
j:j) WA J6(.J> F /1 £]) I{ I rI

l1uG-L-iST 19/'1

PRELINl:NARY DECAL MANUAL f])P - ,..,,-/

I~1TRODUCTION

The Digital Equipment Corporation Compiler, Assembler and Linking
Loader program for PDP-l is called DECAL. DECAL has complete assembly
program facilities ,}

An important feature of DECAL is its function as an algebraic
compiler. This means that the appearance of the algebraic statement:

a <= b + c

in a program, has the same effect as writing

lac b
add c
dac a

••• load the accumulator with contents of c
••• add to accumulator the contents of b
••• replace contents of a with c + b

in assembly language. This provides added brevity and convenience
to the programmer in writing his programs, especially for complicated
algebraic expressions, where a symbolism may be used which corres
ponds directly to the mathematical notation used in writing formulas.

Another important feature of the DECAL system is the Linking
Loader which provides for:

a) Relocation of binary programs: The origin of any
program is determined at read-in time.

b) Synlbolic cross-reference between programF=: This
enables programs to call on other progr~s which may
be compiled separ~tcly, or ex~st as library tapes.
References '-:0 such programs are punched out in their
symbolic form-during assembly by DECAL. These are
replaced by their values at read-in time.

Several notes are in order:
(i) This preliminary manual should be taken as
referring solely to the DECAL F tape.

(ii) This is the first draft of a manual for
DECAL which is under development, but already
useful as described below. It is hopad that this
will provide adequate interim information for
programmers who wish to use the current version
of DECAL, (DECAL F tape).

(iii) Certain exceptions and intricacies of the

I - 1

system have undoubtedly been overlooked or under
emphasized. Please inform us of any difficulties.

FUTURE FEATURES

DECAL will progress through various phases, the currently
completed being Phase I (or DECAL F tape). The progression of
phases will be, more or less, as follows:

Phase·II

Phase II will include a description of the internal DECAL
symbols and subroutines of practical general use.

Phase III

Phase III will allow subscripts and indexing. Subscripts
will be able to be multi-dimensional and arithmetic expressions.
The ·subscripts will not be allowed to contain subscripted variables.

Floating point arithmetic will be completely incorporated
in arithmetic expressions.

Phase IV

Four Linking Loaders will be made available: Low Linking
Loader (LLL), High Linking Loader (HLL),Compact Low Linking
Loader (CLLL), and Compact High Linking Loader (CHLL).

Phase V

This final phase will allow for the use of published algorittres
in the ALGOL language. Other features include:

1. Complete address arithmetic facilities.
2. Completely general subscripting and indexing facilities.
3. Automatic constants assignments. - The constants will
be available to the LL so that all constants of all programs
a~e assigned to a minimum number of registers.

I - 2

DECAL PHASE I

COMPILER CHARACTERISTICS

A. Input
Input to the compiler consists of a symbolic tape. In the

following, a "program" is normally just the contents of one
tape. A "system ll consists of a number of programs. A "program"
consists of a series of "statements", which are in turn composed
of a series of "symbols". DECAL may be thought of as operating

~ on a string of symbols provided by a particular tape. Normally
a statement will occupy just one line (see B): while symbols appear
between blanks on the line (symbols; below). In other words,
statements are normalcly delimited by "carriage returns'·, and
symbols by "spaces" or Utabs ll

; but there are many exceptions to
this which give more power to the system. The 'exact specifica
tions are enumerated below

Format: Spaces and tabs may be used in any desired number
between symbols. Extra carriage returns (giving blank
lines) are permitted.

Suqqested Format: Type statements one to a line. Start
with the label symbol (if any), then "tabu and type the
rest of the statement. Comments may also be typed on a
line.

Characters: Input is a string of legal eight-bit characters
as listed in PDP~l Manual, F-1SA. Tape feed, blank tape,
and error code punches are ignored. Non-printing characters
are represented below as follows:

Space 6
Tab 1+
Carriage Return J
-Upper Case :1
Lower Case 'lV
Black a
Red ~
Back Space ~

Character Classes: Characters are divided into several
classes for the purpose of defining symbols. Case shifts
are remembered (but are filtered out) and are used to
distinguish-upper and lower case characters. At the start
of a compilation, ~ and 8 are assumed.

-1-

Class 0:

-Class 1:
Class 2:
Class 3:

Illegal codes (e.g. , codes 12-17,
53, 60, 76)
6 ...
)] ((.., • (single quote)~
0123456789
abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
? - (overstrike)

32, 37, 52,

Class 4: -.J ;)" 1\ < >..,.
Class 5: , •• (center dot)
Class 6: .. (double quotes)

Symbols: Formed from one or more consecutive characters
as follows:

Class 0 characters halt the compiler when read
from tape.

Class 1 characters delimit any symbol but are
otherwise ignored.

Class 2 characters are single character symbols,
having a particular significance in the
DECAL system.

Class 3 characters are those normally used by the
programmer to form location symbols, constants,
numbers, etc. in instruction statements,
and to form the variables of algebraic
symbols already defined in DECAL are either
standard ALGOL connectives, or consist of
three characters. Consequently, programme~s
should avoid the use of three-character
symbols for their program variables.

Class 4 characters are normally used to form symbols
which ar~ the operators in algebraic statements <,
(instruction generators). Some Class 4
characters have a special significance to DECAL
when appearing in the address part of an
instruction statement (e.g., .:. + .=.). The
use of Class 4 symbols as operators eliminates
the necessity of spacing between operator and
operand, as long as the operands are of
Class 3.

Class 5 characters are used to form some symbols of
special significance to DECAL. Other Class 5
symbols are available to the programmer, but

-2-

are not normally used.

Class 6 the character: has a special use, when
it is desired to form symbols of mixed
class (see, (i) below).

Normalization: Symbols are normalized with respect
to case by filtering out all case shifts from the
input string, supplying case shifts only as needed.

Thus, A symbol is any string of characters that
satisfies the following conditions:

Either
The characters immediately before and after the

string are ~ (the Class 6 character, which we call
~ symbol bracket), and the string does not contain
a':
Or
ii) The string consists of just one Class 2 character
.QE.
iii) The string consists of characters of like class
(Classes 3, 4, or 5), and the characters immediately
before and after the string are of a different class.

E.g., consid~r the following strings of characters
on tape:
(i) symbolb. A~ a~ A,u, a., () ~
(ii) S.L\ tb a~t6ettm6e6n6t J
Z·, z·, z·,
(iii) t + A6. ~
(iv) IIttR.t~ .a"

These break down into symbols

(i) s.ymbol
AaAaAa
(
)
-l,
,(5 symbols)

(ii) s e z
t n . ,
a t z
t ~ . ,
e z z
m . .. , ,
(18 syritbols)

-3-

(iii) +
A
(2 symbols)

(iv) ~~~'t'. a
(l symbol)

Integer Number: A symbol beginning with a numeral
(0, I, ••• 9) is assumed to be an Integer Number.
An Integer Number is a sequence of consecutive
numerals terminated with a non-numeric character.
Integers are always octal, except when the Data
Word dec is used.

Symbol Types: The class of characters which comprises
a symbol has no effect upon its type; although, by
convention, different classes are commonly used for
different type symbols, e.g., bs ~ ~ wd ~ 2£, Type
3; ~, Type 4. The symbol type is determined either
by previous definition in the DECAL system, or by
its context in program. Any symbol appearing in
program is assigned to a particular type when read
from tape. Except for symbols of type$ ~ and ~,
every symbol has a numerical value. The type and
value of a symbol are entered by DECAL in the DECAL
symbol table upon definition. The various symbol
types ,and the significances of their values follow:

Action operator (~): The value of an ao is
the address of a subroutine in the DECAL system.
Whenever an .2Q. symbol is encountered in pJ;'ogram, its
associated subroutine is called. The assignment
of types and values to symbols (except un) is done
by ao's. A symbol is assigned to type ~ by the
ao dao (See L).

Instruction Generator (1:9:.): Used as an operator
in algebraic statements. The value of an ia is the
address of the first of a series of "pattern words"
in memory. When an ~ is encountered, the pattern
words are combined with the values of the appropriate
operators to assemble a series of instructions.
Assignment is done by the ~ dig (See M).

Constants (wd, ~, 2£): These are used in the
formation of the output Word on the LLD tape. These
types must be distinguished from the types bs and .E§.
below principally for the sake of the LLD relocating
feature. The value of a constant is an IS-bit quantity.

-4-

If the left 6 bits are zerOES the type is ~ (address
size). If· the right 6 bits are zeroes,. the type is
2£ (order-code). Otherwise, the type is wd (word).
Assignment is done by the .2Q' s ewd, ,2!, ~ (See N). *

Prcgram Symbol (~):. The value of a·~ is the
relative address of an instructicn in program. Type
£! is distinguished from type ~ above, so that the
LLD may adj~st the contents of r~gisters in which a
~ was·used in assembly. Assignment is done by the
S2:~ (center dot; period; period). A ~ symbol is
expunged by the .2Q fin only.

Block Symbol (bs): Used exactly the same as~,
only a ~. may also be expunged by the ~ blk. This

. enables the programmer to divide his programs into
blocks, and use bs symbols independently in each.
Assignment is done by the AQ..!. (center dot; period).

Unassigned Symbol (un): A bs or M may be used
befor~ it is assigned. At the time of its use it will
be assigned to type Bn, and reassigned on the appropriate
~ •. In connection with certain ~IS, it is necessary to
use J2!. and bs syu.bols only. At the end of any compila
tion, there should be no ~ symbols remaining. (Note:
References below to ~ symbols refer to occurrences
of symbols that are Bn at the time of reading.)

System Symbol (~): In a system, it may be
necessary to refer to bs and ~ symbols defined only
in other programs of the system. Such a symbol, which
refers to another program compiled separately, is of
type..§.!. Assignment is done by the 1!2. dss. A
symbol may be used by other programs as an ~ only if
the ~ ~ (single quote) is used. This involves the
"linking" feature of the LLD. At load time ~ symbols
are evaluated as the locations where ~ was used, and
are substituted at the appropriate poi~ts in other
programs of the system.

Numbers: Numbers have immediately available values
(their octal values), hence are not included in the
symbol table.

* In DECAL II, the distinctions between wd, A2, ~ will be waived.

-5-

Data: In connection with the ~IS bci and dec,
any character string has an irrmediately available
value, which isa function of the CONCISE III representa
tions of the individual characters.

-6-

B. Simple Statements

Simple statements are separated by a ~ or a t. (Empty
statements are permitted). Simple statements are of one of
the three following types. A simple statement is assumed to
be an algebraic statement unless it starts with a symbol which
identifies it as of another type.

Simple Algebraic Statement

Simple Instruction Word
Statement

Data Word Statement

c. Algebraic Statements

Results in a sequence of
instructions in object program.

Introduced by a symbol of the
type wd, .!!., or.2£.. Results
in one instruction in object
program.

Introduced by an !eo

An algebraic Statement consists of a string of operators,
operands, and parentheses. The operators are ig symbols.

e.g., go to =>,,=, =, ~,I\ ,V,"-I, =, ;i,>~<,~, ~
+, -, x, /0 (See section Q)

Operands ·are a, ~, .!!Il, or '.!.!, symbols (but not numbers).
each operator, a level is defined (!!Q, lvl • • • • • • •
For the i9'S now in DECAL these are:

lvO: goto => 4=
lvl: ::::>.=
lv2: AV
lv3: ~
lv4: ,= ~ > <:. "= ~ lv5: + -
lv6: x/mpy dvd

For
.lv7).

If no pa.rentheses are present, instructions for the higher order
operators of the string are compiled first, and, for expressions
at the same level, the leftmost is compiled first.

may be written «a>b) V (""';(bLc») goto d and produces ·the same
program as the sequence of instruction statements o

lac a
jda ~
lac b

5 •• calling sequence for>

-7-

al:

jda~
xct,.....
ior al
xct goto
jmp d

•
•
o

•
•
•
loc

nt--·· .~'!

~ •• (b<: c is equivalent to c > b)
••• does cma
••• (a~b)V~ (bLc)
••• does spa

••• a>-b

Temporary storage register (e.g., al, in the above example) are
automatically supplied at the end of the current program.

The presence of parentheses indicates that the parenthesized
expression is to be compiled first, before proceeding with the
rest of the statement. Parentheses may be used to any required
depth. It should be noted that the operators currently available
in DECAL correspond in both notation and significance to those
of ALGOL. Many features of DECAL (e.g., the ~ to indicate a
location) have been included with a view to the ultimate incorporation
of ALGOL within the system.

D. Simple Instruction Word Statements

i) A simple instruction word statement must be introduced
by a constant symbol (wd, M, or.2£), and consist of a
string of symbols of types wd, A§., ,2£, bs, .E!!, ~, lYl.r or
numbers.

ii) If no M or .!:!B symbols are involved, an instruction
word is assembled, which is the i:1clusive Hor" c·f thE! valt1E~s

of the symbols. If an odd number of bs or ~ symbol:::. ars
used, the output tape is coded to indicate that the instructio~
word is IIrelocatable ll

, and its address part will be corrected
at "load time ll according to the IJrelocation constant ll

• This
deals with. the silnple cases of address ari,thmetic in which
(a - b) should not be relocated, while (a - b + c) is
relocatable.

iii) If an ~ or ~ symbol is used, only the first 6 b2tS
of the instruction word are assenililed o The outp~"';-, ;~,~~)C is
coded to indicate that the address part is to be filled in
by the LLD. If the symbol is .:!:ID., then the LIID expe.ct~ to
pick up its va~ue at another location on the same tape.

-8-

If the symbol is ~, the LLD gets its value from same
other tape loaded at the same time. Consequently, the
only other symbols that should appear with n or .B!l
symbols are 2S or numbers, with the right 12 bits zero.

E. Defined Expression (DE)

A number os S2. s to be described make use of a IIDefined
Expression", which consists of octal numbers and/or symbols whose
value is known to DECAL at that point in the compilation, i.e.,
l1!\, ,S!., ,2£, l2!" .2!. symbols and ±, =. signs, but not y!!" ~ That
is, the symbols appearing in a Defined Expression must have been
previously defined in the program. A DE is terminated by a t or
.1.. In the absence of ± or =. signs, a logical "or" is taken of the
values (as in the evaluation of the address parts of instruction
statements).

F. Action Operators in Instruction Word Statements.

. i) Most of the PDP instructions are represented in DECAL
as wd or ,2£ constants. SOme instructions, however, have
been given special treatment:

a) .!.!! is defined as an AQ, which plants the value
of the succeeding defined expression (DE) in a skip
instruction: i.e., szs S produces 6400S0, and has
the action I'skip" on zero sense switch "S".

b) All "rotates" and "shifts" are defined as .22"S,
which plant a number of "ones" equal to the value of
the succeeding defined expression (DE) in the
appropriate "sMft'" or "rotate" instruction: e.gol

rcl ~~ produces 663777 and has the action I'rotate
combined left·9 bits". . •

The above may not be preceded by any other part of the
instruction Word statement.
e.g., szf 1 szs 2 produces a diagnostic print.

ii) The symbol ~ in the address part of a statement :i.s
treated as a bs whose value is. the current value of the
location counter (the relative· address of the instruction)

iii) The symbols ±, .= in the address part of a statement
. change the mode of combination of the succeeding symbol
into the rest of the statement to an Wadd" o~ , . ..:;........;;t,ract" I

respectively. Address aritlmletic cannot be done with un
or 88 symbols. .

iv) The symbol / in the addresS part of a statement adds
a defer bit 10000 to the resulting word.

v) For sequence-break instructions, the following,AQl s
are used:

chn appea~ing in the address part of an instruction word
plants the ~:'val}le of the DE that follows at the appropriate
point in the instruction, e.g.,

isb chn 17 produces 721752
dsc chn 6 produces '720650

bac, bio, bpc, bjm are used in the address part when referring
to the sequence~break storage locations for accumulator, in
out register, program counter, and the sequence-bx:eak jump
respectively. ' e.g.,

jmp 'bpc 7 produces 610035 ,
(35 is the program counter storage location for
channel 7)

chn, bac, bio, bpc, an~ bim, may not be the first symbol in
a statement.

G. ,Lahels, Location Symbols"andVariqQles

Algebraic, Instruction Word, and Data Statements may be
labeled by a bs or £!. Such labels are actually location symbols,
in that the symbol has associated with it the corresponding location
of the (initial) instruction of the labeled statement. If the purpose
of the statement so ,labeled is to provide a st~rage register(s)
for a variabie, then the labeling 7symbol may 1_ used as a variable
(operand). i~ an algebraic statement ,appearing 'in the program.

T~e labeling is accomplishe,~' by punching the desired symbol
at the beginning of a statement fo~lowed by a ~ for bs or a ~ for
a~. The insertion of a ~ causes the preceding symbol to be trans
mitted as a symbol defined by the program, and available as an §.§.

to other programs of the system. The ~ ~ be followed by a ~
or~. For' example:

name:(:-' a + ct = d
xyz:. ,jmp art
abc I : .. ' b + c = a
abd':. jmp X

, 'Any number of labels may be applied to a statement. Labels are
neglected when classifying a statement as' "algebraic", linstruction
word", etc.

-10-

Ho Data Word Statements

Octal:

Alphanmneric:

Decimal:

oct followed by an octal integer
of not more than six digits o Initial
zeroes may be omitted.
(.2£!:. is an A§. with value 0)

bei (binary-coded-information) followed
by one separating character (usually
a~ or~) followed by a string of
characters terminated by a ..!.. The
resulting data is packed three characters

·per word with zeroes filling out the
last wor~ if necessary

Any character may be included in the
string, although special handling of
the .L and ..!. is ;eqriired. To include
either a ..!. or .L in the resulting data,
it· is necessary to precede eacbinstance
by a .L.

dec followed by a decimal number of the
form:

+123.456 +789

or of the form :

+123

The first case will result in a two
register floating point number and the
second in a one-register integer o The
plus signs are optional, as is every
other part in the floating-point case
which is not essential to specify
the value, or to distinguish it ·from

. the integer case. ~If the decimal point
is omitted from the first case, it is
assumed to lie to the right of the
number •.

J.. statement Parentheses

For certain ao's it is.necessary to generalize the definition - \ of a "statement II. A compound statement either

i) - is a simple statement~ as already defilie~ (delimited
by .L or~).

-11-

or

ii) lies between two occurrences of the statement
parentheses beg and end. Compound statements may contain
other compound statements, so intermediate occurrences

, of beg and end must count out in the usual fashion for
parentheses.

K. Tap,e Terminators

Tapes are terminated by the A2.' s stp or fin. The former
per.mits the read-in of several physically separate tapes which
comprise a single program. The CONTINUE button will re'ad-in
the next tape. The latter finishes the compilation process,
and expunges all symbols defined during the program from the symbol
table, unless fix was used. In order that the symbols stp and
fin be recognized, they must be delimited by a terminal character.
Any character other than one in Class 3 will suffice, but period
(.) is suggestedo The period may be followed by a ~ to restore
the carriage.

'L. The Action Operator,.922.

dao defines the preceding symbol as a new A2. by the
compound statement which follows ito When the dao is encountered,
the defining statement is assembled directly into the compiler
storage area in DECAL o The defining statement, normally using
beg and erid, must be capable of a complete one-pass compilation,
so may contain no ~ or ~ symbols. The compiled program is
called on,every subsequent occurrence of the new !e' symbol.
Return to the main program is achieved through the MAC return
rml. An . example of the' use of a .9!q is as follows:

X dao
jmp rml

(may be used to make the symbol X irrelevant). A complete
description of dao will be given in a later phase.

M. The Action Operator dig

diq defines the preceding symbol as a new instruction
'generator by the statement which follows' it. The action of
dig is precisely the same as that of dao,;eXcept; that the new
symbol is now defined as an .!9: in the symbol table. The
,associated sequence of registers in the compiler storage area
will now be decoded every time the new symbol is encountered in
an algeb~aic statement. The 1a operator may have either one or

-12-'

two operands. For one operand, the operand occurs after the ~
symbol. For two operands, these occur separated by the iq symbol.
They are referred to in the encoded registers by the numbers 1, 2,
respectively, in the address part. other codes are

i) ths (~3000)7 when encountered in decoding, results
in the address part of the appropriate word being treated
as an~, where the cppropriate symbol is the labeling symbol
for the iq. At load time, the LLD will expect a tape on
which the labeling symbol is defined as the location of a
subroutine, or an instruction, to be executed by the generated
frogram.

ii) 1 f;r. (~ 400); indic"ates the last register in the encoded
sequence.

The first register of the sequence contains some necessary
information for the compiler, and does not result in a register
of decoded program. The codes for the first register are:

iii) IvO, lvl ••••• Iv7 (££ 04 - 14 in bits 0 - 3)1
indicate the level of precedence of the 1a (see C).

iv) opl, op2 (~lOO, 200)7 the number of opera~ds expected.

v) rsl (M. 10); number of r.esults (currently no choice).

vi) cmt (M. 2000); indicates that the two operands (op2)
are interchangeable.

vii) nlc (~l); indicates that the first generated instruction
word is not lac 1; in the absence of nlc, a lac 1 is inserted
without being specified in the encoded program.

Examples: mpy dig
beg Iv6 opl rsl nlc
jda ths
lac lIst end

fa tape with mEY must be supplied at lead time).

= dig
beg
lvl op2 rsl cmt
xct ths

. xor 21st end
(a tape with =1: cma must be supplied).

-13-

The instruction generator is restricted as follows:

i) The full address part is used in decoding-the
instructions, the only acceptable constants must occupy
bits 0-6, thus cIa, IIlaw 011, etc., may not be used
(hence, the circmnlocution is == above).

ii) The only acceptable references from the address
part are to the operands, or to just one associated
location.

iii) It is not possible to use SQ's to control the
compilation process, or to use 11 nested ll i.9:' s.)

N. Other Action Operators

blk introduces a new block o If SW 2 is ON, the bs's
previously defined will be printed. If SW 3 is ON, the ~'s
will be printed. All bs's are expunged from the symbol table.

dss declares as type ~ the symbols which follow in the
same statement. (i.e., up to i or L)

*eas equates the preceding symbol as an A2 to the DE
which follows in the same statement.

*eoc equates for .2£, as above.

ewd equates for a wd, as above.

fix fixes the symbol table for sUbsequent compilations:
prints current bs and un.

lve leaves a gap in the program of length given by the
DE which follows in the same statement.

xsy expunges from the symbol table the symbols which
follow in the same statement o (i.e., up to i or~)

~~ •• the remainder of statement is comment material and
is therefore ignored.

O. List of constants Supplied

Symbol Type Value Operation

add Y oc 400000 C(AC) ~ C(y) + C(AC)

*This feature will be eliminated in future tapes, ewd may be used
instead.

-14-

Symbol ~ Value Operation

andY oc 20000 C(AC) ~ C(Y),/\ C(AC)

cal Y oc 160000 jda 100

dac Y oc 240000 C(Y) ~ C(AC)

dap Y oc 260000 ,C6-l7(Y) ~ C6-l7(AC)

dio Y oc 320000 C(Y) += C(IO)

dip Y oc 300000 CO-s(Y) ~ CO-s(AC)

dis Y oc 560000 divide step

dzm Y oc 340000 C(Y) i= 0

idx Y oc 440000 C(Y) ~ C(AC) ~ C(Y) +1

ior Y oc 40000 C(AC) <r C(Y) V C(AC)

iot oc 720000 in-out transfer group

isp Y oc 460000 idx Y7 spa

jda Y
v

170000 dac Y7 jsp Y + 1 oc

jmp Y oc 600000 C(PRC) ~ Y

, jsp Y oc 620000 lap 7 jmp Y

lac Y oc 200000 C(AC) ~ C(Y)

law Y oc 700000 C(AC) 4= Y

lio Y oc 220000 C(IO) ,~ C(Y)

mus Y oc 540000 multiply step

nop oc 660000 no operation

opr oc 760000 operator group

sad Y oc 500000 if C(AC) ~ C(Y) then skip next
instruction

-15-

Symbol

sas Y oc

sft oc

skp oc

sub Y oc

xct Y oc

xor Y oc

skip group:

sma oc

spa oc

spi oc

sza oc

szf f oc

szo oc
(~ see F (i»

usk oc

operate group:

cla oc

clf f oc

cli oc

cma oc

hlt oc

lap oc

lat oc

stf f wd

Value

520000

660000

640000

420000

100000

60000

640400

640200

642000

640100

640000

641000

640600

760200

760000

764000

761000

760400

760300

762200

760010

-16-

Operation

if C(AC) = C(Y) then skip

shift group

skip group

C(AC) ~ C(AC) - C(Y)

execute instruction in Y

~ (AC) (;: rv (C (AC) ~ C (Y))

if BO (AC) = 1 then skip

if BO CAC) = 0 then skip

if BO (IO) = 0 then skip

if C(AC) = 0 then skip

if Flag (f) = 0 then skip

if OVerflow Ind = 0 then skip

skip (unconditional)

C(AC) ~ 0

Flag (f) ~ 0

C(IO) (= 0

C (AC) E..""J C (AC)

halt

C(AC) 4= C(PRC),

C (AC) 4= C (test word)

Flag (f) ~ 1

?ym'bq!;. !ype value
---...a~_

Operation

i.n-out transfer group:

asc wd 720051 activate sequence-break channel

cnv wd 720040 convert, analog to digital

dpy wd 720007 display (C(AC),C(IO»

dsc wd 720050 deactivate sequence-break channel

esm wd 720055 enter sequence-break mode

isb wd 720052 initiate sequence break

lsm wd 720054 leave sequence-break mode

ppa wd 720005 punch paper tape, alphanumeric
.,

ppb wd 720006 punch paper tape, binary

rcb "'d 720031 read converter buffer

rpa wd 720001 read paper tape, alphanumeric

rpb wd 720002 read paper ta~e, binary

rrb wd 120030 . read relay buffer

arb 'wd '720021 set relay buffer

tyi wd 720004 type in

tyo wd 720002 type out
(see also ao's chn, bac, BiQ, bpr, bim, section F(v»

shift-rotate group (see F (i»:

other program constants:

loc as 0

oct as 0

• • as 0

rml as 124 return·to MAC from a'called
~"""'routine

-17-

Symbol ~ Value operation

. constants for dig statements

1st as 400 last pattern word

ths as 3000 "this" symbol

cmt as 2000 co~mutative operator

IvO oc 200000)
)

lvl oc 240000)
)

Iv2 oc 300000)
)

lv3 oc 340000) precedence levels
)

lv4 ".i oc 400000)
)

lvS oc 440000)
)

lv6 .oc 500000)
)

lv7 oc 540000)

nle as 1 not lac 1 as first pattern word

opl as 100 one operand

op2 as 200 two operands

rsl as 10 one result

P. Error Detection

DECAL detects cnd prints about 30 types of errors. The format
of the print in each case is a three-character code in red followed
by the last defined symbol (or NS if there is none) followed by
the current symbol. For the cases ich and fpe, the offending
character is printed as a three-digit octal integer.

Code Error Action

bos bracket or separator (where it ignore
shouldn't be) ~

-18-

cas

ciw

dda

dds ~

£pe

iaa

ias

ich

idn

iig

ino

nas

nds'

nfs

nXs

sdi

spu,

,cotn.P.,~ler algebraic statement
in"~'(:ilg or ~ (not permitt~.d).

compiler "improper word ,

duplicate definition attempted

duplicate definition of s~bol
attempted by ~

parity error' (this error stop
is presently deactivated)

illegal address arithmetic

instruction 'word in algebraic,
statement· ,

illegal character

improper.decimal number

incorrect .!g

incorrect number of operands

n~mber not allowed in
'alge~raic statement

number in des .-
not first symbol in statement
(when defining)

number in xsy

symbol definition indefinite
(expression contains undefined
symbol) ,

symbol previously used when
definition attempted

-19-

Ac'tion

gives a try anyhow

store anyhow

do not re-define,

do ·not re-define

halt; load desire 6 bit
character in test word

. (right-justified) and
continue

try anyhow

handle as instruction
word

treat as space

proceed with convers'ion

ignore is.

gives a try anyhow

treat 'as oct

ignore number

proceed with definition

ignore number

define as zero

do not define

tmd too many
numbers

tmo too many

tmr too many

xcs exceeded

Error

digits in octal

operands

results

compiler storage

Action

ignore left digit

new operand replaces previous

ignore excess

halt: continue with
store over last word

xmp exceeded MAC push-down list halt: no recovery

xps exceeded MAC protected storage halt: no recovery
(commonly occurs with in-
correctly written instruction
statement

xst exceeded symbol table halt: no recovery _.

x)

(X

8,9

,

right paren without left

right paren missing

8 or 9in octal number

comma found out of place

ignore paren

treat current symbol
as right paren

take mod 8

ignore comma

Q. Available ja' s

Appearances of the left hand a~pressions in program cause
the same output as the sequence of instruction statements on the.
right.

a+b lac a

add b

a-b lac a

sub b

lac a (=) is (equal sign: greater-than sign)

dac b

-20-

axb

a/b

mpy a

'f

dvd a

b go to a

lac a (integer multiply) *

jda imp

lac b

lac a (integer divide)*

jda idv

lac b

loc idv (halts on error, address points to
routine in which error occurs)

jda mpy . (fractional multiply)*

lac a

jda dVd (fractional divide)*

lac a

loc dvd (halts on error1 address points to
routine in which error occurs)

lac b (~ is (lJless-than" sign1 equal sign»

dac a

lac b

spa

jmp a

lac a (; is (understrike 1 equal sign)

xct~ *

xor b

lac a

xct~ *

*Calling sequence for associated subroutines o If these are used,
the appropriate tape must be loaded at run time (supplied with DECAL).

-21-

aAb

aVb

('Va

a=b

a(b

ior b

lac a

and b

lac a

ior b

lac a

xct ~ *

lac a

j da r;: *

sas b

lac a (~ is (vertical bar; equal sign»

jda = *

sad b

lac a

jda) *

lac b

lac b

j da <.. *

lac a

lac a (> is (understrike; greater-than sign»

jda ~ *

lac b

lac b (4 is (understrike; less-than sign»

jda 4 '*

lac a

-22-

R. Available Action Ope::;l..-:or

For use in place of Q£ symbols:

Symbol Associated Value Siqnificance

ral 661000 Rotate AC left

r2.r 671000 Rotate AC right

rcl 663000 Rotate combined left

rcr 673000 Rotate combined right

ril 662000 Rotate IO left

rir 672000 Rotate IO right

sal 665000 Shift AC left

sar 675000 Shift AC right

scI 667000 Shift combined left

sar 677000 Shift combined right

sil 666000 Shift IO left

sir 676000 Shift IO right

szs 640000 Skip on zero sense-switch
(See F(i»

For use in place of ~ symbols:

Symbol Significance

chn Channel number

bac Sequence-break storage for AC

bpc Sequence-break storage for PRC

bio Sequence-break storage for IO

bjm Sequence-break jump
(See F{v»

-23-

For use in addr~ss part of instruction word statements:
(these do not have these significances elsewhere).

§yrobol Significance

/ Defer bit 10000 (F(iv»

Location counter (F(ii»

+ Change composition to "add" (F(iii»

Change composition to "subtract" (F(iii»

For use in algebraic statements:

if None (a dummy, for purposes of ALGOL format)

then None

For use in data statements:

dec Decimal convert

bci
(See H)

Binary coded information

Other action operators:

blk End of block (N)

dao Define action operator (L)

dig Define instruction generator (M)

dss - Declare system symbols (N)

eas Equals address-size (N)

eoc Equals order-code (N)

ewd Equals word (N)

fin End of program- (K)

fix Fix symbol table (N)

Ive Leave space in program (N)

-24-

stp

xsy

. . .

•••

/

Siqnificance

Pause; end of tape (N)

Expunge symbols (N)

. Location of .E§. (G)

Location of bs (G)

comment (N)

Location of usable $8 (G)

s. .' Operating Instructions

1. Place DECAL F tape in reader and press ~D-IN.

2~ Place program to be co~piled in reader, turn on
punch, and start at 400.

3. After 'first program has compilea, subsequent
programs may 'be compiled by pressing CONTINUE or by
starting at 400.

/'

-25-

A"t present I there is a low Linking Loader (LL) occupying 0000-
1777. The s~~bol table of LL occupies 1400-1777. SA = 400. This
present J..IL will allow relocatable loading of LL subroutine tapes
(output of DECAL) in any order.

Operating Procedure:

1. Clear memory, if desired.

2. Load LL Binary tape (~ses Hi P+L loader); identified
as BIN Low Linkinq Loader·F. Program stops at 100.

3. Set test address switches to 400.

4. Load reader with LL tape (output of DECAL) to be l.oaded.
Remereber that what was last punched by DECAL is first loaded
by LL. I~e., place tape backwards in the reader keeping
the feed holes in normal orientation with respect to the
reader. Turn the reader on.

5. Press START. The tape should read-in, then come to a
stop. (See Note d-fo;I.lowing for description of typeouts
during use of LL).

6. Computer halts at 502. ·To lead additional tapes, re
located to follow programs already loaded, put subsequent
tapes in reader (see (4) above), and press CONTINUE. After
each program is loaded, the computer will halt at 502.

7. After all tapes· are loaded, put SS 6 up and press
C0NTlNUE. If the syste~ has been properly loaded, the
typewriter will type out fin in black. This mecns you
are all set to run your program. If there are still any
undefined system symbols, the typewriter will type out
in red the required system symbols. E.g., the following
would be typed out all in red.

rq symbol-l
r'l symbol-2
• • • . ..
-rq symbol-n
fin

After type-outs, computer again halts at 502.

8. To load missing subroutines to define the missing system
symbols, just put SS 6 down, and resume procedure from step (6).

-26-

NOTES:

a. Programs are nOD13lly loaJed into ~ UlJC 2:nd up; each
program being relocated to follow those already loaded.
To start loading a system at some arbitrary loaction· above
2000 (say 4100), set test word switches to desired adc;1ress
(4100), and put S8 2 up, when loading first program START
at 400. After this program is loaded put SS 2 down, and all
subsequent programs will be relocated to follow the first

. program by continuing from 502. (Press CONTINUE)

b. START at 400 causes the symbol tz-lle to be initialized.
CONTINUE at 502 leaves symbol table unchanged.

c. Re: Check sum error. If there is a check sum error
noted when ~he program has been read, the LL will type-out:
CKS, and halt at 502. In order to reload the erroneously
loaded program use the following procedures:

1. Reload program tape into reader.

2. Set test word switches to 415.

3. Press START.

This procedure will cause the program to be loaded in the
same space it was previously loaded. However, since there
may have been system symbols defined during the first loading,
this second loading might cause LL to erroneously type-out
dda (duplicate definition attempted). Such type-outs during
a reloading after check sum error should be ignored.

d. The following is a description of the type-outs during
use of LL

1. First word is not checksum. This is typed if the
LL tape being loaded is not properly loaded in the
reader.

2. pgm xxxx
sst yyyy
11 zzzz

The above is normally the first type-o.lt during loadins
of an LL tape. xxxx is the cc tal address of the first
register of the program. Y.::Ei.Y. is the octal address 0.(.0

the first temporary storage used by algebraic statemE;
of the program (if any). ~ is the ac~ress of the
last location used by the program including temporary
storage.

-~(. 7-

,3", Example of type-out normally following above.
~S~y~~=b~o~l~-~l~ __ ~aaaa
Syrnbol-2 bbbb

Symbol-n nnnn
end

Svmbol-l, Symbol-2, and symbol-n represent certain
symbols (ss) defined in the program by apostrophes
(I)... ~ is the octal address which is the definition
of symbol-l; bbbb is the octal address which is the
definition of syrnbol-2; and.!l!2!l!! is the octal address
vlh:~ch is the definition of symbol-n. The symbol end
signifies program has been read in.

Symbol ffff
Error diagnostic type-out for duplicate definition
attempted':- ~ is the octal address which is the
present value of the location counter; Symbol is an
example of some symbol of the program identified by
an apostrophe (I) as a system symbol (S5). When LL
sees this symbol and finds it already defined in the
symbol table, it types out the above. ffff is the
octal address which is the definition qf the symbol
foun·d in the symbol table. LL does not change the
definition in the symbol table.

5. cks qggqqq hhhhhh
This is the error diagnostic type-out for ·checksum
error. qqqqqg is the octal representation of the
computed checksum. hhhhhh is the octal representation
of the read checksum. To reload the program see
instructions, not 'C.

6. rq symbol (in red) •
SEe operating procedure Step 9.

-28-

HO'1i To .$(~ad A . LL Tape

The following is intended to allow DECAL and LL users to
become familiar with the operation of LL, and to be able to read
LL tapes and understand how they will be loaded by LL.

The LL tapes should be held so that the last part punched
(first part to be read) is put at the top. The feed holes are to
be toward the right. Below is a schematic representation of a
properly oriented LL tape for visual reading.

Three lines
per word
space

8 ~

X

X
X

7 6 5 4

*
*
*
Leader

*
*
*
*
X X X

X X

X X X

X X

etc.

t

'3

*
*
*
*
*
*
*
*
* X

*
*
*
*
*
*
*
* X

*
*
*
* ,

2 1

X
X

X X

X

}

Identification of bits
in each line.

Part cf tape last punched
by DECAL and first read
by LL.

} One word-space
}

X: indicates f1nched information bit
*: indicates f~ed hole

The LL tapes consist of a sequence of words punched on the tape.
That is, there are 3n lines on the tape where n is the number of
words on the tape. We will now direct our attention to the
arrangement of informatior.. tli thin each word-space (3 lines) on
the tape. We note that there are 8 hole spaces per line. I.e.,
there are 24 bits per word space. Consider the bits in a word
space labeled as follows:

*
*
*

D A a b c *
E B g h i *
F C m n 0 *

*
-29-

d e
j k
P 9-

f
1
r

)

} Word Space
}

Now consider these bits as consisting of two parts: the Word and
the Code, as follows:

Word: abcdefghijklmnopqr

c,) d~: ABCDEF

The E!g is a string of 18 bits where a is the high order bit and
r :LS the 10\:*1 order bit.

Tile Code is a string of 6 bits where A is the high order bit and
F is the low order bit.

For convenience, we will represent the word as a 6 octal digit
L~mber, and the code as a 2 octal digit number.

We now present a description of the meaning of the various
codes which appear on LL tapes.

00:

Meaning·

.Normally this code means that the word sharing its
word-space is to be loaded directly into memory as a
non-relacatable word. This COCA also appears with
words which consist of concise codes for 3 characters
of alphanumeric information, one character per line.
It also appears with the second and third words on the
tape respectively: the number of words of temporary
storage required by the algebraic statements in the
source language programs; and the total number of words
of memory (registers) required by the program, i.e.,
the program size, not counting temporary storage.

01: This code identifies the word it accompanies as a·
relocatable word. The location of the first word in
the program (the last word of program read by'LL) is
added to the accompanying ~ and the result is
stored in memory.

04: This code identifies the accompanying word as having
an address which refers to temporary storage. The
location of the first register following the program,
i.e. , the first register of temporary storage for the
program, is added to the accompanying word, and the
result is stored in memory.

05: This code identifies the accompanying wor"-: (..s ha\ring
an address which refers to a block symbol (bs) or

-30-
•

program syr~;bol (ps) wr.ich was undefined at that pnint
in the compilation of the source language program which
resulted in this word. ~o find the address part to be
daped into the word, lock at the address part of the
register whose location is equal to the sum of the
address part of the word and the location of the first
word of the program. The address part of this found
register is ~ed into the word and the result is stored
in memory. (See code 11 to understand how the appro
priate address is stored into the found register).

07: This code identifies the accompanying word as h2ving
an address which refers to a system symbol (ss)
identified in the source language program by a dss
statement. It also indicates that the word(s) to
follow are the concise codes for the alphanumeric
representation of the system symbol (ss) of the 'address
reference. (See codes 00 and 70.) The alphanumeric
information is read by LL into the next available
portion of memory reserved for the symbol table. The
symbol is tested to determine whether or not it is
already in the table, and if it is in the table, whether
or not it has been defined, (i.e., that the address
corresponding to this symbol has been determined.
See code 10.) If the symbol is defined, the defining
address is daped into the word and the resulting word
is stored in memory. If the symbol is undefined or
not 21ready present in the table, a list is extended
or initiated so that when the symbol becomes defined,
the definition will be daped into the word, already
stored in its appropriate register in memory. In
the meantime, the address of the word is set to esta
blish the appropriate list, and the result is stored
in memory. If the symbol was not already in the symbol
table, it is added to the symbol table.

10: This code accompanies a ~rd which is 000000. It
informs the LL that the word(s) to follow consist of
concise codes for alphanumeric information. (See
codes 00 and 70.) This alphanumeric information is
a system symbol (ss) which appeared in the source
language program with an apostrophe (') at a point
corresponding to the present word-space. LL reads
the alphanumeric information into the next available
part of the symbol table, and checks to see if the
symbol is already in the table or not. If not, the
symbol is added to the synbol table and the 't/. 1.ue
set equal to the LL location co'Unter which poi.yts
to the previous word stored in memory. If the
symbol is already in the symbol table, its value is

-31-

set the same way, and the value is j.~ed into all
words of the system which referenced ~his symbol.
This is made possible by the list set up at the
appearances of code 07 at earlier points in the
loading of the system. (See code 07.)

11: . This code accompanies a word of the form OOXXXX.
That is only the address part is non-zero. This word
space corresponds to that point in the source language
program where a block symbol (bs) is identified by
colon (:) and for a program symbol is identified by
a colon-period (:.). This code causes the LL to set
the address part of the contents of the register, whose
location is defined below, equal to the LL location
counter which points to the previous word stored in
memory. The definition of the location (where the
location counter value is put into the address part
of the register) is equal to the sum of the address
part of the word and the location of the first register
(origin) of the program. That is, the LL adds the
address part of the word to the origin of the program
being loaded to determine the location. Then the
location-counter is daped into that location. (See
code 05.)

12: This code accompanies a word which is 000000. This is
the first thing punched on the tape by DECAL and the
last thing read by LL while loading the LL tape for a
program. This code causes LL to check the checksum
and then halt at 502.

13: This ££de accompanies a word of the form OOXXXX, i.e.,
only the address p~rt is non-zero. :'his code and word
are punched by DECAL at that point in the compilation
where a Ive (formerly leave) statement appears. This
code causes LL to update the location counter by "the
quantity appearing in the word.

70: This code accompanies the last ~ord of a string of
words (maybe only one word) which contain alpha
numeric information.

77: This code accompanies a word which is the checksum
for the program LL tape. This is the last thing punched
by. DECAL and the first thing read by LL.

-32-

S1.:rr.rnary of Operation of ? ~

When STARTing at 400, LL sets the origin of progr~~ to 2000,
if ss2 is down, and to the contents of the test word switches if
ss2 is up. When CONTINUEing at 502, LL sets the origin of program
equal to previous origin, plus size of previous program, plus number
of words of temporary storage of previous program, if ss2 is down.
If ss2 is up, LL sets the origin of program equal to contents of
test word switches. LL sets the location counter equal to the origin
of current program plus size of current program.

The first word-space read·by LL contains code 77 and a 'Word
which is the checksum which is the sum of all wores and codes., This
checksum is stored so that it can be checked at the cornpletioL of
loading the program.

The second word space read:"'by LL contains 20de 00 and a <~.9rd
. of the form OOXXXX, whose address equals th,~ number of temporary
storage registers required by the prograrr. be':.ng l:,Jaded.

The third word space read/by LL contains coQg. CO and a worg of
the form OOXXXX, whose address equals the Si:::8 of the ~:::;:t·cqr?me LIJ
then reads one word space at a time and operates on it as indicated
in the description of codes presented above.

When starting to load the first word o~ program read by LL
(last word of program punched by DECAL), the location counter
points to the register just past the last register to be occupied
by the program (not counting temporary storage if any). Just
before storing a program word in memory (Codes 00, 01, 04, as,
07), the quantity one (1) is subtracted from the location counter,
and the resulting value of the location counter points to the
register into which the word is to be stored.

The last word space which LL reads contains a code 12 and a
word 000000, which signifies the end of the tape.

-33~

Symbolic Program

••• coin subroutine
••• Ju1y 11, 1961 ...
dss random
coin' :b: lac

a:
fin.

dap a
lac b
spa
jmp a
jsp random
spa
cma
sub b
sma
idx a
jrr,p

EXAMPLE

-34-

Decal Printout

ss coin
un

bs

coin
b
a

ps

S8

random

as

oc

wd

ao

ig

0000

0000
0000
0013

LINKING LOADER STORAGE MAP

pgm
sst
11
coin
end

4000
4014
4013
4000

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34

