
SUBJECT

TO

INTEROFFICE
MEMORANDUM

1 DATE
MAC A Master Subroutine
Control System For PDP-l

PDP Distribution List FROM

M-l09l

November 22, 1960

Richard Bennett

I. INTRODUCTION

DFI06

MAC is a Master Control System for the PDP-l Computer. Advantages
of this sytem include:

1. Reduction of the number of memory registers required to
write closed subroutines.

2. Recursive ability of subroutines using this system to
call themselves (or other subroutines which may call the
original subroutine).

3. S~plirication in the writing of subroutines.

MAC requires 114 (octal) locations, including six useful constants,
plus 2~ (ootal) registers of storage. In addition, storage is
required for the preservation of subroutine returns and the pro
tected storage of subroutines used recursively. The amount of
this latter storage depends on the requirements of the user's
subroutine s.

MAC was made feasible by the inclusion of the "call" instruction
(cal) in the PDP-I. This instruction is equivalent to the
sequence of instructions

dec 100 (octal)
jsp 101 (octal)

(The is~ instruction saves the program location counter in the
Accumuritor and jumps to the location given in the address part
of the instruction.) It should be noted that the address part
of the ~ instruction 1s not used by the computer.

MAC 1s normally located at register 100 (octal) and following.
Its main entry point is at 101.

MAC interprets the address part of the cal instruction as the
location of the pertinent subroutine. Arrer performing certain
preliminary functions, MAC jumps to this location.

ACknoWled~ent
1. The M~ program and this memordandwn was supplied to DEC by

Mr. Riohard K. Bennett, of Data Processing, Inc., Wellesley,
Mass.

digital equipment corporation
MAYNARD, MASSACHUSETTS

M-1091
Page 2

The called subroutine. when finished. must return control to the
proper point in MAC. The subroutine may also call upon MAC for
certain functions betore it is finished.

It is possible to call subroutines without employing MAC by
u~ing the instructions jsp and jda (Jump and Deposit Accumulator).
Working outside the MAC system rs-normally done only when timing
becomes important. Subroutines in and out of MAC are, of course,
not compa tible.

The characteristics and the rules for the use of MAC are described
below. Section II covers the entry and exit of subroutines. The
handling of calling-sequence parameters is described in Section III.
Section IV discusses recursion and protected storage. The Appendix
summarizes the available facilities and gives their execution time.

The facilities described in this memo are those availdble at the
given date. It is anticipated that they may be extended somewhat
at the cost of memory registers. Furthermore, in at least one
case (dp3 in Section III) the execution time can be cut drastic
ally at the cost of more registers.

This balance between facilities and storage space depends greatly
on the application~ MAC's design is biased heavily toward the
side of storage conservation.

II. ENTRY TO AND EXIT FROM SUBROUTINES

A subroutine in the MAC system is called by executing the
instruction

cal abc

where abc is the symbolic nqme (location) of the desired sub
routine:- This instruction effects any entry to MAC, which sub
sequently jumps to the subroutine abc.

When MAC enters this ab~ subroutine, the Accumulator (AC) contains
the orig~nal contents-of the AC when the cal abc instruction was
executed. In addition, the contents of the Ac-fs available at
location 100.

Location 100 has been given the symbolic name mac. (Here mac may be
thought of as the Nas~er Accumulator.) It is suggested thatlmac be
used, rather than Too, for-it might be necessary to change tEIi
value at a future date.

M-109l
Page 3

The exit from the subroutine abc must be accomplished via MAC.
It is possible to return to LfI"; Lf2, etc., where L is the
location of the cal abc instruction. Furthermore, the AC at
the time of the retUrn-may contain, at the choice of the coder,
either the contents of mac or the AC contents at the time of
exit.

To return to LII with the AC intact, the subroutine exit is

jmp ral

If it is desired to have the AC contain the contents of mac when
MAC returns control to Lfl, the exit is

jmp rml

Similarly, return may be made to Lf2 or Lf3 with exits

jmp ra2
jmp rm2
Jmp ra3
jmp rm3

The r, of course, stands for return. The a stands for AC (at exit)
preserved; the m for mac used to reset AC.- The number IS the return
location, relative to-r:

To return to a location beyond L13, different MAC re-entry points
are required. If the AC is to be preserved, the exit is

cal ran

If mac is to be used to restore the AC on return, the exit is

jsp rmn

In both case s the rela tive return location must be stored in the
register following the exit. For example,

cal ran
6

would return control to Lf6.

I. CALLING-SEQUENCE PARAMETERS

M-109l
Page 4

Quite frequently it is convenient to list subroutine parameters
in registers following the one containing the subroutine call.
MAC makes this information available to the called subroutine by a
process called "displaying."

To conserve computer time, the calling-sequence parameters are not
actually moved when they are "displayed." Instead, their locations
are stored. The actual parameters are obtained by using the indirect
address feature.

At location ipl (standing for "immediate" £arameter at Lfl), the
location LII-rs stored in the andress part of the register. The
subroutin"9"Ti1ay use the parameter at L,tl by "deferring" through !E.!..
For example,

lac·:} ipl

would load the AC with the parameter at LII. (Any other instruction,
such as add, dac, etc., can be used instead of ~)

Quite frequently the calling sequence parameter is the location of
the desired value. For example, to multiply ~ by l' one might
write

lac x
cal mpy
y

The Z at Lfl (referenced to the ~) is the location of the variable
z·
The value of ;r in this example is called a "remote" P1 rameter, in
contrast to the term "immediate ll parameter, 'which applies when
Lfl contains the desired value. MAC provides for remote parameters
by storing the location L71 in the address part of rpl (remote
,Earameter, Lll~ vb ere rpl contains a "one ff in its defel' bi t.

To use a remote parameter, a subroutine would defer through rpl.
For example,

lac-::- rpl

would load the AC with the contents of the register whose location
is given in the register at LII. If the defer bit of the register
at Lfl Is set 'i.e., a "one") the deferring will continue until a
register is obtained which has its defer bit clear. Thus, Lfl may
contain the location of the location of the value of the parameter,
etc.

M-109l
Page 5

One calling-sequence parameter (L~l) is automatically displayed
by MAC. To obtain more parameters, MAC must be re-entered.
Three parameters are displayed by the instruction

jsp dp3

(The letters dp stand for display Earameters.) The instruction

jsp dpn

followed by a number (not greater than 7) will display that number
of parameters. For example,

jsp dpn
5

will display five calling sequence parameters. If more than seven
subroutine parameters are required, their locations must be speci
fied by means of pointers.

The displayed parameters are available through the same device
described above for the Lfl parameter. The number 1 is simply
replaced by the appropriate number (up to 7). For example,
the Lf2 parameter is available through ip2 and rp2.

Vlhen using displayed parameters in a subroutine, it should be
remembered that a call to a lower level subroutine will destroy
at least the Lfl parameter. Therefore, it may be necessary to
redisplay the parameters on returning from a lower level subroutine.
This convention has been adopted because automatic redisplay of
the parameters would make excessive demands both on computer
storage space and on computer time.

IV. RECURSION

There is a growing appreciation of the value of permitting a
subroutine to call itself {or to call subroutines which mayoall the
first subroutine}. This operation is called recursion.

Subroutines having recursive ability have proved their value in
both mathematical as well as logical-type programs. MAC provides
the facilities which permit subroutines to be called recursively.

M-I091
Page 6

There are two basic requirements in recursion. The first is to
protect the return location of a subroutine, and the second is to
protect its storage.

These two requirements are separated as a matter of efficiency. If
a subroutine's storage was saved before every call to another sub
routine, and restored upon its return, then the two requirements
could be combined. That is, the return location could be included
as part of the subroutine's storage.

However, it is more efficient to adopt the convention that a sub
routine must protect the storage of its caller, rather than its
own. With this convention a subroutine may call, for example, ten
lower-level subroutines (including itself} and yet need only once
execute the saving and restoring operation. In contrast, if the
subroutine were to protect its own storage, it would, in the above
case, have executed the saving and restoring operations ten times.

The protection of a subroutine's return cannot be accomplished under
the convention of subroutines protecting their caller's storage.
However, since the return location is not needed until the end, the
saving and restoring operation need only be executed once.

The first recursion requirement (protection of the return) is
automatically handled by MAC. The second requirement (storage
protection) is accommodated by MAC very easily.

If a subroutine requires protected storage, the saving operation
is executed by MAC using the instruction

jsp spl

when one register of protected storage is required. (The ~ stands
for save £rotected storage.) B.1 substituting 2 or 1 for the 1, two
or tnree registers will be saved.

To save more than three registers, the instruction

jsp spn

followed by the desired number will save that number of registers.

For example,

jsp spn
5

M-I091
Page 7

will save five registers of protected storage. There will be
a fixed maximum number of temporary storage registers per subroutine.
The specific value of this number has not yet been decided upon.

The appropriate saving instruction should be executed by the
subroutine before it uses the protected storage. To use protected
storage, the subroutine simply addresses psI, ps2, ps3, etc.

The restoring operation is automatically performed by MAC when the
subroutine exits. The exits are identical to those of Section 11-
MAC remembers whether or not protected storage was used and how
much.

APPENDIX

M-1091
Page 8

SUMMARY OF FACILITIES AND EXECUTION TIMES

A. Available constants

B. MAC Operations
Instruction

cal x
jsp spl
jsp sp2
jsp sp3
jsp spn)
n)
jsp dp3
jsp dpn)
n)
jmp ral
jmp rml
jmp ra2
jmp rm2
jmp ra3
jmp rm3
cal ran)
n)
~sp rmnl

iO
il
13
17
m71
mip

Time·~

95
220
280
335

200f5.5n
285~~~

110

C. Protected storage Restoration

o
1
3
1

77 (octal)
710000 (octal)

operation
Call subroutine x
Save Protected S~orage

n up to .5
Display Parameters

n up to 1
~eturn to L~l; AC preserved
Return to Lf.l; AC from mac
Return to L~2; AC preserved
Return to Lf2; AC from mac
Return to Lf3; AC preserved
Return to Lf3; AC from mac
Return to LIn; AC preserved;

no limit on n
Return to L,tn; -AC from !!.2.;

no limit on n

If Protected storage was saved by a subroutine, additional time is
required to restore this storage when the subroutine exits. This
time is given by

85~55n

Where n is the number of registers protected.

* Time in microseconds
** Could be reduced to, 115 at cost of 13 (octal) regis ters
~~~ Additional time re~d if Protected Storage was saved (see 

C above) 


	01
	02
	03
	04
	05
	06
	07
	08

