
DECUSNO.

TITLE

AUTHOR

COMPANY

DATE

SOURCE LANGUAGE

DEC
PROGRAM l"IBRAHV

8-341

LlSP-8

William Neal

Submitted by: Ernest Hayden
Speech Communications Research Laboratory
Santa Barbara, Cal ifornia

December 16, 1970

PAL III

AI though this progrom hos been tested by the contributor, no worronty, express or implied, is mode by the contributor,
Digitol Equipment Computer Users Society or Digitol Equipment Corporotion os to the occuracy or ,functioning of the
program or related program material, and no responsibility is assumed by these parties in connection therewith.

IISP-8 USER'S MANUAL

DECUS No. 8-341

This manual describes the implementation and usage of a LISP­
like list processing language for the PDP-8.

M9J~,illt!9.n. Th~ system was written in response to a need to
do some fairly s9phisticated list processing in connection
with research on natural languages. The only other list pro­
cessing system available, DECUS 8-102a, was a fully interpre­
tative version of LISP 1.5. While this was a full scale
implementation, the operating system took up much of core,
and storage representation was such that only relatively
small programs could be written. As a result, the system
described herein was implemented. The operating system is
relatively small, and programs require less space since a
distinction is made between program and data. This is less
flexible and leads to irreconciliable differences between
LISP 1.5 and LISP-8, but it is more efficient for a small
computer such as a PDP-8.

M1n~m~ requirements.. PDP-8 with 4K and EAE.

~L~~n1 pote. The EAE is used to do shifting in LISTIN
and to do multiplication and division in BINDEC and DECBIN.
The shifting in LISTIN may be done by rotates and masks.
BINDEC is called by the primitives PLUS, MINUS, TIMES.
DECBIN is called by the primitives PLUS, MINUS, TIMES,
NUMBER, GREATP. If the user wishes to make use of BINDEC
or DECBIN either directly or indirectly without using EAE,
he should add subroutines to accomplish this.

R~~u.J~~J! §xp~rience. The user is assumed to be familiar
with basicFlist processing concepts, preferably a LISP­
like language. For a good introduction to list processing
and recursion, see Foster, J. M. List .E!:.Q.cess1!!g., Mac
Donald and Co., London, 1967.

STORAGE REPRESENTATION

Cell~. The storage allocated by the user (see OPERATING PRO­
CEDURES) is organized into £~ll§. Each cell occupies two
words. The first word of each cell is at an even address.
The two kinds of cells distinguished, l~st £§lls. and ~tom
cell~, are discussed below.

List cells. The first word of a list cell is referred to as
----the dowq pointer; the second word is called the next or

right pointer.

Since the address of each cell is even (where the address
of a cell is that of its first word), bit 11 of an address
is always zero and hence may be used to store additional
information. The following convention has therefore been
adopted: in a list cell, if bit 11 of the down pointer is
0, then the down pointer points to an atom cell. If bit
11 of the down pointer is 1, then the down pOinter points
to a list cell.

Atom cells. The first word of an atom cell is called the value
--Sit.. the cell; the second word is as for list cells. - -.

The value of an atom cell consists of two 6 bit ASCII char­
acters, where the left 6 bits are referred to as the left
character and the remainder as the right character. The
character 008 is considered null.

An ~Qm ~iring (or Simply atom) is made up of atom cells. For
each cell, the right painter points to the next cell in the
string. The right pointer of the last cell in the string
contains 0. For each cell, bit 11 of the right pointer is
always 0.

A list string is made up of list cells. For each cell, the down
pointer points to an atom string (bit 11 equals 0) or to a
list string (bit 11 equals 1). The right pointer points to
the next cell in the string. The right pointer of the last
cell in the string contains 0. For each cell, bit 11 of the
right pOinter 1s indeterminate.

A li.§..t consists of a list string and those list.s and atoms
pointed to by the string's down pointers.

A ~b-list is a list which is pointed to by the down pointer of
some other list.

A nul~ lis~ and a illlll g"tQ!l.! are special types. A pointer to a
null list consists of a word of all zeros except bit 11
which equals 1. A pointer to a null atom is a word of all
zeros.

A !!'lm!~riQ ,gtom is an atom which contains only numeric characters
(0-9).

2

THE INTERPRETER

Argument types. There are three types of arguments:

(1)

(2)

(3)

~.~!l!!.!;~E!> ~!9:.~~~.~.~,. These are assemb1~d as n~ers
o through 37 and correspond. to a table l.n the l.nter­
preter giving the addresses of machine language rou­
tines which perform the indicated function.

Subroutine arguments. These are assembled as nwnbers
gre'ateF-tlran'<'~r1""(§}"'which are speci fied in the INI'!'
command (see OPERATING PROCEDURES).

2!~~e !f9~~~~~~ A simple ar9um~nt is one which is
nel.t er aprl.~tl.ve nor a subroutl.ne. Normally, a
simple argument is a number which points to a constant
(which has been assembled with the user's LISp·8 pro­
gram) or to a location in the collection shelf (see
OPERATING PROCEDURES).

Argument values. These are:

(1) Primitive !!:2~ent values. The value of a primitive
argunlent""is a' war-d', -£Fie value of which depends on the
primitive and its arguments (see below under primitive
descriptions). This value is returned in the AC.
Primitives are divided into classes on the basis of
the type of values they return. These are:

(a)

(b)

LIi9JC~!~ :eE!...m.!.!:,!.~~, which return !9S!.?:E.!.!, ye!ll~~~·
T ese are NULL, ATOM, NUMBER, EQ, GREATP, AND, OR.
The value returned to the AC by a logicalprimi­
tive is either 0 (False) or 1 (True).

List Primitives, which return list values. These
are-~prrmrtrves-not listed in (a) except QUOTE
(see below). The value returned by a list primi­
tive is a pointer to a list or an atom.

(2) 2.~!.~t!.12~, !!:.~,;'!.~E,~ Ye~! .• AS indicated in the sec­
tIon on subroutl.nes, a subroutine consists of a single
argument with its arguments. When a subroutine argu­
ment is recognized, the corresponding subroutine is
evaluated with the appropriate parameter substitution.
The value of a subroutine argument is the value of the
corresponding subroutine upon evaluation.

(3) !.~l.t a~9'~pt ye,~':1:,~ .. ~,. The value ,?f a simple argu-
ment 1s~ne contents of the word p01nted to by the
argument 1 i.e., the value of simple argument x is C(C(x» ~
i.e., contents of the contents of x.

3

Available primitives. Primitives may also
the number of arguments each requires.
contents are:

be distinguished by
The categories and

(1) 0 arguments: LISTIN, PAUSE, EXIT
(2) 1 argument: HD, TL, LSTOUT, NULL, ATOM, DFUNC, RETURN,

MACH, MINUS, NUMBER, QUOTE, ENTRY
(3) 2 arguments: EQ, SET, SETHD, SETTL, GREATP, IF, CONS
(4) indefinite number of arguments: AND, PROG, COND, ,BEGIN,

GO, OR, PLUS, TIMES. The arguments are ended by a
word which points to a word which contains -1. In
what follows, this will be referred to as END.

Primitive descriptions:

AND

#I/J
args: indefinite (all logical)
definition: returns the logical AND of the values of the

arguments. ,
special cases/error exits: 0 arguments: returns T; 1 argu­

ment: returns the argument value;
no error exits.

HD

#1
args: 1 (pointer to list)
definition: returns the down pointer of the list cell pointed

to by the argument.
special cases/error exits: null argument: returns 0; atomic

argument: returns 0; no error exits.

LISTI]!

#3
args: 0
definition: inputs a list or an atom from the standard input

device (see OPERATING PROCEDURES) and returns a
pointer to the list or atom.

Input format: (1) lists: begin with an open
parenthesis, end with a matching closing paren­
thesis. Spaces are assumed to precede open and

'close parentheses. Thus (A) and (A~) are equiva­
lent, where ~ represents a space. (2) atoms:
begin with other than open parenthesis and end
with a space. Since open and closing parentehses
are assumed preceded by a space, the following
is a valid list: (A(B). Spaces other than those
which terminate atoms are ignored. The atom 0~ is
input as a null atom.

4

special cases/error exits: other than system malfunction,
the only error exits occur in the event the first
non-blank character is a close parenthesis, or if
not enough list storage is available to store the
list/atom.

lJ3YOU+.
#+
args: 1 (pointer to list/atom)

definition: outputs a list or an atom onto the standard out­
put device (see OPERATING PROCEDURES) and returns the
argument. No character 1s put out following the list/
atom output. Thus ABC~ on input is just ABC on output.
A null list or atom is output as 0.

special cases/error exits: none

NUL1
#5
args: 1 (pointer to list/atom)
definition: returns T(1) if the argument is null; returns F

(0) otherwise. Note: NULL;X is roughly equivalent to
EQ;NIL;X where NIL is the address of a word containing
zero.

special cases/error exits: none.

AfOM
#6
#args: 1 (pointer to list/atom)
definition! returns T(1) if the argument is an atom or is null;

returns F (0) otherwise.
special cases/error exits: none.

PIillQ

#7
args: indefinite (described below)
definition: permits the in-line coding of LISP-8 instructions

(arguments). The first set of arguments are local
variables (simple arguments) to be pushed down on
entry, popped on exit. These are terminated by an
END (an address of any location containing a - 1),
and are all set to null atoms initially. Following
the END are the instructions. These are executed
sequentially and are terminated by another END. The
value returned is that of the last argument. See
also GO and RETURN below.

special cases/error exits: none.

5

EO
110
fargs: 2 (both pointers to atoms)
definition: compares the atoms pointed to by the args. Returns

T (1) if they are equa11 returns F (0) otherwise.
special cases/error exits: error exit occurs if either argument

is not atomic.

COND nr
fargs: indefinite (described below)
definition: the number of arguments must be even. Odd numbered

arguments must return logical values. Even numbered ones
may be of any type. COND begins by evaluating the
first argument. If the value returned by this argument
1S T (1) then the second argument is evaluated, the
interpreter drops through to the terminating END, and
the value of the second argument is the value of the
COND. If the value of the first argument is not T, then
the procedure is repeated with the third and fourth
arguments, etc., until either an odd numbered argument
has value T or until the END is encountered. In the
latter case, the value is undefined.

special cases/error exits: none.

SET
m
largs: 2 (simple 1 any type)
definition: the first argument is set to the value of the

second argument.
special cases/error exits: none.

BEGIN n4
largs: indefinite

6

definition: the same as PROG but without the pushdown/initiali­
zation of local variables. The first set of arguments
(up to and including the first END) is not included.

special cases/error exits: none.

RETURN m-
largs: 1 (any type)
definition: causes a PROG or BEGIN to drop through to the ter­

minating END with the value of the RETURN argument.
F.or nested PROG's or BEGIN'~~ RETURN drops through the PROG
or BEGIN for which the RETUKN is an argument (instruc-
tion). May be used only as the argument of a PROG or
BEGIN or as the argument of an IF which is the argument
of a PROG or BEGIN or which itself is the argument of
an IF which is the argument of a PROG or BEGIN or which
itself is the argument of an IF, etc.

special cases/error exits: none.

SETHD
Jl6-
largs: 2 (pointer to non-null list, pointer to list/atom)
definition: the down pointer of the list cell pointed to by

the argument is set to the value of the seoond argument.
special cases/error exits; error exit oocurs if the value of

SETTL
Jrr'-

the first argument is null or atomic.

largs: 2 (pointer to non-null list; pointer to list)
definition: the right pointer of the list cell pointed to by

the argument is set to the value of the second argu­
ment.

special cases/error exits: error exit occurs if the value of
the first argument is null or atomic, or if the second
argument value is not a list pointer.

CONS
nO'
largs: 2 (pointer to list/atom; pointer to list/null atom)

7

definition: returns the value of the new cell whose down pointer
is the value of the first argument and whose right
pointer is the value of the second argument.

special cases/error exits: error exit occurs if second argument
is not a list or a null atom, or if list storage has
been exhausted.

OR
#21
args: indefinite (all logical)
definition: returns the logical OR of the values of the arguments.
special cases/error exits: 0 arguments: returns F (0); 1 argu-

GO
#22
args:

ment: returns the argument value; no error exits.

arbitrary (primitive or subroutine (with arguments) •••
simple argument (location of instruction within PROG or
BEGIN))

definition: causes the interpreter to continue evaluation at the
location specified by the simple argument. An arbitrary
number of non-simple arguments (with their arguments) may
precede the simple argument. In that case, the non-simple
arguments are evaluated as encountered, and control 1s
transferred when the simple argument is encountered, .and
the value of the final non-simple argument becomes the
value of the PROG or BEGIN at that pOint. Example:
GO;LOC causes control to be transferred to LOC, assuming
LOC is the location of an instruction within a PROG or .
BEGIN. GO; SET; X;HD;Y;LOC causes X to be set to the HD
of Y, and control is transferred to LOC, the value of the
PROG or BEGIN at that point being the HD of Y.

special cases/error exits: none.

MACH
#23

"

args: 1 (location of a machine language subroutine)
definition: executes a JMS to the indicated subroutine. An

argument may be gotten in the subroutine by coding
JMS I EV. The AC will contain the value of the argu­
ment upon return. A value may be entered on the push­
down list by executing JMS I PUSH;LOC where the contents
of LOC will be pushed down. The AC is clear on return.
To pop a value, execute JMS I POP;LOC. The contents
of LOC will upon exit be set to the top of the push­
down list before popping. The AC is undisturbed. Use
of the push and pop routines should be with great care
since the system will blow up if the push-down list is
not the same on exit from the subroutine as it was on

8

entry. As arguments are gotten via EV, they should be
stored in locations in the collection shelf unless the
user knows that no calIon EV and no code in the sub­
routine is liable to cause a garbage collection (LISTIN,
CONS, PLUS, MINUS, and TIMES are all liable to cause
garbage collections) or unless the argument values are
not lists or atoms. Furthermore, these locations in the
collection shelf should be pushed down on entry and popped
on exit. After all arguments have been gotten, the user
should code JMS I TEST;JMP RET where RET is the location
of code which will pop all pushes and exit from the sub­
routine. By way of example, consider the following sub­
routine: (assume LISTI and LIST2 are defined on the
collection shelf)

SUBR, f1
JMS I PUSH

LISTI
JMS I PUSH

LIST2
JMS I EV
DCA LISTI
JMS I EV
DCA LIST2
JMS I TEST
JMP SUBRET
• • • • • • •
(subroutine body)
• • • • • • •
TAD LISTI

SUBRET, JMS I POP
LIST2-

JMS I POP
LISTI

JMP I SUBR

/PUSH CONTENTS OF LISTI

/PUSH CONTENTS OF LIST2

/GET 1ST ARGUlv1ENT
lAND STORE IT
/GET 2ND ARGUMENT
/Al.~D STORE IT
/TEST
/EXECUTE THIS IF NO OPERATION TO BE DONE
/EXECUTE FOLLOWING CODE OTHERWISE

/RETURN LISTI AS VALUE
/POP CONTENTS OF LIST2. NOTE: DONE IN REVERSE
/ ORDER AS PUSHES.
/POP CONTENTS OF LISTI.

/RETum WITH CONTENTS OF LISTI BEFORE
/ POP AS VALUE OF THE SUBROUTINE

If the subroutine is liable to be invoked recursively, then the
return address should be saved. For example, the above should be
modified to appear as follows:

SUBR, 11
JMS I PUSH

SUBR
•
• (as above)
•

JMS I POP
SUBR

JMP I SUBR

/PUSH RETURN ADDRESS

/POP RETU~~ ADDRESS

9

The interpreter may be invoked via EVAT. wi thin a machine language
subroutine as follows:

JMS I PUSH
LISP+200

EVAL
•
• (EVAL argument)
•

JMS I POP
LISP+200

Other routines available: CVDEC will convert a binary word in the
AC to a numeric atom the address of whose head is returned in the AC.
Invocation of this routine might cause a garbare collection. CV8IN will

10

PLUS
#24

convert a numeric atom whose address is in the AC to a
binary word, the value of which is returned in the AC
(error exit is taken if the AC does not point to an atom).

#args: indefinite (all numeric atoms)
definition: each atom is converted to binary, the sum is taken

and converted to a numeric atom with leading zeros
stripped. Returns a pointer to this atom. Does not check
to make sure argument values are numeric.

special cases/error exits: 0 args: returns 0; 1 arg; returns
arg value. If sum is zero, returns a null atom. Error
exit occurs if any argument value is non-atomic.

M.IN:U~

#25
#args: 1 (numeric atom)
definition: converts the arg to binary, negates it, converts it

back to a numeric atom, .and returns a pointer to that
atom. Does not check -to make sure the arg value is

special
numeric.

cases/error exits:
atom. Error exit
atomic.

If result is zero, returns a null
occurs if the argument value is non-

TIMES
#26
#args: indefinite (all numeric atoms)
definition: each atom is converted to binary, the product is

taken, and converted to a numeric atom with leading
zeros stripped. Returns a pointer to this atom. Does
not check to make sure args are numeric,

Special cases/error exits: 0 args: returns 1;
arg value. If product is zero, returns
Error exit occurs if any argument value

IDl1-1BEl!
#27
#args: 1 (atomic)

1 arg; returns
a null atom.
is non-atomic.

definition: returns T (1) if arg value is numeric; returns F
(0) otherwise

special cases/error exits: Error exit occurs if arg value is
non-atomic.

11

gREATP
#30
args: 2 (both numeric atoms)
definition: returns T(1) if value of first arg is numerically

greater than the value of the second argo Returns
F(0) otherwise.

special cases/error exits: error exit occurs if either argument
value is non-atomic.

IF
#31
args: 2 (logical; any type)
definition: if first argument is value T, then executes second

argument; else does not execute second argo
special cases/error eXits: none.

-fAUM;
#32
args: 0
definition: causes HLT (7402) to be executed. To continue,

CONTINUE on the console should be depressed. The
location of the PAUSE is displayed in the AC; the MQ
is zero.

special cases/error exits: none.

no.r:r:
#33
args: 1 (logical)
definition: returns T if argument value is F; else returns F.
special cases/error exits: none.

jXIT
#34
args: 0
defini tion: clears various machine flags and exe.cutes a JMP

to 7600.
special cases/error exits: none •

. QUO,rn
#35
args: 1 (primitive without args or sub without args)
definition: returns the number of the primitive or subroutine

which is its argument.
special cases/error exits: none.

12

ENTRY

#36
args: 2 (described below)
definition: used in conjlmction with QUOTE. Causes execution

of the argument whose number is pointed to by the 1st
argument of ENTRY. The arguments for the indicated
argument follow the 2nd ENTRY argUment, which is a
word containing 0.

special cases/error exi~s: none.

Entry to the interpreter: Entry is accomplished by means of
EVAL (see OPERATING PROCEDURES). EVAL accepts one argument
and returns the value of the argument in the AC. The argu­
ment immediately follows the calIon EVAL.

Initialization: The interpreter must be initialized as described
in OPERATING PROCEDURES.

Interpreter flow. Upon entry to the interpreter via EVAL, a
pointer is set to the word containing the call to the inter­
preter. Control is then given to a routine called EVAL2.
This routine (which is recursive) advances the pointer and
inspects the word pointed to. If the contents of this word
are less than or equal 378 then a primitive invocation is
identified, and control is passed to the specified primitive.
Otherwise, the interpreter checks its subroutine table to
determine if a subroutine invocation is specified. If so,
the subroutine linkages are established and the subroutine
is executed. Otherwise, the AC is set to the contents of
the contents of the word pointed to, and return from EVAL2
is effected.

If the invocation of a primitive is specified, then control
is passed to the machine language routine in the interpreter
which processes the call. If the primitive requires an argu­
ment, EVAL2 is invoked, which returns in the AC value of the
argument. Since EVAL2 is recursive, it is apparent that the
argument of a primitive may itself be a primitive or a sub­
routine or a simple argument.

To illustrate the above, suppose EQUAL has been defined as a
subroutine with two arguments (see the section describing
subroutine definition), and that X and Yare simple.

13

Then:

EVAL
HD
X
(Ae is now set to a pointer

EVAL
HD
HD
X
(Ae is now set to a pointer

EVAL
EQUAL
X
y
(Ae is now set to the value

EVAL
EQUAL
HD
X
HD
HD
y
(Ae is now set to the value

entry to the interpreter
invocation to the primitive HD
argument of HD
to the HD of X)

entry to the interpreter
invocation to the primitive HD
arg of HD: another invocation of HD
arg of 2nd HD
to the HD of the HD of X)

entry to the interpreter
invocation of the subroutine EQUAL
1st argument of EQUAL
2nd argument of EQUAL
returned by EQUAL)

entry to the interpreter
invocation of the subroutine EQUAL
1st arg or EQUAL: invocation of HD
arg of HD
2nd arg of EQUAL: invocation of HD
arg of HD: another invocation ot HD
arg of previous HD
returned by EQUAL)

14

SUBROUTINES

. PU~~Qs~. A LISP-8 subroutine is used for much the same purpose
as a subroutine is used in a recursive algorithmic language,'
such as ALGOL or PL/I. A list of formal variables is speci­
fied which are set by the interpreter to the values of the
actual arguments. These formal variables may then be 'acted .
on by the subroutine definition.

Header. This consists of the name of the subroutine, a cOIIlI!la,
- and a carriage return. Example: the header for a subroutine

called EQUAL would appear as
EQUAL,

Formal variables. Following the Header is a set of 0 or more
----rormal variables followed by a word which points to a word

which contains -1. When the subroutine linkages are e stab:" ,
lished, the formal variables are pushed down and set to the
values of the arguments in the calling code. Upon exit from
the subroutine, these formal variables are popped. Example:
suppose END is the label of a word containing -1. Suppose
further that X and Yare in the collection shelf (see OPER­
ATING PROCEDURES). Then the following would specify a sub­
routine with 2 arguments and with formal variables X and Y:

X
Y
END

Note that if a particular formal variable is to be operated
on as a pointer to a list or an atom, then the formal vari­
able definition must appear in the collection shelf. Other­
wise it need not.

The definition. Following the set of formal variables is a
single LISP-8 argument (with its arguments). Any simple
arguments which appear in the definition are assumed global
unless they appear in the set of formal variables or in the
set of local variables in a PROG statement which encompasses
the occurrence of the argument.

Recursion. A subroutine may be invoked recursively.

Relatio~hip of calling cod.~ to formal ~t£1>I~~. If an argu­
ment in the calling code is simple, then upon exit from the
subroutine the argument will be set to the value of the
corresponding formal variable thus reflecting any changes
which might have occurred in the value of the formal vari­
able.

15

OPERATING PROCEDURES

!!E!s ~%Vided. P9LOC (5), LISP-8 (B:46~~-749~, S;12 tapes),
. 'O'R N (5).

~ale ~~au+r7~. 12 pages plus 15 (19) locations on page zero,
p us a d1t10nal push down store required.

ReasSemb~t~2 LISP-8. First read in ORIGIN, then the 12 LISP-8
symbo 1C tapes. Reassembly at another origin may be accom­
plished by re-setting the value of the symbol LISP in ORIGIN.

Assembli~ a LISP-8 £rob1em frogram. First read in ORIGIN then
----PPLOC tnen the proBlem program tape(s). The problem program

tape(s) should begin with the user's collection shelf (see below).

Initializ~ the interpreter. Prior to the first execution of EVAL,
----erue-rnterpreter must be initialized giving certain parameters:

1. The first location available for list storage
(if odd, the next even location is assumed).

2. The negation of the total number of locations available
(if the absolute value is odd, then the absolute value is
assumed to be one less than specified).

3. The location of an ouput routine (see below).
This value is placed into the location called EVOUT in P9LOC

4. The location of an input routine (see below).
This value is placed into the location called EVIN in P9LOC.

s. The negation of the number of words desired for push- ',1,1

down storage. This storage is allocated qirectly before the n
interpreter. If there is an overlap between this storage and
the list storage, then the list storage space is reduced accordingly.

6. The locations of subroutines in the problem program. I

7. A word containing zero.

The symbol INIT is defined in P~LOC as a JMS to the initial-
izing routine in the interpreter. Thus an initialization might be:

INIT
START
START-LISP
OUTPUT
INPUT
-299
SUBA
COpy
FIND
fl

/JMS TO INITIALIZING ROUTINE
/ADDRESS of 1ST AVAILABLE LOCATION
/-(TOTAL t OF LOCATIONS AVAILABLE)
/LOCATION OF AN OUTPUT ROUTINE
/LOCATION OF AN INPUT ROUTINE
/2'9 LOCATIONS TO BE USED IN PUSH-DOWN
/LOCATION OF SUBROUTINE CALLED SUBA
/LOCATION OF SUBROUTINE CALLED COpy
/LOCATION OF SUBROUTINE CALLED FIND
/END OF SUBROUTINE LIST

Note: the symbol LISP has been defined in P9LOC as 5'9'.

STACK

Thus it may be used as shown above to define available storage.

16

Output routine. This user-provided machine language routine
must process 6-bit ASCII characters, packed 2 to a word,
ignoring @ characters. The LSTOUT primitive does a JMS
to the routine with the 2 characters to be output in the
AC. The device accessed is called the st~~ard Qutpqt
i!.E~tY1.£..~ •

Input £9~ti~. This must provide the interpreter with 6-bit
ASCII characters right packed in the AC upon exit from
the input routine. If any of bits 0-5 are set, the 6-bit
value will be used, but open parenthesis, close parenthesis,
quote, and space will not be recognized by LISTIN which
invokes this routine. The device accessed is called the
st~dard lnput device.

Error exits. When a routine takes an error exit (such as the
-----Case in which either argument value for a calIon EQ is

not atomic), it goes to a routine which halts, displaying
in the AC the address of the last argument evaluated, and
displaying in the MQ the location plus one from which the
exit was taken. The user may inspect the listings to
determine the error. Restart is not possible.

Garbage. collection. .When list storage is exhausted and another
cell is required (by LISTIN, CONS, PLUS, TIMES, or MINUS),
a garbage collection phase is entered. First, bit 11 of
the right pointer of each cell is set to 1. Then the col­
lection shelf and the push-down list are inspected. Those
cells comprising lists and atoms pointed to by locations
in the collection shelf and the push-down list are noted
by setting the right pointer of each of these cells to 0.
After inspection, those cells whose right pointer has bit
11 equal to 1 are collected into a free string from which
requests fo~ cells are made. Those cells whose right
pointer has bit 11 equal to 0 are left unaffected. The
garbage collector makes use of the push-down list, so an
error exit on account of insufficient push-down storage
is possible. In addition, if it is impossible to collect
any cells, an error exit is taken. If any location in the
collection shelf or in the stack does not point to a cell,
that location is ignored.

Collection shelf. This consists of a set of locations directly
following those locations in P0LOC. These locations, along
with the push-down list are inspected whenever garbage col­
lection takes place. Any list or atom which is stored in
list storage will be lost (i.e., collected) if a pointer
to it does not appear in the collection shelf or in the
push-down list. The collection shelf is terminated by a
word containing -1.

17

SYNTACTIC SUGARING

Consider one of the examples given under THE INTERPRETER,
interpreter flow. It was:

EVAL
EQUAL
HD
X
HD
HD
Y

This is perfectly acceptable, but it is quite confusing as to
the relationships between the arguments. A more intelligible
way of ~Titing the above would be:

EVAL
EQUAL

HD
X

HD
HD

Y

This notation makes it much clearer what is an argument of what.
Realizing from experience that the above notation, while better
than the first type cited, was still difficult to use and read,
the decision was made to modify the assembler in such a way that
an open parenthesis is interpreted as a semicolon (though printed
during pass 3 as an open parenthesis), and a close parenthesis is
interpreted as a space. Thus we could write the above as

EVAL(EQUAL(HD(X);HD(HD(Y))))

which is interpreted as EVAL;EQUAL;HD;X;HD;HD;Y which is clearly
equivalent to

EVAL
EQUAL
HD
X
HD
HD
Y

in this way a LISP-8 program could be written using either nota­
tion, or a combination, at the user's discretion.

18

The assembler in use by the author contains the above modifi­
cations, but it is an in-house version and not presently
available through DECUS. Users may readily make the modi­
fications themselves (simply check for open parentheSis,
and if found, jump to the routine handling semicolons;
similarly for close parenthesis).

Users of MACRO-8 will probably wish to use other than open
and close parentheses for the sugaring since these are
used for other purposes; angle brackets are a possible
substitution.

The symbolic LISP-8 tapes provided make use of the PSUEDO opts
EJECT (which ejects a page; the assembler in use automatic­
ally paginates pass 3 output into 8t x 11 inch sheets) and
PAGE which is the equivalent of *.+177&7600. It was inclu­
ded inasmuch as the assembler in use does not have the &
operator. If the user's assembler does not have the EJECT
or the PAGE options, then EJECT may be removed via the
editor. For the first occurrence of PAGE (on the second
LISP-8 tape) substitute via the editor *LISP+200; for the
second occurrence substitute *LISP+400, etc.

19

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20

