUO WILL TAKE THE TOP PART OF A LOW SEGMENT AND
MAKE IT BE THE NEW HIGH SEGMENT. THE PREVIQUS HIGH
SEGMFNT(IF ANY) WILL BE REMOVED FROM THE USER'S ADDRESSING
SPACF. THE LLOW SEGMENT WILL BE AUTOMATICALLY SHORTENED BY
THE AMOUNT REMAPPED, THE AMOUNT REMAPPED MUST BE IN
MULTIPLES OF 1K DECIMAL WORDS. T0 INSURE THIS THE MONITOR
WILL OR IN 1777 INTO THE USERS REQUEST. [F THE ARGUMENT
EXCEEDS LOW SEGMENT, NO REMAPPING WILL OCCUR, THE OLD

HIGH SEGMENT WILL REMAIN IN ADDRFESSING SPACE, AND THE
FRROR RETURN WILL BE TAKEN, THE ERROR RETURN WILL ALSO

RE GIVEN IF THE SYSTEM DOES NOT WAVE TWO REGISTER
CAPARILITY, ‘

MOVE! AC, DESIRED HIGHEST ADPR IN LOW SEG
CALL AC, [SIXBIT /REMAP/] CALLI AC,37

FRRQOR RETURN
0K RETURN

WHERE AC CONTAINS THE NEW HIGHEST LEGAL ADDRESS IN LOW
SEGMFNT, AFTER THE PART ABOVE 1T HAS BEEN REMAPPED INTO
THE HIGH SEGMENT. THE CONTENTS OF JOBREL WILL BE SET TO
THE NEW HWIGHEST LEGAL RELATIVE (USER) ADDRESS IN LOW
SEGMENT, THE CONTENTS OF RH OF JOBHRL IN THE ,JOB DATA
AREA WILL BE SET TO THE NEW HIGHEST LEGAL RELATIVE (USER)
ADDRESS (421777 OR GREATER OR @), THE HARDWARE RELOCATION
WILL BE CHANGED AND UWP WILL BE SET ON.

17

12,

THIS UUO HAS BEEN INCLUDED PRIMARILY FOR THE LOADER S0
THAT IT CAN LOAD RE-ENTRANT PROGRAMS WHICH USE UP ALL OF
PHYSICAL CORE., THE LOQADER MIGHT EXCEED CORE IF IT HAD TO
ASSIGN MORE CORE AND MOVE THE DATA FROM THE [LOW TO THE
HIGH SEGMENT WITH A BLT INSTRUCTION, GET WILL ALSO USE
REMAP, SO0 THAT IT CAN DO I/0 INTO LOW SEGMENT RATHER THAN
HIGH SEGMENT.

A RUN UUO, ANALOGOUS TO THE RUN CONSOLE COMMAND, HAS

BEEN IMPLEMEMNTED SO THAT PROGRAMS CAN TRANSFER CONTROL TO
ONF ANOTHER, THIS UUO REPLACES BOTH THE LOW AND HIGH
SEGMENTS OF THE USER'S ADDRESSING SPACE WITH THWE PROGRAM
BEING CALLED.

MOVST AC,STARTING ADDRESS INCREMENT

HRRI AC,ADR OF & WORD ARG BLOCK

CALL AC,[SIXBIT /RUN/J OR CALLI AC,35
ERROR RETURN(UNLESS HALT IN LH)

[NORMAL RETURN IS NOT HERE, BUT TO STARTING
ADDRESS + INCREMENT OF NEW PROGRAM]

THE SIX ARGUMENTS ARE, THE LOGICAL DEVICE NAME IN SIXBIT,
A FILE NAME (EXTENSION AND PROJECT PROGRAMMER NUMBER ARE
OPTINNAL) AND AN OPTIONAL CORE ASSIGNMENT,

£/ SIXBIT LOGICAL DEVICE NAME

E+1l/ SIXBIT FILE NAME (FOR EITHER OR BOTH HIGH
AND LOW FILES)

E+2/ LH=SIXBIT EXTENSION FOR LOW FILE (IF @,
LOW ASSUMED IF HIGH SEG EXISTS AND ,SAV
ASSUMED 1f NO HIGH SEG)

E+3/

E+4/ PROJECT=-PROGRAMMER NUMBER (IF @, USE
CURRENT USER'S)

E+5/ RH =NEW HWIGHEST USER ADDRESS TO BE ASSIGNED

TO LOW SEGMENT LK IS IGNORED RATHER THAN
SETTING HIGH SEGMENT.)

USUALLY A USER PROGRAM WILL SPECIFY ONLY E AND E+1 AND
WILL SET E+2, E+4, AND E+5 TO #. THESE OTHER ARGUMENTS
HAVE BEEN INCLUDED FOR COMPLETENESS, NOTE THAT E=1
THROUGH E+4 ARE SAME AS LOOKUP BLOCK.

UNFORTUNATELY, THE AC'S ARE DESTROYED BY THE RUN UUO SO
THAT ARGUMENTS CANNOT BE PASSED TO THE NEXT

PROGRAM, ALSO ALL THE USER 1/0 CHANNELS ARE RELEASED, SO
THAT DEVICES CANNOT BE PASSED EITHER,

NOTE THAT PROGRAMS ON THE SYSTEM LIBRARY (CUSPS) SHOULD
BE CALLED BY USING DEVICE SYS WITH THE
PROJECT~-PROGRAMMER NUMBER (E+4) OF 2 RATHER THAN DEVICE
DSK AND PROJECT-PROGRAMMER NUMBER 1,1, THIS IS FOR 2
REASONS!

1, THE LIBRARY MAY BE ON DECTAPE,

2. WE WANT TO MOVE THE CUSPS FROM 1,1 T0 4,3 (OR
SOME OTHER ONE) SO THAT 1,1 IS ONLY THE MFD,

18

THE EXTENSION (E+2) SHOULD ALSO BE § SO THAT THE USER
PROGRAM DOES NOT NEED TO KNOW WHETHER THE CUSP 1S
REENTRANT OR NOT

(EXTENSION .LOW VERSUS ,SAV), THE LEFT HALF OF AC WILL

RE ADDED TO AND STORED IN THE STARTING ADDRESS OF THE NEW
PROGRAM (1.£. ADDED TO C(JDBSA)) BEFORE TRANSFERRING
CONTROL TO THE NEW PROGRAM, THUS <CONTROL> C START WILL
RESTART PROGRAM AT THE SAME LOCATION AS SPECIFIED BY THE
RUN UUO, IN CASE THE USER WISHES TO START THE CURRENT
CUSP OVER AGAFN, THE USER WILL BE CONSIDERED TO BE
MEDDLING WITH THE PROGRAM IF THE LH OF AC IS NOT 2 OR 1,
SEE SECTION ON MODIFYING SHARABLE SEGMENTS DURING
EXFCUTION,

AS A SYSTEM WIDE CONVENTION, PROGRAMS WHICH ACCEPT
COMMANDS FROM A TELETYPE OR A FILE DEPENDING ON HOW THEY
ARE STARTED, WILL DO SO AS CONTROLLED BY THE CALLING
PROGRAM (I1.E. PROGRAM DOING THE RUN UUO), @ IN LH OF AC
MEANS TYPE # AND ACCEPT COMMANDS FROM TTY, AND 1 MEANS
ACCEPT THEM FROM A COMMAND FILE, IF IT EXISTS, OTHERWISE
TYPE # AND ACCEPT COMMANDS FROM TTY, AS A CONVENTION SUCH
PROGRAMS SHOULD LOOKUP THEIR COMMAND FILE WITH NAME OF
FORM ###111,TMP WHERE IIl IS THE FIRST 3 (OR FEWER IF

3 DO NOT EXIT) OF THE CUSP DOING THE LOOKUP, "###" IS THE
LAST 3 CHARACTERS OF THE DECIMAL CHARACTER EXPANSION
(WITH LEADING B'S IF NECESSARY T0o MAKE 3 CHARACTERS) OF
THE BINARY J0OB NUMBER, THE PURPNSE OF INCLUDING THE JOB
NUMBER IS TO ALLOW A USER TO RUN 2 OR MORE JOBS UNDER THE
SAME PRQJECT-PROGRAMMER NUMBER,

EXAMPLE: 2g9PIP.TMP,@39MAC.TMP. DECIMAL SHOULD

BE USED RATHER THAN OCTAL», SO THAT A USER LISTING HIS
DIRECTORY WILL SEE THE SAME NUMBER AS THE PJ0OB COMMAND
TYPES. SUCH COMMAND FILES ARE TEMPORARY AND ARE DELETED
BY LOGOUT SINCE THE EXTENSION 1S ,TMP,

JROUTINE TO CREATE DECIMAL JOB NUMBER EXTENSION FROM JOB
NUMBER

CALL! AC,30 JGET JOB# FROM MONITOR
MOVEI T,3 JINIT DIGIT COUNT

LUP: IDIVI AC,12 JGET RIGHT DIGIT INTO AC+1
ADDI AC+1,"Q"~40 ;CONVERT TO SIXBIT
LSHC AC+1,=6 JSAVE DIGIT IN AC+2
SO0JG T,LUP JFORCE 3 DIGITS
HLLM AC+2,E JSAVE AS NAME (LH)

IN ORDER TO FACILITATE THE IMPLEMENTATION OF THE CONCISE
COMMAND | _ANGUAGE, THE RUN UUO WILL GIVE AN ERROR RETURN
WITH ONE OF 13 ERROR CODES IN AC IF ANY ERRORS ARE
DETECTED, RATHER THAN STOPPING THE JOB AND PRINTING

A MONITOR ERROR MESSAGE, IN THIS WAY THE USER PROGRAMS
CAN ATTEMPT T0 RECOVER FROM THE ERROR OR GIVE THE USER
A MORE INFORMATIVE MESSAGE ON HOW TO PROCEED, BECAUSE
SOME USER PROGRAMS WILL NOT WANT TO GO TO THE BOTHER OF
ERROR RECOVERY (SAY DURING CHECKOUT), THE MONITOR WILL
NOT GIVE AN ERROR RETURN IF THE LH OF THE ERROR RETURN
LOCATION IS A HALT INSTRUCTION, THIS ALSO ALLOWS THE
CONSCIENTIOUS USER PROGRAM TO0 EXECUTE A SECOND RUN UUO
WITH A HALT IF THE ERROR CODE IS FOR AN ERROR FOR WHICH
THE MONITOR MESSAGE 1S SUFFICIENTLY INFORMATIVE AND FOR
WHICH THE USER PROGRAM CANNOT RECOVER,

19

12.

11.

THE FRROR CONES ARE AN EXTENSION OF THE LOOKUP ENTER, AND
RENAME UUQ ERROR CODES AND ARE DEFINED ON THE S,MAC
MONITOR FILE.

FNFERR @ FILE NOT FOUND

IPPERR 1 INCORRECT PROJ~PROG NO. (NON-EXISTENT)
PRTERR 3 FILE BEING MODIFI1ED

AEFERR = 4% ALREADY EXISTING FILE

NLEERR 5w NEITHER LOOKUP NOR ENTER

TRNERR 6 "TRANSMISSION ERROR

NSFERR 7 NOT A SAVE FILE

NECERR 10 NOT ENOUGH CORE

DNAERR 11 DEVICE NOT AVAILABLE

NSDERR 42 NO SUCH DEVICE

ILUERR 13# ILLEGAL UUO (GETSEG UUO ONLY ON 1 REG SYSTEM)

sNOT POSSIBLE ON RUN UUO,

THE MONITOR 1S CAREFUL NOT TO ATTEMPT TO ERROR RETURN TO
A USER PROGRAM AFTER THE HIGH OR LOW SEGMENT CONTAINING
THE RUN UUO HAS BEEN OVERLAYED,

IN ORDER 7O SUCCESSFULLY PROGRAM THE RUN UUD FOR ALL SI1ZE
SYSTEMS AND ALL CUSPS WHOSE SIZE IS NOT KNOWN AT THE TIME
RUN UUO 1S CODEDs, IT IS NECESSARY TO UNDERSTAND THE
SEQUENCE OF OPERATION OF THE RUN UU0O, (IT IS THE SAME AS
FOR GET, R, AND RUN COMMANDS, EXCEPT THAT THE COMMANDS
REMOVE THE OLD HIGH SEGMENT FROM THE LOGICAL ADDRESSING
SPACFE AND REDUCE THE LOW SEGMENT TO 1K BEFORE PROCEEDING
WITH THE FOLLOWING,)

ASSUME THAT THE JOR EXECUTING THE RUN UUQ HAS BOTH A LOW
AND A& HIGH SEGMENT, (THE RUN UUO CAN BE EXECUTED FROM
EITHFER SEGMEMT, HOWEVER FEWER ERRORS CAN BE RETURNED TO
USER IF RUN UUD IS EXECUTED FROM HIGH SEGMENT,

STEPS 1-44 FOR RUN UUO, 1-31 FOR GETSEG UUO

DOES A HIGH SEG ALREADY EXIST BY SAME NAME? (IF YES,
GO TO 3M

INIT AND LOOKUP FILE NAME .SHR(IF NOT FOUND, GO TO 12),
READ HIGH FILE INTQ TOP OF LOW SEGMENT BY EXTENDING 1IT,
(HERE THE OLD LOW SEG AND NEW HIGH SEG AND OLD HIGH SEG
MAY NOT EXCEED THE CAPACITY OF CORE.)

REMAP THE TOP OF LOW SEGMENT REPLACING OLD HIGH SEG IN
LOGICAL ADDRESSING SPACE.

STORE NAME OF THIS NEW SHARABLE HIGH SEG SO OTHERS
CAN SHARE (GO TO 42 OR RETURN TO USER IF GETSEG UUD).

LOOKUP FILE NAME .HGH, (IF NOT FOUND, GO TO 35 OR ERROR
RETURN TO USER IF GETSEG UU0)

READ HIGH FILE INTO TOP OF |.OW SEGMENT BY EXTENDING
IT, (HERE AGAIN THE OLD LOW SEG AND NEW HIGH SEG AND

OLD HIGH SEG MAY NOT EXCEED THE CAPACITY OF CORE)

20

13,

12.

33.

4g.

41.

42.

43,

44 .

45.

CHECK FNR 10 ERRORS. (IF YES, ERROR RETURN TO USER
UNLESS HWALT IN LH OF RETURN) (GO TO 41)

REMOVE 7LD HIGH SEG FROM LOGICAL ADDRESSING SPACE,
IF ANY,

PLACE THE SHARABLE SEGMENT IN USER'S LOGICAL ADDRESSING
SPACE (G0 TO 4 OR RETURN TO USER IF GETSEG UU0).

REMOVE OLD HIGH SEG FROM LOGICAL ADDRESSING SPACE,
IF ANY, (GO TO 41)

COPY VESTIGIAL JOB DATA AREA INTO JOB DATA AREA,
DOES THE NEW HIGH SEG HAVE A LOW FILE (LH JOBCOR>137).
(IF NO, GO TO 45)

LOOKUP FILE NAME,SAV OR .LOW OR USER SPECIFIED
(ERROR IF NOT FOUND, RETURN TO USER IF CALL FROM
LOW SEG AND NOT HALT IN LH OF ERROR RETURN).

REASSIGN LOW SEG CORE ACCORDING TO SIZE OF
FILE OR USER SPECIFIED CORE ARGUMENT WHICHEVER 1S
LARGER, PREVIOUS LOW SEGMENT 1S OVERLAYED

READ IN LOW FILE, INTO BEGINNING OF LOW SEGMENT

CHECK FOR 10 ERRORS (YES, PRINT ERRQR MESSAGE,
DO NOT RETURN TO USER)

REASSIGN LOW SEGMENT CORE ACCORDING TO LARGER OF
USER'S CORE ARGUMENT OR ARGUMENT WHEN FILE SAVED
(RH JOBCOR)

IN ORDER TO ALWAYS BE GUARANTEED OF HANDLING THE MOST
NUMBFR OF ERRQRS, THF CAUTIOUS USER SHOULD REMOVE HIS
MIGH SEGMENT FROM HIGH LOGICAL ADDRESSING SPACE (USE CORE

UUO WITH A ONE IN LH OF AC). THE ERROR HANDLING CODE
SHOULD BE PUT IN THE LOW SEGMENT ALONG WITH THE RUN UUO
AND THE SIZE OF OF THE LOW SEGMENT REDUCED TO 1K, AN EVEN
BETTER INDEA wOULD BE T0O HAVE THE ERROR HANDLING CODE BE
WRITTEN ONCE AND PUT IN A SELDOM USED (PROBABLY NON-
SHARABLE) HIGH SEGMENT WHICH COULD BE GOTTEN IN HIGH
SEGMENT USING GETSEG UUO (SEE BELOW) WHEN AN ERROR

RETURN OCCURS TO LOW SEGMENT ON A RUN UUO.

A GETSEG UUO(CALLI 4@) HAS BEEN IMPLEMENTED SO THAT JUST
A HIGH SEGMENT CAN BE INITIALIZED FROM A FILE QR SHARED
WITHOUT AFFECTING THE LOW SEGMENT, THIS UUO 1S BEING
IMPLEMENTED FOR SHARFD DATA SEGMENTS AND SHARED PROGRAM
OVERLAYS, IT IS ALSO BEING USED FOR RUN TIME ROUTINES
SUCH AS FORTRAN OR COBOL OPERATING SYSTEMS (RUT NOT THE
SELECTIVE LIBRARY ROUTINES) THIS UUO WORKS EXACTLY LIKE
THE RUN UUO EXCEPT THAT

1) NO ATTEMPT IS MADE TO READ A LOW FILE.

21

14,

15,

2) NO CHANGE IS MADE TO LOW SEGMENT OR JOB DATA
AREA EXCEPT BOTH HALVES OF JOBHRL,
(ONLY JOBDATY LOCATIONS DESCRIBING HMIGH SEGMENT)

IF AN ERROR QCCURS CONTROL IS RETURNED TO THE
ERROR RETURN, UNLESS LH=HALT,

(o]

4) IF EVERYTHING CK, CONTROL !S RETURNED 2 LLOCATIONS
FOLLOWING UUO WHETHER IT IS CALLED FROM LOW OR
HIGH SEGMENT, (SO GENERALLY 1T SHOULD BE CALLED
FROM LOW SEGMENT UNLESS THE NORMAL RETURN HAPPENS
TO COINCIDE WITH THE STARTING ADDRESS OF THE NEW
HIGH SEGMENT.)

5) SEE STEPS 1 THROUGH 31 IN RUN UUQ DESCRIPTION,

6) USER CHANNELS 1 THRU 17 ARE NOT RELEASED,
THIS 1S SO GETSEG UUO CAN BE USED FOR PROGRAM
OVERLAYS SUCH AS COBOL COMPILER., CHANNEL 0
1S RESET AND USED BY THE GETSEG UUO,

FOR EFFICIENT EXAMINING OF THE MONITOR, A SPY UUO HAS
REEN IMPLEMENTED WHICH PLACES ANY NUMBER OF K OF PHYSICAL
CORE IN THE USER'S HIGH ADDRESSING SPACE, THE SO-CALLED
SPY SEGMENT CANNOT BE SAVED (NO ERROR IF TRIED), CANNOT
BE INCREASED OR DECREASED RY CORE UUQO, (ERRCR RETURN) AND
CANNDT HAVE UWP TURNED OFF (ERROR RETURN),

MOVEI AC, HIGHEST PHYSICAL CORE LOCATION DESIRED

CALL AC, [SIXBIT /SPY/] QR CALLI AC,42
FRROR RETURN (DO NOT HAVE PRIVILEGES)
0K RETURN :

ANY PROGRAM WRITTEN TO USE SPY UUO SHOULD TRY PEEK UUD IF
IT GETS AN ERROR RETURN FROM SPY UUO., THIS PROGRAM WILL
STILL RUN, ALTHOUGH LESS EFFICIENTLY, ON POP~6'S AND
PDP-1@'S WITHOUT KT12A OPTION.

SUPERCEDING SEGMENTS AND RELEASE UUO

OCCASIONALLY IT WILL BE DESIRABLE TO SUPERCEDE A SHARABLE
PROGRAM OR DATA SEGMENT WHICH IS IN THE PROCESS OF BFING
SHARED BY NUMBER OF USERS (SEE DESIGN GOAL 11),
WHENEVER A SUCCESSFUL CLOSE OQUTPUT UUO OR RENAME UUO IS
EXECUTED FOR A FILE WITH THE SAME DIRECTORY NAME AND FILE
NAME (PREVIOUS NAME IF RENAME UUQ) AS A SEGMENT BEING
SHARED, THE SEGMENT'S NAME WILL BE SET TO @, SO THAT NO
NEW USERS CAN SHARE THE OLDER VERSION WHEN THEY DO AN

R, RUN, GET COMMAND OR RUN, GETSEG UUO. INSTEAD THEY WILL
START SHARING THE NEWER VERSION WHICH WILL REQUIRE

THE MONITOR TO READ THE NEWLY CREATED FILE ONCE TO
INITTALIZE THE NEWER SEGMENT, THE OLDER SEGMENT WILL

BE DFLETED WHEN ALL THE USERS ARE FINISHED SHARING 1IT,

22

16,

17,

USING THE LINKING LOADER

ONE NF THE DFSIGN GOALS OF WRITING REENTRANT USER
SOFTWARE, IS TO MINIMIZE THE EFFORT REQUIRED TO SUPPORT
RE-ENTRANT SOFTWARE WHICH MUST ALLSO RUN ON A MACHINE
HAVING ONLY A SINGLE RELOCATION REGISTER (PDP-6), TO

DO THIS, BOTH THE SOURCES AND RELOCATABLE BINARIES CAN
RE THE SAME FOR A PROGRAM WHICH WANTS TO BE REENTRANT ON
THE PDP-1€ BUT WHICH ALSO SHOULD RUN ON THE PDP~6,

THE NECISION THAT A PROGRAM WRITTEN TO BE RE~ENTRANT IS
TO BF ONE SEGMENT INSTEAD OF TWO CAN BE POSTPONED TO
LINKING LOAD TIME (RATHER THAN EARLIER AT CODING OR
ASSEMBLY TIME). THUS, THE LOADER WILL HAVE A SWITCH

tH MFANING NO HIGH SEGMENT), WHICH WILL BE USED ONLY WHEN
A TWO SEGMENT PROGRAM IS TO BE LOADED INTO ONE

SEGMENT INSTEAD OF THE USUAL TWO, ORVIQUSLY, ONE SEGMENT
PROGRAMS WILL CONTINUE TO BE LOADED INTO ONE SEGMENT AND
THE W SWITCH WILL NOT BE REQUIREND., IT IS HOPED THAT OUR
CUSTNMERS WILL FOLLOW THIS PRACTICE ALSO,

TO FURTHER MINIMIZE THE USE OF THE H SWITCH ON SINGLE
REGISTER MACHINES, THE LOADER WILL CHECK TO SEE IF THE
SYSTEM HAS THE TWO SEGMENT CAPABILITY, IF THE MONITOR
HAS A TWO SEGMENT CAPABILITY, BUT, THE MACHINE DOES NOT,
THE SYSTEM WILL BEHAVE AS IF IT DOES NOT, IF IT DOES
NOT, THE LOADER WILL AUTOMATICALLY LOAD A TWO SEGMENT
PROGRAM INTO JUST ONE SEGMENT, JUST AS IF THE USER HAD
TYPEN THE H SWITCH, THUS, THE ONLY USE OF THE H SWITCH
WILL BE TO LOAD A TWn SEGMENT PROGRAM ON A TWO SEGMENT
SYSTFM WHICH IS INTENDED TO RUN ON A ONE SEGMENT

SYSTEM. TO FIND OUT IF THE SYSTEM HAS A TWO SEGMENT
CAPARILITY, THE LOADER WILL USE THE CALL SETUWP UUO AND
ATTEMPT TO SET ITS USER MODE PROTECT BIT TO ONE (EVEN IF
IT DDESN'T HAVE A HIGH SEGMENT). AN ERROR RETURN WILL
INDICATE THAT THE SYSTEM HAS ONLY A SINGLE REGISTER
CAPARILITY., NOTE THAT ON A ONE SEGMENT SYSTEM, THE
LOADER WILL NOT BE ABLE TO PRODUCE A TWO SEGMENT PROGRAM
AND THE MONITOR WILL NOT BE ABLE TO SAVE IT AS TWO SEGMENTS,

SINCF THE DECISION AS TO WHETHER A RE-ENTRANT PROGRAM IS
NOT GOING TO BE LOADED INTO A HIGH SEGMENT WILL BE
POSTPONED TO LINKING LOAD TIME, THE CODE EXECUTED (IN=
CLUDING MONITOR UUO'S) WILL BE THE SAME FOR EITHER CASE,
THE MONITOR UUO'S HAVE BEEN DESIGNED WITH THIS ORJECTIVE
IN MIND; ANY INCONSISTENCIES IN THE MONITOR UUO SHOULD
BE POINTED QUT SO THAT THEY CAN BE FIXED,

ASSEMBLER PSEUDO-OP~HISEG

EACH SUBPROGRAM ASSEMBLED BY MACRO MUST BE EITHER LOADED
ENTIRELY INTO THE LOW SEGMENT OR ENTIRELY INTO THE HIGH
SEGMENT, TO INDICATE THAT A SUBPROGRAM IS TO BE LOADED
INTO THE HIGH SEGMENT, USE THE HISEG PSEUDO~OP ANYWHERE
IN THE PROGRAM. (AT THE BEGINNING IS BEST SINCE !T TELLS
THE READER THAT THIS IS DESTINED FOR THE HIGH

SEGMENT,) MACRO GENERATES BLOCK TYPE 3 NEAR THE
BEGINNING OF THE BINARY OUTPUT WHICH TELLS THE LOADER TO
LOAD THIS SUBPROGRAM INTO THE HIGH SEGMENT,

23

18,

MODIFICATIONS TO LINKING LOADER

THE LOADER IS ITSELF REENTRANT, SO THAT ITS INSTRUCTIONS
EXIST IN THE HIGH SEGMENT. :
THE LOADER HAS BEEN MODIFIED TO LOAD TWO SEGMENTS INSTEAD

OF ONE. HOWEVER, SINCE BOTH SEGMENTS ARE DATA WITH
RESPFCT 70 THE LOADER, THE TWO SEGMENTS MUST BOTH EXIST
IN THE LOW SEGMENT DURING LOAD TIME, THUS, THE LOADER
MUST DUPLICATE THE FOLLOWING LOADER VARIABLES, AND HAVE
ONE FOR EACH SEGMENT,

ORIGIN (L.OW=1407, HIGH=4000210)
OFFSET
LOCATION COUNTER

THE LOADER |LOADS AN ENTIRE RELOCATABLE SUBPROGRAM INTO
THE WIGH SEGMENT OR | OW SEGMENT DETERMINED BY WHETHER
THEY CONTAIN A HISEG PSEUDO-OP OR NQOT, FURTHERMORE, ALL
SURPROGRAMS TO BE LOADED INTO THE LOW SEGMENT MUST BE
LOADED BEFORE ANY SUBPROGRAMS ARE LOADED INTO THE HIGH
SEGMENT, IF THE LOADER ENCOUNTERS A SUBPROGRAM (OF NON=
ZERO LENGTH)WITHOUT HISEG PSEUDO-OP AFTER IT HAS SEEN
ONE KITH HISEG PSEUDN~OP, IT WILL PRINT THE FOLLOWING
ERROR MESSAGE!

LOW SEG PROG XXXXXX PRECEDED BY HISEG PROG

AN REINITIALIZE ITSELF SO THAT NO PROGRAMS HAVE BEEN LOADED.
THE FXCEPTION FOR @ LENGTH FILES TO BE OUT OF ORNER IS SO
THAT JOBDAT CAN BE LOADED DURING USUAL LIBRARY SEARCH AFTER
SOME HIGH ROUTINES HAVE BEEN LOADED,

SINCE VERY OCCASIONALLY IT WILL BE DESIRABLE TO LOAD
A PROGRAM IN WHICH THE LOW SEGMENT IS LONGER THAN 422009
OCTAL WORDS, THE SWITCH NNNNNNH ALLOWS THE USER TO CHANGE
THE ORIGIN OF THE HIGH SEGMENT FROM ITS INITIAL SETTING
OF 420002 TO NNNNNN, WHERE NNNNNM SHOULD BE
LARGER. RECALL THAT IF NNNNNN IS MISSING, THE LOADER
WILL LOAD EVERYTHING INTO THE LOW SEGMENT,

AFTER LOADING 1S COMPLETE., THE REENTRANT LQADER WILL!
1) SET LH OF JOBHRL IN THE JOB DATA AREA TO THE NEW
HIGHEST RELATIVE USER ADDRESS (RELATIVE TO HIGH SEGMENT
ORIGIN) IN HIGH SEGMENT, OR @ IF NO HIGH SEGMENT,

2) SET THE LH OF JOBCOR TO THE HIGHEST LOCATION IN LOW
SEGMENT LOADED WITH NON-ZERO DATA,

3) EXCHANGE THE SYMBOL TABLE WITH THE PART DESTINED FOR
THE HIGH SEGMENT

4) USE REMAP UUO TO MAKE TOP PART OF LOW SEGMENT WHICH
CONTAINS THE INTENDED HIGH SEGMENT REPLACE THE LOADER AS
THE HIGH SEGMENT,

5) CALL EXIT OR START UP PROGRAM,

24

19,

20,

USING DDT

NDT CLEARS AND SAVES UWP USING SETUWP BEFORE WRITING INTO
A HIGH SEGMENT WHICH CAN BE SHARABLE (PROVIDED THAT THE
USER HAS NOT MEDDLED WITH THE PROGRAM UNLESS HE HAS WRITE
PRIVILEGES), HOWEVER, THE BEST WAY TO DEBUC A SHARARLE
PROGRAM 1S T0O MAKE A PRIVATE COQPY:

GET SYS cuse
SAVE DSK CUSP
GET DSK cuse

IN FACT IT 1% A BAD IDEA TO PUT A CUSP IN SYS

DIRECTORY WHICH HAS A DDT IN IT, SINCE A MALACIOQUS

USER COULD MODIFY THE SHARABLE HIGH SEGMENT USING

PDT., ODT WILL RESTQORE UWP BEFORE EXECUTION, DDT WILL
NOT RE RE-ENTRANT INITIALLY AND SO WILL BE LOADED INTO
LOW SEGMFNT, THE SYMBOL TABLE WILL CONTINUE TO BE AT THE
TOP NF THE LOW SEGMENT,

JOB DATA AREA(JOBDAT)

BRARY FILF WHICH DEFINES THE USER'S J0OB

THE SympoLIC LI
(FIRST 140 LOCATIONS) HAS ONE NEW ENTRY,

L
DATA AREA R

I
LOCATION JOBHRL=115 1S ANALOGOUS TO JOBREL AND ITS

RH CONTAINS THE HIGHEST LEGAL USER ADDRESS IN THE HIGH
SEGMFNT, ORVIOUSLY IT IS GREATER THAN OR EQUAL TO 401777,
UNLESS THERE IS NO HIGH SEGMENT, IN WHICH CASE IT WILL BE
2, THE RH OF JOBHRL IS SET RY THE MONITOR (LIKE JOBREL
WHOSF LH IS ALWAYS @) EVERY TIME THE USER STARTS TO RUN,
OR DNES A CORE OR REMAP UUO. THE PROPER WAY T0O TEST IF

A HIGH SEGMENT EXISTS IN THE ADDRESSING SPACE 1S TO TEST
IF JNBHRL IS NON=ZERD (BOTH HWALVES), NOTE THAT THIS

1S A MUCH DIFFERENT TEST THAN WHETHER OR NOT THE SYSTEM
HAS A TWO REGISTER CAPABILITY. (SEE SETUWP UUO),

THE LH OF JOBHRL=115]S ANALOGOUS To JOBFF AND CONTAINS
THF FIRST RELATIVE FREE LOCATION IN THE HIGH SEGMENT,

(RELATIVE TO THE HIGH SEGMENT ORIGIN SO IT IS SAME AS
MIGH SEGMENT LENGTH), THE LM OF JOBHRL 1S SET BY THE
LINKING LOADER AND SUBSEQUENT GETS, EVEN IF THERE IS NO
FILE TO INITIALIZE THE LOW SEGMENT,

THE REASON THWAT THE LH IS A RELATIVE QUANTITY IS THAT THE
SAME SHARED SEGMENT CAN APPEAR AT DIFFERENT USER ORIGINS
AT THE SAME TIME, THE SAVE COMMAND USES THIS QUANTITY TO
KNOW HOW MUCH TO WRITE FROM THE HIGH SEGMENT (ALL IS
WRITTEN IF LH=2 (LIKELY IF USER CREATED HIGH .SEG USING
CORE OR REMAP UUCS),

THE RH OF JOBERR (=42) WILL BE USED TO PASS THE
ACCUMULATED ERROR COUNT FROM ONE CUSP TO THE NEXT DURING
A CCL SEQUENCE OF CUSPS, THE LH WILL NOT BE USED AND
WILL BE SAVED FOR FUTURE EXPANSION, SO CUSPS SHOULD RE
WRITTEN TO LOOK ONLY AT THE RH OF JOBERR, EVEN THOUGH
THIS MEANS ANOTHER INSTRUCTION,

25

THE VERSION NUMBER QOF A CUSP WILL BE STORED IN THE

RH LOCATION JOBVER(=137) SO THAY THE E COMMAND CAN BE
USED TO FIND THE VERSION NUMBER AFTER A GET, R, QR

RUN, THE LH WILL CONTAIN THE PROGRAMMER NUMBER OF THE
PROGRAMMER WHO LAST MADE A CHANGE (THE PERSON WHO
INCREASEND THE RH), DIGITAL WILL ALWAYS DISTRIBUTE CUSPS
WITH THE LH=%, SO0 IT IS SUGGESTED THAT CUSTOMERS MAKING
MODIFICATIONS TO CUSPS, CHANGE ONLY THE LH, SO THAT THE
RH REMAINS AS A RECORD OF THE DEC VERSION

THE LLOADER USES 3 CONSECUTIVE LOCATIONS (JOBRLT=45) IN

THFE JOB DATA AREA WHICH THE USER WOULD NEVER WANT TO LOAD
INTO. THE LOADER PUTS A BLT INSTRUCTION AND A CALLT UUO

TO MOVE THE PROGRAM DOWN ON TOP OF THE LOADER, THESFE
LOCATIONS ARE DESTROYED ON EVERY EXEC UUOQ BY THE EXEC

PUSH DOWN LIST,

CHAIN PROGRAM (FORTRAN RUNTIME ROUTINE) NEEDS 6 TEMP LOCATIONS
IN JOB DATA AREA FOR TS OVERLAY, SINCE CHAIN ALWAYS

RELEASES ALL 10 CHANNELS, JOBCN6=1@6 IS DEFINED TO

BE IN JOBJDA TABLE,

JOBERR=42 JLH UNUSED AT PRESENT, RH CUSP ACCUMULATED
sERROR COUNT

JCBHRL=115 sLH=FIRST FREE LOC (RELATIVE) IN HIGH SEG,
iRH=HIGHEST LEGAL ADR IN HIGH SEG

JOBCOR=133 JLH=HIGHEST LOC IN LOW SEG LOADED WITH

;NON-ZERO DATA,» SET BY LOADER RH=USER
iARG ON LAST SAVE OR GET COMMAND, SET
;BY MONITOR

JOBVER=137 }LH=PROGRAMMER NO. MAKING
3CHANG, RH=VERSION NUMBER
JOBBLT=45 13 LOCATIONS WHERE THE LOADER CAN PUT

s INSTRUCTIONS TO MOVE PROGRAM
;JDOWN ON TOP QF ITSELF,., THESE
$}LOCS DESTROYED ON EXEC UUOS,

JOBCN6=106 16 LOCATIONS USED BY CHAIN AFTER
31T RELEASES ALL 10 CHANNELS

THERE ARE A FEW "CONSTANT" DATUM IN THE JOB DATA AREA
WHICH A TWO-SEGMENT, ONE FILE PROGRAM MIGHT LIKE TO LOAD
WITHOUT HAVING TO USE INSTRUCTIONS ON A GET:

J0B41 JUSER LOCATIONA4L

JOBREN 3RH IS REENTER STARTING ADDRESS
jLH 1S UNUSED (SET TO @) SAVE FOR
JFUTURE E£XPANSION

JOBVER JRH IS VERSION NUMBER, LK IS
}PROGRAMMER NO, OF PROGRAMMER
JWHO LAST CHANGED THE PROGRAM,
;OR CUSTOMER SUB~-VERSION NUMBER

AND THERE ARE A NUMBER OF LOCATIONS WHICH THE MONITOR
MUST LOAD ON A GET.

26

21,

JORSA ;LH=FIRST FREE LOC IN LOW SEG

tRH=STARTING ADDRESS

JOBCOR ;LH=LAST LOC IN LOW SEG WITH DATA
(SET BY LOADER)
;RH=SIZE OF CORE TO BE ASSIGNED
JON GET (SAVE'S THIRD ARG IF ANY
3OR SIZE OF CORE NEERED)

JOBHRL ;LH=FIRST FREE LOC IN HIGH SEG
JRELATIVE TO ITS USER ORIGIN, I.E.
JLENGTH

IN ORDER TO NO THIS, THE FIRST 17 (OCTAL) LOCATIONS OF
HIGH SFGMENT WILL BE RESERVED FOR THESE LOW SEGMENT
CONSTANTS. THUS, A HIGH PROGRAM WILL BE LOADED BY THE
LOADER INTO 4QR2@10 INSTEAD OF 400008,

WITH THE VESTIGIAL DATA AREA IN THE HIGH SEGMENT, THE
MONITOR WILL AUTOMATICALLY LOAD THE ABOVE CONSTANT
PDATA INTO THE JOB DATA AREA WITHOUT REQUIRING A LOW
FILE ON A GET,R,RUN COMMAND OR RUN UUO(BUT NOT GETSEG
UUO). SAVE WILL WRITE A LOW FILE FOR A TWO SEGMENT
PROGRAM ONLY IF THE LH OF JOBCOR (HIGHEST LOCATION
LOADED WITH DATA BY LOADFR) IS 142 OR GREATER, SEE
EXAMPLE RELOW WHICH SETS VERSION NUMBER. SINCE NO
NATA WAS LOADED ABOVE 137, SAVE WOULD NOT WRITE LOW
FILE. JOBHRL 1S SET BY THE LINKING LOADER AND SUB=
SEQUENT GETS, EVEN IF THERE IS NO FILE TO INITIALIZE
THE LOW SEGMENT,

WRITING REENTRANT USER PROGRAMS

A, DEFINING VARIABLES AND ARRAYS FOR THE LOW SEGMENT

THE LOADER SIMPLIFICATION MAKES 1T SOMEWHAT MORE
DIFFICULT TO DEFINE VARIABLES AND ARRAYS, THE EASJEST
WAY TO DEFINE VARIABLES AND ARRAYS SO THAT THE RESULTING
RELOCATARLE BINARY CAN BE LOADED ON A ONE OR TWO SEGMENT
MACHINE, IS TO PUT THEM ALL IN A SEPARATE SUBPROGRAM AS
INTERNAL GLOBAL SYMBOLS USING BLOCK 1 AND BLOCK

N PSEUDO-OPS, ALL OTHER SUBPROGRAMS MUST REFER TO THE
DATA AS EXTERNAL GLOBAL LOCATIONS, THUS, MOST REENTRANT
PROGRAMS WILL HAVE AT LEAST TWD SUBPROGRAMS, ONE FOR
DEFINITION OF LOW SEGMENT LOCATIONS AND THE OTHER (NEEDS
HISEG PSEUDO-OP) FOR INSTRUCTIONS AND CONSTANTS FOR THE
HIGH SEGMENT., SINCE PROGRAMS MUST BE SELF INITIALIZING,
THEY MUST CLEAR THE LOW SEGMENT WHENEVER THEY

ARE STARTED. (EVEN THOUGH THE MONITOR CLEARS CORE WHEN~
EVER IT ASSIGNS IT TO A USER.)

USING BLOCK 1 AND BLOCK N PSEUDO~OPS WILL CAUSE THE
LOADER 70O LEAVE TRACKS IN THE JOB DATA AREA(LH OF JOBCOR)
SO THAT A MONITOR SAVE COMMAND WILL NOT NEED TO WRITE THE
LOW SEGMENT, SINCE 1T CONTAINS NO INSTRUCTIONS, DATA, OR
CONSTANTS, THIS IS ADVANTAGEOUS IN SHARABLE PROGRAMS FOR
TWO REASONS, IT REDUCES THE NUMBER OF FILES IN OUR SMALL
DECTAPE DIRECTORIES (22 FILES MAXIMUM) AND MORE
IMPORTANT IT MEANS THAT /0 MUST BE DONE ONLY FOR THE
FIRST USER'S GET (TO INITIALIZE WIGH SEGMENT) BUT NOT FOR
ANY SUBSEQUENT USER!'S GETS

(EITHER HIGH OR LOW SEGMENT.)

27

AN EXAMPLE OF A REENTRANT PROGRAM:
LOW SEGMENT SUBPROGRAM:

TITLE LOW - EXAMPLE OF LOW SEGMENT SUB-PROGRAM

JOBVER=137

Lac JOBVER

3 JVERSION3
RELOC @

INTERNAL LOWBEG,DATA,DATAL1,DATA2,TABLE,TABLEL

LOWBEG:

DATA: RLOCK 1
DATA1: BLOCK 1
DATA2: RLOCK 1

TARLE: BLOCK 10
TABLF1: BLOCK 18
LOWEND= , =1 JLAST LOCATION TO BE CLEARED
END |
HIGH SEGMENT SUBPROGRAM:

TITLE HIGH - EXAMPLE OF HIGH SEGMENT SUB~PROGRAM

HISEG
EXTERN l.OWBEG, LOWEND
T=1
REGINS SETZM LLOWBEG tCLEAR DATA AREA
MOVE!? T,LOWBEG*+1]
HRL I T,LOWBEG
BLTY T,LOWEND
MOVE T,DATAL $COMPUTE
ADDI 1,1,

MOVEM T, DATAZ2

.
’
L]

END BEGIN }STARTING ADDRESS

VERY FEW REENTRANT PROGRAMS REQUIRE THAT SOME LOCATIONS
IN THE LOW SEGMENT CONTAIN SOME "CONSTANT" DATA WHICH
NDOES NOT CHANGE DURING EXECUTION, WHILE THIS PRACTICE I8
TO BE DISCOURAGED, OCCASIONALLY THERE ARE GOOD REASONS
FOR 1T (AN INITIAL ASSEMBLER SYMBOL TABLE), SINCE THE
INITIALIZATION OF THIS "CONSTANT" DATA NEED HAPPEN ONLY
ONCE AFTER EACH GET RATHER THAN AFTER EACH START, THE
TEMPTATION IS TO PUT

THESE CONSTANTS INTO THE SAME SUBPROGRAMS AS THE ONE
CONTAINING THE DEFINITION OF THE VARIABLE DATA LOCATIONS,
HOWEVER, THIS WOULD REQUIRE THAT SAVE WRITE THEM OUT AND
GET LOAD THEM BACK IN AGAIN. SO, SUCH CONSTANT DATA
SHOULD BE MQOVED BY THE PROGRAMS FROM THE HIGH SEGMENT TO
THE LOW SEGMENT AT THE SAME TIME THAT THE REST OF THE LOW
SEGMENT 1S BEING INITIALIZFD WHENEVER THE PROGRAM IS
STARTED., (THE EXTRA EXECUTION TIME IS NEGLIGIBLE,)
ODBVIOUSLY THERE IS AN EXCEPTION TO THIS RULE}S IF THE
AMOUNT OF CODE AND CONSTANTS IN THE HIGH SEGMENT NEEDED

28

TO INITIALIZE LOW SEGMENT CONSTANTS TAKES UP T0OO MUCH
ROOM IN THE HIGH SEGMENT, 1T IS BETTER T0 SUFFER THE
PENALTY OF 1/0 INTO THE LOW SEGMENT ON EACH GET,

A SIMPLE RULE CF THUMB TO DECIDE BETWEEN THIS HIGH
SEGMFNT CORE SPACE VS LOW SEGMENT GET I/0 TIME TRADEOFF
1S Tn PUT THE CODE IN THE HIGH SEGMENT IF IT DOESN'T PUT
THE HIGH SEGMENT OVER THFE NEXT 1K BOUNDARY,

A MORE CONVENIENT WAY TO WRITE REENTRANT PROGRAMS

A SECOND WAY OF WRITING SINGLE SAVE FILE REENTRANT PROGRAMS HAS
REFN DEVELOPED IN WHICH THE SOURCE FILE CAN BE A SINGLE FILE
INSTEAD OF TWO SEPARATE ONFS AS INDICATED IN THE DISTRIBUTED
REMMON.MAN WRITEUP (100-118-0805-21),

THIS MEMD 1S BEING PRINTED IN THE SOFTWARE BULLETIN WHICH GOES
TO ALL CUSTOMERS EVERY TWO WEEKS AND WILL BE ADDED TO RENMON.MAN
TO MAKE 10¢-118-805-32,

THE NEW TECHNIQUE 1S MORE CONVENIENT, ALTHOUGH IT DOES INVOLVE
CONDITIONAL ASSEMBLY AND THEREFORE PRODUCES TWO DIFFERENT
RELOCATABLE BINARIES, A NUMBER NF CUSPS HAVE BEFEN WRITTEN
THIS WAY (TECO,» LOGIN, LOGOUT, SRCCOM, CREF),

THE IDEA IS TO HAVE A CONDITIONAL SWITCH, SAY PURE, WHICH IS 1
IF REENTRANT ASSEMBRLY, AND @ IF NON~REENTRANT, THE DATA AREA IS
PUT LAST IN THE SOURCE FILE FOLLOWING A LIT PSEUDO~OP AND CON=~
SISTS ONLY OF BLOCK 1 AND RLOCK N STATEMENTS, ALONG WITH DATA
LOCATION TAGS., IF A REENTRANT PROGRAM 1S DESIRED A LOC 147 IS
ASSEMBLED, PLACING THE DATA AREA AT ABSOLUTE 142 IN THE LOW
SEGMENT, BECAUSE OF THE LOC, NO OTHER RELOCATABLE PROGRAM CAN
BE LOADED INTO LOW SEGMENT, THEREFORE THWE PROGRAM SHOULD BE
NEBUGGED AS A NON-REENTRANT PROGRAM WITH DDT SINCE ODT IS A LOW
SEGMENT RELOCATABLE FILE, ALSO USE THE /B LOADER SWITCH TO PRO-
TECT THE SYMBOLS. BFECAUSE THE USUSAL WAY OF ASSEMBLY 1S REEN~
TRANT, PURE 1S DEFINED TO BE 1 IF NOT ALREADY DEFINEN,

SINCE THE SYSTEM WASN'T DESIGNED TO RUN THIS WAY, THF PROGRAM
MUST FIX UP ONE LOCATION IN THE JOB DATA AREA WHEN IT IS AS-
SEMBLED TO BE REENTRANT SO THAT THE MONITOR WILL START AS-~
SIGNING BUFFERS AT THE END OF THE DATA AREA IN THE LOW SEGMENT
RATHER THAM AT LOCATION 14@. TH!S CAN BE DONE BY CHANGING THE
LH OF JOBSA BEFORE CALL! @ (RESET) OR CHANGING C(JOBFF) AFTER
CALL! @, THE CHOICE WILL DEPEND ON HOW THE PROGRAM REINITIAL=
12ES ITSELF ON ERRORS AND UPON COMPLETION, IT SHOULD BE REMEM-
BERED THAT CALLI @ MOVES THE LH OF JOBSA TO C(JOBFF), THE PRO-
GRAM SHOULD NOT CHANGE THESE LOCATIONS, IF 1T 1S ASSEMBLED AS
NON-REENTRANT SO THAT THE SYMBOL TABLE CAN BE PROTECTED USING
THE LOADER /B SWITCH WHICH PLACES THE SYMBOLS NEXT 70 THE LAST
PROGRAM LOADED AND SETS LH OF JORSA APPROPIATELY HIGHER, HENCE
THIS CODE IS UNDER CONTROL OF PURE CONDITIONAL ASSEMRLY, NOTE
THAT THE PERSON DEBUGGING DOES NOT NEED TO USE THE /B SWITCH

IF HE DOFESN'T WANT TO,

29

22,

TITLE DEMO - DEMO ONE SOURCE REENTRANT PROGRAM -~V221

SUBTTL

JOBEVER=137
Loc 137
EXP 201

T,

INTERN JOBVER,PURE
EXTERN JOBSA,JOBFF

IFNDEF PURE,<PURE=1>

HASTINGS 25 JUN 69

s VERSION NUMBER

} ASSUME REENTRANT IF PURE UNDREFINED
sTELL LOADER TO {OAD IN HIGH SEGMENT
JIF REENTRANT

3ONLY NEED IF REENTRANT

3 (NOT NEEDED IF THWO FILES)

3SET FIRST FREF LOCATION IN LOW SEG,
tRESET SETS JORFF FROM LH OF JOBSA

300 CALL RESET
}ASSIGN AT LFAST ENOUGH CORE FOR DATA
$CORE UuO

T,0xWD DATAB,DATAB+1] $INOW CLEAR DATA REGION

1FN PURE,<HISEG>
BEG?
IFN PURE,<
MOVS! T,DATAE
HLLM T,J0BSA
>
CALLI Y
MOVE T,JORFF
CALLI T,11
JRST FRROR
MOVE
SETZM NATASB
BLT T,DATAE-]
LIT
sDATA AREA:
IFN PURE,<LOC 148>
DATAB!
DATA: BLOCK 1
TABLE! BLOCK 128
DATAE! END BEG

t}LAST LOCATION CLEARED

$PUT LITERALS IN HIGH SEG

3START DATA AREA AT 142 IN LOW SEG IF REENTRA
JFIRST LOCATION CLEARED FVERY START UP

sDEFINE FREE LOCATION

MONITOR USE OF SWAPPING SPACE

THE RE-ENTRANT CAPABILITY IMPROVES SYSTEM THRUPUT BY

REDUCING THE DEMANDS ON:

HOWEVER,
DEMANDS

SWAPPING BEVICE,
PING STORAGE (2).

1. CORE MEMORY ~ SHARING

2. SWAPPING STORAGE - SHARING

3, SWAPPING CHANNEL - READS

4, SWAPPING CHANNEL - WRITES

5., STORAGE CHANNEL =~ READS (GET)

2 COMPETES WITH 5 IN THAT TO REDUCE THE
5, COPIES OF THE SEGMENTS ARE KEPT ON THE
THEREBY INCREASING THE DEMAND FOR SWAP=

THE QUESTION NATURALLY ARISES, HOW DOES

THE SYSTEM DETERMINE THIS SPACE-TIME TRADEOFF?

30

23,

24,

THE MONITOR ACHIEVES THE BALANCE DYNAMICALLY, AFTER THE
OPERATOR ESTABLISHES THE SIZE OF THE SWAPPING SPACE WHEN

THE SYSTEM IS STARTEN AND THE DISK IS REFRESHED (ONCF
ONLY DIALOG). THE MONITOR ASSUMES THAT THERE IS NO
SHORTAGE OF SWAPPING SPACE, AND SO KEEPS A SINGLE COPY OF
AS MANY HIGH SHARABLFE SEGMENTS IM THE SWAPPING SPACE AS
THERF ARE HIGH SEGMENT NUMBERS, EVEN THOUGH NO ONE MAY
BE USING THE HIGH SEGMENT. IF THE SEGMENT IS UNUSED, IT
1S CALLED DCRMANT, (THE MAX, NUMBER OF HIGH SEG, IS
FSTARLISHED USING MONGEN AND IS EQUAL TO OR GREFATER THAN
THE MUMBER OF. JOBS (COUNTING NULL J0DB)), THUS DEMAND

5 1S MINIMIZFD, HOWEVER, IF THE MONITOR CANNOT FIND

CONTIGUOUS FREE SPACE ON THE SWAPPING DEVICE, IT WILL FRAG-

MENT THWE HIGH OR LOW SEGMENT ON THE SWAPPING SPACE. THEN
IF SWAPPING SPACE RUNS QUT, THE MONITOR WILL

TRY NELETING A DORMANT SEGMENT AND WILL CONTINUE
FRAGMENTING THE USER, WHEN THWE DELETED SEG IS NEXT
NEEDED (A GET OCCURRED), IT WILL BE GOTTEN FROM

STORAGE DEVICE, INCREASING DEMAND 5,

TO RESTATE! THE MONITOR USES ALL THE SWAPPING SPACE
AVAILABLE, IF IT RUNS OUT, IT INCREASES STORAGE CHANNEL
READS (GET), IN ORDER TO OVERCOME THE SWAPPING SPACE
SHORTAGE,

MONITCOR USE 0OF CORE

THE SAME IDEA IS BEING EXTENDED TO PHYSICAL CORE IN BOTH
THE SWAPPING AND NON-SWAPPING SYSTEMS, A DORMANT SEGMENT
WILL STAY IN CORE UNTIL CORE IS NEEDED. IN SWAPPING
SYSTEMS THE MONITOR WILL LEAVE AN ACTIVE WRITE LOCKED
SEGMENT IN CORE EVEN THOUGH NO ONE IN CORE IS USING 1IT
(SOMF SWAPPED OUT USER 1S USING OR ELSE T WOULD BE
DORMANT RATHER THAN]DLE),

IN OTHER WORDS, THE MONITOR ALLOCATES LOGICAL CORE
INDEPENDENTLY FROM PHYSICAL CORE,

QUESTIONS IN MONGEN DIALOG
REENTRANT SOFTWARE? IF ANSWERED Y MONGEN WILL ASK?#
HOW MANY MORE HIGH SEGMENTS THAN JOBS?

AND WILL GENERATE THE REQUIRED MONITOR TABLES TO HANDLE
HIGH SEGMENTS, UNTIL A SYSTEM HAS MORE SHARABLE PROGRAMS
THAN MAX NUMRER OF JOBS, THIS ANSWER SHOULD BE 2,

ONLY WHEN THE MONITOR RUNS OUT OF HIGH SEGMENT

NUMBFRS WILL IT DELETE A DORMANT SEGMENT, FOUR

MONITOR TABLES (JBTSTS, JBTADR, JBTSWP, JBTCHK)

ARE LENGTHENED BY THE MAXIMUM NUMBER OF HIGH SEGMENTS
(AT LEAST EQUAL TO MAXIMUM NUMBER OF JOBS, COUNTING NULL
JOB, SO THAT EACH JOB CAN HAVE A DIFFERENT HIGH SEGMENT).
ONE NEW TABLE (JBTSGN) 1S GENERATED FQUAL TO THE MAX,
NUMBER OF JOBRS ALLOWED. TWO NEW TABLES (JBTDIR, JBTNAM)
ARE GENERATEN WHOSE LENGTH WILL BE EQAUAL TO THE MAX,
NUMBER OF HIGH SEGMENTS, THESE TABLES HAPPEN TO BE
EXTENSIONS OF PRJPRG AND JBTPRG TABLES. SEE MONITOR
SUB-PROGRAMS COMMON AND SEGCON FOR DETAILS.

31

GLOSSARY OF

- e

SHARABLE SEGMENT
-- POTENTIAL OF APPEARING IN MORE THAN

NON-SHARABLE SEGMENT

e - ———

LOW SEGMENT

- - — - - -

MIGH SEGMENT

RE-ENTRANT PROGRAM

- gy . -

NON-RE-ENTRANT PROGRAM

e . el

- -~ - -
e -

FILE

- o -y -

DIRECTORY NAME

R . - - =

FILE NAME

- -

TERMS (IN ORDER OF APPEARANCE)

- - - =~ . -y gy T em T om0 e O . SN o

A CONTINUOUS REGION OF A USER'S CORE IMAGE
WHICH THE MONITOR MAINTAINS IN PHYSICAL CORE
ANZOR ON THE SWAPPING DEVICE, MOST FIT IN CORE
ALL AT ONCE,

A SEGMENT WHICH 1S APPEARING OR HAS

ONE USER CORE IMAGE AT THE SAME TIME,
SHARABLE SEGMENTS ALWAYS HAVE NAMES UNTIL
THEY ARE SUPERCEDED, THEY ARE ALWAYS
INITIALIZED FROM FILES

A SEGMENT FOR WHICH EACH USER HAS HIS OWN
COPY. NON-SHARABLE SEGMENTS NEVER HAVE

NAMES EVEN IF INITIALIZED FROM A FILFE,
MAY ALSO BE CREATED BY CORE 0OR REMAP UUO,

THFY

A 1 TO 256K NON~SHARABLE SEGMENT STARTING AT
USER @, ALWAYS REQUIRED,

A @ TO 128K SHARABLE OR NON-SHARABLE SEGMENT
STARTING AT USER 400000 0OR END OF LOW SEGMENT,
WHICH EVER IS GREATER. QPTIONAL,

A TWO SEGMENT PROGRAM COMPOSED OF A SHARABLE
AND NON~SHARABLE SEGMENT

A ONE QR TWO SEGMENT PROGRAM IN WHICH
NEITHER SEGMENT 1S SHARABLE

A SEGMENT WHICH IS OR CAN BE MODIFIED
WHILE PART OF A USER CORE IMAGE

A SEGMENT WHICH CANNOT BE MODIFIED WHILE PART OF
A USER CORE IMAGE

A NAMED OR UNNAMED COLLECTION OF 36 BIT WORDS
(INSTRUCTIONS AND/OR DATA). LENGTH NOT
RESTRICTED BY SIZE OF CORE. ONE OF THE USES
OF FILES IS TO INITIALIZE SEGMENTS WHEN THEY
ARE CREATED WITH INSTRUCTIONS AND/OR DATA,

A NAMED COLLECTION OF 36 BIT WORDS (INSTRUCTIONS
AND/OR DATA) STORED BY THE FILE SYSTEM AND THE
STORAGE DEVICE (BURROUGHS DISK, BRYANT DISK,

OR DECTAPE)

PROJECT, PROGRAMMER NUMBER PAIR WHICH UNIQUELY
IDENTIFIES A DIRECTORY3 THE DEVICE NAME IN THE
CASE OF DECTAPE OR MAGTAPE

1 TO 6 ALPHANUMERIC CHARACTERS CHOSEN BY THE USER
TO IDENTIFY THE FILE

32

FILE EXTENSION

e o - - -

CREATE

. - -

1 T0 3 ALPHANUMERIC CHARACTERS USUALLY CHOSEN
BY THE PROGRAM TO DESCRIBE THE C|ASS OF IN~

FORMATION IN FILE

THE DEVICE USED TO STORE NAMED FILES BY THE

GET, R, OR RUN COMMANDS. IF THE FILE 1S MARKED
AS A SHARABLE (EXTENSIQN = "SHR"), THE MONITOR
WILL GIVE THE SEGMENT THE SAME NAME AS THE FILE,
THIS IS THE ONLY WAY THAT A SEGMENT CAN

RE SHARED,

A FILE IS CREATED WHEN IT HAS BEEN OPENED FOR
WRITING, WRITTEN AND CLOSED FOR THE FIRST
TIME, ONLY ONE USER MAY BE CREATING THE FILE
AT A& TIME,

A FILE IS RECREATED WHEN IT HAS BEEN OPENED
FOR WRITING, WRITTEN AND CLOSED ONE OR MORE
SUBSEQUENT TIMES, THE OLDER COPY IS DELETED
WHEN ALL READERS ARE FINISHED, ONLY ONE USER
CAN BE RECREATING THE FILE AT A TIME,

A FILE IS UPDATED, OPENED FOR READING AND
WRITING, ONE OR MORE BLOCKS REWRITTEN IN PLACE,
AND CLOSED, ONLY ONE USER MAY BE UPDATING THE
FILE AT A TIME,

VESTIGAL JOB DATA AREA THE FIRST 1@ OCTAL LOCATIONS OF THE HIGH

CREATE

MEDDL ING

DORMANT

- -

——————— SEGMENT USED TO CONTAIN DATA FOR INITIALI~

ZING CERTAIN LOCATIONS IN THE JOR DATA AREA,

A SEGMENT IS CREATED BY THE CORE OR REMAP UUO,
LOGICALLY, GET, R, AND RUN COMMANDS ALSO DO
CORE UUO'S,

A PROGRAM WITH A SHARABLE HIGH SEGMENT I8
SAID TO BE MEDDLED WITH I1f THE USER HAS DONE SOME~
THING WHICH PREVENTS THE PROGRAM FROM BEING IN
COMPLETE AND PREDICTABLE CONTROL OF ITSELF, A
PROGRAM WHICH HAS BEEN MEDDLED WITH, CANNOT BE
ALLOWED TO TURN OFF ITS USER MODE WRITE
PROTECT BIT OR CHANGE ITS HIGH SEGMENT CORE
ASSIGNMENT WITH THE CORE UUQ, EXCEPT REMOVE 1IT
ENTIRELY. SEE SECTION VI MODIFYING SHARED
SEGMENTS DURING EXECUTION

A SHARABLE HIGH SEGMENT KEPT ON SWAPPING SPACE
AND POSSIBLY CORE WHICH 1S IN NO USER ADDRESSING
SPACE.

A SHARABLE HIGH SEGMENT WHICH IS IN CORE BUT
FOR WHICH NO USERS IN CORE ARE USING, HOWEVER
AT LEAST ONE SWAPPED OUT USER IS USING, ELSE IT
WOULD BE A DORMANT SEGMENT.

33

PDP-10/40 PDP-10/50
READER’S COMMENTS TIME SHARING MONITORS

REFERENCE MANUAL

DEC-T9-MTZA-D

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its publica-
tions. To do this effectively we need user feedback: your critical evaluation of this document. Please give specific

page and line references when appropriate.

ERRORS NOTED IN THIS PUBLICATION:

SUGGESTIONS FOR IMPROVEMENT OF THIS PUBLICATION:

DEC also strives to keep its customers informed about current DEC software and publications. Thus, the following periodically
distributed publications are available upon request. Please check the publication(s) desired.

D PDP-10 User’s Bookshelf, a bibliography of current programming documents.

D Program Library Price List, a list of available software documents and programs.

Name Date

Organization

Please describe your position

Street

City State Zip Code

————————————————— — FoldHere - - - --——- - — — — — — — — — — — —

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

dlilgliltlall

Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

Postage will be paid by:

il Ecuioment Coroorat
Maynard, Massachusette dlilgliltlall

printed in U.S.A.

