FLINT 36 A3D

DESCRIPTION AND
OPERATING PROCEDURES

"For presentation at the annual meeting
of The Digital Equipment Computer Users
Society, held at the Lawrence Radiation
Laboratory, Livermore, California, on
November 18 and 19, 1963

by

Jacob M. Baker and David J. .Isenberg
CHARLES W. ADAMS ASSOCIATES, INC.
Consultants in Electronic Data Processing
Bedford, Massachusetts

PREFACE

Since FLINT (originally written in FRAP) was released
about a year ago by Itek Corporation, through The Digital
Equipment Computer Users Society, there has been considerable
demand for improved documentation and a revised listing. As
a service to DECUS, Adamg Associates gladly offered to under-
take the conversion and redocumentation of FLINT, and has
done so with the permission and assistance of Itek. The re-
sults of its work are reported in this paper.

In the near future, new FRAP and MACRO listings will be
made available by Adams Associates and other modifications
are being considered. Among these are the production of a
totally relocateable version of FLINT, the removal of expo-
nent bias, and the addition of other floating-point instruc-
tions such as a floating index.

Adams Associates wishes to acknowledge with thanks the
substantial contribution made by Edward J. Radkowski of Itek
Corporation to the revision of FLINT. Readers of this paper
are invited not only to request additional copies of it from
Adams Associates but also to forward to the company any sug-
gestions or criticisms. These should be marked to the atten-
tion of David J. Isenberg or Jacob M. Baker.

CONTENTS

Introduction
Instruction Repertoire

Floating Operations
Entering Interpreter

Formats

Unfloating Routine

Input Routines

Output Routines

Description of Instructions
Possible Modifications by Users

Partially Relocateable Version
Expansion of Input Buffer

DECAL Listing

11

il
12

12

FLINT 36 A3D

Introduction

FLINT is an interpretive routine that permits the Digital
Equipment Corporation PDP-1 to perform double-precision float-
ing-point arithmetic, input, output, and elementary function
evaluation. Originally written in FRAP for use in lens design
work (though nonetheless a general-purpose program), FLINT has
now been translated into DECAL to be compatible with other
programs in this language. Arithmetic and function evaluation
are performed interpretively, input and output are handled by
closed subroutines addressed directly by the user’s programs,
and overall format control is left to the user's routines.

Instruction Repertoire

The instructions currently available for the interpreter
are listed below:

Floating Operations

Operation

Function : Mnemonic Code
Deposit floating accumulator fda 00
Floating add fad 02
Floating subtract fsu ou
Load floating accumulator flo 06
Floating square root fsr 2y
Floating sine fsi 26
Floating cosine ' fco 30
Floating skip fsk 32
Floating multiply fmu 54
Floating divide fdi 56

Floating operate fopr 76

Entering Interpreter

Octal
Function ' Mnemonic Code
Enter interpretive mode cal .. 160000
Enter interpretive mode and
load floating accumulator cal vy 16yyyy
Formats

Floating-point quantities are expressed in the form
y-ZX where the magnitude of y is less than one. Arithmetic
is done using a floating-point accumulator (FLAC) which con-
sists of four storage registers. The absolute value of y is
stored to double-precision accuracy in the first two registers,
the sign of y in the third, and x + 11 in the fourth. With =
bias of +11, the exponent ranges from -42 to +20. This range
was selected by Itek as being most useful for their work.

Operands for floating-point instructions are assumed by
the interpreter to be stored in either two or three consecu-
tive storage registers, depending on whether Program Flag 5
is off or on. In the two-register format (Program Flag 5
off), bit 0 (bits being numbered 0 to 17 from left to right)
of the first register contains the sign of y. As shown in
the diagram below, the first 17 bits of the absolute value of
y are stored in bits 1-17 of the first register, and the re-
maining 12 in bits 6-17 of the second register. Bits 0-5 of
the second register contain the signed quantity equal to x
plus the exponent bias.

a | bbbbbbbbbbbbbbbbb | cccecc] dddddddddddd
a sign of y
b first 17 bits of y
¢ x plus exponent bias
d - final 12 bits of'y

TWO-WORD FORMAT

(@3]

In the three-register format (Program Flag 5 on), as il-
lustrated below, bit 0 of the first register contains the sig¢gn
of yv and bits 1-17 are the first 17 bits of the absolute value
of y. Bit O of the second register is always zero and bits
1-17 contain the remaining bits of the absolute value of y.
The third register contains the value of the exponent incre-
mented by the exponent bias. This three-word format is espe-
cially useful for saving and restoring FLAC and is often used
only for that purpose.

fil_] bLbbbbbbbbbbbbbbb | ¢ [dddddddddddddddda | [eeececececececeece |

sign of vy

first 17 bits of y
zero always

final 17 bits of y

x plus exponent bias

[oEN TR e IR oxli '}

THREE -WORD FORMAT

Instructions to be processed interpretively are written
in the same format as normal PDP-1 instructions and are as-
sembled with a five-bit operation code, an indirect address
bit, and a twelve-bit address. This address refers to two or
three consecutive locations, depending on the position of
Program Flag 5. Thus, in the description below of the inter-
preted operations, the symbol C(Y) refers to the contents of
locations Y, Y+1, and optionally Y+2, where Y is the address
part (after indirect addressing, if any, has been performed)
of the instruction being interpreted. If ¥ is zero, the in-
struction is interpreted as referring to FLAC itself.

There are eleven floating-point interpretive instructions
which, with their overflow and underflow conditions, are de-
scribed in detail later.

When floating-point operations are to be performed, it
is necessary to enter the interpretive portion of FLINT.
This is accomplished by the PDP-1 instruction cal, which
transfers control to location 10l,with the location of the
next instruction to be interpreted in the accumulator. Since
it may often be necessary to enter and leave the interpretive
mode, the cal instruction is interpreted as a floating load
(flo) as well as an entry instruction whenever the address of

the cal is other than zero. Indirect addressing may not be
used with the cal instruction since this is assembled as a
Jda instruction; therefore, if indirect addressing is desired,
the correct sequence of instructions would be cal..:; flo 'Y:

The interpreter is so arranged that once the cal instruc-
tion is encountered, it will regard each succeeding instruc-
tion as a floating-point instruction until it encounters an
exit instruction. Any instruction with an operation code num-
ber of 10 through 23, 34 through 47, or 60 through 75 will be
regarded as an exit instruction with the exception of 16, the
cal instruction.

Instructions with these operation code numbers will be
simultaneously executed and used as exit instructions when
encountered in the interpretive mode. All succeeding instruc-
tions will be considered normal machine instructions until
another cal is encountered. Thus, such instructions as xor -
operation code 06, and - operation code (02, or dio - operation
code 32, may not be used in their normal sense while in the
interpretive mode. The instructions whose operation codes
have thus been preempted by floating instructions were se-
lected because they are unlikely to be used while in floating
mode. It is important to note that, once in the interpretive
mode, instructions not having the operation codes cited in
the preeedlng paragraph will be interpreted as floatlng in-
structions whether or not they are so intended.

Unfloating Routine

The instruction jda unflo enters a subroutine which con-
verts the floating-point number stored in FLAC to a fixed-
point integer. This integer is equal to the value of the
contents of FLAC divided by the quantity two raised to the
power of the contents of location fixexp. The integer result-
ing from this conversion is stored in the accumulator and the
contents of FLAC are destroyed. (The unflo subroutine trun-
cates rather than rounds the quotient obtained by dividing
two to the appropriate power into C(FLAC). Thus if FLAC con-
tains 1.4g and fixexp contains 0, jda unflo will put 1 into
the accumulator; if FLAC contains 1.4g and fixexp contains

, jda unflo will put 0 into the accumulator; if FLAC con-
tains 1.45 and fixexp contains -1, jda unflo will put 3 into
the accumulator.)

Input Routines

There are three input subroutines which, like the output
subroutines, are addressed directly from the main program.
The first, entered by the instruction jda readc, reads and
translates single characters. The second, entered by the in-
struction jda readg, handles groups of characters. Each of
these two routines reads from punched tape or from the con-
sole typewriter, depending on whether the input control word
(icword) contains taper (for tape) or typer (for typewriter).
FLINT is arranged so that icword contains taper unless this
is altered by the useris routine. Such alteration is accom-
plished by writing: lac taper: dac icword: etc.

After a character is read, it is compared with the en-
tries in a table containing the standard Fio-dec Code for
each character as well as a control code that may have one
of eight different values. Code 0 marks characters to be ig-
nored, such as illegal configurations which do not correspond
to typewriter or Flexowriter symbols. Code 1 marks characters
such as space or tab, which serve as delimiters indicating
the end of an alphanumeric word. Code 2 marks the decimal
digits 0-9 and Code 3 marks the symbols used in floating-
point numbers, such as a minus sign or a period (used as a
decimal point). Codes 4-7 are assigned to the alphabetic
characters; only one bit is tested and all characters having
any of these four codes are treated identically.

The readc routine reads a single character, looks it up
in the table to find the control code, and returns to the main
program with the concise code (with 20 and 0 reversed) in
bits 12-17 of the accumulator, which elsewhere is filled with
zeros and the iotble entry in I0. If the control code is 0,
another character is read and processed in the same manner
before returning to the main program.

The readg routine reads numerical or alphabetic groups
and determines which group is being read by noting the con-
trol code of the first character. If the code is 4 through
7, the group is alphabetic; if 2 or 3, it is numeric: if O
to 1, the character is ignored and the next character treated
as the first.

When reading from paper tape, location buffl4 must be set
to zero before a call to readg the first time that this in-
struction is called, and if successive calls to readg are in-
terspersed with calls to any of the other read routines which
are also reading from paper tape.

If the group is alphabetic, the characters are translated
and their concise codes are saved until either a delimiter
(control code 1) is encountered or four characters with con-
trol codes 2 through 7 have been read. Characters with con-
trol code 0 are always ignored.

The concise codes of the one, two or three characters
preceding either the delimiter or the fourth character are
then assembled in the accumulator, each occupying six bits
with the first one to the left and the whole group right-jus-
tified, with zeros on the left if necessary. The control and
the concise codes of the delimiter or fourth character are
put in I0 bits 0-2 and 12-17, respectively. Program Flag 4
is on if four characters were read, and off if a delimiter
was encountered. Control is then returned to the main program.

If the group is numeric, characters are read until a de-
limiter or a character with control code 4 through 7 is encoun-
tered. A plus or minus sign may, but need not, appear anywhere
in the number, and there may be a maximum of ten decimal dig-
its. (In FLINT, a plus sign is indicated by " (", a left pa-
renthesis, rather than by "+", the conventional plus symbol.

If there are two or more minus signs, all but the last are
ignored.)

If a decimal point appears, the resulting number is con-
sidered to be a floating-point integer and is formed in FLAC,
Program Flag U is turned off, and overflow or underflow is
signalled as in floating add. If two or more decimal points
appear, all but the last are ignored. If no decimal point
occurs, the result is considered to be a fixed-point integer,
Program Flag 4 is turned on and, if it exceeds 131,071 in
magnitude, Program Flag 6 is also turned on. The fixed-point
integer appears in the accumulator when control is returned
to the main program. Whether the integer is floating-point
or fixed-point, the control and the concise codes of the char-
acter which served as a delimiter appear in I0 bits 0-2 and
12-17, respectively, and the previous contents of FLAC are
destroyed.

The third subroutine, entered by the instruction jsp
buff, brings characters from paper tape to the I0 register.
Before the jisp, the instruction dzm buffli should be given.
The first succeeding [jsp buff instruction will then read
enough characters from paper tape (455 as the buffer length
is now set) to fill the buffer and put the Flexowriter code
of the first character into I0 bits 10-17. The next jsp_buff

instruction places the second character read from the buffer
into I0 bits 10-17, and each such succeeding instruction
brings another character from the buffer into the I0 register
until all the characters have been brought in. The next jsp
buff instruction reads another buffer full of characters from
tape, and the entire process is repeated.

Output Routines

There are three output subroutines, all of which write
information on punched tape, the console typewriter, or both,
depending on whether the output control word, location ocword,
contains tapew (tape only), typew (typewriter only), or bothw
(tape and typewriter). There is also the write-IO0 routine
(entered by the instruction jda writio) which writes on paper
tape the eight-bit character contained in bits 10-17 as many
times as specified by the number in I0 bits 0-7. If I0 bits
0-7 are zeros, the eight-bit character is written once. No
look-up or conversion is performed and the character is writ-
ten on tape regardless of the contents of the output control
word.

The write-character routine, (entered by the instruction
jda writc) writes the six-bit concise code character contained
in I0 bits 12-17 as many times as specified by the contents
of T0 bits 0-7, using the same convention as the write-I0
routine.

The write-integer routine (entered by jda write)writes
the integer in the accumulator converted to decimal form,
followed by the character in I0 bits 12-17. The final char-
acter may be written repeatedly according to I0 bits 0-7 in
the same manner as the write-I0 routine. Insofar as the sign
and initial spacing or zero suppression is concerned, the
format is controlled by the value of the format control word,
format.

The write-floating routine (entered by jda writf)writes
the contents of FLAC converted to decimal form, followed by
the character in 10 bits 12-17 exactly as in the write-integer
routine. The contents of FLAC are destroyed after calls to
either the write or the writf routine.

Format control is specified by the contents of location
format as follows:

Bits 0-5

Bits 6-11

Bits 12-14

Bits 15-17

The number of digits to the left of the
decimal point. If zero or less than the
number of significant digits, all signifi-
cant digits will be printed; otherwise
spaces or zeros will appear on the left

to fill out the required number of spaces
to right-justify the column: this must be
124 or less for fixed-point numbers.

The number of digits to the right of the
decimal point. This must be zero for
fixed-point integers, if zero for float-
ing-point numbers, no decimal point will
be printed.

Sign control. If zero, no sign will be
printed; if 1, 2 or 3, a minus sign will
be printed for negative numbers and noth-
ing, space or plus sign, respectively,
for positive numbers.

Zero control. If zero, spaces are used

in place of initial zeros; if one, initial
zeros are printed, this being useful for
handling long integers and fixed-point
numbers other than integers.

The contents of format may be altered by the following
sequence of instructions: lac nf; dac format; etc., where nf
contains the desired contents of format.

Listed below are system symbols declared by FLINT; there-
fore, they should not be used by a program which uses FLINT
and is assembled with it:

iotble ocword
fixexp writc
unflo readg
writf buff
write typer
writio taper
bothw icword
tapew readc
typew buffy

format

Description of Instructions

flo

fad

fsu

fmu

fdi

fsr

fsi

feo

floating load: Unpack C(Y) from its two- or

three-word format into the four-word format
and place in FLAC.

floating add: Place the arithmetic sum of C(Y)
and C(FLAC) din FLAC. If the sum is greater

than 2131061, the result is incorrect and Pro-
gram Flag 6 is turmned on. If the result is

less than 2—131084, or if the mantissa of the
sum is zero, the mantissa of FLAC will be posi-
tive zero and the exponent of FLAC will be -U42
upon completion of the operation. Such astro-
nomical exponents can be obtained only because
an entire 18-bit word is allocated to the ex-
ponent in FLAC.

floating subtract: C(Y) is subtracted from
C(FLAC) and the difference is put in FLAC.
Overflow and underflow are handled as in float-
ing add.

floating multiply: The product of C(Y) and
C(FLAC) is placed in FLAC. Overflow and under-
flow are handled as in floating add.

floating divide: C(FLAC) is divided by C(Y)
and the quotient is put in FLAC. Overflow and
underflow are handled as in floating add.

floating square root: The square root of C(Y)
is put in FLAC if C(Y) is positive. Overflow
conditions are not possible. If C(Y) is nega-
tive, the contents of FLAC are left undisturbed
and Program Flag 4 is turned on.

floating sine: C(Y) is treated as an angle in
radians. The sine of this angle is put into
FLAC. Error conditions are not possible.

floating cosine: Cos C(Y) replaces C(FLAC) as
in floating sine.

10

fda

fsk

fopr

floating deposit accumulator: C(FLAC) is packed
into the two- or three-word format depending

on the position of Program Flag 5, and deposited
into locations Y, Y+1, and optionally Y+2. With
Program Flag 5 off, if the magnitude is as large

as 220, Program Flag 6 is turned on. If less

than 2-43, the quantity deposited has a mantissa
of zero and an exponent of -43. If Program Flag
5 is on (three-word format), no such check is
performed.

floating skip: The interpreter clears the IO
register and sets the sign of the accumulator
to the sign of C(FLAC)., then loads the most
significant bits of the mantissa in bits 1-17.
It then skips or executes the next sequential
instruction, depending on whether the condition
tested for is true or false.

floating operate: This instruction places the
sign of FLAC in the accumulator, executes the
instruction specified by the address part of
the fopr (e.g., fopr 200 - clear accumulator
and therefore sign register) and returns the
result to FLAC.

It is possible that the fopr specified may not
change the accumulator (e.g., fopr 15 - set
Program Flag 5). 1In this case the operation
will leave the sign of FLAC unchanged.

In preparing a DECAL symbolic tape which will
make use of the floating skip and floating
operate instructions, the required format is
fsk or fopr followed first by the indirect bit
if required, and then by the address of the
appropriate skip or operate instruction. Thus
a floating skip on non-zero accumulator would
be written as fsk ' 100 and a floating comple-
ment accumulator as fopr 1000.

11

Possible Modifications by Users

Partially relocateable version:

All but the first 1004 instructions for FLINT may
be relocated. To do so, the following changes should be
made in the symbolic tape:

1. The igstruction immediately before the comment
"divide here™ (on page 15) should be followed by "blk"
and "fin"; this is the end of the fixed part.

2. The instruction immediately after the comment
"divide here™ should be preceded by "blk"; this is the
beginning of the relocateable part.

3. The following should be declared as system sym-
bols at the beginning of the fixed part:

normt fadr
flor fsur
a5 fsrr
a3 fsir
al fcor
5y fskr
brkpt fmur
fdar fdir
foprr

These symbols must be located in the relocateable
part and their delimiters changed to "™ * " (apostrophe).

4. The fdllowing should be declared as system sym-
bols at the beginning of the relocateable part:

q
ala

al
pc

These symbols must be located in the fixed part and
their delimiters changed to " ' " (apostrophe).

5. The two parts should be assembled and two loader
tapes obtained. The fixed part must be loaded into lo-
cations starting at 1005. The relocateable part may be
loaded into any 2051g consecutive locations.

12

Expansion of input buffer:

The size of the "read group"” buffer area may be
altered by changing; first, the number currently set at
buffi? to the desired value; secondly, the number cur-
rently set at buffl+l to the new value in buffi2-1; and,
thirdly, the number currently set at bufflat+l to the new
value in buffli?2.

DECAL Listing

A printout of the symbolic tape of FLINT 36 A3D appears
on the next 26 pages.

13

«oo FLINT-36 A3D Decal version released October 29, 1963

fopr
fdi
fsk
fmu
fad
fda
fsu
fsr
flo
fsi
fco

n~=EN

enter:

azas.

ewd 760000

ewd 560000

ewd 320000

ewd 540000

ewd 020000

ewd 000000

ewd 040000

ewd 240000

ewd 060000

ewd 260000

ewd 300000

ewd 400000

ewd 300000

ewd 200000

ewd 000000

blk

- s .a&C on entry

sub = oct 1

dap pc

law 7777

and’pc

szal

jmp normi

dap q

Jmp flor

lac .. « « o Program counter

dap q

sma spa szo!

lio = oct 4403

rcl 5 . o s€NLTyY

dio ->+1

oo .o s DEcomes lio reference

spi

Jmp a5 «os'pc, leave interpretive
0o mode

spa

Jmp a3 . s oindirectly addressed

ril 4

spit

Jmp .q

lact a2

dap =>+1

Jmp.. «s . flo,fda,fsk

14

table:

OCEHNNNNNNNGONNNNNNNNSQLOONNNNNNRFHGRRH

law .. .« s Program counter

sza!

jmp al ...move flac to y

lac'!q . ..address present, unpack
dac sy vee8ign

Jmp brkpt .:st0o relocatable portion
fdar

fadr

fsur

flor

fsrr

fsir

fcor

fskr «eom 1 fskr in previous
.o+ Vversions

fmur
fdir

foprr .».m 1 foprr in previous
1k «v. versions

vee divide here

fopr
fdi
fsk
fmu
fad
fda
fsu
fsr
flo
fsi
fco

ewd
ewd
ewd
ewd
ewd
ewd
ewd
ewd
ewd
ewd
ewd
ewd
ewd
ewd
ewd
blk
and

Jmp
and
ral
dac
lac!
sar
sar
dac
Jmp
lact

dap_

ral
Jmp
lac
dac
lac
dac
lac
dac
lac
dac

Jmp

760000
560000
320000
540000
020000
000000
040000
240000
060000
260000
300000
400000
30000Q
200000
000000

oct 377777

= oct 7777
5
ypP

6
ey
a2a
q

q

5
al

LR obits 1-17

«sspPick indirect address

...move flac to y

15

16

flor:.

fdar:.

ril 1
spi!

Jmp! pc
Jmp a2a
lactq

dac sa
and = oct 377777
dac a

idx q
lac'q

szf 5

Jmp a98
and = oct 7777
ral 5

dac ap
1ac'%
sar .

sar 6

dac ea
Jmp normi
szf 5

Jmp ->+7
lac ea
spa

cma

scr 5

sza

Jmp fdari
lac sa
and = oct 400000
ior a
dac'lq

idx q

lac ap
szf 5

Jmp ag97
add = oct 20
dac ap
szo! °
Jmp ->+14
dzm ap
idx a

sma

Jmp >+4

. ..execute floating skip

fdaris

fdar2:

fmurs .

rar 1

dac a

idx ea
lawtl

add g

dac q ,
Jmp fdar
ral 1

lio ea
rcr 6
dac'q

Jmp normi4
lac ea

sma

Jmp fdar2
lac = oct O
dac'q _
lio = oct 400000
idx q
diolqg

jmp normi
stf 6

jmp normi
lac ea

sub factor
add ey

dac ea

SZ0

Jmp fdirs
lac a

mul y
dac tempil
rir 4

dio temp
lac a

mul yp

add temp
and = oct 377777
dac temp
lac templi
dac a

SZO

idx a

. e sl overflow

17

18

fdirs.

fdiri.

fdir2s

fdir3:
fdir6:

fdirk:

lac
mul
add
and
dac
szo
idx
lac
xor
Jrmp
cli
lac
div
Jmp
dac
dio
lac
mul
cma
add
mul
dac
spa
Jmp
add
and
dac
SZO
idx
law
add
add
sub

Jmp

¥

ap

temp

= oct 377777
ap

temp
y
temp

fdird

temp

= oct 377777
yp

J
1

ea
factor
ey
fmur+3

lac y

sas
Jmp
lac
lio

Jmp

= oct 200000
fadr3y

= oct 377776
= oct 377776
fdiri

law'1i

add
dac
lac
add

- Jmp

y

vy
temp

= o¢t 200000
fdir2

+..may need rir si

fdirbs:e

fskrs.

fskris

fsur:s.

fadr:.

sma
Jmp ->+7

dzm a

dzm ap

dzm sa

law! 37
dac . ea

jmp normi4
stf 6

Jmp fmur+6
lactpe

and = oct 17777
ior = oet 640000
dac fskri
lac sa

and = oct 400000
ior a

cli

loc

Jmp normi4
idx pe

Jmp normi
lac sy

cma

dac sy

lac ea

sub ey

sza!l

Jmp fadr2
spa

Jmp fadr7
sub = oct 11
dac temp

sma

cla

add shtble
dap >+

lac y

lio yp

ril 4

xet ..

dac y

cla

rer 1

dio yp

lac temp

sma sza

Jmp fadr+6

.o .done

. . cdOne

.« s€Xponents equal

«.s€a shift

o0 2y shift

«sstable start loc

19

20

fadr2:

fadr3y:
fadr3:

lac sa
Xor sy
spa

Jjmp fadr3
lac ap
add yp
dac ap
cla
SZo
law
add
add
dac
szo!
Jmp _norm

sma

Jmp »+6

lac y

sas = oct 377777
Jmp >+3

law'O

dac a

law 1

add ea

dac ea

lac a

lio ap

ril 1

rer 1

and = oct 377777
dac a

¢cla

rer 1

dio ap

szo!

Jmp norm

spa

Jmp fdir5+2

stf 6

Jmp norm

lac a

sub y

dac a

sza!l

p<g p P

.ss8igng differ

fadr3a:

fadrl:

fadr5y:
fadrs5:

fadr7:

Jmp
spa
Jmp
lac
sub
dac
sma
Jmp
add
add
dac

law?

add
dac
Jmp
lae
sub
dac
sma
Jmp
cma
dac
lac
cma
dac
Jmp
cma
dac
lac
cma
dac
lae
sub
Jmp
cma
sub
dac
sma
cla
add
dap
lac
lio
ril

fadrl s s s2€Yr0 result

fadrs .« cJainus
ap .o« Plus
yp
ap

norm . « sdONe
= oect 200000

= oct 200000

ap

1

a

a

norm .o o done
ap :
yp

ap

norm . o sdoOne

ap
sa

sa
norm . s sdone

a
sa

sa
yp

ap
fadr3a-3

= oct 11
temp

21

22

norms .

normi:

norme s

norm3:

normi!

xet ..
dac a
cla

rer 1

dio ap
lac ey
dac ea
lac temp
sma sza
Jmp fadr7+i
Jmp fadr2
lac a
szal

jmp norm2

lio ap
ril 4

rel 4
smat

jmp norm3
dac temp
law'i

add ea
dac ea
lac temp
jmp normi
lac ap
szal

Jmp fdirs5+42
law!21
add ea
dac ea
lac ap
lio a

Jmp normi-1
rer 1

dac a
cla

rer 4

dio ap
idx pec
Jmp pc

e s cnNNOTrMalize

. s s PrOgram counter plus one

foprr:.

297+

a98:

a99;

shtble:

aio
ap: .
sas.
ea: .
yps
8ys.
eys.
factor:.
temp:.
templ:.
pte: .
cee.
format!
buf £l

buff3:.

lac

sa

xctipe

dac
Jmp

dac!
idx.

lac
Jmp
dac
idx

lac!t

Jmp
dac
idx

lac!?

Jmp
loc
scr
scr
scr
scr
ser
scr
scry
ser
scr
loe
loc
loc
loc
loc
loc
loc
loc
oct
loc
loc
loc
loc
loc
loc
lve
loc

blk

sa
normi
a

q
ea

fdarli-2
ap

q

q

fdar-2

yp

q

a

al3-2
shtble+11

O 00~3 O\ W o =

13

oct 46
buff3

plk.

23

24

readce!

icword!

rsh5s

Xam:

readox:
rs3:
taper!
typer!
buff?

dap readox
Jsp burf
rir 7

spi

Jmp ieword
recl 7

and = oct 77

Jmp xam
oct 764201
szf'd

Jmp =>-1
clf 1

tyi

rel O

rel 9

szal

Jmp >+

sad = oct 20

cla

Jmp »42
law 20
dac readc
add rs3

dap ->+1
lio ..

¢cla

rcl 3

szal

Jmp icword
rer 3

lac reade
Jop ..

and lotble
jsp buff
Jmp rs5
dap buffi
lac buffi
add buff3
dap 41
lio ..

isp buffh

...gets jda' to
..« t0 get back
...to get tape character

.« s tape channel 7 punched?
.. s yes-get new character

.. .NO=-get character into AC
... g2t concise code in AC
... t0 exchange O and 20
.. . O accept typewriter

«eoo Character

s owalt £ill key hit

. s scharacter intc AC

0 s ZEY0 ? .

o0 0 ZELO

« o sNO=twenty then?x

... then replace with zero
.+ then okay as is-leave

.+ .table constant to get
coes 1otble entry

...10tble entry into IO

. e s ONtTrOol code into AC

.. cONtrol code zero ?

. s cy€S=get new character

.+ .10tble entry back into IO
s ocOnCcise code into AC

eo o 8XiT

. s s bable constant

. « s Daper tape

. s s Lypewriter

-« « plck character

s .any left in buffer

buffi:

buff2:
buffla:

savsr:

saves

savecs:

axts
rest:

fxfs
fxs

Jmp ..

lawt ls

dac buffi
law buffi+l
dap buffza
rpa!l

dio ..

idx »-1

isp buffl
Jmp buffz
law' 46

dac buffl
Jmp buff+i
dap axt

lac pe

dap rest
lac q

sad = oct 700000
Jmp >+4

sub = oct 1
gzf 5

sub = oct 1
dap ->+1

cal ..

law norml
Jmp savec
loc

dap axt

lac save
dap fx

law 5

szf 5

law 15

dap fxf

stf 5

Jmp ..

law ..

dap pc

oct 760000
Jmp ..

ceeXxlt
e 0 cbuff3-buffl"“'2
.« s YESEL counter

.+« sCheck assembly

e s oUfP3-buffl-4
.« TSt counter

25

26

Teadg! loc
jda save
dzm writc
lac rgl0c
dac rg7a
stf U
dzm ptc « s s point counter
dzm cc « ¢ sChar. counter
dzm a s sclear flac
dzm ap s« o8¢t exponsnt
dzm sa
law 55
dac ea
rgl: Jjda readc
spit
Jmp rghH
rg2s dio temp
dac readg
spi
jmp rgla vesce ig L-7
ril 1
spi!?
Jmp rg3 s e CC 1ls ons
rgaas rer 6
lac ce o« o Pt away character
rcl 6
dac cc
idx pte . s o0 char, equal 4
sad = ,, 4
Jmp rg3a
jda readc
Jmp rgz2
rg3s clf 4 cee8eb 10 exit word
rg3as lac = oct 700000
and temp
ior readg
rer 9
rer 9
lac cc
Jmp fxf
re5s ril 4 « « »nONe alpha
spi!? esocode 1s 2-3
~ Jmp rgi .o s20de 1 one

rgbs

regls

rg7as

rg8s

rgds

rglo:

ril
spi
Jmp
dac

szal

Jmp
idx
lac
mul
dac
rir
rer
rer
add
dac
lac
mul
rir
rcl
rcl
add
dac
idx
idx
lio
sad
dio
Jjda
spi
Jmp

1

rgll
readg

rgib5
writc
ap

= oct
temp
1

9

9
readg
ap

a

= oct
i

9

9
temp
a
pte
ce
rglSc
= oct
rgia
readc

rg9

ril 4

spi
Jmp
rir
dac
dio

rgb
1
write
write

szf1y

Jmp rgil

lac
sza
stf

a
6

12

i2

12

27

+secode 1s 3

sesCOde 1s 2
«sschar. equal zero

+ 210 significant characters

»« s 2lpha

...5ave AC, IO

cesfixed pt. int.

28

rgllcs

rglls

rgl2s
rgils

rglSs

rgis5cs
writet

lac ap
lio sa
spi

cma

lio write
Jmp fxf
law ->+2
dap pc
jmp norm
lac pte
szal

Jmp rgi2
cal ..
fmu tenth
law'd

add pte
dac pte
Jmp rgli+3
lac write
Jmp rgii-2
sad plus
Jmp ->+10
sad minus
Jmp >+5
clf 4

dzm ptec
idx write
Jmp rg8
law?O

dac sa
Jmp rg8
lac writce
sza -
Jmp rgTa
Jmp rg8 -
loc =~ 7
dap w3
cla

rcl 8
cma

dac temp
cla

rel 5
rcl 5

dac write

. s sCheck assembly

wite

ocword!
wis

w3s
wes

typew!
tapew!
tapewas

bothw!
writio!

write!

Wres

szat

Jmp w2

sad = oct 20
cla

dac templ
lio templ
Jmp tapewa
isp temp
Jmp wh4l
Jmp ..

lac = oct 20
Jmp wi
tyo!

Jmp tapewa
lac write
add rs3
dap =»>+1
lio ..
ppa!

Jomp wi

Jmp typew
loc

dap -»>+11
cla

rcl 8

cma

dac temp
rcr 8

ppa!

isp temp
Jmp ->-2
Jmp ..

loc

jda save
lac write
dzm sa

dzm ap

sma

Jmp wr2
dac sa
cma

dac a

law 34
dac ea
dio wrt37

«. sWrite integer

29

30

writf?

writfd:

wrtis

wrt2s

law =42
dap pc

Jmp norm
lac wrt3ld
Jmp writfd
loc A
jda save . .
lac wrt35
dio wrt37
dac wrtbz
lio sa
dzm sa

dio unflo
oct 760204
lio format
rcl 6

dac reade
szal

Jmp wrt2
cma

dac write
cal ..

fma tenth
isp write
Jmp wrtdi
lac ea

sub factor
sma

Jmp wrt20
lio format
rcl 6

cla

rel 6

add readc.
sub = oct 12
sma sza
jmp wrtbx
add = oct 12
mul = oct 452525
scl 2

add factor
dac sixtb
cal ..

fad sixt

.seStore n positive
e s s IO charécter to left
«..store n negative

e e ox 1‘”10
...make flac less than 1

««:Check assembly

wrtbxs

wrtbzs
wrtb:

wrt3ab:

law
dac
lac
sub
spa
Jmp
cal

idx
lac

szal

Jmp
law
dap
Jmp
fmu
lac
sub
sma

Jmp

cal .

fad
lac
and
ral
dac
lac
and
dac
lac
sza
Jmp
cla
szf
Jmp
lio
rcl
sub
spa
Jmp

20
sixtb
ea
factor

wrtbx
%énth
readce
readc

wrts
>+2

jole]
norm
ten
factor
ea,.
sza
wrt3ab
sixt

= oct 170000
a

6
writio
a

= oct TT77
a

writio
wrtl

4
wrt3
gormat

readc

wrt3c

rer 6

rir

spit

law

1
20

sesX 10

eesadd 16

s s s YIONIE ZEYro

31

32

wrt3:

wrt3es

wrvss

wrt3ls
wrt35:
wrt3is

wrt30;s

wrt36:

wrt37s

rcl 9

rcl 9

jda writc
lac readc
sub = oct 14
dac readc

Jmp wrt6+2~ ”

stf 4 4
lio format
ril 6

rcl 6

szal

Jmp wrt30
dac reade
lic point
Jda write
lac wrt34
dac wrtb-1
jmp wrtbé
Jmp wrt30
Jmp wrth
loc =-»+1
lio minus
Jmp wrt36
1lio = oct 20
lio plus
law 70

and format
szat

Jmp wrt36
rar 3

1io unflo
spi

law .. .
add wrt31
dap »>+1
xct ..

jda write
clf 4

lio wrt37
Jda writc
Jmp £xf
loc

oo« Print point

plus:

minugs
point:
tenthe

tens
sixt:

sixtb:
wrtls

wrt20:

unflo!

un2s

un3s

unlts

unbs:

oct
oct
oct
oct
oct
oct
oct
loc
oct
oct
loc
oct
stf
Jmp
idx
Jmp
loc
dap
law
sub
add
szal
Jmp
lio
spa
lio
dio
sma
cma,
dac
lac
lio
ril
loc
dac
cla
rey
dac
isp

~Jmp

lio
lac
spi
cma
Jmp

57
50
7
210621
23110
10
210000

17
200000

20

Iy

wrt3
readc
wrti

unb
34
ea-
fizxexp

unit
Pight

left
un3

unflo

ap

ap
unflo
un2
sa

a

.

v e 0K as is

33

3y

fixexp!
rights
lefts
iotble!

loc
scr
scl
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct

1
1
200020
200001

200002
200203

200004

200205
200206

200007
2000410
200211
000100
0000413
000100
000100
000100
000400
100200
500221
Loo222
400023
L4oo22L
400025
400026
Loozz27
500230
400031
000100
500233
000034
000035
100236
000037
100040
Loo244
L4oozh2
L4ooo43
4oo244
hoools
4ooo46
hoo247
k00250
400051

o e e28r0, not space

o« s 8pACE,

not zero

fsrrs.

fsrris

oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct
oct

oct

lac
spa
Jmp

000100
000100
300054
000255
000256
300057
000100
Looo61
Looo62
400263
Looo6L
Loo265
L00266
400067
400070
Loo271
700272
300073
700274
700075
000100
100277

Sy

fserr

lac y

sza!

Jmp

normi4

law'5

dac
Jsp
lac
sub
scr
spa
Jmp
spi
Jmp
add
dac
lac
sar

add
Jmp

fscon
savsr
ey
factor
i

fsme

fsodd
factor

ey

y

i

= o¢ct 200000

fsrr3

35

e o s SQuare root routine
ceo8ign mantissa
«stest for minus

. e sye€8 exit

seoinitialize x sub 1 counter

« o s €Xponent

. s sYemove bias

. » s SQuare root of exponent
+..test for add positive exp.
...yeS

«s.test for odd pos. exp.

LB !yes

.« s 8tOre new exponent
. .compute initial x sub 1
essy OvVer 2

36

fsrr2: lac y
sar 1
div fxsi ¢y Over x subi
nop
add fxsih
fsrr3: dac fxsi cesylelds new x sub 1
sar 1
dac fxsih
isp fscon
Jmp fsrr2
lac ey
dac fxsih
cal ..
fda num
flo zero
fad fxsi
fda fxsi
flo num
fdi fxsi
fad fxsi
- lawtl
add ea «++divide above sum by two
dac ea
Jmp rest
fsme: spl +..test for odd exp
Jmp fsrri-i + e NNO
Jmp fsodda s oo yes
fsodd: add = oct 1 .+.add one to exponent
fsodda: add factor
dac ey .
lac y «.+.high order mantissa
sar 1 ...divide by 4
dac y
: Jmp fsrri+2
fserr; stf 6 , ...set flag
"~ jmp norml ...exit
fxsi: loe .)
fscon: loc
fxsih: loc

fcor:. Jsp savsr ++.c0s8lne routine
cal ..
fad ftpi2 ...add pl over 2 to make
+»+ Llike sin

Jmp fsira cv.ex1lt to sin rout.

fsirsy.
fsiras

fsir2;

fsirls
fsir7:

fsir8s
feiris

fsir3y

Jsp
cal
fdi
lac
spa
Jmp
cal
fsu

lac
sma
Jmp
cal
fad
lac
spa
Jmp
cal
fsu
cal
fda

fda
fmu
fad

fad
fmu
fad

fad
fmu
Jmp
cal
fad
Jmp
cal
fad

savsr
£tpi12
sa
fsird
%éfor
sa

feire
ftone
sa

fsir3
%%one
%isi
£Ex2
f£c9
fte7
ftx2
ftes
£tx2
f+te3
ftx2
fteld
fxsi
rest
%éfor
fair+3

% :cone

lawid3

add.

sma

Jmp
lac

ea
sza
fsirs
sa

cma

dac
Jmp

sa
fslxt

.e+5ine routine

. veconvert radians to x
ceesign of x

. » sSUbtract two pi to
s+ reduce to
csminus two pl to zero

« s s SQUAre X
e eSaVE X sqQuare
. e sCOmMpute sine

38

fsirhg

ftx23

ftone:

fttwos

ftfors

ftpi2:

fteds

fte3:

ftehs

fteT7:

ftcos

nums

zZeros

cal
fad
Jmp
loc
loc
loc
oct
loc
oct
oct
loc
oct
oct
loc
oct
oct
oct
oct
ot
oct
oct

- oct

oct
oct
oct
oct
oct
oct
oct

fétwo
fsir7

200000
14

15
200000

16
311037
265211
4
311037
265101
14
645273
301325
13
243150
257313
10
631114
306213

oct 4

oct
oct
oct
loc
loc
loc
loc
loc
loc
blk
fin.

236657
164425

777776

200000

...1,222027413306

v o0 =0 245273602362
ces .02u3150536417
¢ 0 0=, 0014446306243

