F-368BP

MACERO

ASSEMBLY PROGRAM FOR PROGRAMMED DATA PROCESSOR -1

DIGITAL EQUIPMENT CORPORATION « MAYNARD, MASSACHUSETTS

MACRO ASSEMBLY PROGRAM
for

PROGRAMMED DATA PROCESSOR -1
(PDP-1)

DIGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETTS

Copyright 1962 by Digital Equipment Corporation

INTRODUCTION

@ " moU o w >

O 0 % >

EXAMPLES

SYMBOLS IN MACRO'S PERMANENT VOCABULARY

TABLE OF CONTENTS

PART 11
THE MACRO SOURCE LANGUAGE

Processing of the Source Language by MACRO

NOTOTION vt ittt teeeeeeeeeeneencnseasossssssanes

Syllables and Expressions: Format of a Source Program

Use of EXPressions «..eeeeeeeeessencensoescocsnans
Pseudo=Instructions. . .eeeeereeeenesneesneecnronans
Automatic Storage Assignmentieiiiiiiierannans

. Macro=Instructions v oo iiieeneneneecesonnnssnnnss

PART [
USE OF MACRO ASSEMBLY

English Tape Format.oviieiiiinieinnennnnnn.
Operation of the MACRO Assembly Program
Test Word Control of MACROiivvvniinnnnns..

APPENDIX 1

il

ooooooooooooooooooooooooooooooooooo

PART |

INTRODUCTION

Coding for a digital computer is the process of setting down the exact sequence
of instructions, constants and tables which must be placed in the memory of a specific
computer to perform some desired computation. The art of coding is far advanced from the
early days of automatic computation when all instructions of a program were written in
numerical form using the number system of the machine being used. This was coding in
machine language. Now, assembly programs are available for nearly all digital computers
which allow the user a more convenient language for writing the instructions forming his
program. MACRO is such anassembly program for the DEC PDP-1 computer. It translates

a source program written in a language, which we shall call the MACRO source language,

into an object program , which can be read directly into the PDP-1 computer.

A MACRO source program takes the form of a punched paper tape prepared
using the standard FIO -DEC Flexowriter with the Concise Il typeface as given in Appendix
A, or using an on-line editing program such as EXPENSIVE TYPEWRITER. An example of a
source program is given in Figure 1, exactly as the Flexowriter would print it. The first
line of a source program is a title line, and the program concludes with a start line, as in
the example. A MACRO object program is a binary tape punched by the PDP-1 under
control of the MACRO assembly program. The format of the binary tape is detailed in
Appendix B. It contains the title line of the source program in readable form, an input

routine which is read in the read-in mode by the PDP-1 and placed in the last registers of

memory, blocks of instructions and constants making up the object program, and, finally

a start block indicating the address of the first instruction to be executed.

n=100

100/

a, law tab
dap b
dzm s

b, lac .
add s
dac s
idx b
sas ¢
imp b
hit

tab, tab+n/

s, 0

c, lac tab+n

start a

Figure 1 A MACRO source program

An assembly program such as MACRQ permits the user to prepare source
fanguage programs using symbolic names or, simply, simbols to represent the numerical
values of instruction codes, machine addresses, and parameters. Not only does this make
the program easier to read and understand, but it also allows a degree of flexibility not
otherwise possible. For example, a program properly written in the MACRO source
language can be placed at any location in the PDP-1 memory by changing a single line

in the source program.

Normally an assembly program produces one machine language instruction for
each instruction of the source program. However, some lines in the source program,

known as pseudo-instructions, are directions to the assembly program and do not directly

produce instructions in the object program. An example is the pseudo-instruction start

used to denote the end of a MACRO source program. Also, MACRO provides a means of

associating symbolic names called macro-instructions with sequences of instructions

according to the user's desires.

Part Il of this memorandum describes the MACRO source language in terms of how
it is converted into machine language by the MACRO assembly program. Part [l presents

operating instructions for assembling source program tapes written in the MACRO language .

PART I

The MACRO Source Language

A. Processing of the source language by MACRO

A MACRO source program may be thought of as a long linear string of char-
acters in which the alphabet includes the various typewriter functions - tabulation,
carriage return, backspace and case shifts - as well as the visible characters. In
assembling a program, MACRO scans the string of characters making up the source
program starting from the title line and continuing through the stop code following the
first start line. Two passes of this nature are required for a complete assembly. On the
first pass, the values of symbolic addresses are determined and storage areas are reserved
for variables, tables, and constants. During the second pass the symbol values are used
in evaluating the instructions and constants making up the user's program, and the object

program is punched in the form of a binary tape.

Certain lists are maintained by MACRO for the purpose of carrying out the assembly
process. The symbol table contains an entry for each symbolic address, instruction code
or parameter used by the programmer in his source language program. The entry consists
of the character group forming the symbol, and its value represented as an eighteen bit

number.

The macro-instruction list contains the sequence of instructions making up each

macro instruction defined by the user's source program. The symbolic names of pseudo

and macro-instructions are filed in the pseudo=~instruction list which contains a reference

to the macro-instruction list for macro names, or to the appropriate routine in MACRO in

the case of pseudo=instructions.

A current location counter in MACRO indicates the object program location in

which the next instruction translated will be placed. A current radix indicator controls

whether a string of digits in the source program is treated as octal (base 8) or decimal

{base 10),

At the beginning of an assembly, the macro-instruction list is empty, and the pseudo-

instruction list contains only the names of system pseudo~instructions described in later

5

The symbol table contains the list of permanent symbols and values given in Appendix C.
At the beginning of each pass, the current location is set to 4 and the current radix is

set to octal.

B. Notation

In the following description of the MACRO source language, its structure will
be illustrated by character strings which could appear as part of a source program. These
strings will be enclosed in brackets < >. For clarity, the signs <~ > and <p > will
be used to represent tabulation and carriage return, and < > will be used for space when
needed for emphasis, The abbreviations tab and cr will be used for tabulation and

carriage return in format descriptions.

C. Syllables and Expressions: Format of a Source Program

As mentioned in the Introduction, a MACRO source program consists of a
title line, a body, and a start line. A title line is an arbitrary string of characters
terminated by a cr. The complete title is punched by MACRO in readable form at the
beginning of the object program tape. A middle dot in the title will cause only the

characters preceding it to be punched.

The start line must have the form illustrated in the source program example on
page 2. [t must be terminated by a cr and followed by a stop code, which will be the

last character read on the source program tape.

The body is a series of expressions, which are the basic units of a MACRO
source program. An expression is a string of characters representing an instruction of
a program, a constant used by a program, table entries, or other data. Some examples
are:

<add 100>

<dio t+2>

<+1234>

<m+n>

<123-a-.>

Expressions are usually delimited by tab, cr, slash, comma, or equals. The significance

6

of an expression depends on the context in which it appears .

More precisely, an expression is one or more syllables separated by the

characters plus, minus, or space. Examples of syllables are:

<add>

<100>

<1224>

<>
MACRO computes the value of an expression by summing the values of its component
syllables. [If a syllable is preceded by a plus sign or space, the syllable value is
added in forming the sum, if preceded by a minus sign, the complement of the syllable
value is added. The plus sign may be omitted before the first syllable of an expression.
The addition is performed in the 18-bit one's complement arithmetic of the PDP-1,
except that if the sum is zero, it will be evaluated as minus zero 777777 if any
syllable was other than plus zero. Since this addition is associative - the order in which
the syllables of an expression are written does not affect its value. In the following
examples, the current radix is assumed set for octal. The two expressions of each pair

will represent the same value to MACRO,

<add> = <400000>
<-234> = <776543>
<-0> = <777777>
<+x> = <x>

<dac 123> = <240123>
<lac i a+2> = <a+210002>
<=1+ = <777777>

Syllables can take a number of forms, two of which will be mentioned here.

1) Symbols = A symbol is a string of one, two, or three letters and digits in which at
least one letter appears, A symbol may represent an instruction as in dac, or a symbolic
address such as x in lio x. A symbol is defined if there is a corresponding entry in the
symbol table, otherwise it is undefined. The value of a symbol is the 18=bit number

associated with it in the symbol table if it is defined, and minus zero if it is undefined.

2) Integers - An integer is a string of the digits 0, 1, ..., 9 and is evaluated as an
octal or decimal integer according to the current radix. The value of an integer is the
18-bit representation of the integer. Thus the largest integer taken as its face value is
<777777> in octal or
<262143> in decimal.

The value of an integer above these limits is taken modulo (2]8 -1).

D. Use of Expressions

The meaning of an expression to MACRO is defermined by the context in which
it appears in the source program, and usually by the character immediately following it.
1) Storage word - An expression followed immediately by a tab or cr is a storage word.
<ijmp jesP>
<+103-a%>
The 18-bit number representing the value of the word is entered in the object program at the
address given by the current location counter in MACRO, The location counter is then
advanced by one. A storage word may be an instruction forming part of a program, a

constant used by the program, or data.

2) Loacation assignment - An expression immediately followed by a slash is a location

is a location assignment:

<100/>
<tab+120/>

The current location is set equal to the address portion of the value of the expression.

Thus.

<100/ sza jmp 100) >
or
<100/ sza
jmp 100>

in the source program will place the instruction sza in the object program at register 100,

and the instruction jmp 100 in register 101,

If, on Pass 1, a location assignment contains any undefined symbols, the

current location becomes indefinite.

3) Symbolic address tag - An expression immediately followed by a comma is an address
tag:

<beg,>

<100,>

<a+12,>
If the expression contains one syllable, and this syllable is an undefined symbol not
preceded by a minus sign, and the current location is not indefinite, the symbol is entered
in MACRO's symbol table and assigned a value equal to the current location, Otherwise,
the value of the expression compared with the current location, and a disagreement will
cause an error printout. The current location is not changed by a symbolic address tag.

Using a symbolic address, the preceding example could be written as

<100/a, sza —y jmp ap >
The programmer should note that location assignments and symbolic address tags, in them-
selves, have no effect on the object program, but rather direct the process of assembly.
Also, he should observe their inverse character. The location assignment sets the current
location counter to the value of an expression, while the address tag sets the value of a
symbol equal to the current location. Hence the sequences

<100/a,b,>
or

<100/ — a, D

b

assign 100 as the value of both symbols a and b. A sequence such as

<]OOO/fab,‘2

tab+n/>

is frequently used to reserve a block of registers for a table of data or computed results.
In the example the block starts at register 1000, is named by the symbol tab,and contains

a number of registers given by the value of the symbol n.

4) Symbolic parameter assignment = A symbol immediately followed by an equal sign, an

expression, and a tab or cr is a parameter assignment, It assigns the symbo! to the left

of the equal sign a value given by the expression to the right, if the expression is defined.

If the expression is undefined, no action is taken. For example:

<n=100Q>

<sna=sza >

<cai=cla+cli-opry >

<t=t+t-o >
The parameter assignment facility is useful for setting table lengths and other properties of
the object program. It provides a means of defining new operation codes to simplify the

writing of programs and for preparation of instruction sets for interpretive programs.

Comments - A string of characters which commences with a slash is a comment. The string is
ended by a Iﬂor cr. Comments are ignored by MACRO and may be used to label selections
of a program, annotate important instructions, and give the reader of the typescript infor-
mation about the program. Example:

<get, —=»f lac —{/ This is a commentp >

Current location syllable -~ the character period <.> is a special syllable whose value is

equal to the current location,
Hence,
<sza —o jmp =10
is an alternate way of writing
<a, sza-3fjmp >
The use of the features of the MACRO assembly program that have been discussed

so far are illustrated by the program example on page 2. The reader should be sure he

thoroughly understands this example before proceeding further in this memo.

E. Pseudo-instructions

Pseudo=instructions in the MACRO source language are directions to the MACRO
assembly program which govern the way in which subsequent information in the source
program is processed. The pseudo-instruction start, which informs MACRO of the end of

the source language program, has already been introduced.

Typographically, a pseudo-instruction is a string of at least four letters and
digits, in which at feast one of the first four is a letter. The string is followed by a

terminating character which may be space, plus, minus, tab, or cr. For convenience,

the character €~> will be used to represent any of these terminating characters. A pseudo-

10

instruction may always be abbreviated to four characters.

The pseudo-instructions of MACRO are described below:
1) End of source program

The pseudo-instruction start denotes the end of the source language program. The
expression following start gives the address of the instruction in the object program which is
to be executed first, and MACRO will include the appropriate start block in the binary
program tape. The line

<start beg+2)>
will terminate scanning of the source program and cause the word imp beg+2 to be punched
as the start block of the binary tape. When the binary tape is subsequently read into the

PDP-1, control will go to register 'beg+2" after the start block is read.

2) Radix control

The pseudo-instructions octal and decimal control the current radix for

evaluation of integer syllables. The string <octal~> anywhere in the source program sefs
the current radix to eight, and the string <decimal~> sets the current radix to ten. These
pseudo-instructions may appear as syllables of value zero in an expression, for example:

<octal 44+decimal 27 —= >

is equivalent to

<octal-=| 77 —=f decimal —= >

3) Suppression of input routine
The string <noinput~> anywhere in the source program will suppress punching of

the input routine on the binary program tape.

4) Storage of character codes

The pseudo-instruction character, flexo, and text are provided to allow the

programmer a convenient means of storing character codes for printout by his program,
or for comparison against alphanumeric data accepted by his program. For reference, the
six-bit codes for the Concise |ll character set used with the PDP-1 are included as

Appendix A of this memorandum,

The pseudo-instruction character is used to place a character code in the left,

middle or right six~bit portion of an eighteen bit word. The string <character~> is followed

11

by r, m, or 1 according to the position desired, and then the character whose code is
desired. Thus

<char ra> is the same as <000061>

<char mb> is the same as <006200>

<char [¢> is the same as <630000>

The above strings are pseudo-instruction syllables, and may be used in the same

manner as symbols or integers in forming expressions. For example

<-char rx> is equivalent to <777750>

The pseudo-instruction flexo is used to compile three character codes into one

eighteen bit word. Thus
<flexo dec> is the same as <646563>
and may also be written as

<char rctchar me+char Id>

The pseudo-instruction text is used to assemble a long string of characters by

groups of three into successive words in the object program. The string to be assembled
is enclosed between two appearances of the same character, which immediately follows
the string <text >. It is suggested that the character period be used to enclose the
string, although any legal character may be so used. Of course, the character selected
cannot appear withing the string itself. For example, the string

<text .Error.>

is equivalent to

<flex E -—=] flex rro - —»f char Ir -—f>

5) The repeat pseudo-instruction
The repeat pseudo-instruction provides a convenient way of placing a
sequence of similar expressions in a block of the object program. The string
<repeaten,>
causes MACRO to scan and assemble the following characters a number of times equal
to the value of the expression n. The string of characters scanned and assembled is the
range of the repeat; it starts immediately after the comma, and continues up to and

including the next carriage return. The expression giving the order of the repeat

12

(n in the above example) must be nonnegative and definite when the repeat is encountered
during the first pass. If the value of the expression is zero, the range of the repeat is
ignored.,

As an example of the use of repeat, the following sequence froms a table of

squares of length n.

<U =0-sAr=1 -=| repeatn,u —du=u+0 —=U+2) >

6) Emptying of symbol table

Occasionally it is desirable to delete all symbols from the symbol table, when
using MACRO to assemble certain symbolic data tapes. The string <expunge~> appearing
in the source program deletes all symbols, including the initital list given in Appendix C,
from the MACRO symbol table at the time it is encountered during the first pass. It has

no effect during the second pass.

7) Other pseudo-instructions

The remaining pseudo=-instructions - constants, dimension, variables, define, and

terminate - will be discussed in connection with automatic storage assignment and macro-

instructions in the following sections.

F. Automatic storage assignment

Several festures have been provided in the MACRO assembly program which
automatically assign storage locations for the constants used by a program and the variables
and tables manipulated by the program. These features reduce the amount of typing
required to prepare a complete source language program, simplify editing, and make the
source program typescript more readable,

Constants - An expression enclosed in parentheses is a constant syllable and may appear as

a syllable in storage words, and parameter assignments. MACRO will compute the value
of the expression enclosed and place it in a constants area of the object program as

explained below. The value of a constant syllable is the address where the enclosed word
is placed by MACRO. The location at which constant words are placed is determined by

the next appearance of the pseudo=instruction constants following the constant syllable.

13

For example, in the program illustration on page 2, the line
<c, =4 lac tabtny>
could be omitted if the line
<sad c&)
were replaced by
<sad (lac tab+n)) >
and the string
<constantsy >

inserted before the start line

When the pseudo=-instruction constants is scanned by MACRO, the constants
expressions assembled since the last use of the pseudo-instruction constants , or since the
beginning of the program, are placed in the object program starting at the current location.
Constant words having the same numerical value are entered only once. The current
location is advanced to an address somewhat beyond the register in which the last constant
is placed, leaving a small gap of unused registers between the constants area and any
following portion of the program. (This gap arises because MACRO reserves blocks of
registers for constants words during the first pass when some of these words may not be
defined.)

Some additional points on the use of constant syllables are:

1) The closed parenthesis may be omitted from constant syllables immediately

followed by one of the terminating characters comma, tab or cr.

2) Recursive use of constant syllables is permitted, that is, a constant

syllable may appear within an expression forming a new constant syllable:
<lac (add (com))Q >
or simplay
<lac (add (comp >
This maybe continued to a depth of eight levels.
Variables - A symbol typed with a bar over at least one of its characters at its first appear-
ance in the source program is a variable, for instance:

Sym> or <al2>.
All symbols identified as variables become defined on the subsequent appearance of the

14

pseudo-instruction <variables >. The pseudo-instruction variables must follow all defining
appearances of variables and may appear only once in any source program. The variables
are assigned fo sequential locations starting at the location of the pseudo=instruction
variables . Their initial contents is undefined. For instance, the sequence

<laca —stadd b —=fdac a ...

. b, 0 AAG,OQ >
is equivalent to
<lac a —=f add lo —»{dac a ...
- iabl >
varia esll .

except that the contents of registers a and b of the object program will be zero in the first

case, and undefined in the second.

Tables - Blocks of registers may be reserved for tables by means of the dimension pseudo-
instruction. The string

<dimension x(n), y(m), z(m+n)Q >
for example, reserves three blocks of lengths given by the values of the expressions n, m,
and m+n . The first address of each block is assigned as the value of the symbols x, y,
and z. The reserved blocks are placed at the location in the object program specified by

the variables pseudo-instruction. The initial contents of the reserved blocks is undefined

in object program. The following rules apply:

1. The expressions given as lengths of blocks in a dimension pseudo-instruction
must be definite when scanned on the first pass.

2. The symbols assigned to blocks by a dimension statement must be previously
undefined,

The use of dimension, variables, and constants in a complete MACRO source

program is illustrated in figure 3. This program will produce exactly the same object
program as the introductory example on page 2 except that the initial contents of register

s is zero in the earlier version and undefined here.

15

SUM

n=100

dimension tab (n)

100/

q, law tab
dap b
dzm's

b, lac .
add s
idx b
sas (lac tab+n
impb
hit

variables

constants

start a

FIGURE 3

A MACRO source program with automatic

storage allocation

16

G. Macro-instructions

Very frequently, the same sequence of instructions is required at many places

in a computer program. For example the two instruction sequence

spa

cma
forms the absolute value of the contents of the PDP~1 accumulator. To simplify writing
of the source language program and provide a more meaningful source program typescript,
it is convenient to represent such a sequence by a special name such as absolute. The
macro-instruction feature of the MACRO assembly program makes this possible. The source
program sequence

<define

absolute

spa

cma

terminate>
defines a macro-instruction with name absolute. When the string

<absolute>

subsequently appears in the source program, the sequence of words, spa, cma, will be
copies into the object program.

In the more common instances, the recurring instruction sequence is not
identical in each appearance, but the words of a basic sequence are modified by
additive parameters. A frequent combination is

lac x

dac y
which moves the quantity in register x to register y. The MACRO-instruction facility
allows the user to represent such a sequence by a name with a group of parameters such
as

<move x,y>

This representation is established by the definition

17

<define move A, Bp
lac A

dac B

Vi

terminatep >
which must appear in the source program prior to use of the macro instruction. In this

example A and B are dummy symbols which are symbols in which at least one letter is in

upper case, When MACRO scans the macro-instruction
<move x,y)>
it copies the word sequence from the definition into the object program subsituting the

values of the arguments x and y for the dummy symbols A and B respectively.

Defining a Macro-instruction

A macro=-instruction definition consists of four parts; the pseudo-instruction

define, the macro instruction name and dummy symbol list, the body, and the psudo -

instruction terminate. Each part is followed by at least one tabulation or carriage return.

The macro instruction name has the same form as a pseudo instruction -- a
string of at least four letters and digits of which at least one of the first four characters
is a letter. The name is terminated by a space or by a tab or cr if there is no dummy
symbol list, The first six characters of a macro instruction name must distinguish that
name from all other macro names and all pseudo-instructions. The dummy symbol [ist
consists of as many distinct dummy symbols as desired, separated from each other by
commas, and from the macro name by a space . Since dummy symbols have no meaning
outside of a macro definition, the same dummy symbols may be used in many definitions
without harm.

The body of a macro definition is an arbitrary sequence of storage words in
which any dummy symbol from the dummy symbol list may appear as a syllable. The

pseudo=~instructions character, flexo, text, octal, decimal, and noinput may be used within

the body of a macro definition. Constant syllables may appear in any expressions and
dummy symbols may be used as syllables in constant expressions.

Using a Macro~-instruction

A macro instruction consists of a macro instruction name followed by an

18

argument list, and a tabulation or carriage return. The argument list consists of expressions
separated by commas, in correspondence with the dummy symbols listed in the definition
of the macro-instruction. The first expression of the argument list must start with space,

plus, or minus to separate it from the macro name. The expressions in the argument list may

contain constant syllables and the psuedo instructions character, flexo, octal or decimal.

When the current location syllable <.> appears in an argument list its value is taken as
the current location at the time the macro-instruction name is scanned.

MACROQO assembles a macro-instruction by evaluating the expressions in the
argumentlist, substituting these values for corresponding dummy symbols in the definition
and copying the resulting sequence of storage words info the object program. The current
location is advanced for each word copied. If an argument expression is omitted, its
value is taken as zero.

An Example

To illustrate The definition and us of a macro instruction is illustrated by a
program to store zeros in a block of registers. This program can be assigned the name
clear by the definition

<define clear A, N

’ law A

dap .+1
dzm
idx =1
sas (dzm A+N
imp .=3
terminate>

When the line

<clear tab, 100) >
appears later in the source program, the instruction sequence

faw tab

dap .+1

dzm

idx -1

19

sas (dzm tab+100
jmp . =3
is inserted in the object program. The resulting sequence will clear a hundred registers

starting with register tab.

Address tags within a macro definition

Before MACRO scans the body of a macro instruction definition, the current
location is set to zero: it is then advanced by one for each storage word included in the
definition. Therefore, an address tag in the body of a macro definition will be assigned
a value equal fo the number of storage words in the body up to that point. Symbols
defined in this manner are entered in the symbol table as usual and may be referred to at
any point in the source program, Note that a given symbol should not be used as an

address tag in several definitions as this would attempt to define the same symbol twice.

Addressing withing a macro definition

In longer macros it is frequently necessary for some instructions in the sequence
making up the macro to address other instructions in the sequence. The address parts of
such instructions must be given different values each time the macro-instruction is used
at a different object program location. To provide a convenient means of handling this
problem, a special dummy symbol <R> is provided. This dummy symbol may always be used
in the body of a macro definition and should not appear in the dummy symbol list. When
a macro~-instruction is used, the current location at the time its name is scanned is
subsituted for <R> in each appearance. In illustration, the preceding definition of

<clear A, N> may also be written as

<define clear A, N
law A
dap a+R
a, dzm
idx a+R

sas (dzm A+N
imp a#R

terminate>

20

When the current location syllable <.> is used in the body of a macro definition as in

the earlier example, symbol <R> is automatically included.

Cascading macro definition

Once defined, a macro instruction may be used in the body of another
macro definition. In this case the expressions in the arguement list of the macro
instruction may also include any dummy symbols from the new definition. An example
is given in Figure 4, which is a third way of writing the summation program introduced

on page 2.

Dummy symbol assignments

Provision has been made for creating new dummy symbols and reassigning the
meaning of existing dummy symbols within the body of a macro-instruction definition.

This is accomplished by a dummy symbol assignment. The format is the same as for a

parameter assignment except the left side must be a dummy sybol, and the expression
on the right may contain dummy symbols. When a macro=-instruction is subsequently
used in the source program, the value substituted for the new dummy symbol is computed
from the values of arguments substituted for dummy symbols according to the right hand
side of the dummy symbol assignment. For instance the string

<C=A+B - 100)>
will create a new dummy symbol <C> whose value is the sum of the arguements sub-
situted for A and B, plus the number -100. Dummy symbols may be reassigned in
terms of themselves:
Thus

IX=X+X+X+X) >
will cause four times the value of the argument corresponding to dummy symbol X to

be substituted for X in subsequent appearances.

21

SUM

define

define

define

100/

define

initialize A, B law B

terminate

accumulate T add T

terminate

index A, B, C idx A

jmp C terminate

total T, N, S

initialize b& R, T

dzm S

lac

accumulate S

index b+R, lac T+N, b+R

terminate

dimension tab (n)
total tab, n, s
hlt

variables
constants

start a

FIGURE 4

dap A

dac T

sas (B

Cascading macro-instruction

22

PART Il

USE OF THE MACRO ASSEMBLY

A. Source Program Tape Format

Each source program tape must begin with the title of the program. This title may
consist of any legal flexo characters and is terminated by the first carriage return preceded
by any character other than carriage return. On the source program tape the characters

plus and space are equivalent as are the characters tab and carriage return. The MACRO

language is format free; that is, the positioning of any character or syllable does not effect
its meaning, and redundant characters are ignored (i.e., 3 spaces are equivalent to 1 space,

successive tabs and/or carriage returns are equivalent to one tab or carriage return).

As MACRO instructions must be defined before they are used, the usual practice
is to put these definitions at the beginning of the program. However, since MACRO defin-
itions do not take up any space in the object program, they may be placed anywhere in the

program. The pseudo-instruction constants and variables cause all previously mentioned

constants and variables to be stored, so these must follow the last definition of a constant
or a variable. On pass 1, a block of constants storage equal to the number of the left
parenthesis in the program is saved. On pass 2, only the unique constants are stored in the
constants block. Since the number of unique constants is usually less than the number of
actual constants, especially in large programs, the pseudo-instruction constants is usually

placed just before start at the end of the program.

The binary loader which MACRO punches at the beginning of the object pro-
gram tape executes the jmp instruction at the end of the tape upon encounter. For this
reason, it is usually wise to have the program begin at a hlt instruction so that depressing

the continue switch on the console will start execution of the program after it is read-in.

B. Operation Of The MACRO Assembly Program
a Read in MACRO - If a symbol punch containing symbols or MACRO definition need-

ed by the program about to be assembled must be used, place the symbol punch in the

reader and depress read=-in.

23

b Place source program tape in the reader - The test word and test address toggle switches

must all be zero.

c To begin pass 1 on the source program tape, depress continue ~ MACRO will stop shortly

after encountering the stop code which follows the start at the end of the tape.

d If there are more tapes to be processed by pass 1, place the next tape in the reader
and depress start. Continue this until all tapes to be processed on pass 1 have been pro-
cessed. Multiple processing allows the source program to be on more than one tape. For
example, routines need to be written only once, and the tapes processed with each pro-

gram which uses the routine. Tapes processed in this fashion produce a single object tape

from the multiple source tapes.

e To process the source tape (s) by pass 2, place the first tape in the reader and depress
continue. MACRO will punch some blank tape, read some tape, punch the title at the
beginning of the object tape in readable form followed by the binary input routine in read-
in mode, and then begin punching the binary version of the program in blocks of 100 words

(or less).

f MACRO will stop shortly after encountering the stop code following the start block as

it did on pass 1. To process more tapes by pass 2, follow the same procedure as in 4.

g When all tapes to be processed by pass 2 have been processed, depress continue to

punch the jump block at the end of the object tape. The assembly is now complete.

h To print and/or punch the symbols and/or MACRO definitions, and/or restore MACRO
for processing another program, place the MACRO symbol package in the reader, set the
desired sense switches, and depress the read-in switch. The sense switches have the follow-

ing meaning to the MACRO Symbol Package.

SENSE SWITCH MEANING
1 Symbol punch
2 Symbol print alphabetic
3 Symbol print numeric
4 Restore MACRO

24

The symbol punch routine will punch out a binary version of MACRO's symbol and/or
MACRO definition table. This symbol punch may be read into MACRO at a later date
so that a program which refers to symbols defined in the just assembled program may be
assembled, or symbolic corrections may be assembled for the present program. Also, by
punching out the MACRO definitions, a person can collect a system tape of commonly

used MACRO instructions without defining these in every source program.

The symbol punch may be read by DDT (Digital Debugging Tape) to permit symbolic
debugging of a program.

If a symbol punch is requested, MACRO will punch a small amount of tape feed and wait
for the title to be typed on the Flexowriter. The title may consist of any characters with
the exception of tab and carriage return. The title may be terminated in three ways:

(1) by a carriage return, which causes both the symbol table and MACRO definition table
to be punched, (2) —1 s, which causes only the symbol table to be punched, or (3)
by = m, which causes only the MACRO definition table to be punched.

The symbol print routines will print all symbols defined during the assembly of the pro-
gram and will also print the limits of the constants storage area(s) used. If any symbols
in MACRO's permanent vocabulary were redefined, then MACRO will also print the

original definition of these symbols.

Restore will restore MACRO, allowing the user to begin at step 2 to assemble another

program.

C. Test Word Control Of MACRO

Occassionally, it becomes necessary to break the normal sequence of operation
allowed by the use of the continue and start switches on the PDP-1 console. This may be
done by using the test word to command MACRO. Whenever the start switch is depressed
with the test address equal to zero, MACRO will examine the test word. The bits in the test

word. The bits in the test word have the following meaning:

BIT MEANING
0 examine the remainder of the test word
] Down = pass 1
Up - pass 2
2 Down = Reset initial address to zero

Up - Continuation, do not reset address

25

Bits 3 - 5 have meaning only on pass 2
3 Up - punch object tape
Down - don't punch
4 Up = punch input routine
Down - don't punch input routine
5 Up - punch title
Down = don't punch title
for example: to repeat pass 2 on a tape which has just been assembled set TW to 670000 and

depress start.

MACRO normally checks the parity bit while reading and will indicate any parity errors de-
tected. If sense switch 6 is up then the parity check is suppressed.

D. Error Stops During A MACRO Assembly

Upon detecting an error, MACRO will print out the following:
aaa bbbb cec dddd eee

aaa is the three letter code indicating the error. bbbb is the octal address at which the error

occured. ccc is the symbolic address at which the error occured. dddd is the name the last

pseudo-instruction encountered. In the case of an error caused by a symbol, eee will be that
symbol. Following is a list of the error indications in MACRO:
ERROR MEANING
us a An undefined symbol has been encoun-
tered by MACRO. a will indi-
cate how the undefined symbol was be-
ing used. The value of the symbol will

be taken as zero.

a Meaning

a In a pseudo-instruction argument

w In a word

c In a constant

P In a parameter assignment (assignment with an equal sign)
m In a MACRO instruction definition

26

| In a location assignment

r In a repeat instruction (the count)

s In a start pseudo=-instruction

d In @ dummy symbol assignment

mdt

mdd

mdm

zpa

mdv

ipi

ilr

ids

sce

27

Multiple definition of a tag. The defini-
tion of this address tag does not corre-
spond to a previous definition. The

symbol is not redefined.

Multiple defintion in a dimension state-

ment.

Multiple definition of a MACRO instruc-
tion. The name of this MACRO in-
struction conflicts in its first 6 char-
acters with a pseudo-instruction or
some other MACRO instruction name.
The MACRO instruction will be rede-
fined.

Itlegal parameter assignment.
Multiple definition of a variable.
Parity error. The character is ignored.

An illegal pseudo=instruction. Ignore all
characters preceding the next tab or

carriage return.

Illegal repeat instruction, N is minus.

Ignore.

Illegal dummy symbol in the title of a
MACRO instruction definition.

Storage capacity exceeded. Assembly

cannot proceed.

ilf lllegal format.

tme Too many constants. Assembly cannot
proceed.

tmv Too many variables.

tmp Too many parameters (dummy symbols).

Upon coming to a halt after an error printout on pass 1, start and continue have the same
effect and will continue processing pass 1. Upon coming to a halt after an error printout on
pass 2, start will continue processing pass 2 as before. If continue is depressed then pass 2

processing is continued with punching suppressed.

Setting test word bit 17 to a 1 has the same effect as pressing continue after each error print-

out.

28

PART IV

EXAMPLES

EXAMPLE 1: Octal Integer print Subroutine and test

/octal print subroutine
/call by jda opt with number in AC

poc=Jjda opt /also call by poc

10C/opt, O /subroutine starts in 100

dap opx

law 1 6

dac occ /occ is a variable, will contain count
opc, lac opt

ral 3s

dac opt

and (7 /get first digit - 7 is a constant

sza 1 /test for digit O

law char rO /get concise code for O

rcr 9s

rer 9s /put code in IO

Ltyo

isp occ /more characters?

Jmp opc /yes
OpX, Jmp . /no, exit
variables /assign variables defined in opt here
tes, lat /test octal print

poc /call octal print

lio (char r
/the char c.r. into the AC

tyo

hlt

jmp tes /print another number
constants /all constants will be stored starting here
start tes /this indicates the end of the

/program, and will cause a Jmp tes
/to be punched at the end of the
/binary tape.

/start must be followed by a c.r. or
/tab, and a stop code

29

EXAMPLE 2¢ punch 100 lines of tape feed, punch all that 1is printed
on the typewriter until a carriage return, then punch 200
lines of tape feed and type ok on the typewriter.

example 2

200/g0,

gol,

go2,

go3,

variables

constants
start go

- make a Frideg‘writer

law
cli
ppa
add
spa
Jmp
lio

tyo
clf
szf
Jmp
tyi
dio
lac
add
dac
law
XX

and
ior
rcr
rcr

ppa
law

sas
Jmp
law
cli
ppa
add
spa
Jmp
lio

ril
tyo
ril
tyo
ril
tyo
hlt
Jmp

\
i 100

i 200

(2

=3
(flexo ok

6s
6s
6s

go

/1 is a constant

/punch 100 lines of tape feed
/character is c.r.

/listen for character to be typed
/skip on not flag 1

/listen loop

/get typed character

/tem is a variable

/set up to calculate parity bit
/xx=hlt, this will be modified
/mask parity bit

/combine with character
/rotate into IO for punching

/character is c.r.
/test for carriage return

/feed 200 lines, this could be a subroutine

/the three characters o,k,c.r. into the IO

30

EXAMPLE 3: the same as example 2, but with macros

/Macro definitions for big Friden writer

define

define

define

define

feed N
law 1 N
cli

bpa

add (1
spa

Jmp .-3
term

exchange
rcr 9s
rcr 9s
term

print A
lio (A
tyo
term

print3 A
lio (A
ril 6s
tyo

ril 6s
tyo

ril 6s
tyo

term

/definition of a macro to
/feed N lines of tape

/constants may be used within
a macro definition

/only the first 6 characters count

/A 1s the dummy parameter
/whenever print is used

/the argument will be stored in the
/constants table

31

/program begins here

g0,

gol,

goz,

variables
constants
start go

feed 100
print char r

clf
gzf
Jmp
tyi
dio
lac
add
dac
law
hlt
and
ior

1

il
R
tem
tem

(ral
2

5252

(100
tem

excnange

bpa

law char r

sas

tem

Jmp gol
feed 200

print3 flexo ok

hlt
Jmp

go

/again char is c.r.

32

Example 4: use of the dimension statement and the repeat instruction.
/a do nothing program

n=6
dimension abc(20),tbl(n+n),tb2(n+n+2)

/the above instructs Macro to save 20,14,16 octal
/registers respectively for the variables abc,tbl,tb?

/generate 22 ppa instructions

a, repeat 22,ppa

/generate a table of the integers 0,1,...,n-1
b, repeat n,.-b

/generate a routine which will test for
/successive powers of two

tp2, decimal
z=1
repeat 18,sad (z Jsp a Z=2+7Z
hlt
octal
/the above repeat generates a series of instructions like
/sad (1
/Jsp a
/sad (2
/Jsp q
/sad (4
/3sp q

/etc. through the powers of 2 up to 400000 base 8
/notice that sad (z and jsp g are terminated by tabs
/and therefore are in the range of the repeat

/upon entry AC contains 2xP+tp2+l, where P is the power of 2

a5 sub (tp2+1 /AC now contains 2xP
sar 1s
dac pow /deposit power of 2 in pow
hlt

variables

constants

start

33

34

APPENDIX 1

SYMBOLS IN MACRO'S PERMANENT VOCABULARY

hlt 760400 lac 200000
xor 60000 isp 620000
xct 100000 imp 600000
tyo 730003 ifd 120000
tyi 720004 jda 170000
skp 640000 isp 460000
$Zo 641000 iot 720000
szm 640500 ior 40000
szf 640000 idx 440000
sza 640100 i 10000
sub 420000 XX 760400
stf 760010 esm 720055
spq 650500 dzm 340000
spi 642000 dpy 730007
spa 640200 dis 560000
sma 640400 dip 300000
szs 640000 dio 320000
sir 676000 dap 260000
sil 666000 dac 240000
scr 677000 cma 761000
sas 520000 clo 651600
sar 675000 cli 764000
sal 665000 clf 760000
sad 500000 cle 761200
rrb 720030 cla 760200
rpb 730002 cks 720033
rpa 730001 cfd 720074
rir 672000 cdf 720074
ril 662000 cal 160000
rer 673000 and 20000
rcl 663000 add 400000
rar 671000 1s 1
ral 661000 2s 3
ppb 730006 3s 7
ppa 730005 4s 17
opr 760000 5s 37
nop 760000 bs 77
‘mus 540000 7s 177
Ism 720054 8s 377
lio 220000 9s 777
law 700000

lat 762200

lap 760300

35

36

F-36BP PRINTED IN U. S. A, 500-11/6:

