
FLINT 36 A3D

DESCRIPTION AND
OPERATING PROCEDURES

For presentation at the annual meeting
of The Digital Equipment Computer Users
Society, held at the Lawrence Radiation
Laboratory, Livermore, California, on

November 18 and 19, 1963

by

Jacob M. Baker and David J. Isenberg
CHARLES W. ADAMS ASSOCIATES, INC.

Consultants in Electronic Data Processing
Bedford, Massachusetts

PREFACE

Since FLINT (originally written in FRAP) was released
about a year ago by Itek Corporation, through The Digital
Equipment Computer Users Society, there has been considerable
demand for improved documentation and a revised listing. As
a service to DECUS, Adam1~ Associates gladly offered to under­
take the conversion and redocumentation of FLINT} and has
done so with the permission and assistance of Iteko The re­
sults of its work are reported in this paper.

In the near future, new FRAP and MACRO listings will be
made available by Adams Associates and other modifications
are being considered. Among these are the production of a
totally relocateable version of FLINT the removal of expo­
nent bias, and the addition of other floating-point instruc­
tions such as a floating index.

Adams Associates wishes to acknowledge with thanks the
substantial contribution made by Edward J" Radkowski of Itek
Corporation to the revision of FLINT. Readers of this paper
are invited not only to request additional copies of it from
Adams Associates but also to forward to the company any sug­
gestions or critic isms. These should be marked to the atten-·
tion of David J. Isenberg or Jacob M. Bakero

CONTENTS

Introduction

Instruction Repertoire

Floating Operations
Entering Interpreter

Formats

Unfloating Routine

Input Routines

Output Routines

Description of Instructions

Possible Modifications by Users

Partially Relocateable Version
Expansion of Input Buffer

DECAL Listing

l

l

l
2

2

4-

5

7

9

11

11
12

12

FLINT 36 A3D

Introduction

FLINT is an interpretive routine that permits the Digital
Equipment Corporation PDP-1 to perform double-precision float­
ing-point arithmetic, input, output, and elementary function
evaluation. Originally written in FRAP for use in lens design
work (though nonetheless a general-purpose program) , FLINT has
now been translated into DECAL to be compatible with other
programs in this language. Arithmetic and function evaluation
are performed interpretively, input and output are handled by
closed subroutines addressed directly by the user 1 s programs,
and overall format control is left to the userys routines.

Instruction Repertoire

The instructions currently available for the interpreter
are listed below:

Floating Operations

Operation
Function Mnemonic Code

Deposit floating accumulator f da 00
Floating add fad 02
Floating subtract f su 04
Load floating accumulator flo 06
Floating square root f sr 24
Floating sine f si 26
Floating cosine f co 30
Floating skip f sk 32
Floating multiply f mu 54
Floating divide f di 56
Floating operate fopr 76

2

Entering Interpreter

Function

Enter interpretive mode
Enter interpretive mode and

load floating accumulator

Mnemonic

cal

cal y

Octal
Code

160000

l6yyyy

Formats

Floating-point quantities are expressed in the form
y·2x where the magnitude of y is less than one, Arithmetic
is done using a floating-point accumulator (FLAC) which con­
sists of four storage registers" The absolute value of y is
stored to double-precision accuracy in the first two registers,
the sign of y in the third, and x + 11 in the fourth. With a.
bi.as of +11, the exponent ranges from -42 to +20. This range
was selected by Itek as being most useful for their worko

Operands for floating-point instructions are assumed by
the interpreter to be stored in either two or three consecu-·
tive storage registers, depending on whether Program Flag 5
is off or on. In the two-register format (Program Flag 5
off) , bit 0 (bits being numbered 0 to 17 from left to right)
of the first register contains the sign of y. As shown in
the diagram below, the first 17 bits of the absolute value of
y are stored in bits 1-17 of the first register, and the re­
maining 12 in bits 6-17 of the second register. Bits 0-5 of
the second register contain the signed quantity equal to x
plus the exponent bias.

I a I bbbbbbbbbbbbbbbbb cccccc I dddddddddddctl

a sign of y
b first 17 bits of y
c x plus exponent bias
d ·final 12 bits 6~·y

TWO-WORD FORMAT

3

In the three-register format (Program Flag 5 on) , as il-·
lustrated below, bit 0 of the first register contains the sign
of y and bits 1-17 are the first 17 bits of the absolute valLe
of y. Bit 0 of the second register is always zero and bits
1-17 contain the remaining bits of the absolute value of yo
The third register contains the value of the exponent incre­
mented by the exponent bias. This three-word format is espe­
cially useful for saving and restoring FLAC and is often used
only for that purpose.

~ddddddddddddddddj
i ... ~--'~"''"" ·-·- •'. ·~ ·---~· .. ·--~--'""'---·-·---~-

a sign of y
b first 17 bits of y
c zero always
d final 17 bits of y
e x plus exponent bias

THREE-WORD FORMAT

r:::--------··-··--·- ,. ,.
1 ceeeeeeeeeeeeeeeee
·~-..,..~----.w·-.... ~·-~······ . '"~···.-·-~---~··----... -

Instructions to be processed interpretively are written
in the same format as normal PDP-1 instructions and are as·­
sembled with a five-bit operation code, an indirect address
bit, and a twelve-bit address, This address refers to two or
three consecutive locations, depending on the position of
Program Flag So Thus, in the description below of the inter­
preted operations, the symbol C(Y) refers to the contents of
locations Y, Y+l, and optionally Y+2, where Y is the address
part (after indirect addressing, if any, has been performed)
of the instruction being interpretedo If Y is zero, the in­
struction is interpreted as referring to .FLAC itself.

There are eleven floating-point interpretive instructions
which, with their overflow and underflow conditions, are de­
scribed in detail later.

When floating-point operations are to be performed, it
is necessary to enter the interpretive portion of FLINT.
This is accomplished by the PDP-1 instruction cal, which
transfers control to location 101swith the location of the
next instruction to be interpreted in the accumulator" Since
it may often be necessary to enter and leave the interpretive
mode, the cal instruction is interpreted as a floating lo~d
(i,.!2) as well as an entry instruction whenever the address of

4

the cal is other than zero. Indirect addressing may not be
used with the cal instruction since this is assembled as a
jda instruction; therefore, if indirect addressing is desired,
the correct sequence of instructions would be ,cal .. ; flo ~Y;.

The interpreter is so arranged that once the cal instruc­
tion is encountered, it will regard each succeeding instruc­
tion as a floating-point instruction until it encounters an
exit instruction. Any instruction with an operation code num­
ber of 10 through 23, 34- through 47, or 60 through 75 will be
regarded as an exit instruction with the exception of 16, the
cal instruction.

Instructions with these operation code numbers will be
simultaneously executed and used as exit instructions when
encountered in the interpretive mode. All succeeding instruc­
tions will be considered normal machine instructions until
another cal is encountered. Thus, such instructions as xor -
operatio~ode Q.§_, and - operation code ~) or dio - operation
code]l, may not be used in their normal sense while in the
interpretive mode. The instructions whose operation codes
have thus been preempted by floating instructions were se­
lected because they are unlikely to be used while in floating
mode. It is important to note that, once in the interpretive
mode, instructions not having the operation codes cited in
the preceding paragraph will be interpreted as floating in­
structions whether or not they are so intendedo

Unfloating Routine

The instruction jda unflo enters a subroutine which con­
verts the floating-point number stored in FLAC to a fixed­
point integer. This integer is equal to the value of the
contents of FLAC divided by the quantity two raised to the
power of the contents of location fixexpo The integer result­
ing from this conversion is stored in the accumulator and the
contents of FLAC are destroyed. (The unflo subroutine trun­
cates rather than rounds the quotient obtained by dividing
two to the appropriate power into C(FLAC). Thus if FLAC con­
tains 1.48 and fixexp contains 0, jda unflo will put l into
the accumulator; if FLAC contains 1.48 and fixexp contains
1, jda unflo will put 0 into the accumulator; if FLAC con­
tains 1. 48 and fixexp contains -1, jda unfl£ will put 3 into
the accumulator.)

5

Input Routines

There are three input subroutines which, like the output
subroutines, are addressed directly from the main program.
The first, entered by the instruction jda readc, reads and
translates single characters. The second, entered by the in­
struction jda readg, handles groups of characterso Each of
these two routines reads from punched tape or from the con­
sole typewriter, depending on whether the input control word
(icword) contains taper (for tape) or typer (for typewriter) o

FLINT is arranged so that icword contains .taper unless this
is altered by the user's routineo Such alteration is accom­
plished by writing~ lac taper; .dac icword; etc.

After a character is read, it is compared with the en­
tries in a table containing the standard Fio-dec Code for
each character as well as a control code that may have one
of eight different values" Code 0 marks characters to be ig­
nored, such as illegal configurations which do not correspond
to typewriter or Flexowriter symbols. Code l marks characters
such as space or tab, which serve as delimiters indicating
the end of an alphanumeric word. Code 2 marks the decimal
digits 0-9 and Code 3 marks the symbols used in floating­
point numbers, such as a minus sign or a period (used as a
decimal point) . Codes 4-7 are assigned to the alphabetic
characters; only one bit is tested and all characters having
any of these four codes are treated identically.

The readc routine reads a single character~ looks it up
in the table to find the control code, and returns to the main
program with the concise code (with 20 and 0 reversed) in
bits 12-17 of the accumulator, which elsewhere is filled with
zeros and the iotble entry in IO. If the control code is 0,
another character is read and processed in the same manner
before returning to the main program.

The readg routine reads numerical or alphabetic groups
and determines which group is being read by noting the con­
trol code of the first character. If the code is 4 through
7, the group is alphabetic; .if 2 or 3, it is numeric; if 0
to 1, the character is ignored and the next character treated
as the firsto

When reading from paper tape, location buff4 must be set
to zero before a call to readg the first time that th.is in­
struction is called, and if successive calls to readg are in­
terspersed with calls to any of the other read routines which
are also reading from paper tape.

6

If the group is alphabetic, the characters '3.re translated
and their concise codes are saved until either a delimiter
(control code 1) is encountered or four characters with con­
trol codes 2 through 7 have been read. Characters with con­
trol code 0 are always ignored.

The concise codes of the one, two or three characters
preceding either the delimiter or the fourth character are
then assembled in the accumulator~ each occupying six bits
with the first one to the left and the whole group right-jus-­
tified, with zeros on the left if necessary. The control and
the concise codes of the delimiter or fourth character are
put in IO bits 0-2 and 12-17} respectively. Program Flag 4-
is on .if four characters were readj and off if a delimiter
was encountered. Control is then returned to the main program.

If the group is numeric, characters are read until a de-­
limiter or a character with control code 4 through 7 is encoun­
tered. A pl.us or minus sign may, but need not, appear anywhere
in the number, and there may be g_ m::iximum of ten decimal dig­
its. (In FLINT a pl.us sign is indicated by n C' 1 a left pa­
renthesis, rather than by n+n~ the conventional plus symbol.
If there are two or more minus signs, all but the last are
ignored.)

If a decimal point appears 3 the resulting number is con­
sidered to be a floating-point integer and is formed in FLAC~
Program Flag 4- is turned off, and overflow or underflow is
signalled as in floating add. If two or more decimal points
appear, all but the last are ignored. If no decimal point
occurs, the result is considered to be a fixed-point integer.
Program Flag 4- is turned on and if it exceeds 131,071 in
magnitude, Program Flag 6 is also turned on" The fixed·-·point
integer appears in the accumulator when control is returned
to the main program. Whether the integer is floating-po.int
or fixed-po.int:, the control and the concise codes of the char­
acter which served as a delimiter appear in IO bits 0~2 and
12-17, respectively, and the previous contents of FLAC are
destroyed.

The third subroutine~ entered by the instruction-~
buff 5 brings characters from paper tape to the IO register,
Before the j§12_, the .instruction dzm buff4- should be given.
The first succeeding jsp buff .instruction will then read
enough characters from paper tape (45 8 as the buffer .length
is now set) to fill the buffer and put the Flexowriter code
of the first character into IO bits 10-170 The next j~ buff

7

instruction places the second character read from the buffer
into IO bits 10-17, and each such succeeding instruction
brings another character from the buff er into the IO register
until all the characters have been brought in. The next .i§.2..
buff instruction reads another buff er full of characters from
tape, and the entire process is repeated ..

Output Routines

There are three output subroutines, all of which write
information on punched tape~ the console typewriter, or both,
depending on whether the output control word, location ocword~
contains tapew (tape only) , typew (typewriter only) , or bothw
(tape and typewriter) . There is also the write-IO routine
(entered by the instruction jda writio) which writes on paper
tape the eight-bit character contained in bits 10-17 as many
times as specified by the number in IO bits 0-7. If IO bits
0-7 are zeros, the eight-bit character is written once., No
look-up or conversion is performed and the character is writ­
ten on tape regardless of the contents of the output control
word.

The write-character routine, (entered by the instruction
jda write) writes the six-bit concise code character contained
in IO bits 12-17 as many times as specified by the contents
of IO bits 0-7, using the same convention as the write-IO
routine.

The write-integer routine (entered by jda write)writes
the integer in the accumulator converted to decimal form,
followed by the character in IO bits 12-·17. The final char­
acter may be written repeatedly according to IO bits 0-7 in
the same manner as the write-IO routine. Insofar as the sign
and initial spacing or zero suppression is concerned, the
format is controlled by the value of the format control word,
format.

The write-floating routine (entered by ida writf)writes
the contents of FLAC converted to decimal form, followed by
the character in IO bits 12-17 exactly as .in the write-integer
routine. The contents of FLAC are destroyed after calls to
either the write or the wr.itf routine.

8

Format control is specified by the contents of location
format as follows:

Bits 0-5

Bits 6-11

Bits 12-14

Bits 15-17

The number of digits to the left of the
decimal pointo If zero or less than the
number of significant digits, all signifi­
cant digits will be printed; otherwise
spaces or zeros will appear on the left
to fill out the required number of spaces
to right-justify the column; this must be
128 or less for fixed-point numberso

The number of digits to the right of the
decimal point, This must be zero for
fixed-point integers, if zero for float­
ing-point numbers 5 no decimal point will
be printed.

Sign control. If zero, no sign will be
printed; if 1, 2 or 3 3 a minus sign will
be printed for negative numbers and noth­
ing, space or plus sign, respectively,
for positive numbers.

Zero control If zero, spaces are used
in place of initial zeros; if one, initial
zeros are printed, this being useful for
handling long integers and fixed-point
numbers other than integerso

The contents of format may be altered by the following
sequence of instructions~ lac nf; dac format; etc, where nf
contains the desired contents of format,.

Listed below are system symbols declared by FLINT; there­
fore, they should not be used by a program which uses FLINT
and is assembled with it:

iotble
f ixexp
unflo
writf
write
writio
bothw
tapew
typew

ocword
write
readg
buff
typer
taper
icword
readc
buf f4
format

Description of Instructions

flo floating load: Unpack C(Y) from its two- or
three-word format into the four-word format
and place in FLACo

9

fad floating add: Place the arithmetic sum of C(Y)
and C(FLAC) in FLAC. If the sum is greater

than 2131061 , the result is incorrect and Pro­
gram Flag 6 is turned on. If the result is

less than z-131084 , or if the mantissa of the
sum is zero, the mantissa of FLAC will be posi­
tive zero and the exponent of FLAC will be -42
upon completion of the operation. Such astro­
nomical exponents can be obtained only because
an entire 18-bit word is allocated to the ex­
ponent in FLAC.

fsu floating subtract: C(Y) is subtracted from
C(FLAC} and the difference is put in FLACo
Overflow and underflow are handled as in float­
ing add.

fmu floating multiply: The product of C (Y) and
C(FLAC) is placed in FLACo Overflow and under­
flow are handled as in floating addo

fdi floating divide: C(FLAC) is divided by C(Y)
and the quotient is put in FLACo Overflow and
underflow are handled as in floating add.

fsr floating square root: The square root of C(Y)
is put in FLAC if C (Y) is positive o Overflow
conditions are not possible" If C(Y) is nega­
tive, the contents of FLAC are left undisturbed
and Program Flag 4 is turned ono

fsi floating sine: C(Y) is treated as an angle in
radians. The sine of this angle is put into
FLACo Error conditions are not possibleo

fco floating cosine: Cos C(Y) replaces C(FLAC) as
in floating sineo

10

f da

f sk

fopr

floating deposit accumulator~ C (FLAC) is packed
into the two- or three-word format depending
on the position of Program Flag .S, and deposited
into locations Y, Y+l, and optionally Y+2o With
Program Flag 5 off~ if the magnitude is as large

as 2
20

, Program Flag 6 is turned on. If less

than 2-43 , the quantity deposited has a mantissa
of zero and an exponent of -43. If Program Flag
5 is on (three-word format) , no such check is
performed.

floating skip: The interpreter clears the IO
register and sets the sign of the accumulator
to the sign of C(FLAC) 5 then loads the most
significant bits of the mantissa in bits 1-17.
It then skips or executes the next sequential
instruction, depending on whether the condition
tested for is true or false.

floating operate: This instruction places the
sign of FLAC in the accumulator, executes the
instruction specified by the address part of
the fopr (e.g. ~ fo2.£ 200 -· clear accumulator
and therefore sign register) and returns the
result to FLAC.

It is possible that the fopr specified may not
change the accumulator (e.g.:i fopr .15 - set
Program Flag 5) . In this case the operation
will leave the sign of FLAC unchanged.

In preparing a DECAL symbolic tape which will
make use of the floating skip and floating
operate instructions~ the required format is
fsk or fopr followed first by the indirect bit
if required, and then by the address of the
appropriate skip or operate .instruction. Thus
a floating skip on non-zero accumulator would
be written as ,fsk 7 100 and a floating comple­
ment accumulator as fopr 1000,,

11

Possible Modifications by Users

Partially relocateable version:

All but the first 1008 instructions for FLINT may
be relocated. To do so, the following changes should be
made in the symbolic tape:

1. The i¥struction immediately before the comment
ndivide hereTt (on page lS) should be followed by nblkn
and nfinn; thi~ is the end of the fixed part,

2. The instruction immediately after the comment
ndivide hereTT should be preceded by TTblka; this is the
beginning of the relocateable part.

3. The following should be declared as system sym­
bols at the beginning of the fixed part:

norm4 f adr
fl or f sur
as f srr
a3 f sir
a4 f cor
Sy f skr
brkpt f mur
f dar f dir

foprr

These symbols must be located in the relocateable
part and their delimiters changed to n z n (apostrophe) .

4. The following should be declared as system sym­
bols at the beginning of the relocateable part~

q
a2a
al
pc

These symbols must be located in the fixed part and
their delimiters changed to n '1 n (apostrophe) .

S. The two parts should be assembled and two loader
tapes obtained. The fixed part must be loaded into lo­
cations starting at 1008 . The relocateable part may be
loaded into any 20Sl8 consecutive locations.

12

Expansion of input buffer:

The size of the nread group TT buffer area may be
altered by changing; first, the number currently set at
buff42 to the desired value; secondly, the number cur­
rently set at buffl+l to the new value in buff42-l; and,
thirdly, the number currently set at buff2a+4 to the ne·w
value in buff42.

DECAL Listing

A printout of the symbolic tape of FLINT 36 A3D appears
on the next 26 pages.

13

ooo FLINT-36 A3D Decal version released October 299 1963
f opr ewd 760000
fdi ewd 560000
f sk ewd 320000
fmu ewd 540000
fad ewd 020000
f da ewd 000000
f su ewd 040000
f sr ewd 240000
f lo ewd 060000
fsi ewd 260000
f co ewd 300000
z ewd 400000
m ewd 300000
1 ewd 200000
s ewd 000000

blk
enter~

pc~o

a2t

a2a~ o

sub = oct 1
dap pc
law 7777
and 8pc
szau
jmp norm4
dap q
jmp f lor
lac oo

dap q
sma spa szo 2

lio = oct 44o3
rel 5
dio ~+1.

0 0

spi
jmp a5

spa
jmp a3
ril 1
spi 1

jmp q
lacua2
dap ~+1
jmp., 9

~ ~ o ac on entry

oooprogram counter

0 0 oentry

eoobecomes lio reference

ooo 8 pc~ leave interpretive
e o o mode

oooindirectly addressed

oooflosfda.9fsk

14

q:.

table:

law ••
sza•
jmp a4
lac•q
dac sy
jmp brkpt
1 f dar
s f adr
s f sur
1 f lor
z
z
z
z
z
z
s f srr
s fsir
s fcor
m f skr
z
z
z
z
z
z
z
z
s f mur
s f dir
z
z
z
z
z
z
z
m f oprr
blk

• •• program counter

••• move flac toy
.•• address present, unpack
••• sign
••• to relocatable portion

• •• m . . . 1 fskr in previous
versions

* • .m 1 f oprr in previous
versions •••

••• divide here

f opr
f di
f sk
f mu
fad
f'da
f su
f sr
f'lo
fsi
f co
z
m
1
s

brkpt: o

a3L

a4:.

ewd 760000
ewd 560000
ewd 320000
ewd 540000
ewd 020000
ewd 000000
ewd 040000
ewd 240000
ewd 060000
ewd 260000
ewd 300000
ewd 400000
ewd 300000
ewd 200000
ewd 000000
blk
and = oct 377777
dac y
idx q
lac•q
szf 5
jmp a99
and = oct 7777
ral 5
dac yp
lac•q
sar 6
sar 6
dac ey
jmp a2a
lac•q
dap_q
ral 5
jmp a1
lac a
dac y
lac ap
dac yp
lac sa
dac sy
lac ea
dac ey_
jmp a2a

15

.• obits 1-17

••• pick indirect address

• •• move flac toy

16

as:. ril 1
sp1 1

jmp•pc
jmp a2a .•• execute floating skip

flor!. lac'q
dac sa
and = oct 377777
dac a
idx q
lac 1q
szf 5
jmp a98
and = oct 7777
ral 5
dac ap
lac•q
sar 6
sar 6
dac ea
jmp norm4

fdar~., szf 5
jmp -+-+7
lac ea
spa
cma
scr 5
sza
jmp f dar1
lac sa
and = oct 400000
ior a
dac•q
idx q
lac ap
szf 5
jmp a97
add = oct 20
dac ap
szo•
jmp -+-+14
dzm ap
idx a
sma
jmp ~+4

17

rar 1
dac a
idx ea
law 1 1
add q
dac q
jmp f dar
ral 1
lio ea
rcr 6
dac•q
jmp norm4

fdar1: lac ea
sma
jmp fdar2
lac = oct 0
dac 1q
lio = oct 400000
idx q
dio 1 q
jmp norm4

fdar2: stf 6
jmp norm4

fmur:. lac ea
sub factor
add ey
dac ea
szo
jmp fdir5 ••• mul overflow
lac a
mul y .
dac tempi
rir 1
dio temp
lac a
mul yp
add temp
and = oct 377777
dac temp
lac tempi
dac a
szo
idx a

18

fdir:.

fd1r1:

fdir2:

fdir3:

fdir6:

fd1r4:

lac y
mul ap
add temp
and = oct 377777
dac ap
szo
idx a
lac sa
xor sy
jmp f adr5y
cli
lac = oct 200000
div y
jmp fd1r3
dac y
dio temp
lac yp
mul y
cma
add temp
mul y
dac temp
spa
jmp f dir4
add temp
and = oct 377777
dac yp
szo
idx y
law 1
add ea
add factor
sub ey
jmp rmu;r+3
lac y
sas = oct 200000
jmp f adr3y
lac = oct 377776
lio = oct 377776
jmp fdir1
law 1 1
add y
dac y
lac temp
add = oct 200000
jmp f dir2

••• may need rir si

fdir5:

fskr:.

fskr1:

fsur:.

fadr:.

sma
jmp -++7
dzm a
dzm ap
dzm sa
law• 37
dac .ea
jmp norm4
stf 6
jmp fmur+6
lac•pc
and = oct 17777
ior = oct 640000
dac f skr1
lac sa
and = oct 400000
ior a
cli
loc
jmp norm4
idx. pc
jmp norm4
lac sy
cma
dac sy
lac ea
sub ey
sza•
jmp f adr2
spa
jmp fadr7
sub = oct 11
dac temp
sma
cla
add shtble
dap -++4
lacy
lio yp
ril 1
xct ••
dac y
cla
rcr ·1
dio yp
lac temp
sma sza
jmp f.adr+6

••• done

••• done

••• exponents equal

••• ea shift

• o .ey shift

••• table start loc

19

20

fadr2: lac sa
xor sy
spa
jmp f adr3 ••• signs differ
lac ap
add YP
dac ap
cla
szo
law 1
add a
add y
dac a
szo 1

jmp,norm
sma
jmp -++6
lac y
sas = oct 377777
jmp -++3
law•o
dac a
law 1
add ea
dac ea
lac a
lio ap
ril 1
rc:r 1
and = oct 377777
dac a
cla
rcr 1
dio ap
szo'
jmp_norm
spa

f adr3y:
jmp fdir5+2
stf 6
jmp norm

f'adr3: lac a
sub y
dac a
sza.1

f adr3a:

f adr4:

jmp f adr4
spa
jmp f adr5
lac ap
sub yp
dac ap
sma
jmp norm
add = oct 200000
add = oct 200000
dac ap
law 1 1
add a
dac a
jmp norm
lac ap
sub yp
dac ap
sma
jmp norm
cma
dac ap
lac sa
cma

f adr5y: dac sa
jrnp norm

fadr5: crna

fadr7:

dac a
lac sa
cma
dac sa
lac yp
sub ap
jmp fadr3a-3
cma
sub = oct 11
dac temp
srna
cla
add shtble
dap ~ + 4
lac a
lio ap
ril 1

o •• zero result

., •• minus
e e. plus

II e odone

••• .done

• ct e done

s,. .done

21

22

xct 0 •

dac a
cla
rcr 1
dio ap
lac ey
dac ea
lac temp
sma sza
jmp fadr7+1
jmp f adr2

norm: o lac a •• o normalize
sza•
jmp norm2
lio ap
ril 1

norm1: rel 1
sma•
jmp norm3
dac temp
law 1 1
add ea
dac ea
lac temp
jmp norm1

norm2~ lac ap
sza•
jmp f dir5+2
law•21
add ea
dac ea
lac ap
lio a
jmp norm1=1

norm3: rcr 1
dac a
cla
ror 1

norm4 1
dio ap
idx pc oooprogram counter plus one
jrnp pc

23

foprr;. lac sa
xct•pc
dac sa
jmp norm4

a97: dac•q
idx q
lac ea

a98:
jmp f dar1-2
dac ap
idx q
lac•q
jmp fdar-2

agg~ dac yp
idx q
lac•q
jmp a3-2

shtble: loc sh.tble+11
scr 1
scr 2
scr 3
scr 4
scr 5
scr 6
scr 7
scr 8
scr 9

a:o loc
ap:. loc
sa:. loc
ea: .. loc
y:" loc
yp: loc
sy:e loc
ey:~ loc
factor:4: oct 13
temp:, loc
tempi!. loc
ptc:. loc
cc:. loc
format' loc
buff4 1 loc

lve oct 46
buff3:. loc buff 3

blk'
blk,

24

readc 1

icword'

rs5:

xam:

readox~
rs3:
taper•
typer'
burr•

dap readox
jsp buff
rir 7
spi
jmp icword
rel 7
and = oct 77
jmp xam
oct 764201
szf'1
jmp 1
elf 1
tyi
rel 9
rel 9
sza•
jmp .. +4
sad = oct 20
cla
jmp ~+2
law 20
dac readc
add rs3

dap o++1
lio ••
cla
rel 3
sza•
jmp icword
rcr 3
lac readc
jmp e 0

and iotble
jsp buff
jmp rs5
dap buf f1
lac buff 4
add bu:t'f 3
dap -++1
lio ••
isp buff 4

• e .gets jda1 to
., •• to get back
••• to get tape character

o., c tape :;;;hannel 7 punched?
•• .,yes=get new character
&eeno=get character into AC
•eoget concise code in AC
ieeto exchange 0 and 20
o.otO accept typewriter
o. o charae,ter
oeoWait till key hit

ooocharacter into AC
oeeZero?
ooeZero
ooeno=twenty then?x
eeethen replace with zero
u •• then okay as is=leave

oeotable constant to get
ooe iotble entry

• •• iotble entr0y into IO

o ·" ., control code into AC
••• control code zero ?
oooyes=get new eharacter
o •• iotble entry back into IO
•• oconcise code into AC
•iteexit
&eetable constant
e • ,•paper tape
•• $typewriter

~ •• pick character

••• any left in buffer

25

buff1: jmp •• • •• exit
law•45 ••• buff3-buff4-2
dac buff 4 ••• reset counter
law buff 4+1
dap buf f2a

buff2; rpa'
buff2a: dio •• ••• check assembly

idx ~-1
isp buff4
jmp buf f2
law 1 46 ••• buff3-buff4-1
dac buff 4 ••. reset counter
jmp buff +1

savsr~ dap axt
lac pc
dap rest
lac q
sad = oct 700000
jmp ~+4
sub = oct 1
szf 5
sub = oct 1
dap ~+1
cal ••
law norm4
jmp savec

save~ loc
dap axt
lac save

savec~ dap f x
law 5
szf 5
law 15
dap rxr
stf 5

axt: jmp • •
res ti law ••

dap pc
fxf: oct 760000
fx: jmp ••

26

readgt loc
jda save
dzm write
lac rgiOc
dac rg?a
stf 4
dzm ptc , /1 , point counter
dzm cc a •• char;, counter
dzm a
dzm ap de .S.C'G
dzm sa
law 55
dac ea

rg1~ jda readc
spi'
jmp rg5

rg2~ dto temp
dac readg
spi
jmp rg2a & • a ec is 4-7
ril 1
spi 2

jmp rg3 0 ·~.cc is one:
rg2a~ rcr 6

lac cc e" (>put away
rel 6
dac cc
i.dx ptc 'ii a. e no char. equal h
sad - Ii • L~
jmp r·g3a
jda readc
jmp rg2

rg3~ elf lj.
•f ~ \'! IO exit word

rg3a~ lac = oct 700000
and temp
ior readg
rcr 9
rcr 9
lac cc
jmp f xf

rg5~ ril 1 ,,, •. none alpha
spi 3

"o o code is 2~3
jmp rg1 ••• code is or1e

rg6~

rg8~

rg9i

rg10~

ril 1
spi
jmp rg14
dac readg
sza•
jmp rg15
idx write
lac ap
mul = oet 12
dac temp
rir 1
rcr 9
rcr 9
add readg
dac ap
lac a
mul = oct 12
rir 1
rel 9
rel 9
add temp
dac a
idx ptc
idx cc
lio rg15c
sad = oct 12
dio rg7a
jda readc
spi
jmp rg9
ril 1
spi
jmp rg6
rir 1
dac write
dio write
szr•4
jmp rg11
lac a
sza
stf 6

27

••• code is 3

••• code is 2
••• char. equal zero

••• 10 significant characters

••• alpha

••• save AC, IO

••• fixed pto int.

28

rg10ci

rg11~

rg12i

rg14:

rg15:

rg15cc:.
write'

lac ap
lio sa
spi
cma
lio write
jmp fxf
law ~+2
dap pc
jmp norm
lac ptc
sza•
Jmp rg12
cal oe

fmu tenth
law 11
add ptc
dac ptc
jmp rg11+3
lac write
jmp rg11-2
sad plus
Jmp -++10
sad minus
jmp -++5
elf 4
dzm ptc
idx write
jmp rg8
lawao
dac sa
jmp rg8
lac write
sza
Jmp rg7a
Jmp rg8 ·
loc
dap w3
cla
rel 8
cma
dac temp
cla
rel 5
rel 5
dac write

oeeCheck assembly

29

sza1

jmp w2
sad = oct 20
cla

w4~ dac tempi
lio tempi

ocword' jmp ta pew a
w1: isp temp

jmp w4+1
w3~ jmp ••
w2i lac = oct 20

jmp w4
typew• tyo•
tapew• jmp tapewa
tapewa: lac write

add rs3
dap ~+1
lio ••
ppa'
jmp w1

bothw 1 jmp typew
writ1o 1 loc

dap -).+11
cla
rel 8
cma
dac temp
rcr 8
ppa•
isp temp
jmp -+-2
jmp ••

write• loc ~ •• write integer
jda save
lac write
dzm sa
dzm ap
sma
jmp wr2
dac sa
cma

wr2~ dac a
law 34
dac ea
dio vlrt37

30

law -++2
dap pc
jmp norm
lac wrt34
jmp writfd

writft loc
jda save
lac wrt35
dio wrt37

writfd1 dac wrt6z
lio sa
dzm sa
dio unflo
oct 760204
lio format
rel 6
dac readc
sza•
jmp wrt2
cma
dac write

wrt1: cal ••
fmu tenth
isp write
jmp wrt1

wrt2~ lac ea
sub factor
sma
jmp wrt20
lio format
rel 6
cla
rel 6
add readc.,,
sub ~ oct'' 12
sma sza
jmp wrt6x
add = oct 12
mul = oct 452525
scl 2
add factor
dac sixtb
cal o.

fad sixt

••• store n positive

••• no character to left

••• store n negative

•. eX 1-=10
••• make flac less than 1

••• check assembly

law 20
dac sixtb
lac ea
sub factor
spa
jmp wrt6x
cal ••
fmu tenth
idx readc

wrt6x~ lac readc
sza•

wrt6zi jmp wrt5
wrt6: law ~+2

dap pc
Jmp norm
fmu ten
lac faqtor
sub ea,
sma sza
jmp wrt3ab
cal • o

fad sixt
lac = oct 170000
and a
ral 6
dac writio
lac a
and = oct 7777
dac a
lac writio
sza
jmp wrt4

wrt3ab; cla
szf 4
jmp wrt3
lio format
rel 6
sub readc
spa
jmp wrt3c
rcr 6
rir 1
spi 1

law 20

31

••• x 10

••• add 16

• o .. none zero

32

wrt3: rel 9
rel 9
jda write

wrt3c~ lac readc
sub = oct 1
dac readc
jmp wrt6•2

wrt5; stf 4
lio format
ril 6
rel 6
sza•
jmp wrt30
dac readc
lio point
jda write oeeprint point
lac wrt34
dac wrt6-1

wrt34:
jmp wrt6
jmp wrt30

wrt35: jmp wrt5
wrt31; loc +r1

lio minus
jmp wrt36
lio = oct 20
lio plus

wrt30~ law 70
and format
sza•
jrnp wrt36
rar 3
lio unf lo
spi
law • o ..

add wrt~i
dap ~+1··
xct • 0

wrt36;
jda write
elf 4
lio wrt37
jda write
jmp fxf

wrt37~ loc

33

plus~ oct 57
minus: oct 51~
po:i.nt: oct T~
tenth! oct ;~ J. J1. 6 ? :t

oct 23t 1!G':
oct 10

ten~. oct 2Jioooo
loc
oct 17

sixt~ oct 200000
loc

sixtb: oct 20
wrt4~ stf }~

jmp wrt3
wrt20~ idx readc

jmp wrt1
unflo 1 loc

dap un5
law 34
sub ea
add f ixexp
sza•
jmp unh ••• ok as :ls
lio right
spa
lio left
dio un3
sma
cma
dac unf lo

un2: lac a
lio ap
ril 1

un3: loc
dac a
cla
rcr 1
dac ap
isp unf lo
jmp un2

unll~ lio sa
lac a
spi
cma

un5: jmp . ··•

34

fixexp•
righti
left~
1otble 1

loc
scr 1
scl 1
oct 200020
oct 200001
oct 200002
oct 200203
oct 200004
oct 200205
oct 200206
oct 200007
oct 200010
oct 200211
oct 000100
oct 000013
oct 000100
oct 000100
oct 000100
oct 000100
oct 100200
oct 500221
oct 400222
oct 400023
oct 400224
oct 400025
oct 400026
oct 400227
oct 400230
oct 400031
oct 000100
oct 500233
oct 000034
oct 000035
oct 100236
oct 000037
oct 100040
oct 400241
oct 400242
oct 400043
oct 400244
oct 400045
oot 400046
oct 400247
oct 400250
oct 400051

oeeZeroJ not space

oeespace, not zero

fsrr~.

fsrr1~

oct 000100
oct 000100
oct 300054
oct 000255
oct 000256
oct 300057
oct 000100
oct 400061
oct 400062
oct 400263
oc.t 400064
oct 400265
oct 400266
oct 400067
oct 400070
oct 400271
oct 700272
oct 300073
oct 700274
oct 700075
oct 000100
oct 100277

lac sy
spa
jmp f serr
lac y
sza•
jmp norm4
law• 5
dac fscon
jsp savsr
lac ey
sub factor
scr 1
spa
jmp f sme
spi
jmp fsodd
add factor
dac ey
lacy
sar 1
add = oct 200000
jmp ·f srr3

•o•square root routine
eeoSign mantissa
••• test for minus
••• yes exit

35

.... initialize x sub 1 c.ounter

•o•exponent
••• remove "bias
••• square root of exponent
••• test for add positive exp.
••• yes
••• test for odd poso exp.
o •• yes

••• store new exponent
••• compute initial x sub i
••• y over 2

36

fsrr2~ lac y
sar 1
div fxsi ••. y over x subi
nop
add fxsih

fsrr3~ dac fxs1 ••. yields new x sub i
sar 1
dac fxsih
1sp fscon
jmp f srr2
lac ey
dac rxsih
cal
f da num
f lo zero
fad fxsi
fda fxsi
f lo num
f di fxsi
fad fxsi

· law• 1
add ea ••• di vi de above sum by two
dac ea
jmp rest

fsme! spi ••• test for odd exp
jmp f srr1-1 ••• no
jmp fsodda .•• yes

fsodd~ add = oct 1 ••• add one to exponent
fsodda~ add factor

dac ey
lac y ••• high order mantissa
sar 1 ••• divide by l~
dac y
jmp fsrr1+2

f serr: stf 6 ••. set flag
~.

jmp norml!. ... exit
fxsi~ loe
fscon~ loc
fxsih: loc
fcor!. jsp savsr ••• cosine routine

cal ...
fad ftpi2 •.• add pi over 2 to make

like sin
jrnp fstra ••• ex.1 t to sin rout.

37

fsir~. jsp savsr sine routine
fsira: cal ...

f di ftp12 •w•convert radians to x
lac sa ••• sign of x
spa
jmp fsir1

fsir2~ cal ••
f su ftf or *•*subtract two pi to

' .. reduce to
lac sa minus two pi to zero
sma
jmp fsir2
cal • •
fad ft one
lac sa
spa

fsir4~
jmp fsir3
cal ••
f su ft one

fsir7: cal ...
fda fxsi
f mu ••• square x
f da ftx2 ••• save x square
fmu ftc9 ., •• compute sine
fad ftc7
fmu ftx2
fad ftc5
f mu rtx2
fad ftc3
fmu ftx2
fad ftc1
fmu fxsi

fs1r8: jmp rest
fsir1~ cal ,. .,,

fad ftfor
jmp fsir+3

f sir3~ cal • 't

fad ftone
law 113
add ea
sma sza
jmp fs1r5
lac sa
cma
dac sa
jmp fsir7

...

38

fsir5: cal ••
fad. fttwo
jmp fsir7

ftx2~ loc
loc
loc

ftone: oct 200000
loc
oct 14

ft two; oct 200000
loc
oct 15

ftf or1. oct 200000
loc
oct 16

ftpi2~ oct 311037
oct 265211
oct 14

ftc1-i oct 311037 ••• 1.222077413306
oct 265101
oct 14

ftc3~ oct 645273 ••• -.245273602362
oct 301325
oct 13

ftc5: oct 243150 .. ,. .0243150536417
oct 257313
oct 10

ftc7~ oct 631114 ••• -.0014446306213
oct 306213
oct 4

ftc9: oct 236657 It • "' ~236657351052
oct 164425
oct 777776

num~ loc
loc
loc

zero: loc
loc
loc
blk
fin.

