
VSV21

VSV21
Programmer's Guide

DECLIT may not be renewed. It
you need th1s for longer than
one month , please make a copy
and send the library copy back

Order Number AA-FV67D-TK

VSV21 PROGRAMMER'S
GUIDE

Order Number: AA-FV67D-TK

digital equipment corporation maynard, massachusetts

First Edition, July 1985
Second Edition, March 1986
Third Edition, June 1987
Fourth Edition, August 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form included with this document requests the
user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC/CMS
DEC/MMS
DECnet
DECsystem-10
DECSYSTEM-20
DECUS
DECwriter

DIBOL
EduSystem
lAS
MASSBUS
PDP
PDT
RSTS
RSX

UNIBUS
VAX
VAXcluster
VMS
VT

mamaamoN

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Co. Ltd. (DEC). Digital
Equipment Co. Ltd assumes no responsibility for any errors that may appear in this
document.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Co. Ltd. or its affiliated companies.

This document was prepared using VAX DOCUMENT, Version 1.0

Contents

PREFACE xvii

PART I OVERVIEW OF VSV21 SYSTEM SOFTWARE

CHAPTER 1 INTRODUCTION 1-1

1.1 GRAPHICS DISPLAY LISTS 1-2

1.2 PROGRAMMING INTERFACES 1-3

1.3 VS11IVSV11 EMULATION 1-4

1.4 SYSTEM SOFTWARE COMPONENTS 1-5
1.4.1 Host Software 1-6

1 .4.1 .1 VSV21 Device Driver· 1-7
1.4.1.2 VSV21 Control Program (VSVCP) • 1-7
1.4.1.3 Subroutine Libraries· 1-7
1.4.1.4 Resident On-Board Software· 1-8

1.4.2 Downloaded On-board Software 1-8

1.5 CONSTRAINTS WHEN USING VSL CALLS 1-9

PART II OVERVIEW OF VIVID AND DISPLAY LISTS

CHAPTER 2 OVERVIEW OF VSV21 VIVID PROGRAMMING 2-1

2.1 USING THE VIVID INSTRUCTION SET 2-1

2.2 INSTRUCTION TYPES 2-2

iii

Contents

2.3 ACCESS TO VIVID INSTRUCTIONS 2-3
2.3.1 Display Lists 2-3
2.3.2 VIVID Subroutine Library (VSL) 2-4

2.4 CONTROL INSTRUCTIONS 2-4

2.5 THE VIEWING TRANSFORMATION 2-6
2.5.1 Transforming Input Data to VAS Units 2-8
2.5.2 Transforming VAS Units to Screen Display Units 2-8

2.6 GLOBAL ATTRIBUTE INSTRUCTIONS 2-9

2.7 DRAWING INSTRUCTIONS 2-10

2.8 FILLED FIGURE INSTRUCTIONS 2-11

2.9 TEXT INSTRUCTIONS 2-11

2.10 AREA OPERATION INSTRUCTIONS 2-12

2.11 INTERACTIVE INSTRUCTIONS 2-13

2.12 REPORT HANDLING INSTRUCTION 2-14

CHAPTER 3 DISPLAY LISTS 3-1

3.1 IDENTIFYING SEGMENTS 3-1

3.2 STORING AND DELETING SEGMENTS 3-2
3.2.1 Storing Segments in Host Memory 3-2
3.2.2 Storing Segments in VSV21 Memory 3-2
3.2.3 Deleting Segments 3-5
3.2.4 The VIVID Default Font 3-5

3.3 SEGMENT TYPES 3-5
3.3.1 Instruction Segment 3-6
3.3.2 Font Segment 3-6
3.3.3 Pixel Data Segment 3-7

iv

3.3.4 Keyboard Input Segment
3.3.5 Report Segment
3.3.6 Attribute Segment

PART III HIGH LEVEL INTERFACE - VSL

CHAPTER 4 THE VIVID SUBROUTINE LIBRARY (VSL)

4.1 GENERAL FUNCTIONS

ASSIGN VSV21 DEVICE - VVXASS

END DISPLAY PROCESSING - VVXEND

INITIALIZE DISPLAY PROCESSING - VVXINI

RELEASE VSV21 DEVICE - VVXREL

GET VIVID VERSION NUMBER - VVXVER

4.2 SEGMENT MANIPULATION FUNCTIONS

COPY SEGMENT - VVMCPY

CREATE SEGMENT - VVMCRS

DELETE SEGMENT - VVMDEL

LOAD SEGMENTS FROM FILE - VVMDLD

RESTORE SEGMENTS FROM DISK - VVMGET

LOAD SEGMENT FROM HOST - VVMMLD

SAVE SEGMENTS ON DISK.- VVMSAV

4.3 SEGMENT EXECUTION SUBROUTINES

EXECUTE SEGMENT - VVEEXE

RESUME SEGMENT EXECUTION - VVERES

STOP SEGMENT EXECUTION - VVESTP

4.4 REPORTING FUNCTIONS

GET KEYBOARD INPUT - VVRKBD

GET REPORT - VVRREP

GET SEGMENT BLOCK - VVRSEG

GET STATUS - VVRSTA

4.5 SEGMENT BUILDING FUNCTIONS

START SEGMENT - VVBBGN

4-4
4-6

4-7

4-8

4-9

4-11

4-12

4-13

4-14

4-16

4-18

4-19

4-21

4-22

4-23

4-25

4-26

4-28

4-29

4-31

Contents

3-7
3-8
3-9

4-1

4-3

4-10

4-20

4-24

4-30

v

Contents

END SEGMENT - VVBEND 4-32
SET DRAWING PARAMETER MODE - VVBMOD 4-33
SET INSTRUCTION PARAMETER MODE -

VVBPMD 4-34

4.6 INSTRUCTION GENERATION FUNCTIONS 4-35
4.6.1 Control Functions 4-36

VVCCAL 4-37
VVCCRS 4-38
VVCDMP 4-39
VVCDWT 4-40
VVCERP 4-41
VVCINI 4-42
VVCJMP 4-43
VVCRCV 4-44
VVCREP 4-45
VVCRES 4-46
VVCSAV 4-47
VVCSTP 4-48

4.6.2 Transformation Functions 4-49
VVVDIM 4-50
VVVDRM 4-51
VVVDRT 4-52
VVVSVU 4-53
VVVTRN 4-54
VVVVAS 4-55
VVVWND 4-56
VVVWOR 4-57
VVVZMF 4-58

4.6.3 Global Attribute Functions 4-59
VVGATX 4-60
VVGBCL 4-61
VVGBCT 4-62
VVGBLC 4-63
VVGBLK 4-64
VVGBLT 4-65
VVGFCL 4-66
VVGLTX 4-67
VVGMOD 4-68
VVGNLC 4-70
VVGSCB 4-71

4.6.4 Drawing Functions 4-72

vi

Contents

VVDARC 4-73
VVDCRC 4-75
VVDDOT 4-76
VVDEAR 4-77
VVDELL 4-79
VVDLlN 4-80
VVDMOV 4-82
VVDMTC 4-83
VVDPMK 4-84
VVDREC 4-86

4.6.5 Filled Figure Functions 4-87
VVFFLD 4-88
VVFPNT 4-90
VVFRCT 4-92

4.6.6 Text Functions 4-93
VVTDRC 4-94
VVTDRP 4-95
VVTIFT 4-97
VVTLDC 4-98
VVTMAG 4-99
VVTMOV 4-100
VVTOBL 4-101
VVTROT 4-102
VVTSFT 4-103
VVTSIZ 4-104

4.6.7 Area Operation Functions 4-105
VVACLS 4-106
VVACLV 4-107
VVACPY 4-108
VVAFPM 4-110
VVAFPR 4-111
VVAPXR 4-112
VVAPXW 4-113
VVASCL 4-114
VVASCV 4-115

4.6.8 Interactive Functions 4-116
VVIAKI 4-117
VVICUS 4-119
VVICUS 4-120
VVIMTD 4-121
VVIMTE 4-122
VVIPCU 4-123

vii

Contents

VVIRUB

VVISWD

VVISWE

VVIWSW
4.6.9 Report Handling Functions

VVQREP

CHAPTERS GETTING STARTED WITH VSL

5.1 INTRODUCTION

5.2 ACCESS TO VIVID DISPLAY AREA

5.3 SEGMENTS
5.3.1 An Introduction To Segments
5.3.2 Segment Size and Class/lD

5.4 VSL • LOGICAL PROCEDURE

5.5 EXAMPLES
5.5.1 Draw a Picture
5.5.2 Reporting
5.5.3 Font Creation
5.5.4 Transformations
5.5.5 Keyboard Input
5.5.6 Area Operations
5.5.7 General VSL Calls
5.5.8 Match Interrupts/Cursor Style

PART IV LOW LEVEL INTERFACE - VIVID
INSTRUCTION SET

viii

4-124
4-125
4-126
4-127

4-128
4-129

5-1

5-1

5-1

5-2
5-2
5-2

5-3

5-4
5-4
5-6

5-10
5-13
5-18
5-21
5-24
5-28

Contents

CHAPTER 6 VIVID 1/0 FUNCTIONS 6-1

6.1 THE QIO FUNCTIONS AND PARAMETERS 6-2
6.1.1 Allocate Display Area - VSV$_ALLOCATE and IO.ADA 6-2
6.1.2 Attach VSV21 Device - IO.ATT 6-3
6.1.3 Define Reporting - VSV$_DEFREP and IO.DRP 6-3
6.1.4 Define Segment - VSV$_DEFSEG and IO.DFS 6-4
6.1.5 Delete Segment - VSV$_DELSEG and IO.DSG 6-5
6.1.6 Detach VSV21 Device - IO.DET 6-6
6.1.7 Load Segment - VSV$_LOADSEG and IO.LSG 6-6
6.1.8 Read Data - VSV$_READDATA and IO.RED 6-7
6.1.9 Release Display Area - VSV$_RELEASE and IO.RDA 6-7
6.1.10 Resume Execution - VSV$_CONTINUE and IO.REX 6-8
6.1.11 Start Segment Execution - VSV$_STARTSEG and IO.SSE - 6-8
6.1.12 Stop Display List Execution - VSV$_STOP and IO.STP 6-9
6.1.13 Write Data - VSV$_WRITEDATA and IO.WRT 6-10

6.2 QIO STATUS REPLIES 6-10
6.2.1 QIO Replies from VMS/MicroVMS 6-10
6.2.2 QIO Replies from RSX-11M-PLUS and Micro/RSX 6-11
6.2.3 VIVID Error/Warning Codes 6-12

CHAPTER 7 GETTING STARTED WITH VIVID 1/0 7-1

7.1 DOWNLOADING THE SOFTWARE 7-1
7.1.1 VMS/MicroVMS 7-1
7.1.2 Compatibility mode on VMS 7-2
7.1.3 RSX-11M-PLUS and Micro/RSX 7-2

7.2 DEFINING AND EXECUTING A DISPLAY LIST 7-3

CHAPTER 8 CONTROL INSTRUCTIONS 8-1
CALL SEGMENT 8-2

CREATE_SEGMENT 8-3

DISPLAY_END_REPEAT 8-4

DISPLAY REPEAT 8-5

DISPLAY_WAIT 8-6

DUMP_ATTRIBUTES 8-7

INITIALIZE 8-8

ix

Contents

JUMP_RELATIVE 8-9
NO_OPERATION 8-10
RECOVER_ATTRIBUTES 8-11
RESTORE_ATTRIBUTES 8-12
SAVE_ATTRIBUTES 8-13
SEGMENT_RETURN 8-14
START_ATTRIBUTES_DATA 8-15
START_FONT 8-16
START _INSTRUCTION_LIST 8-18
START_KEYBOARD_DATA 8-19
START_PIXEL_DATA 8-20
START_REPORT_DATA 8-22
STOP_DISPLAY 8-23

CHAPTER 9 TRANSFORMATION INSTRUCTIONS 9-1
DRAWING_MAGNIFICATION 9-2
DRAWING_TRANSFORM 9-3
DRAWING_TRANSLATION 9-4
DRAWING_VAS 9-5
SCREEN_DIMENSIONS 9-6
SET_VIEWPORT 9-7
SET_WINDOW 9-8
WINDOW_ORIGIN 9-9
ZOOM_FACTOR 9-10

CHAPTER 10 GLOBAL ATTRIBUTE INSTRUCTIONS 10-1
AREA_TEXTURE 10-2
BACKGROUND_COLOR 10-4
BLINK_COLORS 10-5
BLINK_COUNT 10-7
BLINK_TIMING 10-8
DRAWING_MODE 10-9
FOREGROUND_COLOR 10-11
LINE_TEXTURE 10-12
NORMAL_COLORS 10-13
SCREEN_BLANK 10-15
SCREEN_BLINK 10-16

x

CHAPTER 11 DRAWING INSTRUCTIONS
ARCS_ABS

ARCS_REL

CIRCLE

DOT

ELLIPSE

ELLIPSE_ARCS_ABS

ELLlPSE_ARCS_REL

LINES_ABS

LlNES_REL

MOVE_ABS

MOVE_REL

MOVE_ TO_CURSOR

POLYMARKS_ABS

POLYMARKS_REL

RECTANGLE_ABS

RECTANGLE_REL

CHAPTER 12 FILLED FIGURE INSTRUCTIONS
FILLED_RECT_ABS

CHAPTER 13

FILLED _RECT _REL

FLOOD_AREA

PAINT_AREA

TEXT INSTRUCTIONS
CELL_MAGNIFICATION

CELL_MOVEMENT

CELL_OBLIQUE

CELL_ROTATION

CELL_SIZE

DRAW_CHARS

DRAW_PACKED_CHARS

INITIALIZE_FONT

LOAD_CHAR_CELL

SET_FONT

11-2

11-5

11-7

11-9

11-10

11-12

11-15

11-17

11-18

11-19

11-20

11-21

11-22

11-24

11-26

11-27

12-2

12-3

12-4

12-5

13-2

13-4

13-5

13-6

13-7

13-9

13-10

13-11

13-12

13-13

Contents

11-1

12-1

13-1

xi

Contents

CHAPTER 14 AREA OPERATION INSTRUCTIONS 14-1
CLEAR_SCREEN 14-2
CLEAR_VIEWPORT 14-3
COPY_ABS 14-4
COPY_REL 14-5
NOTES ON THE COPY INSTRUCTIONS 14-7
FAST _PIXEL_MODIFY 14-11
FAST _PIXEL_WRITE 14-13
PIXEL_READBACK 14-14
PIXEL_WRITE 14-15
SCROLL_VIEWPORT 14-16
SELECTIVE_CLEAR 14-17

CHAPTER 15 INTERACTIVE OPERATION INSTRUCTIONS 15-1
ACCEPT _KEYBOARD_INPUT 15-2
CURSOR_STYLE 15-4
CURSOR_VISIBILITY 15-6
MATCH_DISABLE 15-7
MATCH_ENABLE 15-8
POSITION CURSOR 15-9
RUBBER BAND 15-10
START _KEYBOARD_INPUT 15-12
STOP _KEYBOARD_INPUT 15-13
SWITCH_DISABLE 15-14
SWITCH_REPORT _ENABLE 15-15
WAIT_SWITCH 15-16

CHAPTER 16 REPORT HANDLING 16-1
REQUEST _REPORT INSTRUCTION 16-3
CELL_PARAMETERS REPORT PACKET 16-5
CURSOR_POSITION REPORT PACKET 16-6
DRAWING_POSITION REPORT PACKET 16-8
FREE_SPACE REPORT PACKET 16-9
GLOBAL_ATTRIBUTES REPORT PACKET 16-10
HOST _SEGMENTS REPORT PACKET 16-12
KEYBOARD_INPUT REPORT PACKET 16-13
MATCH INTERRUPT REPORT PACKET 16-14
MAXIMUM_MATCHES REPORT PACKET 16-15
SCREEN_FORMAT REPORT PACKET 16-16

xii

Contents

SEGMENT_TRACE REPORT PACKET 16-17

SWITCH_INTERRUPT REPORT PACKET 16-18

TRANSFORMATION REPORT PACKET 16-20

VIVID_ERROR REPORT PACKET 16-22

VIVID_INTERRUPT REPORT PACKET 16-23

VIVID_VERSION REPORT PACKET 16-24

VIVID_WARNING REPORT PACKET 16-25

VSV21_SEGMENTS REPORT PACKET 16-26

PART V VSV11 AND FORTRAN DRAW

CHAPTER 17 BUILDING PICTURES USING FORTRAN DRAW 17-1

17.1 USING FORTRAN DRAW 17-1
17.1.1 Coordinate System 17-1
17.1.2 Common Block Definition 17-2
17.1.3 Reserved Logical Unit Numbers 17-2

17.2 PROGRAMMING METHOD 17-3

17.3 FORTRAN DRAW SUBROUTINES 17-3

CHAPTER 18 BUILDING AND PROCESSING VSV11 DISPLAY LISTS 18-1

18.1

18.2

VSV11 DISPLAY LIST CONTENTS
18.1.1 Graphic Mode Instructions
18.1.2 Graphic Data Instructions
18.1.3 Control Instructions
18.1.4 Special Graphic Instructions

GENERATING AND PROCESSING VSV11 DISPLAY LISTS

18-1
18-1
18-2
18-2
18-3

18-4

xiii

Contents

CHAPTER 19 VSV11 I/O FUNCTIONS

19.1 QIO FUNCTIONS FOR VMS/MICROVMS

READ DATA - VSV$_READDATA

READ STATUS - VSV$_READSTATUS

RESUME EXECUTION - VSV$_RESUME

START DISPLAY - VSV$_START

STOP DISPLAY - VSV$_STOP

SET TIMEOUT PERIOD - VSV$_ TOUT

WAIT FOR SWITCH INTERRUPT -
VSV$_WAITSWITCH

WRITE DATA - VSV$_WRITEDATA

19.2 QIO FUNCTIONS FOR RSX-11M-PLUS AND MICRO/RSX

ATTACH THE VSV21 DEVICE - 10.ATT

CANCEL I/O REQUESTS - 10.KIL

CONNECT AND DISPLAY - 10.CON

CONNECT TO AUXILIARY MEMORY - 10.AUX

CONTINUE THE DISPLAY - 10.CNT

DETACH THE VSV21 DEVICE - 10.DET

READ DATA - 10.RED

READ JOYSTICK - 10.RJS

STOP THE DISPLAY - 10.STP

WRITE DATA - 10.WRT

19.3 QIO STATUS RETURNS
19.3.1 VMS/MicroVMS Systems
19.3.2 RSX and MicroRSX Systems

APPENDIX A THE QIO CALL MECHANISM

A.1

A.2

xiv

OVERVIEW OF THE QIO CALL MECHANISM

EXAMPLES OF QIO CALLS UNDER RSX-11M-PLUS AND
MICRO/RSX
A.2.1 The 10.ATT Function
A.2.2 The GLUN$ Function
A.2.3 The 10.CON Function

A.2.3.1 Task-Relative Addressing • A-5
A.2.3.2 Display List-Relative Addressing • A-5

19-2

19-3

19-4

19-5

19-6

19-7

19-8

19-9

19-11

19-12

19-13

19-15

19-16

19-17

19-18

19-19

19-20

19-21

19-1

19-1

19-10

19-22
19-22
19-23

A-1

A-1

A-2
A-3
A-3
A-5

A.2.4 The 10.RJS Function

APPENDIX B DESIGNING A CHARACTER

APPENDIX C EXAMPLE OF A VSV11 EMULATION PROGRAM

APPENDIX D VIVID ATTRIBUTE MASK VALUES

APPENDIX E DEFINING A CURSOR IN VIVID

INDEX

FIGURES
1-1
1-2
2-1

3-1
3-2
6-1
6-2
6-3
11-1
11-2
11-3
14-1

14-2

15-1
15-2
16-1
16-2
16-3
16-4
16-5
16-6

How Pictures are Created and Displayed
VSV21 System Software Block Diagram
Relationships between VIVID Address Space, Window, Viewport
and Screen
VSV21 Memory Space
Contents of the First Three Words of a Segment
Format of the First Three Words of a Defined Segment
Contents of VMS/MicroVMS I/O Status Block
Contents of RSX I/O Status Block
Error Areas for End Points of Circular Arcs
Quantities Used to Define an Ellipse
Error Areas for End Points of Elliptic Arcs
Effect of Parameter Values and Signs on Orientation of Copied
Picture; amod range 0 - 7 (1st half)
Effect of Parameter Values and Signs on Orientation of Copied
Picture; amod range 8 - 15 (2nd half)
Linear Rubber Band
Rectangular Rubber Band
Format of Cell Parameters Report Packet
VMS Format of Cursor Position Report Packet
RSX Format of Cursor Position Report Packet
Format of Drawing Position Report Packet
Format of Free Space Report Packet
Format of Global Attributes Report Packet

Contents

A-5

B-1

C-1

D-1

E-1

1-3
1-6

2-7
3-4
3-5
6-4

6-11
6-12
11-4

11-11
11-14

14-9

14-10
15-11
15-11
16-5
16-6
16-6
16-8
16-9

16-11

xv

Contents

16-7
16-8
16-9
16-10
16-11
16-12
16-13
16-14
16-15
16-16
16-17
16-18
16-19
16-20
17-1
17-2
18-1
19-1
19-2
19-3
19-4
A-1

TABLES
14-1
19-1
19-2

0-1

xvi

Format of Host Segments Report Packet
Format of Keyboard Input Report Packet
Format of Match Interrupt Report Packet
Format of Maximum Matches Report Packet
Format of Screen Format Report Packet
Format of Segment Trace Report Packet
VMS Format of Switch Interrupt Report Packet
RSX Format of Switch Interrupt Report Packet
Format of Transformation Report Packet
Format of VIVID Error Report Packet
Format of VIVID Interrupt Report Packet
Format of VIVID Version Report Packet
Format of VIVID Warning Report Packet
Format of VSV21 Segments Report Packet
FORTRAN Draw Coordinate System
Programming Method for FORTRAN Draw
VSV11 Display List Instruction Format
Contents of GLUN$ Buffer
Joystick Data returned by 10.RJS
Format of 1/0 Status Block under VMS/MicroVMS
Format of 1/0 Status Block under RSX-11M-PLUS and Micro/RSX
Contents of GLUN$ Buffer

Order of Pixel Write to Destination Area by amod Value
VSV11 Emulation QIO Functions for VMS/MicroVMS
VSV11 Emulation QIO Functions for RSX-11 M-PLUS and
Micro/RSX
VIVID Attribute Mask Values

16-12
16-13
16-14
16-15
16-16
16-17
16-18
16-18
16-21
16-22
16-23
16-24
16-25
16-26
17-2
17-4
18-3

19-13
19-19
19-22
19-23

A-4

14-7
19-1

19-10
0-2

Preface

Document Structure

This manual is divided into five parts, as follows:

1 Overview of VSV21 System Software (Chapter 1)

2 Overview of VIVID and Display Lists (Chapters 2 and 3)

3 High Level Interface - VSL (Chapters 4 and 5)

4 Low Level Interface - VIVID Instruction Set (Chapters 6 to 16)

5 VSVll and FORTRAN Draw (Chapters 17 to 19)

The manual should be read in conjunction with the VSV21 User's Guide.

VSL is the high level interface for producing VIVID Display Lists.

Use of the VIVID Instruction Set directly represents the low level interface for
generating display lists.

Intended Audience

The VSV21 Programmer's Guide explains how to create pictures for the VSV21
graphics system and how to display the pictures using the available DIGITAL
software.

This manual is designed as a guide for programmers who are developing graphics
applications for the VSV21.

Associated Documents

The following list shows the related documents for the VSV21 Programmer's Guide:

VSV21 Programmer's Reference Card AV-FV68D-TK

VSV21 Installation Manual AZ-FV71D-TK

VSV21 User's Guide AZ-FV70D-TK

VSV21 Peripheral Concentrator User'slInstallation Guide, EK-VSV21-UM

VSV21 Pocket Service Guide EK-VSV21-PS

VR241-A Video Monitor Installation Manual EK-VR241-IN

xvii

Part I Overview of VSV21 System Software

1 INTRODUCTION

The VSV21 is a single-board graphics module for use on Q22-bus processors. The
VSV21 system software is supported by the following host processors and operating
systems:

MicroVAX, running MicroVMS Version 4.2 or later

MicroVAX II, running VMS Version 5.0 or later

MicroPDP-II, running:

RSX-llM-PLUS Version 3.0 or later

Micro/RSX Version 3.0 or later

The VSV21 can run anyone of three processes.

1 VIVID Interpreter

VIVID (VSV21 Instructions for Visual Display) is the VSV21 instruction set. It
allows the VSV21 to display images defined using the VIVID instruction set.

Part II of this guide describes how to develop applications for VIVID.

2 VSVll Emulator

This provides emulation of a VSll/VSVll system. VSVll emulation allows the
VSV21 to run applications written for VSll and VSVll systems. The VSll and
VSVll processors can be regarded as identical for emulation purposes.

VSll/VSVll emulation is referred to as VSVll emulation in the rest of this
guide.

Note: The VIVID and VSVll instruction sets are not compatible.

Part III of this guide describes how to develop applications for the VSV21 in
VSVll emulation.

3 VT220 Emulator

This provides emulation of a subset of VT220 capabilities, giving the user access
to the DCL or MCR command language and to standard program development
tools. The VSV21 runs full screen VT220 emulation on power-up. See the
VSV21 User's Guide for the method of using VT220 emulation.

1-1

INTRODUCTION

1.1 GRAPHICS DISPLAY LISTS

1-2

A graphics application for the VSV21 consists of one or more programs. These
programs can be written in any language supported by the host operating system.
System software and layered products are available to help programmers to create
pictures and output them to the VSV21 for display. These include the VIVID
Subroutine Library (VSL) described in Chapter 4. The graphics picture is described
by a list of instructions and data. The instructions control output to the display,
and the data describes or refers to screen coordinates, colors, other instructions, or
peripheral devices. Some examples of what the instructions do are as follows:

Identify subsequent data as being of a particular type, such as:

other instructions

font data

pixel data

keyboard data

report data

attribute data

Describe an action, such as:

drawing a straight line or curve

drawing a character

filling an area with color

Control display magnification, colors, and other attributes

Control input from peripheral devices

The list of instructions and data is known as a display list. The VSV21 supports two
different types of display list:

1 VIVID display lists, defined by the VIVID command set and the VIVID
Subroutine Library (VSL). They are described in Chapter 3.

2 VSllNSVll display lists, defined by the VSVll instruction set and the
FORTRAN Draw library. They are described in Chapter 18.

Display lists may be created and executed by a program running on the host
processor. A program can also execute display lists which another program has
created. Display lists can be stored in the host memory. VIVID display lists can also
be stored in memory on the VSV21 module, for faster access by the program.

The host program sends the display list to the VSV21 module, where it generates a
picture in the pixel memory. The program controls the processing of display lists by
issuing input/output requests. Figure 1-1 shows how an applications program creates
and displays a picture using display lists and input/output requests.

INTRODUCTION

Figure 1-1 How Pictures are Created and Displayed

1.2 PROGRAMMING INTERFACES

USER

APPLICATION
PROGRAM

ON-BOARD
SOFTWARE

VIDEO MONITOR

1/0 REQUEST

The system software provides two methods of building display lists and sending
them to the VSV21 for display:

Library Routines

A high-level programming interface is provided through calls to a library
of graphics subroutines. In VSVll emulation, the FORTRAN Draw library
supplied with VSllNSVll systems can be used. In VIVID, the VIVID
Subroutine Library (VSL) can be used.

1-3

INTRODUCTION

The high-level method is recommended for those users new to graphics
processing and/or software techniques, and require an easy-to-use mode of
operation to get started.

VSL is described in Chapter 4. The method of using the FORTRAN Draw
package is described in Chapter 17.

QIO Calls Display lists can also be created by combining the individual
components of the picture. The display list is then processed by issuing an
output request to the device driver. If display lists are to be processed in VIVID,
only VIVID instructions may be used. If the display list is to be processed in
VSVII emulation, only VSVII primitives may be used.

This low-level method is recommended for applications in which display speed
and optimum performance are critical.

Both the library routines and QIO calls also allow programs to handle input from
the pointing devices which are supported by the VSV21. The VSV21 supports the
following pointing devices:

Joystick

Trackball

Digitizing Tablet

The interfaces to these devices are described in Chapter 2.

The method of creating display lists is described in Chapter 3 (VIVID, both high and
low level) and Chapter 18 (VSV11). Processing display lists and programming the
VSV2I are described in Chapter 4 (VIVID high level - VSL), Chapter 6 (VIVID low
level - QIOs) and Chapter 19 (VSV11 QIOs). Guides to getting started with VIVID
are in Chapter 5 (high level VSL) and Chapter 6 (low level QIOs)

1.3 VS11/VSV11 EMULATION

1-4

The VSV2I is provided with VSVII emulation software which enables it to run
applications that have been developed for the VS 11 and VSV II systems. The
VSV21 can emulate a minimum-configuration single-channel VSVII system. The
VSVll emulation software supports the following VSllNSV11 features:

QIO format, identical to the VS 11

Main and auxiliary display lists

The FORTRAN Draw package

Joystick control

These features allow most VS11NSVll applications to run on the VSV21 without
modification or recompilation.

The VSV21 does not support the following VS11NSVll features:

Multiple channels

8-bit pixel data

Hardware register programming

INTRODUCTION

1.4 SYSTEM SOFTWARE COMPONENTS
Most of the VSV21 system software is supplied on a distribution kit and must be
installed on the host system before any applications can be run. The procedure
for performing and verifying the software installation is described in the VSV2 J
Installation Manual.

Three categories of system software are provided. They are as follows:

Host software

VSV21 device driver

VSV21 Control Program (VSVCP)

Subroutine libraries

Diagnostics

Resident VSV21 software

Initialization and self-test

VSV2l system software

VT220 Emulator

Downloaded VSV21 software

Kernel

Pointing device drivers

VIVID interpreter

VSVll emulator

VT220 emulation code

VIVID default font

The relationship between the software components and the application user is shown
in Figure 1-2. The following sections in this chapter describe the major components
and their importance to the programmer.

1-5

INTRODUCTION

1.4.1 Host Software

1-6

Figure 1-2 VSV21 System Software Block Diagram

RUN APPLICATION
USER PROGRAM

VCP
COMMAND

VSV21 CONTROL CALL
PROGRAM
(VCP)

SUPPORT
LIBRARY CALL
(VSL OR FORTRAN DRAW)

VIRTUAL DEVICE INTERFACE

I/O "" I/O REQUEST DISPLAY)-_
REQUEST LIST

I/O

~
w

~ en
fen
o
:r:

~ REQUEST

VIVID J VSV21

INTERPRETER

1
DEVICE
DRIVER

EMULATOR
CODE POINTING

DMA
DRIVERS

"(;;- TRANSFER {.7
Q22-BUS

I
COMMAND-
PACKET

I\. ON-BOARD

1/ SOFTWARE

/ ,
DEVICE
HARDWARE

-

"

~
"'r

/

/

DMA TRANSFER
7

W
....J
::>
o
o
~

~ en
>

RD2194

This consists of the programs which reside and run on the host system. These are
the following:

VSV21 device driver

VSVCP (VSV21 Control Program)

Subroutine libraries

Diagnostics

1.4.1.1

1.4.1.2

1.4.1.3

INTRODUCTION

VSV21 Device Driver
The device driver handles all communication between application programs and
the VSV2l device. It receives input/output requests from programs in the form
of QIO calls to system service routines in the operating system executive. The
driver passes the requests to the VSV2l processor in the form of command packets,
using a programmed I/O mechanism and DMA (Direct Memory Access). The QIO
mechanism is described in more detail in Appendix A.

The functions provided by the VSV2l device driver are of the following types:

Configuration

Initialization

Diagnostic and self-test

Device control

Drawing control

Before an application is run, the VIVID Interpreter or VSVll Emulator must be
downloaded to the VSV2l module. This process also sets the device driver to accept
the VSVll or VIVID QIO functions. The VSVll functions are not compatible with
the VIVID instruction set.

Two or more tasks can share a device under any of the operating systems in either
VSVll Emulation or VIVID. The tasks can issue QIOs to the same device
concurrently, and the QIOs are queued to the driver in alternating packets if
necessary.

VSV21 Control Program (VSVCP)
The VSV2l Control Program (VSVCP) is a utility program which enables users,
system managers and application programmers to configure and control the VSV2l
device. It provides facilities to:

Select the operating mode (VIVID, VSVll Emulation or VT220 Emulation) by
loading the appropriate VSVll Emulation software into the VSV2l module.

Set the device configuration parameters, for example, to describe the peripheral
devices currently attached to the serial ports.

Show the current settings of the device configuration parameters.

Show the current status of the device.

The VSVCP commands enable you to configure the VSV2l system, set graphics
attributes, and set the device into a specified operating state before running an
application. By incorporating these same commands into a graphics program, you
can develop self-contained applications. Users of these applications do not have to
make sure that the device is set up correctly before running the application. The
VSVCP commands are described in the VSV21 User's Guide.

Subroutine Libraries
In VSVll emulation, the FORTRAN Draw library supplied with VSllNSVll
systems can be used. The VIVID Subroutine Library (VSL) provides a high-level
interface to VIVID.

1-7

1.4.2

INTRODUCTION

1.4.1.4 Resident On-Board Software
The VSV21 is controlled by on-board software. This consists of software
permanently stored in ROM and software downloaded from the host.

The following software is stored permanently in ROM:

Initialization and self-test routines

On-board driver

This provides controlled access to the host.

VT220 Emulator

This provides a subset of the VT220 functionality, allowing the VSV21 to be
used as a system console. At system power-up, full screen VT220 emulation is
automatically provided.

Downloaded On-board Software

1-8

This consists of the programs and fonts which are stored on the host, but are
downloaded to the VSV21 module by the VSVCP. They are then run by the on-board
microprocessor. The following software is downloaded:

Kernel routine

This controls the operation of the VSV21 and provides diagnostic facilities.

Pointing device controllers

The VSV21 uses the following pointing device controllers:

MSI driver, controlling the MSI trackball, joystick and mouse

Penny and Giles driver, controlling the Penny and Giles trackball and mouse

Digitizing Tablet driver, controlling the digitizing tablet

Transparent port driver

This controls I/O at the fourth VSV21 port.

VIVID interpreter

This enables the VSV21 to interpret VIVID instructions in display lists.

VSVll emulator

This provides emulation of a minimum-configuration single-channel VSVll
system

VT220 emulation code

This renews full-screen VT220 emulation if it has been replaced by downloading
VIVID or VSVII emulation.

VIVID default Font

The VIVID default font is the DIGITAL multinational character set. Its cell size
is 10 (vertical) X 8 (horizontal). The top row and righthand column are empty.

INTRODUCTION

The default font is automatically downloaded with the VIVID Interpreter. It is
stored in VSV21 memory as a segment with a segment ID of lOFF. If it has
been deleted from VSV21 memory, it can be downloaded separately by using
either a QIO load segment (Chapter 6) or the VSVCP (VSV21 User's Guide).

The following downloaded routines can be simultaneously available to an application
on the VSV21:

One pointing device driver

The transparent port driver

The VIVID Interpreter, VSVII Emulator or VT220 Emulator.

Only one of these processes can run on the VSV21 at any time. The last interpreter
or emulator loaded replaces the interpreter or emulator on board.

The VSVCP can download software with individual commands or a command
procedure. For a description of the method of downloading software and fonts, refer
to the VSV21 User's Guide.

1.5 Constraints When Using VSL Calls
User's programs are constrained by the number of VAX memory mapping registers
available. This constraint is more noticeable in VMS V4 than in VMS V5. This is
due to the available allocation of mapping registers in the two versions which are as
follows:

VMS V4 = 496

VMS V5 = 7696

These are not all available to the user because each device driver on the system will
probably use some of the allocation. Thus:

Remaining Mapping Registers = Max. Available - system usage.

Each VSV21 on a system will need mapping registers of its own, and must share,
not necessarily equally, the Remaining Mapping Registers, calculated above.
One mapping register is needed for each Y2K bytes of memory.

Under VMS V4 the VV driver imposes a second limitation of 255 mapping registers
per device. This means that the maximum amount of memory which can allocated to
each device is 127K bytes.

Under VMS V5 there are 3848K bytes of memory available for sharing among the
VSV21s.

1-9

Part II Overview of VIVID and Display Lists

2 OVERVIEW OF VSV21 VIVID PROGRAMMING

VIVID is a set of instructions used to develop graphics applications on the VSV21
system.

The VIVID interpreter receives commands and data from application programs which
run on the host processor under VMS/MicroVMS, RSX-llM-PLUS, or Micro/RSX.
The programs make calls to stored graphical information (display lists, described in
Chapter 3) and library routines (VSL, described in Chapter 4).

VIVID is implemented as a software package running on the VSV21 processor.
VIVID communicates with the host processor by means of the Q-bus interface, using
VSV21 registers and DMA (Direct Memory Access).

VIVID is particularly suited to applications of the following types:

Applications requiring high-speed execution

Applications requiring efficient storage of images

Implementation of graphics subroutine libraries for specific applications

2.1 USING THE VIVID INSTRUCTION SET
The VSV21 can be programmed, using the VIVID instruction set, at low level
(QIOs) or high level (VSL) to perform the following range of tasks:

Control general operation of the VSV21 system

Perform drawing and viewing t~ansformations

Set screen, color and drawing attributes

Draw straight lines and arcs

Fill areas

Select text fonts

Clear specified areas of screen

Read and write pixel data

Scroll, pan, and zoom

Control cursor style and visibility

Control rubber band

Enable interaction with keyboard and pointing devices

Handle report packets

2-1

OVERVIEW OF VSV21 VIVID PROGRAMMING

2.2 INSTRUCTION TYPES

2-2

Both VSL (the high level VIVID subroutine library) and the low level VIVID QIO
Interface provide access to the VIVID instruction set to generate display list graphics
instructions for output to the VSV21. The VSL routines provide an easy-to-use
method of constructing VIVID display lists but remember that both the high level
and low level approaches ultimately provide the VIVID interpreter with appropriate
display lists of instructions for output through the graphics chip.

Note that for most VSL library routines there is an equivalent VIVID instruction, for
example, VVVZMF equivalent to ZOOM_FACTOR.

The VIVID instruction set consists of the following types:

Control instructions
These initialize the VIVID interpreter, begin and end display list segments and
control the general operation of VIVID (Chapter 8).

Transfonnation instructions
These control the magnification of the display and the position of the window
and viewport (Chapter 9).

Global Attribute instructions
These set the drawing and screen display characteristics (Chapter 10).

Drawing instructions
These generate the individual lines that make up an image (Chapter II).

Filled Figure instructions
These are used to paint or flood specified areas (Chapter 12).

Text instructions
These control the selection of character fonts, the magnification of characters
and output of text to the screen (Chapter 13).

Area Operation instructions
These control such operations as scroll, clear screen, copy and pixel read
(Chapter 14).

Interactive instructions
These control cursor positioning and keyboard operation (Chapter 15).

Report Handling instructions
These place a report packet in the current report segment (Chapter 16).

The chapters referenced in this section describe the use of each instruction and its
parameters at VIVID interpreter level and provide a Macro-32 example.

A description of the parameters for each VSL routine is in Chapter 4.

A brief description of each VIVID instruction is given in this chapter.

OVERVIEW OF VSV21 VIVID PROGRAMMING

2.3 ACCESS TO VIVID INSTRUCTIONS

2.3.1 Display Lists

An application program can use VIVID instructions in either of the following ways:

As VSL routines, called directly by the program, to produce valid VIVID display
lists.

As user-defined display lists, for direct use with Queue Input/Output (QIO)
instructions.

A display, list or segment, is a list of VIVID graphics output instructions and data.

Each segment is a list of VIVID instructions and data that have one of six specific
functions, depending on the segment type. The segment type is identified by the first
instruction in the segment.

The instructions in a segment are in the form of opcodes. This first instruction in a
segment is one of the first six control instructions listed in Section 2.4. It identifies
the segment as one of six types:

Instruction segment, consisting of VIVID instructions, stored as opcodes and
parameters

Font segment, consisting of a set of character cell definitions

Pixel segment, consisting of a pixel data map

Keyboard segment, consisting of data input from the keyboard

Report segment, consisting of report packets

Attribute segment, consisting of global attribute information

Display lists and segments are described in Chapter 3.

QIO calls are used to control the processing of display lists. The QIO calls perform
the following functions:

Allocate a segment area on the host

Define a segment in a host-allocated area

Download a segment to the VSV21 processor

Delete a segment from the host memory or VSV21 memory

Start, stop, and resume segment execution

Define report processing requirements

The use of QIOs is described in Chapter 6.

2-3

2.3.2

OVERVIEW OF VSV21 VIVID PROGRAMMING

VIVID Subroutine Library (VSL)
VSL is a library of functions and subroutines (see Chapter 4). VSL functions and
subroutines control the segments, execute segment or drawing commands, and handle
replies from VIVID. VSL automatically generates VIVID drawing instructions and
parameters from the VIVID instruction set. You can also call VSL functions and
subroutines to do the following:

Initialize display list processing

Start or end a segment

Execute a segment

Save or restore a segment on disk

Load a segment to VSV21 from a disk or the host memory

Delete a segment

Get keyboard input

Get a report

End display list processing

2.4 CONTROL INSTRUCTIONS

2-4

Control instructions regulate the operation of the VIVID Interpreter. The set of
VIVID control instructions is as follows:

START _INSTRUCTION~IST

Identifies the contents of the segment as display instructions.

START_FONT

Identifies the segment contents as a font.

START]IXEL_DATA

Identifies the segment contents as pixel data.

Identifies the segment contents as keyboard input.

Identifies the segment contents as reports.

Identifies the segment contents as global attributes data.

INITIALIZE

Causes one or more graphics control items to be reset to a default value.

Transfers execution to the identified segment in host memory or VSV21 memory.

OVERVIEW OF VSV21 VIVID PROGRAMMING

SAVE_ATTRIBUTES

Writes the current attributes to a stack in VSV21 memory.

RESTORE_ATTRIBUTES

Reads the latest attributes from the stack in VSV21 memory. SAVE_
ATTRIBUTES and RESTORE_ATTRIBUTES allow attributes in a nested
segment to be changed and recovered before control is returned to the calling
segment.

DUMP_ATTRIBUTES

Saves the current set of global attributes in a segment.

RECOVER_ATTRIBUTES

Recovers specified attributes from a segment.

START_ATTRIBUTES_DATA

Identifies the segment as holding saved attributes.

DISPLAY_WAIT

Delays execution of the next display instruction for a specified time.

Causes no operation to be performed. This instruction may be used during
program testing. Patching a segment may result in gaps that can be filled with
NO_OPERATION instructions.

Stops the processing of segments and returns control to the application program.

CREATE_SEGMENT

Creates an empty segment in VSV21 memory.

SEGMENT_RETURN

Marks the end of a segment. Control is returned to the user program or to the
invoking segment level.

Causes a jump in segment execution by a specified relative offset.

DISPLAY _REPEAT

Defines the start of a loop in the segment. Loops can be nested up to 32 levels
deep.

DISPLAY _END_REPEAT

Defines the end of a loop in the segment.

2-5

OVERVIEW OF VSV21 VIVID PROGRAMMING

2.5 THE VIEWING TRANSFORMATION

2-6

To display a stored picture, VIVID uses the following areas of screen and memory:

VIVID Address Space

VIVID defines picture data in virtual co-ordinates space called VIVID Address
Space (VAS). VAS holds a picture in the form of Cartesian (X,Y) coordinates.
The range of both X and Y is ± 32K.

Note: 8000 Hex is not a valid X,Y co-ordinate. If used it can cause unpredictable
results.

The Screen Dimensions

You can define the scale and aspect ratio of the display by defining the screen
dimensions. These are the number of VAS units to be displayed in both X and
Y directions.

The VIVID Window

The VIVID window is the area of VAS which will be mapped to the viewport.
You can set the origin (lower left comer) of the window. The extent of the
window can be input as a parameter or determined by the screen dimensions.

The Viewport

The viewport is an area of the screen into which the window is projected.

The relationships between these areas are summarized in Figure 2-1.

OVERVIEW OF VSV21 VIVID PROGRAMMING

Figure 2-1 Relationships between VIVID Address Space, Window,
Viewport and Screen

+32K

VIVID ADDRESS
SPACE

-32K ~ ____________ ~~o~,o~ __________ ~

JWINDOWj

-32K

I I
I /

/ I
I /

/

SCREEN

Images can be entered into VAS in either of the following ways:

Untransformed

+32K

AE417

The picture data in the segment is preceded by a DRAWING_VAS instruction.
This identifies the data as actual VAS units and disables the current magnification
and translation factors.

Transformed

The picture data in the segment is preceded by a DRAWING_TRANSFORM
instruction. This indicates that the data is in units that require transformation
before display and enables the magnification and translation factors.

2-7

2.5.1

2.5.2

OVERVIEW OF VSV21 VIVID PROGRAMMING

The VIVID drawing transformation can be regarded as being in two stages:

1 Transforming the units given in the segment to VAS units.

2 Transforming the VAS units to screen display units.

Transforming Input Data to VAS Units
You can transform the input data to VAS units by using the following VIVID
instructions:

DRAWING_MAGNIFICATION

Defines the magnification of the elements being entered to VAS, in both absolute
and relative drawing operations.

DRAWING_TRANSLATION

Defines the point which corresponds to (0,0) in subsequent drawing instructions.

DRAWING_TRANSFORM

Applies the current magnification and translation to subsequent drawing
instructions.

DRAWING_VAS

Disables the current magnification and translation. Subsequent drawing
instructions have VAS units and origin.

Transforming VAS Units to Screen Display Units

2-8

You can project the picture data stored in VAS to the screen by using the following
VIVID instructions:

SCREEN_DIMENSIONS

Defines the number of logical pixels displayed in each dimension of the screen.
This allows you to define the aspect ratio and resolution of the display.

Sets the window origin to a VAS coordinate. This position is the lower left
comer of the window.

ZOOM]ACTOR

Defines magnification factors for zoom magnification of the window in X and Y
directions. This allows you to magnify the picture.

SET_VIEWPORT

Defines the area of screen used to display the image. The window is mapped to
the viewport using this instruction along with either the WINDOW_ORIGIN and
ZOOM_FACTOR instructions or the SET_WINDOW instruction.

SET_WINDOW

Defines a window in VAS to be projected on to the viewport. This is equivalent
to a combination of WINDOW_ORIGIN and ZOOM_FACTOR instructions.

OVERVIEW OF VSV21 VIVID PROGRAMMING

2.6 GLOBAL ATTRIBUTE INSTRUCTIONS
Global attribute instructions describe how 'objects will be drawn. The commands are
as follows:

Enables or disables blinking.

Sets the blink timing.

SCREEN_BLANK

Enables or disables screen blanking. Drawing is faster when the screen is blank.

FOREGROUND_COLOR

Sets the foreground color to be used for drawing and text.

BACKGROUND_COLOR

Sets the background color to be used for drawing and text.

Sets up to 16 colors in terms of Color Look-Up Table (CLUT) index and relative
intensities of red, green and blue. The CLUT is described in the VSV21 User's
Guide.

Defines CLUT indices and alternate colors for the blink colors.

Defines the number of colors that blink when blink is enabled.

Sets the drawing mode as follows:

foreground and background, foreground only or background only

conditional replacement of display image

LINE_TEXTURE

Defines the line texture as a string of foreground and background bits.

AREA_TEXTURE

Defines the area texture as a matrix of foreground and background bits.

2-9

OVERVIEW OF VSV21 VIVID PROGRAMMING

2.7 DRAWING INSTRUCTIONS

2-10

Many drawing instructions operate in two modes:

1 Absolute

This specifies a position as an absolute location in VAS. Absolute instructions
have the suffix _ABS.

2 Relative

This specifies a relative position, defined in terms of displacement from the
current position. Relative instructions have the suffix _REL.

The set of drawing instructions is as follows:

Moves to the specified position. Nothing is drawn.

Moves the current drawing position to the cursor position.

Draws lines from the current position to specified points.

POLYMARKS_ABS and POLYMARKS_REL

Draws the specified marker character at the specified points.

Draws the specified sequence of circular arcs.

Draws the specified sequence of elliptical arcs.

RECTANGLE_ABS and RECTANGLE_REL

Draws a rectangle defined by a vertex at the current position and the specified
diagonal vertex.

ELLIPSE

Draws an ellipse with a specified aspect ratio and major axis whose center is the
current position.

CIRCLE

Draws a circle of a specified radius whose center is the current position.

DOT

Draws a dot at the current position. The point defined by the terminating
position in the instructions in this section is not drawn on the screen. You must
draw it explicitly with a DOT instruction.

OVERVIEW OF VSV21 VIVID PROGRAMMING

2.8 FILLED FIGURE INSTRUCTIONS
A filled figure is an area of the screen that is filled by a pattern. The instruction used
to fill the area determines the boundary conditions.

Draws a filled rectangle from a vertex at the current position to the diagonal
vertex you specify. The rectangle is filled with the area texture pattern.

Uses the area texture pattern to fill the area defined by a specific edge color and
containing the current position.

Uses the area texture pattern to fill an area of specific color containing the
current position.

2.9 TEXT INSTRUCTIONS
The VIVID text instructions deal with setting up and using fonts to display
alphanumeric characters. A VIVID font is a set of indexed cells that contain
pictorial information coded by pixel. The set of text instructions is as follows:

INITIALIZE]ONT

Initializes the specified segment as a font.

Sets the current font.

Loads a numbered character cell into the font using pixel data.

Defines whether subsequent cells are to be written normally or in italic (sloped)
form.

Defines the angle at which cells are to be written to the display.

CELL_SIZE

Defines the display image size and the displacement of the stored font cell within
the display cell.

CELL_MAGNIFICATION

Defines the factors by which the cell is to be magnified vertically and
horizontally.

CELL_MOVEMENT

Defines the vertical and horizontal displacement from the end of one character
cell to the final position.

2-11

2.10

OVERVIEW OF VSV21 VIVID PROGRAMMING

Displays the characters specified by the accompanying cell numbers. The cell
number is specified by one parameter word. This allows 16-bit addressing,
providing address space for a font of up to 64K characters.

DRAW]ACKED_CHARS

Displays the characters specified by the accompanying cell numbers. Two cell
numbers are specified by a parameter word. This provides 8-bit addressing, so a
font of up to 256 cells may be referenced.

AREA OPERATION INSTRUCTIONS

2-12

Area operation instructions perform operations on pixel memory.

Clears the displayed image.

CLEAR_ VIEWPORT

Clears the viewport.

SCROLL_ VIEWPORT

Moves the data vertically, horizontally, or diagonally to the position you define
within the viewport. Data moved outside the viewport is lost.

PIXEL_READBACK

Reads a display image area to a specified segment. The segment may be used
for pixel write operations.

Writes a specified segment containing pixel data to the display. The image is
clipped by the viewport.

FAST]IXEL_ WRITE

Writes a specified segment containing pixel data to the display from host or
VSV21 memory. The viewport is ignored.

FAST]IXEL_MODIFY

Performs a specified logical operation between the contents of a specified pixel
data segment and the image data. The viewport is ignored.

SELECTIVE_CLEAR

Clears a defined area, depending on the outcome of a logical operation between
a parameter and defined image data.

COPY _ABS and COpy _REL

Copy a specified area to a different area with a specified vertex and attitude.

2.11

OVERVIEW OF VSV21 VIVID PROGRAMMING

INTERACTIVE INSTRUCTIONS
Interactive instructions determine cursor characteristics, switch interrupt facilities and
keyboard input.

The set of interactive instructions is as follows:

Sets the cursor style to the shape specified by the parameters, or to one of the
default cursor styles. The ,default styles are small cross-hair and full-screen
cross-hair. The parameters define pixel data.

POSITION_CURSOR

Sets the cursor to the position defined by the parameters.

CURSOR_ VISIBILITY

Defines whether or not the cursor is visible.

Defines rubber band characteristics (none, linear, or rectangle) and the base
point.

SWITCH_REPORT _ENABLE

Enables a facility for sending a pointing device report to the host processor.

SWITCH_REPORT _DISABLE

Disables switch reports.

Causes the processor to wait for one of a specified range of switch interrupts
before executing the next VIVID instruction.

Enables a report facility. When subsequent drawing meets the cursor position, a
report including the ID of the segment and the display list instruction that caused
the pixel at the current position to be drawn is sent to the report segment.

Disables the match report facility.

ACCEPT _KEYBOARD_INPUT

Passes input from the keyboard into a specified segment. Input from the
keyboard can continue until one of the following occurs:

the specified termination character is received

the buffer is full

a specified number of characters has been read

Input may be echoed to the screen.

Begins keyboard input for asynchronous processing. Input is directed to the
mailbox on VMS/MicroVMS systems, and to the AST on RSX-llM-PLUS and
Micro/RSX systems. The input is echoed to the screen.

2-13

2.12

OVERVIEW OF VSV21 VIVID PROGRAMMING

STOP _KEYBOARD_INPUT

Disables keyboard input for asynchronous processing.

REPORT HANDLING INSTRUCTION

2-14

Reports are information packets that are generated during execution of VIVID
display lists.

These reports are either generated automatically by events that occur during display
list execution, or can be specifically requested by the application program.

Reports are queued into a report segment, which is created by the application
program.

The application program can request reports on the following:

Current drawing position in VAS

Current cursor position in VAS

Current text parameters

Current global attribute parameters

Current transformation parameters

Screen format

Space available for downloaded segments

IDs of segments in VSV21 or host memory

VIVID version number

Nested segment calls to current segment

VIVID can be programmed to ignore certain classes of report, or to direct them
to a mailbox in VMS or to a report segment. This allows you to optimize the
performance of the VSV21 and to accept input from peripheral devices.

If a report segment has been defined, the VIVID interpreter will initialize it at the
start of segment processing. If a report is generated during the processing of a QIO
request, it is written to the current report segment.

If no report segment, AST or mailbox is defined, the report is lost. The report
segment includes details of events occurring during display segment processing, such
as input from peripheral devices.

3 DISPLAY LISTS

A display list is a list of VIVID instructions and data that defines a picture. A
VIVID display list consists of a number of segments.

A segment is a list of VIVID instructions and data that has one of six specific
functions, depending on the segment type. The instructions in a segment are in
the form of opcodes. The segment type is identified by the first instruction in the
segment.

The first word of a segment defines the segment type. A segment can be one of six
types:

1 Instruction segment, consisting of VIVID instructions, stored as opcodes and
parameters.

2 Font segment, consisting of a set of character cells.

3 Pixel data segment, consisting of a pixel data map.

4 Keyboard segment, consisting of data input from the keyboard.

5 Report segment, consisting of report packets.

6 Attribute segment, consisting of global attributes data.

The segment types are described in Section 3.3.

You can pass segments to the task by one of the following means:

Use a QIO call to communicate directly with the VIVID interpreter. The VIVID
I/O functions are described in Chapter 6.

Call functions from the VIVID Subroutine Library (VSL) described in Chapter
4.

Do not mix these methods in an individual application; use only QIO calls or only
VSL.

3.1 IDENTIFYING SEGMENTS
A display list or Segment, is a list of VIVID graphics output instructions and data.

When you are building a segment, you give it an ID number. This allows VIVID to
access the segment individually. The segment ID is stored in the second word of the
segment.

VIVID instructions can identify segments in two ways:

1 ID number - segments stored on the host are given an ID number as a parameter
within the QIO call.

2 Address - each segment downloaded to the VSV21 is given an address as a
parameter in the downloading QIO call.

3-1

3.2

3.2.1

3.2.2

DISPLAY LISTS

The segment ID is in two parts:

1 class

2 number within class

This structure allows you to probe similar segments in a class to facilitate storing and
deleting groups of segments (Section 3.2).

It occupies two bytes, as follows:

Byte Contents

MSB Class

LSB Number

Range

Host: 1 to 32
VSV21: 1 to 16

1 to 255

Two segment class numbers are reserved as follows:

Class 16 is used for multinational font segments

Class 32 is used by Report Segments.

You should avoid using these class numbers when building your own segments.

You can delete segment ID numbers. Deleting the IDs of host segments makes them
inaccessible to the VSV21 but does not otherwise affect the segments.

STORING AND DELETING SEGMENTS

Storing Segments in Host Memory
VIVID allows storage of up 512 segments in host memory. Host-resident segments
are stored in a contiguous area of memory, known as the display area. You use a
QIO or a VSL function to identify the display area to the host device driver for the
duration of the task. When a VSL function transfers segments to the host memory,
VSL automatically defines the display area.

It may be convenient to store segments in the host memory if they are not used
frequently enough to justify downloading them to the VSV21, or if they would not
fit in the VSV21 memory space (Section 3.2.2).

Storing Segments in VSV21 Memory

3-2

You can download segments from the host to the VSV21 by three methods:

1 Issuing QIOs (Chapter 6).

2 Calling VSL functions (Chapter 4).

3 Using VSVCP as described in the VSV21 User's Guide.

A downloaded segment remains accessible to all tasks until you delete it.

DISPLAY LISTS

It is beneficial to download the following segments:

Commonly used display lists

For example, those defining icons or symbols repeated at many places in a
picture.

Display lists that are unlikely to change

Font segments where frequent and fast access is required

The space available for storing downloaded segments is part of a linear memory
of 64K words. This space is also occupied by the VIVID interpreter, downloaded
drivers and their data areas, and saved attributes.

The space available for segments is the 29K words remaining when the drivers and
attributes have been stored (Figure 3-1). The procedure for downloading the VIVID
interpreter and the drivers, through the VSVCP, is given in the VSV21 User's Guide.

3-3

DISPLAY LISTS

3-4

Figure 3-1 VSV21 Memory Space

HIGH

KERNEL

POINTING DEVICE DRIVER

TRANSPARENT PORT DRIVER

first

SAVED ATTRIBUTES

last

FREE
SPACE

last

SEGMENTS

first

VIVID INTERPRETER

~--------------------------~ LOW

APPROX
100 WORDS
EACH

J ABOUT
30K WORDS

RE857

If you delete a segment, no extra space is effectively created unless the segment was
at one end of the memory space. If the space available is not enough for the segment
you are downloading, the VSV21 automatically compresses the stored segments to
maximize the free space. However, to minimize compression delays, you should
download segments of long-term requirement before those of short-term requirement.

About 29K words of memory are available for storing segments and saved attributes.
If this is not enough to store all the segments you have defined, it is best to download
the segments which the program references most frequently. This maximizes
processing speed.

3.2.3

3.2.4

DISPLAY LISTS

Deleting Segments
You can delete a specified segment from VSV21 memory or host memory by using
a QIO call or a VSL subroutine and the segment ID. To delete all segments of a
particular class from memory, use a delete command with that class number and a
segment number of zero. The use of this command is described in Chapter 6.

Deleting a host segment makes the segment inaccessible to the VSV21, but does not
delete the data from host memory.

Deleting on-board segments allows the VSV21 to recover memory space. A segment
can be deleted from VSV2l memory in two ways:

Delete the addresses of the segment. This frees the VSV21 memory space.

• Define or download a segment which has the same number as the existing
segment. This replaces the existing segment.

The VIVID Default Font
The VIVID default font is downloaded automatically with the VIVID interpreter. It
is stored in VSV21 memory as a segment, with segment ID of lOFF in hexadecimal.
It can be deleted to free VSV21 memory space.

3.3 SEGMENT TYPES
There are six types of segment. The first word of the segment defines the segment
type. The second word contains the segment identifier. The third word contains the
segment length in bytes (Figure 3-2). The contents of the remaining words depend
on the segment type.

Figure 3-2 Contents of the First Three Words of a Segment

IDENTIFIER WORD 0

ID NUMBER WORD 1

NUMBER OF BYTES WORD 2

RE4S2

3-5

3.3.1

3.3.2

DISPLAY LISTS

Instruction Segment
Identifier: START_INSTRUCTION_LIST

Each instruction segment holds VIVID instructions and associated data. The first
word of a VIVID instruction has the instruction code in the most significant byte and
the length (number of words) of the associated parameter list in the least significant
byte.

If the number of parameters exceeds 254 or is variable, set the number of parameters
to 255 and terminate the parameter list with the END_PARAMETERS delimiter
(value hex 8000, decimal 32768).

Note: Using the VSL high-level interface, a call to VVBBGN (Start Segment)
automatically sets up a Start_Instruction _List instruction in the specified
user-created segment.

When using VIVID, it is necessary to use a VIVID instruction to specifically
initialize a segment which is to be used for font, pixel, keyboard, report, or attribute
data types.

Font Segment

3-6

Identifier: START]ONT

The START_FONT instruction and parameter list are set up automatically when a
font is created with the INITIALIZE_FONT instruction. You must include it if you
are setting up a font segment in any other way for transmission to the VSV21.

Specify the number of words used to define each cell in the font with a START_
FONT parameter. There may be up to 16 words. Each word represents a row of 16
pixels. Each bit represents one pixel. The pixel state (foreground or background)
is indicated by setting the bit to 1 or 0 respectively. If the cell is to be less than 16
pixels wide, the unused pixels are ignored.

Pixel rows in a cell are represented by words in inverse order: the first word in the
segment represents the bottom pixel row on the display, and bit 0 represents the
leftmost pixel of the cell.

The default font (segment ID lOFF in hexadecimal) is stored in VSV21 memory
automatically when the VIVID interpreter is downloaded. The segment that defines
the default font is listed in Appendix B.

Note: VSL equivalent of Start_Font is the routine VVTIFT.

3.3.3

3.3.4

DISPLAY LISTS

Pixel Data Segment
Identifier: START]IXEL_DATA

The START_PIXEL_DATA instruction is set up automatically when pixel data is
written using the PIXEL_READBACK instruction.

The pixel data map is the form in which a rectangular area of the display image
is stored. The rectangle is defined in terms of a vertex origin (X, Y) and the
displacement (DX,DY) from that vertex.

DX is the number of segment words where pixels are stored. DY is the number of
pixel rows. Pixels are stored four per word. Of the pixels stored in any word, the
leftmost pixel on the display image is stored in bits 15 to 12, irrespective of the
direction given by DX.

Example: DX and DY positive

If both DX and DY are positive, the defined vertex is at the lower left comer of
the rectangle. The pixel data is stored in the segment beginning with the left pixel
in the bottom row and continuing left to right and bottom to top. In the following
examples, the position of each number corresponds to the pixel position; the number
itself refers to a storage position in the data segment. The defined vertex is at the
asterisk (*).

19 20 21 22 23 24 --->

10 11 12 13 14 15 16 17 18

2 3 4 5 6 7 8 9

Example: DX negative, DY positive

If DX is negative and DY is positive, the vertex is at the lower right comer of the
defined rectangle, and the pixels are stored in the segment as follows:

18

9

17

8

16

7

24

15

6

23

14

5

22

13

4

21

12

3

20

11

2

Note: VSL equivalent of Pixel_Readback is the routine VVAPXR.

Keyboard Input Segment
Identifier: START_KEYBOARD_DATA

19

10

1

The START_KEYBOARD_DATA instruction is initialized when keyboard data input
is initiated by an ACCEPT_KEYBOARD_INPUT instruction.

The end pointer and completion flags are parameters of the START_KEYBOARD_
INPUT instruction. As the keyboard data is written to the segment, the end pointer
is updated. When input is complete, the completion flag is set.

Two keyboard input characters are stored in each word. Characters are represented
as they are in VT220 emulation.

3-7

3.3.5

DISPLAY LISTS

The extent of the segment is stored in a START_KEYBOARD_DATA parameter.

Note: VSL equivalent of Accept_Keyboard_Input is the routine VVIAKI.

Report Segment

3-8

Identifier: START _REPORT_DATA

The START_REPORT_DATA instruction is set up automatically by a Define
Reporting QIO. It can be set up by the Start Segment Execution QIO if the report
segment is already defined. Reports are written to the segment during display list
processing.

A segment can be defined as a reporting segment and initialized by any of three
methods:

1 Define a new segment as a reporting segment as follows:

Define a segment using the Define Segment QIO

Define the segment as a report segment and set up the report mask using the
Define Reporting QIO

Initialize the segment by issuing a Start Segment Execution call without any
reporting parameters

2 Define a new segment as a reporting segment as follows:

Define a segment using the Define Segment QIO

Define the segment as a reporting segment and initialize it by issuing a Start
Segment Execution QIO with the optional reporting parameters

3 Initialize a previously defined reporting segment as follows:

If a segment has already been defined as a report segment a Start Segment
QIO without the optional reporting parameters is sufficient to initialize it.

Note: Using the VSL high-level interface, the Start_ Report_Data instruction is
automatically set-up when a report segment is defined.

There are two ways of defining a report segment using VSL:

1 When calling VVXASS, the routine that assigns a channel to the VSV21
device, supply the third parameter. This is an integer value representing
the size of the required report segment in bytes. The report segment is then
automatically created and given a segment ID of HEX 2001.

2 Using VVMCRS, create an additional segment of user-defined size and ID to
be the report segment. Then, when calling VVEEXE, the segment execute
routine, supply as the fourth parameter the created segment ID. A Start_
Report Data instruction is then automatically setup in the created segment
and any reports generated during that display list execution will then be
stored in the report segment.

3.3.6

DISPLAY LISTS

Attribute Segment
Identifier: START_ATTRIBUTES_DATA

The START_ATTRIBUTES_DATA instruction is automatically set up in a segment
by a DUMP_ATTRIBUTES instruction specifying the segment ID.

If the segment does not already exist, it is created on board the VSV21.

If the segment exists and is big enough to hold the attributes, the START_
ATTRIBUTES_DATA instruction is written to the beginning of the segment.

If the segment exists, but is too small to hold the attributes, an error results.

Note: VSL equivalent of DUMP_ATTRIBUTES is the routine VVCDMP.

3-9

Part III High Level Interface - VSL
This section describes how to develop graphics applications with the VSV21 ,
and build pictures using the VIVID Subroutine Library (VSL) with a high-level
language such as FORTRAN.

4 THE VIVID SUBROUTINE LIBRARY (VSL)

VSL is a library of functions and subroutines which can be called from a high-level
language. VSL controls the display list segments, executes display list or drawing
commands, and handles replies from VIVID. It automatically generates VIVID
instructions and parameters.

There are five groups of functions and one group of subroutines in VSL. Each
function or subroutine has a six-character name of the form VVbaaa where:

The third letter "b" of the name identifies the VSL function or subroutine group

The last three letters denoted by "aaa" identify the individual function or
subroutine.

The functions and subroutines are categorized as follows:

General functions (VVXaaa), used to:

Initialize and end display processing

Execute VIVID instructions defined as parameters

Set the drawing mode

Segment Manipulation functions (VVMaaa), used to:

Initialize segment building

Save and restore segments to and from disk

Load segments to the VSV21 from disk and from host memory

Delete segments

Segment Execution subroutines (VVEaaa), used to:

- Start, stop and resume segment execution

Reporting functions (VVRaaa), used to:

Control input from pointing devices and keyboard

Get status and reports

Segment Building functions (VVBaaa), used to:

Start and end segment building

Set the drawing mode

Instruction Generation functions

Each instruction generation function corresponds to a VIVID instruction. The
functions are categorized in the same way as the VIVID instruction set and have
corresponding identifiers as follows:

VVCaaa - Control

VVVaaa - Transformation

VVGaaa - Global Attributes

4-1

THE VIVID SUBROUTINE LIBRARY (VSL)

4-2

VVDaaa - Drawing

VVFaaa - Filled Figure

VVTaaa - Text

VVAaaa - Area Operation

VVIaaa - Interactive

VVQaaa - Report Handling

where "aaa" identifies the individual function.

VSL creates a display area in host memory with the VVXINI function (see VVXINI
in Section 4.1). The display area contains segments and a segment control table.
VSL uses the table to control memory allocation for segments entered to the display
area.

VMS SYSTEM SPECIFICS

The display area is a 128Kbyte FORTRAN array (VV21RG) in VMS/MicroVMS.
Access to the section is thus by array element, each element being one word in the
array. This is transparent to VSL users - there is no need to explicitly declare access
to the data section at link time.

All input parameters passed in VSL calls should be

INTEGER * 2

unless otherwise stated. Under VMS, all VSL functions return an

INTEGER*4

value. These reply values are additive; if two different errors are detected, the reply
is the sum of the error codes.

The return status word ISTAT will work as either

INTEGER * 2

or
INTEGER*4

with one exception - VVRREP (See Section 4.4).

Users should insert an IMPLICIT statement at the top of the application program on
VMS to force the status returns from the VSL routines to be

INTEGER*4

For example :

IMPLICIT INTEGER * 4(V)

Note: All VSL routines start with the letter "V".

Also, the user should use the /NOOP switch when compiling application programs
under VMS. This is to facilitate the use of default parameters with most of the VSL
utility routines.

Under VMS, the subroutine library can be accessed from high level languages other
than FORTRAN, such as C, PASCAL, BASIC etc. The important stipUlation to
remember when writing such applications is that all calls to the VSL functions must
pass their parameters by reference rather than by value. This is a standard interface
within FORTRAN programs.

Again, it is advised to use the "NO OPTIMISE" switch when compiling.

THE VIVID SUBROUTINE LIBRARY (VSL)

RSX SYSTEM SPECIFICS

The display area is a region in RSX-llM-PLUS and MicrolRSX systems. Access
to the region is by means of a window that you must define when you are building
the task. The window must be mapped into the program space at 28K. The window
characteristics are as follows:

Window name: VV2lDA

Window size: 4K words

The Call Formats to the routines are for FORTRAN. All parameters are

INTEGER*2

unless otherwise stated. All the VSL functions return a status value ISTAT as an

INTEGER*2

Reply values are additive; if two different errors are detected, the reply is the sum of
the error codes.

4.1 GENERAL FUNCTIONS
In the following routine descriptions, all parameters other than the status return
ISTAT are input parameters; that is, values supplied by the caller, unless otherwise
stated.

Where a parameter LUN is stated, this is a Logical Unit Number supplied by the
caller for subsequent use in addressing the VSV21 device. The range of the LUN is
from 1 to 16.

4-3

Assign VSV21 Device - VVXASS

Assign VSV21 Device - VVXASS

Assign and attach a VSV21 device to VSL processing.

CALL FORMAT: istat = VVXASS (dev, lun [, rslen [, clarrJ])

PARAMETERS: dev
VSV21 device name
This parameter should be passed as the device physical unit number

For example:
VMS

o for VVAO:
I for VVBO:
2 for VVCO: and so on

RSX
o for VSO:
I for VSI:
2 for VS2: and so on

lun
device logical unit number

rslen
length of report segment. This parameter has no default assumption.

clarr
array containing host classes accessible to unit

REPLY VALUE: 0
not initialized

1
completed successfully

3
invalid segment class

16
device already assigned

32
could not assign device

64
could not attach device

NOTES:

Assign VSV21 Device - VVXASS

256
more than 512 segments sent to logical unit

512
VSL region full

1024
report segment setup failed

2048
invalid segment class

4096
area not allocated

You must assign to the VSV21 device before using the device.

You can assign a maximum of eight under VMS/MicroVMS, and a maximum of
four devices under RSX-IIM-PLUS and Micro/RSX. The device is only attached on
RSX systems. A unique report segment ID for each device is generated in display
segments of class 32.

The clarr parameter is an array of host classes, null terminated, that are explicitly
available to the unit. If it is omitted, all segments previously set up on the host are
available to the unit.

The numbers of devices which may be attached are as follows:

VMS/Micro VMS = 8 devices

RSX-llM-PLUS = 4 devices

4-5

End Display Processing - VVXEND

End Display Processing - VVXEND

Release the VSV21 processor and free the VSV21 buffers. To restart
processing, you must call the VVXINI and VVXASS functions.

CALL FORMAT: istat = VVXEND ()

PARAMETERS: None

REPLY VALUE: 0
not initialised

1
completed successfully

4-6

Initialize Display Processing - VVXINI

Initialize Display Processing - VVXINI

Set up the display area and initialize VIVID processing.

CALL FORMAT: istat = VVXINI ([dlen, [maxno1J)

PARAMETERS: dlen
size of VSL display area in bytes
o : default of 64K bytes

Under VMS this parameter should be defined as an

INTEGER * 4

Under RSX this parameter should be a two-word area

maxno
maximum number of segments
o : default of 640

REPLY VALUE: 0
already initialized

1
completed successfully

4
could not create area

8
could not create window
(Micro/RSX and RSX-llM-PLUS only)

4-7

Release VSV21 Device - VVXREL

Release VSV21 Device - VVXREL

Release the VSV21 device from VSL processing.

CALL FORMAT: istat = VVXREL (Iun)

PARAMETERS: lun
device logical unit number

REPLY VALUE: 0
not initialized

1
completed successfully

4
device not assigned

8
failed to release

NOTES: To detach all the devices when display processing is complete, use VVXEND

4-8

Get VIVID Version Number - VVXVER

Get VIVID Version Number - VVXVER

Get the VIVID version number.

CALL FORMAT: istat = VVXVER (len, vnarr)

PARAMETERS: len
length of array in bytes (minimum 6)

vnarr
character array for version number

REPLY VALUE: 0
array length too short «6)

1
completed successfully

4-9

THE VIVID SUBROUTINE LIBRARY (VSL)

4.2 SEGMENT MANIPULATION FUNCTIONS

4-10

These functions provide movement of segments between disk, host, and VSV21 and
create segments for input from VSV21 devices.

Copy Segment - VVMCPY

Copy Segment - VVMCPY

Copy a segment to the VSL display area.

The segments must already have been saved using VVMSAV or be of one of
the following types:

Instruction

Font

Pixel data

CALL FORMAT: istat = VVMCPY (Iun, arr)

PARAMETERS: lun
logical unit number
-1 : all units for which segment class is valid

arr
array containing segment

REPLY VALUE: 0

NOTES:

not initialized

1
completed successfully

4
segment exists on host

16
device not assigned

32
segment download failed

512
display area full

1024
too many host segments

2048
invalid segment class

If a segment already exists, no segment is created or updated.

The segment ID and length are derived from the array.

4-11

Create Segment - VVMCRS

Create Segment - VVftt1CRS

Create a segment in the VSL display area for keyboard or pixel data map data
input from the VSV21 , or for subsequent use for VIVID instruction generation.

The segment is defined to the indicated logical unit number.

CALL FORMAT: istat = VVMCRS (Iun, segid, len)

PARAMETERS: lun
VSV21 logical unit number
-1 : all units

segid
segment ID

len
length of segment in bytes

REPLY VALUE: 0
not initialized

1
completed successfully

4
segment exists already

16
device not assigned

32
define segment failed

256
over 512 segments for lun

512
display area full

1024
too many host segments

2048
invalid segment class

NOTES: The segment ID format may be found in Section 3.1.

4-12

Delete Segment - VVMDEL

Delete Segment - VVMDEL

Delete a segment on host or VSV21 memory. The segment may have been
generated by any means.

If the segment is in the display area and has been deleted from all units to
which it is defined, it is deleted in the display area segment control and the
space becomes free.

CALL FORMAT: istat = VVMDEL (Iun, segid)

PARAMETERS: lun
logical unit number
-1 : all values for which segment class is valid

segid
segment ID

REPLY VALUE: 0
not initialized

1
completed successfully

4
segment not found

16
device not assigned

NOTES: The segment ID format is described in Section 3.1.

4-13

Load Segments from File - VVMDLD

Load Segments from File - VVMDLD

This function reads segments to VSV21 memory from a specified disk file. If
the segment is already in VSV21 memory, no segment is read. The segments
must already have been saved using VVMSAV or be of one of the following
types:

Instruction

Font

Pixel data

CALL FORMAT: istat = VVMDLD (Iun, fun, filn)

PARAMETERS: lun
device logical unit number
-1 : all units for which segment class is valid

fun
FORTRAN unit number

filn
name of disk file

REPLY VALUE: 0
not initialized

1
completed successfully

4
segment exists on host

16
device not assigned

32
segment download failed

512
display area full

1024
too many host segments

2048
invalid segment class

4-14

NOTES:

Load Segments from File - VVMDLD

If a segment already exists on the VSV21, it is replaced.

If one or more segments have been successfully downloaded when the error occurs,
the success bit is also set in the reply.

The assigned segment IDs are those appearing in the segments in the file.

The transfer uses a 512 byte work buffer in the display area.

4-15

Restore Segments from Disk - VVMGET

Restore Segments from Disk - VVMGET

Read segments to host memory from a specified disk file. The segments must
already have been saved using VVMSAV or be one of the following types:

Instruction

Font

Pixel data

CALL FORMAT: istat = VVMGET (Iun, fun, filn)

PARAMETERS: lun
VSV2l logical unit number
-1 : all units for which segment class is valid

fun
FORTRAN unit number for file

filn
name of disk file

REPLY VALUE: 0
not initialized

1
completed successfully

4
segment exists on host

16
device not assigned

32
define segment failed

256
over 512 segments for 1un

512
display area full

1024
too many host segments

2048
invalid segment class ...

4-16

NOTES:

Restore Segments from Disk - VVMGET

If the segment is already in host memory, no display segments are created. If any
segments have been created already, the success bit will also be set.

The segment IDs assigned are those appearing in the segments in the file.

Segment files opened by this function have shared access under VMS only.

4-17

Load Segment from Host - VVMMLD

Load Segment from Host - VVMMLD

Load to the VSV21 a segment that has been generated by the application
program between VVBBGN and VVBEND or read from file using VVMGET.

The segment is downloaded to the indicated logical unit number.

If the segment has been downloaded to all units to which it is defined, it is
deleted from the display area.

CALL FORMAT: istat = VVMMLD (Iun, segid)

PARAMETERS: lun
logical unit number
-1 : all units for which segment class is valid

segid
segment ID

REPLY VALUE: 0
not initialized

1
completed successfully

4
segment not found

16
device not assigned

32
download segment failed

2048
invalid segment class.

NOTES: The segment ID format may be found in Section 3.1.

4-18

Save Segments on Disk - VVMSAV

Save Segments on Disk - VVMSAV

Write up to eight specified segments on host memory to a disk file.

CALL FORMAT: istat = VVMSAV (tn, tiln, idarr, nseg)

PARAMETERS: tn
file unit number

tiln
name of disk file

idarr
array containing segment IDs

nseg
number of segments to be written

REPLY VALUE: 0
not initialized

1
completed successfully

4
segment not found

4-19

THE VIVID SUBROUTINE LIBRARY (VSL)

4.3 SEGMENT EXECUTION SUBROUTINES

4-20

These subroutines initiate VSV2l output operations. The operation initiated is
completed only when a further Segment Execution call is made or a Reporting
Function is accessed for the same logical unit.

If status and reports are required, no Segment Execution call should intervene before
Reporting calls have been completed.

Note: It is important to remember that whilst a segment is being executed, write
access is disabled to that segment. Any attempt to insert new instructions into
an executing segment, or to delete an executing segment, could result in data
corruption and subsequent impaired graphics output.

Execute Segment - VVEEXE

Execute Segment - VVEEXE

Initiate output of the specified segment.

CALL FORMAT: CALL VVEEXE (Iun, segid [,tout [,rsegid}})

PARAMETERS: lun

NOTES:

logical unit number

segid
segment ID

tout
time out in seconds

rsegid
reporting segment ID

The segment ID format may be found in Section 3.1.

If the time out value is zero, or omitted, a default value of 10 seconds is used. If
pointing device activity or keyboard activity is to occur during execution of the
segment, a considerably longer time out value is required.

If time out occurs, there will be a VIVID_INTERRUPT packet on the report segment
for the logical unit.

The reporting segment is optional if a reporting segment size was given to VVXASS.
Otherwise any reports will be lost if no reporting segment is identified.

If the segment is currently being built, VVBEND is automatically actioned first.

4-21

Resume Segment Execution - VVERES

Resume Segment Execution - VVERES

Resume execution of the last segment executed or resumed for the indicated
logical unit.

CALL FORMAT: CALL VVERES (Iun, [,tout [,rsegid}})

PARAMETERS: lun

NOTES:

4-22

logical unit number

tout
time out in seconds
0: default to 5

rsegid
reporting segment ID

If the time out value is zero, or omitted, a default of 5 seconds is used. If pointing
device activity or keyboard activity is to occur during execution of the segment, a
considerably longer time out value is required.

If time out occurs, there will be a VIVID_INTERRUPT packet on the report segment
for the logical unit.

The reporting segment is optional if a reporting segment size was given to VVXASS.
Otherwise any reports will be lost if no reporting segment is identified.

Stop Segment Execution - VVESTP

Stop Segment Execution - VVESTP

Stop execution of the last segment executed or resumed for the indicated
logical unit.

CALL FORMAT: CALL VVESTP (fun)

PARAMETERS: fun

NOTES:

logical unit number

There will be a VIVID_INTERRUPT packet on the report segment for the logical
unit.

4-23

THE VIVID SUBROUTINE LIBRARY (VSL)

4.4 REPORTING FUNCTIONS

4-24

Get Keyboard Input - VVRKBD

Get Keyboard Input - VVRKBD

Get contents of the keyboard input segment in the specified string.

CALL FORMAT: istat = VVRKBD (segid, charr,alen [,dlen[,segst}})

PARAMETERS: segid
keyboard input segment ID

charr
integer array to contain packed ASCII characters (output)

alen
size of array in bytes

dlen
length of data in bytes (output)

segst
segment status (output)

REPLY VALUE: 0

NOTES:

not initialized

1
completed successfully

4
segment not found

8
not keyboard input segment

16
device not assigned

32
report segment exception

129
area too short

The string entered to the array by the function is a standard ASCII string, null
terminated (unless overflow occurs).

4-25

Get Report - VVRREP

Get Report - VVRREP

Get a report from the report segment for the indicated logical unit number.
The report may be of a specified type, or of any type. The parameter ARR is
a user-defined array, typically of about 20 words (INTEGER*2), in which VSL
writes any reports of type RTYPE that are in the report segment. Reports are
written to the array one at a time. To read a number of reports, further calls to
VVRREP should be made.

The report segment is always read from the beginning.

When searching for a report packet in the report segment, any previously
read report packets are discarded. Thus, for example, if the report segment
contains a number of drawing position report packets, every time the report
segment is read for a packet of that type, the next one in the list will be
extracted.

CALL FORMAT: istat = VVRREP (Iun, rtype, arr, alen [,rsegid})
Under VMS, the return status value istat MUST be defined as an

INTEGER *4

PARAMETERS: fun
logical unit number

rtype
report type required
-1 : any type

arr
array for report (output)

alen
array length

rsegid
report segment ID

REPLY VALUE: 0
not initialized

1
completed successfully

4
segment not found

8
not report segment

4-26

NOTES:

Get Report - VVRREP

16
device not assigned

32
report segment overflow

129
area too short

-32768
all reports read

See Chapter 16 for details of report requests.

If the array is not long enough, transfer of the report data continues until the array is
full.

Reports may be requested before the QIO is completed. The buffer is polled, so QIO
completion is not forced.

4-27

Get Segment Block - VVRSEG

Get Segment Block - VVRSEG

Get a block of data from a segment in the VSL display area. This is
specifically intended for access to pixel data maps, but may be used to
access any segment.

CALL FORMAT: istat = VVRSEG (segid, start, ilen, barr, olen)

PARAMETERS: segid
segment ID

start
segment start byte offset

ilen
block length in bytes

barr
array to receive block (output)

olen
length in bytes transferred (output)

REPLY VALUE: 0
not initialized

1
completed successfully

4
segment not found

32
start byte offset out of range

129
area too short

NOTES: The blocked transfer allows processing of large pixel data maps for screen printing.

4-28

Get Status - VVRSTA

Get Status - VVRSTA

Provide the status of the preceding display output for the unit.

CALL FORMAT: istat = VVRSTA (Iun, qiost, nrep)

PARAMETERS: lun
logical unit number

qiost
QIO status reply (output)

nrep
total report count (output)

REPLY VALUE: 0

NOTES:

Not initialized

1
Completed successfully

16
Device not assigned

The report count is the total number of reports issued for a previous call invoking
display list processing. See VVEEXE and VVERES (both in Section 4.3) for further
details.

The report formats may be found in Chapter 16.

When status is requested, any initiated output to the logical unit is completed before
return from the function.

4-29

THE VIVID SUBROUTINE LIBRARY (VSL)

4.5 SEGMENT BUILDING FUNCTIONS

4-30

Start Segment - VVBBGN

Start Segment - VVBBGN

Start a new segment. If the segment currently exists in the VSL display area,
initialize it for entry of a new set of VIVID instructions.

The segment header START_INSTRUCTION_LlST (Section 3.3.1) is set up.
Subsequent calls to VIVID Instruction Generation Functions cause VIVID
instructions to be put in this segment.

CALL FORMAT: istat = VVBBGN (segid)

PARAMETERS: segid
Segment ID

REPLY VALUE: 0
not initialized

1
success

4
segment not found

NOTES: The segment ID format may be found in Section 3.1.

If a segment is currently being built, a call to VVBEND is implied for that segment.

4-31

End Segment - VVBEND

End Segment - VVBEND

End the segment currently being built. Subsequent calls to VIVID Instruction
Generation Functions are ignored until a call to VVBBGN is encountered.

CALL FORMAT: istat = VVBEND ()

PARAMETERS: None

REPLY VALUE: 0

NOTES:

4-32

not initialized

1
completed successfully

8
no segment build in progress

16
segment overflow has occurred

If no display segment is currently being built, no action is performed.

VIVID instructions which overflow an existing display area are lost.

Set Drawing Parameter Mode - VVBMOD

Set Drawing Parameter Mode - VVBMOD

Set the mode required for subsequent VIVID Instruction Generation call with
ABS, REL variations. It is important to set the correct mode before generating
any drawing instruction into a segment.

CALL FORMAT: istat = VVBMOD (dmode)

PARAMETERS: dmode
drawing mode
o : absolute (this is the default)
1 : relative

REPLY VALUE: 0
Invalid parameter

1
Completed successfully

4-33

Set Instruction Parameter Mode - VVBPMD

Set Instruction Parameter Mode - VVBPMD

Set the parameter mode for subsequent VIVID Instruction Generation
Functions to "parameter list" or "array list". This only affects certain functions.
For further details of the action performed, see Section 4.6.

CALL FORMAT: istat = VVBPMD (pmode)

PARAMETERS: pmode
parameter mode:
o : parameter list (this is the default)
I : array list)

REPLY VALUE: 0
Invalid parameter

1
Completed successfully

4-34

THE VIVID SUBROUTINE LIBRARY (VSL)

4.6 INSTRUCTION GENERATION FUNCTIONS
Each VSL call within this section generates an instruction from the VIVID instruction
set. VSL instruction calls generate VIVID instruction opcodes into the pre-defined·
segment together with the appropriate VIVID parameters. The parameters used
by VSL will always reflect those required by the specific VIVID calls, plus some
extra parameters required for the high level interface. These are documented in the
relevant VSL function description.

VSL operates in either of two modes, depending on the most recent call to
VVBPMD. The modes are as follows:

1 Parameter list mode

2 Array list mode

In parameter list mode (VVBPMD in Section 4.5) the number of parameters declared
on the function call is variable. All the parameters and the parameter count are
passed in the opcode word to the VIVID instruction. Thus the list delimiter END_
PARAMETERS is not required and must not be used. VSL checks that the number
of parameters is within the permitted range for each instruction.

In array list mode (VVBPMD in Section 4.5) an alternative Call Format is used
for some functions - as noted in the relevant function descriptions in the following
sections. In this case the first parameter is an array containing the actual parameter
list. The parameter list may be terminated by END_PARAMETERS, or a second
parameter indicating the number of parameters in the list may be provided on the
function call (that is, word count). The functions to which this facility applies
correspond to the VIVID instructions for which END_PARAMETERS may be used.

Where the VIVID instruction has the forms ABS and REL, the mode used is
dependent on the last call to VVBMOD (Section 4.5) encountered.

The function call should occur between VVBBGN and VVBEND calls (both in
Section 4.5). The call then causes the appropriate VIVID instruction to be added to
the segment being built. Reply values from the function are:

o = no segment active
1 = completed successfully
2 = segment overflow

If there is an error reply, no VIVID instruction is generated. However, the reply
information is also available when the VVBEND instruction is executed and the
segment is completed.

The VIVID instruction generation VSL routines are specified in detail below. All the
referenced examples can be found in the next chapter, "Getting Started With VSL".

Note: "Type Integer" should be a 16-bit value (FORTRAN INTEGER*2) unless
otherwise stated.

4-35

THE VIVID SUBROUTINE LIBRARY (VSL)

4.6.1 Control Functions

4-36

VVCCAL

VVCCAL

Call is made to execute the identified segment from either host or VSV21
memory.

ROUTINE VVCCAL - Call Segment
NAME:

CALL FORMAT: istat = VVCCAL (segid)

PARAMETERS: segid (type integer)
Segment ID

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

success

1
not initialized

2
segment overflow

Control Instructions Chapter 8, CALL_SEGMENT.

Section 5.5.4, Program TRANSEFOR

4-37

VVCCRS

VVCCRS

ROUTINE
NAME:

Call is made to create a segment in VSV21 memory.

VVCCRS - Create Segment

CALL FORMAT: istat = VVCCRS (segid, slen)

PARAMETERS: segid (type integer)
Segment !D.

slen (type integer)
total segment size in bytes.

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-38

success

1
not initialized

2
segment overflow

Control Instructions Chapter 8, CREATE_SEGMENT.

Section 5.5.7, Program THINGS.FOR

VVCDMP

VVCDMP

Call is made to save the current set of attributes in a specified host segment.
This segment must already have been created via a call to VVMCRS.

ROUTINE VVCDMP - Dump Attributes
NAME:

CALL FORMAT: istat = VVCDMP (segid)

PARAMETERS: segid (type integer)
Segment ID

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

success

1
not initialized

2
segment overflow

Control Instructions Chapter 8, DUMP_ATTRIBUTES.

Section 5.5.7, Program THINGS.FOR

4-39

VVCDWT

VVCDWT

ROUTINE
NAME:

Call is made to wait for a specified time before executing the next display
instruction.

VVCDWT - Display Wait

CALL FORMAT: istat = VVCDWT (nfram)

PARAMETERS: nfram (type integer)
number of video frames delay required. There are 60 frames per second.

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-40

success

1
not initialized

2
segment overflow

Control Instructions Chapter 8, DISPLAY_WAIT.

Section 5.5.4, Program TRANSF.FOR

VVCERP

ROUTINE
NAME:

Call is made to mark the end of a repeatable loop.

VVCERP - Display End Repeat

CALL FORMAT: istat = VVCREP ()

PARAMETERS: none

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

success

1
not initialized

2
segment overflow

Control Instructions Chapter 8, DISPLAY _END_REPEAT.

Section 5.5.4, Program TRANSF.FOR

VVCERP

4-41

VVCINI

VVCINI

ROUTINE
NAME:

Call is made to restore the downloaded (VIVID original) status of one or more
graphics-controlled facets.

VVCINI-Initialize

CALL FORMAT: istat = VVCINI (mask)

PARAMETERS: mask (type integer)
= sum of values indicating requirements.

N.B. -1 :all values.

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-42

success

1
not initialized

2
segment overflow

Control Instructions Chapter 8, INITIALIZE.

Section 5.5.1, Program DRAW.FOR

VVCJMP

VVCJMP

Call is made to add the specified number of words to the display list pointer.

ROUTINE
NAME:

VVCJMP - Jump Relative

CALL FORMAT: istat = VVCJMP (nwords)

PARAMETERS: nwords (type integer)
number of words.

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

success

1
not initialized

2
segment overflow

Control Instructions Chapter 8, JUMP_RELATIVE.

Section 5.5.8, Program MATCH. FOR

4-43

VVCRCV

VVCRCV

ROUTINE
NAME:

Call is made to read the specified attributes from the specified segment.

VVCRCV - Recover Attributes

CALL FORMAT: istat = VVCRCV (segid, mask)

PARAMETERS: segid (type integer)
Segment ID

mask (type integer)
bit-mask value defining attributes to be recovered.

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE:

4-44

success

1
not initialized

2
segment overflow

Control Instructions Chapter 8, RECOVER_ATTRIBUTES.

Section 5.5.7, Program THINGS.FOR

VVCREP

ROUTINE
NAME:

Call is made to mark the start of a loop in display list processing.

VVCREP - Display Repeat

CALL FORMAT: istat = VVCREP (nloop)

PARAMETERS: nloop (type integer)
number of times the loop is to be repeated.
N.B. O:loop is repeated infinitely.

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

success

1
not initialized

2
segment overflow

Control Instructions Chapter 8, DISPLAY_REPEAT.

Section 5.5.4, Program TRANSEFOR

VVCREP

4-45

VVCRES

VVCRES

ROUTINE
NAME:

Call is made to remove the last attributes saved by VVCSAV from the stack
and set up as current attributes. The previous attributes are lost.

VVCRES - Restore Attributes

CALL FORMAT: istat = VVCRES (mask)

PARAMETERS: mask (type integer)
sum of values indicating requirements.

N.B. -l:all values are restored.

See Appendix D for values.

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-46

success

1
not initialized

2
segment overflow

Control Instructions Chapter 8, RESTORE_ATIRIBUTES.

Section 5.5.6, Program AREA.FOR

VVCSAV

VVCSAV

Call is made to add the current attributes to an attribute stack. This allows
you to change attributes in a nested segment and to recover attributes before
returning to the calling segment.

ROUTINE VVCSAV - Save Attributes
NAME:

CALL FORMAT: istat = VVCSAV ()

PARAMETERS: none

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

success

1
not initialized

2
segment overflow

Control Instructions Chapter 8, SAVE_ATTRIBUTES.

Section 5.5.6, Program AREA.FOR

4-47

VVCSTP

VVCSTP

ROUTINE
NAME:

Call is made to stop display list processing. Control is returned to the
application program with a status value, that is, as if execution had completed.

VVCSTP - Stop Display

CALL FORMAT: istat = VVCSTP ()

PARAMETERS: none

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-48

success

1
not initialized

2
segment overflow

Control Instructions Chapter 8, STOP_DISPLAY.

Section 5.5.7, Program THINGS.FOR

THE VIVID SUBROUTINE LIBRARY (VSL)

4.6.2 Transformation Functions

4-49

VVVDIM

VVVDIM

ROUTINE
NAME:

Call is made to define the screen dimensions in logical pixels, for example,
640,480; 640,240; 512,512.

VVVDIM - Screen Dimensions

CALL FORMAT: istat = VVVDIM (width, height)

PARAMETERS: width (type integer)
width of display in logical pixels.

height (type integer)
height of display in logical pixels.

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-50

success

1
not initialized

2
segment overflow

Transformation Instructions - SCREEN_DIMENSIONS

Section 5.5.2, Program PAINTS.FOR

VVVDRM

VVVDRM

Call is made to define the magnification of the drawing elements being entered
to VAS. This applies to both absolute and relative drawing operations.

ROUTINE VVVDRM - Drawing Magnification
NAME:

CALL FORMAT: istat = VVVDRM (xmag, ymag)

PARAMETERS: xmag (type integer)
magnification along X axis.

ymag (type integer)
magnification along Y axis.

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

success

1
not initialized

2
segment overflow

Transformation Instructions - MAGNIFICATION_FACTOR

Section 5.5.4, Program TRANSF.FOR

4-51

VVVDRT

VVVDRT

ROUTINE
NAME:

Call is made to define the coordinates by which the transformation origin is
shifted relative to the previous transformation origin.

VVVDRT - Drawing Translation

CALL FORMAT: istat = VVVDRT (x, y)

PARAMETERS: x (type integer)
x coordinate of translation.

y (type integer)
Y coordinate of translation.

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-52

success

1
not initialized

2
segment overflow

Transformation Instructions - DRAWING_TRANSLATION

Section 5.5.4, Program TRANSF.FOR

vvvsvu

VVVSVU

Call is made to define a screen area to which drawing is restricted. The area
units are as defined by the Screen Dimensions instruction (VVVDIM).

ROUTINE VVVSVU - Set Viewport
NAME:

CALL FORMAT: istat = VVVSVU ([xmin, ymin, width, height})

PARAMETERS: xmin (type integer)
x coordinate of lower left comer.

ymin (type integer)
Y coordinate of lower left comer.

width (type integer)
width of viewport in logical pixels.

height (type integer)
height of viewport in logical pixels.

N.B. No parameters supplied, or all parameters zero will set the viewport to the
boundaries of the screen.

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

success

1
not initialized

2
segment overflow

Transformation Instructions - SET_VIEWPORT

Section 5.5.4, Program TRANSEFOR

4-53

VVVTRN

VVVTRN

ROUTINE
NAME:

Call is made to enable the Drawing Magnification (VVVDRM) and Drawing
Translation (VVVDRT) instructions. The instruction can be used with the
Drawing VAS (VVVVAS) instruction to turn the transformations on or off as
required.

VVVTRN - Drawing Transform

CALL FORMAT: istat = VVVTRN ()

PARAMETERS: none

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-54

success

1
not initialized

2
segment overflow

Transformation Instructions - DRAWING_TRANSFORM

Section 5.5.4, Program TRANSEFOR

VVVVAS

VVVVAS

ROUTINE
NAME:

Callis made to disable Drawing Magnification and Drawing Translation.
Subsequent input is in VAS units.

VVVVAS - Drawing VAS

CALL FORMAT: istat = VVVVAS ()

PARAMETERS: none

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

success

1
not initialized

2
segment overflow

Transformation Instructions - DRAWING_VAS

Section 5.5.4, Program TRANSF.FOR

4-55

VVVWND

VVVWND

ROUTINE
NAME:

Call is made to define a window in VIVID Address Space. The window is
mapped automatically to the viewport.

VVVWND - Set Window

CALL FORMAT: istat = VVVWND (xw, yw, width, height)

PARAMETERS: xw (type integer)
x coordinate of lower left comer of window in VAS.

yw (type integer)
Y coordinate of lower left comer of window in VAS.

width (type integer)
width of window in VAS.

height (type integer)
height of window in VAS.

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-56

success

1
not initialized

2
segment overflow

Transformation Instructions - SET_WINDOW

Section 5.5.4, Program TRANSEFOR

VVVWOR

VVVWOR

ROUTINE
NAME:

Call is made to set the window origin to a VAS position. This defines a
window which may be projected into the VSV21 viewport.

VVVWOR - Window Origin

CALL FORMAT: islat = VVVWOR (x, y)

PARAMETERS: x (type integer)
x coordinate of the window origin in VAS.

y (type integer)
Y coordinate of the window origin in VAS.

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

success

1
not initialized

2
segment overflow

Transformation Instructions - WINDOW_ORIGIN

Section 5.5.4, Program TRANSF.FOR

4-57

VVVZMF

VVVZMF

ROUTINE
NAME:

Call is made to define the horizontal and vertical magnification factors for the
zoom facility. It defines the mapping between the window and the viewport.

VVVZMF - Zoom Factor

CALL FORMAT: istat = VVVZMF (xmag, ymag)

PARAMETERS: xmag (type integer)
x direction magnification factor.

ymag (type integer)
Y direction magnification factor.

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-58

success

1
not initialized

2
segment overflow

Transformation Instructions - ZOOM_FACTOR

Section 5.5.4, Program TRANSEFOR

THE VIVID SUBROUTINE LIBRARY (VSL)

4.6.3 Global Attribute Functions

4-59

VVGATX

VVGATX

ROUTINE
NAME:

Call is made to define a cell containing the area texture pattern.

VVGATX - Area Texture

CALL FORMAT: istat = VVGATX (bit, pattt [,patt2, ... pattn})
where n = 3-16)

PARAMETERS: nbit (type integer)
number of bits in bit pattern

pattn (type integer)
bit pattern of row n
0: background
1 : foreground

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-60

success

1
not initialized

2
segment overflow

Global Attribute Instructions - AREA_TEXTURE

Section 5.5.6, Program AREA.FOR

VVGBCL

VVGBCL

Call is made to set the background color to be used for subsequent drawing.

ROUTINE
NAME:

VVGBCL - Background C%r

CALL FORMAT: istat = VVGBCL (ind)

PARAMETERS: ind (type integer)
color index number in color look-up table.

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

success

1
not initialized

2
segment overflow

Global Attribute Instructions - BACKGROUND_COLOR

Section 5.5.2, Program PAINTS.FOR

4-61

VVGBCT

VVGBCT

ROUTINE
NAME:

Call is made to define the number of colors that blink when blink is enabled.

VVGBCT - Blink Count

CALL FORMAT: istat = VVGBCT (neol)

PARAMETERS: neol (type integer)
number of colors to blink

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-62

success

1
not initialized

2
segment overflow

Global Attribute Instructions BLINK_COUNT

Section 5.5.7, Program THINGS.FOR

VVGBLC

ROUTINE
NAME:

VVGBLC

Call is made to define CLUT colors (normal colors) and alternate colors (blink
colors) for blinking.

VVGBLC - Blink Colors

CALL FORMAT: istat = VVGBLC (bind1, ind1, int1, [bind2, ind2, int2
... bindn, indn, intnJ)

where n = 3-16
N.B. Array Mode accepted.

PARAMETERS: bindn (type integer)
color index in blink colors look-up table (BCLUT)

indn (type integer)
corresponding CLUT index

intn (type integer)
red, green and blue intensity code (0-15)

Minimum parameters 3, maximum 48.

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

success

1
not initialized

2
segment overflow

Global Attribute Instructions - BLINK_COLORS

Section 5.5.7, Program THINGS.FOR

4-63

VVGBLK

VVGBLK

ROUTINE
NAME:

Call is made to enable/disable screen blinking.

VVGBLK - Screen Blink

CALL FORMAT: istat = VVGBLK (bmod)

PARAMETERS: bmod (type integer)
blink mode (on/off)
O:screen blink off
non-zero:screen blink on

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-64

success

1
not initialized

2
segment overflow

Global Attribute Instructions - SCREEN_BLINK

Section 5.5.7, Program THINGS.FOR

VVGBLT

ROUTINE
NAME:

Call is made to set screen blink timings.

VVGBLT - Blink Timing

CALL FORMAT: istat = VVGBLT (norm, blnk)

PARAMETERS: norm (type integer)
number of frames of normal colors (range 8-64)

blnk (type integer)
number of frames of blink colors (range 8-64)

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

success

1
not initialized

2
segment overflow

Global Attribute Instructions - BLINK_TIMING

Section 5.5.7, Program THINGS.FOR

VVGBLT

4-65

VVGFCL

VVGFCL

ROUTINE
NAME:

Call is made to set the foreground color to be used for subsequent drawing.

VVGFCL - Foreground C%r

CALL FORMAT: istat = VVGFCL (ind)

PARAMETERS: ind (type integer)
color index number in color look-up table.

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-66

success

1
not initialized

2
segment overflow

Global Attribute Instructions - FOREGROUND_COLOR

Section 5.5.1, Program DRAW.FOR

VVGLTX

VVGLTX

Call is made to define the line texture. This is a bit pattern that is repeated in
the drawn lines.

ROUTINE
NAME:

VVGLTX - Line Texture

CALL FORMAT: istat = VVGLTX (nbit, (beod)

PARAMETERS: nbit (type integer)
number of bits in bit pattern

(beod (type integer)
bit pattern for foreground/background colors

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

success

1
not initialized

2
segment overflow

Global Attribute Instructions - LINE_TEXTURE

Section 5.5.6, Program AREA.FOR

4-67

VVGMOD

VVGMOD

Call is made to set the drawing mode so that subsequent drawing operations:

replace the display image unconditionally.

ii replace it depending on a logical operation on frame buffer contents.

iii replace it depending on logical/arithmetic comparison with either frame
buffer contents or drawing/comparison colors.

ROUTINE VVGMOD - Drawing Mode
NAME:

CALL FORMAT: istat = VVGMOD (cmod, pmod [,ccol})

PARAMETERS: cmod (type integer)
color mode:
O:draw foreground and background
I :draw foreground only - default
2:draw background only

pmod (type integer)
operational mode:
O:replace display image - default
I :OR to display image
2:AND to display image
3:EOR to display image
4:replace if display color = ccol
5:replace if display color <> ccol
6:replace if display color < draw color
7:replace if display color> draw color

ccol (type integer)
comparison color for pmod values 4 and 5.
A ccol value provided for any other pmod value is ignored.

REPLY VALUE: 0
success

1
not initialized

2
segment overflow

4-68

VIVID CROSS
REF

EXAMPLE OF
USE

VVGMOD

Global Attribute Instructions - DRAWING_MODE

Section 5.5.1, Program DRAW.FOR

4-69

VVGNLC

VVGNLC

ROUTINE
NAME:

Call is made to set up to 16 colors (in terms of index and red, green and blue
intensities) in the color look-up table (CLUT).

VVGNLC - Normal Colors

CALL FORMAT: istat = VVGNLC (ind1, int1, [ind2, int2, .. .indn, intnJ)
where n = 3-16
N.B. Array Mode accepted.

PARAMETERS: indn (type integer)
color index number in CLUT

intn (type integer)
intensities of red, green and blue

Minimum parameters 2, maximum 32.

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-70

success

1
not initialized

2
segment overflow

Global Attribute Instructions - NORMAL_COLORS

Section 5.5.7, Program THINGS.FOR

VVGSCB

VVGSCB

Call is made to enable/disable screen blanking. Screen blanking gives priority
to drawing rather than display. This allows drawing speed to increase by a
factor of up to 4.

ROUTINE VVGSCB - Screen Blank
NAME:

CALL FORMAT: istat = VVGSCB (bmod)

PARAMETERS: bmod (type integer)
screen mode (blank/not blank)
O:screen not blank. Display has priority.
non-zero :screen blank. Drawing has priority.

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

success

1
not initialized

2
segment overflow

Global Attribute Instructions - SCREEN_BLANK

Section 5.5.7, Program THINGS.FOR

4-71

THE VIVID SUBROUTINE LIBRARY (VSL)

4.6.4 Drawing Functions

4-72

VVDARC

ROUTINE
NAME:

CALL FORMAT:

VVDARC

Call is made to draw the specified sequence of circular arcs starting from the
current position.

VVDARC ,. Arcs Absolute/Relative
N.B. Dependent on Drawing Parameter Mode set by VVBMOD and Instruction
Parameter Mode set by VVBPMD.

istat = VVDARC (dir1, xcen1, ycen1, xend1, yend1
[dir2, xcen2, ycen2, xend2, yend2 ...
d"~xcenn,ycenn,xend~yendnn

where n has no defined limit

Using Array Mode:

istat = VVDARC (Array of dir/xcen/ycen/xend/yend
values, number of elements in array)

PARAMETERS: dirn (type integer)
drawing direction
O:counterclockwise
1 :clockwise

xcenn (type integer)
x coordinate or displacement of center

ycenn (type integer)
Y coordinate or displacement of center

xendn (type integer)
x coordinate or displacement of end position

yendn (type integer)
Y coordinate or displacement of end position

REPLY VALUE: 0
success

1
not initialized

2
segment overflow

4-73

VVDARC

VIVID CROSS
REF

EXAMPLE OF
USE

4-74

Drawing Instructions - ARCS_ABS and ARCS_REL

Section 5.5.7, Program THINGS.FOR

VVDCRC

ROUTINE
NAME:

CALL FORMAT:

PARAMETERS:

REPLY VALUE:

VIVID CROSS
REF

EXAMPLE OF
USE

VVDCRC

Call is made to draw a circle with specified radius, centered on the current
position.

VVDCRC - Circle

istat = VVDCRC (rad)

rad (type integer)
radius

0
success

1
not initialized

2
segment overflow

Drawing Instructions - CIRCLE

Section 5.5.6, Program AREA.FOR

4-75

VVDDOT

VVDDOT

ROUTINE
NAME:

Call is made to draw a dot at the current position, in the current drawing
mode.

VVDDOT-Dot

CALL FORMAT: istat = VVDDOT ()

PARAMETERS: none

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-76

success

1
not initialized

2
segment overflow

Drawing Instructions - DOT

Section 5.5.7, Program THINGS.FOR

VVDEAR

ROUTINE
NAME:

CALL FORMAT:

VVDEAR

Call is made to draw the specified sequence of elliptic arcs starting from the
current position.

VVDEAR - Elliptic Arcs Absolute/Relative
N.B. Dependent on Drawing Parameter Mode set by VVBMOD and Instruction
Parameter Mode set by VVBPMD.

istat = VVDEAR (dir1, ax1, ay1, xcen1, ycen1, xend1,
yend1 [dir2, ax2, ay2, xcen2, ycen2,
xend2, yend2 ... dirn, axn, ayn, xcenn,
ycen~xend~yendnn

where n has no defined limit

U sing Array Mode :

istat = VVDEAR (Array of dir/ax/ay/xcen/ycen/xend/
yend values, number of elements in
array)

PARAMETERS: dirn (type integer)
drawing direction
O:counterc1ockwise
1 :c1ockwise

axn (type integer)
relative X length

ayn (type integer)
relative Y length

xcenn (type integer)
x coordinate or displacement of center

ycenn (type integer)
Y coordinate or displacement of center

xendn (type integer)
x coordinate or displacement of end position

yendn (type integer)
Y coordinate or displacement of end position

4-77

VVDEAR

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-78

success

1
not initialized

2
segment overflow

Section 5.5.7, Program THINGS.FOR

VVDELL

VVDELL

Call is made to draw an ellipse of a specified VAS aspect ratio and major axis,
with its center on the current position.

ROUTINE
NAME:

VVDELL - Ellipse

CALL FORMAT: istat = VVDELL (ax, by, rad)

PARAMETERS: ax (type integer)
relative horizontal length

by (type integer)
relative vertical length

rad (type integer)
radius along X axis in VAS

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

success

1
not initialized

2
segment overflow

Drawing Instructions - ELLIPSE

Section 5.5.7, Program THINGS.FOR

4-79

VVDLlN

VVDLIN

ROUTINE
NAME:

Call is made to draw the specified sequence of lines, starting from the current
position.

VVDLIN - Lines Absolute/Relative
N.B. Dependent on Drawing Parameter Mode set by VVBMOD and Instruction
Parameter Mode set by VVBPMD.

CALL FORMAT: istat = VVDLIN (x1 or dx1, y1 or dy1 [x2 or dx2, y2 or
dy2, ... xn or dxn, yn or dynJ)

where n has no defined limit

Using Array Mode:

istat = VVDLIN (Array of x/y values, number of
elements in array)

PARAMETERS: xn (type integer)
x coordinate for the end of the line (Absolute)

dxn (type integer)
x displacement for the next end vector (Relative)

yn (type integer)
Y coordinate for the end of the line (Absolute)

dyn (type integer)
Y displacement for the next end vector (Relative)

REPLY VALUE: 0

VIVID CROSS
REF

4-80

success

1
not initialized

2
segment overflow

Drawing Instructions - LINES_ABS and LINES_REL

EXAMPLE OF
USE

Section 5.5.6, Program AREA.FOR

VVDLlN

Note: Variations in line thickness can be achieved by using the following techniques:

A filled rectangle (use VSL routine VVFRCT or the VIVID instructions
FILLED _ RECT _ ABS or FILLED _ RECT _ REL)

By PAINT/FLOOD

Several thin lines.

4-81

VVDMOV

VVDMOV

ROUTINE
NAME:

Call is made to move the current drawing position to the absolute location or
relative position specified.

VVDMOV - Move Absolute/Relative

CALL FORMAT: istat = VVDMOV (x or dx, y or dy)
N.B. Dependent on Drawing Parameter Mode.

PARAMETERS: x (type integer)
x coordinate in VAS (Absolute)

dx (type integer)
x displacement from the current position (Relative)

y (type integer)
Y coordinate in VAS (Absolute)

dy (type integer)
Y displacement from the current position (Relative)

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-82

success

1
not initialized

2
segment overflow

Drawing Instructions - MOVE_ABS and MOVE_REL

Section 5.5.1, Program DRAW.FOR

VVDMTC

ROUTINE
NAME:

Call is made to give a move to the current cursor position.

VVDMTC - Move To Cursor

CALL FORMAT: istat = VVDMTC ()

PARAMETERS: none

VIVID CROSS
REF

Reply Value:

o
success

1
not initialized

2
segment overflow

Drawing Instructions - MOVE_TO_CURSOR

VVDMTC

4-83

VVDPMK

VVDPMK

ROUTINE
NAME:

Call is made to draw the specified character from the current font at each of
the points given by a list of X,Y coordinates or displacements.

VVDPMK - Polymarks Absolute/Relative
N.B. Dependent on Drawing Parameter Mode set by VVBMOD and Instruction
Parameter Mode set by VVBPMD.

CALL FORMAT: istat = VVDPMK (ichar, x1 or dx1, y1 or dy1[x2 or dx2,
y2 or dy2, ... xn or dxn, yn or dyn})

where n has no defined limit

Using Array Mode:

istat = VVDPMK (Array of ichar followed by x/y
values, number of elements in

array)

PARAMETERS: ichar (type integer)
index number of character required

xn (type integer)
x coordinate in VAS (Absolute)

dxn (type integer)
x displacement from the current position (Relative)

yn (type integer)
Y coordinate in VAS (Absolute)

dyn (type integer)
Y displacement from the current position (Relative)

REPLY VALUE: 0
success

1
not initialized

2
segment overflow

4-84

VIVID CROSS
REF

EXAMPLE OF
USE

Drawing Instructions - POLYMARKS_ABS and POLYMARKS_REL

Section 5.5.7, Program THINGS.FOR

VVDPMK

4-85

VVDREC

VVDREC

ROUTINE
NAME:

Call is made to draw a rectangle from a vertex at the current position to the
diagonal vertex specified.

VVDREC - Rectangle Absolute/Relative
N.B. Dependent on Drawing Parameter Mode set by VVBMOD.

CALL FORMAT: istat = VVDREC (x or dx, y or dy)

PARAMETERS: x (type integer)
x coordinate in VAS of opposite vertex (Absolute)

dx (type integer)
x displacement of opposite vertex (Relative)

y (type integer)
Y coordinate in VAS of opposite vertex (Absolute)

dy (type integer)
Y displacement of opposite vertex (Relative)

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-86

success

1
not initialized

2
segment overflow

Drawing Instructions - RECTANGLE_ABS and RECTANGLE_REL

Section 5.5.1, Program DRAW.FOR

THE VIVID SUBROUTINE LIBRARY (VSL)

4.6.5 Filled Figure Functions

4-87

VVFFLD

VVFFLD

Call is made to fill the area from the current position to the defined edge color
or to the current foreground color with the area texture pattern. The area
texture pattern is written in Replace mode, irrespective of the current drawing
mode.

ROUTINE VVFFLD - Flood Area
NAME:

CALL FORMAT: istat = VVFFLD (find))

PARAMETERS: ind (type integer)
CLUT index of edge color to which filling occurs. Range 0-15.
-1 or no parameter supplied defaults to the current foreground color.

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

Note:

4-88

success

1
not initialized

2
segment overflow

Filled Figure Instructions - FLOOD_AREA

Section 5.5.6, Program AREA.FOR

To change the red interior of a circle that has a green border using VVFFLD
and VVFPNT use one of the following two procedures:

1 Using VVFFLD, flood up to the green border as follows:

Set current position to a point inside the circle using VVDMOV

Change background color to a color which is NEITHER red or green,
using for example, VVGBCL (15) - white. Also change the foreground
color to a color which is NEITHER red or green, BUT is the required
replacement color, that is, black, using VVGFCL (0). Note that this
produces no immediate visual change, only color table values are
changed.

VVFFLD

The default color index for green is 8, so call VVFFLD as VVFFLD
(8). The interior of the circle will be filled with black up to, but not
including, the green border.

2 Using VVFPNT to paint over the red interior.

Set current position to a point inside the circle using VVDMOV

Change background color to a color which is NEITHER red or green,
using for example, VVGBCL (15) - white. Also change the foreground
color to a color which is NEITHER red or green, BUT is the required
replacement color, that is, black, using VVGFCL (0). Note that
these produce no immediate visual change, only color table values
are changed.

The default color index for red is 2, so call VVFPNT as VVFPNT (2).
The interior of the circle will be replaced with black.

4-89

VVFPNT

VVFPNT

Call is made to fill the area of the specified color which includes the current
position with the area texture pattern.

ROUTINE VVFPNT - Paint Area
NAME:

CALL FORMAT: istat = VVFPNT (ind)

PARAMETERS: ind (type integer)
index of color to be replaced

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

Note:

4-90

success

1
not initialized

2
segment overflow

Filled Figure Instructions - PAINT

Section 5.5.7, Program THINGS.FOR

To change the red interior of a circle that has a green border using VVFFLD
and VVFPNT use one of the following two procedures:

1 Using VVFFLD, flood up to the green border as follows:

Set current position to a point inside the circle using VVDMOV

Change background color to a color which is NEITHER red or green,
using for example, VVGBCL (15) - white. Also change the foreground
color to a color which is NEITHER red or green, BUT is the required
replacement color, that is, black, using VVGFCL (0). Note that this
produces no immediate visual change, only color table values are
changed.

The default color index for green is 8, so call VVFFLD as VVFFLD
(8). The interior of the circle will be filled with black up to, but not
including, the green border.

VVFPNT

2 Using VVFPNT to paint over the red interior.

Set current position to a point inside the circle using VVDMOV

Change background color to a color which is NEITHER red or green,
using for example, VVGBCL (15) - white. Also change the foreground
color to a color which is NEITHER red or green, BUT is the required
replacement color, that is, black, using VVGFCL (0). Note that
these produce no immediate visual change, only color table values
are changed.

The default color index for red is 2, so call VVFPNT as VVFPNT (2).
The interior of the circle will be replaced with black.

4-91

VVFRCT

VVFRCT

ROUTINE
NAME:

Call is made to draw a rectangle from a vertex at the current position to the
diagonal vertex specified. The rectangle is then filled with the area texture
pattern.

VVFRCT - Filled Rectangle Absolute/Relative
N.B. Dependent on Drawing Parameter Mode set by VVBMOD.

CALL FORMAT: istat = VVFRCT (x or dx, y or dy)

PARAMETERS: x (type integer)
x coordinate in VAS of opposite vertex (Absolute)

dx (type integer)
x displacement of opposite vertex (Relative)

y (type integer)
Y coordinate in VAS of opposite vertex (Absolute)

dy (type integer)
Y displacement of opposite vertex (Relative)

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-92

success

1
not initialized

2
segment overflow

Filled Figure Instructions - FILLED_RECT_ABS and FILLED_RECT_REL

Section 5.5.2, Program PAINTS.FOR

THE VIVID SUBROUTINE LIBRARY (VSL)

4.6.6 Text Functions

4-93

VVTDRC

VVTDRC

Call is made to display the characters specified by each index in the
parameter list. There is one index per word.

ROUTINE VVTDRC - Draw Characters
NAME:

CALL FORMAT: istat = VVTDRC (ind1 [,ind2, .. .indn})
where n has no defined limit
N.B. Array Mode accepted.

PARAMETERS: indn (type integer)
index to cell in font

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-94

success

1
not initialized

2
segment overflow

Text Instructions - DRAW_CHARS

Section 5.5.3, Program FONT.FOR

VVTDRP

VVTDRP

Call is made to display the characters specified by each index in the
parameter list. Indices are packed two per parameter word.

ROUTINE VVTDRP - Draw Packed Characters
NAME: N.B. Dependent on Instruction Parameter Mode set by VVBPMD.

CALL FORMAT: istat = VVTDRP (i1, j1 [i2, j2, .. .in, jn], wordcount)
where n has no defined limit

Using Array Mode:

istat = VVTDRP (Array of packed characters, number
of WORDS in array)

There is an inherent difference in the writing of VSL applications in FORTRAN
on VMS and RSX systems. It is to do with the way the operating systems handle
strings. On RSX systems, a string buffer can be passed in a FORTRAN call simply
by the name of the buffer containing the string, or by the defined string itself, and
the address is used directly by the called function.

On VMS systems, the text string is passed by String Descriptor Block.

On RSX, an example of a call to this function would be:

CALL WTDRP (,A string'.4)

that is, a string plus the number of WORDS used in the string.

On VMS, an example of a call to thiS function would be:

CALL vVTDRP (%REF('A string').4)

that is, the address of a string plus the number of words.

It will be seen that, under VMS, the use of the %REF qualifier ensures that the string
address is passed to the VVTDRP function.

Other high-level languages are supported on VMS only, and therefore the collusion
will not occur.

PARAMETERS: in, jn (type character (byte))
any two characters from byte string

wordcount (type integer)
number of WORDS (that is, 2-character blocks)

4-95

VVTDRP

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-96

success

1
not initialized

2
segment overflow

Text Instructions - DRAW _PACKED_CHARS

Section 5.5.1, Program DRAw'POR

VVTIFT

VVTIFT

Call is made to initialize the specified segment as a font, irrespective of the
segment contents. This segment must already have been created via a call to
VVMCRS.

ROUTINE VVTIFT -Initialize Font
NAME:

CALL FORMAT: istat = VVTIFT (segid, width, height, ncell [,init])

PARAMETERS: segid (type integer)
Segment ID

width (type integer)
cell width in pixels (1-16)

height (type integer)
cell height in pixels (1-16)

ncell (type integer)
number of cells in the font (>0)

init (type integer)
initialization style for cells:
o or no parameter:blank - default
-1:so1id

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

success

1
not initialized

2
segment overflow

Text Instructions - INITIALIZE]ONT

Section 5.5.3, Program FONT.FOR

4-97

VVTLDC

VVTLDC

Call is made to load a character cell to the current font from the pixel data
given as parameters.

ROUTINE VVTLDC - Load Character Cell
NAME:

CALL FORMAT: istat = VVTLDC (ind, irow1[,irow2, ... irown})
where n = 3-16
N.B. Array Mode accepted.

PARAMETERS: ind (type integer)
cell index

irown (type integer)
image value for a pixel row

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-98

success

1
not initialized

2
segment overflow

Text Instructions LOAD_CHA.R_CELL

Section 5.5.3, Program FONT.FOR

VVTMAG

VVTMAG

Call is made to define the horizontal and vertical cell magnification, in terms of
pixels or relative magnification.

ROUTINE VVTMAG - Cell Magnification
NAME:

CALL FORMAT: istat = VVTMAG (utyp, xmag, ymag)

PARAMETERS: utyp (type integer)
code for magnification unit type
O:pixels
I :relative - default

xmag (type integer)
magnification in the cell X direction (range 1-16). The default is I.

ymag (type integer)
magnification in the cell Y direction (range 1-16). The default is 2.

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

success

1
not initialized

2
segment overflow

Text Instructions - CELL_MAGNIFICATION

Section 5.5.3, Program FONT.FOR

4-99

VVTMOV

VVTMOV

ROUTINE
NAME:

Call is made to define text spacing, a relative movement from the end of one
character cell to a final current position.

VVTMOV - Cell Movement

CALL FORMAT: istat = VVTMOV (xd, yd)

PARAMETERS: xd (type integer)
horizontal displacement

yd (type integer)
vertical displacement

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-100

success

1
not initialized

2
segment overflow

Text Instructions - CELL_MOVEMENT

Section 5.5.3, Program FONT.FOR

VVTOBL

VVTOBL

Call is made to define whether subsequent cells are to be drawn rectangularly,
or in italic (4S-degree slope) form.

ROUTINE VVTOBL - Cell Oblique
NAME:

CALL FORMAT: istat = VVTOBL (ital)

PARAMETERS: ital (type integer)
parameter for rectangular or italic character
O:rectangular character
I :italic character

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

success

1
not initialized

2
segment overflow

Text Instructions - CELL_OBLIQUE

Section 5.5.7, Program THINGS.FOR

4-101

VVTROT

VVTROT

Call is made to define the angle at which cells are written to the display image.
The angle is defined in 4S-degree counterclockwise units.

ROUTINE VVTROT - Cell Rotation
NAME:

CALL FORMAT: istat = VVTROT (nseg)

PARAMETERS: nseg (type integer)
number of 45-degree units of rotation
O:horizontal
1:45 degrees
2:90 degrees
3: 135 degrees
4:180 degrees
5:225 degrees
6:270 degrees
7:315 degrees

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-102

success

1
not initialized

2
segment overflow

Text Instructions - CELL_ROTATION

Section 5.5.7, Program THINGS.FOR

VVTSFT

ROUTINE
NAME:

CALL FORMAT:

PARAMETERS:

REPLY VALUE:

VIVID CROSS
REF

EXAMPLE OF
USE

VVTSFT

Call is made to set the current font to the identified font segment. This font is
used for subsequent VIVID instructions which access fonts.

VVTSFT - Set Font

istat = VVTSFT (segid)

segid (type integer)
Font Segment ID

0
success

1
not initialized

2
segment overflow

Text Instructions - SET_FONT

Section 5.5.3, Program FONT.FOR

4-103

VVTSIZ

VVTSIZ

Call is made to define the length and width of the display image cell and the
displacement of the stored font cell within the display image cell.

ROUTINE VVTSIZ - Cell Size
NAME:

CALL FORMAT: istat = VVTSIZ (width, height, xdis, ydis)

PARAMETERS: width (type integer
width of display cell in pixels (1-16)

height (type integer)
height of display cell in pixels (1-16)

xdis (type integer)
horizontal displacement of font cell (0-15)

ydis (type integer)
vertical displacement of font cell (0-15)

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-104

success

1
not initialized

2
segment overflow

Text Instructions - CELL_SIZE

Section 5.5.7, Program THINGS.FOR

THE VIVID SUBROUTINE LIBRARY (VSL)

4.6.7 Area Operation Functions

4-105

VVACLS

VVACLS

ROUTINE
NAME:

Call is made to clear the display.

VVACLS - Clear Screen

CALL FORMAT: islal = VVACLS ([pattl)

PARAMETERS: patt (type integer)
list of color indices for screen no parameter:screen is cleared to the current
background color.

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-106

success

1
not initialized

2
segment overflow

Area Operation Instructions - CLEAR_SCREEN

Section 5.5.1, Program DRAW.FOR

VVACLV

ROUTINE
NAME:

Call is made to clear the viewport to the current background color.

VVACLV - Clear Viewport

CALL FORMAT: istat= VVACLV()

PARAMETERS: none

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

success

1
not initialized

2
segment overflow

Area Operation Instructions CLEAR_ VIEWPORT

Section 5.5.2, Program PAINTS. FOR

VVACLV

4-107

VVACPY

VVACPY

Call is made to copy a specified source area to an area with a vertex at
the current position with a defined attitude. The origin of the source area is
expressed either as an absolute position in VAS, or relative to the current
position, depending on the current setting of the drawing parameter mode.

ROUTINE VVACPY - Copy Absolute/Relative
NAME:

CALL FORMAT: istat = VVACPY (amod, xs or dxs, ys or dys, xdim,
ydim)

N.B. Dependent on DrawingParameter Mode.

PARAMETERS: amod (type integer)
attitude mode

xs (type integer)
x position of the source area origin in VAS (Absolute)

dxs (type integer)
x VAS displacement of the source area origin (Relative)

ys (type integer)
Y position of the source area origin in VAS (Absolute)

dys (type integer)
Y VAS displacement of the source area origin (Relative)

xdim (type integer)
x dimension of the source copy area in VAS

ydim (type integer)
Y dimension of the source copy area in VAS

REPLY VALUE: 0
success

1
not initialized

2
segment overflow

4-108

VIVID CROSS
REF

EXAMPLE OF
USE

Area Operation Instructions - COPY _ABS and COPY _REL

Section 5.5.6, Program AREA.FOR

VVACPY

4-109

VVAFPM

VVAFPM

ROUTINE
NAME:

Call is made to write a specified segment that contains pixel data from the
host or VSV21 memory to the display image by performing a specified logical
operation. It is done starting at the word (a unit of four pixels) containing the
current position.

VVAFPM - Fast Pixel Modify

CALL FORMAT: istat = VVAFPM (segid, mode, mask)

PARAMETERS: segid (type integer)
pixel data map segment ID

mode (type integer)
operational mode
O:replace display image
I:OR with display image
2:AND with display image
3:EOR with display image

mask (type integer)
word bit mask)

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-110

success

1
not initialized

2
segment overflow

Area Operation Instructions - FAST]IXEL_MODIFY

Section 5.5.6, Program AREA.FOR

VVAFPR

ROUTINE
NAME:

VVAFPR

Call is made to write a specified segment that contains pixel data from the
host or VSV21 memory to the display image by performing a specified logical
operation. It is done starting at the word (a unit of four pixels) containing the
current position.

VVAFPR - Fast Pixel Write

CALL FORMAT: istat = VVAFPR (segid)

PARAMETERS: segid (type integer)
pixel data map segment ID

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

success

1
not initialized

2
segment overflow

Area Operation Instructions - FAST_PIXEL_WRITE

Section 5.5.6, Program AREA.FOR

4-111

VVAPXR

VVAPXR
Call is made to read a display image to a specified segment in host memory.
The segment must already have been created via a call to VVMCRS. The
segment may be used for subsequent pixel write operations.

ROUTINE VVAPXR - Pixel Readback
NAME:

CALL FORMAT: istat = VVAPXR (segid, dxw, dyp)

PARAMETERS: segid (type integer)
pixel data map segment ID

dxw (type integer)
area width in words (of 4 pixels each). Positive values indicate displacement to right.

dyp (type integer)
area height in pixels. Positive values indicate upward displacement.

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-112

success

1
not initialized

2
segment overflow

Area Operation Instructions - PIXEL_READBACK

Section 5.5.6, Program AREA.FOR

VVAPXW

VVAPXW

Call is made to write a specified segment containing pixel data to the display
image at the current drawing position.

ROUTINE VVAPXW - Pixel Write
NAME:

CALL FORMAT: istat = VVAPXW (segid)

PARAMETERS: segid (type integer)
pixel data map segment ID

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

success

1
not initialized

2
segment overflow

Area Operation Instructions - PIXEL_WRITE

Section 5.5.6, Program AREA.FOR

4-113

VVASCL

VVASCL

Call is made to perform the specified logical operation on the rectangular area
whose opposite vertices are defined by the current position and the specified
displacement.

ROUTINE VVASCL - Selective Clear
NAME:

CALL FORMAT: istat = VVASCL (mode, mask, [patt], dxw, dyp)

PARAMETERS: mode (type integer)
operational mode
O:replace display image
1 :OR with display image
2:AND with display image
3:EOR with display image

mask (type integer)
word bit mask

patt (type integer)
color bit pattern for 4 pixels

dxw (type integer)
signed area width in words (of 4 pixels each)

dyp (type integer)
signed area height in pixels

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-114

success

1
not initialized

2
segment overflow

Area Operation Instructions - SELECTIVE_CLEAR

Section 5,5,8, Program MATCH,FOR

VVASCV

ROUTINE
NAME:

VVASCV

Call is made to move the data within the viewport. The data is moved by the
indicated displacement. Data falling outside the viewport is lost.

VVASCV - Scroll Viewport

CALL FORMAT: istat = VVASCV (dx, dy)

PARAMETERS: dx (type integer)
horizontal displacement of data. Positive values indicate displacement to right.

dy (type integer)
vertical displacement of data. Positive values indicate upward displacement.

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

success

1
not initialized

2
segment overflow

Area Operation Instructions - SCROLL_VIEWPORT

Section 5.5.4, Program TRANSEFOR

4-115

THE VIVID SUBROUTINE LIBRARY (VSL)

4.6.8 Interactive Functions

4-116

VVIAKI

ROUTINE
NAME:

VVIAKI

Call is made to begin synchronous keyboard input to the identified segment.
Input continues until the specified termination character is received, a
specified maximum number of characters has been read, or the segment
is full.

VVIAKI - Accept Keyboard Input

CALL FORMAT: istat = VVIAKI (segid, chend, chmax [,cind, clore,
cbackJ)

PARAMETERS: segid (type integer)
the segment ID for writing the data

chend (type char (byte))
input termination character

N.B. Should be set to zero if unused.

chmax (type integer)
maximum number of characters input

cind (type integer)
cursor index in current font

clore (type integer)
cursor foreground color index

cback (type integer)
cursor background color index

N.B. Keyboard input will only be echoed at the current drawing position if the last
three parameters are supplied.

REPLY VALUE: 0
success

1
not initialized

2
segment overflow

4-117

VVIAKI

VIVID CROSS
REF

EXAMPLE OF
USE

4-118

Interactive Instructions - ACCEPT_KEYBOARD_INPUT

Section 5.5.5, Program KEYIN.FOR

VVICUS

VVICUS

Call is made to set the cursor to the specified pixel data, or to one of the
default cursor styles.

ROUTINE VVICUS - Cursor Style
NAME:

CALL FORMAT: istat = VVICUS (ccode[,dxp, dyp, row1, row2 ...
rown])

where n is in the range 3-16

PARAMETERS: ccode (type integer)
cursor style code
O:small cross-hairs
-1 :full screen cross-hairs
>O:width of cursor in pixels

N.B. Parameters 2 to n are only valid for ccode > O.

dxp (type integer)
cell pixel X displacement from cursor point

dyp (type integer)
cell pixel Y displacement from cursor point

rown (type integer)
cursor cell row bit pattern

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

success

1
not initialized

2
segment overflow

Interactive Instructions - CURSOR_STYLE

Section 5.5.8, Program MATCH.FOR

4-119

VVICUS

VVICUS

ROUTINE
NAME:

Call is made to define whether or not the cursor is visible.

VVICUS - Cursor Visibility

CALL FORMAT: istat = VVICUS (cmod)

PARAMETERS: cmod (type integer)
cursor visibility
O:cursor invisible
1 :cursor visible

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-120

success

1
not initialized

2
segment overflow

Interactive Instructions - CURSOR_VISIBILITY

Section 5.5.2, Program PAINTS.FOR

VVIMTD

ROUTINE
NAME:

Call is made to disable match interrupts.

VVIMTD - Match Disable

CALL FORMAT: istat = VVIMTD ()

PARAMETERS: none

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

success

1
not initialized

2
segment overflow

Interactive Instructions - MATCH_DISABLE

Section 5.5.8, Program MATCH.FOR

VVIMTD

4-121

VVIMTE

VVIMTE

ROUTINE
NAME:

Call is made to enable match interrupts such that when subsequent drawing
intersects the cursor position, a report is sent to the host. Following this
instruction, drawing continues until the maximum number of matches have
been detected.

VVIMTE - Match Enable

CALL FORMAT: istat = VVIMTE (nmax)

PARAMETERS: nmax (type integer)
maximum number of matches

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-122

success

1
not initialized

2
segment overflow

Interactive Instructions - MATCH_ENABLE

Section 5.5.8, Program MATCH.FOR

VVIPCU

ROUTINE
NAME:

VVIPCU

Call is made to set the cursor to the specified position when on display. The
cursor is restricted by the screen boundaries.

VVIPCU - Position Cursor

CALL FORMAT: istat = VVIPCU ([x,y})

PARAMETERS: x (type integer)
cursor X position in VAS

y (type integer)
cursor Y position in VAS

N.B. If no parameters supplied, cursor position defaults to the current drawing
position.

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

success

1
not initialized

2
segment overflow

Interactive Instructions - POSITION_CURSOR

Section 5.~.2, Program PAINTS.FOR

4-123

VVIRUB

VVIRUB

ROUTINE
NAME:

Call is made to define the rubber band characteristics and base point.

VVIRUB - Rubber Band

CALL FORMAT: istat = VVIRUB (rcod [,x,y})

PARAMETERS: rcod (type integer)
rubber band code
O:no rubber band
1 :linear rubber band
2:rectangular rubber band

x (type integer)
x position of base point in VAS

y (type integer)
Y position of base point in VAS

N.B. If no X,y provided, the current drawing position is assumed as the base point of
the rubber band.

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-124

success

1
not initialized

2
segment overflow

Interactive Instructions - RUBBER_BAND

Section 5.5.8, Program MATCH.FOR

VVISWD

ROUTINE
NAME:

Call is made to disable pointing device reporting.

VVISWD - Switch Report Disable

CALL FORMAT: istat = VVISWD ()

PARAMETERS: none

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

success

1
not initialized

2
segment overflow

Interactive Instructions - SWITCH_DISABLE

Section 5.5.4, Program TRANSEFOR

VVISWD

4-125

VVISWE

VVISWE

ROUTINE
NAME:

Call is made to enable a pointing device so that when a specified switch
activity occurs, a report is sent to the host. The condition "No Switch Activity"
is also covered, so reports are provided for all cursor movements.

VVISWE - Switch Report Enable

CALL FORMAT: istat = VVISWE (mask)

PARAMETERS mask
If switch mask is 0, then a report is generated for movement and any device input,
for example, pushing one of the buttons.
If the switch mask is NOT 0 then if the following bits are set a report will be
generated:

Bit Number
(from 0)

o
1

2

3

4 .. 15

Left button

Middle button

Right button

If no DECtablet - set to 0
If DECtablet - set to 1 for response to 4th switch

Must be zeros

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

4-126

success

1
not initialized

2
segment overflow

Interactive Instructions - SWITCH_REPORT_ENABLE

Section 5.5.2, Program PAINTS.FOR

VVIWSW

VVIWSW

Call is made to wait for a switch interrupt before continuing with the next
VIVID instruction.

ROUTINE
NAME:

VVIWSW - Wait Switch

CALL FORMAT: istat = VVIWSW (mask)

PARAMETERS: mask (type integer)
switch mask

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

success

1
not initialized

2
segment overflow

Interactive Instructions - WAIT_SWITCH

Section 5.5.2, Program PAINTS.FOR

4-127

THE VIVID SUBROUTINE LIBRARY (VSL)

4.6.9 Report Handling Functions

4-128

VVQREP

VVQREP

Call is made to place the specified report in the current report segment.

ROUTINE
NAME:

VVQREP - Request Report

CALL FORMAT: istat = VVQREP (nrep)

PARAMETERS: nrep (type integer)
report number required (range 0-10)

REPLY VALUE: 0

VIVID CROSS
REF

EXAMPLE OF
USE

success

1
not initialized

2
segment overflow

Report Handling - REQUEST_REPORT INSTRUCTION

Section 5.5.7, Program THlNGS.FOR

4-129

5 GETTING STARTED WITH VSL

5.1 INTRODUCTION
VSL is a library of functions and subroutines that can be called from a high-level
language. VSL controls the display list segments, executes display list or drawing
commands, and handles replies from VIVID. It automatically generates VIVID
instructions and parameters.

Thus VSL is designed to enable high-level language programmers to obtain easy
access to the VSV21 graphics capability via use of the VIVID instruction set.

The VIVID Subroutine Library is provided for both VMS and RSX systems and in
both cases is called VSLLIB.OLB.

5.2 ACCESS TO VIVID DISPLAY AREA
The high-level approach of VSL is such that the detailed QIO directive calls required
to access the VSV21 graphics interpreter (VIVID) are transparent to the user. What
the user DOES have to do is to include in his task build (or linkage) access to the
VIVID Display Area.

In VMS terms, the display area is a word array, currently maximum size of 64K
words. Access is therefore by array element. All the user needs to do is include
access to the library at link time thus:

LINK USERFILE,SYS$LIBRARY:VSLLIB/LIB

In RSX terms, the display area is a common area of data, or region. Access to
the region is via a 4K window VV21DA that must be mapped at APR 7, that is,
in program space at 28K. An example of a task build command process, from a
FORTRAN source, including access to the VIVID display area is:

TKB USERFILE,USERFILE/-SP~USERFILE
TKB LB: [l,l]VSLLIB/LB
TKB LB: [1,1]F4POTS/LB
TKB I
TKB VSECT~VV21DA:160000:20000
TKB WNDWS~l
TKB MAXBUF~512
TKB II

Note: The window is mapped as a virtual section at APR 7.

5-1

5.3

5.3.1

5.3.2

GETTING STARTED WITH VSL

SEGMENTS

An Introduction To Segments
The VIVID display area resides in host memory. It is used by the VSV21 driver
to store graphics information for subsequent processing on-board the VSV21 and
by the on-board processor to store data resulting from graphics execution. Data is
transferred from the host to on-board and vice-versa via the display area using direct
memory access (DMA). The data within the area can be of various types:

Executable VIVID instructions plus data

Character cells in a font

Pixel data maps

Characters input from a keyboard

Report packets generated as the result of graphics execution

Attributes data written back from the board

These identifiable data entities are referred to as SEGMENTS.

Thus the definable segments are:

Instruction

Font

Pixel

Keyboard

Report

Attributes

Segments can also be downloaded directly into VSV21 memory to give increased
speed of access. This facility is really designed for use with static segments i.e.
those whose data will not change for the duration of processing such as fonts. Any
change to a downloaded segment would necessitate the segment being deleted from
VSV21 memory, rebuilt and re-downloaded.

Segment Size and Class/lD

5-2

The size of segment that you create is dependent on the specific application the
segment is intended for. There is no restriction on the size of individual segments
other than the maximum imposed by the VIVID Display Area or of VSV21 memory.
It is advised to keep instruction segments fairly small, say 100 words maximum,
purely for ease of programming. Users can nest calls to lower level segments from a
top level segment and in this way pre-define specific graphics operations via segment
ID. Editing of smaller entities makes for more efficient use of the segment concept,
and thus a library of pictures can be set up as files on disk. VSL gives you the
facility to create, store, and restore segments into host or VSV21 memory.

Segment Class/lD is a one-word value and is a reflection of the data entities
discussed above. It is, in the main, user-definable but within the restrictions
mentioned:

Class is in the MSB of the word.

GETTING STARTED WITH VSL

Range: Host Segments 1 to 32
VSV21 1 to 16

Class 16 is reserved for multinational font segments.

Class 32 is reserved for Report segments.

ID is in the LSB of the word.
Range: 1 to 255.

The use and application of each segment type will become apparent upon reference
to the various VSL routine calls itemised in the previous chapter and also within the
published examples at the end of this chapter.

5.4 VSL - LOGICAL PROCEDURE
To access the VSV21 via the high-level subroutine library VSL, a number of logical
operations must be performed. These are itemised below with the relevant VSL
routine in brackets:

initialize VIVID processing (VVXINI)

assign channel to VSV21 and allocate display area (VVXASS)

create segment(s) within display area (VVMCRS)

begin inserting VIVID instructions into segment (VVBBGN)

generate VIVID instruction calls (various)

end of segment (VVBEND)

execute segment (VVEEXE)

monitor execution status (VVRSTA)

read any relevant reports (VVRREP)

release display area and de-assign channel from VSV21 (VVXREL)

terminate VSV21 processing (VVXEND)

The above stages represent a typical VSL program structure. Obviously, following
execution of the segment, applications will differ as to the next steps of the program.
Before release and termination of the VSV21, for instance, a program may read
reports, read keyboard segments, create new segments, generate VIVID instructions
within segments and execute them, delete segments, create new fonts, and so forth.
The essential ingredients must be present in any program to achieve correct access of
the VSV21 via VSL, namely:

INITIALIZE

ASSIGN CHANNEL AND ALLOCATE DISPLAY AREA

CREATE SEGMENT(S)

EXECUTE

RELEASE DISPLAY AREA AND DEASSIGN CHANNEL

TERMINATE

5-3

GETTING STARTED WITH VSL

5.5 EXAMPLES

5.5.1 Draw a Picture

5-4

All the following examples are written in VAX FORTRAN and developed under
VMS. RSX users should be able to use these examples but with special attention to
two points:

1 All references to INTEGER*4 should be INTEGER*2.

2 All calls to "VVTDRP - Draw Packed Characters" should NOT use the %REF
qualifier. (See VVTDRP in Section 4.6.6)

This is an example of using VSL to produce a simple display. It should especially
aid new VSV21 users to access the VIVID instruction set by the use of the higher
level calls within VSL.

Program Name: DRA W.FOR

PROGRAM DRAW

C A simple example to illustrate VSL and its ease of use.
C Program sets up VSV21 processing and creates a segment to output
C a header message and sequence of colored rectangles.
C Full error handling is included.
C
C To compile and link the program :
C
C VMS -
C FOR/NOOP DRAW
CLINK DRAW,SYS$LIBRARY:VSLLIB/LIB
C
C
C
C
C
C
C
C
C
C
C

RSX -
F77 DRAW,DRAW/-SP=DRAW
TKB DRAW,DRAW/-SP=DRAW
TKB LB: [l,l)VSLLIB/LB
TKB LB: [1,l)F4POTS/LB
TKB I
TKB VSECT=VV21DA:160000:20000
TKB WNDWS=l
TKB MAXBUF=512
TKB II

IMPLICIT INTEGER*4 (V)

INTEGER*4
INTEGER*2

DRAWIT
ISTAT,LUN

C Initialize VIVID processing.
C Set up the display area to be 4096 bytes long,
C maximum segments to be 10.

ISTAT = VVXINI (4096, 10)

IF (ISTAT .NE. 1) CALL SRERR ('VVXINI

C Assign VSV21 device for VSL processing.

, ISTAT) Check status

C First, set up a logical unit number for all subsequent device access.

LUN = 1

C Device physical unit 0 will assign to device VVAO:
C 1 will assign to device VVBO:
C 2 will assign to device VVCO: etc.
C Third parameter 1024 sets up a report segment of that size,
C default segment ID Hex 2001.

GETTING STARTED WITH VSL

ISTAT = VVXASS (0, LUN, 1024)

IF (ISTAT .NE. 1) CALL SRERR ('VVXASS lSTAT) 1 Check status

C Create a VIVID instruction segment of length 1000 bytes

ISTAT = VVMCRS (LUN, '201'X, 1000)

IF (ISTAT .NE. 1) CALL SRERR ('VVMCRS1' ISTAT) 1 Check status

C Call subroutine to build up the display segment and output the picture
C Supply logical unit number and segment 10.

ISTAT = DRAWIT (LUN, '201'X)

IF (ISTAT .NE. 1) CALL SRERR ('DRAWIT ISTAT) Check status

C Release VSV21 device from VSL processing.

ISTAT = VVXREL (LUN)

IF (ISTAT .NE. 1) CALL SRERR ('VVXREL , ISTAT) Check status

C Release VSV21 processor and free the VSV21 buffers.

ISTAT = VVXEND ()

IF (ISTAT .NE. 1) CALL SRERR ('VVXREL ISTAT) 1 Check status

STOP

END

C Set up title "THIS IS VSV21" and draw colored rectangles

INTEGER*4 FUNCTION DRAWIT (LUN, SEGID)

INTEGER*2 LUN,SEGID,ISTAT,RECX,RECY,I

CALL VVBBGN (SEGID) ! start of segment
CALL VVCINI (-1) ! initialize all
CALL VVACLS () 1 clear screen
CALL VVGMOD (1,0) drawing mode - foreground only
CALL VVGFCL (14) foreground color yellow
CALL VVDMOV (36,420) move abs
CALL VVTMAG (1,3,3) 1 cell mag 3x
CALL VVBPMD (1) 1 set param mode for arrays
CALL VVTDRP (%REF (' T H I S I S V S V 2 1 ') ,12)
CALL VVBPMD (0) 1 reset param mode
CALL VVCINI (-1) ! initialize all
CALL VVDMOV (176,128) move abs
RECX 448 1 init rectangle x-val
RECY = 368 1 init rectangle y-val

C 2 loops to produce 30 colored rectangles

DO 100 1=1,15,1
CALL VVGFCL (I)
CALL VVBMOD (1)
CALL VVDMOV (4,4)
CALL VVBMOD (0)
CALL VVDREC (RECX,RECY)
RECX RECX 4
RECY = RECY - 4

100 CONTINUE

DO 200 I=1,15,1
CALL VVGFCL (I)
CALL VVBMOD (1)
CALL VVDMOV (4,4)
CALL VVBMOD (0)
CALL VVDREC (RECX,RECY)
RECX RECX - 4
RECY = RECY - 4

200 CONTINUE

CALL VVBEND ()

1 foreground colors 1-15
instruction mode - relative

1 move reI
instruction mode - absolute
rectangle absolute
rectangles in by 4

! foreground colors 1-15
instruction mode - relative
move reI

1 instruction mode - absolute
rectangle absolute

1 rectangles in by 4

! end of segment

5-5

5.5.2

GETTING STARTED WITH VSL

Reporting

5-6

C Now execute the segment

CALL VVEEXE (LUN,SEGID,32000) ! execute segment
CALL VVRSTA (LUN, DRAWIT, IDUM) ! get execute status

RETURN
END

C Error handling.
C Routine prints function and error code.

SUBROUTINE SRERR (ISRNAM, ISTAT)

CHARACTER*S
INTEGER*2

ISRNAM
ISTAT

1000 FORMAT (I,' **** Failed: routine', as,
1 Status = " 17, '****' I)

WRITE (5, 1000) ISRNAM, ISTAT
STOP
END

Handle errors

This example illustrates a simple use of the reporting facility. The program draws
a sequence of colored boxes down the right hand side of the screen as a palette
of colors. Using a pointing device, users can then position the cursor over one
of the boxes, hit a switch and the left-hand remainder of the screen will flood
to the selected color. This demonstrates a simple menu selection facility using
cursor-position reports and wait-switch instruction.

Program Name: PAINTS.FOR

PROGRAM PAINTS
C
C An exercise in programming VSV21 graphics using the
C VIVID SUBROUTINE LIBRARY (VSL).
C
C IMPORTANT. This test requires Pointing Device input.
C
C Object is to create a 16-color paint box as a menu, from which to
C select a color and clear the viewport to that color.
C Exercise demonstrates VIVID drawing facilities plus pointing device
C interaction and the reading of reports.
C
C To compile and link the program :
C
C VMS -
C FOR/NOOP PAINTS
CLINK PAINTS,SYS$LIBRARY:VSLLIB/LIB
C
C
C

C

C
C

C

C
C
C
C

RSX -
F77 PAINTS,PAINTS/-SP=PAINTS
TKB PAINTS,PAINTS/-SP=PAINTS
TKB LB: [l,l]VSLLIB/LB
TKB LB: [1,1]F4POTS/LB
TKB I
TKB VSECT=VV21DA:160000:20000
TKB WNDWS=l
TKB MAXBUF=512
TKB II

IMPLICIT INTEGER*4 (V)

INTEGER*4
INTEGER*2

ICNTRL
ISTAT,LUN

GETTING STARTED WITH VSL

DATA SEGID / '0201'X /

C Initialize VIVID processing.
C Set up the display area to be 4096 bytes long,
C maximum segments to be 10.

ISTAT = VVXINI (4096, 10)

IF (ISTAT .NE. 1) CALL SRERR ('VVXINI

C Assign VSV21 device for VSL processing.

, ISTAT) I Check status

C First, set up a logical unit number for all subsequent device access.

LUN = 1

ISTAT VVXASS (0, LUN, 1024)

IF (ISTAT .NE. 1) CALL SRERR ('VVXASS , ISTAT)

C Create the top-level segment .

ISTAT = VVMCRS (LUN, SEGID, 2000)

IF (ISTAT .NE. 1) CALL SRERR ('VVMCRS 1', ISTAT)

C Call control routine

ISTAT = ICNTRL (LUN, SEGID)

IF (ISTAT .NE. 1) CALL SRERR ('ICNTRL , ISTAT)

C Release VSV21 device from VSL processing.

ISTAT = VVXREL (LUN)

IF (ISTAT .NE. 1) CALL SRERR ('VVXREL ISTAT)

C Release VSV21 processor and free the VSV21 buffers.

ISTAT = VVXEND ()

IF (ISTAT .NE. 1) CALL SRERR ('VVXEND

CALL EXIT

END

C

C Control routine
C

INTEGER*4 FUNCTION ICNTRL (LUN,SEGID)

INTEGER*2 LUN,SEGID

C

C Reporting
C

INTEGER*4
INTEGER*2
DuiENSION

C Set up paintbox menu

VVRREP,IREP
FCOL,IARR
IARR(20)

ICNTRL = IDINIT(LUN,SEGID)

C

IF (ICNTRL .NE. 1) THEN
CALL SRERR ('IDINIT

ENDIF

C Read Switch Reports.
C

ICNTRL)

, ISTAT)

I Check status

Check status

I Check status

5-7

GETTING STARTED WITH VSL

110 IREP = VVRREP (LUN, 65, IARR, 20)
IF (IREP .EQ. 1) THEN

IVALID = 1
GOTO 110

ELSE IF (IREP .GE. 0) THEN
CALL SRERR ('VVRREP , ,IREP)

ENDIF

C
C Read X/y coordinates to set up correct color
C

IF (IARR (3) .GE. 488) THEN
IF (IARR (4) .GE. 430) THEN ! Exit

GOTO 999
ELSE IF (IARR (4) .GE. 400) THEN

FCOL = 1
ELSE IF ((IARR(4) .GE. 372) .AND. (IARR (4) .LE. 390)) THEN

FCOL = 2
ELSE IF ((IARR(4) .GE. 344) . AND. (IARR (4) .LE . 362)) THEN

FCOL = 3
ELSE IF ((IARR(4) .GE. 316) . AND. (IARR (4) .LE . 334)) THEN

FCOL = 4
ELSE IF ((IARR(4) .GE. 288) . AND. (IARR (4) .LE . 306)) THEN

FCOL = 5
ELSE IF ((IARR(4) .GE. 260) . AND. (IARR (4) .LE . 278)) THEN

FCOL = 6
ELSE IF ((IARR(4) . GE. 232) .AND . (IARR(4) .LE. 250)) THEN

FCOL = 7
ELSE IF ((IARR(4) .GE. 204) .AND. (IARR (4) .LE. 222)) THEN

FCOL = 8
ELSE IF ((IARR (4) . GE. 176) . AND . (IARR(4) .LE . 194)) THEN

FCOL = 9
ELSE IF ((IARR (4) .GE. 148) .AND. (IARR(4) .LE. 166)) THEN

FCOL = 10
ELSE IF ((IARR(4) . GE. 120) .AND . (IARR(4) .LE. 138)) THEN

FCOL =11
ELSE IF ((IARR(4) . GE. 92) .AND . (IARR (4) .LE. 110)) THEN

FCOL = 12
ELSE IF ((IARR(4) .GE. 64) .AND. (IARR (4) .LE. 82)) THEN

FCOL =13
ELSE IF ((IARR(4) .GE. 36) .AND. (IARR (4) .LE. 54)) THEN

FCOL = 14
ELSE IF ((IARR (4) .GE. 8) .AND. (IARR (4) .LE. 26)) THEN

FCOL = 15
ENDIF

ENDIF

C
C Call 'clear viewport' routine.
C Even if no valid color selection, the routine will wait for next switch.
C

CALL CLEAR (LUN, SEGID, FCOL)

IF (ICNTRL .NE. 1) THEN
CALL SRERR ('CLEAR ICNTRL)

ENDIF

GO TO 110 ! keep looping for switch reports

999 RETURN
END

C
C Draw the Paintbox Menu
C

FUNCTION IDINIT (LUN, SEGID)

INTEGER*2 LUN,SEGID

5-8

GETTING STARTED WITH VSL

CALL VVBMOD (0) Drawing instruction mode ABS
CALL VVBBGN (SEGID) Start Segment
CALL VVCINI (-1) Initialize everything
CALL VVVDIM (640, 480) Screen Dimensions 640x480
CALL VVACLS (' 0044'X) Clear screen(b1ack/green stripes)
CALL VVGFCL (11) Foreground color pink
CALL VVDMOV (0, 0) I Move abs
CALL VVFRCT (479, 479) Filled rectangle
CALL VVGFCL (0) Foreground color black
CALL VVDMOV (3, 3) Move abs
CALL VVFRCT (476, 476) Filled rectangle
CALL VVTMAG (1, 1, 2) Cell magnification
CALL VVGFCL (14) Foreground color yellow
CALL VVGBCL (0) I Background color black
CALL VVGMOD (1, 0) Drawing mode,foreground only
CALL VVDMOV (48O, 458) Move abs
CALL VVBPMD (1) Set array mode (for text)
CALL VVTDRP (%ref (' MY PAINTBOX ') , 10)
CALL VVDMOV (488,430) Move abs
CALL VVGBCL (14) Background color yellow
CALL VVGFCL (2) Foreground color red
CALL VVGMOD (0, 0) Drawing mode,fore/background
CALL VVTDRP (%ref (' EXIT ') , 9)

C
C Now set up the colors of the paint box
C

CALL VVGMOD (1,0) Drawing mode,foreground only
CALL VVGBCL (0) Background color black
CALL VVGFCL (1) Foreground color deep blue
CALL VVDMOV (500, 400) Move abs
CALL VVBMOD (1) Drawing instruction mode RELATIVE
CALL VVFRCT (12O, 18) I Filled rectangle
CALL VVGFCL (2) Deep Red
CALL VVDMOV (0, -28) Move reI X by O,y by -28
CALL VVFRCT (120, 18) ! Filled rectangle
CALL VVGFCL (3) Purple
CALL VVDMOV (0, -28)
CALL VVFRCT (120, 18)
CALL VVGFCL (4) Dark Green
CALL VVDMOV (0, -28)
CALL VVFRCT (120, 18)
CALL VVGFCL (5) Blue
CALL VVDMOV (0, -28)
CALL VVFRCT (120, 18)
CALL VVGFCL (6) Orange
CALL VVDMOV (0, -28)
CALL VVFRCT (120, 18)
CALL VVGFCL (7) I Deep pink
CALL VVDMOV (0, -28)
CALL VVFRCT (120, 18)
CALL VVGFCL (8) I Green
CALL VVDMOV (0, -28)
CALL VVFRCT (120, 18)
CALL VVGFCL (9) Light blue
CALL VVDMOV (0, -28)
CALL VVFRCT (120, 18)
CALL VVGFCL (10) ! Pale orange
CALL VVDMOV (0, -28)
CALL VVFRCT (12O, 18)
CALL VVGFCL (11) Pink
CALL VVDMOV (0, -28)
CALL VVFRCT (12O, 18)
CALL VVGFCL (12) Bright green
CALL VVDMOV (0, -28)
CALL VVFRCT (12O, 18)
CALL VVGFCL (13) Pale blue
CALL VVDMOV (0, -28)
CALL VVFRCT (120, 18)
CALL VVGFCL (14) Yellow
CALL VVDMOV (0, -28)

5-9

5.5.3

GETTING STARTED WITH VSL

Font Creation
Note:

5-10

CALL VVFRCT (120, 18)
CALL VVGFCL (15) I White
CALL VVDMOV (0, -28)
CALL VVFRCT (120, 18)

C
C Draw the rectangle around the screen and put cursor on
C

CALL VVBMOD (0) Drawing instruction mode ABS
CALL VVDMOV (0,0) Move abs
CALL VVGFCL (15) Foreground color white
CALL VVDREC (639,479) Rectangle abs
CALL VVIPCU (320,240) Position cursor
CALL VVICUS (1) I Cursor visibility
CALL VVISWE (7) Switch enable (1,2,3)
CALL VV1WSW (7) Wait switch (1,2,3)
CALL VVBEND () ! End segment
CALL VVEEXE (LUN,SEG1D,32000) I Execute segment
CALL VVRSTA (LUN, ID1NIT, IDUM) I Check execute completion status
RETURN
END

C
C Clear viewport to supplied color.
C Note. Viewport is set so as not to clear the paintbox menu also.
C It must be reset to enable the cursor position checks to work.
C

FUNCTION CLEAR (LUN,SEGID,FCOL)

INTEGER*2 LUN,SEGID,FCOL

CALL VVBBGN (SEGID)
CALL VVVSVU (4,4,472,472)
CALL VVGBCL (FCOL)
CALL VVACLV ()

CALL VVVSVU (0,0,640,480)
CALL VV1WSW (7)
CALL VVBEND ()

CALL VVEEXE (LUN,SEG1D,32000)
CALL VVRSTA (LUN, CLEAR, IDUM)
RETURN
END

Start segment
I Set viewport to non-menu size
I Background color to that selected
! Clear viewport (to background)

Reset viewport
I Wait switch (1,2,3)

End segment
Execute segment

I Check execute completion status

C Error handling.
C Routine prints function and error code.

SUBROUTINE SRERR (1SRNAM, ISTAT)

CHARACTER*8
1NTEGER*2

1SRNAM
1STAT

1000 FORMAT (/,' **** Failed: routine', a8,
1 Status = " 17, '****' /)
WRITE (5, 1000) 1SRNAM, 1STAT
STOP
END

Handle errors

When designing a character (or texture, or special cursor) a 16 by 16 grid is
used in which:

a. Rows are numbered 1 to 16 from the bottom of the grid.

GETTING STARTED WITH VSL

b. In terms of bit positions, the columns are numbered 0 to 15 from left to
right. Thus, if a shaded unit of the grid represents a 1, and an un shaded
unit represents a 0, then the correct row values supplied to VSL functions
or VIVID instructions are obtained by REVERSING each row value.

See Appendix B for an example.

This example illustrates how to create a user-font of special symbols. It demonstrates
defining and initializing the font, displaying characters from it and switching back to
the default font.

Program Name: FONT.FOR

PROGRAM FONT

C Program shows how to create a font of six special characters. These
C symbols are :-
C STAR sign
C INFINITY sign
C ARROW righthand pointer
C 'bb' as one symbol
C A matchstick man symbol
C FEMALE logical symbol
C

C A string of opening text is displayed from the default font. Special
C font is then created and the six symbols displayed with movement and
C magnification. We then switch back to defaults and display a closing
C message.
C Full error handling is included.
C

C To compile and link the program :
C
C VMS -
C FOR/NOOP FONT
CLINK FONT,SYS$LIBRARY:VSLLIB/LIB
C

C RSX -
C F77 FONT,FONT/-SP=FONT
C TKB FONT,FONT/-SP=FO~T
C TKB LB: [l,l]VSLLIB/LB
C TKB LB: [1,1]F4POTS/LB
C TKB I
C TKB VSECT=VV21DA:160000:20000
C TKB WNDWS=1
C TKB MAXBUF=512
C TKB II

PROGRAM FONT
C
C An exercise in programming VSV21 graphics using the
C VIVID SUBROUTINE LIBRARY (VSL).
C
C Object is to create a small font of special characters for subsequent
C text output to the screen.
C Exercise demonstrates VIVID text facilities and cell manipulation.
C

IMPLICIT INTEGER*4 (V)

INTEGER*4
INTEGER*2

ICNTRL
ISTAT,LUN

DATA SEGID I '0201'X I

DATA FONTID I '1004'X I

C Initialize VIVID processing.
C Set up the display area to be 4096 bytes long,
C maximum segments to be 10.

Instruction segment ID

Special font segment ID

5-11

GETIING STARTED WITH VSL

5-12

ISTAT ~ VVXINI (4096, 10)

IF (ISTAT .NE. 1) CALL SRERR ('VVXINI , ISTAT) Check status

C Assign VSV21 device for VSL processing.
C First, set up a logical unit number for all subsequent device access.

LUN ~ 1

ISTAT VVXASS (0, LUN, 1024)

IF (ISTAT .NE. 1) CALL SRERR ('VVXASS ISTAT)

C Create the top-level segment .

ISTAT ~ VVMCRS (LUN, SEGID, 2000)

IF (ISTAT .NE. 1) CALL SRERR ('VVMCRS 1', ISTAT)

C Create the font segment

ISTAT ~ VVMCRS (LUN, FONTID, 800)

IF (ISTAT .NE. 1) CALL SRERR ('VVMCRS 2', ISTAT)

C Call control routine

ISTAT ~ ICNTRL (LUN, SEGID, FONTID)

IF (ISTAT .NE. 1) CALL SRERR ('ICNTRL , ISTAT)

C Release VSV2l device from VSL processing.

ISTAT ~ VVXREL (LUN)

IF (ISTAT .NE. 1) CALL SRERR ('VVXREL ISTAT)

C Release VSV2l processor and free the VSV2l buffers.

C

ISTAT ~ VVXEND ()

IF (ISTAT .NE. 1) CALL SRERR ('VVXEND

CALL EXIT

END

C Control routine
C

ISTAT)

INTEGER*4 FUNCTION ICNTRL (LUN, SEGID, FONTID)

INTEGER*2 LUN, SEGID, FONTID

INTEGER*2 STAR (11)

Check status

Check status

Check status

DATA STAR / 1, 'lll'X, '92'X, '54'X, '3B'X, 'lFF'X, '38'X,
1 '54'X, '92'X, 'lll'X, 'BOOO'X /

INTEGER*2 INFINI (11)
DATA INFINI / 2, 0, 0, 0, 'EE'X, 'lll'X, 'EE'X, 0, 0, 0, 'BOOO'X /

INTEGER*2 ARROW (11)
DATA ARROW /3, 0, '20'X, '40'X, '80'X, 'lFF'X, '80'X,
1 '40'X, '20'X, 0, 'BOOO'X /

INTEGER*2 BB (11)
DATA BB / 4, 0, 'lEF'X, '129'X, '129'X, 'lEF'X, '2l'X, '2l'X, '2l'X, 0
1 '8000'X /

INTEGER*2 MAN (11)
DATA MAN / 5, 'lOl'X, '82'X, '44'X, '28'X, 'lO'X, '7C'X,
1 '92'X, '3B'X, '38'X, '8000'X /

INTEGER*2 FEMALE (11)
DATA FEMALE / 6, '38'X, '44'X, '82'X, '82'X, '44'X, '3B'X,
1 '10'X, '38'X, 'lO'X, 'BOOO'X /

5.5.4 Transformations

GETTING STARTED WITH VSL

CALL WBBGN (SEGID) I Start Segment
CALL WCINI (-1) Initialise everything
CALL VVACLS (' FFFF' X) I Clear screen (white)
CALL WGFCL (5) I Foreground color blue
CALL WGBCL (15) Background color white
CALL WDMOV (2O, 440) I Move abs
CALL VVBPMD (1) I Set array mode (for text)
CALL WTDRP (%ref (' TEXT FROM DEFAULT FONT'), ll)

C Create a new font of special characters :
C Each cell 9 X 9 pixels, 6 cells in all

CALL VVTIFT (FONTID, 9, 9, 6)
CALL VVTSFT (FONTID) I Point at new font
CALL VVTLDC (STAR)
CALL WTLDC (INFINI)
CALL WTLDC (ARROW)
CALL VVTLDC (BB)
CALL WTLDC (MAN)
CALL WTLDC (FEMALE)
CALL WBPMD (0) ! Set array mode (off)

C Now output each cell as text - magnify X 6 first

CALL WTMAG (1, 6, 6) Cell magnification X 6
CALL WDMOV (20, 240) Move abs
CALL VVGFCL (2) I Foreground color red
CALL WTMOV (2,0) Cell movement X+2
CALL WTDRC (1,2,3,4,5,6) I Output the six cells
CALL WTSFT ('10FF'X) I Point back at default font
CALL WDMOV (20, 140) I Move abs
CALL VVGFCL (5) Foreground color blue
CALL WTMAG (1, 1, 2) Cell magnification default
CALL VVTMOV (0,0) Cell movement default
CALL VVBPMD (1) ! Set array mode (for text)
CALL VVTDRP (%ref('BACK TO DEFAULT FONT'), 10)
CALL VVBEND () End segment

Execute segment CALL WEEXE (LUN,SEGID,32000)
CALL VVRSTA (LUN, ICNTRL, IDUM)
RETURN

! Check execute completion status

END

C Error handling.
C Routine prints function and error code.

SUBROUTINE SRERR (ISRNAM, ISTAT)

CHARACTER*S
INTEGER*2

ISRNAM
ISTAT

1000 FORMAT (/,' **** Failed: routine', as,
1 Status = " 17, '****' /)

WRITE (5, 1000) ISRNAM, ISTAT
STOP
END

Handle errors

This example illustrates the use of the graphics transformation instructions, their
interaction, and their effect upon the display output.

Program Name: TRANSEFOR

5-13

GETTING STARTED WITH VSL

5-14

PROGRAM TRANSF

C A simple example to illustrate all transformations performed
C upon an image in VAS.

C Program sets up a main picture of 8 colored rectangles numbered 1-8.
C These are large enough to take up most of the display and so
C subsequent transformations are easy to discern. Program flow is
C controlled by the pointing device switches. The top-level picture is
C always returned to after each transformation example, user is then
C requested to press the switch to observe the next transformation.

C
C IMPORTANT. This test requires Pointing Device input.
C

C

C To compile and link the program
C

C VMS -
C FOR/NOOP TRANSF
CLINK TRANSF,SYS$LIBRARY:VSLLIB/LIB
C

C RSX -
C F77 TRANSF,TRANSF/-SP=TRANSF
C TKB TRANSF,TRANSF/-SP=TRANSF
C TKB LB: [l,l]VSLLIB/LB
C TKB LB: [1,1]F4POTS/LB
C TKB I
C TKB VSECT=VV21DA:160000:20000
C TKB WNDWS=l
C TKB MAXBUF=512
C TKB II

IMPLICIT INTEGER*4 (V)

INTEGER*4
INTEGER*2

DRAWIT
ISTAT,LUN

C Initialize VIVID processing.
C Set up the display area to be 4096 bytes long,
C maximum segments to be 10.

ISTAT = VVXINI (6000, 10)

IF (ISTAT .NE. 1) CALL SRERR ('VVXINI

C Assign VSV21 device for VSL processing.

ISTAT) Check status

C First, set up a logical unit number for all subsequent device access.

LUN = 1

ISTAT VVXASS (0, LUN, 1024)

IF (ISTAT .NE. 1) CALL SRERR ('VVXASS ISTAT)

C Create a VIVID instruction segment.

ISTAT = VVMCRS (LUN, '201'X, 1000)

IF (ISTAT .NE. 1) CALL SRERR ('VVMCRS1 " ISTAT)

ISTAT = VVMCRS (LUN, '301'X, 3000)

IF (ISTAT .NE. 1) CALL SRERR ('VVMCRS1' ISTAT)

I Check status

Check status

I Check status

C Call subroutine to build up the display segment and output the picture
C Supply logical unit number and segment ID.

ISTAT = DRAWIT (LUN, '201'X)

IF (ISTAT .NE. 1) CALL SRERR ('DRAWIT' ISTAT) Check status

C Release VSV21 device from VSL processing.

ISTAT = VVXREL (LUN)

GETTING STARTED WITH VSL

IF (ISTAT .NE. 1) CALL SRERR ('VVXREL ISTAT) I Check status

C Release VSV21 processor and free the VSV21 buffers.

ISTAT = VVXEND ()

IF (ISTAT .NE. 1) CALL SRERR ('VVXREL

STOP

ISTAT) I Check status

END

C Set up picture in VAS and perform transformations on it.

INTEGER*4 FUNCTION DRAWIT (LUN, SEGID)

INTEGER*2 LUN,SEGID,ISTAT

CALL
CALL

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CALL
CALL
CALL
CALL
CALL
CAL;L
CALL
CALL

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

VVBBGN (SEGID)
VVGMOD (1,0)

VVGFCL (4)
VVDMOV (40,240)
VVBMOD (1)
VVFRCT (140,200)
VVDMOV (50,80)
VVTMAG (1,6,6)
VVGFCL (14)
VVTDRC (49)

VVBMOD (0)
VVDMOV (180,240)
VVBMOD (1)
VVFRCT (140,200)
VVDMOV (50,80)
VVTMAG (1,6,6)
VVGFCL (4)
VVTDRC (50)

VVGFCL (5)
VVBMOD (0)
VVDMOV (320,240)
VVBMOD (1)
VVFRCT (140,200)
VVDMOV (50,80)
VVTMAG (1,6,6)
VVGFCL (12)
VVTDRC (51)

VVBMOD (0)
VVDMOV (460,240)
VVBMOD (1)
VVFRCT (140,200)
VVDMOV (50,80)
VVTMAG (1,6,6)
VVGFCL (5)
VVTDRC (52)

VVGFCL (15)
VVBMOD (0)
VVDMOV (40,40)
VVBMOD (1)
VVFRCT (140,200)
VVDMOV (50,80)
VVTMAG (1,6,6)
VVGFCL (11)
VVTDRC (53)

start of segment
drawing mode - foreground only

foreground color dark green
I move abs

relative mode
I filled rect
I move reI
I call mag x6
I foreground color yellow
I draw 1

absolute mode
move abs
relative mode
filled rect
move reI
call mag x6
foreground color dark green
draw 2

foreground color blue
absolute mode
move abs
relative mode

I filled rect
move reI
call mag x6
foreground color light green
draw 3

I absolute mode
move abs
relative mode
filled rect
move reI
call mag x6

I foreground color blue
I draw 4

foreground color white
absolute mode
move abs

I relative mode
I filled rect

move reI
I call mag x6
I foreground color pink

draw 5

5-15

GETTING STARTED WITH VSL

5-16

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CALL

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

VVBMOD (0)
VVDMOV (180,40)
VVBMOD (1)
VVFRCT (140,200)
VVDMOV (50,80)
VVTMAG (1,6,6)
VVGFCL (15)
VVTDRC (54)

VVGFCL (13)
VVBMOD (0)
VVDMOV (320,40)
VVBMOD (1)
VVFRCT (140,200)
VVDMOV (50,80)
VVTMAG (1,6,6)
VVGFCL (2)
VVTDRC (55)

VVBMOD (0)
VVDMOV (460,40)
VVBMOD (1)
VVFRCT (140,200)
VVDMOV (50,80)
VVTMAG (1,6,6)
VVGFCL (13)
VVTDRC (56)

VVBEND ()

I absolute mode
move abs
relative mode
filled rect
move reI
call mag x6
foreground color white

I draw 6

foreground color pale blue
absolute mode
move abs

I relative mode
! filled rect

move reI
! call mag x6

foreground color red
I draw 7

absolute mode
I move abs
I relative mode
I filled rect

move reI
cell mag x6

I foreground color light blue
I draw 8

end of segment

VVBBGN ('301'X) ! start of segment
VVCINI (-1) I init all
VVISWE (7) ! enable switches
TOPPIC (SEGID,'PRESS SWITCH: SET WINDOW 440,340',1)
VVVWND (0,0,440,340) I set window
VVACLS (0) ! clear screen black
VVCCAL (SEGID) ! redraw pic
TOPPIC (SEGID,'PRESS SWITCH: SET WINDOW 1000,1000' ,0)
VVVWND (0,0,1000,1000) I set window
VVACLS (0) I clear screen black

CALL VVCCAL (SEGID) ! redraw pic
CALL TOPPIC (SEGID,'PRESS SWITCH: SET VIEWPORT ',0)
CALL VVVSVU (10,360,120,120) ! set viewport
CALL VVACLS (0) clear screen black
CALL VVCCAL (SEGID) redraw pic
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

VVVSVU (150,360,120,120)
VVCCAL (SEGID)
VVVSVU (290,360,120,120)
VVCCAL (SEGID)
VVVSVU (430,360,120,120)
VVCCAL (SEGID)
VVVSVU (10,220,120,120)
VVCCAL (SEGID)
VVVSVU (150,220,120,120)
VVCCAL (SEGID)
VVVSVU (290,220,120,120)
VVCCAL (SEGID)
VVVSVU (430,220,120,120)
VVCCAL (SEGID)
VVVSVU (10,80,120,120)
VVCCAL (SEGID)
VVVSVU (150,80,120,120)
VVCCAL (SEGID)
VVVSVU (290,80,120,120)
VVCCAL (SEGID)
VVVSVU (430,80,120,120)
VVCCAL (SEGID)

! set viewport
redraw pic
set viewport
redraw pic

I set viewport
I redraw pic
I set viewport
! redraw pic

set viewport
redraw pic
set viewport
redraw pic
set viewport
redraw pic
set viewport
redraw pic
set viewport
redraw pic
set viewport
redraw pic
set viewport
redraw pic

GETTING STARTED WITH VSL

CALL
CALL
CALL
CALL
CALL
CALL

TOPPIC
VVACLS
VVVWOR
VVCCAL
VVVWOR
VVCCAL

(SEGID,' SWITCH:
(0)

(300,200)
(SEGID)
(-300,-200)
(SEGID)

WINDOW ORIGIN +-300, +-200',0)
clear screen black
window origin

I redraw pic
window origin
redraw pic

CALL
CALL
CALL
CALL
CALL

TOPPIC
VVACLS
VVVSVU
VVVZMF
VVCCAL

(SEGID,'PRESS SWITCH:SET VIEWPORT AND ZOOM' ,0)
(0)

(170,170,190,190)
(90,90)
(SEGID)

! clear screen black
I set viewport
I zoom factor

redraw pic

CALL TOPPIC (SEGID,'SWITCH: TRANSFORMATIONS ON/OFF/ON' ,0)
CALL VVACLS (0) I clear screen black
CALL VVVDRT (-10,-10)
CALL VVVDRM ('200'X,'200'X)
CALL VVCCAL (SEGID)
CALL VVCDWT (180)
CALL VVACLS (0)
CALL VVVVAS ()
CALL VVCCAL (SEGID)
CALL VVCDWT (180)
CALL VVACLS (0)
CALL VVVTRN ()
CALL VVCCAL (SEGID)

I drawing translation
I drawing mag x2

redraw pic
I wait 3 secs
I clear screen black
! drawing VAS
I redraw pic

wait 3 secs
I clear screen black

drawing transform
redraw pic

CALL TOPPIC (SEGID,'PRESS SWITCH: SCROLL VIEWPORT ',0)
CALL VVVSVU (0, 38, 640, 442) set viewport - don't scroll text
CALL VVCREP (50) scroll 50 times
CALL VVASCV (10,10) ! scroll viewport
CALL VVCERP () end repeat
CALL VVVSVU () ! reset viewport

CALL TOPPIC (SEGID, 'END OF TRANSFORMATIONS TESTING ',2)

CALL
CALL

CALL
CALL

RETURN
END

VVISWD ()
VVBEND ()

VVEEXE (LUN,'301'X,32000)
VVRSTA (LUN, DRAWIT, IDUM)

I disable switch reports
I end of segment

I execute segment
! get execute status

C Error handling.
C Routine prints function and error code.

1000

SUBROUTINE SRERR (ISRNAM, ISTAT)

CHARACTER*8
INTEGER*2

ISRNAM
ISTAT

FORMAT
1

(/, ' **** Failed: routine', a8,
Status = " 17, '****' /)

WRITE (5, 1000) ISRNAM, ISTAT
STOP
END

Handle errors

SUBROUTINE TOPPIC (SEGID,TEX,KEY) I Display top level picture

INTEGER*2
CHARACTER*34

SEGID, KEY
TEX

5-17

5.5.5

GETTING STARTED WITH VSL

Keyboard Input

5-18

init all CALL VVCINI ('FDFF'X)
CALL VVGFCL (14)
CALL VVBMOD (0)

foreground color yellow
absolute mode

CALL VVDMOV (60,10)
CALL VVBPMD (1)
CALL VVTMAG (1,2,2)
IF (KEY .NE. 1) THEN

move abs
array list
cell mag x2

CALL VVTDRP (%ref('PRESS
CALL VVIWSW (7)

SWITCH: BACK TO MAIN PICTURE'),17)
wait on switch

ENDIF
CALL VVACLS (0)
CALL VVDMOV (60,10)
CALL VVTDRP (%ref(TEX),17)
CALL VVTMAG (1,1,2)
CALL VVBPMD (0)
CALL VVCCAL (SEGID)
IF (KEY .NE. 2) THEN

CALL VVIWSW (7)
ENDIF

RETURN

END

clear screen black
move abs

cell mag reset
not array list
redraw pic

wait on switch

This example illustrates the use of the VSL keyboard input routines.

Program Name: KEYIN.FOR

PROGRAM KEYIN

C Test program takes graphics keyboard input and echoes it to the
C screen. Characters are entered up to a termination character'!' or a
C maximum of 20. Keyboard segment is then interrogated and the number of
C characters typed is displayed as a message.
C
C To compile and link the program :-
C

C VMS -
C FOR/NOOP KEYIN
CLINK KEYIN,SYS$LIBRARY:VSLLIB/LIB.
C
C
C

C
C
C
C

C
C
C

C
C

C

RSX -
F77 KEYIN,KEYIN/-SP=KEYIN
TKB KEYIN,KEYIN/-SP=KEYIN
TKB LB: [l,l]VSLLIB/LB
TKB LB: [1,1]F4POTS/LB
TKB /
TKB VSECT=VV21DA:160000:20000
TKB WNDWS=l
TKB MAXBUF=512
TKB II

IMPLICIT INTEGER*4 (V)

INTEGER*4
INTEGER*2

DRAWIT
ISTAT, LUN, SEGID, KEYID

DATA SEGID / '020l'X /
DATA KEYID / '0477'X /

Instruction segment ID
! Keyboard input segment ID

C Initialize VIVID processing.
C Set up the display area to be 4096 bytes long,
C maximum segments to be 10.

ISTAT = VVXINI (4096, 10)

IF (ISTAT .NE. 1) CALL SRERR ('VVXINI ISTAT) Check status

GETTING STARTED WITH VSL

C Assign VSV21 device for VSL processing.
C First, set up a logical unit number for all subsequent device access.

LUN = 1

C Device physical unit 0 will assign to device VVAO:
C 1 will assign to device VVBO:
C 2 will assign to device VVCO: etc.
C Third parameter 1024 sets up a report segment of that size,
C default segment ID Hex 2001.

ISTAT = VVXASS (0, LUN, 1024)

IF (ISTAT .NE. 1) CALL SRERR ('VVXASS , ISTAT) I Check status

C Create a VIVID instruction segment, length 400 bytes.

ISTAT = VVMCRS (LUN, SEGID, 400)

IF (ISTAT .NE. 1) CALL SRERR ('VVMCRS1' ISTAT) I Check status

C Create a Keyboard Input segment, length 400 bytes.

ISTAT = VVMCRS (LUN, KEYID, 400)

IF (ISTAT .NE. 1) CALL SRERR ('VVMCRS2' ISTAT) I Check status

C Call subroutine to build up the display segment and output the picture
C Supply logical unit number and segment ID.

ISTAT = DRAWIT (LUN, SEGID, KEYID)

IF (ISTAT .NE. 1) CALL SRERR ('DRAWIT' ISTAT) I Check status

C Release VSV21 device from VSL processing.

ISTAT = VVXREL (LUN)

IF (ISTAT .NE. 1) CALL SRERR ('VVXREL ISTAT) I Check status

C Release VSV21 processor and free the VSV21 buffers.

C

ISTAT = VVXEND ()

IF (ISTAT .NE. 1) CALL SRERR ('VVXREL

CALL EXIT

END

, ISTAT) ! Check status

C Initialise graphics and print message "ENTER MESSAGE NOW"
C

INTEGER*4 FUNCTION DRAWIT (LUN, SEGID, KEYID)

INTEGER*2
BYTE
CHARACTER*2

LUN,SEGID,KEYID,ISTAT,COUNT
CHARIN (20)
NUMBERS (20)

DATA NUMBERS /
1

'01',' 02',' 03' I' 04',' 05',' 06',' 07' I f 08' I f 09' 1'10' I

, 11',' 12',' 13',' 14',' 15',' 16',' 17',' 18', '19',' 20' /

CALL VVBBGN (SEGID) I start of segment
CALL VVCINI (-1) I initialise all
CALL VVACLS (0) I clear screen
CALL VVGMOD (1,0) drawing mode - foreground only
CALL VVGFCL (14) I foreground color yellow
CALL VVDMOV (36,240) move abs
CALL VVVDRM (768,768) I drawing mag 3x
CALL VVBPMD (1) I set param mode for arrays
CALL VVTDRP (%REF (' ENTER MESSAGE NOW ') , 9)

CALL VVBPMD (0) I reset param mode
CALL VVVDRM () drawing mag reset
CALL VVDMOV (36,100)

5-19

GETTING STARTED WITH VSL

5-20

C

C Now get keyboard input
C

CALL
CALL
CALL

VVGFCL (2)
VVIAKI(KEYID,33,20,62,2,15)
VVBEND ()

foreground color red
! Cursor = 'red >'

C Now execute the display list

C

CALL
CALL

VVEEXE (LUN,SEGID,32000) ! execute segment
VVRSTA (LUN, DRAWIT, IDUM) ! get execute status

C Interrogate the keyboard input segment and count the number of characters.
C Then formulate a text message in the instruction segment and execute it.
C

C First get keyboard input segment chars into the array

CALL VVRKBD (KEYID,CHARIN,20, IDAT,ISTAT)

C Now start building an instruction segment

CALL VVBBGN (SEGID)
CALL VVCINI (-1)
CALL VVGMOD (1,0)
CALL VVGFCL (14)

COUNT = 0

DO 100 1=1,20,1
IF (CHARIN(I) .EQ. 0) THEN

GOTO 200
ENDIF
COUNT = COUNT+1

start of segment
initialise all
drawing mode - foreground only
foreground color yellow

initialise character counter

step through keyboard input segment
test for NULL

increment count
100 CONTINUE

200 CALL VVDMOV (36,50)
CALL VVBPMD (1) ! set param mode for arrays
CALL VVTDRP (%REF('NUMBER OF CHARACTERS INPUT: '),15)
CALL VVGFCL (13) ! foreground color pale blue
IF (COUNT .EQ. 0) THEN

CALL VVTDRP (%REF('OO'),l)
ELSE

CALL VVTDRP (%REF(NUMBERS(COUNT)),l)
ENDIF
CALL VVBPMD (0) ! reset param mode

C Now execute the display list

CALL VVEEXE (LUN, SEGID, 32000) ! execute segment
CALL VVRSTA (LUN, DRAWIT, IDUM) ! get execute status

RETURN
END

C Error handling.
C Routine prints function and error code.

1000

SUBROUTINE SRERR (ISRNAM, ISTAT)

CHARACTER*8
INTEGER*2

ISRNAM
ISTAT

FORMAT
1

(/, , **** Failed: routine " a8,
Status = " 17, , ****, /)

WRITE (5, 1000) ISRNAM, ISTAT
STOP
END

Handle errors

5.5.6 Area Operations

GETTING STARTED WITH VSL

This example illustrates the use of the Area Operations instructions. The program
prints a header underlined three times with dotted lines, then draws a striped circle.
Part of the circle area is read to a pixel segment and then the segment is displayed
using FAST]IXEL_ WRITE, PIXEL_WRITE and FAST]IXEL_MODIFY. Finally
a comer of the circle area is redisplayed using the COPY instruction.

Program Name: AREA.FOR

PROGRAM AREA
C

C This example shows the use of the Area Operation Instructions.
C Full error handling is included.
C

C To compile and link the program :-
C
C VMS -
C FOR/NOOP AREA
CLINK AREA,SYS$LIBRARY:VSLLIB/LIB
C
C RSX -
C F77 AREA,AREA/-sP~AREA
C TKB AREA,AREA/-SP~AREA
C TKB LB: [l,l]VSLLIB/LB
C TKB LB: [1,1]F4POTS/LB
C TKB I
C TKB VSECT~VV21DA:160000:20000
C TKB WNDWS~l
C TKB MAXBUF~512
C TKB II

IMPLICIT INTEGER*4 (V)

INTEGER*4
INTEGER*2

DRAWIT
ISTAT,LUN,SEGID,PIXID

DATA SEGID I '201'X /
DATA PIXID I '401'X I

C Initialize VIVID processing.

Instruction segment ID
! Pixel Data segment ID

C Set up the display area to be 8192 bytes long,
C maximum segments to be 10.

ISTAT ~ VVXINI (8192, 10)

IF (ISTAT .NE. 1) CALL SRERR ('VVXINI , ISTAT) Check status

C Assign VSV21 device for VSL processing.
C First, se't up a logical unit number for all subsequent device access.

LUN ~ 1

C Device physical unit 0 will assign to device VVAO:
G 1 will assign to device VVBO:
C 2 will assign to device VVCO: etc.
C Third parameter 1024 sets up a report segment of that size,
C default segment ID Hex 2001.

ISTAT ~ VVXASS (0, LUN, 1024)

IF (ISTAT .NE. 1) CALL SRERR ('VVXASS ISTAT) Check status

C Create a VIVID instruction segment of length 1000 bytes

ISTAT ~ VVMCRS (LUN, SEGID, 1000)

IF (ISTAT .NE. 1) CALL SRERR ('VVMCRS1' ISTAT) Check status

C Create a Pixel Data segment of length 2000 bytes

5-21

GETTING STARTED WITH VSL

5-22

ISTAT = VVMCRS (LUN, PIXID, 2000)

IF (ISTAT .NE. 1) CALL SRERR ('VVMCRS2' ISTAT) ! Check status

C Call subroutine to build up the display segment and perform Area
C operations
C Supply logical unit number and segment IDs.

ISTAT = DRAWIT (LUN, SEGID, PIXID)

IF (ISTAT .NE. 1) CALL SRERR ('DRAWIT ISTAT) Check status

C Release VSV21 device from VSL processing.

ISTAT = VVXREL (LUN)

IF (ISTAT .NE. 1) CALL SRERR ('VVXREL ISTAT) Check status

C Release VSV21 processor and free the VSV21 buffers.

ISTAT = VVXEND ()

IF (ISTAT .NE. 1) CALL SRERR ('VVXREL

STOP

ISTAT) Check status

END

C Control routine to draw initial picture and set up Area operations

INTEGER*4 FUNCTION DRAWIT (LUN, SEGID, PIXID)

INTEGER*2 LUN, SEGID, PIXID, ISTAT

CALL VVBBGN (SEGID) start of segment
CALL VVCINI (-1) initialise all
CALL VVACLS (' FFFF' X) clear screen to white
CALL VVGMOD (1,0) drawing mode - foreground only
CALL VVGFCL (2) foreground color red
CALL VVGBCL (15) background color white
CALL VVDMOV (10,420) move abs
CALL 'JVTMAG (1,2,2) cell mag 2x
CALL VVBPMD (1) set param mode for arrays
CALL VVTDRP (%REF('V S V 2 1 ARE A OPE RAT ION S ,) ,20)
CALL VVBPMD (0) reset param mode
CALL VVTMAG (1,1,2) reset cell mag
CALL VVGLTX (16, , 5555' X) line texture dotted
CALL VVDMOV (0,410) move abs
CALL VVDLIN (640,410) dotted line
CALL VVDMOV (0,400) move abs
CALL VVDLIN (640,400) dotted line
CALL VVDMOV (0,390) move abs
CALL VVDLIN (640,390) dotted line
CALL VVDMOV (320,240) move abs to center
CALL VVGFCL (5) foreground color blue
CALL VVGLTX (16, 'FFFF'X) line texture reset
CALL VVDCRC (100) circle

C
C use AREA TEXTURE to set up a pattern of stripes
C

CALL
1
2
CALL
CALL
CALL
CALL

VVGATX (16, 'FFOO'X, 'FFOO'X, 'FFOO'X, 'FFOO'X, 'FFOO'X, 'FFOO'X
'FFOO'X, 'FFOO'X, 'FFOO'X, 'FFOO'X, 'FFOO'X, 'FFOO'X,
'FFOO'X, 'FFOO'X, 'FFOO'X, 'FFOO'X)

VVCSAV () save current attributes
VVGBCL (13) background color pale blue
VVFFLD (5) flood within circle
VVCRES (4) restore current colors

C Now PIXEL READ BACK part of the circled area into the pixel data segment.
C Then
C 1) Write it back with FAST PIXEL WRITE
C 2) Write it back with PIXEL WRITE
C 3) FAST PIXEL MODIFY the segment
C 4) COpy part of the circle area

GETTING STARTED WITH VSL

(300,200)
(PIXID,12,48)
(0)
(1)

(236,346)

move abs within circle
read back 48x48 pixels
foreground color black
set param mode for arrays
move abs

READ BACK AREA '),10) (%REF (' PIXEL
(544,340)
(%REF('FAST'),2)
(544,320)
(%REF('PIXEL '),3)
(544,300)
(%REF('WRITE '),3)
(0)

move abs

move abs

move abs

reset param mode

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

WDMOV
WAPXR
WGFCL
WBPMD
WDMOV
WTDRP
WDMOV
WTDRP
WDMOV
WTDRP
WDMOV
VVTDRP
WBPMD
WDMOV
WAFPR
WDMOV
WAPXW
WBPMD
WDMOV
WTDRP
VVDMOV
WTDRP
WBPMD
WDMOV
WAFPM
WBPMD
WDMOV
WTDRP
WDMOV
WTDRP
WDMOV
WTDRP
WDMOV
WTDRP
WBPMD
WDMOV

(544,184)
(PIXID)
(38,184)
(PIXID)

move abs (pixel word boundary)
fast pixel write of saved square
move abs (not pixel word boundary)
pixel write square

(1)
(38,320)
(%REF('PIXEL '),3)
(38,300)
(%REF('WRITE '),3)
(0)

set param mode for arrays
move abs

C

(98,10)
(PIXID,O,'FF'X)
(1)
(38,58)
(%REF (' FAST'), 2)
(38,38)
(%REF('PIXEL '),3)
(38,18)
(%REF('MODIFY'),3)
(320,58)
(%REF (' COpy') ,2)
(0)

(380,10)

move abs

reset param mode
move abs
fast pixel modify
set param mode for
move abs

move abs

move abs

move abs

reset param mode
move abs

C Copy a slice of the circle and display it
C

CALL WACPY (0,340,230,100,100)! copyabs
CALL VVBEND () end of segment

C Now execute the segment

CALL WEEXE (LUN,SEGID,32000) ! execute segment
CALL WRSTA (LUN, DRAWIT, IDUM) ! get execute status

RETURN
END

C Error handling.
C Routine prints function and error code.

arrays

SUBROUTINE SRERR (ISRNAM, ISTAT) Handle errors

CHARACTER*8
INTEGER*2

ISRNAM
ISTAT

1000 FORMAT (/,' **** Failed: routine', a8,
1 Status = " 17, , ****, /)

WRITE (5, 1000) ISRNAM, ISTAT
STOP
END

5-23

5.5.7

GETTING STARTED WITH VSL

General VSL Calls

5-24

This example demonstrates some of the VSL routine calls that have not been used in
the previous examples. The program sets up a display of dark blue faces drawn with
arcs and ellipses against a pale blue background. Some colors are blinked and then
the user is able to use the pointing device to position the cursor across the picture
and paint sections red. Program creates an Attributes segment in VSV21 memory
and dumps and recovers text attributes.. Before-and-after cell parameters reports are
displayed on the console.

Program Name: THINGS.FOR

PROGRAM THINGS

C This program contains various VSL routine calls not specifically
C covered in the previous examples. It is thus by nature a "hotch potch"
C of drawing, reporting, blinking, cursor movement etc. activities.
C Full error handling is included.
C

C To compile and link the program :
C

C VMS -
C FOR/NOOP THINGS
CLINK THINGS,SYS$LIBRARY:VSLLIB/LIB
C
C
C
C
C

C
C

C

C
C

C

RSX -
F77 THINGS,THINGS/-SP=THINGS
TKB THINGS,THINGS/-SP=THINGS
TKB LB: [l,l]VSLLIB/LB
TKB LB: [1,1]F4POTS/LB
TKB I
TKB VSECT=VV21DA:160000:20000
TKB WNDWS=l
TKB MAXBUF=512
TKB II

IMPLICIT INTEGER*4 (V)

INTEGER*4
INTEGER*2

DRAW IT
ISTAT,LUN

C Initialize VIVID processing.
C Set up the display area to be 8192 bytes long,
C maximum segments to be 10.

ISTAT = VVXINI (8192, 10)

IF (ISTAT .NE. 1) CALL SRERR ('VVXINI

C Assign VSV21 device for VSL processing.

, ISTAT) Check status

C First, set up a logical unit number for all subsequent device access.

LUN = 1

C Device physical unit 0 will assign to device VVAO:
C 1 will assign to device VVBO:
C 2 will assign to device VVCO: etc.
C Third parameter 2048 sets up a report segment of that size,
C default segment ID Hex 2001.

ISTAT = VVXASS (0, LUN, 2048)

IF (ISTAT .NE. 1) CALL SRERR ('VVXASS ISTAT) Check status

C Create a VIVID instruction segment of length 1000 bytes

ISTAT = VVMCRS (LUN, '201'X, 1000)

IF (ISTAT .NE. 1) CALL SRERR ('VVMCRS ISTAT) Check status

GETTING STARTED WITH VSL

C Call subroutine to build up the display segment and output the picture
C Supply logical unit number and segment 1D.

ISTAT = DRAWIT (LUN, '201'X)

IF (ISTAT .NE. 1) CALL SRERR ('DRAW1T ISTAT) Check status

C Release VSV21 device from VSL processing.

ISTAT = VVXREL (LUN)

IF (ISTAT .NE. 1) CALL SRERR ('VVXREL , ISTAT) Check status

C Release VSV21 processor and free the VSV21 buffers.

ISTAT = VVXEND ()

IF (ISTAT .NE. 1) CALL SRERR ('VVXREL

STOP

END

ISTAT) Check status

C Main drawing routine

C

INTEGER*4 FUNCTION DRAWIT (LUN, SEGID)

INTEGER*4 IREP, VVRREP
INTEGER*2 LUN,SEGID,ISTAT,IARR,ATTID,I
DIMENSION IARR(20)
DATA ATTID I '10A'X I Attribute Segment ID

CALL VVBBGN (SEGID)
CALL VVCINI (-1)

start of segment
initialise all

C Set up normal colors
C

CALL
1
2
3
4
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

'OOF'X, 2, 'FOO'X, 3, 'FOF'X,
'05F'X, 6, 'F50'X, 7, 'FOO'X,
'OAF'X, 10, 'FAO'X,
'FAF'X, 13, 'OFF'X, 14, 'FFO'X,

VVGNLC (0, 'OOO'X, 1,
4, '050'X, 5,
8, 'OAO' X, 9,

11, 'FAF'X, 12,
15, 'FFF' X)

VVACLS ('DDDD'X)
VVGMOD (1,0) .
VVCCRS (ATTID,512)
VVCDMP (ATTID)
VVGFCL (2)

clear screen to pale blue
drawing mode - foreground only
create attribute dump segment
dump attributes

VVDMOV (25,26)
VVBMOD (1)
VVCREP (100)
VVDDOT ()
VVDMOV (6,0)
VVCERP ()
VVBMOD (0)
VVDMOV (25,30)
VVTMAG (1,3,3)
VVTOBL (1)

foreground color red
move abs
relative mode
display repeat
draw a dot
move reI
end repeat
absolute mode
move abs
cell mag 3x
cell oblique

VVTSIZ (16,16,2,0) cell size
VVBPMD (1) set param mode for arrays
VVTDRP (%REF('VSV21 THINGS'),6)
VVBPMD (0) reset param mode
VVTMAG (1,1,2) cell mag reset
VVTOBL (0) cell not oblique
VVDMOV (25,20) move abs
VVBMOD (1) relative mode
VVCREP (4) display repeat
VVDPMK (%REF('*'),20,0,20,0,20,0,20,0,20,0,20,0,20,O)
VVCERP () end repeat
VVBMOD (0) absolute mode
VVGFCL (5) foreground color blue
VVDMOV (296,440) move abs
VVGSCB (1) screen blank (drawing has priority)

5-25

GETTING STARTED WITH VSl

5-26

c
C Draw arcs clockwise (first circle)
C

C

CALL VVDARC (1,320,440,344,440,1,320,440,296,440)
CALL VVDMOV (264,416)

C Draw arcs clockwise (second circle)
C

CALL VVDARC (0,288,416,312,416,0,288,416,264,416)
CALL VVDMOV (328,416) ! move abs

C
C Draw arcs clockwise (third circle)
C

CALL VVDARC (1,352,416,376,416,1,352,416,328,416)
CALL VVDMOV (416,416) ! move abs

C
C Draw ellipse arcs clockwise
C

C

CALL
CALL
CALL
CALL
CALL
CALL

VVDEAR (1,4,2,480,416,544,416,1,4,2,480,416,416,416)
VVDMOV (420,410) move abs
VVGFCL (14) foreground color yellow
VVFPNT (i3) paint
VVGFCL (5) foreground color blue
VVDMOV (96,416) move abs

C Draw ellipse arcs anticlockwise
C

CALL VVDEAR (0,2,1,160,416,224,416,0,2,1,160,416,96,416)
CALL VVDMOV (100,410) move abs
CALL VVGFCL (14) foreground color yellow
CALL VVFPNT (13) paint
CALL VVGFCL (5) foreground color blue
CALL VVDMOV (84,224) move abs
CALL VVCREP (4) display repeat 4

C
C draw a face
C

C

C

CALL VVDELL (1,4,32) ellipse
CALL VVDELL (2,3,5) ellipse
CALL VVBMOD (1) relative mode
CALL VVDMOV (24,48) move rel
CALL VVDCRC (2) circle
CALL VVDELL (4,1,24) ellipse
CALL VVDMOV ('FFDO'X,O) move rel
CALL VVDMOV (0,2) move rel
CALL VVDARC (l,O,'FFFE'X,O,'FFFC'X) ! arcs
CALL VVDARC (1,0,2,0,4) arcs
CALL VVDMOV (O,'FFFE'X) move rel
CALL VVDELL (4,1,24) ellipse
CALL VVDMOV (24,'FFDO'X) move re1
CALL VVDMOV (16,'FFEO'X) move rel
CALL VVDEAR (1,1,2,'FFFO'X,32,'FFEO'X,0,0,1,1,16,32,32,0)

e1lip arcs
CALL VVDMOV ('FFFO'X,32)

CALL VVDMOV (152,0)
CALL VVCERP ()
CALL VVGSCB (0)

(display has priority)
CALL VVBMOD (0)

move rel

move rel
display end repeat
screen blank

back to absolute mode

C Now blink the yellow and pink
C

CALL VVGBLC (1,14,'FOF'X,2,14,'FOF'X)! blink yellow with pink
CALL VVGBCT (2) blink count 2
CALL VVGBLT (48,24) blink timings
CALL VVGBLK (1) blink enable
CALL VVTROT (2) cell rotate 90 degrees
CALL VVTMAG (1,3,3) cell mag 3x
CALL VVDMOV (32,112) move abs

GETTING STARTED WITH VSL

CALL VVGFCL (2) foreground color red
CALL VVBPMD (1) I array mode
CALL VVTDRP (%REF (' VSV21 '),3)
CALL VVTROT (6) I cell rotate 270 degrees
CALL VVDMOV (600,340) move abs
CALL VVTDRP (%REF (, VSV21 ') , 3)

C
C Use the cursor to paint parts of the picture red
C

CALL WQREP (2) I request report cell prams BEFORE
CALL VVCRCV (ATTID,64) recover default text attributes
CALL VVQREP (2) request report cell prams AFTER
CALL VVDMOV (10,360) I move abs
CALL VVTDRP (%REF (' SWITCH 1/2:PAINT WITH CURSOR,SWITCH
CALL VVBPMD (0) I array mode off
CALL VVICUS (1) make cursor visible
CALL VVISWE (7) enable switches
CALL VVIWSW (7) I wait on a switch
CALL VVCSTP () stop display
CALL VVBEND () end of segment

C Now execute the segment

100 CALL VVEEXE (LUN, SEGID, 32000) ! execute segment
CALL WRSTA (LUN, DRAWIT, IDUM) I get execute status

4:EXIT'),21)

IF (DRAWIT .NE. 1) CALL SRERR ('DRAWIT " ISTAT) Check status
C
C Read Cell Parameters Reports.
C
105 IREP = VVRREP (LUN,2,IARR,20)

IF (IREP .EQ. 1) THEN
PRINT *,'Cell Report :'
PRINT *,' ',IARR (3) " ',IARR (4) " ',IARR (5) " ',IARR (6)
PRINT *,' ',IARR(7),' ',IARR(8),' ',IARR(9),' ',IARR(lO)
PRINT *,' ',IARR(ll),' ',IARR(12),' ',IARR(13),' ',IARR(14)
GOTO 105

C

ELSE IF (IREP .GE. 0) THEN
CALL SRERR ('VVRREP ',IREP)

ENDIF

C Read Switch Reports.
C

110 IREP = VVRREP (LUN,65,IARR,20)
IF (IREP .EQ. 1) THEN

C

IVALID = 1
GOTO 110

ELSE IF (IREP .GE. 0) THEN
CALL SRERR ('WRREP ',IREP)

ENDIF

C Read switch number - if logical 4 then exit
C

IF (IARR(5) .EQ. 4) THEN
GOTO 999

ENDIF

CALL VVBBGN (SEGID)
CALL VVDMTC ()

set up a small
I move to cursor

segment

CALL VVGFCL (2) ! foreground color red
CALL WFPNT (l3) paint it
CALL VVISWE (7) enable switches
CALL WIWSW (7) I wait on switch
CALL WBEND ()

GOTO 100

999 RETURN
END

C Error handling.
C Routine prints function and error code.

5-27

5.5.8

GETTING STARTED WITH VSL

SUBROUTINE SRERR (ISRNAM, ISTAT)

CHARACTER*8
INTEGER*2

ISRNAM
ISTAT

1000 FORMAT (/,' **** Failed: routine " a8,
1 Status ~ " 17, '****' /)

WRITE (5, 1000) ISRNAM, ISTAT
STOP
END

Handle errors

Match Interrupts/Cursor Style

5-28

This program demonstrates the use of the match enable/disable instructions and their
effects upon drawing output to the screen. It also includes an example of designing a
special cursor.

Program Name: MATCH.FOR

PROGRAM MATCH

C A demonstration of the VSL routines to enable/disable match interrupts.
C Program shows how drawing is disabled whilst match interrupts are enabled.
C Also shown are cursor style creation and rubber banding.
C Full error handling is included.
C
C To compile and link the program :
C
C VMS -
C FOR/NOOP MATCH
CLINK MATCH,SYS$LIBRARY:VSLLIB/LIB
C
C

C
C

C

C
C

C
C
C

C

RSX -
F77 MATCH,MATCH/-SP~MATCH
TKB MATCH,MATCH/-SP~MATCH
TKB LB: [1, l]VSLLIB/LB
TKB LB: [1,1]F4POTS/LB
TKB /
TKB VSECT=VV21DA:160000:20000
TKB WNDWS~l
TKB MAXBUF~512
TKB //

IMPLICIT INTEGER*4 (V)

INTEGER*4
INTEGER*2

DRAWIT
ISTAT,LUN

C Initialize VIVID processing.
C Set up the display area to be 4096 bytes long,
C maximum segments to be 10.

ISTAT = VVXINI (4096, 10)

IF (ISTAT .NE. 1) CALL SRERR ('VVXINI

C Assign VSV21 device for VSL processing.

ISTAT) I Check status

C First, set up a logical unit number for all subsequent device access.

LUN = 1

C Device physical unit 0 will assign to device VVAO:
C 1 will assign to device VVBO:
C 2 will assign to device VVCO: etc.
C Third parameter 1024 sets up a report segment of that size,
C default segment ID Hex 2001.

ISTAT ~ VVXASS (0, LUN, 1024)

GETTING STARTED WITH VSL

IF (ISTAT .NE. 1) CALL SRERR ('VVXASS ISTAT) I Check status

C Create a VIVID instruction segment of length 1000 bytes

ISTAT = VVMCRS (LUN, '201'X, 1000)

IF (ISTAT .NE. 1) CALL SRERR ('VVMCRS1 ' ISTAT) Check status

C Call subroutine to build up the display segment and output the p;cture
C Supply logical unit number and segment ID.

ISTAT = DRAWIT (LUN, '201'X)

IF (ISTAT .NE. 1) CALL SRERR ('DRAWIT ISTAT) I Check status

C Release VSV21 device from VSL processing.

ISTAT = VVXREL (LUN)

IF (ISTAT .NE. 1) CALL SRERR ('VVXREL ISTAT) I Check status

C Release VSV21 processor and free the VSV21 buffers.

ISTAT = VVXEND ()

IF (ISTAT .NE. 1) CALL SRERR ('VVXREL ISTAT) I Check status

STOP

END

C Draw a picture. Design a star cursor, then with rubber banding, locate
C a new current position on the cursor. Draw a line through the cursor
C and produce a match report. Disable matches and redraw the line. Then
C reenable matches, move the cursor, redraw and produce a second match
C report. At program exit, the two match report packets are printed on
C the console. The first and third lines will not be visible due to
C matches being enabled.

INTEGER*4 FUNCTION DRAWIT (LUN, SEGID)

INTEGER*4
INTEGER*2

IREP, VVRREP
LUN,SEGID,ISTAT,IARR(20),CSTYLE(20)

DATA CSTYLE / 16,0,0,'8~01'X,'4002'X,'2004'X,'1008'X,'810'X,

1 '420'X,'240'X,'FFFF'X,'FFFF'X,'240'X,'420'X,
2 '810'X,' 1008' X,' 2004' X,' 4002' X,' 8001' X,' 8000'X /

CALL VVBBGN (SEGID) ! start of segment
CALL VVCINI (-1) I initialise all
CALL VVACLS ('FFFF' X) clear screen to white
CALL VVGMOD (1,0) I drawing mode - foreground only
CALL VVGFCL (5) foreground color blue
CALL VVGBCL (15) background color white
CALL. VVBPMD (1) ! array mode
CALL VVICUS (CSTYLE) I create cursor ' *'
CALL VVICUS (1) I cursor visible
CALL VVDMOV (10,10) I move abs
CALL VVTDRP (%REF ('MOVE CURSOR THEN HIT A SWITCH ') ,15)
CALL VVIRUB (1) ! rubber band from current point
CALL VVISWE (7) I enable switch reports
CALL VVIWSW (7) wait on a switch
CALL VVDMOV (10,10) ! move abs
CALL VVASCL (0,'FFFF'X,'FFFF'X,630,20) ! selective clear

5-29

GETTING STARTED WITH VSL

5-30

CALL VVCDWT (180)
CALL VVDMTC ()

I wait 3 seconds
move to cursor

I enable matches
I non array mode
I relative mode

CALL VVIMTE (10)
CALL VVBPMD (0)
CALL VVBMOD (1)
CALL VVDLIN (60,60)
CALL VVIMTD ()

draw a line (get a match)
disable matches

CALL VVBMOD (0) absolute mode
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

VVDMOV (10,10) move abs
VVBPMD (1) array mode
VVTDRP (%REF('MOVE CURSOR THEN HIT A SWITCH '),15)
VVIWSW (7) ! wait on a switch
VVDMOV (10,10) ! move abs
VVASCL (0,'FFFF'X,'FFFF'X,630,20) I selective clear
VVCDWT (180) wait 3 seconds
VVDMTC () move to cursor
VVBMOD (1) relative mode
VVBPMD (0) non array mode
VVDLIN (60,60) I draw a line (no match)
VVBMOD (0) absolute mode
VVDMOV (10,10) I move abs
VVBPMD (1) array mode
VVTDRP (%REF('MOVE CURSOR THEN HIT A SWITCH '),15)
VVIWSW (7) I wait on a switch
VVDMOV (10,10) ! move abs
VVASCL (0,'FFFF'X,'FFFF'X,630,20) I selective clear
VVCDWT (180) I wait 3 seconds
VVDMTC () move to cursor
VVIMTE (10) enable matches
VVBMOD (1) ! relative mode
VVBPMD (0) I non array mode
VVDLIN (60,60) ! draw a line (second match)
VVCJMP (2) jump over the pale blue clear
VVACLS ('DDDD'X) clear screen to pale blue (don't)
VVIMTD () ! disable matches
VVBMOD (0) I absolute mode
VVDMOV (10,10) move abs
VVBPMD (1) I array mode
VVTDRP (%REF('END OF MATCH/CURSOR TESTING '),14)
VVBEND () I end of segment

C Now execute the segment

CALL
CALL

VVEEXE (LUN,SEGID,32000)
VVRSTA (LUN, DRAWIT, IDUM)

I execute segment
! get execute status

C

C Read Match Parameters Reports.
C

105 IREP = VVRREP (LUN,64,IARR,20)
IF (IREP .EQ. 1) THEN

PRINT *,'Match Report .,
PRINT *,' ',IARR (3) " ',IARR (4) " ',IARR (5)
PRINT *,' ',IARR(6),' ',IARR(7),' ',IARR(8)
GOTO 105

ELSE IF (IREP .GE. 0) THEN
CALL SRERR ('VVRREP , ,IREP)

ENDIF

RETURN
END

C Error handling.
C Routine prints function and error code.

1000

SUBROUTINE SRERR (ISRNAM, ISTAT)

CHARACTER*8
INTEGER*2

ISRNAM
ISTAT

FORMAT
1

(/, , **** Failed: routine', a8,
Status = " 17, , ****, /)

Handle errors

WRITE (5, 1000) ISRNAM, ISTAT
STOP
END

GETTING STARTED WITH VSL

5-31

Part IV Low Level Interface - VIVID Instruction Set
This section describes how to develop graphics applications with the VSV21,
and build pictures using the VIVID Instruction Set and OIOs.

6 VIVID I/O FUNCTIONS

The application program running on the host processor uses QIO calls to
communicate with the VSV2l device driver. The QIO calls described in this
chapter may be used to carry out the following operations:

Attach and detach the VSV21 device

Allocate and release display areas on the host

Define, delete, and load segments

Start, stop, and resume execution of segments

You can download segments from the host memory to the VSV21 memory by using
QIO calls. An individual segment is identified for access by its segment address
(Section 3.1).

VIVID allows storage of up to 512 defined segments in the host memory. The
number of segments which can be stored in the VSV21 memory is limited by
the memory space occupied by downloaded drivers and saved attributes. VSV21
memory is described in Section 3.2.

You can delete individual segments on the VSV2l by using QIOs. This process frees
the VSV21 memory space if the segments remaining were downloaded before the
deleted segments. If there is insufficient space, the download operation performs a
compress. To minimize processing time, download the long-term segments first.

An introduction to the QIO call mechanism is given in Appendix A.

You can issue a VIVID QIO call from a program running under RSX-llM-PLUS or
Micro/RSX or VMS/MicroVMS. The format of a VIVID QIO call depends on:

The host operating system:

VMS/Micro VMS

RSX-llM-PLUS or Micro/RSX

The programming language

This can be MACRO-ll or MACRO-32, or any high-level language for which
the host has a compiler.

Each call includes a function and a list of parameters. The error and warning return
codes are described in Section 6.2.

6-1

VIVID I/O FUNCTIONS

6.1 THE QIO FUNCTIONS AND PARAMETERS

6.1.1

Each of the VIVID QIO functions is described in this section. For each function,
the version for VMS/MicroVMS is given first, followed by the RSX-llM-PLUS and
Micro/RSX version, each with its associated parameters.

Note: The functions which attach and detach the VSV21 are not used under
VMS/Micro VMS.

The contents of the I/O status block and the error and warning codes are given in
Section 6.2.

An example of a VIVID MACRO-32 program which includes QIO calls is given in
Chapter 7.

Allocate Display Area - VSV$_ALLOCATE and IO.ADA

6-2

This allocates a display area for segments in the host memory. Only one display area
can be allocated to the device. A later Allocate call releases the already-allocated
area and allocates the newly-defined area.

If shared device access is required under VMS/MicroVMS, the allocated display is
a shared global section. Applications using this allocated display area must map the
section in identical virtual address space.

VMS/MicroVMS

Function:
VSV$_ALLOCATE

Hex Value:
3C

Parameters:
pI = virtual address of area
p2 = number of bytes in area

RSX-11 M-PLUS and Micro/RSX

Function:
10.ADA

Octal value:
7400

Parameters:
pI = virtual address of area
p2 = number of bytes in display area
p3 = partition name (RAD50) characters I to 3
p4 = partition name (RAD50) characters 4 to 6

Two of these parameters, either pI and p2 or p3 and p4, can be specified. The
remaining two must be set to zero.

6.1.2

6.1.3

VIVID 1/0 FUNCTIONS

Attach VSV21 Device - IO.All
This function attaches a VSV2l unit to the task.

VMS/Micro VMS

This function is not used under VMS/Micro VMS.

RSX-11M-PLUS and Micro/RSX

Function:
IO.AIT

Octal value:
1400

Parameters:
None

Define Reporting - VSV$_DEFREP and IO.DRP
This function defines the reporting requirements by the report class and initializes the
report segment.

One of the parameters required is a reporting mask. This is a set of bit pairs, as
follows:

BIT NUMBERS

15 to 10
9andB
7and6
5 and 4
3 and 2
1 and 0

CONTENTS
unassigned
timeout/stop
match
switch
errors
warnings

The bit pair values have the following effects:

BIT PAIR VALUES

o
1
2
3

ACTION REQUIRED

as previously
to report segment
to mailbox
ignore

In the case of VMS/MicroVMS, the application program must assign a mailbox on
the Assign Channel System Service if any reports are to be directed to a mailbox,
that is, to be handled asynchronously. The mailbox should be enabled for Write
Attention AST. This means that the processing AST routine is activated when the
VSV2l driver makes an entry.

The method of defining report segments is given in Section 3.3.5.

6-3

6.1.4

VIVID I/O FUNCTIONS

VMS/MicroVMS

Function:
VSV$_DEFREP

Hex value:
34

Parameters:
pI = reporting segment ID
p2 = reporting mask
p3 = mailbox channel

RSX-11M-PLUS and Micro/RSX

Function:
IO.DRP

Octal value:
10400 VSVg_item>(Parameters:)
pI = reporting segment ID
p2 = reporting mask
p3 = AST address

Define Segment - VSV$_DEFSEG and IO.DFS
This function defines a segment which is already in the host display area by entering
its details on the VSV21 segment map. No download takes place.

The segment ID number must be set up in word 1 of the segment before the QIO
is issued. The number of bytes in the segment is stored in word 2 of the segment
(Figure 6-1). In general, this should be maintained by the application program.
VIVID writes the length in bytes given by this function into word 2 of the segment.
If you want to change the segment length, you must redefine the segment.

Figure 6-1 Format of the First Three Words of a Defined Segment

IDENTIFIER WORD 0

ID NUMBER WORD 1

NUMBER OF BYTES WORD 2

RE4IB2

6.1.5

VMS/MicroVMS

Function:
VSV$_DEFSEG

Hex value:
3A

Parameters:
pI = virtual address of segment
p2 = length of segment in bytes

RSX-11M-PLUS and Micro/RSX

Function:
IO.DFS

Octal value:
5400

Parameters:
pI = virtual address of segment
p2 = segment length in bytes

Delete Segment - VSV$_DELSEG and IO.DSG

VIVID 1/0 FUNCTIONS

This deletes a segment from the host memory. If the segment has been downloaded
to the VSV21, the space there is freed.

If the segment number is 0 then ALL of the segments of the specific type are deleted.
See Section 3.3 for details of segment types.

VMS/MicroVMS

Function:
VSV$_DELSEG

Hex value:
2F

Parameters:
pI = segment ID

RSX-11 M-PLUS and Micro/RSX

Function:
IO.DSG

Octal value:
11000

Parameters:
pI = segment ID

6-5

6.1.6

6.1.7

VIVID 1/0 FUNCTIONS

Detach VSV21 Device -IO.DEl
This function detaches the VSV21 unit from the task.

MicroVMS

This function is not used under VMSjMicroVMS.

RSX-11M-PLUS and Micro/RSX

Function:
IO.DET

Octal value:
2000

Parameters:
None

Load Segment - VSV$_LOADSEG and IO.LSG

6-6

This function downloads a segment from the host to the VSV21 device and enters
segment details into the segment map. Any segment with the same ID as the new
segment is automatically deleted.

The complete segment must be downloaded without the intervention of any other
QIO. The system recognizes the end of the transfer when the number of words
transferred is equal to or greater than the segment length stored in the third word of
the segment. The length stored here determines the total amount of space allocated
to the segment.

VMS/MicroVMS

Function:
VSV$_LOADSEG

Hex value:
3B

Parameters:
pi = virtual address of segment
p2 = number of bytes in transfer block
p3 = segment ID
p4 = block sequence number

RSX-11M·PLUS and Micro/RSX

Function:
IO.LSG

Octal value:
6000

6.1.8

6.1.9

Parameters:
pI = virtual address of segment
p2 = number of bytes in transfer block
p3 = segment 10
p4 = block sequence number

Read Data - VSV$_READDATA and IO.RED
VMS/MicroVMS

Function:
VSV$_READDATA

Hex value:
38

Parameters:
pI = buffer address
p2 = buffer length
p3 = table ID

RSX-11 M-PLUS and Micro/RSX

Function:
IO.RED

Octal value:
6400

Parameters:
pI = buffer address
p2 = buffer length
p3 = table ID

VIVID 1/0 FUNCTIONS

Release Display Area - VSV$_RELEASE and IO.RDA
This releases a display list area which has been allocated using the Allocate function
(see VSV$_ALLOCATE in Section 6.1). References to host segments are deleted
and all display list processing stops.

VMS/MicroVMS

Function:
VSV$_RELEASE

Hex value:
3D

Parameters:
None

6-7

VIVID I/O FUNCTIONS

RSX-11M-PLUS and Micro/RSX

Function:
IO.RDA

Octal value:
10000

Parameters:
None

6.1.10 Resume Execution - VSV$_CONTINUE and IO.REX

6.1.11

Using this function, display list execution is resumed at the next instruction. The
parameter pI is optional; the default value is 5 seconds. If display list processing
terminates with an error condition, resumption of processing causes an error.

VMS/MicroVMS

Function:
VSV$_CONTINUE

Hex value:
3F

Parameters:
pI = time out period in seconds (default = 5)
p2 = report segment ID
p3 = reporting mask

RSX-11M-PLUS and Micro/RSX

Function:
IO.REX

Octal value:
12400

Parameters:
pI = time-out period in seconds
p2 = report segment ID
p3 = reporting mask

Start Segment Execution - VSV$_STARTSEG and IO.SSE

6-8

This function starts the execution of a single predefined segment. The time-out
parameter is optional; the default value is 5 seconds.

VMS/MicroVMS

Function:
VSV$_STARTSEG

Hex value:
3E

VIVID I/O FUNCTIONS

Parameters:
pI = segment ID
p2 = time-out period in seconds
p3 = report segment ID
p4 = reporting mask

RSX-11M-PLUS and Micro/RSX

Function:
IO.SSE

Octal value:
11400

Parameters:
pI = segment ID
p2 = time-out period in seconds
p3 = report segment ID. This segment must already be defined.

See Section 3.3.5 for the definition procedure.
p4 = reporting mask. This is described in VSV$_DEFREP in Section 6.1.

6.1.12 Stop Display List Execution - VSV$_STOP and IO.STP
This function stops display list execution when the current display list instruction
is completed. Processing a display list instruction is not interrupted, except for
DISPLAY_WAIT, WAIT_SWITCH and ACCEPT _KEYBOARD _INPUT instructions.

VMS/MicroVMS

Function:
VSV$_STOP

Hex value:
35

Parameters:
None

RSX-11M-PLUS and Micro/RSX

Function:
IO.STP

Octal value:
3400

Parameters:
None

6-9

VIVID I/O FUNCTIONS

6.1.13 Write Data - VSV$_WRITEDATA and IO.WRT

VMS/MicroVMS

Function:
VSV$_ WRITEDATA

Hex value:
39

Parameters:
pI = buffer address
p2 = buffer length
p3 = table ID

RSX-11M-PLUS and Micro/RSX

Function:
IO.WRT

Octal value:
7000

Parameters:
pI = buffer address
p2 = buffer length
p3 = table ID

6.2 QIO STATUS REPLIES

6.2.1

This section describes the information returned from QIOs and the error and warning
codes in the report packets.

QIO Replies from VMS/MicroVMS
The contents of the I/O status block are given in Figure 6-2.

6-10

6.2.2

VIVID I/O FUNCTIONS

Figure 6-2 Contents of VMS/MicroVMS 1/0 Status Block

WORD
31 16 15 00

VIVID REPLY I 010 REPLY OAND 1

NUMBER OF REPORTS 2AND3

RE480

The QIO reply word will contain one of the following:

Hex Code Meaning

0001 SS$_NORMAL Successful completion

030C SS$_BUFBYTALI Buffer byte aligned

002C SS$_ABORT 010 aborted

018C SS$_LENVIO Buffer length violation

022C SS$_ TIMEOUT 010 time-out

0334 SS$_DEVREOERR Device request error

02C4 SS$_DEVACTIVE Device active

032C SS$_DEVCMDERR Device command error

The VIVID reply word contains one of the following decimal codes:

o
128

129

130

Normal completion

Stop acknowledge

Maximum matches reached

VIVID error

The number of reports indicates the total number of reports entered to the report
segment. If no report segment has been defined, then the number of reports that
would have been written to the report segment is given.

QIO Replies from RSX-11M-PLUS and Micro/RSX
The contents of the I/O status block are shown in Figure 6-3.

6-11

6.2.3

VIVID 1/0 FUNCTIONS

Figure 6-3 Contents of RSX 1/0 Status Block

VSV21 COMPLETION CODE I 010 COMPLETION CODE

COUNT OF REPORTS IN REPORT SEGMENT

RE452

The QIO reply byte contains the following octal codes and decimal equivalents:

Octal Decimal Reply Code

001 IS.SUC Success

242 -94 IE.PNS Partition/Region not in system

254 -84 IE.ALC Allocation failure define segment

361 -15 IE.ABO QIO aborted

366 -8 IE.DAA Device already attached

372 -6 IE.SPC Illegal user buffer

376 -2 IE.lFC Illegal function code

The VIVID reply byte contains the following decimal codes, where relevant:

o
128

129

130

Normal completion

Stop acknowledge

Maximum matches reached

VIVID error

The number of reports indicates the total number of reports entered to the report
display segment. If no report display segment has been defined, then the number of
reports that would have been written to the report display segment is given.

VIVID ErrorlWarning Codes

~12

The following decimal error/warning codes are used in VIVID_WARNING and
VIVID_ERROR report packets:

100

101

102

103

104

Memory protection error

Reserved instruction

Invalid segment type

Invalid segment ID

Maximum number of segments reached

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

VIVID 1/0 FUNCTIONS

Instruction sequence error

Segment not defined

No report segment defined

Segment stack overflow

Attribute stack overflow

No attributes saved

Parameter out of range

Incorrect number of parameters

No space in segment for output

Total magnification exceeds 127.996

START JONT in instruction list

START _PIXEL_DATA in instruction list

START_KEYBOARD_DATA in instruction list

START _REPORT _DATA in instruction list

Total magnification less than 1/256

Elliptic aspect ratio out of range

FLOOD/PAINT_AREA shape is too complex

Segment too small for desired use

Segment is not a font

Download segment 10 mismatch

Download block sequence error

Memory allocation error

No font is currently defined

Specified segment is not pixel data

Pixel data written has been truncated

Switch interrupts not enabled

Segment 10 in segment is incorrect

Segment length in header is incorrect.

Repeat stack overflow

END_REPEAT found when no matching REPEAT instruction

6-13

VIVID 1/0 FUNCTIONS

6-14

135

136

138

Segment already exists

See Chap 13, LOAD_CHAR_CELL instruction

Segment is not an attribute segment

7 GETTING STARTED WITH VIVID 1/0

This chapter describes the steps in writing and running a VIVID application after
system power-up or initialization. The power-up procedure is described in the VSV21
User's Guide.

7.1 DOWNLOADING THE SOFTWARE

7.1.1 VMS/MicroVMS

On power-up, the ROM-resident VT220 terminal emulator is active. Before the
VSV2l can be used to run a VIVID application, the following modules must be
downloaded from the host:

Kernel - controls VSV2l operation

Pointing device driver - controls joystick, trackball or other devices

VIVID interpreter - translates display list into a picture

The required modules are loaded using the VSV Command Program (VSVCP)
described in the VSV21 User's Guide. Run VSVCP by entering the following:

VSVCP

This returns the prompt VSVCP>. Enter the following commands to load the
required modules on the first VSV21:

VSVCP> LOAD KERNEL WAG

VSVCP> LOAD JOY STICK WAG
(or DEC_TABLET or PENNY_GILES)

VSVCP> LOAD TRANSPARENT VVAG
(If printer is to be used)

VSVCP> LOAD VIVID WAG

VSVCP> EXIT
(or CTRL/Z)

The VSV21 is now capable of reduced functionality console emulation. It can
interpret VIVID instructions and the VIVID font has been downloaded with the
VIVID interpreter.

7-1

7.1.2

7.1.3

GETTING STARTED WITH VIVID 1/0

Compatibility mode on VMS
The required modules are loaded using the VSV Command Program (VSVCP)
described in the VSV2i User's Guide. Compatibility mode is entered by VSVCP if
the logical name VSV$VCP _COMPATIBILITY _MODE has been defined (see the
VSV2i User's Guide). This is done as follows:

DEFINE VSV$VCP _COMPATlBiL1TY_MODE 1

Run VSVCP by entering the following:

VSVCP

This returns the following message and prompt:

%VSVCP-i-COMPAT, Using VSV2i Compatihility mode
VCP>

Enter the following commands to load the required modules on the first VSV21:

VCP> LOAD KERNEL

VCP> LOAD JSTlCK
(or DECTAB or PGSTlCK)

VCP> LOAD TRANSP
(If printer is to be used)

VCP> LOAD VIViD

VCP> CTRLlZ

The VSV2l is now capable of reduced functionality console emulation. It can
interpret VIVID instructions and the VIVID font has been downloaded with the
VIVID interpreter.

RSX-11 M-PLUS and Micro/RSX

7-2

The required modules are loaded using the VSV Command Program (VCP) described
in the VSV2i User's Guide. Run VSVCP by entering the following:

RUN $VCP

This returns the prompt VCP>. Enter the following commands to load the required
modules on the first VSV21:

VCP> LOAD KERNEL

VCP> LOAD JSTlCK
(or DECTAB or PGSTlCK)

VCP> LOAD TRANSP
(If printer is to be used)

VCP> LOAD VIViD

VCP> CTRLlZ

The VSV21 is now capable of console emulation with reduced functionality. It can
interpret VIVID instructions and the VIVID font has been downloaded with the
VIVID interpreter.

7.2

GETTING STARTED WITH VIVID I/O

The downloaded routines occupy a limited memory space which they share with
VIVID segments. To optimize the use of this memory, the user must observe certain
constraints in downloading and deleting system software. These are described in the
VSV21 User's Guide.

DEFINING AND EXECUTING A DISPLAY LIST
This section uses a program example to describe how to write a Macro-32 program
under VMS/Micro VMS to define and execute a display list. The program defines and
executes a segment which clears the screen to a pattern of colored stripes.

VIVID Macro-32 Program

.TITLE TEST - VIVID test program
$IODEF
Set up I/O function names if necessary. A VIVID application
program usually contains the following QIOs:

RSX and VMS SECTION
QIO FUNCTIONS REFERENCE

IO.ADA or 6.1.1
VSV$ ALLOCATE

IO.DEF or 6.c.4
VSV$ DEFSEG

IO.SSE or 6.1.11
VSV$ STARTSEG

ACTION

Allocates a display area for
segments in host memory

Defines a segment by entering i~s
address and length on the VSV21

Starts execution of a segmen~

VSV$ ALLOCATE
VSV$_DEFSEG
VSV$_DEFREP
VSV$ STARTSEG

AX3C
AX3A
AX34
AX3E

ADA:

Define the display area size in host memory.
The defined display area must be big enough to hold all the
segments you intend to store in host memory.
Enter the list of opcodes and parameters which make up
the segments

These are entered to the display area as a series of .WORD
or .BYTE commands. An example is given with each of the
VIVID instructions described in Chapters 8 through 16.

Define the contents of the executable segment

.WORD AX 102 opcode for start of segment

. WORD AX0201 segment ID

. WORD 16 segment length

.WORD AX 601 opcode to initialize VIVID

. WORD AX 7F mask value

. WORD AX4C01 opcode to clear screen

.WORD AX EOO color 14 from default CLUT
~ yellow stripes

.WORD AX COO stop

Define the contents of the report segment

7-3

GETTING STARTED WITH VIVID 1/0

7-4

REPSEG:

BUFF:

CHAN:
roSB:
DEV:

. WORD

. WORD

. WORD

o
AX0202
200

segment type filled in by VIVID
segment ID
segment length (octal)

Allocate space for the reporting segment and other segments.
The display area must be big enough for all the segments you
intend to store in host memory. This instruction gives 60000
bytes in addition to the 16 used above.

.BLKB 60000

Store the channel number, I/O status block and device name

. LONG

.BLKB

.ASCID
8
/VVAO:/

Define start of code

. ENTRY TEST,

storage for VSV2l channel no .
I/O status block
device name for assignment

Assign a channel and device name to the VSV2l device

This uses the stored information already set up.

CHAN=CHAN,
DEVNAM=DEV

Allocate a display area for all the concurrent segments

Use the IO.ADA or VSV$_ALLOCATE function and supply the address
of the segment and total length of the display area as
parameters

$QIOW_S CHAN=CHAN,
FUNC=#VSV$_ALLOCATE,
IOSB=IOSB,-
Pl=ADA,-
P2=#60022

Define the executable segment

starting address of display area
length of display area

Use the IO.DEF or VSV$_DEFSEG function and supply the segment
address and length as parameters

$QIOW_S CHAN=CHAN,
FUNC=#VSV$_DEFSEG,
IOSB=IOSB,
Pl=ADA,-

P2=#16

Check the I/O status block

; channel number
; define segment
I/O status block
starting address of display
area
segment length

The contents of the I/O status block are described in
Section 6.2

BLBC
MOVW
BLBS

RO,l$
IOSB,RO
RO,2$

1$:
2$:

EXIT:

GETTING STARTED WITH VIVID 1/0

BRW EXIT

Define the reporting segment

Use the IO.DEF or VSV$_DEFSEG function and supply the segment
address and length as parameters

$QIOW_S CHAN=CHAN,
FUNC=#VSV$_DEFSEG,
IOSB=IOSB,
Pl=REPSEG,-

P2=#200

Check the I/O status block

BLBC
MOVW
BLBC

RO,EXIT
IOSB,RO
RO,EXIT

Define reporting

; channel number
; define segment

I/O status block
starting address of display
area
segment length

Use the IO.DRP or VSV$_DEFREP function to define the segment
as a reporting segment

$QIOW_S CHAN=CHAN,
FUNC=#VSV$_DEFREP,
IOSB=IOSB,
Pl=@REPSEG+2

Check the I/O status block

BLBC
MOVW
BLBC

RO,EXIT
IOSB,RO
RO,EXIT

Start segment execution

; channel number
; define reporting

I/O status block
; segment ID

Use the IO.SSE or VSV$ STARTSEG function and supply the location
of the segment ID and the required timeout value as parameters.

$QIOW_S CHAN=CHAN,
FUNC=#VSV$ STARTSEG,
IOSB=IOSB,
Pl=@ADA+2,-
P2=#10

Check the I/O status block

BLBC
MOVW

Exit

RO,EXIT
IOSB,RO

$EXIT_S RO
.END TEST

segment ID from 2nd. word of seg.
time out period in seconds

7-5

8 CONTROL INSTRUCTIONS

This chapter contains a description of each VIVID control instruction. Opcodes are
given in decimal. A MACRO-32 example of each instruction is provided.

8-1

CALL SEGMENT

CALL SEGMENT

Executes the identified segment from the host or VSV21 memory.

ARGUMENTS Opcode:
Length:

7
1

FORMAT: CALL_SEGMENTsegid

PARAMETERS: segid
segment ID

END POSITION: The current position is not changed.

ERRORS: Error if the segment is not found.

NOTES: The segment must already be defined as a host segment or be downloaded.

EXAMPLE:
.BYTE 1.,7. ;length and opcode

.WORD AX010A. ;segment class 1, number 10

8-2

CREATE SEGMENT

CREATE SEGMENT

Creates a segment in the VSV21 memory.

ARGUMENTS Opcode:
Length:

13
2

FORMAT: CREATE_SEGMENTsegid, sien

PARAMETERS: segid
segment ID

sien
total segment size in bytes

END POSITION: The current drawing position is not changed.

ERRORS: Terminal error if space is insufficient.
Warning if segment already exists.
Warning if segment ID is not valid.

NOTES: The segment ID format may be found in Section 3.1.

EXAMPLE:
. BYTE 2., 13 .
. WORD AX010A
.WORD 54.

;length and opcode
;segment class 1, number 10
;54 bytes in segment

8-3

DISPLAY END REPEAT

DISPLAY END REPEAT

ARGUMENTS

FORMAT:

Marks the end of a repeatable loop.

Opcode:
Length:

16
o

DISPLAY END REPEAT

PARAMETERS: None

END POSITION:

ERRORS:

EXAMPLE:

8-4

The current drawing position is not changed.

If no corresponding DISPLAY_REPEAT instruction in the same segment has been
executed, a warning is issued and the instruction is ignored.

.BYTE 0.,16. ;length and opcode

DISPLAY REPEAT

DISPLAY REPEAT

Marks the start of a loop.

ARGUMENTS Opcode:
Length:

15
1

FORMAT: DISPLAY_REPEAT nloop

PARAMETERS: nloop
number of times the loop is to be repeated.
0: loop is repeated infinitely

END POSITION: The current drawing position is not changed.

ERRORS: If loops are nested more than 32 levels deep or the parameter nloop is negative, a
warning is issued and the instruction is ignored.

NOTES: This instruction must have a corresponding DISPLAY_END_REPEAT instruction in
the same segment to terminate the loop.

EXAMPLE:
.BYTE 1.,15.
.WORD 3.

;length and opcode
;repeat loop 3 times

8-5

DISPLAY WAIT

DISPLAY WAIT

Waits for a specified time before executing the next display instruction.

ARGUMENTS Opcode:
Length:

10
1

FORMAT: DISPLAY WAITnfram

PARAMETERS: nfram
number of video frames delay required. There are sixty frames per second.

END POSITION: The drawing position is not changed.

ERRORS: None

NOTES: Execution is interrupted by a Stop Execution QIO, or a QIO time-out. Processing
resumes at the next instruction.

EXAMPLE:

8-6

.BYTE 1.,10.

.WORD 300.
;length and opcode
;5 seconds delay

DUMP ATTRIBUTES

DUMP ATTRIBUTES

ARGUMENTS

Saves the current set of attributes in a specified segment.

Opcode:
Length:

121
1

FORMAT: DUMP_ATTRIBUTES segid

PARAMETERS: segid
segment ID

END POSITION: The current position is not changed.

ERRORS:

NOTES:

A warning is issued and the instruction is ignored in the following situations:

Segment ID outside the valid range

Segment too small to contain the attributes

Insufficient on-board space to create the attribute dump segment

A minimum size of 256 bytes is recommended for the attributes dump segment.

The attributes dump segment must start with a START_ATTRIBUTES_DATA
instruction.

If the specified segment does not exist, it is created on the VSV21 module.

The user has no read access to on-board segments.

If the contents of the attributes dump segment are to be saved, the segment must be
already defined on the host.

EXAMPLE:
.BYTE 1.,121.
.WORD AX030A

;length and opcode
;segment class 3, number 10

8-7

INITIALIZE

INITIALIZE

ARGUMENTS

Restores VIVID download status to one or more graphics control facets
(addressing, global attributes, text or all).

Opcode:
Length:

6
1

FORMAT: INITIALIZE mask

PARAMETERS: mask

END POSITION:

ERRORS:

NOTES:

EXAMPLE:

sum of values indicating requirements
-1: all values
See Appendix D for values.

If transformations are initialized, the current position is set to the origin. Otherwise
the current position is not changed.

None

Initialization values may be found in Appendix D. The values required should be
summed to determine the value of the mask parameter.

.BYTE 1.,6.

.WORD 4.
;length and opcode
;initialize drawing colors

JUMP RELATIVE

JUMP RELATIVE

Adds the specified number of words to the display list pointer.

ARGUMENTS Opcode:
Length:

120
1

FORMAT: JUMP RELATIVE nwords

PARAMETERS: nwords
number of words

EN D POSITION: The current drawing position is not changed.

ERRORS: None

NOTES: This instruction is useful for patching display lists. It operates only within the
current segment. A parameter value of zero causes a jump to the JUMP_RELATIVE
INSTRUCTION.

EXAMPLE:
.BYTE 1.,120.
. WORD 17.

;length and opcode
; jump 17 words

8-9

NO OPERATION

NO OPERATION

No operation is performed and nothing is changed.

ARGUMENTS

. FORMAT:

Opcode:
Length:

NO OPERATION

11
o

PARAMETERS: None

END POSITION: The drawing position is not changed.

ERRORS: Error if length not equal to zero.

EXAMPLE:
.BYTE 0.,11.

8-10

;length and opcode

RECOVER ATTRIBUTES

RECOVER ATTRIBUTES

Reads the specified attributes from the specified segment.

ARGUMENTS Opcode:
Length:

122
2

FORMAT: RECOVER_ATTRIBUTES segid, mask

PARAMETERS: segid
segment ID

mask
bit mask value defining attributes to be recovered

END POSITION: As given by the recovered drawing position if it is specified in the mask. Otherwise
unchanged.

ERRORS: A warning is issued and the instruction is ignored in the following cases:

NOTES:

EXAMPLE:

Specified segment does not exist

Specified segment does not start with a START_ATTRIBUTES_DATA
instruction.

Details of the mask are given in Appendix C.

.BYTE 2.,122.

.WORD AX030A

. WORD 10

;length and opcode
;segment class 3, number 10
;octal mask for drawing

8-11

RESTORE ATTRIBUTES

RESTORE ATTRIBUTES

ARGUMENTS

The last attributes saved by SAVE_ATTRIBUTES are removed from the stack
and set up as the current attributes. The previous attributes are lost.

Opcode:
Length:

9
1

FORMAT: RESTORE ATTRIBUTES mask

PARAMETERS: mask

END POSITION:

ERRORS:

NOTES:

EXAMPLE:

8-12

Mask value indicating requirements:
See Appendix D for values.
-1 : all values are restored

As given by the stacked parameters. If the drawing position is not restored, it is not
changed. The cursor position is handled similarly.

Error if no parameter value is supplied.

Warning if there are no stacked attributes.

Mask values entered indicate these attributes are to be restored.

The attributes that will be restored from the stack for each mask value are identified
in Appendix C.

.BYTE 1.,9.

.WORD 100
;length and opcode
;octal mask value to
;restore text attributes

SAVE ATTRIBUTES

SAVE ATTRIBUTES

ARGUMENTS

FORMAT:

PARAMETERS:

END POSITION:

ERRORS:

NOTES:

EXAMPLE:

The current attributes are added to an attribute stack. This allows you to
change attributes in a nested segment and to recover attributes before
returning to the calling segment (see also RESTORE_ATTRIBUTES,
CHAPTER 8).

Opcode:
Length:

8
o

SAVE ATTRIBUTES

None

The current position is not changed.

Terminal error if stack would overflow.

The space available for the stack depends on the number of downloaded segments
and on the number and order of deletions. No implicit compress is performed.

The attributes stacked are identified in Appendix C. This includes drawing and cursor
positions.

.BYTE 0.,8. ;length and opcode

8-13

SEGMENT RETURN

SEGMENT RETURN

ARGUMENTS

Marks the end of an instruction segment.

Opcode:
Length:

14
o

FORMAT: SEGMENT RETURN

PARAMETERS: None

END POSITION: The drawing position is not changed.

ERRORS:

NOTES:

EXAMPLE:

8-14

None

Control is returned as follows:

For a nested display segment, control returns to the instruction following the
invoking CALL_SEGMENT instruction

For a top level segment, display list processing stops and the invoking QIO is
completed. Control returns to the application program, with a status value.

SEGMENT_RETURN or STOP_DISPLAY must appear as the last instruction in the
segment. Otherwise a memory protection violation or other error will occur.

.BYTE 0.,14. ;length and opcode

START ATTRIBUTES DATA

START ATTRIBUTES DATA

ARGUMENTS

Identifies the segment contents as attributes data.

Opcode:
Length:

127
2

FORMAT: START_ATTRiBUTES_DATA segid, sien

PARAMETERS: segid

END POSITION:

ERRORS:

NOTES:

EXAMPLE:

segment ID

sien
total length of segment in bytes

The current position is not changed.

A warning is issued and the instruction is ignored if it is encountered in an
instruction segment.

START_ATTRIBUTES_DATA is used only as the first instruction in a segment
containing attributes data.

This instruction is generated autorriatically by the DUMP_ATTRIBUTES instruction.

.BYTE 2.,127.

.WORD AX040A

.WORD 120.

;length and opcode

;segment class 4, number 10

;segment length

8-15

START FONT

ARGUMENTS

Identifies the segment contents as a font.

Opeode:
Length:

2
6

FORMAT: START_FONT segid, slen, nee, xdim, ydim, dflt

PARAMETERS: segid
segment ID

slen
total segment size in bytes

nee
total number of character cells in the font

xdim
cell width in bits (range 1-16)

ydim
cell height in bits (range 1-16)

dflt
default row value. Defines whether unspecified rows are drawn in foreground or
background color.
0: background
-1 : foreground

END POSITION: The current position is not changed.

ERRORS:

NOTES:

8-16

The error "START_FONT in instruction list" occurs when this instruction is found in
an instruction list, irrespective of the number of parameters.

This instruction is set up automatically by the INITIALIZE_FONT instruction. When
a font is accessed, this must be the first instruction in the font segment.

EXAMPLE:
.BYTE 6.,2.
. WORD AX010A.
· WORD 66.
· WORD 26.
.WORD 12.
.WORD 10.
· WORD -1.

START FONT

;length and opcode
;segment 1D 1, class 10
;segment length in bytes
;26-cell font
;12-bit width
;10-bit height
;foreground color

8-17

START INSTRUCTION LIST - -

START INSTRUCTION LIST

Identifies the segment contents as display instructions.

ARGUMENTS Opcode:
Length:

1
2

FORMAT: START_'NSTRUCT'ON_L'ST segid, slen

PARAMETERS: segid
segment ID

slen
total segment size in bytes

END POSITION: The current drawing position is not changed.

ERRORS: Warning if this instruction is encountered after the start of the instruction segment.

NOTES: This must be the first instruction in a VIVID instruction segment.

EXAMPLE:

8-18

.BYTE 2.,1.

.WORD "XOI0A

.WORD 2048.

;length and opcode
;segment 1D 1, class 10
;2K bytes of segment area

START KEYBOARD DATA

START KEYBOARD DATA

ARGUMENTS

Identifies the segment contents as keyboard input.

Opcode:
Length:

4
4

FORMAT: START_KEYBOARD_DATA segid, slen, istat, icnt

PARAMETERS: segid
segment ID

slen
total segment size in bytes

istat
current buffer status
o : Transfer in progress
1 : Transfer ended at termination character
2 : Transfer completed on maximum length
3 : Transfer completed on time-out or stop
4 : Transfer completed on buffer full

icnt
count of bytes entered to segment

END POSITION: The current drawing position is not changed.

ERRORS: The error "START_KEYBOARD_DATA in instruction list" occurs when this
instruction is found in an instruction list, irrespective of the number of parameters.

NOTES:

EXAMPLE:

This is set up automatically by the ACCEPT_KEYBOARD_INPUT instruction
(Chapter 15).

The termination character is not entered to the segment.

. BYTE 4.,4 . ; length and opcode

. WORD AXOCOE . ; segment class 12, number 14

. WORD 66. ; segment length in bytes

. WORD 2. ;transfer completed on max.
; length

. WORD 45. ;45 bytes entered to segment

8-19

START PIXEL DATA - -

START PIXEL DATA

ARGUMENTS

Identifies the segment contents as pixel data.

Opcode:
Length:

3
6

FORMAT: START_PiXEL_DATA segid, sien, xdis, ydis, xrat,
yrat

PARAMETERS: segid
segment ID

sien
total segment size in bytes

xdis
X distance to opposite vertex in words.
May be negative.

ydis
Y distance to opposite vertex in pixels.
May be negative.

xrat
X pixel screen to monitor ratio

yrat
Y pixel screen to monitor ratio

END POSITION: The current drawing position is not changed.

ERRORS:

NOTES:

8-20

The error "START_PIXEL_DATA in instruction list" occurs when this instruction is
found in an instruction list, irrespective of the number of parameters.

This instruction is set up automatically by the PIXEL_READBACK instruction.
When a pixel data map display segment is accessed, this must be the first instruction
in the display segment.

A pixel data word contains four pixels.

The screen to monitor ratio is the ratio of the logical screen dimensions to the
physical monitor dimensions. The most significant byte (MSB) holds the integer part
and the least significant byte (LSB) the fractional part of a fixed-point number.

EXAMPLE:

START PIXEL DATA

.BYTE 6,3

.WORD AX080C

.WORD 66.

.WORD 20.

.WORD 32.

;length and op-code

;segment class 8, number 12

;segment length in bytes
;X distance 20 words to right
;Y distance 32 pixels
; (eight words) downwards

;Typical ratio for a low
;resolution monitor defined
;as a high-resolution logical
iscreen

.BYTE 1.,0.

.BYTE 2.,0.
;logical X dim= monitor X dim
;logical Y dim= 2.0 times
;monitor Y dim

8-21

START REPORT DATA - -

START REPORT DATA

ARGUMENTS

Identifies the segment contents as report data.

Opcode:
Length:

5
4

FORMAT: START_REPORT_DATA segid, s/en, istat, nextb

PARAMETERS: segid
segment ID

s/en
total segment size in bytes

istat
current buffer status:
0: active
1 : initialized/complete
2 : segment overflow

nextb
byte offset of next entry processed. This is a pointer to the next free byte in the
segment, counting from the start of the segment. It is always word-aligned.

END POSITION: The drawing current position is not changed.

ERRORS:

NOTES:

EXAMPLE:

8-22

The error "START_REPORT_DATA in instruction list" occurs when this instruction
is found in an instruction list, irrespective of the number of parameters.

This is set up automatically by QIOs which execute a segment or resume segment
execution.

The parameter istat gives the status of the report segment activity. The application
program may poll istat to check if the segment is being written to by VIVID (active
status) or is full (segment overflow).

.BYTE 4.,5.

. WORD AX030A

.WORD 66.

.WORD 1 .

. WORD 10.

;length and opcode
;segment class 3, number 10
;segment length in bytes
;buffer initialized
;start of free space

STOP DISPLAY

STOP DISPLAY

Stops display list processing. Control is returned to the application program,
with a status value.

ARGUMENTS Opcode:
Length:

FORMAT: STOP DISPLA Y

PARAMETERS: None

12
o

END POSITION: The drawing position is not changed.

ERRORS: None

NOTES: Segment processing stops and the invoking QIO is completed.

EXAMPLE:
.BYTE 0.,12. ;length and opcode

8-23

9 TRANSFORMATION INSTRUCTIONS

This chapter describes the instructions used in drawing and viewing transfonnations
of VSV21 data. The transfonnation process is described in Section 2.5.

Opcodes are given in decimal. A Macro-32 example of each instruction is provided.

9-1

DRAWING MAGNIFICATION

DRAWING MAGNIFICATION

ARGUMENTS

This instruction defines the magnification of the drawing elements being
entered to VAS. This applies to both absolute and relative drawing operations.

Opcode:
Length:

21
00r2

FORMAT: DRAWING_MAGNIFICATION [xmag, ymagJ

PARAMETERS: xmag
magnification along X axis

ymag
magnification along Y axis

END POSITION: The current position in VAS is not changed.

ERRORS:

NOTES:

EXAMPLE:

9-2

Fatal error if total magnification is outside the valid range (see ZOOM_FACTOR,
Section Chapter 9).

Display processing stops. The start and resume QIOs do not reset the transformation.
Drawing can be continued. The magnification is truncated to the nearest valid value.

The parameters are input as follows:

Enter zero values or omit the parameters for no magnification.

Enter positive parameters to multiply the existing magnification by the absolute
value of the parameters.

Enter negative parameters to divide the existing magnification by the absolute
value of the parameters.

The parameters are specified in fixed binary point format. The LSB represents the
fractional part of the number and the MSB represents the integer part.

.BYTE 2.,21.

.WORD "X800

.WORD "X400

;length and opcode
;magnify times 8 in horizontal
;magnify times 4 in vertical

DRAWING TRANSFORM

DRAWING TRANSFORM

This enables the DRAWING_MAGNIFICATION and DRAWING_
TRANSLATION instructions. The instruction can be used with the DRAWING
VAS instruction to turn the transformations on or off as required.

ARGUMENTS Opcode:
Length:

130
o

FORMAT: DRAWING TRANSFORM

PARAMETERS: None

END POSITION: The current drawing position is not changed.

ERRORS: None

NOTES: The transformations are disabled by DRAWING_VAS.

No drawing occurs.

The viewport is not changed.

EXAMPLE:
.BYTE 0.,130. ;length and opcode

9-3

DRAWING TRANSLATION

DRAWING TRANSLATION

This defines coordinates by which the transformation origin is shifted relative
to the previous transformation origin.

ARGUMENTS Opcode:
Length:

22
2

FORMAT: DRAWING_ TRANSLATION x,Y

PARAMETERS: x
X coordinate of translation

y
Y coordinate of translation

END POSITION: The current drawing position is not changed.

ERRORS: None

NOTES: No drawing occurs.

EXAMPLE:

9-4

The viewport is not changed.

.BYTE 2.,22.

.WORD 50.

.WORD 200.

;length and opcode
;relative X coordinate of origin
;relative Y coordinate of origin

DRAWING VAS

DRAWING VAS

This disables DRAWING_MAGNIFICATION and DRAWING_TRANSLATION.
Subsequent input is in VAS units.

ARGUMENTS Opcode:
Length:

FORMAT: DRAWING VAS

PARAMETERS: None

131
o

END POSITION: The current drawing position is not changed.

ERRORS: None

NOTES: The transformations are reenabled by DRAWING_TRANSFORM.
No drawing occurs.
The viewport is not changed.

EXAMPLE:
.BYTE 0.,131. ;length and opcode

9-5

SCREEN DIMENSIONS

SCREEN DIMENSIONS

ARGUMENTS

Defines the screen dimensions in logical pixels.

Opcode:
Length:

18
2

FORMAT: SCREEN_DIMENSIONS width, height

PARAMETERS: width
width of display in logical pixels

height
height of display in logical pixels

END POSITION: The current position in VAS is the window origin. The drawing position in screen
terms is at the bottom left-hand comer.

ERRORS: Error if a parameter is invalid and display processing stops.

NOTES:

EXAMPLE:

9-6

Error if total magnification exceeds maximum (see ZOOM_FACTOR, Chapter 9) and
display processing stops.

The valid sets of values for the parameters width, height are:

512,256
640, 240
512, 512
640, 480

If the screen X dimension is changed from 512 to 640 or from 640 to 512, the
display image and the screen are cleared to the current background color. The screen
contents are not affected otherwise.

The viewport is reset to the full screen image. The magnification factors remain the
same. The window origin is unchanged. The window extent is adjusted to reflect the
change in the viewport.

The default screen is 640 X 480 logical pixels.

.BYTE 2.,18.

.WORD 640.

.WORD 240.

;length and ope ode
;set width to 640
;set height to 240

SET VIEWPORT

SET VIEWPORT

ARGUMENTS

This instruction defines a screen area to which drawing is restricted. The area
units are as defined by the SCREEN_DIMENSIONS instruction (Chapter 9).

The default viewport is the display image. However, the viewport may be
reduced so that the segment contents generate the image only to a reduced
area defined by the viewport.

Opcode:
Length:

20
00r4

FORMAT: SET_ VIEWPORT [xmin, ymin, width, height]

PARAMETERS: xmin
x coordinate of lower left corner

ymin
Y coordinate of lower left corner

width
width of viewport in logical pixels

height
height of viewport in logical pixels

END POSITION: The current position in VAS becomes the window origin.

ERRORS:

NOTES:

EXAMPLE:

Warning if coordinates are out of range.

If no parameters are supplied, or all the parameters are zero, the viewport is set to
the boundaries of the screen. The viewport is restricted to the screen display area.
The viewport origin is mapped to the window origin. The window is unchanged and
the zoom factor is adjusted accordingly.

.BYTE 4.,20.

.WORD 50 .

. WORD 40.

.WORD 200 .

. WORD 300.

;opcode and non-default
; length
;lower left X value
;lower left Y value
;viewport width
;viewport height

9-7

SET WINDOW

SET WINDOW

ARGUMENTS

This instruction defines a window in VIVID Address Space. The window is
mapped automatically to the viewport.

Opcode:
Length:

23
4

FORMAT: SET_ WINDOW xw, yw, width, height

PARAMETERS: xw
X coordinate of lower left comer of window in VAS

yw
Y coordinate of lower left comer of window in VAS

width
width of window in VAS

height
height of window in VAS

END POSITION: The current position in VAS is set to the window origin.

ERRORS:

NOTES:

EXAMPLE:

9-8

Warning if co-ordinates are out of range.

This instruction provides an alternative to ZOOM_FACTORS for mapping the
viewport.

No drawing occurs. The viewport is not changed and the zoom factor is adjusted
accordingly.

.BYTE 4.,23.

.WORD 50.

. WORD 40.

.WORD 200.

.WORD 100.

;length and opcode
;lower left X value
;lower left Y value
; width
;height

WINDOW ORIGIN

WINDOW ORIGIN

ARGUMENTS

Sets the window origin to a VAS position. This defines a window which may
be projected into the VSV21 viewport in conjunction with the ZOOM_FACTOR
and SET_VIEWPORT instructions.

Opcode:
Length:

17
2

FORMAT: WINDOW_ ORIGIN x, Y

PARAMETERS: x
X coordinate of the window origin in VAS

y
Y coordinate of the window origin in VAS

END POSITION: The current drawing position is set to the window origin.

ERRORS:

NOTES:

EXAMPLE:

None

No drawing occurs.

The viewport is not changed.

. BYTE 2.,17.

.WORD 50.

.WORD 200.

;length and opcode
;X coordinate of window origin
;Y coordinate of window origin

9-9

ZOOM FACTOR

ARGUMENTS

This defines the horizontal and vertical magnification factors for the zoom
facility. It defines the mapping between the window and the viewport. The
window extent is defined by the relationship between the viewport extent and
the zoom factors.

Opcode:
Length:

19
2

FORMAT: ZOOM_FACTOR xmag, ymag

PARAMETERS: xmag
x direction magnification factor

ymag
Y direction magnification factor

END POSITION: The current position in VAS is set to the window origin.

ERRORS:

NOTES:

EXAMPLE:

9-10

Error if total magnification exceeds 127.

Display processing stops. The start and resume QIOs do not reset the
transformations, so subsequent drawing is unpredictable until magnification returns to
within the permitted limits.

No drawing occurs.

The viewport is not changed. The window extent is adjusted accordingly.

.BYTE 2.,19.

.WORD 100.

.WORD 50.

;length and opcode
;magnify times 100 in
;horizontal
;magnify times 50 in vertical

10 GLOBAL ATTRIBUTE INSTRUCTIONS

This chapter contains a description of each VIVID global attribute instruction.
Opcodes are given in decimal. A MACRO-32 example of each instruction is
provided.

10-1

AREA TEXTURE

AREA TEXTURE

This defines a cell containing the area texture pattern.

ARGUMENTS Opcode: 34
Length: 1 + number of rows

FORMAT: A REA_ TEXTURE nbit, patt1 [, patt2, ... pattn]
where n = 1-16

PARAMETERS: nbit
number of bits in bit pattern (that is, within a row)

pattn
bit pattern of row n
o : background
1 : foreground

END POSITION: The current position is not changed.

ERRORS:

NOTES:

10-2

If nbit is outside the range 1 to 16, a warning is issued and the instruction is ignored.
If the number of parameters is outside the range 2 to 16, there is a fatal error.

This instruction is similar in function to the LINE_TEXTURE instruction. Rows
in the pattern are ascending; the first row appears at the bottom of the screen. The
number of rows is given by the instruction length.

The pattern is replicated evenly throughout the filled area, and the start point in
the pattern is reset for each filled area instruction processed. The current drawing
magnification and zoom factors are applied. The default area texture is solid
foreground color.

The area texture is magnified by the drawing magnification defined at the time of the
AREA_TEXTURE instruction. Later changes to the magnification must be followed
by another AREA_TEXTURE instruction if the new drawing magnification is to be
applied.

EXAMPLE:

AREA TEXTURE

.BYTE 5.,34 .

. WORD 12.
;length and opcode (4 rows)
;12 bits in pattern per row

. WORD AB1OOllOO1OOllOO ;sets up bit pattern
; line pattern is "0 00 0 00

. WORD AB01OOllOO1OOllO ;sets bit pattern
; line pattern is " 0 00 0 00 "

. WORD ABOO1OOllOO1OOll ;set bit pattern
; line pattern is " 0 00 0 00"

.WORD AB1OO1OOllOO1OOl ;set bit pattern
; line pattern is "0 0 00 0 0"

;texture is
0 0 00 0 00 0 00 0 00

0 00 0 00 0 00 0 00

0 00 0 00 0 00 0 00

0 00 0 00 0 00 0 00 0

10-3

BACKGROUND COLOR

BACKGROUND COLOR

ARGUMENTS

This instruction sets the background color to be used for subsequent drawing.

Opcode:
Length:

28
1

FORMAT: BACKGROUND COLOR ind

PARAMETERS: ind

END POSITION:

ERRORS:

NOTES:

EXAMPLE:

10-4

color index number in color look-up table

The current position is not changed.

If the index is outside the range 0 to 15, a warning is issued and the foreground color
is not changed.

The index to the color look-up table (CLUT) identifies which of the 16 available
colors are used. Color 0 is the default. The CLUT is briefly described in the
NORMAL_COLORS section. For a full description of the CLUT, see the VSV21
User's Guide.

.BYTE 1.,28.

.WORD 10.
;length and apcade
~ca1ar 10 fram CLUT

BLINK COLORS

BLINK COLORS

ARGUMENTS

FORMAT:

This defines CLUT colors (normal colors) and alternate colors (blink colors) for
blinking.

When a SCREEN_BLINK command has enabled blinking, the normal colors
are alternated with blink colors from the blink color look-up table (BCLUT)
described in the VSV21 User's Guide as defined by BLINK_COLORS and by
BLINK_COUNT.

This command lists the indices of the normal colors which are to be alternated
while blinking. For each normal color it provides a blink color, defined in terms
of red, green and blue intensities.

The number of colors blinked is determined by BLINK_COUNT. You can
change the number of colors blinking by changing the BLINK_COUNT
parameter.

Opcode: 30
Length: 3 x number of entries or 255

BLINK_COLORS bind1, ind1, int1, bind2, ind2, int2 ...
bindn, indn, intn

where n = 1-16

PARAMETERS: bindn
color index in blink colors look-up table (BCLUT)

indn
corresponding CLUT index

intn
red, green and blue intensity code (range 0-15)

END POSITION: The current position is not changed.

ERRORS:

NOTES:

Fatal error if parameter out of range.

The maximum number of entries in the BCLUT is 16.

There are no default BCLUT settings in VIVID. It is recommended that you set these
up using a VCP command file or segment.

If a length of 255 is used, the parameter list must be terminated with END_
PARAMETERS (Section 3.3.1).

10-5

BLINK COLORS

EXAMPLE:

10-6

The color values used in this example are those used in the CLUT example given in
the VSV21 User's Guide.

. BYTE 9.,30 . ;length and opcode - 3 colors

. WORD l. ;BCLUT entry #1

. WORD 3 . ;alternating CLUT entry
; (turquoise in example)

. WORD "XOOF ; BCLUT color blue

,WORD 2. ;BCLUT entry #2
. WORD 5. ; alternating CLUT entry

; (black)
. WORD "X880 ; BCLUT color yellow

. WORD 3. ; BCLUT entry #3

. WORD 4. ;alternating CLUT entry
; (red)

. WORD "X06C ;turquoise

BLINK COUNT

BLINK COUNT

This defines the number of colors that blink when blink is enabled.

ARGUMENTS Opeode:
Length:

31
1

FORMAT: BLINK COUNT neal

PARAMETERS: neal
number of colors to blink

END POSITION: The current position is not changed.

ERRORS: If the count is outside the range 0 to 16, a warning is issued and the command is
ignored.

NOTES: VIVID has no default blink colors. It uses whatever CLUT and BCLUT colors exist
when it is loaded. VSVCP command file or display segment is recommended for
setting up your own defaults (see NORMAL_COLORS).

EXAMPLE:
.BYTE 1.,31.
.WORD 2.

;length and opcode
;two colors can blink

10-7

BLINK TIMING

BLINK TIMING

ARGUMENTS

This sets screen blink timings.

Opcode:
Length:

35
2

FORMAT: BLINK_ TIMING norm, blnk

PARAMETERS: norm
number of frames of normal colors (range 8-64)

blnk
number of frames of blink colors (range 8-64)

END POSITION: The current position is not changed.

ERRORS:

NOTES:

EXAMPLE:

10-8

Fatal error if length is incorrect.

Warning if either norm or blink is outside the range 8-64. The instruction is ignored.

No screen blink occurs until it is enabled by the SCREEN_BLINK instruction
(Section 8.1). If screen blink is currently enabled, the timing changes apply
immediately. Until a BLINK_TIMING instruction is encountered, blink on/off
occurs at 0.5 second intervals.

The frame counts are rounded down to multiples of four.

.BYTE 2.,35.

.WORD 48.

.WORD 24.

;length and opcode
;48 frames of normal colors
;24 frames of blink colors

DRAWING MODE

DRAWING MODE

ARGUMENTS

This instruction sets the drawing mode so that subsequent drawing operations
do one of the following:

Replace the display image unconditionally

Replace the display image depending on the outcome of a logical
operation on the frame buffer contents

Replace the display image depending on the outcome of a logical or
arithmetic comparison between the frame buffer and the drawing or
comparison color

The image may be drawn in either the foreground color or the background
color, or both.

Opcode:
Length:

32
20r3

FORMAT: DRAWING_MODE cmod, pmod [, ccol]

PARAMETERS: cmod
color mode:
o : draw foreground and background
1 : draw foreground only; this is the default
2 : draw background only

pmod
operational mode:
o : Replace display image; this is the default
I : OR to display image
2 : AND to display image
3 : EOR to display image
4 : Replace if display color = ccol
5 : Replace if display color =1= ccol
6 : Replace if display color < draw color
7 : Replace if display color> draw color

ccol
comparison color for pmod values of 4 and 5. A ccol value provided for any other
pmod value is ignored.

END POSITION: The current position is not changed.

10-9

DRAWING MODE

ERRORS:

EXAMPLE:

10-10

If a parameter is outside the specified range, a warning is issued and the parameter is
ignored.

. BYTE 3.,32 . ;length and opcode

. WORD o . ;draw foreground and
;background

. WORD 4 . ;replace if
;display color = ccol

. WORD 4. ;CLUT color number 4

FOREGROUND COLOR

FOREGROUND COLOR
This sets the foreground color to be used for subsequent drawing.

ARGUMENTS Opcode:
Length:

27
1

FORMAT: FOREGROUND COLOR ind

PARAMETERS: ind
color index number in color look-up table

END POSITION: The current position is not changed.

ERRORS: If the index is outside the range 0 to 15, a warning is issued and the foreground color
is not changed.

NOTES: The index to the Color Look-Up Table (CLUT) identifies which of the 16 available
colors are used. Color 15 is the default. The CLUT is briefly described in the
NORMAL_COLORS section. For a fuller description of the CLUT, see the VSV21
User's Guide.

EXAMPLE:
.BYTE 1.,27.
.WORD 12.

;length and opcode
;color 12 from the CLUT

10-11

LINE TEXTURE

LINE TEXTURE

ARGUMENTS

This instruction defines the line texture. This is a bit pattern that is repeated
in the drawn lines.

Opeade:
Length:

33
2

FORMAT: LINE_ TEXTURE nbit, fbead

PARAMETERS: nbit
number of bits in bit pattern

fbead
bit pattern for background or foreground colors

END POSITION: The current position is not changed.

ERRORS:

NOTES:

EXAMPLE:

10-12

If nbit is outside the range 1 to 16, a warning is issued and the instruction is ignored.

The bit pattern represents foreground and background colors to be used in line
drawing instructions. The line begins at bit 0 and continues for the number of bits
specified, after which bit 0 is used again. A bit set to 1 is drawn in the foreground
color and a bit set to zero is drawn in the background color.

Each line drawing instruction continues from the point reached by the previous line
drawing instruction. To reset to the beginning of the bit pattern, a further LINE_
TEXTURE instruction must be issued. The default line texture is solid foreground
color.

The line texture is magnified by the drawing magnification defined at the time of the
LINE_TEXTURE instruction. Later changes to the relative magnification must be
followed by another LINE_TEXTURE instruction if the new drawing magnification
is to be applied.

.BYTE 2.,33.

.WORD 12.

.WORD AB100110010011

;length and opcode
;12 bits in pattern
;sets up bit pattern
;line pattern is

"0 00 0 00"

NORMAL COLORS

NORMAL COLORS

ARGUMENTS

FORMAT:

This sets up to 16 colors (in terms of index and red, green and blue
intensities) in the color look-up table (CLUT).

Opcode: 29
Length: 2 x number of colors or 255

NORMAL_COLORS ind1, int1 [, ind2, int2, ... indn,
intnj

where n = 1-16

PARAMETERS: indn
color index number in CLUT

intn
intensities of red, green and blue

END POSITION: The current position is not changed.

ERRORS:

NOTES:

Fatal error if the index or intensity is out of range.

The color look-up table (CLUT) contains 16 entries with indices 0 to 15. Each color
is stored in tenus of red, green, and blue intensities in the range 0 - 15, specified by
the parameter int. CLUT entries not referenced in the parameter list are not changed.

If you want to use other colors, it is recommended that you use a VSVCP command
file' or a segment to initialize the CLUT, blink table and blink count and to set up
your own standard table. The method is described in the VSV21 User's Guide.

The new colors are applied to all previous drawing on the monitor screen. Only
one NORMAL_COLORS update occurs per frame, so it is quickest to include the
commands for all the required CLUT updates in a single instruction.

Where the maximum command length of 255 is used, the parameter list must be
terminated with an END]ARAMETERS delimiter (Section 3.3.1).

The CLUT is described in detail in the VSV21 User's Guide.

10-13

NORMAL COLORS

EXAMPLE:

10-14

The color values used in this example are those used in the CLUT example given in
the VSV21 User's Guide.

.BYTE 10.,29. ; length and opcode - 5 colors

. WORD l. ;CLUT entry #1

. WORD AXOFO ; green = red 0, green maximum,
;blue 0

. WORD 2 • ;CLUT entry #2

. WORD AX088 ;cyan

. WORD 3 .

. WORD AX06C ;turquoise

. WORD 4 •

. WORD AXFOO ired

. WORD 5 .

. WORD AXAOA ;magenta

SCREEN BLANK

SCREEN BLANK

ARGUMENTS

This instruction enables or disables screen blanking. Screen blanking gives
priority to drawing rather than display. This allows drawing speed to increase
by a factor of up to 4.

Opcode:
Length:

26
1

FORMAT: SCREEN BLANK bmod

PARAMETERS: bmod
screen mode (blank/not blank)

0: screen not blank. Display has priority.

non-zero : screen blank. Drawing has priority.

END POSITION: The current position is not changed.

ERRORS:

NOTES:

EXAMPLE:

None

The screen is blanked and drawing speed is increased by a factor of up to 4 on
a high- resolution system. This is useful for drawing a new picture quickly. On
low-resolution monitors, the gain in speed is negligible.

The screen remains blank until another SCREEN_BLANK instruction with bmod = 0
is encountered.

.BYTE 1.,26.

. WORD 1.
;length and opcode
;screen blank

10-15

SCREEN BLINK

SCREEN BLINK

ARGUMENTS

This instruction enables or disables screen blinking.

Opcode:
Length:

25
1

FORMAT: SCREEN BLINK bmod

PARAMETERS: bmod

END POSITION:

ERRORS:

NOTES:

EXAMPLE:

10-16

blink mode (on/off)
0: screen blink off
non-zero: screen blink on

The current position is not changed.

Fatal error if length is incorrect.

When this command is executed, the colors specified in the NORMAL_COLORS
command are alternated with those specified in the BLINK_COLORS command.
The interval is specified by the BLINK_TIMING instruction. Blinking continues for
the whole screen until it is disabled.

.BYTE 1.,25.

.WORD o.
;length and ope ode
;sereen blink off

11 DRAWING INSTRUCTIONS

This chapter contains a description of each VIVID drawing instruction. Opcodes are
given in decimal. A MACRO-32 example of each instruction is provided.

Many of the instructions described in this chapter can be supplied with 255 in the
instruction length byte. This is a code which indicates that the instruction length is
undefined and that the parameter list will be terminated by the END_PARAMETERS
delimiter (hex 8000).

The line drawing instructions do not draw the last point in the line. This is so that
this point can be the first point in the next drawn line. Use the DOT instruction to
draw the last pixel.

11-1

ARCS ABS

ARCS ABS

ARGUMENTS

This draws the specified sequence of circular arcs starting from the current
position.

Each arc continues from the last. It is defined in terms of its center and end
position in X, Y coordinates in VAS. The arcs are drawn in the current drawing
mode with the current line texture.

The radius of the arc is the distance between its center and the starting
position. The specified end point should be on the circumference of the arc. If
it is not, a straight line is drawn from the circumference to the end point.

Opcode: 44
Length: 5 x number of arcs, or 255

FORMAT: ARCS_ASS dir1, xcen1, ycen1, xend2, yend2 [,dir2,
xcen2, ycen2, xend2, yend2 ... dirn,
xcen~ycenn,xend~yendnJ

where n has no defined limit

PARAMETERS: dirn
drawing direction
o : counterclockwise
1 : clockwise

xcenn
X coordinate of center in VAS

ycenn
Y coordinate of center in VAS

xendn
X coordinate of end position in VAS

yendn
Y coordinate of end position in VAS

END POSITION: As defined by the final coordinates.

11-2

ERRORS:

NOTES:

ARCS ABS

A fatal error occurs if the transformed (pixel) values of the parameters do not have
the following relationship:

vi LlXC2 + LlYC2 < 4095
(M AX(A, B))2

where

A transformed relative X length in pixels

B transformed relative Y length in pixels

XC transformed value of xcen - xc

YC transformed value of ycen - yc where (xc,yc) are the coordinates of the
current position

These transformed values A and B are calculated as follows:

1 Take the total magnifications in X and Y directions respectively to obtain A and
B.

2 Divide both A and B by the largest integral power of two such that

A:2:1

and
B:2:1.

A fatal error occurs if the end point of a circular or elliptic arc falls within any of
the shaded areas of Figure 11-1. The points A, B, C and D are points at which lines
of gradient + I and -1 are tangential to the arc. Figure 11-1 shows a circle of which
the arc is a part. The same principle applies to elliptic arcs.

No drawing occurs outside the current viewport, though the drawing position may
move outside the viewport.

The parameters should be chosen such that they specify a circular arc; the distance
from the current position to the center should equal the distance from the end point
to the center. The radius should be positive and no greater than 4K VAS units after
all transformations have been applied.

The last pixel is not drawn.

Where a length of 255 is used, the parameter list must be terminated with END_
PARAMETERS (Section 3.3.1)

11-3

ARCS ABS

EXAMPLE:
.BYTE 10.,44. ; length and opcode

;first arc
. WORD o . ;direction counterclockwise
.WORD 200. ;X coordinate of center
.WORD 30. ;Y coordinate of center
.WORD 70. ;X coordinate of end position
. WORD 10. ;Y coordinate of end position

;second arc
. WORD l. ;direction clockwise
.WORD 10. ;X coordinate of center
. WORD 300. ;Y coordinate of center
. WORD 300. ;X coordinate of end position
. WORD 360. ;Y coordinate of end position

Figure 11-1 Error Areas for End Points of Circular Arcs

RE878

11-4

ARCS REL

ARGUMENTS

ARCS REL

This instruction draws the specified sequence of circular arcs, starting from
the current position.

The first arc is defined in terms of its center and the displacement of its end
from the current position. Each later arc is defined in terms of its center and
of the displacement of its end from the end position of the previous arc. The
arcs are drawn in the current drawing mode with the current line texture.

The radius of the arc is the absolute distance between its center and the
starting position. If the specified end point is not on the circumference of the
arc, a straight line is drawn from the circumference to the end point.

Opcode: 45
Length: 5 x number of arcs, or 255

FORMAT: ARCS_REL dir1, xcen1, ycen1, xend2, yend2 [,dir2,
xcen2, ycen2, xend2, yend2 ... dirn,
xcen~ycenn,xendn,yendn

where n has no defined limit

PARAMETERS: dir1
drawing direction
o : counterclockwise
I : clockwise

xcen
X displacement of center

ycen
Y displacement of center

xend
X displacement of end position

yend
Y displacement of end position

END POSITION: As defined by the final coordinates.

ERRORS: As for ARCS_ABS.

11-5

ARCS REL

NOTES:

EXAMPLE:

11-6

No drawing occurs outside the current viewport, although the drawing position may
move outside the viewport. The last pixel is not drawn. If necessary, you can draw
it by using the DOT instruction.

The parameters must be chosen so that they define an arc with a positive radius.
The radius should not exceed 4K VAS units after all the transformations have been
applied.

Where a length of 255 is used, the parameter list must be terminated with END_
PARAMETERS (Section 3.3.1)

.BYTE 10.,45. ; length and opcode
;first arc

. WORD o. ;direction counterclockwise

. WORD 10. ;X displacement of center

. WORD -30. ;Y displacement of center

. WORD -20. ;X displacement of end point

. WORD -20. ;Y displacement of end point
;second arc

. WORD o. ;direction clockwise

. WORD 50. ;X displacement of center

. WORD 30. ;Y displacement of center

. WORD 100 ;X displacement of end point

.WORD 0 ;Y displacement of end point

CIRCLE

ARGUMENTS

CIRCLE

This draws a circle with specified radius, centered on the current position.

The X and Y relative magnifications and zoom factors are applied
independently. If the two zoom factors are not equal, the VAS circle appears
on the screen as an ellipse.

The circle is drawn in the current drawing mode with the current line texture.

Opcode:
Length:

51
1

FORMAT: CIRCLE rad

PARAMETERS: rad
radius

END POSITION: The current position is not changed.

ERRORS: A fatal error occurs if the transformed (pixel) values of the parameters do not have
the following relationship:

where

A X length in pixels

B Y length in pixels

4095
R <

(M AX(A, B))2

R radius along X axis in pixels

These transformed values are calculated as follows:

1 Take the total magnifications in X and Y directions respectively to obtain A and
B.

2 Divide both A and B by the largest integral power of two such that

A~l

and
B~1.

11-7

CIRCLE

NOTES:

EXAMPLE:

11-8

No drawing occurs outside the current viewport.

. BYTE 1.,51.

.WORD 50.
;length and opcode
;radius of circle

DOT

ARGUMENTS

A dot is drawn at the current position, in the current drawing mode.

Opcode:
Length:

52
o

DOT

FORMAT: DOT

PARAMETERS: None

END POSITION: The current position is not changed.

ERRORS:

NOTES:

EXAMPLE:

None

The point designated by the terminating position in the preceding line and arc
drawing instructions is not drawn automatically. It must be drawn explicitly with a
Dot instruction. This permits the line to be continued with other drawing instructions
when in drawing modes such as EOR, where overwriting would cancel the point.

No drawing occurs outside the current viewport.

.BYTE 0.,52. ;length and opcode

11-9

ELLIPSE

ELLIPSE

ARGUMENTS

This instruction draws an ellipse of specified VAS aspect ratio and major axis,
with its center on the current position.

An ellipse is defined by three quantities (Figure 11-3). These are as follows:

Center, given by the current drawing position

Aspect ratio. This is the ratio between the lengths of the two axes of the
ellipse (X:Y)

Radius along the X axis

The ellipse is drawn in the current drawing mode with the current line texture.

Opcode:
Length:

50
3

FORMAT: ELLIPSE ax, by, fad

PARAMETERS: ax
relative horizontal length

bx
relative vertical length

fad
radius along X axis in VAS

END POSITION: The current position is not changed.

ERRORS: A fatal error occurs if the transformed (pixel) values of the parameters do not have
the following relationship:

11-10

where

A X length in pixels

B Y length in pixels

4095
R <

(MAX(A,B))2

R radius along X axis in pixels

These transformed values are calculated as follows:

1 Multiply ax and bx by the total magnifications in X and Y directions respectively
to obtain A and B.

NOTES:

EXAMPLE:

ELLIPSE

2 Divide both A and B by the largest integral power of two such that

A2:1

and
B2:l.

No drawing occurs outside the current viewport.

.BYTE 3.,50.

.WORD 4.

.WORD 1.

.WORD 50.

;length and opcode
;relative horizontal
; dimension
;relative vertical dimension
;absolute radius along X axis

Figure 11-2 Quantities Used to Define an Ellipse

CJ:ER~
RE454

11-11

ELLIPSE ARCS ABS

ELLIPSE ARCS ABS

ARGUMENTS

FORMAT:

This draws the specified sequence of elliptic arcs, starting from the current
position.

Each arc is described in terms of an x:y aspect ratio, and of its center and
end position in VAS coordinates. The aspect ratio relates to VAS coordinates
and defines the width:height relationship. The arcs are drawn in the current
drawing mode with the current line texture.

The specified end point should be on the circumference of the arc. If it is not,
a straight line is drawn from the circumference to the end point.

Opcode: 46
Length: 7 x number of arcs or 255

ELLIPSE_AReS_ASS dir1, ax1, ay1, xcen1, ycen1,
xend1, yend1 [dir2, ax2, ay2,
xcen2, ycen2,xend2, yend2 ...
dirn,axn, ayn, xcenn, ycenn,
xendn, yendn]

where n has no defined limit

PARAMETERS: dir
= drawing direction
o : counterclockwise
I : clockwise

axn
relative X length

ayn
relative Y length

xcenn
X coordinate of center in VAS

ycenn
Y coordinate of center in VAS

xendn
X coordinate of end position in VAS

yendn
Y coordinate of end position in VAS

END POSITION: As defined by the final coordinates.

11-12

ERRORS:

NOTES:

EXAMPLE:

ELLIPSE ARCS ABS

A fatal error occurs if the transformed (pixel) values of the parameters do not have
the following relationship:

4095

(M AX(A, B))2

where

A transformed relative X length in pixels

B transformed relative Y length in pixels

DXe transformed value of (xcen - cpx)

Dye transformed value of (ycen - cpy)
where (cpx,cpy) are the coordinates of the current position

These transformed values A and B are calculated as follows:

1 Multiply ax and ay by the total magnifications in X and Y directions respectively
to obtain A and B.

2 Divide both A and B by the largest integral power of two such that

A 2:: 1

and
B2::l.

A fatal error occurs if the end point of an elliptic arc falls within any of the shaded
areas of Figure 11-2. The points A, B, C and D are points at which lines of gradient
+ 1 and -1 are tangential to the ellipse.

No drawing occurs outside the current viewport, though the drawing position may
move outside the viewport. The last pixel is not drawn (see the DOT instruction).

Where a length of 255 is used, the parameter list must be terminated with END_
PARAMETERS (Section 3.3.1)

.BYTE 14.,46. ; length and opcode
;first arc

.WORD o. ;direction counterclockwise

.WORD 3. ;relative X length

. WORD l. ;relative Y length

. WORD 50 . ;X coordinate of center

. WORD 30 . ;Y coordinate of center

. WORD -10. ;X coordinate of end position

.WORD 30. ;Y coordinate of end position

;second arc
.WORD l. ;direction clockwise
. WORD 4 . ;relative X length
. WORD l. ;relative Y length
. WORD -50. ;X coordinate of center
. WORD 30 . ;Y coordinate of center
. WORD -50 . ;X coordinate of end position
. WORD 20. ;Y coordinate of end position

11-13

ELLIPSE ARCS ABS

Figure 11-3 Error Areas for End Points of Elliptic Arcs

RE858

11-14

· ELLIPSE ARCS REL

ELLIPSE ARCS REL

ARGUMENTS

FORMAT:

This instruction draws the specified sequence of elliptic arcs, starting from the
current position.

Each arc is defined in terms of three parameters, as follows:

Aspect ratio

Position of its center

Displacement of its end from the end of the previous arc

The first arc is drawn from the current position. The aspect ratio relates to
VAS coordinates and defines the width:height relationship. The arcs are
drawn in the current drawing mode with the current line texture.

The specified end point should be on the circumference of the arc. If it is not,
a straight line is drawn from the circumference to the end point.

Opcode: 47
Length: 7 x number of arcs, or 255

ELLIPSE_AReS_REL dir1, ax1, ay1, dxc1, dyc1,
dxe1, dye1 [dir2, ax2, ay2,
dxc2, dyc2, dxe2, dye2, ... dirn,
axn,ayn,dxcn, dycn, dxen,
dyen

where n has no defined limit

PARAMETERS: dirn
drawing direction
o : counterclockwise
1 : clockwise

axn
relative X length

ayn
relative Y length

dxcn
X displacement of center in VAS

dycn
Y displacement of center in VAS

dxen
X displacement of end position in VAS

11-15

ELLIPSE ARCS REL - -

END POSITION:

ERRORS:

NOTES:

EXAMPLE:

11-16

dyen
Y displacement of end position in VAS

As defined by the final coordinates.

No drawing occurs outside the current viewport, though the drawing position may
move outside the viewport. The last pixel is not drawn.

Where a length of 255 is used, the parameter list must be terminated with END_
PARAMETERS (Section 3.3.1)

.BYTE 14.,47. ; length and opcode
;first arc

. WORD o . ;direction counterclockwise

. WORD 7. ;relative X length

. WORD 1. ; relative Y length

. WORD a ;X displacement of center

. WORD -10. ;Y displacement of center

. WORD -70 . ;X displacement of end point

. WORD -10. ;Y displacement of end point
;second arc

. WORD 1. ;direction clockwise

. WORD 1. ;relative X length

. WORD 5 . ;relative Y length

. WORD a ;X displacement of center

. WORD 50. ;Y displacement of center

. WORD 10. ;X displacement of end point

. WORD 50 . ;Y displacement of end point

LINES ABS

ARGUMENTS

LINES ABS

This draws the specified sequence of lines, starting from the current position.

The first line begins at the current position. Subsequent lines are drawn from
the end of the previous line to the next position specified in VAS.

Opcode: 40
Length: 2 x number of lines, or 255

FORMAT: LINES_ASS x1, y1f, x2, y2, ... xn, yn]
where n has no defined limit

PARAMETERS: xn
X coordinate for the end of the line

yn
Y coordinate for the end of the line

END POSITION: As defined by the final coordinates

ERRORS:

NOTES:

EXAMPLE:

None

The lines are drawn in the current drawing mode with the current line texture. No
drawing occurs outside the current viewport, although the drawing position may
move outside the viewport.

The last pixel is not drawn.

Where a command length of 255 is used, the parameter list must be terminated by
END_PARAMETERS (Section 3.3.1).

. BYTE 4.,40 . ; length and opcode

. WORD 60 . ;X coordinate and

. WORD 20 . ;Y coordinate
; for end of first line

. WORD 45 . ;X coordinate and

. WORD 50. ;Y coordinate
; for end of second line

11-17

LINES REL

LINES REL

ARGUMENTS

This instruction draws the specified sequence of lines, starting from the
current position.

The first line begins at the current position. Later lines are drawn from the end
of the previous line to the next position specified as a dx, dy displacement pair
of coordinates.

Opcode: 41
Length: 2 x number of lines or 255

FORMAT: LINES_REL dx1, dy1 [, dx2, dy2 ... dxn, dyn]
where n has no defined limit

PARAMETERS: dxn
X displacement for the next end vector

dyn
Y displacement for the next end vector

END POSITION: As defined by the final coordinates.

ERRORS:

NOTES:

EXAMPLE:

11-18

None

The lines are drawn in the current drawing mode with the current line texture. No
drawing occurs outside the current viewport, although the drawing position may
move outside the viewport.

The last pixel is not drawn.

Where a command length of 255 is used, the parameter list must be terminated by
END]ARAMETERS (Section 3.3.1).

.BYTE 6.,41.

.WORD 10.

.WORD 20.

.WORD 15.

.WORD 40.

.WORD -35.

.WORD -5.

;length and opcode
;X displacement
;Y displacement
;X displacement
;Y displacement
;X displacement
;Y displacement

MOVE ASS

MOVE ABS

This moves the current drawing position to the absolute location specified.

ARGUMENTS Opcode:
Length:

FORMAT: MOVE_ABS x, y

PARAMETERS: x
X coordinate in VAS

y
Y coordinate in VAS

END POSITION: As defined by x, y

ERRORS: None

38
2

NOTES: The position may be outside the screen image boundaries.

EXAMPLE:

No drawing is performed.

.BYTE 2.,38 .

. WORD 100.

.WORD 200.

;length and opcode
;X coordinate
;Y coordinate

11-19

MOVE REL

MOVE REL

This instruction moves the current drawing position to the relative position
specified.

ARGUMENTS Opcode:
Length:

39
2

FORMAT: MOVE_REL dx, dy

PARAMETERS: dx
X displacement from the current position

dy
Y displacement from the current position

END POSITION: As defined by the previous position and the new coordinates.

ERRORS: None

NOTES: The position may be outside the viewport boundaries.

EXAMPLE:

11-20

No drawing is performed.

.BYTE 2.,39.

.WORD 15.

.WORD 60.

;length and opcode
;X displacement
;Y displacement

MOVE TO CURSOR

MOVE TO CURSOR

This instruction gives a move to the current cursor position.

ARGUMENTS Opcode:
Length:

53
o

FORMAT: MOVE TO CURSOR

PARAMETERS: None

END POSITION: The current cursor position.

ERRORS: None

NOTES: The position is always within the screen boundaries.

No drawing is performed.

EXAMPLE:
.BYTE 0.,53. ;length and ope ode

11-21

POLYMARKS ABS

POLYMARKS A8S

ARGUMENTS

This draws the specified character from the current font at each point given by
a list of X, Y coordinate pairs.

The character cell specified by CELL_SIZE is used and centered at the
specified position. The parameters given with the CELL_MOVEMENT
command are ignored, but the CELL_OBLIQUE, CELL_ROTATION and
CELL_MAGNIFICATION parameters are applied. These commands are
described in this chapter.

Where a length of 255 is used, the parameter list must be terminated with
END_PARAMETERS (Section 3.3.1).

Opcode: 42
Length: 1 + (2 x number of pOints), or 255

FORMAT: POLYMARKS_ABS ichar, x1, y1 [, x2, y2, ... xn, yn]
where n has no defined limit

PARAMETERS: ichar
index of character required

xn
X coordinate in VAS

yn
Y coordinate in VAS

EN 0 POSITION: The final position specified. If there is an error, no drawing occurs and the final
position is unchanged.

ERRORS: Error if index of character is out of range.

NOTES: No drawing occurs outside the viewport.

11-22

The character cell is centered on the specified position. No marker is drawn at the
starting position. If this is required, the initial displacement must be (0, 0).

Where a length of 255 is used, the parameter list must be terminated with END_
PARAMETERS (Section 3.3.1)

POLYMARKS ABS

EXAMPLE:
.BYTE 255.,42. ; length (undefined) and opcode
. WORD 9. ; index of character
. WORD 100. ;X coordinate of 1st position
. WORD 200. ;Y coordinate of 1st position
. WORD 300. ;X coordinate of 2nd position
. WORD 200. ;Y coordinate of 2nd position

. WORD 32768 . ; END PARAMETERS -

11-23

POLYMARKS REL

POLYMARKS REL

ARGUMENTS

FORMAT:

This draws the character specified from the current font at each of the points
specified by a list of X, Y displacements.

The character cell specified by CELL_SIZE is used and centered at the
specified position. The parameters given with the CELL_MOVEMENT
command are ignored, but the CELL_OBLIQUE, CELL_ROTATION and
CELL_MAGNIFICATION parameters are applied. These commands are
described in Chapter 13.

Opcode:
Length:

43
1 + (2 x number of pOints),
or 255

POLYMARKS_REL ichar, dx1, dy1[, dx2, dy2 ... dxn,
dyn]

where n has no defined limit

PARAMETERS: ichar
index number of character required

dxn
X displacement

dyn
Y displacement

END POSITION: The final position specified. If there is an error, the final position is unchanged.

ERRORS: Error if index of character is out of range.

NOTES: No drawing occurs outside the viewport.

11-24

The character cell is centered on the specified position. No marker is drawn at the
starting position. If this is required, the initial displacement must be (0, 0).

Where a length of 255 is used, the parameter list must be terminated with END_
PARAMETERS (Section 3.3.1)

POLYMARKS REL

EXAMPLE:
. BYTE 5.,43 . ; length and opcode
. WORD 9 ; index of character
. WORD 100 . ;X displacement
. WORD 200 . ;Y displacement
. WORD -50. ;X displacement
. WORD 20 . ;Y displacement

11-25

RECTANGLE ASS

RECTANGLE ABS

This instruction draws a rectangle from a vertex at the current position to the
diagonal vertex specified.

The rectangle is drawn in the current drawing mode with the current line
texture.

ARGUMENTS Opcode:
Length:

48
2

FORMAT: RECTANGLE_ABS x, y

PARAMETERS: x
X coordinate in VAS of opposite vertex

y
Y coordinate in VAS of opposite vertex

END POSITION: The current position is not changed.

ERRORS: None

NOTES: No drawing occurs outside the current viewport.

EXAMPLE:

11-26

.BYTE 2.,48.

.WORD 250.

.WORD 150.

;length and opcode
;X coordinate
;Y coordinate of opposite
;vertex

RECTANGLE REL

RECTANGLE REL

This draws a rectangle from a vertex at the current position to the diagonal
vertex specified.

The rectangle is drawn in the current drawing mode with the current line
texture.

ARGUMENTS Opcode:
Length:

49
2

FORMAT: RECTANGLE_REL dx, dy

PARAMETERS: dx
X displacement of opposite vertex

dy
Y displacement of opposite vertex

END POSITION: The current position is not changed.

ERRORS: None

NOTES: No drawing occurs outside the current viewport.

EXAMPLE:
.BYTE 2.,49.
.WORD 150.
.WORD -30.

;length and opcode
;X displacement
;Y displacement of opposite
;vertex

11-27

12 FILLED FIGURE INSTRUCTIONS

This chapter contains a description of each VIVID filled figure instruction. Opcodes
are given in decimal. A MACRO-32 example of each instruction is provided.

12-1

FILLED RECT ABS

ARGUMENTS

A rectangle is drawn from a vertex at the current position to the diagonal
vertex specified as an absolute position in VAS. The rectangle is then filled
with the area texture pattern.

Opcode:
Length:

56
2

FORMAT: FILLED_RECT_ABS x, y

PARAMETERS: x
X coordinate in VAS of opposite vertex

y
Y coordinate in VAS of opposite vertex

END POSITION: The current position is not changed.

ERRORS: None

NOTES: No drawing occurs outside the current viewport.

EXAMPLE:

12-2

After all the transformations have been applied, the extent of the rectangle should not
exceed +/- 16383 in the X or Y direction.

. BYTE 2., 56 .

.WORD 100.

.WORD 200.

;length and opcode
;x=100
;y=200

FILLED RECT REL

FILLED RECT REL

A rectangle is drawn from a vertex at the current position to the diagonal
vertex and filled with the area texture pattern. The diagonal vertex is specified
as a displacement from the current position.

ARGUMENTS Opcode:
Length:

57
2

FORMAT: FILLED_RECT_REL dx, dy

PARAMETERS: dx
horizontal displacement of opposite vertex

dy
vertical displacement of opposite vertex

END POSITION: The current position is not changed.

ERRORS: None

NOTES: No drawing occurs outside the current viewport.

After all the transformations have been applied, the extent of the rectangle should not
exceed +/- 32767 in the X or Y direction.

DESCRIPTION Example:)

.BYTE 2.,57.

.WORD 200.

.WORD 100.

;length and opcode
;xd=200
;yd=100

12-3

FLOOD AREA

FLOOD AREA

ARGUMENTS

This instruction fills the area which includes the current position to the defined
edge color, or current foreground color, with the area texture pattern. The
area texture pattern is written in Replace mode, irrespective of the current
drawing mode.

Opcode:
Length:

58
00r1

FORMAT: FLOOD_AREA lind]

PARAMETERS: ind
CLUT index of edge color to which filling occurs. Range 0 to 15. -1: defaults to
current foreground color

END POSITION: The current position is not changed.

ERRORS:

NOTES:

EXAMPLE:

12-4

A warning is issued if the color parameter is invalid (outside the range -1 to 15), and
no flooding occurs.

The foreground and background colors are also edge colors, and it may be necessary
to set them. If the foreground or background color can appear in the area to be filled,
it is safer to use the following procedure:

1 Save attributes

2 Set foreground and background to the same color. This color is otherwise
unused

3 Flood the area to the foreground color

4 Restore color attributes

5 Paint the area containing the unused color as selected in (2).

If the edge color parameter is omitted or is -1, filling occurs to the current foreground
color.

No matches are generated by this instruction.

No drawing occurs outside the current viewport.

.BYTE 1.,58.

.WORD 10.
;length and opcode
;co1or 10 from CLUT

PAINT AREA

ARGUMENTS

PAINT AREA

This instruction fills the area of the specified color which includes the current
position with the area texture pattern.

The current foreground and background colors cannot be used as the
specified color. The area texture pattern is written in Replace mode,
irrespective of the current drawing mode.

Opcode:
Length:

59
1

FORMAT: PAINT AREA ind

PARAMETERS: ind
index of color to be replaced

EN D POSITION: The current position is not changed.

ERRORS: Warning if parameter invalid.

Warning if the color to be replaced is the current foreground or background color.

NOTES:

EXAMPLE:

No matches are generated by this instruction.

No drawing occurs outside the current viewport.

.BYTE 1.,59.

.WORD 11.
;length and opcode
;co1or 11 from CLUT

12-5

13 TEXT INSTRUCTIONS

This chapter contains a description of each VIVID text instruction. Opcodes are
given in decimal. A MACRO-32 example of each instruction is provided.

The instructions DRAW_CHARS and DRAW]ACKED_CHARS are used to draw
characters. The attributes of these characters are defined by the other instructions in
this chapter.

The CELL_MAGNIFICATION instruction specifies one of the following character
modes:

Pixel mode

In this mode, only the cell magnification factors are applied. All dimensions and
movements are defined in terms of pixels on the display surface. Consequently,
the aspect ratio of the characters will vary according to the resolution of the
monitor, as follows:

High resolution monitor gives a pixel aspect ratio of 1: 1

Low resolution monitor gives a pixel aspect ratio of 1:2

This variation can be corrected by using a Y magnification factor
which is twice that of the X factor when a high-resolution monitor is
used. The default values used implement this principle. See CELL_
MAGNIFICATION.

When cells are drawn at angles of 45, 135,225, or 315 degrees, they appear
larger by a factor of 1.414 than those drawn in a horizontal plane. In pixel
mode, the current point is maintained true in terms of pixels on the display
surface, but not in VAS units.

Relative mode

The current point is maintained true in terms of VAS units. This is because the
parameters entered with the SET_WINDOW, SET_VIEWPORT and ZOOM_
FACTOR instructions (Chapter 9) are taken into account. Cells are always
drawn to the size nearest the ideal, so the characters drawn at angles which
are mUltiples of 45 degrees will be nominally the same size as those drawn
horizontally. This may result in cells overlapping, but this effect can be corrected
with the CELL_MOVEMENT instruction. Within the limitations imposed by the
monitors, characters are displayed at the same size on monitors of both types.

13-1

CELL MAGNIFICATION

CELL MAGNIFICATION

ARGUMENTS

This instruction defines the horizontal and vertical cell magnification, in terms
of pixels or relative magnification.

Opcode:
Length:

69
3

FORMAT: CELL_MAGNIFICATION utyp, xmag, ymag

PARAMETERS: utyp
code for magnification unit type
0: pixels
1 : relative (this is the default)

xmag
magnification in the cell X direction (range 1-16).
The default is 1.

ymag
magnification in the cell Y direction (range 1-16).
The default is 2.

END POSITION: The current position is not changed.

ERRORS:

NOTES:

13-2

A warning is issued if the maximum magnification of 16 is exceeded. A default
magnification of 16 is then used.

Cell magnification operates in addition to other magnification factors. The maximum
total magnification on either axis is 16.

For pixel magnification, the magnification indicates the number of replications of
each pixel on subsequent text-outputting instructions.

For relative magnification, the units correspond to the units used in relative drawing
(Chapter 9) and viewport/window mapping and zoom factors are multiplied by the
cell magnification factors to give the total magnification. Cells are displayed at the
nearest size available to the ideal size calculated. If the calculated size is less than
0.5 in either the X or Y direction, the value is rounded to zero and there is no visual
output. However, the current point is moved by the appropriate amount.

This can be used to reveal information as the screen is zoomed; text which under
certain conditions would not appear may be revealed as the overall magnification
factor is increased.

No drawing is performed.

CELL MAGNIFICATION

EXAMPLE:
.BYTE 3.,69. ; length and opcode
. WORD 1. ;relative magnification
. WORD 4 . ;magnification in cell X direction
. WORD 6 • ;magnification in cell Y direction

13-3

CELL MOVEMENT

CELL MOVEMENT

ARGUMENTS

This defines a relative movement from the end of one character cell to a final
current position.

The relative movement rotates and the distances are altered, as in CELL_
ROTATION.

Opcode:
Length:

70
2

FORMAT: CELL_MOVEMENT xd, yd

PARAMETERS: xd

END POSITION:

ERRORS:

NOTES:

EXAMPLE:

13-4

horizontal displacement

yd
vertical displacement

The current position is not changed.

None

Until a CELL_MOVEMENT instruction is encountered, the default movement sets
the drawing position to the start point for a following cell with no gap, irrespective
of the rotation.

The distances xd, yd have units as defined by CELL_MAGNIFICATION.

No drawing is performed.

.BYTE 2.,70 .

. WORD 1.

.WORD 2.

;length and opcode
;X movement
;Y movement

CELL OBLIQUE

This defines whether subsequent cells are to be drawn rectangularly, or in
italic (4S-degree slope) form.

ARGUMENTS Opcode:
Length:

66
1

FORMAT: CELL OBLIQUE ital

PARAMETERS: ital
parameter for rectangular or italic character
o : rectangular character
1 : italic character

END POSITION: The current position is not changed.

ERRORS: If the parameter is invalid, a warning is generated and oblique is assumed.

NOTES: No drawing is performed.

EXAMPLE:
.BYTE 1.,66.
.WORD 1.

;length and opcode
;ita1ic character

13-5

CELL ROTATION

CELL ROTATION

This instruction defines the angle at which cells are written to the display
image. The angle is defined in 45-degree counterclockwise units.

ARGUMENTS Opcode:
Length:

67
1

FORMAT: CELL_ROTATION ndeg

PARAMETERS: ndeg
number of 45-degree units of rotation
0: horizontal
1 : 45 degrees
2 : 90 degrees
3: 135 degrees
4: 180 degrees
5 : 225 degrees
6 : 270 degrees
7 : 315 degrees

END POSITION: The current position is not changed.

ERRORS: A warning is issued if the parameter is out of range, and zero rotation is assumed.

NOTES: Cells rotated at 45, 135,225 and 315 degrees are distorted on presentation.

EXAMPLE:

13-6

No drawing is performed.

.BYTE 1.,67.

.WORD 6.
length and opcode
rotate cell 270 degrees
counterclockwise

CELL SIZE

ARGUMENTS

CELL SIZE

This defines the length and width of the display image cell and the
displacement of the stored font cell within the display image cell.

Opcode:
Length:

68
4

FORMAT: CELL_SIZE width, height, xdis, ydis

PARAMETERS: width
width of display cell in pixels
(range 1-16)

height
height of display cell in pixels
(range 1-16)

xdis
horizontal displacement of font cell
(range 0-15)

ydis
vertical displacement of font cell
(range 0-15)

EN D POSITION: The current position is not changed.

ERRORS:

NOTES:

Error if parameter out of range. The currently-defined value remains unchanged.

Any part of the font cell whose dimensions or displacement would place it outside
the display cell is truncated. Any part of the display cell not covered by the font cell
is set to the font default cell value; that is, all foreground or all background.

If no CELL_SIZE instruction has been encountered, the display cell for any font
corresponds to the font dimensions.

Units are applied to the dimensions by CELL_MAGNIFICATION.

No drawing is performed.

13-7

CELL SIZE

EXAMPLE:
.BYTE 4.,68. ; length and opcode
. WORD 10 . ;width 10 pixels
. WORD 12 . ;height 12 pixels
. WORD 1. ;horizontal displacement
. WORD 2 . ;vertical displacement

13-8

DRAW CHARS

DRAW CHARS

ARGUMENTS

This displays the characters specified by each index in the parameter list.
There is one index per word.
See also DRAW_PACKED_CHARS.

Opcode: 71
Length: number of characters, or 255

FORMAT: DRAW_CHARS ind1[, ind2, ... indn]
where n has no defined limit

PARAMETERS: indn
index to cell in font

END POSITION: Defined by the CELL_MOVEMENT instruction. If no CELL_MOVEMENT
instruction has been encountered, the instruction "CELL_MOVEMENT 0, ()" is
implied. The final end position follows the last valid index for which a cell has !1L'l'll

written to the display image.

ERRORS: Error if index is out of range or if font is not currently defined.

NOTES:

EXAMPLE:

Warning if total cell magnification exceeds 16.

The output uses the current foreground and background colors and the current
drawing mode.

Where a length of 255 is used, the parameter list must be terminated with END_
PARAMETERS (Section 3.3.1).

No drawing occurs outside the viewport. Match may be detected.

• BYTE 3., 71 .
• WORD l.
.WORD 20.
· WORD 16.

;length and opcode
;draw character 1
;draw character 20
;draw character 16

13-9

DRAW PACKED CHARS

DRAW PACKED CHARS

ARGUMENTS

This instruction displays the characters specified by each index in the
parameter list. Indices are packed two per parameter word.
See also DRAW_CHARS.

Opcode: 72
Length: (number of chars+ 1)/2 or 255

FORMAT: DRAW_PACKED_CHARS i1 j1 [,i2j2, .. .injn]
where n has no defined limit

PARAMETERS: in, jn = any two characters from byte string

ERRORS: Error if index is out of range or if font is not currently defined.

NOTES:

EXAMPLE:

13-10

Warning if total cell magnification exceeds 16.

Except for the parameter format, processing is as for DRAW_CHARS. If the number
of characters to be output is odd, use a final END_PARAMETERS index of 255.
This will be ignored.

The character defined by the low byte is drawn first.

.BYTE 2.,72.

.BYTE 11.,5.

.BYTE 6.,12.

;length and opcode
;character 11,5
;characters 6,12

INITIALIZE FONT

INITIALIZE FONT

ARGUMENTS

This instruction initializes the specified segment as a font, irrespective of the
segment contents.

Opcode:
Length:

63
40r5

FORMAT: INITIALIZE_FONT segid, width, height, ncell [,init]

PARAMETERS: segid
segment ID

width
cell width in pixels (l to 16)

height
cell height in pixels (l to 16)

ncell
number of cells in the font (>0)

init
initialization style for cells:
o : blank; this is the default
-1 : solid

END POSITION: The current position is not changed.

ERRORS: An error occurs in the following cases:

Parameter is out of range

Segment is not large enough

Segment has not been defined

If there is an error, the segment is not initialized as a font. It retains its original
identity.

EXAMPLE:
.BYTE 5.,63.
.WORD AXOFOl
.WORD 10.
.WORD 12.
.WORD 36.
. WORD -1.

;length and opcode
;segment class 15, number 1
;cell width 10 pixels
;cell height 12 pixels
;36 cells in font
;foreground initialization
;style

13-11

LOAD CHAR CELL

LOAD CHAR CELL

ARGUMENTS

A character cell is loaded to the current font from the pixel data given as
parameters.

Opcode: 65
Length: 255, or number of rows + 1

FORMAT: LOAD_CHAR_CELL ind, irow1 [, irow2, ... irownJ
where n = 1-16

PARAMETERS: ind
cell index

irown
image value for a pixel row

END POSITION: The current position is not changed.

ERRORS:

NOTES:

EXAMPLE:

13-12

A warning is issued if there are too many rows; excess rows are discarded.

Rows are in sequence, the first being the bottom row of the cell. Any rows at the
top of the cell not provided are filled solid or blank, depending on font initialization
(Chapter 11).

Where a length of 255 is used, the parameter list must be terminated with END_
PARAMETERS (Section 3.3.1).

. BYTE 11.,65 . ;length and opcode

. WORD 82. ;cell index 82

.WORD ABOOOOOOOO ;bottom row of cell

.WORD ABOOOOOOOO
;letter "R"

.WORD ABIOOOOOIO

. WORD ABOIOOOOIO

. WORD ABOOIOOOIO

. WORD ABOll11110

. WORD ABIOOOOOIO

. WORD ABIOOOOOIO

. WORD AB01111110

. WORD ABOOOOOOOO ;top row of cell

SET FONT

ARGUMENTS

SET FONT

This sets the current font to the identified font segment. This font is used for
subsequent VIVID instructions which access fonts.

Opcode:
Length:

64
1

FORMAT: SET_FONT segid

PARAMETERS: segid
font segment ID

END POSITION: The current position is not changed.

ERRORS:

NOTES:

EXAMPLE:

An error occurs in the following cases:

Segment is not found

Segment is not a font segment

If there is an error, the current font remains unchanged.

If no SET_FONT has been encountered, the following rules apply:

The supplied multinational font is used if it has not been deleted. It has a
segment ID of hex lOFF, decimal 4351. Fonts may be downloaded by a VSVCP
command.

If the supplied font has been deleted, the current font is undefined. A font
reference other than SET_FONT causes an error.

.BYTE 1.,64.

.WORD 3500.
;length and opcode
;font number 3500

13-13

14 AREA OPERATION INSTRUCTIONS

This chapter contains a description of each VIVID area operation instruction.
Opcodes are given in decimal. A MACRO-32 example of each instruction is
provided.

14-1

CLEAR SCREEN

CLEAR SCREEN

ARGUMENTS

This instruction clears the display.

Opcode:
Length:

76
Oor 1

FORMAT: CLEAR_SCREEN [patt]

PARAMETERS: patt
list of color indices for screen

END POSITION: The current position is reset to the current window origin.

ERRORS:

NOTES:

EXAMPLE:

14-2

None

If no parameter is supplied, the screen is cleared to the current background color.

The color indices define a repeating four-pixel pattern from left to right along each
screen raster. In display order, the indices are in bits 0-3, 4-7, 8-11 and 12-15. See
the NORMAL_COLORS command (Chapter 8) for a description of these indices.

The viewport is ignored.

.BYTE 1.,76.

. WORD AXllll
;length and opcode
;clear to color 1

CLEAR VIEWPORT

CLEAR VIEWPORT

This clears the viewport to the current background color.

ARGUMENTS Opcode:
Length:

77
o

FORMAT: CLEAR VIEWPORT

PARAMETERS: None

END POSITION: The current position is set to the window origin.

ERRORS: None

EXAMPLE:
.BYTE 0.,77. ;length and opcode

14-3

COPY ABS

COpy ABS

ARGUMENTS

The specified source area is copied to an area with a vertex at the current
position and a defined orientation. The origin of the source area is expressed
as an absolute position in VAS.

Opcode:
Length:

85
5

FORMAT: COPY_ABS amod, XS, ys, xdim, ydim

PARAMETERS: amod
attitude mode

xs
X position of the source area origin in VAS

ys
Y position of the source area origin in VAS

xdim
X dimension of the source copy area in VAS

ydim
Y dimension of the source copy area in VAS

END POSITION: The current drawing position is not changed.

ERRORS:

NOTES:

EXAMPLE:

14-4

Warning if amod is out of range 0 to 15. The parameter is masked into range.

The effects of the parameter amod and the signs of xdim and ydim are described in
NOTES ON THE COPY INSTRUCTIONS.

Movement may be simulated by overlapping copies so that each new copy performed
deletes the pictorial body of the previous copy. If the pictorial element copied has a
border, simple dynamics may be effected.

No drawing occurs outside the viewport. The current drawing mode applies.

. BYTE 5.,85 .

. WORD l.

. WORD 10 .

. WORD 20 .

. WORD 200 .

. WORD 400 .

;length and opcode
;attitude mode
;X position of source area origin
;Y position of source area origin
;width of source copy area
;height of source copy area

COpy REL

ARGUMENTS

COPY REL

The parameter-defined source area is copied to an area with a vertex at
the current position with a defined attitude. The origin of the source area is
expressed relative to the current position.

No drawing occurs outside the viewport. The current drawing mode applies.

Opcode:
Length:

86
5

FORMAT: COPY_REL amod, dxs, dys, xdim, ydim

PARAMETERS: amod
attitude mode

dxs
X VAS displacement of the source area origin

dys
Y VAS displacement of the source area origin

xdim
X VAS dimension of the source copy area

ydim
Y VAS dimension of the source copy area

END POSITION: The current drawing position is not changed.

ERRORS:

NOTES:

Warning if amod is out of range 0 to 15. The parameter is masked into range.

The effects of the parameter amod and the signs of xdim and ydim are described in
NOTES ON THE COPY INSTRUCTIONS.

Movement is simulated by overlapping copies so that each new copy performed
deletes the pictorial body of the previous copy. If the pictorial element copied has a
border, simple dynamics may be effected.

14-5

COpy REL

EXAMPLE:
. BYTE 5.,86 . ; length and opcode
. WORD 1. ;attitude mode
. WORD 25. ;X displacement of source area

;origin
.WORD 60. ;Y displacement of source area

;origin
. WORD 200 . ;width of source copy area
. WORD 400 . ;height of source copy area

14-6

NOTES ON THE COPY INSTRUCTIONS

NOTES ON THE COPY INSTRUCTIONS
The COPY _ABS and COPY _REL instructions copy part of a picture from one
area on the screen to another. Attention to the scan directions is necessary to avoid
corruption of the destination area when it overlaps the source area.

The picture is copied pixel by pixel. The instruction parameters define the order
in which the pixels are read from the original area and the order in which they are
written to the new location. This, for example, allows you to transform the picture
by rewriting it as a mirror image or upside down.

The parameter amod defines two things:

The order of the source scan, as follows:

amod

0-7
8 - 15

Scan direction

row by row, bottom to top
column by column, left to right

The direction of the destination scan.

Unlike the source scan, the destination scan is not restricted to any basic
directions. The pixels may be written to the destination in a total of eight ways
(Table 14-1). The conventions adopted in Table 14-1 areas follows:

+x left to right

-x right to left

+Y upwards

-Y downwards

Table 14-1 Order of Pixel Write to Destination Area by amod Value

Value of amod Scan direction 1 st

o or 8 +x
1 or 9 +x
2 or 10 -X

3 or 11 -X

4 or 12 +Y
5 or 13 -Y
6 or 14 +Y
7 or 15 -Y

The parameters xdim and ydim define two things:

• The size of the area to be scanned

• The direction of the source scan.

Scan direction 2nd

+Y
-Y

+Y
-Y

+x
+x
-x
-x

14-7

NOTES ON THE COpy INSTRUCTIONS

14-8

The order of the scan is basically row, column, until it is modified by the parameter
amod. The direction is specified as follows:

Sign Direction

xdim ydim

+ + left to right, bottom to top

+ left to right, top to bottom

+ right to left, top to bottom

right to left, bottom to top

Example: Set amod = 6
xdim> 0
ydim < 0

The following happens:

1 The source area is scanned left to right, top to bottom as follows:

first direction ------->
second

direction 1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18
V 19 20 21 22 23 24

2 The destination area receives data in the following order:

24 18 12 6
23 17 11 5
22 16 10 4
21 15 9 3
20 14 8 2 first direction
19 13 7 1

<---- second direction

Figures 14-1 and 14.2 illustrate the effects of the amod value and the signs of the
parameters xdim and ydim on the orientation of a simple right-angle figure when
it is copied. The source and destination area origins are indicated by "0" and the
opposite vertex defined by xdim, ydim is indicated by "*". Scan directions are
indicated by">" and "»" characters. The first direction is shown by"»", and
the second direction by">".

NOTES ON THE COpy INSTRUCTIONS

Figure 14-1 Effect of Parameter Values and Signs on Orientation of
Copied Picture; amod range 0 - 7 (1 st half)

SIGN
xdim + +

~:cc .,m! (i i 1,::! I (" j j r j

DESTINATION ~ ~ l:I ITl
~~~ifi:~ 00 ! l.J ! JJ !l:J l~ 

JTll--yl!Tl!~ 
~ ~ ~ ~ 

Cl·~ [J:.. w: [J: . . ... . .. 
o 0 0 0 

03ryr 
LiJ 

04n 
!~ 

r.~l 0 i-T1 lFi 
~ LJ LJ 

D···: [J. 0····· . ..... . 
000 

I~ r~ i~ ~~ 
05U 0 LJ t=J 

06 [J. 0····· g. D···: ·····0· ..... . 
o 0 0 

~~ ~~ ~i 1.1 07U L:=J U ~ 

14-9 



NOTES ON THE COpy INSTRUCTIONS 

14-10 

Figure 14-2 Effect of Parameter Values and Signs on Orientation of 
Copied Picture; amod range 8 - 15 (2nd half) 

SOURCE 
SCAN 

SIGN 
xdim + 

~IJ 
- + -

lDOrIJ 
----------------------------------

DESTINATION [] [] Q EJ ;~~Ti~~ 08 : •••• :: : •••• 
BYamod 0 ••••• ••••••• 

VALUE 0 0 0 

r~ 1---=1 i~ i:l 
09Lj 0 U 0 

10 I :. ... : ! I :': ~. ! I .. ·::! I":':! 
r;::7:1 r 1 ~l 1.1 11U 0 LJ 0 

12! ~~. I ! '.'~ I ! ~:. I !) I 

)Tl fll I ~'''I ! .:~ I G.J GU· . 

CJ·: 14 : . 
o 

15IT i 
L::U 

ITJOITJ 
fTi '1r ry:-r 
li::J LiJ LJ 



FAST PIXEL MODIFY 

FAST PIXEL MODIFY 

ARGUMENTS 

This writes a specified segment which contains pixel data from the host 
or VSV21 memory to the display image by performing a specified logical 
operation. It is done starting at the word (a unit of four pixels) containing the 
current position. 

If the display bounds in the X axis are exceeded, wraparound occurs. If the 
display bounds in the Y axis are exceeded, output is truncated to the screen 
bounds. 

The pixel data is organized as specified in Chapter 3, Font Segment and Pixel 
Data Segment, and runs a number of words (of four pixels each) right or left 
and a number of pixels upward or downward depending on the sign. Positive 
values denote movement upward or to the right. These size parameters are 
held in the segment header. 

Opcode: 
Length: 

83 
3 

FORMAT: FAST_PiXEL_MODiFY segid, mode, mask 

PARAMETERS: segid 
pixel data map segment ID 

mode 
operational mode: 
o : Replace display image 
I : OR with display image 
2 : AND with display image 
3 : EOR with display image 

mask 
word bit mask 

END POSITION: The current position is not changed. 

ERRORS: Error if one of the following is true: 

Segment is not found 

Segment is of the wrong type 

Segment is too small for its defined contents 

Warning given if output would exceed the address range of the display image frame 
buffer. 

14-11 



NOTES: 

EXAMPLE: 

14-12 

The parameter mask selects the bits in each word for use in the operation (1 = on, 0 
= oft). This enables overlays to be written, for example. 

The area written is logically rectangular. However, if the display image X range is 
exceeded, the display is wrapped around. 

The current position must be within the screen bounds. 

No matches are detected. The viewport is ignored. 

.BYTE 3.,83. 

.WORD AXD01 

.WORD 1. 

.WORD AXD4A7 

;length and opcode 
;segment class 13, number 1 
;OR with display image 
;mask 1101 0100 1010 0111 



FAST PIXEL WRITE 

FAST PIXEL WRITE 

ARGUMENTS 

This instruction writes a specified segment containing pixel data from the host 
or VSV21 memory to the display image, starting at the word (a unit of four 
pixels) containing the current position. 

If the display bounds in the Y axis are exceeded, output is truncated to the 
screen bounds. 

The pixel data is organized as specified in Section 3.3.3 and runs a number 
of words (of four pixels each) right or left and a number of pixels upward or 
downward depending on the sign. Positive values denote movement upward 
or to the right. These size parameters are held in the segment header. 

No matches are detected. The viewport is ignored. 

Opcode: 
Length: 

82 
1 

FORMAT: FAST_PIXEL_ WRITE segid 

PARAMETERS: segid 
pixel data map segment ID 

END POSITION: The current position is not changed. 

ERRORS: 

NOTES: 

EXAMPLE: 

Error if one or more of the following is true: 

Segment is not found 

Segment is the wrong type 

Segment is too small for its defined contents 

Warning given if output would logically exceed display image bounds. 

The area written is logically rectangular. However, if the display image X range is 
exceeded, the display is wrapped around. 

The current position must be within the screen bounds. 

. BYTE 1.,82. 

.WORD AXD01 
;length and opcode 
;segment class 13, number 1 

14-13 



PIXEL READBACK 

PIXEL READBACK 

ARGUMENTS 

This reads a display image area to a specified segment. This segment is 
normally in host memory. The segment may be used for subsequent pixel 
write operations. 

Each row of pixel data is an integer number of frame buffer words. A frame 
buffer word contains four pixels. The start position of the transfer is the frame 
buffer (display image) word containing the current position. 

Opcode: 
Length: 

80 
3 

FORMAT: PIXEL_READBACK segid, dxw, dyp 

PARAMETERS: segid 
pixel data map segment ID 

dxw 
area width in words (of 4 pixels each). Positive values indicate displacement to right. 

dyp 
area height in pixels. Positive values indicate upward displacement. 

END POSITION: The current position is not changed. 

ERRORS: 

NOTES: 

EXAMPLE: 

14-14 

Error shown if segment is not found or is too small. 

The segment is initialized as a pixel data segment, irrespective of its former identity. 

The area read back to the segment is rectangular. 

The pixel data is organized in the segment as specified in Section 3.3.3. 

.BYTE 3.,80. 

.WORD "XD01 

.WORD 25. 

.WORD 50. 

;length and opcode 
;segment class 13, number 1 
;25 words wide = 100 pixels 
;50 pixels high 



PIXEL WRITE 

PIXEL WRITE 

ARGUMENTS 

This instruction writes a specified segment containing pixel data to the display 
image at the current drawing position. 

The pixel data is organized as specified in Section 3.3.3. The data runs a 
number of words (of four pixels each) right or left and a number of pixels 
upward or downward, depending on the sign. These size parameters are held 
in the segment header. The data is displayed starting at the current position. 

Current magnification factors are applied to the output. 

The actual display image output is restricted to the viewport. This feature may 
be used to remove unwanted pixels in the pixel data map segment. 

Opcode: 
Length: 

81 
1 

FORMAT: PIXEL_ WRITE segid 

PARAMETERS: segid 
pixel data map segment ID 

END POSITION: The current position is not changed. 

ERRORS: 

NOTES: 

EXAMPLE: 

Error if one or more of the following is true: 

Segment is not found 

Segment is of the wrong type 

Segment is too small for its defined contents 

Warning given if output would exceed display image bounds. 

Data written to the display with this instruction is subject to window and viewport 
mapping or to zooming. Consequently, the output is independent of the physical 
dimensions of the monitor; it is controlled by the sprx and spry values entered with 
the START]IXEL_DATA instruction. 

Matches may be detected. 

.BYTE 1.,81. 

.WORD AXD02 
;length and opcode 
;segment class 13, number 2 

14-15 



SCROLL VIEWPORT 

SCROLL VIEWPORT 

ARGUMENTS 

This moves the data within the viewport. The data is moved by the indicated 
displacement. Data falling outside the viewport is lost. 

Opcode: 
Length: 

79 
2 

FORMAT: SCROLL_ VIEWPORT dx, dy 

PARAMETERS: dx 
horizontal displacement of data. Positive values indicate displacement to right. 

dy 
vertical displacement of data. Positive values indicate upward displacement 

END POSITION: The current position is set to the window origin. 

ERRORS: 

NOTES: 

EXAMPLE: 

14-16 

None 

The display data bounded by the viewport is moved by the displacement specified. 
The new data replaces the previous display data. The viewport itself is not moved. 

The area of the viewport not overlaid by the move is cleared to the current 
background color. 

.BYTE 2.,79. 

.WORD 50. 

.WORD -100. 

;length and ope ode 
;disp1aee 50 VAS units to right 
;and 100 downwards 



SELECTIVE CLEAR 

SELECTIVE CLEAR 

ARGUMENTS 

The specified logical operation is performed on the rectangular area whose 
opposite vertices are defined by the the current position and the specified 
displacement. 

If the display bounds in the Y axis are exceeded, the selective clear is 
truncated to the screen bounds. 

No matches are detected. The viewport is ignored. 

Opcode: 
Length: 

84 
40r5 

FORMAT: SEL ECTI VE_ CLEAR mode, mask, [patt,] dxw, dyp 

PARAMETERS: mode 
operational mode: 
o : replace display image 
1 : OR with display image 
2 : AND with display image 
3 : EOR with display image 

mask 
word bit mask 

patt 
color bit pattern for 4 pixels 

dxw 
signed area width in words (of 4 pixels each» 

dyp 
signed area height in pixels 

END POSITION: The current position is not changed. 

ERRORS: 

NOTES: 

Warning given if the selective clear is truncated to the screen bounds. 

Positive values of dxw and dyp indicate movement to the right and upward from the 
current position. 

This instruction performs word operations on the image. The logical operation 
specified by the mode parameter is performed between the image data and the 
parameter pattern. Section 3.3.3 describes how the image is stored. 

14-17 



SELECTIVE CLEAR 

EXAMPLE: 

14-18 

The parameter mask selects the bits in each word to be used in the operation (1 = 
used, 0 = not used). For example, this enables overlays to be maintained while the 
rest of the data is cleared, or the reverse. 

If the parameter pattern is omitted, the current background color is assumed for each 
of the four pixels making up the word. 

The area cleared is logically rectangular. However, if the display image X range is 
exceeded, the display wraps around on the screen. 

The current position must be within the screen bounds. 

No matches are detected. The viewport is ignored. 

.BYTE 5.,84. ;length and opcode 

. WORD l. lOR to display image 

. WORD AXD4A7 ;mask 1101 0100 1010 

. WORD AX4A6D colors 4, 10, 6 and 

. WORD 20. width 20 words = 80 

. WORD 100 . height 100 pixels 

0111 
13 from CLUT 
pixels 



15 INTERACTIVE OPERATION INSTRUCTIONS 

This chapter contains a description of each VIVID interactive operation instruction. 
Opcodes are given in decimal. A MACRO-32 example of each instruction is 
provided. 

Note: Use of pointing devices requires the appropriate device driver to be downloaded 
prior to program execution. 

15-1 



ACCEPT KEYBOARD INPUT 

ACCEPT KEYBOARD INPUT 

ARGUMENTS 

Keyboard input to the identified segment begins. Input continues until the 
specified termination character is received, a specified maximum number of 
characters has been read, or the buffer is full. 

The keyboard input may be automatically echoed to the screen in the current 
font with the current text attributes applied from the current drawing position. 

Opcode: 
Length: 

102 
30r6 

FORMAT: ACCEPT_KEYBOARD_INPUTsegid, chend, chmax 
[, cind, crore, cback] 

PARAMETERS: segid 

END POSITION: 

ERRORS: 

1~2 

the segment ID for writing the data 

chend 
input tennination character 

chmax 
maximum input number of characters 

cind 
cursor index in current font 

crore 
cursor foreground color index 

cback 
cursor background color index 

The current drawing position is as for DRAW_CHARS (Chapter 13). The cursor 
position is not changed. 

Error if segment not found. 

Warning if the cursor parameters are out of range. In this case, the defaults are as 
follows: 

cind = 0 

cfore and cback values are taken from the current foreground and background 
colors 



NOTES: 

EXAMPLE: 

ACCEPT KEYBOARD INPUT - -

If no input tennination character is required, the parameter chend should be set to 
zero. 

If only three parameters are provided, automatic echo is not performed. 

If split screen toggling is enabled, host serial input causes the display to switch 
to split screen mode, connecting the keyboard to the host port. The keyboard is 
disabled until F4 is pressed. This is to avoid ambiguity about the destination of 
keyboard input during toggling. 

Pressing F4 a second time replaces the full screen and reconnects the keyboard to 
VIVID. The F4 key is not accessible to the display application. 

In split screen mode, input from the keyboard is directed to the host serial port. 

The segment identified for keyboard input is initialized by this instruction and any 
previous contents are lost. The segment format is given in Section 3.3.4. 

The delete key is interpreted as follows: 

Any previous character written is erased 

For echo, the data entry cursor character is repositioned. 

No drawing occurs outside the viewport. 

The next display instruction is not performed until input has completed. 

The instruction execution is interrupted by a Stop Execution QIO, or in the case of 
QIO time-out. Subsequent resumption of processing is at the next instruction. 

. BYTE 6.,102 . ; length and opcode 

.BYTE 22.,17. isegment class 22, number 17 

. WORD o . ;termination character 

. WORD 100 . : maximum number of characters 

. WORD 5 . icursor index 

. WORD 10 . icursor foreground color from 
;CLUT 

. WORD 6 . ;cursor background color from 
;CLUT 

15-3 



CURSOR STYLE 

CURSOR STYLE 

Set the cursor to the specified pixel data, or to one of the default cursor styles. 

ARGUMENTS Opcode: 90 
Length: 1 or 3 + number of rows, or 255 

FORMAT: CURSOR_STYLE ccode [, dxp, dyp, row1, row2 ... 
rown] 

where n is in the range 1-16 

PARAMETERS: ccode 
cursor style code: 
-1 : full screen cross-hairs 
0: small cross-hairs 

>0: width of cursor in pixels 

dxp 
cell pixel X displacement from cursor point 

dyp 
cell pixel Y displacement from cursor point 

rown 
cursor cell row bit pattern 

END POSITION: The current position is not changed. 

ERRORS: 

NOTES: 

15-4 

An error occurs in the following cases: 

length out of range 1 to 19 

ccode out of range -1 to 16 

For a default cursor, only the parameter eeode should be present and the length must 
be 1. 

Rows are in sequence, the first being the bottom row of the cursor cell. 

Details of the format of a row may be found in Section 3.3.2. 

To center the cell at the cursor position, use the following parameter values: 

dxp 
dyp 

ccod/2 

(length - 3)/2 



EXAMPLE: 

CURSOR STYLE 

Setting the cursor style has no effect on cursor visibility. If the cursor is currently 
visible, it is immediately replaced by the new cursor style. 

Where a length of 255 is used, the parameter list must be terminated with END_ 
PARAMETERS (see Section 3.3.1). 

For optimum rendition, it may be necessary to adjust the pointing device sensitivity 
factors by using the VSVCP (see the VSV21 User's Guide ). 

An example is given in Appendix E. 

. BYTE 1., 90. 

.WORD O. 
;length and opcode 
;small cross-hairs 

An example of a user-defined cursor is given in Appendix E. 

15-5 



CURSOR VISIBILITY 

CURSOR VISIBILITY 

Defines whether or not the cursor is visible. 

ARGUMENTS Opcode: 
Length: 

92 
1 

FORMAT: CURSOR VISIBILITY cmod 

PARAMETERS: cmod 
cursor visibility 
o : cursor invisible 
I : cursor visible. 

END POSITION: The current position is not changed. 

ERRORS: None. 

NOTES: When visible, the cursor is restricted to the screen bounds. 

EXAMPLE: 

15-6 

.BYTE 1.,92 . 

. WORD 1. 
;length and opcode 
;cursor visible 



MATCH DISABLE 

MATCH DISABLE 

Disables a match. 

ARGUMENTS Opcode: 98 
Length: 0 

FORMAT: MATCH DISABLE 

PARAMETERS: None 

END POSITION: Drawing and cursor positions are not affected. 

ERRORS: None 

NOTES: See notes for MATCH_ENABLE. 

EXAMPLE: 
.BYTE 0.,98. ;length and opcode 

15-7 



MATCH ENABLE 

MATCH ENABLE 

ARGUMENTS 

When subsequent drawing intersects the cursor position, a report (Chapter 16, 
MATCH_INTERRUPT REPORT PACKET) is sent to the host. Following this 
instruction, invisible drawing continues until the maximum number of matches 
have been detected. 

Opcode: 
Length: 

97 
1 

FORMAT: MATCH ENABLE nmax 

PARAMETERS: nmax 
maximum number of matches 

END POSITION: Drawing and cursor positions are not affected. 

ERRORS: 

NOTES: 

EXAMPLE: 

15-8 

None 

After drawing a picture, the same segments may be processed with match enabled 
(that is, drawing invisible), to determine which instruction caused the pixel at the 
cursor position to be drawn. Each match corresponding to the cursor position may 
be identified until match is disabled. 

The parameter nmax determines the maximum number of matches reported before 
segment processing is terminated. It may be used to provide a single match, after 
which each further match might be accessed by issuing a Resume Execution QIO, or 
to limit the number of matches detected for program or report segment size reasons. 
A value of 32767 implies an unlimited number. After resuming, if nmax has been 
decremented to zero, each match detected terminates processing of the segment. 

.BYTE 1.,97. 

.WORD 10. 
;length and opcode 
;report up to 10 matches 



POSITION CURSOR 

POSITION CURSOR 

Sets the cursor to the specified position. The cursor is restricted by the screen 
boundaries. 

ARGUMENTS Opcode: 
Length: 

91 
00r2 

FORMAT: POSITION_ CURSOR lx, yJ 

PARAMETERS: x 
cursor X position in VAS 

y 
cursor Y position in VAS 

END POSITION: The current drawing position is not changed. 

ERRORS: None. 

NOTES: If no parameters are provided, the cursor is moved to the current drawing position. 

EXAMPLE: 

This instruction does not change cursor visibility. 

.BYTE 0.,91. ;length and opcode 
;move cursor to current drawing 
;position 

15-9 



RUBBER BAND 

RUBBER BAND 

ARGUMENTS 

Defines the rubber band characteristics and base point. 

RUBBER_BAND defines two points either as the ends of a line (linear rubber 
band; Figure 15-1) or as the ends of the diagonal of a rectangle (rectangular 
rubber band; Figure 15-2). 

Opcode: 
Length: 

93 
10r3 

FORMAT: RUBBER_BAND rcod [,x,y] 

PARAMETERS: rcod 
rubber band code: 
o : no rubber band 
1 : linear rubber band 
2 : rectangular rubber band 

x 
X position of base point in VAS 

y 
Y position of base point in VAS 

END POSITION: The current position is not changed. 

ERRORS: 

NOTES: 

15-10 

If rcod is out of range, a warning is issued and no rubber band assumed. 

If no X, Y parameters are provided, the current drawing position is assumed as the 
base point of the rubber band. 

In Figures 15-1 and 15-2, x,y is the base point and two successive cursor positions 
are shown. 

This instruction does not change cursor visibility. If you use the combination of long 
cross-hair cursor and rectangular rubber band, two sides of the cursor or band will 
not be seen. 

For optimum rendition, it may be necessary to adjust the pointing device sensitivity 
factors by using the VSVCP. (See the VSV21 User's Guide.) 



EXAMPLE: 

RUBBER BAND 

.BYTE 3.,93. 

.WORD 1. 

.WORD 100. 

.WORD 50. 

Figure 15-1 Linear Rubber Band 

;length and opcode 
;linear rubber band 
;X position of base point 
;Y position of base point 

RE478 

Figure 15-2 Rectangular Rubber Band 

r---------t 
I I L ________ .J 

x,y 

RE479 

15-11 



START KEYBOARD INPUT - -

START KEYBOARD INPUT 

ARGUMENTS 

Keyboard input for AST processing is begun. The input is terminated by a 
STOP _KEYBOARD_INPUT instruction. 

Opcode: 
Length: 

99 
o 

FORMAT: START KEYBOARD INPUT 

PARAMETERS: None. 

END POSITION: The current drawing and cursor positions are not changed. 

ERRORS: 

NOTES: 

EXAMPLE: 

15-12 

None. If the application has not set up a VMS/MicroVMS mailbox, or an RSX AST, 
the input data is lost. 

If split screen toggling is enabled, host serial input causes the display to switch to 
split screen mode, connecting it to the host port. The keyboard is disabled until F4 
is pressed. This is to avoid ambiguity about the destination of keyboard input during 
toggling. 

Pressing F4 a second time replaces the full screen and reconnects the keyboard to 
VIVID. The F4 key is not accessible to the display application. 

Subsequent keyboard input is directed to the VMS/Micro VMS mailbox, or RSX 
AST, (see Chapter 16, KEYBOARD_INPUT REPORT PACKET). Character codes 
dispatched are exactly as for host serial input. 

No drawing occurs. 

.BYTE 0.,99. ;length and opcode 



STOP KEYBOARD INPUT 

Stops the keyboard input for AST processing. Subsequent input is by means 
of the serial interface, if it is connected. 

ARGUMENTS Opcode: 
Length: 

100 
o 

FORMAT: STOP KEYBOARD INPUT 

PARAMETERS: None. 

END POSITION: The current drawing and cursor positions are not changed. 

ERRORS: None. 

NOTES: Keyboard input is subsequently routed via the host serial port, if connected. 

EXAMPLE: 
.BYTE 0.,100. ;length and ope ode 

15-13 



SWITCH DISABLE 

SWITCH DISABLE 

Disables pointing device reporting. 

ARGUMENTS 

FORMAT: 

Opcode: 
Length: 

95 
o 

SWITCH DISABLE 

PARAMETERS: None 

END POSITION: The current drawing position is not changed. 

ERRORS: None. 

EXAMPLE: 
.BYTE 0.,95. ;length and opcode 

15-14 



SWITCH REPORT ENABLE 

SWITCH REPORT ENABLE 

ARGUMENTS 

Enables a pointing device so that when a specified switch activity occurs, 
a report is sent to the host. The condition "No Switch Activity" is also 
covered, so reports are provided for all cursor movements. Report handling is 
described in Chapter 16. 

Opcode: 
Length: 

94 
1 

FORMAT: SWITCH REPORT ENABLE mask 

PARAMETERS: mask 

END POSITION: 

ERRORS: 

NOTES: 

EXAMPLE: 

If switch mask is 0, a report is generated for movement with any device input (for 
example, pushing one of the buttons). 
If the switch mask is NOT ° and if the following bits are set, a report will be 
generated: 

Bit Number 
(from 0) 

o 

2 

3 

4 .. 15 

Left button 

Middle button 

Right button 

If no DECtablet - set to 0 
If DECtablet - set to 1 for response to 4th switch 

Must be zeros 

The current drawing position is not changed. The cursor position is moved according 
to calculation from pointing device input. 

None. 

The switch mask is ANDed with pointing-device switch input data. A non-zero 
result determines that a report shall be sent to the host. A zero switch mask indicates 
that reports on all pointing device input, including movement only, are directed to 
the host. For details of reporting, see Chapter 16, SWITCH_INTERRUPT REPORT 
PACKET. 

.BYTE 1.,94. 
• WORD ABOllO 

;length and opcode 
;mask value 

15-15 



WAIT SWITCH 

WAIT SWITCH 

ARGUMENTS 

Waits for a switch interrupt before continuing with the next VIVID instruction. 

Opcode: 
Length: 

103 
1 

FORMAT: WAIT SWITCH mask 

PARAMETERS: mask 
mask = switch mask 

END POSITION: Current drawing and cursor positions are not changed. 

ERRORS: 

NOTES: 

EXAMPLE: 

15-16 

None. 

Segment processing waits at this instruction for pointing device input where the 
switch input is non-zero when masked with smask. 

This instruction execution is interrupted by a Stop Execution QIO, or in the case of 
QIO time-out. Subsequent resumption of processing is at the following instruction. 

.BYTE 1.,103. 

. WORD ABOllO 
;length and opcode 
;bits 110 enable switches 2 
;and 3 



16 REPORT HANDLING 

This chapter describes the instruction to request reports. The opcode is given in 
decimal and a MACRO-32 example is provided. The formats of all report packets 
are also described. The report packets are either written directly to the report 
segment or provided to an AST or mailbox routine by means of the stack. The 
packet format is identical in each case, except where specified otherwise. 

Reports may be generated by any of the following: 

Report requests: 

REQUEST_REPORT INSTRUCTION 

DRAWING]OSITION REPORT PACKET 

CURSOR]OSITION REPORT PACKET 

CELL]ARAMETERS REPORT PACKET 

GLOBAL_ATTRIBUTES REPORT PACKET 

TRANSFORMATION REPORT PACKET 

SCREEN_FORMAT REPORT PACKET 

FREE SPACE REPORT PACKET 

VSV21_SEGMENTS REPORT PACKET 

HOST_SEGMENTS REPORT PACKET 

VIVID_VERSION REPORT PACKET 

SEGMENT_TRACE REPORT PACKET 

Errors during segment processing 

VIVID_WARNING REPORT PACKET 

VIVID_ERROR REPORT PACKET 

Match interrupts 

MATCH_INTERRUPT REPORT PACKET 

MAXIMUM_MATCHES REPORT PACKET 

Switch interrupts 

SWITCH_INTERRUPTS REPORT PACKET 

Keyboard input 

KEYBOARD_INTERRUPT REPORT PACKET 

16-1 



REPORT HANDLING 

16-2 

Interruption of segment processing 

VIVID_INTERRUPT REPORT PACKET 

Reports REQUEST_REPORT INSTRUCTION through to SEGMENT_TRACE 
REPORT PACKET are generated by report requests. The remaining reports (VIVID_ 
WARNING REPORT PACKET through to the end of the section) are generated by 
events. 

An introduction to report handling is given in Section 2.12. 



REQUEST REPORT INSTRUCTION 

REQUEST REPORT INSTRUCTION 

ARGUMENTS 

This instruction places the specified report in the current report segment. 

Opcode: 
Length: 

108 
1 

FORMAT: REQUEST_REPORT nrep 

PARAMETERS: nrep 
report number required (range 0-10) 

END POSITION: The current position is not changed. 

ERRORS: Warning given if report number is invalid, and no report other than the warning 
report is generated. 

NOTES: If there is no current report segment, the instruction is ignored. 

The report number is that identified in word 0 of the appropriate report packet. 

The following report packets can be specified: 

nrep Report title 

0 CELL]ARAMETERS 

1 CURSOR_POSITION 

2 DRAWING]OSITION 

3 FREE_SPACE 

4 GLOBAL_ATTRIBUTES 

5 HOST_SEGMENTS 

6 SCREEN_FORMAT 

7 SEGMENT_TRACE 

8 TRANSFORMATION 

9 VIVID_VERSION 

10 VSV21_SEGMENTS 

16-3 



REQUEST_REPORT INSTRUCTION 

EXAMPLE: 

16-4 

• BYTE 1., 108 • 
.WORD 8. 

;length and opcode 
;report number (host segments) 



CELL PARAMETERS REPORT PACKET 

CELL PARAMETERS REPORT PACKET 

FORMAT: 

NOTES: 

The report provides the current attributes applicable to text instructions. 

The format of the report packet is given in Figure 16-1. 

Figure 16-1 Format of Cell Parameters Report Packet 

WORD 

CELLPARAMETERS = 2 o 

NUMBER OF PARAMETERS = 12 

CURRENT FONT SEGMENT 10 2 

FONT CELL WIDTH 3 

FONT CELL HEIGHT 4 

DISPLAY CELL WIDTH 5 

DISPLAY CELL HEIGHT 6 

DISPLAY CELL X MOVEMENT 7 

DISPLAY CELL Y MOVEMENT 8 

DISPLAY CELL UNITS CODE 9 

CELL X MAGNIFICATION 10 

CELL Y MAGNIFICATION 11 

CELL OBLIQUE CODE 12 

CELL ROTATION CODE 13 

RE459 

This report is generated only by a REQUEST_REPORT instruction and is provided 
in the report segment only. Details of the parameters are as for the input parameters 
in the text instructions (Chapter 13). 

16-5 



CURSOR POSITION REPORT PACKET 

CURSOR POSITION REPORT PACKET 

FORMAT: 

16-6 

The report provides the current graphics cursor position in VAS. 

The format of the report packet is given in Figure 16-2 and Figure 16-3. 

Figure 16-2 VMS Format of Cursor Position Report Packet 

CURSOR_POSITION = 1 

NUMBER OF PARAMETERS = 5 

CURSOR X COORDINATE IN VAS 

CURSORY COORDINATE IN VAS 

SWITCH STATUS WORD 

CURSOR X DEVICE COORDINATE 

CURSOR Y DEVICE COORDINATE 

RE6906 

Figure 16-3 RSX Format of Cursor Position Report Packet 

WORD 

CURSOR_POSITION = 1 a 

NUMBER OF PARAMETERS = 2 

CURSOR X COORDINATE IN VAS 2 

CURSOR Y COORDINATE IN VAS 3 

RE45B 



NOTES: 

CURSOR POSITION REPORT PACKET 

This report is generated only by a REQUEST_REPORT instruction and is provided 
in the report segment only. 

For VMS systems the returned device coordinate is logical, that is, on a low 
resolution device the returned height will be in the range 0 to 479. 

The Switch Status Word contains the value of the most recently pressed switch. 

16-7 



DRAWING POSITION REPORT PACKET 

DRAWING POSITION REPORT PACKET 

FORMAT: 

NOTES: 

16-8 

The report provides the current graphics drawing position in VAS. 

The format of the report packet is shown in Figure 16-4. 

Figure 16-4 Format of Drawing Position Report Packet 

WORD 

DRAWING POSITION = 0 0 

NUMBER OF PARAMETERS = 2 

DRAWING X COORDINATE IN VAS 2 

DRAWING Y COORDINATE IN VAS 
3 

RE7114 

This report is generated only by a REQUEST_REPORT instruction and is provided 
in the report segment only. 



FREE SPACE REPORT PACKET 

FREE SPACE REPORT PACKET 

FORMAT: 

NOTES: 

This report provides the number of words of space free for further download 
of segments to the VSV21. 

The format of the report packet is given in Figure 16-5. 

Figure 16-5 Format of Free Space Report Packet 

FRELS PACE = 6 

NUMBER OF PARAMETERS = 2 

WORD 

o 

RESERVED 2 

FREE SPACE IN WORDS 3 

RE463 

This report is generated only by a REQUEST_REPORT instruction and is provided 
in the report segment only. 

Word 2 is reserved to allow compatibility with any future increase in VSV2l RAM. 
In this case, the free space would be given by a longword. 

Note that the amount of free space (word 3) is given in words rather than in bytes. 

16-9 



GLOBAL ATTRIBUTES REPORT PACKET 

GLOBAL ATTRIBUTES REPORT PACKET 

FORMAT: 

16-10 

The report provides the major current global attributes which are not otherwise 
available by using the VSVCP (VSV21 Control Program). The VSVCP 
commands are described in the VSV21 User's Guide. 

The format of the report packet is given in Figure 16-6. 



NOTES: 

GLOBAL_ATTRIBUTES REPORT PACKET 

Figure 16-6 Format of Global Attributes Report Packet 

WORD 

GLOBALATTRIBUTES = 3 o 

NUMBER OF PARAMETERS = n 

SCREEN BLINK MODE 2 

BLINK TIME ON 3 

BLINK TIME OFF 4 

SCREEN BLANK MODE 5 

FOREGROUND COLOR INDEX 6 

BACKGROUND COLOR INDEX 7 

DRAWING COLOR MODE 8 

DRAWING OPERATIONAL MODE 9 

LINE TEXTURE NUMBER OF BITS 10 

LINE TEXTURE BIT PATTERN 11 

AREA TEXTURE NUMBER OF BITS 12 

1 ST AREA TEXTURE BIT PATTERN 13 

LAST AREA TEXTURE BIT PATTERN n+1 

AE460 

This report is generated only by a REQUEST_REPORT instruction and is provided 
in the report segment only. Details of the parameters are as for the input parameters 
in the global attribute instructions (Chapter 10). 

The maximum report packet size is 29 words. 

16-11 



HOST SEGMENTS REPORT PACKET 

HOST SEGMENTS REPORT PACKET 

FORMAT: 

NOTES: 

16-12 

This report provides a list of the segments defined in host memory. 

The format of the report packet is given in Figure 16-7. 

Figure 16-7 Format of Host Segments Report Packet 

HOST_SEGMENTS = 8 0 

NUMBER OF PARAMETERS = n 

FIRST SEGMENT 10 2 

LAST SEGMENT 10 n+1 

RE465 

This report is generated only by a REQUEST_REPORT instruction and is provided 
in the report segment only. 

Segment IDs are in ascending sequence. 

The maximum report packet size is 514 words. 



KEYBOARD INPUT REPORT PACKET 

KEYBOARD INPUT REPORT PACKET 

FORMAT: 

NOTES: 

This report provides input from the keyboard to an AST. 

The format of the report packet is given in Figure 16-8. 

Figure 16-8 Format of Keyboard Input Report Packet 

WORD 

KEYBOARD INPUT = 66 

No. OF PARAMETERS 

CHARACTER COUNT 2 

FIRST 2 ASCII CHARACTERS 

NEXT 2 ASCII CHARACTER 4 

LAST 2 ASCII CHARACTERS i n 

In each word, the first character is in bits 7 to 0, and the second in bits 15 to 8. If 
there is only one valid character in the word, the second is set to zero. 

The data represents the ASCII character string corresponding to a single key 
depression. However, if the string is too long for the driver buffers, multiple 
transfers will occur. 

16-13 



MATCH INTERRUPT REPORT PACKET 

MATCH INTERRUPT REPORT PACKET 

FORMAT: 

NOTES: 

16-14 

This report indicates that a match has been detected. Processing continues if 
the match count has not been exhausted. 

The format of the report packet is given in Figure 16-9. 

Figure 16-9 Format of Match Interrupt Report Packet 

MATCH_INTERRUPT = 64 

NUMBER OF PARAMETERS = 6 

TOP LEVEL SEGMENT ID 

CURRENT SEGMENT ID 

CURRENT SEGMENT BYrE OFFSET 

CURRENT OPCODE 

DRAWING X COORDINATE IN VAS 

DRAWING Y COORDINATE IN VAS 

o 

2 

3 

4 

5 

6 

7 

RE470 

This report is generated when a match is found while a segment is being processed. 

The report may be directed to the report segment or to an AST or mailbox. 

The top level segment is the segment referenced in the invoking QIO. The current 
segment is the actual segment being processed. The offset refers to the offset from 
the start of that segment of the opcode word for which the error was detected. 



MAXIMUM MATCHES REPORT PACKET 

MAXIMUM MATCHES REPORT PACKET 

FORMAT: 

NOTES: 

The report indicates that segment processing has been stopped as the 
maximum number of matches has been reported. 

The format of the report packet is given in Figure 16-10. 

Figure 16-10 Format of Maximum Matches Report Packet 

MAXIMUM_MATCHES = 129 o 

NUMBER OF PARAMETERS = 4 

TOP LEVEL SEGMENT 10 2 

CURRENT SEGMENT 10 3 

CURRENT SEGMENT BYTE OFFSET 4 

CURRENT SEGMENT LAST OPCOOE 5 

RE474 

The report may be directed to the report segment or to an AST or mailbox. 

The top-level segment is the segment referenced in the invoking QIO. The current 
segment is the actual segment being processed. The offset refers to the offset from 
the start of that segment of the opcode word for which the error was detected. 

16-15 



SCREEN FORMAT REPORT PACKET 

SCREEN FORMAT REPORT PACKET 

FORMAT: 

NOTES: 

16-16 

The report provides the screen format. 

The format of the report packet is given in Figure 16-11. 

Figure 16-11 Format of Screen Format Report Packet 

WORD 

SCREEN_FORMAT = 5 0 

NUMBER OF PARAMETERS = 2 

SCREEN WIDTH IN PIXELS 2 

SCREEN HEIGHT IN PIXELS 3 

RE462 

This report is generated only by a REQUEST_REPORT instruction and is provided 
in the report segment only. 



SEGMENT TRACE REPORT PACKET 

SEGMENT TRACE REPORT PACKET 

FORMAT: 

NOTES: 

This report provides a trace of the nested segment calls to the current 
segment. 

The format of the report packet is given in Figure 16-12. 

Figure 16-12 Format of Segment Trace Report Packet 

WORD 

SEGMENT_TRACE = 10 0 

NUMBER OF PARAMETERS = n 

TOP LEVEL SEGMENT ID 2 

CURRENT SEGMENT ID n+1 

RE467 

This report is generated only by a REQUEST_REPORT instruction and is provided 
in the report segment only. 

Segment IDs are in calling sequence from the top level down to the segment in 
which the report request occurs. 

The maximum report packet size is 33 words. 

16-17 



SWITCH_INTERRUPT REPORT PACKET 

SWITCH INTERRUPT REPORT PACKET 

FORMAT: 

16-18 

This report indicates that an operation has been performed on a pOinting 
device for which reporting has been enabled. 

The format of the report packet is given in Figure 16-13 and Figure 16-14. 

Figure 16-13 VMS Format of Switch Interrupt Report Packet 

VIVID REPORT TYPE = 65 

NUMBER OF PARAMETERS = 5 

CURSOR X COORDINATE 

CURSOR Y COORDINATE 

SWITCH STATUS WORD 

CURSOR X DEVICE COORDINATE 

CURSOR Y DEVICE COORDINATE 

RE6907 

Figure 16-14 RSX Format of Switch Interrupt Report Packet 

SWITCH_INTERRUPT = 65 0 

NUMBER OF PARAMETERS = 3 

CURSOR X COORDINATE IN VAS 2 

CURSOR Y COORDINATE IN VAS 3 

SWITCH STATUS WORD 4 

RE471 



NOTES: 

SWITCH INTERRUPT REPORT PACKET 

The report may be directed to the report segment or to an AST or mailbox. 

The Switch status word indicates whether switches are depressed (bit = 1), or raised 
(bit = 0). Bit 0 corresponds to switch 0, bit 1 to switch 1, and so on. 

16-19 



TRANSFORMATION REPORT PACKET 

TRANSFORMATION REPORT PACKET 

This report provides the current transformation details. 

FORMAT: The format of the report packet is given in Figure 16-15. 

16-20 



NOTES: 

TRANSFORMATION REPORT PACKET 

Figure 16-15 Format of Transformation Report Packet 

TRANSFORMATION REPORT PACKET 

TRANSFORMATION = 4 

NUMBER OF PARAMETERS = 17 

SCREEN X DIMENSION IN VAS 

SCREEN Y DIMENSION IN VAS 

WINDOW X ORIGIN IN VAS 

WINDOWYORIGIN IN VAS 

WINDOW X EXTENT IN VAS 

WINDOW Y EXTENT IN VAS 

VIEWPORT MINIMUM X 

VIEWPORT MINIMUM Y 

VIEWPORT WIDTH 

VIEWPORT HEIGHT 

X ZOOM FACTOR 

Y ZOOM FACTOR 

DRAWING TRANSFORMATIONS FLAG 

X DRAWING MAGNIFICATION 

Y DRAWING MAGNIFICATION 

DRAWING X COORDINATE SHIFT 

DRAWING Y COORDINATE SHIFT 

WORD 

o 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

RE461 

This report is generated only by a REQUEST_REPORT instruction and is provided 
in the report segment only. Details of the parameters are as for the input parameters 
in the viewing transformation instructions (Chapter 9). 

16-21 



VIVID_ERROR REPORT PACKET 

VIVID ERROR REPORT PACKET 

FORMAT: 

NOTES: 

16-22 

The report indicates that an error has been encountered and segment 
processing has been stopped. 

The format of the report packet is given in Figure 16-16. 

Figure 16-16 Format of VIVID Error Report Packet 

VIVID_ERROR = 130 

NUMBER OF PARAMETERS = 7 

ERROR CODE 

TOP LEVEL SEGMENT 10 

CURRENT SEGMENT 10 

CURRENT SEGMENT BYTE OFFSET 

CURRENT OPCODE 

DRAWING X COORDINATE IN VAS 

DRAWING Y COORDINATE IN VAS 

o 

2 

3 

4 

5 

6 

7 

8 

RE469 

This report is generated when the VIVID interpreter finds an error from which 
segment processing should not continue. 

The report may be directed to the report segment or to an AST. 

The top-level segment is the segment referenced in the invoking QIO. The current 
segment is the actual segment being processed. The offset refers to the offset from 
the start of that segment of the opcode word for which the error was detected. 



VIVID INTERRUPT REPORT PACKET 

VIVID INTERRUPT REPORT PACKET 

FORMAT: 

NOTES: 

This report indicates that segment processing has been interrupted by a 010 
stop, by time-out or by a cancel protocol from the host. 

The format of the report packet is given in Figure 16-17. 

Figure 16-17 Format of VIVID Interrupt Report Packet 

VIVID_INTERRUPT = 128 o 

NUMBER OF PARAMETERS = 4 

TOP LEVEL SEGMENT ID 2 

CURRENT SEGMENT ID 3 

CURRENT SEGMENT BYTE OFFSET 4 

CURRENT SEGMENT LAST OPCODE 5 

RE473 

The report may be directed to the report segment or to an AST or mailbox. 

The top-level segment is the segment referenced in the invoking QIO. The current 
segment is the actual segment being processed. The offset refers to the offset from 
the start of that segment of the opcode word for which the error was detected. 

16-23 



VIVID VERSION REPORT PACKET 

VIVID VERSION REPORT PACKET 

FORMAT: 

NOTES: 

16-24 

This report provides the downloaded VIVID interpreter version number. 

The fonnat of the report packet is given in Figure 16-18. 

Figure 16-18 Format of VIVID Version Report Packet 

VIVID_VERSION = 9 

NUMBER OF PARAMETERS = 3 

o 

BYTES 0-1 OF VERSION NUMBER 2 

BYTES 2-3 OF VERSION NUMBER 3 

BYTES 4-5 OF VERSION NUMBER 4 

RE466 

This report is generated only by a REQUEST_REPORT instruction and is provided 
in the report segment only. 

The first version number byte in each word is stored in bits 7 to 0, and the second in 
bits 15 to 8. 



VIVID_WARNING REPORT PACKET 

VIVID WARNING REPORT PACKET 

FORMAT: 

NOTES: 

The report indicates that a warning has been encountered and segment 
processing has continued. 

The format of the report packet is given in Figure 16-19. 

Figure 16-19 Format of VIVID Warning Report Packet 

VIVID_WARNING = 32 

NUMBER OF PARAMETERS = 5 

WARNING CODE 

TOP LEVEL SEGMENT 10 

CURRENT SEGMENT 10 

CURRENT SEGMENT BYTE OFFSET 

CURRENT OPCODE 

o 

2 

3 

4 

5 

6 

RE468 

This report is generated when the VIVID interpreter finds a segment error after 
which processing can continue. 

The report may be directed to the report segment or to an AST or mailbox. 

The top-level segment (Word 3) is the segment referenced in the invoking QIO. The 
current segment (Word 4) is the actual segment currently being processed, and the 
offset refers to the offset in the segment of the opcode word for which the error was 
detected. 

16-25 



VSV21 SEGMENTS REPORT PACKET 

VSV21 SEGMENTS REPORT PACKET 

FORMAT: 

NOTES: 

16-26 

This report provides a list of the segments downloaded to the VSV21. 

The format of the report packet is given in Figure 16-20. 

Figure 16-20 Format of VSV21 Segments Report Packet 

VSV21_SEGMENTS = 7 0 

NUMBER OF PARAMETERS = n 

FIRST SEGMENT ID 2 

LAST SEGMENT ID n+1 

RE464 

This report is generated only by a REQUEST_REPORT instruction and is provided 
in the report segment only. 

Segment IDs are in ascending sequence. 

The maximum report packet size is 255 words. 



Part V VSV11 and Fortran Draw 
This section describes how to develop graphics applications with the VSV21 
in VSV11 emulation mode, and build pictures using the FORTRAN draw 
package. 





17 

17.1 

17.1.1 

BUILDING PICTURES USING FORTRAN DRAW 

To run VSVll emulation in the VSV21, download the VSVll emulator from the 
host. The method of downloading is described in the VSV21 User's Guide. 

The FORTRAN Draw package is a library of subroutines available to help 
FORTRAN programmers to create pictures for the VSV21 in VSVll emulation. 

Library subroutines can be called from FORTRAN programs. The library uses 
FORTRAN-77, so programs using it must be compiled using either the FORTRAN-
77 or FORTRAN-IV-PLUS compiler. 

The FORTRAN Draw package contains more than forty subroutines which enable 
programs to: 

Draw common graphic shapes 

Control color attributes 

Write text 

Draw graphs and histograms 

Perform screen and drawing position control functions 

Control the cursor position 

Perform initialization and input/output functions 

Access the display list contents 

Control display list processing 

Handle joystick input 

Issue QIO requests 

USING FORTRAN DRAW 

Coordinate System 
The coordinates used are shown in Figure 17-1. 

17-1 



BUILDING PICTURES USING FORTRAN DRAW 

Figure 17-1 FORTRAN Draw Coordinate System 

y 

479 r----------------------------------, 
(290,400) 

(300,200) 

o~ ________________________________ ~~ 

o 511 X 

R02 1 95 

All x- and Y-coordinate positions must be specified as integers. Any scaling and 
translation operations that are required must be done by the application program. 

For further information about the coordinate system used in VSVII emulation, refer 
to the description in the VSVllNSll Option description (YM-C183C-OO). 

17.1.2 Common Block Definition 
To change data in the COMMON block VSDEFS.FOR, include the following line in 
the data definition area at the top of the program: 

INCLUDE 'VSDEFS.FOR' 

The module VSBLOCK.FTN contains the default values for the COMMON blocks 
defined in VSDEFS.FOR. VSBLOCK and VSDEFS are contained on the same 
directory as the FORTRAN Draw package. 

17.1.3 Reserved Logical Unit Numbers 

17-2 

The following LUNs (Logical Unit Numbers) are reserved for use by the library 
subroutines. 

Logical Unit 2 is assigned to the VSV21 device at all times for display output. 

Logical Unit 7 is used by the VSFILE and VSLOAD routines for saving and 
restoring display buffers. 

Logical Unit 10 is used when loading a new font using VSFONT. 



17.2 

17.3 

BUILDING PICTURES USING FORTRAN DRAW 

PROGRAMMING METHOD 
The basic method of writing a program to use FORTRAN Draw subroutines is shown 
in flowchart form in Figure 17-2. 

The steps are: 

1 Download the kernel, pointing device driver and VSVII emulation software to 
the VSV21 module. 

If the VSVII emulation need not be set under application control, refer to the 
description of the VSVCP LOAD command in the VSV21 User's Guide. These 
commands can also be included in the system startup file. 

2 Initialize the VSVll Emulator. 

Before you can issue any further commands to the VSV21, you must initialize 
the emulator and the package by calling the VSINIT subroutine. 

3 Build the display list. 

This involves calling the picture-drawing subroutines you need to make up the 
picture. 

4 Display the picture. This is done by calling the VSSYNC subroutine. VSSYNC 
sends the display list to the VSVII emulator, where it is processed by the 
graphics controller chip and displayed on the screen. 

FORTRAN DRAW SUBROUTINES 
The following subroutines are listed by the function they perform. For a complete 
description of each subroutine and its call parameters, refer to the VSVll-MIM-PLUS 
Software Driver Guide (AA-J287D-TK). 

Drawing picture shapes: 

VSCIRC 
VSCURV 
VSDOT 
VSDRAW 
VSDTHK 
VSFILL 
VSPOLY 
VSRECT 
VSRDRW 

Draws a circle 

Draws an interpolated curve 

Draws an absolute point 

Draws a line to a point 

Draws a variable width line 

Draws a filled rectangle 

Draws a filled or unfilled polygon 

Draws a filled or unfilled rectangle 

Draws a relative line 

17-3 



BUILDING PICTURES USING FORTRAN DRAW 

17-4 

Figure 17-2 Programming Method for FORTRAN Draw 

Color Control 

VSBACK 

VSCOLR 

VSMIX 

YES 

VSINIT 

INITIALIZE 
THE VSV21 MODULE 
AND FORTRAN DRAW 

VSCIRC, ... 

USE PICTURE-DRAWING 
SUBROUTINES TO 
CREATE DISPLAY LIST 

VSSYNC 

SEND DISPLAY LIST 
TO DEVICE FOR 
DISPLAY 

NO 

STOP 

RD2196 

Sets the background color 

Sets the drawing color 

Mixes a color 



BUILDING PICTURES USING FORTRAN DRAW 

Text Control 

VSDFNT 

VSDSHD 

VSFLEN 

VSFONT 

VSTEXT 

Writes text in the current font 

Writes text with drop shadow 

Gets the length of a text string 

Selects a text font 

Writes a text string 

Graphs and histograms: 

VSETHB Sets the histogram base 

VSGRFX Adds a point to X graph 

VSGRFY Adds a point to Y graph 

VSHINC 

VSHSTX 

VSHSTY 

Sets the histogram increment 

Adds a point to X histogram 

Adds a point to Y histogram 

Screen and drawing position control: 

Clears screen 

Moves current drawing position 

VSCLR 

VSMOVE 

VSRMVE Moves the current drawing position by a relative amount 

Cursor Control 

VSCPOS 

VSCURS 

VSPUTC 

Gets cursor position 

Performs cursor operation 

Sets cursor position 

Initialization and configuration: 

VSINIT Initializes device and package 

VSMODE Sets channel characteristics 

VSSWAP 

Display list functions: 

VSDJMP 

VSDPLY 

VSFILE 

VSLOAD 

VSSYNC 

Inverts the state of all active channels 

Jumps within display list 

Puts data into display list buffer 

Begins saving display list instructions in a file 

Loads saved display list 

Sends display list to device for display 

17-5 



BUILDING PICTURES USING FORTRAN DRAW 

17-6 

Joystick control: 

VSJOYS 

VSWAIT 

Miscellaneous: 

VSDLAY 

VSGADR 

VSOIO 

VSSTAT 

Performs joystick operation 

Waits for switch interrupt 

Pauses 

Gets address 

Issues a 010 call 

Gets lID status block from last 010 



18 

18.1 

18.1.1 

BUILDING AND PROCESSING VSV11 DISPLAY LISTS 

To run VSVll emulation in the VSV21, download the VSVll emulator from the 
host. The method of downloading is described in the VSV21 User's Guide. 

The VSV21 can process display lists that contain the VSllNSVll display 
list instructions. You can use the VSVll emulator to run most VS 11NSVll 
applications. 

A display list is a list of instructions that describes the graphic objects that make 
up a picture. The instructions tell the graphics controller what shapes to draw on 
the screen, and how they should appear. Display lists are created by applications 
programs and output to the VSV21 for display. The display list can be stored in a 
host file, but it must reside in the memory before it can be processed. 

The display list consists of words of binary information that describe the primitives, 
attributes, and control instructions that make up the picture. Each instruction 
occupies one 16-bit word in the memory. It contains an operation code that identifies 
the instruction, and parameters that give further information to the graphics controller 
hardware. For example, this may include the coordinates of the point where the 
object is to be drawn. To build a display list, you list the instructions that describe 
the shapes you want to include in the picture, in the order you want them to be 
drawn on the screen. The steps in generating and processing a VSVll display list to 
run on the VSV21 are described in Section 18.2. 

VSV11 DISPLAY LIST CONTENTS 
In VSVll emulation, the VSV21 processes display lists which contain the VSVll 
display list instructions. The VSV21 can emulate a single-channel minimum
configuration VSVll device. Therefore, it cannot support the following VSVll 
features: 

Multiple channels 

Eight-bit pixel data 

Hardware register programming 

The instructions which can be used in VSVll display lists are described in this 
chapter. 

Graphic Mode Instructions 
In VSVll emulation, the VSV21 operates in one of the following graphic modes: 

CHARACTER 

SHORT VECTOR 

LONG VECTOR 

ABSOLUTE POINT 

GRAPH/HISTOGRAM X 

18-1 



BUILDING AND PROCESSING VSV11 DISPLAY LISTS 

GRAPH/HISTOGRAM Y 

RELATIVE POINT 

RUN-LENGTH 

The graphic mode determines how the graphic data instructions described in the next 
section are to be interpreted by the VSV21 hardware. 

18.1.2 Graphic Data Instructions 
These instructions define coordinates and graphic objects to be drawn on the screen. 
The interpretation of a graphics data instruction depends on the current graphic mode, 
previously set by one of the instructions described in Section IS.1.1. 

Each graphic mode instruction has one or more corresponding graphic data 
instructions. For example, in long vector mode, there must be at least two long 
vector data instructions to specify the endpoints of the vector to be drawn. 

18.1.3 Control Instructions 

18-2 

These instructions provide facilities for setting up the pixel memory and joystick 
channels, branching within the display list, clearing of the pixel memory, and the null 
operation (NOP). 

Control instructions may be inserted anywhere within the display list, except between 
linked graphic data instructions. For example, control instructions may not be 
inserted between two long vector data instructions which are associated with the 
same vector. Control instructions do not affect the current graphic mode. 

The following control instructions are available: 

JOYSTICK STATUS - used to enable and disable the cross-hair cursor and 
joystick interrupts. 

LOAD EXTENDED JOYSTICK CONTROL - can be used to simulate the 
joystick switch being pressed within the software. 

WRITE CURSOR COORDINATES - enables the program to set up initial cursor 
coordinates or simulate the action of the joystick. 

SET HISTOGRAM BASE - used to specify the base position for a histogram or 
bar chart. 

SET CHARACTER BASE - used to specify a table of characters to be processed 
in character mode. 

DISPLAY JUMP - used to transfer control to another part of the display list. 
The address can be specified relative to the start of the display list or relative to 
the start of the task. 

DISPLAY JUMP-TO-SUBROUTINE - used to call a subroutine within a display 
list. 

DISPLAY POP - used to return from a display list subroutine. 

DISPLAY NOP - null operation. 

LOAD STATUS REGISTER A - used to stop the processor, enable/disable the 
STOP interrupt, clear or set the pixel memory. 



BUILDING AND PROCESSING VSV11 DISPLAY LISTS 

LOAD STATUS REGISTER C - used to control the channel select, memory 
read/write select, memory switch enable, and pixel mode select. 

LOAD GRAPHPLOT INCREMENT - sets up the increment between data points 
plotted in graph/histogram mode. 

LOAD PIXEL-DATA INHIBIT - can be used to erase selectively complex 
pictures drawn by display lists containing several changes of pixel data. 

MARKER NO-OP - marks locations within the display list. 

18.1.4 Special Graphic Instructions 
These instructions are used to perform bit-map operations, that is, to transfer data, 
pixel by pixel, between the host memory and the on-board pixel memory. The 
special graphic instructions do not affect the current graphic mode. 

The special graphic instructions available are: 

BIT-MAP-O - moves a square array of pixel data from the host memory to the 
on-board pixel memory. 

BIT-MAP-l - moves a string of pixels from the host memory to sequential 
horizontal locations in the pixel memory. 

DMA PIXEL READBACK - reads an area of pixel memory into the host 
memory using DMA. 

The basic format of a display list instruction word is shown in Figure 18-1. All 
graphic data instructions have bit 15 clear. All other instructions have bit 15 set. 
Graphic data instructions are interpreted within the context of the current graphic 
mode. Bits 14 to 10 contain the opcode of the instruction. For example, the opcode 
for the instruction to set LONG VECTOR mode is 00100. The remainder of the 
word (bits 0 to 9) contain additional information which is specific to the opcode 
chosen. 

For a full description of the VSVll display list instructions, refer to the VSV11NS 11 
Option description (YM-CI83C-OO). 

Figure 18-1 VSV11 Display List Instruction Format 

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

10/, I 
OP FURTHER 

...... r----- CODE ---.. •· ..... .------INFORMATION--------· .. 
(DEPENDS ON OP CODE) 

AE7240 

18-3 



18.2 

BUILDING AND PROCESSING VSV11 DISPLAY LISTS 

GENERATING AND PROCESSING VSV11 DISPLAY LISTS 

18-4 

The steps common to both VMS and RSX systems when generating a display list 
and processing it on the VSV21 are as follows: 

1 Create the display list. 

You can use a display list which has previously been created and stored in a file, 
but you must read the display list into the memory before it can be processed. 

2 Tell the VSV21 to process the display list. 

This is done by issuing a QIO call to the VSV21 driver. One of the parameters 
you specify is the address of the display list in your program. This is used by 
the driver to initiate a transfer of the display list to the VSV21 memory using 
DMA (Direct Memory Access). The graphics controller processes the display 
list to generate the picture in the pixel memory, and to output the picture to the 
screen. 

3 You can interrupt the display list while it is being processed by using the QIO 
functions described later in Chapter 19. 

For example, there are QIO functions which enable you to stop the display or to 
continue at the point it was stopped. There are also QIO functions which request 
input from the joystick. 

4 When the processing is complete, check the return status. 

When the QIO transfer finishes, the device driver sends a status code back to the 
application, to say whether it was successful. Check the status code in case an 
exception has occurred. 

5 Continue in the same way until all display lists have been displayed. 

RSX Specific Steps 

Before item 1 above, start the process by attaching the user task to the device. 

This dedicates a VSV21 so that it will only accept commands from your task. If 
the task includes an interrupt service routine for a joystick, attach your task to the 
device. Otherwise, the Attach is optional. 

After item 5 above, finish the process by detaching your task from the VSV21. 

At the end of the program, if your task is attached to the VSV21, detach it to free 
the device. 



19 

19.1 

VSV11 1/0 FUNCTIONS 

To run VSVll emulation in the VSV21, download the VSV11 emulator from the 
host. The method of downloading is described in the VSV21 User's Guide. 

This chapter describes how to write programs which issue QIO calls to the VSV21 
device driver in VSV11 emulation. QIO calls can be used to perform a number of 
different functions associated with processing a display list. 

A general introduction to the QIO call mechanism and its interface with the VSV2l 
device driver is given in Appendix A. The basic steps in generating a VSV11 display 
list and processing it on the VSV21 are given in Section 18.2. 

alo FUNCTIONS FOR VMS/MicroVMS 
The functions and their hexadecimal values are listed in Table 19-1. 

Table 19-1 VSV11 Emulation QIO Functions for VMS/MicroVMS 

Description 

Read Data 

Read Status 

Resume Execution 

Start Display 

Stop Display 

Timeout 

Wait 

Write Data 

Function Code Hexadecimal Value 

VSVLREADDATA 38 

VSV$_ 31 
READSTATUS 

VSVLRESUME 36 

VSVLSTART 30 

VSVLSTOP 33 

VSV$_TOUT 37 

VSVL 32 
WAITSWITCH 

VSVLWRITEDATA 39 

19-1 



Read Data - VSV$_READDATA 

Read Data - VSV$_READDATA 

QIO FORMAT: 

This function reads data from the transparent driver. 

SYS$QIOW VSV$_READDATA efn,chan,func,[iosbj, 
[astadrj,[astprmj,<baddr,blen,tabid> 

PARAMETERS: efn, chan, func, iosb, astadr, astprm are as described in VSV$START. 

baddr 
start address of the data area in which the joystick coordinates will be returned 

bien 
size of the data area, in bytes (minimum four bytes) 

tabid 
table ID, set to zero for the transparent driver 

19-2 



Read Status - VSV$_READSTATUS 

Read Status - VSV$_READSTATUS 

QIO FORMAT: 

Returns the four device registers containing the following: 

DPC address 

Most recent graphics mode 

Current X and Y positions 

SYS$QIOW VSV$_READSTATUS efn,chan,func, 
[iosbj,[astadrj,[astprmj, <baddr, bien> 

PARAMETERS: efn, chan, func, iosb, astadr, astprm are as described in VSV$_START. 

baddr 
address of status buffer 

bien 
length of status buffer. Minimum length is 8 bytes 

19-3 



Resume Execution - VSV$_RESUME 

Resume Execution - VSV$_RESUME 

QIO FORMAT: 

Resumes execution of a display file after a display stop. The arguments must 
be the same as those in the VSV$_START function to be stopped. 

SYS$QIOW VSV$_RESUME efn,chan,func,[iosb}, 
[astadr},[astprm},<baddr,blen, 
[staddr},[aaddr},[alen},[chan}> 

PARAMETERS: The arguments are as for VSV$_START. 

19-4 



Start Display - VSV$_START 

Start Display - VSV$_START 

QIO FORMAT: 

This function starts the display. 

SYS$QIOW VSV$_START etn, chan, tunc,[iosb}, 
[astadr},[astprm},<baddr,blen, 
[staddr},[aadr},[alen},[chan}> 

PARAMETERS: etn 
event flag number 

chan 
I/O channel number 

tunc 
function code and modifier bits that specify the operation to be performed 

iosb 
address of input/output status block used for reply status 

astadr 
address of the entry mask of an AST service routine to be executed when the I/O 
completes 

astprm 
AST parameter 

baddr 
starting address of the display file buffer 

bien 
length of the display file buffer 

staddr 
address of display file at which processing is to start. If this is omitted, processing 
starts at the beginning of the buffer 

axaddr 
address of the auxiliary buffer 

alen 
length in bytes of the auxiliary buffer 

chan 
channel number to use for the display file 

19-5 



Stop Display - VSV$_ STOP 

Stop Display - VSV$_STOP 

This function can be used to stop a looping display file. 

QIO FORMAT: SYS$Q/OW VSV$_STOP efn,chan,func,{iosb}, 
[astadr},[astprm} 

PARAMETERS: efn, chan, func, iosb, astadr, astprm are as described in VSV$_START. 

19-6 



Set Timeout Period - VSV$_TOUT 

Set Timeout Period - VSV$_ TOUT 

QIO FORMAT: 

Sets the number of seconds to wait for an I/O complete on VSV$_START. 
This value is in effect until it is changed by another VSV$_ TOUT QIO or by 
reloading the driver during SYSGEN. 

Initially the timeout is 15 seconds. 

SYS$QIOW VSV$_ TOUT efn,chan,func,[iosb}, 
[astadr},[astprm}, <tout> 

PARAMETERS: ern, chan, rune, iosb, astadr, astprm are as described in VSV$_START. 

tout 
number of seconds to wait; tout> 1 

19-7 



Wait for Switch Interrupt - VSV$_WAITSWITCH 

Wait for Switch Interrupt - VSV$_WAITSWITCH 

QIO FORMAT: 

Wait a specified number of seconds for a switch interrupt. This function 
is complete when a switch interrupt occurs. If a bus timeout occurs, x the 
function completes with an error status. If any other interrupt occurs, the wait 
continues. 

SYS$QIOW VSV$_ WAITSWITCH efn,chan,func, 
[iosb},[astadr},[astprm}, <tout, baddr, 
bien> 

PARAMETERS: ern, chan, rune, iosb, astadr, astprm are as described in VSV$START, 

tout 
number of seconds to wait 

baddr 
address of status buffer 

bien 
length of status buffer. Minimum length is 8 bytes. 

19-8 



Write Data - VSV$_ WRITEDATA 

Write Data - VSV$_WRITEDATA 

This function writes data to the transparent driver. 

010 FORMAT: SYS$QIOW VSV$_WRITEDATA 
efn, chan, fun c, [iosbj, 

[astadrj,[astprmj,<baddr,blen,tabid> 

PARAMETERS: ern, chan, rune, iosb, astadr, astprm are as described in VSV$START. 

baddr 
start address of the data area in which the joystick coordinates will be returned 

bIen 
size of the data area, in bytes (minimum four bytes) 

tabid 
table ID, set to zero for transparent driver 

19-9 



19.2 

VSV11 I/O FUNCTIONS 

CIO FUNCTIONS FOR RSX-11M-PLUS AND MICRO/RSX 

19-10 

The functions and their octal values are listed in Table 19-1. 

Table 19-2 VSV11 Emulation QIO Functions for RSX-11M-PLUS and 
Micro/RSX 

Description Function Code Octal Code 

Attach the VSV21 10.ATT 1400 

Cancel I/O requests 10.KIL 0012 

Connect and display 10.CON 3000 

Connect to auxiliary memory 10.AUX 2400 

Continue display 10.CNT 4000 

Detach the VSV21 10.DET 2000 

Read data 10.RED 6400 

Read joystick location 10.RJS 5000 

Stop display 10.STP 3400 

Write data 10WRT 7000 

The device-specific functions of the QIO directive that are valid for the VSV21 in 
VSVll emulation are described in the following sections. 



Attach the VSV21 Device - IO.ATT 

Attach the VSV21 Device - IO.ATT 

QIO FORMAT: 

Attaches the user task to the VSV21. The 10.ATT function can also connect 
the task to an auxiliary display list. 

You can set the following conditions when you issue the 10.ATT ala call: 

Make the current X and Y drawing position available to the program when 
the I/O request completes. See 10.AUX, for further information. 

Make additional data available to the program when an AST 
(Asynchronous System Trap) is queued as a result of a joystick interrupt. 

Specify that the accessing of instructions within the display list should 
be relative to the start of the display list. This is used by the DISPLAY 
JUMP and DISPLAYJUMP-TO-SUBROUTINE display list instructions. 
The normal condition is task-relative addressing, that is, instructions are 
accessed relative to the start of the program. This is further explained in 
the 10. CON description. 

To set all of these conditions, set the graphics bit by defining TF.GORE = 2 in 
your program. 

QIOW$ 10. A TT,lun,efn"iosb 
or: 

QIOW$ 10. A TT!TF. GORE, lun, efn" iosb 

PARAMETERS: tun 
logical unit number of the VSV21 device 

efn 
event flag number (may be omitted) 

iosb 
address of input/output status block used for reply status 

19-11 



Cancel I/O Requests - 10.KIL 

Cancel 1/0 Requests - 10.KIL 

QIO FORMAT: 

19-12 

Cancels all outstanding I/O requests to the VSV21 device. For I/O requests 
which are waiting for service or are being processed by the driver, a status 
code of IE.ABO is returned in the I/O status block. 

QIOW$ IO.KIL,lun,efn"iosb 

lun, efn, and iosb are as described in IO.ATT. 



Connect and Display - IO.CON 

Connect and Display - IO.CON 

QIO FORMAT: 

Processes a specified display list. The display list is transferred to the on
board memory by DMA (Direct Memory Access), and is used by the graphics 
controller to generate pixel data in the pixel memory. The pixel data is then 
output to the video screen to display the picture. 

If you previously set the graphics bit (TF.GORE) in the 10.ATT ala call, you 
can read the X and Y coordinates of the current VSV21 ''''(drawing position) 
when the 10. CON completes. To retrieve the coordinates, issue a GLUN$ 
directive, as shown in the following example. For further details, refer to the 
description of GLUN$ in the RSX-11MIM-PLUS Executive Reference Manual 
(AA-L675A-TC) or the RSX-11MIM-PLUS and MicrolRSX Executive Reference 
Manual (AA-Z50BA-TC). 

GLUN$ sets the contents of the six-word buffer as shown in Figure 19-1. 

Figure 19-1 Contents of GLUN$ Buffer 

RD2159 

QIOW$ 10. CON, lun,efn"iosb"<dsaddr, dlen, 
addr,chmode,[tout] [,asaddr]> 

PARAMETERS: lun, efn, and iosb are described in IO.ATT 

dsaddr 
address of the display list 

dlen 
size of the display list, in bytes 

addr 
task-relative or display list-relative address 

If addressing is relative to start of program (task-relative), addr = dsaddr. 

19-13 



Connect and Display - IO.CON 

19-14 

If addressing is relative to start of display list, addr = O. To specify addressing 
relative to the start of the display list, start the display list on a 32-word block 
boundary, and set addr to zero. You must also set the TF.GORE bit in the 10.ATT 
function. 

chmode = an octal value which is used to set up the VSV2l. The following bits 
may be set: 

Bits 8 and 9 - Channel (must be zero) 
Bits 5 and 4 - Define the channel access mode, as follows: 

o = Protected 
1 = Read-only 
2 = Write-only 
3 = Read/write 

Bit 3 - Enables switching of the access mode 
Bits 2 and 1 - Define the pixel drawing mode, as follows: 

2 = Replace mode 
3 = Logical OR mode 

Further explanation of the contents of this word is given in the the LOAD STATUS 
REGISTER C display list instruction. Description in the VSVllNSll Option 
description (YM-Cl83C-OO). 

tout 
timeout value for the display, in seconds (optional). The QIO completion is indicated 
by a STOP interrupt generated at the end of the display list processing. This interrupt 
is described in the VSVlllVSll Option Description (YM-Cl83C-OO). If the timeout 
expires and the QIO is not complete, an error code is returned in the I/O status block. 

You can use the 10.KIL function to get out of the situation in which no I/O 
completion interrupt is received. 

asaddr 
Address of an optional AST service routine to handle cursor match and joystick 
switch interrupts. 



Connect to Auxiliary Memory - IO.AUX 

Connect to Auxiliary Memory - IO.AUX 

Connects the device to the auxiliary memory. 

QIO FORMAT: QIOW$ IO.AUX,lun,efn"iosb,,<axaddr,dlen,addr> 

PARAMETERS: lun, ern and iosh are as described in VSV$START. 

axaddr 
address of auxiliary memory segment 

dlen 
size of display area 

addr 
o if the auxiliary segment is external to the task. Set to the axaddr value on systems 
without memory management directives 

19-15 



Continue the Display - 10.CNT 

Continue the Display - IO.CNT 

CIO FORMAT: 

19-16 

Continues the display after it has been interrupted by a joystick switch or 
cursor match. Processing continues from the point where it was interrupted. 

QIOW$ IO.CNT lun,efn"iosb 

Parameters are as described in IO.ATT. 



Detach the VSV21 Device - IO.DET 

Detach the VSV21 Device - IO.DET 

Detaches the VSV21 Device. The IO.DET function detaches the user task 
from a device which was attached using IO.ATI. 

QIO FORMAT: QIOW$ IO.DET,lun,efnl1 iosb 

PARAMETERS: lun, efn, and iosh are described in IO.ATT. 

19-17 



Read Data - IO.RED 

Read Data - IO.RED 

This function reads data from the transparent driver. 

QIO FORMAT: QIOW$ 10. RED, lun, efn" iosb"<baddr, bien, tabid> 

PARAMETERS: lun, ern, and iosb are described in IO.ATT. 

baddr 
start address of the data area in which the joystick coordinates will be returned 

bien 
size of the data area, in bytes (minimum four bytes) 

tabid 
table ID. Set to zero for the transparent driver. 

19-18 



Read Joystick - IO.RJS 

Read Joystick - IO.RJS 

This function returns the coordinates of the current position of the joystick. 

QIO FORMAT: QIOW$ IO.RJS,lun,efn"iosb,,<baddr,blen,jsnum> 

PARAMETERS: lun, ern, and iosb are described in IO.ATT. 

RESULTS: 

baddr 
start address of the data area in which the joystick coordinates will be returned 

bien 
size of the data area, in bytes (minimum four bytes) 

jsnum 
joystick number (0, I, 2, or 3) - the default is zero 

On completion, the buffer at staddr will be set as shown in Figure 19-2. 

Figure 19-2 Joystick Data returned by IO.RJS 

15 8 7 

WORD 0 

WORD 1 

o 

RD2160 

19-19 



Stop the Display - IO.STP 

Stop the Display - IO.STP 

Stops the display. This can be used to get the display list out of an endless 
loop. 

QIO FORMAT: QIOW$ IO.STp,lun,efn"iosb 

PARAMETERS: Parameters are as described in IO.ATT. 

19-20 



Write Data - 10.WRT 

Write Data - IO.WRT 

This function writes data to the transparent driver. 

QIO FORMAT: QIOW$ 10. WRT, efn"iosb" <baddr,blen, tabid> 

PARAMETERS: lun, ern, and iosb are described in IO.ATT. 

baddr 
start address of the data area in which the joystick coordinates will be returned 

bien 
size of the data area, in bytes (minimum four bytes) 

tabid 
table ID. Set to zero for the transparent driver. 

19-21 



VSV11 1/0 FUNCTIONS 

19.3 QID STATUS RETURNS 

19.3.1 VMS/Micro VMS Systems 

19-22 

In VMS/MicroVMS systems, the I/O status block has the format shown in Figure 
19-4. 

Figure 19-3 Format of 1/0 Status Block under VMS/MicroVMS 

I...-D_IS_P_L_A_Y_P_R_O_G_R_A_M_C_O_U_N_T_E_R_.L...-_Q_I O_C_O_M_P_LE_T_IO_N_C_O_D_E_--,I WORD 0 

31 30 2827 16 15 12 11 o 
IE I ~ I Y-POSITION I t I X-POSITION 

7 I 
~-+~ ______________ ~~~ ____________ ~IWORD1 

REASON ERROR! 
CODE OPCODE 

RE483 

The contents of the IOSB are as follows: 

Longword 0 

bits 0-15 

bits 16-32 

Longword 1 

bits 0-11 

bits 12-15 

bits 16-27 

bits 28-30 

bit 31 

completion code 

display program counter 

current X position 

error code (if bit 31 is set) or last graphics mode opcode (if 
bit 31 is not set) 

current Y position 

code giving reason for completion 
This is one of the following: 

VS$CR_STOP 

2 VS$CR_SWITCH 

3 VS$CR_MATCH 

4 VS$CR_NXM 

5 VS$CR_ TIMEOUT 

6 VS$CRJORCE 

0 VS$CR_UNDEFINED 

error flag 

normal 

switch 

match 

VSV11 hardware error 

timeout 

stop acknowledgement 

undefined 



VSV11 1/0 FUNCTIONS 

19.3.2 RSX and MicroRSX Systems 
In RSX-llM-PLUS and MicrolRSX systems, the I/O status block has the format 
shown in Figure 19-3. 

Figure 19-4 Format of 1/0 Status Block under RSX-11M-PLUS and 
Micro/RSX 

STADDR+O 

STADDR+2 

15 

X COORDINATE 

Y COORDINATE 

o 

RD2161 

On completion of a QIO transfer, byte 0 of the I/O status block contains a completion 
code. Successful completion is indicated by the value 1 (lS.SUC) in the status byte. 
Unsuccessful completion is indicated by a negative value in the status byte. The 
error codes are listed in the RSX-llMIM-PLUS 110 Drivers Reference Manual 
(AA-L677 A-TC). 

19-23 





A THE QIO CALL MECHANISM 

A.1 Overview Of The QIO Call Mechanism 
A program can use QIO calls to perform a number of different functions. Each QIO 
call specifies one function, which has an associated function code. For example, the 
IO.CON function sends a display list to the VSV21 to be displayed. In this function, 
the programmer must specify the address of the display list as a parameter to the 
QIO call. 

The device driver handles all communication between application programs and 
the VSV21 device. It receives input/output requests from programs, in the form 
of QIO calls to system service routines in the operating system. The driver passes 
the requests to the VSV21 processor in the form of command packets, using a 
programmed I/O mechanism and Direct Memory Access (DMA). 

The following types of function are provided for the VSV21 device driver: 

Configuration 

Initialization 

Diagnostic and self-test 

Device control 

Drawing control 

The VSV21 device driver provides two sets of QIO functions: 

VIVID functions 

VSVll emulation functions 

The two sets of functions are not compatible. The VSV21 must be set for the VIVID 
or VSVll functions by downloading either the VIVID interpreter or the VSVll 
emulation code before running an application. 

For the VSV21 to display a picture, the display list must be interpreted by code 
on the VSV21 module. The display list is used to build up the picture in the pixel 
memory. The device driver does not send the display list across the parallel interface 
with the rest of the command packet. Instead, the command packet causes the 
VSV21 to initiate a transfer using a fast Direct Memory Access (DMA) mechanism. 
DMA is used whenever a large amount of data needs to be transferred to the VSV21. 
For example, DMA is also used to download the emulation code. 

MACRO-II programs issue QIO requests by calling a system macro, whereas 
high-level languages such as VAX FORTRAN-77 call subroutines to perform QIO 
requests. Each request is processed by routines in the executive, and is placed in 
a request queue. The device driver processes requests from the queue in order of 
priority. There are two methods by which the program can test whether a transfer is 
complete, as follows: 

A-1 



THE QIO CALL MECHANISM 

Synchronous I/O 

The program requests return of control only when the transfer is complete. For 
synchronous I/O you use the QIOW (Queue Input/Output and Wait) form of the 
QIO call. This method is used in the examples in this appendix. 

Asynchronous I/O 

The program requests immediate return of control before the transfer is complete, 
so that the program can continue processing while the transfer is in progress. 
For asynchronous I/O you use the basic QIO (Queue Input/Output) form of the 
call. When the program reaches a point where it needs to synchronize with 
the completion of the transfer, it must test whether the transfer is complete. 
Completion is notified by the setting of the associated event flag, which you 
specify in the program as a parameter in the QIO call. 

The return status code, which notifies whether or not the transfer was completed 
successfully, is placed in the I/O status block. This is a data area which is set up in 
the application program. You should check the return status after every QIO call, 
and provide error-processing routines for each type of error. 

Further information about the QIO request is given in the RSX-llMIM-PLUS 
Executive Reference Manual (AA-L675A-TC) and the RSX-llMIM-PLUS and 
MicrolRSX Executive Reference Manual (AA-Z508A-TC). FORTRAN programmers 
should also refer to these manuals for a description of the subroutine calls which are 
equivalent to the QIO macro calls. 

A.2 EXAMPLES OF QIO CALLS UNDER RSX-11M-PLUS AND MICRO/RSX 

A-2 

Each function code mnemonic is listed in the following examples with a 
corresponding octal value. For example, the following function attaches the task 
to the VSV21 device on Micro/RSX and RSX-llM-PLUS systems: 

IO.ATT = octal code 1400 

To use the function code mnemonic in the QIO call, set up the octal equivalents at 
the top of your program, for example: 

VSV21 QIO function definitions 

IO.ATT=1400 ; ATTACH 

These examples assume that you have set up these function codes in your program. 

You can set up the QIO directives as a Directive Parameter Block (DPB) in your 
program, and call them with the DIR$ directive. This method speeds up processing. 
For example: 

VSVATT: QIOW$ IO.ATT,l,l"IOSB,,<ACAT,ACLNG,ACAT> 

DIR$ #VSVATT ATTACH VSV21 DEVICE 



A.2.1 

A.2.2 

THE QIO CALL MECHANISM 

To put variable data into the DPB at run time, use the local symbol definitions 
described in the RSX-llMIM-PLUS Executive Reference Manual (AA-L675A-TC) 
and the RSX-llMIM-PLUS and MicrolRSX Executive Reference Manual (AA-Z50SA
TC). For example: 

MOV 
MOV 

#DL,RO 
RO,VSVCON+Q.IOPL 

; ADDRESS OF DISPLAY LIST 
; ... STORE IN QIO DPB 

This method has been used for the examples in this manual. 

The IO.ATT Function 
Program example: 

IOSB: .BLKW 2 ; VSV21 I/O STATUS BLOCK 

VSVATT: QIOW$ IO.ATT,l,l"IOSB,,<ACAT,ACLNG,ACAT> 

The GLUN$ Function 

BUFF: 

DIR$ 
CMPB 
BEQ 
JMP 

#VSVATT 
#IS.SUC,IOSB 
15$ 
AERR 

.BLKW 6 

GLUN$ 1,#BUFF 

ATTACH TO VSV21 DEVICE 
CHECK RETURN STATUS 
BRANCH IF OK 
ATTACH ERROR 

BUFFER FOR GLUN$ 

; GET INFORMATION ON LUN 1 DEVICE AND PLACE IN "BUFF" 

GLUN$ sets the contents of the six-word buffer as shown in Figure A-I. 

A-3 



THE QIO CALL MECHANISM 

Figure A-1 Contents of GLUN$ Buffer 

FOURTH DEVICE CHARACTERISTICS WORD 

R02l59 

A-4 



A.2.3 

A.2.4 

THE QIO CALL MECHANISM 

The IO.CON Function 
A.2.3.1 

A.2.3.2 

Task-Relative Addressing 
The following code sets up a display list, DL, and specifies task-relative addressing. 

DL: 

. WORD 160000 

. WORD DL 
DLNG = .-DL 

START OF AN AREA <--------
USED TO BUILD A 
DISPLAY LIST ... 
DISPLAY JUMP INSTRUCTION 
JUMP TO DISPLAY LIST +0 ---> 
DISPLAY LIST LENGTH 

VSQ: QIOW$ IO.CON,I,I"IOSB,,<DL,DLNG,DL,64> 

Display List-Relative Addressing 
This example generates a display list, DL, and the QIO user parameters needed for 
addressing relative to the start of the display list. Note that the display list is aligned 
to the start of a block (32-word) boundary. 

DL: START OF AN AREA <---------
USED TO BUILD A 
DISPLAY LIST ... 

. WORD 160000 DISPLAY JUMP INSTRUCTION 

. WORD DL JUMP TO DISPLAY LIST +0 ---> 
DLNG = .-DL DISPLAY LIST LENGTH +N (N<64) 

VSQ: QIOW$ IO.CON,I,I"IOSB,,<0,DLNG,0,64> 

MOV 
NEG 
BIC 
ADD 
MOV 
DIR$ 

#DL,RO 
RO 
#AC77,RO 
#DL,RO 
RO,VSQ+Q.IOPL 
#VSQ 

ADDRESS OF DISPLAY LIST DL 
ROUND UP TO NEXT BLOCK (32 WORDS) 
USE BITS 5-0 ONLY 
COMPUTE DISPLAY LIST START 
STORE IT IN THE VSV21 QIO CALL 
ISSUE QIO 

The IO.RJS Function 

XC: 
YC: 

. WORD 0 

. WORD 0 

VSVRJS: QIOW$ IO.RJS,I,I"IOSB,,<XC,4> 

BUFFER TO HOLD X COORDINATE 
AND Y COORDINATE 

; READ JOYSTICK COORDS 

MACRO-II programmers can test for status returns using the mnemonic code given, 
for example: 

CMPB 
BEQ 
JMP 

#IS.SUC,IOSB 
15$ 
ERR 

CHECK RETURN STATUS 
BRANCH IF SUCCESSFUL 
JUMP TO ERROR ROUTINE 

A-5 



THE QIO CALL MECHANISM 

A-6 

FORTRAN programmers should use the numeric code given to check for errors. For 
example: 

BYTE roSB (4) I/O STATUS BLOCK 

IF (IOSB(O) .NE.l) GO TO 5000 ! BRANCH TO ERROR ROUTINE 
1 HERE IF TRANSFER SUCCESSFUL 



B DESIGNING A CHARACTER 

The following is a suggested method for designing a special character. The technique 
can also be applied to designing area texture patterns and special cursors. 

The method is: 

1 Sketch character using grid 

2 Define row values as bit pattern 

3 Reverse row values 

4 Use these row values in VVTLDC or LOAD_CHAR_CELL 

8-1 





c EXAMPLE OF A VSV11 EMULATION PROGRAM 

Example of a VSV11 FORTRAN-77 Program 

PROGRAM BARGEN 

C This program draws a test card of 
C parallel lines and colored bars across the screen. These instructions 
C are sent to a user-specified file. 

INTEGER*2 I,MVX(12),MVY(12),LNX(12),LNY(12) 

DATA 
DATA 

MVX 
MVY 

/ 30, 60, 90,421,451,481,511,511,511,511,511,511/ 
/ 0, 0, 0, 0, 0, 0, 30, 60, 90,421,451,481/ 

DATA 
DATA 

LNX 
LNY 

/ 30, 60, 90,421,451,481, 0, 0, 0, 0, 0, 0/ 
/511,511,511,511,511,511, 30, 60, 90,421,451,481/ 

CALL VSINIT 

CALL VSCLR 

C Select colors 
CALL VSBACK(15) 
CALL VSCOLR(O) 

C Draw parallel lines 
DO 100 I = 1,12 

CALL VSMOVE(MVX(I),MVY(I)) 
CALL VSDTHK(LNX(I),LNY(I),3) 

100 CONTINUE 

C Draw color bars 

C Set up histogram 
CALL VSMOVE(92,94) 
CALL VSETHB(94) 
CALL VSHINC(40) 

C Draw 15 colors 
DO 200 I = 0,14 

CALL VSCOLR(I) 
CALL VSHSTY(418,1,0) 

200 CONTINUE 

C Draw 16th color 
CALL VSMIX(8,11) 
CALL VSHINC(2*(421-93-15*20)) 
CALL VSHSTY(418,1,0) 

CALL VSSYNC 

END 

C-1 





D VIVID ATTRIBUTE MASK VALUES 

Initialization items and their initialization mask values are listed in Table D-I. The 
initialization values are given in terms of the equivalent VIVID instructions. The 
mask values are additive parameters to the VIVID INITIALIZE instruction. 

Where the current values of items are also entered to the attribute stack by the 
VIVID SAVE_ATTRIBUTES instruction, a "yes" appears in the "SAVED" column. 
The mask value given is also used on RESTORE_ATTRIBUTES to indicate that the 
item should be restored. It replaces the item's current value. 

Note that the color look-up table (CLUT) and associated blink colors are not 
initialized. This provides the application with complete control of the color palette 
used. The user can control the palette using a VSVCP command procedure or a 
VIVID display segment. 

0-1 



VIVID ATTRIBUTE MASK VALUES 

Table 0-1 VIVID Attribute Mask Values 

Initialisation Equivalent 
Mask Value Attribute Group VIVID Instruction Saved 
Dec Octal 

1 Current Pointer MOVE_ABS 0, 0 Yes 

2 2 Cursor CURSOR_STYLE 0 Yes 

POSITION_CURSOR 0, 0 Yes 

CURSOR_VISIBILITY 0 Yes 

RUBBER_BAND 0 Yes 

4 4 Drawing Colors FOREGROUND_COLOR 15 Yes 

BACKGROUND_COLOR 0 Yes 

8 10 Drawing Mode DRAWING_MODE 0, 0 Yes 

16 20 Texture LINE_TEXTURE 1, 1 Yes 

AREA_TEXTURE 1, 1 Yes 

32 40 Transformations DRAWING_MAGNIFICATION Yes 
0, 0 

SCREEN_DIMENSIONS Yes 
640, 480 

WINDOW_ORIGIN 0, 0 Yes 

ZOOMJACTOR 1, 1 Yes 

SET_VIEWPORT 0, 0, 0, 0 Yes 

64 100 Text SET_FONT 4223 or Yes 
undefined 

CELL_OBLIQUE 0 Yes 

CELL_ROTATION 0 Yes 

CELL_SIZE 8, 10, 0, 0 Yes 

CELL_MAGNIFICATION 0, 1, Yes 
2 

CELL_MOVEMENT 0, 0 Yes 

128 200 Screen Blank SCREEN_BLANK 0 No 

256 400 Blink Control SCREEN_BLINK 0 No 

BLINK_TIMING 32, 28 No 

512 1000 Inputs SWITCH_DISABLE No 

MATCH_DISABLE No 

STOP _KEYBOARD_INPUT No 

1024 2000 Attribute Stack (Clear attribute stack) 

0-2 



E DEFINING A CURSOR IN VIVID 

The maximum size a cursor can have is the maximum cell size (16 x 16 pixels). The 
cell is a 16 x 16 dot matrix, where the user can define the dots to be illuminated. 

In the example given here, the matrix is regarded as starting at point 0,0 in the 
bottom left-hand comer and being numbered in hex left to right, bottom to top, as 
follows: 

OF ............... . 
OE ............... . 
00 ............... . 
OC ............... . 
OB ............... . 
OA ............... . 

row 09 ............... . 
08 ............... . 

number 07 ............... . 
06 ............... . 
05 ............... . 
07 ............... . 
06 ............... . 
05 ............... . 
04 ............... . 
03 ............... . 
02 ............... . 
01 ............... . 
00 ............... . 

0123456789ABCOEF 

column 
number 

To define the cursor, the following parameters must be specified: 

Number of cell rows 

X coordinate of cursor point 

Y coordinate of cursor point 

Example: 

If a cursor is to be defined as the character L and X denotes a pixel, the cursor shape 
might be as follows: 

E-1 



DEFINING A CURSOR IN VIVID 

E-2 

row 

number 

OF XX ............. . 
OE XX ............. . 
aD XX ............. . 
OC XX ............. . 
OB XX ............. . 
OA XX ............. . 
09 XX ............. . 
08 XX ............. . 
07 XX ............. . 
06 XX ............. . 
05 XX ............. . 
07 XX ............. . 
06 XX ............. . 
05 XX ............. . 
04 XX ............. . 
03 XX ............. . 
02 XX ............. . 
01 XXXXXXXXXXXXXXXX 
00 XXXXXXXXXXXXXXXX 

0123456789ABCDEF 

column number 

The display list defining this cursor is as follows: 

5A13 set cursor style and number of rows 
0010 16 columns of cursor data (width of cursor) 
0000 define cursor point x coordinate 
0000 define cursor point y coordinate 
FFFF define the bottom row 1 of cursor data 
FFFF 
0003 
0003 
0003 
0003 
0003 
0003 
0003 
0003 
0003 
0003 
0003 
0003 
0003 
0003 

An alternative way to create the same result is as follows: 



DEFINING A CURSOR IN VIVID 

5AFF set cursor style data to be terminated by 
the END_PARAMETERS delimiter (length 255) 

ODIC 
0000 define cursor point x coordinate 
0000 define cursor point y coordinate 
FFFF define the bottom row 1 of cursor data 
FFFF 
0003 
0003 
0003 
0003 
0003 
0003 
0003 
0003 
0003 
0003 
0003 
0003 
0003 
0003 
8000 END PARAMETERS delimiter 

E-3 





Index 

A 
ACCEPT_KEYBOARD_INPUT·3-7,8-19 
APR 7·5-1 
ARCS_ABS ·11-5 
AST·15-12,15-13, 16-1,16-13,16-14, 16-15, 

16-19, 16-22, 16-23, 16-25, 19-5, 19-11, 
19-14 

Asynchronous System Trap 

see AST 
attributes 

memory for· 3-4 

B 
BASIC 

passing parameters to· 4-2 
BCLUT· 10-5, 10-7 
bit-map· 18-3 
BLINK_COLORS· 10-16 
BLINK_COUNT· 10-5 
BLINK_TIMING ·10-8, 10-16 
BUILDING PICTURES· 17-1 

Programming method· 17-3 
bus timeout· 19-8 

c 
C 

passing parameters to • 4-2 
CALL_SEGMENT· 8-14 
CELL_MAGNIFICATION ·11-22,11-24,13-1, 13-4, 

13-7 
CELL_MOVEMENT· 11-22, 11-24, 13-1, 13-9 
CELL_OBLIQUE ·11-22,11-24 
CELL_ROTATION ·11-22, 11-24, 13-4 
CELL_SIZE ·11-22, 11-24 
character 

aspect ratio· 13-1 
design· B-1 

CLUT·10-4,10-5, 10-7,10-11,10-13, D-1 
command packets· A-1 

COMMON blocks· 17-2 
Compatibility mode· 7-2 
compiling· 4-2 
compression delays· 3-4 
Coordinate System· 17-1 
COPY· 5-21 
Copying 

help· 14-7 
copying pictures· 14-7 
COPY_ABS 

notes· 14-7 
COPY_REL 

notes· 14-7 
cursor 

default style· 15-4 
longcross-hair· 15-10 
visibility· 15-10 

Cursor 
definition· E-1 

D 
default cursor· 15-4 
DEFINING A CURSOR IN VIVID· E-1 
DESIGNING A CHARACTER· B-1 
digitizing tablet· 1-4 
DIR$· A-2 
Directive Parameter Block (DPB) • A-2 
display area· 4-2 

access· 5-1 
definition· 3-2 
RSX·4-3 
VMS· 4-2 

displaying a stored picture· 2-6 
DISPLAY JUMp· 19-11 
DISPLAY JUMP-TO-SUBROUTINE ·19-11 
display list 

building· 1-3 
creation· 1-2 
defining, example· 7-3 
definition· 1-2 
executing, example· 7-3 
execution· 1-2 
fast access· 1-2 
FORTRAN Draw· 1-2 

Index-1 



Index 

display list (cont'd.) 

library routines 0 1-3 
LOAD STATUS REGISTER C 0 19-14 
processing 0 1-4 
QIO Calls 0 1-4 
storage 0 1-2 
VIVID 01-2 
VS11NSV11 01-2 

display list(s) 
User-defined 0 2-3 

display lists 0 3-1 
definition 0 3-1 
VSV11 BUILDING AND PROCESSING 018-1 

display segment 0 10-7, D-1 
DISPLAY _END_REPEAT 0 8-5 
DISPLAY_REPEAT 0 8-4 
DMA 019-13, A-1 
DOT 011-6 
DRAWING_MAGNIFICATION 0 9-3 
DRAWING_TRANSFORM 0 9-5 
DRAWING_TRANSLATION 09-3 
DRAWING_VAS 0 9-3 
DRAW_CHARS 013-1,13-10, 15-2 
DRAW_PACKED_CHARS o13-1 
DUMP_ATTRIBUTES 0 3-9,8-15 

E 
emulation o1-1,1-7,17-1 

overview 0 1-4 
power-up 01-8 
unsupported features 01-4 
VS11 019-1 

example 0 C-1 
VSV11 018-1 
VT220 0 3-7 

emulator 
VT220 0 7-1 

END_PARAMETERS 0 3-6,10-5,10-13,11-1 
EOR 011-9 
Errorlwarning codes 0 6-12 
EXAMPLE OF A VSV11 EMULATION PROGRAM 0 

C-1 

F 
F4 015-3,15-12 
FAST _PIXEL_MODIFY 0 5-21 

Index-2 

font 
default size 0 1-8 
initialization 0 13-12 

FORTRAN 017-1, A-6 
passing parameters to 0 4-2 

FORTRAN-77 017-1 
FORTRAN Draw 01-3, 1-4, 1-7 
FORTRAN DRAW subroutines (list) 017-3 

G 
GLUN$ 019-13 

example 0 A-3 
graphics 

I 

applications 
overview 0 1-2 

instructions 
overview 0 1-2 

picture 0 1-2 

1/0 status block 0 19-14, 19-22 
IE.ABO 019-12 
INITIALlZEJONT 03-6,8-16 
10.ADA 06-2 
10.ATT 0 6-3, 19-11, 19-13,19-14,19-17 

example 0 A-3 
10.AUX o19-15 
10.CNT 019-16 
10.CON 019-13 

example 0 A-5 
10.DET 0 6-6,19-17 
10.DFS 06-4 
10.DRP 0 6-3 
IO.DSG 0 6-5 
10.KILo19-12,19-14 
10.LSG 0 6-6 
10.RDA 06-7 
10.RED 0 6-7,19-18 
10.REXo 6-8 
10.RJS o19-19 

example 0 A-5 
10.SSEo 6-8 
10.STP 0 6-9, 19-20 
10.wRT 0 6-10, 19-21 
istat 0 4-2 



J 
joystick 0 1-4, 19-19 

L 
LINE_TEXTURE 0 10-2 
Logical Unit Numbers 

see also LUNs 
reserved 0 17-2 

LUNs 017-2 

M 
MACRO-11 0 A-5 
magnification 0 10-2 
mailbox 015-12, 16-14, 16-15, 16-19, 16-23, 

16-25 
mapping registers 0 1-9 
mask values 0 0-1 
memory 

management directives 0 19-15 
space available for segments 0 3-3 

N 
NOOP 0 4-2 
NO OPTIMISE switch 0 4-2 
NOP 018-2 
NORMAL_COLORS 010-16,14-2 
null operation 0 18-2 

p 
PASCAL 

passing parameters to 0 4-2 
picture generation 

overview 0 1-2 
pixel 0 14-7 

data 0 14-11, 19-13 
data map 0 8-20 
data word 0 8-20 
last 0 11-1, 11-13 

pixel (cont'd.) 

magnification 0 13-2 
memory 0 1-2, 18-2, 19-13 
mode 013-1 

PIXEL_REAOBACK 0 3-7, 8-20 
PIXEL_WRITE 0 5--21 
pointing device 0 15--16 

controllers 0 1-8 
pointing devices 01-4, 15-1 

digitizing tablet 01-4 
joystick 0 1-4 
trackball 0 1-4 

programming interfaces 01-3 

Q 

Index 

010 01-4,2-3, 3-8,8-22,8-23, 9-2,9-10,19-1 
call 0 3-1 
calls 01-4, 1-7, 6-1, A-1 

Asynchronous I/O 0 A-2 
examples 0 A-2 
role of device driver 0 A-1 
Synchronous I/O 0 A-2 
use of 0 2-3 

format 01-4 
load segment 01-9 
MACRO-11 0 A-1 
replies 06-10, 6-11 
Resume Execution 0 15-8 
Stop Execution 0 15--3, 15-16 
timeout 0 8-6, 15-3, 15-16 

(;)10 functions 
incompatibility 0 A-1 

010 FUNCTIONS FOR RSX (list) 0 19-10 
010 macro calls 0 A-2 
010 STATUS RETURNS 019-22 

R 
rectangular rubber band 0 15-10 
relative magnification 0 13-2 
Replace mode 0 12-5 
Report Handling 

REOUEST _REPORT INSTRUCTION 0 16-3 
RESTORE_ATTRIBUTES 00-1 
ROM software 0 1-8 
RSX 

downloading procedure 0 7-2 

Index-3 



Index 

RSX (cont'd.) 

010 replies· 6-11 

s 
SAVE_ATTRIBUTES· D-1 
Screen dimensions· 2-6 
screen to monitor ratio· 8-20 
SCREEN_BLINK· 10-5 
SCREEN_DIMENSIONS· 9-7 
segid ·3-1 
segment(s) 

automatic compression· 3-4 
classes· 3-2 
definition·2-3 
deleting· 3-2 

overview· 3-5 
downloading methods· 3-2 
how to pass to task· 3-1 
identifying·3-1 
insufficient space· 3-4 
memory available for· 3-3 
memory for· 3-4 
storing 

in host memory· 3-2 
in VSV21 memory· 3-2 

types· 3-5 
attribute· 3-9 
font· 3-6 
instruction·3-6 
keyboard input· 3-7 
pixel data· 3-7 
report· 3-8 

segment(s) ID·3-1, 4-11 
SET_VIEWPORT· 9-9, 13-1 
SET_WINDOW ·13-1 
START_ATTRIBUTES_DATA·3-9, 8-7, 8-11 
STARTJONT·3-6 
START_KEYBOARD_DATA·3-7 
START_PIXEL_DATA·3-7, 14-15 
START _REPORT_DATA· 3-8 
STOP_DISPLAY· 8-14 
STOP _KEYBOARD_INPUT ·15--12 
switch interrupt· 19-8 
SYSGEN ·19-7 
System software components· 1-5 to 1-9 

Downloaded on-board software· 1-8 
VIVID Default Font· 1-8 
VIVID Interpreter· 1-8 
VS 11 Emulator· 1-8 

Index-4 

System software components 
Downloaded on-board software (cont'd.) 

VT220 Emulation Code· 1-8 
host software· 1-6 

T 

Resident on-board software· 1-8 
Subroutine libraries ·1-7 
VSV21 Control Program· 1-7 
VSV21 Device Driver· 1-7 

Task-Relative Addressing· A-5 
TF.GORE ·19-13, 19-14 
THE 010 CALL MECHANISM· A-1 
trackball· 1-4 

u 
Using FORTRAN DRAW ·17-1 

v 
VAS· 2-6, 11-6, 11-10,11-26,12-2, 13-1, 14~4, 

15-9, 15-10 
coordinates ·11-12 
entering images· 2-7 
units 

Transforming data to (list) • 2-8 
transforming to display (list) • 2-8 

viewport· 2-6 
VIVID 

Access to instructions 
Display Lists· 2-3 

Access to Instructions· 2-3 
AREA OPERATION INSTRUCTIONS ·14-1 
Compatibility mode· 7-2 
CONTROL INSTRUCTIONS· 8-1 
default font· 3-5 
DRAWING INSTRUCTIONS ·11-1 
Error codes· 6-12 
FILLED FIGURE INSTRUCTIONS ·12-1 
GLOBAL ATTRIBUTE INSTRUCTIONS ·10-1 
Instruction types· 2-2 

Area Operation (list) • 2-12 
Control (list) • 2-4 
Drawing (list) • 2-10 



VIVID 
Instruction types (cont'd.) 

Filled Figure (list) 0 2-11 
Global Attribute (list) 02-9 
Interactive (list) 02-13 
Report Handling (list) 0 2-14 
Text (list) 02-11 
Transformation (list) 0 2-6 

INTERACTIVE OPERATION INSTRUCTIONS 0 
15-1 

overview 0 2-1 
REPORT HANDLING 0 16-1 
segment identification 0 3-1 
segment limit in host 0 3-2 
TEXT INSTRUCTIONS 013-1 
TRANSFORMATION INSTRUCTIONS 0 9-1 
Using the Instruction Set 0 2-1 
window 0 2-6 

VIVID Address Space 

see also VAS 
VIVID ATTRIBUTE MASK VALUES 0 D-1 
VIVID I/O 

getting started 0 7-1 
downloading 0 7-1 

VIVID Instructions 
ACCEPT_KEYBOARD_INPUT 015-2 
ARCS_ABS 011-2 
ARCS_REL 011-5 
AREA_TEXTURE 0 10-2 
BACKGROUND_COLOR 0 10-4 
BLINK_COLORS 010-5 
BLINK_COUNT 010-7 
BLINK_TIMING 010-8 
CALL_SEGMENT 0 8-2 
CELL_MAGNIFICATION 013-2 
CELL_MOVEMENT 0 13-4 
CELL_OBLIQUE 013-5 
CELL_ROTATION 0 13-6 
CELL_SIZE 013-7 
CIRCLE 011-7 
CLEAR_SCREEN 014-2 
CLEAR_VIEWPORT 014-3 
COPY_ABS 014-4 
COPY _REL 014-5 
CREATE_SEGMENT 0 8-3 
CURSOR_STYLE 015-4 
CURSOR_VISIBILITY 015-6 
DISPLAY _END_REPEAT 08-4 
DISPLAY_REPEAT 0 8-5 
DISPLAY_WAIT 0 8-6 
DOT011-9 

VIVID Instructions (cont'd.) 

DRAWING_MAGNIFICATION 0 9-2 
DRAWING_MODE 0 10-9 
DRAWING_TRANSFORM 0 9-3 
DRAWING_TRANSLATION 0 9-4 
DRAWING_VAS 0 9-5 
DRAW_CHARS 013-9 
DRAW_PACKED_CHARS 013-10 
DUMP_ATTRIBUTES 0 8-7 
ELLIPSE 011-10 
ELLlPSE_ARCS_ABS 011-12 
ELLlPSE_ARCS_REL 011-15 
FAST_PIXEL_MODIFY 014-11 
FAST_PIXEL_WRITE 014-13 
FILLED _RECT _ABS 0 12-2 
FILLED_RECT_REL 012-3 
FLOOD_AREA 012-4 
FOREGROUND_COLOR 010-11 
INITIALIZE 0 8-8 
INITIALlZEJONT 0 13-11 
JUMP_RELATIVE 0 8-9 
LlNES_ABS 011-17 
LlNES_REL 011-18 
LINE_TEXTURE 010-12 
LOAD_CHAR_CELL 013-12 
MATCH_DISABLE 0 15-7 
MATCH_ENABLE 0 15-8 
MOVE_ABS 011-19 
MOVE_REL 0 11-20 
MOVE_ TO_CURSOR 0 11-21 
NORMAL_COLORS 010-13 
NO_OPERATION 0 8-10 
PAINT_AREA 0 12-5 
PIXEL_READBACK 014-14 
PIXEL_WRITE 014-15 
POLYMARKS_ABS 011-22 
POLYMARKS_REL 011-24 
POSITION_CURSOR 0 15-9 
RECOVER_ATTRIBUTES 0 8-11 
RECTANGLE_ABS 011-26 
RECTANGLE_REL 0 11-27 
REQUEST_REPORT 0 16-3 
RESTORE_ATTRIBUTES 0 8-12 
RUBBER_BAND 015-10 
SAVE_ATTRIBUTES 0 8-13 
SCREEN_BLANK 0 10-15 
SCREEN_BLINK 010-16 
SCREEN_DIMENSIONS 0 9-6 
SCROLL_VIEWPORT 0 14-16 
SEGMENT_RETURN 08-14 
SELECTIVE_CLEAR 014-17 

Index 

Index-5 



Index 

VIVID Instructions (cont'd.) 

SET JONT· 13-13 
SET_VIEWPORT· 9-7 
SET_WINDOW· 9-8 
START· 8-18 
START _ATTRIBUTES_DATA· 8-15 
STARTJONT·8-16 
START_KEYBOARD_DATA·8-19 
START _KEYBOARD_INPUT· 15-12 
START _PIXEL_DATA· 8-20 
START _REPORT_DATA· 8-22 
STOP_DISPLAY· 8-23 
STOP _KEYBOARD_INPUT ·15-13 
SWITCH_DISABLE ·15-14 
SWITCH_REPORT_ENABLE ·15-15 
WAIT_SWITCH ·15-16 
WINDOW_ORIGIN·9-9 
ZOOMJACTOR· 9-10 

VIVID Interpreter· 1-1 
VIVID Programming 

overview· 2-1 to 2-14 
VIVID Report Handling 

CELL_PARAMETERS REPORT PACKET ·16-5 
CURSOR_POSITION REPORT PACKET· 16-6 
DRAWING_POSITION REPORT PACKET· 16-8 
FREE_SPACE REPORT PACKET· 16-9 
GLOBAL_ATTRIBUTES REPORT PACKET· 

16-10 
HOST_SEGMENTS REPORT PACKET· 16-12 
KEYBOARD_INPUT REPORT PACKET ·16-13 
MATCH_INTERRUPT REPORT PACKET ·16-14 
MAXIMUM_MATCHES REPORT PACKET· 16-15 
SCREENJORMAT REPORT PACKET· 16-16 
SEGMENT_TRACE REPORT PACKET· 16-17 
SWITCH_INTERRUPT REPORT PACKET· 16-18 
TRANSFORMATION REPORT PACKET· 16-20 
VIVID_ERROR REPORT PACKET· 16-22 
VIVID_INTERRUPT REPORT PACKET· 16-23 
VIVID_VERSION REPORT PACKET ·16-24 
VIVID_WARNING REPORT PACKET ·16-25 
VSV21_SEGMENTS REPORT PACKET ·16-26 

VIVID Subroutine Library 

see also VSL 
VMS 

downloading procedure· 7-1 
010 functions (list) • 19-1 
010 replies· 6-10 

VS11 Display List 
Control Instructions (list) • 18-2 
generating and processing 

step by step procedure· 18-4 

Index-6 

VS11 Display List (cont'd.) 

Graphic Data Instructions· 18-2 
Graphic Mode Instructions (list) • 18-1 
Special Graphic Instructions (list) • 18-3 

VS11 Emulation ·1-4 
VSBLOCK.FTN· 17-2 
VSDEFS.FOR· 17-2 
VSFILE • 17-2 
VSFONT·17-2 
VSINIT·17-3 
VSL· 1-3, 1-7, 2-3, 3-6, 3-7, 3-8, 3-9 

categories (list)· 4-1 
Constraints· 1-9 
definition·2-4 
functions 

VVACLS·4-106 
VVACLV·4-107 
VVACPY·4-108 
VVAFPM·4-110 
VVAFPR·4-111 
VVAPXR·4-112 
VVAPXW·4-113 
VVASCL·4-114 
VVASCV·4-115 
VVCCAL • 4-37 
VVCCRS·4-38 
VVCDMP • 4-39 
VVCDWT • 4-40 
VVCERP • 4-41 
VVCINI ·4-42 
VVCJMP • 4-43 
VVCRCV·4-44 
VVCREP • 4-45 
VVCRES • 4-46 
VVCSAV·4-47 
VVCSTP ·4-48 
VVDARC • 4-73 
VVDCRC • 4-75 
VVDDOT • 4-76 
VVDEAR • 4-77 
VVDELL·4-79 
VVDLlN ·4-80 
VVDMOV • 4-82 
VVDMTC • 4-83 
VVDPMK • 4-84 
VVDREC • 4-86 
VVFFLD • 4-88 
VVFPNT • 4-90 
VVFRCT • 4-92 
VVGATX • 4-60 
VVGBCL·4-61 
VVGBCT • 4-62 



VSL 
functions (cont'd.) 

VVGBLC • 4-63 
VVGBLK • 4-64 
VVGBLT·4-65 
VVGFCL·4-66 
VVGLTX·4-67 
VVGMOD • 4-68 
VVGNLC • 4-70 
VVGSCB • 4-71 
VVIAKI·4-117 
VVICUS· 4-119,4-120 
VVIMTD·4-121 
VVIMTE·4-122 
VVIPCU·4-123 
VVIRUB·4-124 
VVISWD • 4-125 
VVISWE • 4-126 
VVIWSW·4-127 
VVQREp·4-129 
VVTDRC • 4-94 
VVTDRP • 4-95 
VVTIFT·4-97 
VVTLDC • 4-98 
VVTMAG • 4-99 
VVTMOV • 4-100 
VVTOBL· 4-101 
VVTROT • 4-102 
VVTSFT· 4-103 
VVTSIZ • 4-104 
VVVDIM • 4-50 
VVVDRM • 4-51 
VVVDRT·4-52 
VVVSVU • 4-53 
VVVTRN • 4-54 
VVVVAS • 4-55 
VVVWND·4-56 
VVVWOR • 4-57 
VVVZMF • 4-58 

functions (list) • 2-4 
getting started· 5-1 

creati ng fonts· 5-1 0 
drawing a picture· 5-4 
general calls· 5-24 
keyboard input· 5-18 
logical procedure· 5-3 
matching· 5-28 
reporting· 5-6 
segment class/lD· 5-2 
segments· 5-2 
segment size· 5-2 

VSL 
getting started (cont'd.) 

working with areas· 5-21 
overview· 4-1 

VSLLlB.OLB·5-1 
VSLOAD·17-2 
VSV$ 

_ALLOCATE· 6-2 
_CONTINUE· 6-8 

DEFREP·6-3 
DEFSEG·6-4 

_DELSEG • 6-5 
LOADSEG • 6-6 

_READDATA·6-7, 19-2 
READSTATUS • 19-3 
RELEASE· 6-7 
RESUME· 19-4 

_START ·19-4,19-5, 19-7 
_STARTSEG • 6-8 
_STOP· 6-9, 19-6 
_TOUT· 19-7 
_WAITSWITCH ·19-8 
_WRITEDATA·6-10, 19-9 

VSV11 Emulation ·1-4 
VSV11 Emulator· 1-1, 17-3 
VSV11 I/O FUNCTIONS· 19-1 
VSV21 

Capabilities· 1-1 
Hosts ·1-1 
What it is· 1-1 

VSV21 Control Program 

see also VSVCP 
VSV21 Device driver 

operation ·1-7 
VSVCp· 1-7, 7-1, D-1 

command ·13-13 
command file· 10-7, 10-13 
facilities· 1-7 

VT220 Emulator· 1~1, 1-8 
VV21DA· 5-1 
VVAPXR·3-7 
VVBBGN·4~1 

VVBEND ·4-32 
VVBMOD • 4-33 
VVBPMD·4-34 
VVCDMP·3-9 
VVEEXE • 4-21 
VVERES·4-22 
VVESTP • 4-23 
VVIAKI·3-8 
VVMCPY·4-11 

Index 

Index-7 



Index 

VVMCRS • 4-12 VVXEND·4-6 
VVMDEL·4-13 VVXINI· 4-7 
VVMDLD·4-14 VVXREL· 4-8 
VVMGET·4-16 VVXVER·4-9 
VVMMLD·4-18 
VVRKBD ·4-25 
VVRREP • 4-26 Z VVRSEG ·4-28 
VVRSTA·4-29 
VVTIFT· 3-6 zoom ·10-2 

VVXASS·4-4 ZOOMJACTOR • 9-2, 9-6, 9-8, 9-9, 13-1 

Index-8 


