
------,------
.- . , .

I \ DECUS
\ I PROGRAM LIBRARY

DECUSNO.

TITLE

AUTHOR

COMPANY

DATE

SOURCE LANGUAGE

10-118

BLISS REFERENCE MANUAL (A Basic Language for
Implementation of System Software for the PDP-10)

W. A. Wulf, D. Russell, A. N. Habermann, 'C. Geschke,
J. Apperson, D. Wile, R. Brender*

Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pennsylvan ia

January 15, 1970 (Revised August 15, 1970)
(Revised November 9, 1970) (Revised AprIl 7, 1971)

BLISS

* Digital Equipment Corporation, Maynard, Mass. 01754

Although this program has been tested by the contributor, no warranty, express or implied, is made by the contributor,
Digital Equipment Computer Users Society or Digital Equipment Corporation as to the accuracy or functioning of the
program or related program material, and no responsibility is assumed by these parties in connection therewith.

J

*

BLISS REFERENCE MANUAL

A Basic Language for Implementation of
System Software for the PDP-IO

W. A. Wulf
D. Russell
A. N. Habermann
C. Geschke
J. Apperson
D. Wile
R. Brender')'c'

Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pennsylvania

January 15, 1970

(Revised August 15, 1970)
(Revised November 9, 1970)
(Revised April 7, 1971)

001-326-002-01

Digital Equipment Corporation, Maynard, Mass. 01754

This work was supported by the Advanced Research Projects Agency
of the Office of the Secretary of Defense (F44620-70··C-0107) and
is monitored by the Air Force Office of Scientific Research. This
document has been approved for public release and sale; its distri
bution is unlimited.

.. ~

c

c

PREFACE

This manual is a definitive description of the BLISS language as

implemented for the PDP-10. BLISS is a language specifically designed for

writing software systems such as compilers and operating systems for the

PDP-10. While much of the language is relatively "machine independent" and

could be implemented on another machine, the PDP-10 was always present in

our minds during the design, and as a result BLISS can be implemented very

efficiently on the 10. This is probably not true for other machines.

We refer to BLISS as an "implementation language". This phrase has

become quite popular late 1y, but apparent 1y does n'ot have a uniform meaning.

Hence it is worthwhile to explain what ~ mean by the phrase and consequently

what our objectives were in the language's design. To us the phrase "imple

mentation language" connotes a higher level language suitable for writing

production software; a truly successful implementation language would

completely remove the need and/or desire to write in assembly language.

Furthermore, to us, an implementation language need not be machine inde

pendent--in fact, for reasons of e~ficiency, it is unlikely to be.

Many reasons have been advanced for the use of a higher level language

for implementing software. One of the most often mentioned is that of speed

ing up its production. This will undoubtedly occur, but it i8 one of the less

important benefits, except insofar as it permits fewer, and bE~tter program

mers to be u$ed. Far more important, We believe, are the benE~fits of docu

mentation, clarity, correctness and modifiability. These werE~ the most

important goals in the design of BLISS.

Some people, when discussing the subject of implementation languages,

have suggested that one of the existing languages, such as PL/r, or at most

i

a derivative of one, should be used; they argue that there is already a pro

liferation of languages, so why add another. The only rational excuse for

the creation of yet another neW language is that existing languages are

unsuitable for the specific applications in mind. In the sense that all

languages are sufficient to model a Turing machine, any of the existing

languages, LISP for example, would be adequate as an implementation language.

However, this does not imply that each of these languages would be equally

convenient. For example, FORTRAN ~ be used to write list processing pro

grams, but the lack of recursion coupled with the requirement that the pro

grammer code his own primitive list manipulations and storage control makes

FORTRAN vastly inferior to, say, LISP for this type of prpgramm:ing.

What, then, are the characteristics of systems programming which should

be reflected in a language especially suited for the purpose? Ignoring

machine dependent features (such as a specific interrupt structure) and

recognizing that all differences in such programming characteristics are

only ones of degree, three features of systems programming stand out:

*

1 •. Data structures. In no other type of programming does the

variety of data structures nor the diversity of optimal

representations occur.

2. Control structures. Parallelism and time are intrinsic

parts of the programming system problem.*

3. Frequently, systems programs cannot presume the existence

of large support routines (for dynamic storage allocation,

for example).

Of course, pArallelism and time are .intrinsic to real time programming

as well.

ii

These are the principal characteristics which the design of BLISS

attempts to address. For example, taking point (3), the language was

c designed in such a way that no system support is presumed or needed,

even though, for example, dynamic storage allocation 1s provided. Thus,

code generated by the canpiler can be executed directly on a "bare"

machine. Another example, taking point (1), is the data structure defini-

tion facility. BLISS contains !!£ implicit data structures (and hence no

presumed representations for structures), but rather provides a method

for defining a representation by giving the explicit accessing algorithm.

One final point before proceeding with the de$cription of the 1an-

guage--namely, the method of syntax specificationo The syntax is given

in BNF, for example

escapeexpression ~EXITBLOCK escapeexpression\EXITLOOP escapeexpression

escapeexpression ~ Ie

c where: (1) lower case words are metalinguistic variables, and (2) the

'empty' construct is represented by a blank (as in the first alternative

of the second rule above).

iii

J

c/

0

I.

TABLE OF CONTENTS

LANGUAGE DEFINITION

1.1.1 Modules •.••.• ..
1.1.2 Blocks and Comments.
1.1.3 Literals •.•

1.1.4 Names ,
1.1.5 Pointers .•.

1.1.6 The "contents of" Operators •••••••••.••••••

1.2.1 Expres s ions ••.•...••.••...•••.•••••..•..•••

1.2.2 Simple Expressions

1.2.3.1 Control Expressions ••••••••••••••••

1.2.3.2 Conditional Expressions.

1.2.3.3 Loop Expressions ••..•..•

1.2.3.4 Escape Expressions ••••

1.1

1.2

1.3

1.4

1.5

1.6

2.1

2.2

2.3.1

2.3.2

2.3.3

2.3.4

1.12.3.5 Choice Expres s ions. • • • • . • . • • . • • . • . • • . • . • • . • . • • • • • • • •• 2.3.5

1.2.3.6

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.3.6

1.3.7

Co-routine Expressions

Declarations ••.••.••.•••••.

Memory Allocation .••••.••••

Map Declaration ••••••••..•••••••••••..••••.•.••.•.•••••

Bind Declaration ••.•..•••••.••.•••

Structure Declaration ••.•••••••••.

Function Declarations •••.•••..••••••••••••••.••••••••• e

Simple Macros •••••••••••. '

2.3.6

3.1

3.2

3.3

3.4

3.5

3.6

3.7

II. SPECIAL LANGUAGE FEATURES

III.

11.1.1 Special Functions •••••••••••••••• •••••••••••••• II •••• 11-1.1

11.1.2 Character Manipulation Functions •••••••••••••••..•••• 11-1.2

11.1.3 Machine Language ••••••••••••••••••••••••••••••• " •••• II-i.3

11.1.4 Compilation Control ••••••••••••••••••••••••••••• , •••• 11-1.4

SYSTEM FEATURES

(not yet available)

iv

IV.

V.

RUN TIME REPRESENTATION OF PROGRAMS

IV.l.O Introduction ••

IV.I.I Registers ••••••••••.•••.••••••••••••••••••.•••••••••

IV.l.2 The Stack and Functions ••••••.••••.•••••••••••••••••

IV.l.3 Access to Variables •.•••••••••••.•.•••.••.•••.••••••

IMPLEMENTATION OF THE BLISS COMPILER

APPENDIX:

A.. Syntax 4 ••••••••••••••••••••••••

B. Input-Output Codes ,

c. Word Fonnats ..•.........•....•....•..............•..• ' ..•

D. Bliss Error M'essages '

v

IV-l.O

IV-I.I

IV-I.2

IV-I.3

A.I

B.I

C.I

D.l

J

o

1.1

I. LANGUAGE DEFINITION

1.1 Nodules

A module is a program element which may be compiled independently of

other elements and subsequently loaded with them to form a c:omplete program.

module ~ MODULE name (parameters) e ELUDOM

A module may request access to other modules' variables and functions by

decla.ring their names in EXTERNAL declarati.ons. A module permits general

use of its own variables and ROUTINEs by means of GLOBAL declara.tions.

These lines of communicati.on betwee.n modules are -linked by the loader prior

to ex~cution. A complete program consists of a set of compiled modules

linked by the loader.

TIle 'name' in a module declaration is used to identify that module

and must be unique in its first four characters from any otlH~r global

names which are to be linked together to form a complete program. The

'parameters' field of a module definition is used to control the compila

tion (see section II.l.4). See section IV-l.3 for other uses of the module

name.

1.2

1.2 Blocks and Comments

A block is an arbitrary number of declarations followed by an arbi

trary number of expressions all separated by semicolons and enclosed in a

matching begin-end or '('_I)' pair.

block ~ BEGIN blockbody END I (blockbody)

compoundexpression ~ BEGIN expressionsequence END I (expressionsequence)

blockbody ~ declarations; expressionsequence

declarations ~ declaration I declaration; declarations

expressionsequence ~ lee; expressionsequence

comment ~ I ! restofline endoflinesymboll~ stringwithnopercent ~

Comments may be enclosed between the symbol ~ and the end of the line on

which the ! appears. However, ,a ~ may appear in the quoted string of a

literal, or between two % symbols, without being considered the beginning

of a comment. Likewise, a % enclosed within quotes will be considered part

of a string.

As in Algol the block indicates the lexical scope of the names declared

at its head. However, in contrast to Algol, there is an exception. The

names of GLOBAL variables ~nd ROUTINEs have a scope beyond the block and

although they are declared within the module, the effect, for a module

citing them in an EXTERNAL declaration, is as if they were declared in the

current block. This violation of block structure has implications with

respect to allowed references, particularly in connection with declared

registers. These implications, and a corresponding set of restrictions,

will be discussed in connection with the affected declarations.

J

IJ

c!

c

o

1.3

1.3 Literals

The basic data element is a PDP-IO 36 bit word. However, the hard-

ware provides the capability of pointing to an arbitrary contiguous field

within a word and so a 36 bit word may be regarded as a special case of

the "partial word". Literals are normally converted to a single word.

literal ~ number

number ~ decimal

quotedstring I plit

octal 1 floating

decimal ~ digit 1 decimal digit

octal ~ I oit 1 octal oit

floating ~ decima1.decima1 1 decima1.decima1 exponE~nt 1 decimal. exponent

exponent ~ E decimal 1 E + decimal 1 E - decimal

digit ~ 01112 --- 19

oit ~ 01112 ---17

b (i d ·) d bi d 1 236 . d num ers uns gne lntegers are converte to nary mo u 0 reSl ue

_2
35

• The binary number is 2's complement and is signed. Octal constants

are prefixed by the sharp sign, I. Floating numbers must have an embedded

decimal point and no embedded blanks~

quotedstring ~ leftadjustedstring 1 rightadjustedstring

leftadjustedstring ~ 'string'

rightadjustedstring ~ "string"

Quoted-string literals may be used to specify bit patterns corresponding to

the 7-bit ASCII code for visable graphic characters on the external I/O

,media. Two types of single-word strings are provided for left or right

1.3a

justification of the string within a word. Normally quoted stringc are

limited to five characters and the unused bit positions are filled with

zeroes.

Within a quoted string the quoting character is represented by two

successive occurrences of that character.

o

c)

o

1.3.1

1.3.1 Pointers to Literals - "p1it"s

A plit is a ~ointer to a literal word whose contents are specified at

compile time; e.g., plit 3 is a pointer to a word whose contents will be

set to 3 at load time.

plit ~ plit plitarg

* plitarg ~ load-time-expression

long-string

triple

triple ~ (triple-item-list)

triple-item-list ~ triple-item I triple-item, triple-item-list

triple-item ~ load-time-expression

long-string I
duplication-factor: plitarg

duplication-factor ~ compile-time-expression

* Note: "plit (3)+4" has 2 parses: plit load-time-expression

and plit triple + expression

The latter choice is used. Hence, "plit (3)-+4" is the same

as "(plit 3)-+4".

A plit may point to a contiguously stored sequence of literals -

long strings and nested lists of literals are also allowed. The value of

plit (3,5,7,9)

is a pointer to 4. contiguous words containing 3,5,7 and 9 respectively.

A long string (> 5 characters) is also a valid argument to a plit:

plit 'THIS ALLOCATES 5 WORDS'

1.3.1a

allocates 5 words of 7-bit ASCII characters with 3 pad characters of zero

to the right and the last bit turned on.

The arguments to plits need only be constant at load t~e; plits are

themselves literals, thus nesting of plits is allowed (with the inner plits

allocated first):

external A,B,C;

bind y = plit (A, plit (B,C), plit 3, fA LONG STRING', S+9'lC'3);

is such tha t:

.y[o] = A<0,36>; •• y[1] = B<0,36>; • (.y[l]+l), = C<0,,36>

•• y[2J == 3; .y[3] == 'A LON'; .y[4J == 'G STR'; .y[S] = 'lNG' or 1;

.y [6] 32;

In addition, any argument to a plit can be replicated by specifying

the number of times it is to be repeated; e.g.

p1it (7:3)

produces a pointer to 7 contiguous words, each of which contai.ns the value 3.

Duplicated plits are allocated once, identical plits are not pooled - hence,

bind x == plit (3: plit A, plit A, 2: (2,3»;

is such that:

•• x[0] == •• x[l] = •• x[2] == •• x[3] = A<O,36>;

.x[O] == .x[l] = .x[2] f: .x[3J;

.x(4] = .x[6J = 2 - .x[S] = .x[7] = 3-, ,

Note: the length of every pI it (in words) is stored as the word preceding

the plit. Hence, in the last example, .x[-l] = 8.

1.4

1.4 ~

Syntactically an identifier, or name, is composed of a sequence of

letters and/or digits, the first of which must be a letter. Certain names

are reserved as delimiters, see Appendix A. Semanti.cally the occurrence

of a name is exactly equivalent to the occurrence of a pointer to the named

item. The term "pointer" will take on special connotation later with

respect to contiguous sub-fields (bytes) within a word; however, for the

present discussion the term may be equated with "address". This interpre-

tation of name is uniform throughout the language and there is no dis tinc-

tion between left and right hand values. Contrast this 'with Algol where a

name usually, but not always, means "contents of".

o The pointer interpretation requires a "contents of" operator, and " " .
has been chosen. Thus.A means 'contents of location N'and •• A means

"contents of the location whose name is stored in location ~~ To illustrate

the concept, consider the assignment expression

pll +- e

This means 'htore the value computed from e into the location whose pointer

is the value of p 11".. (Further details are given in 2.2.) Thus the Algol

statement "A := B" is written "A +- .Bu. It is impossible to express in

Algol BLISS expressions such as: "A +- B", "A +- •• B", ".A +- .B", etc.

o

1.5

1.5 Pointers

As explained in 1.4, the value of a name is a pointer which names a

location in memory. However, pointers are more general than mere ad-

dresses since they may name an arbitrary contiguous portion of a word, and

may, further, involve index modification and indirect addressing. (For

full details, the reader should refer to the PDP-lO System Reference

Manual.) The most general form of pointer specifies five qua.ntities; an

18
example is EO <El , Ez ' ~, E4>' where EO is computed modulo 2 and forms

the base word address (Y field); E1,E2 , are computed modulo 2
6

and form

the position, size fields respectively (P, S fields); ~3 is computed

4
modulo 2 and forms the index field (X field); E4 is computed modulo 2

and forms the indirect address bit (I field). Each of El'Ez'E3,~ may

optionally be omitted, in which case a default value is supplied. El'E3'~ ,~

have defaults of 0, but Ez has the default of 36. Thus, for example,

the expression

(x+1)<. y, 3>

defines a three bit field in the first location bey.ond x. The position

of this three bit 'field is fl. yfl bi ts from the right end of t!be wor.d.

location fiX" location IIx+l"

-I~------[----:~~~~l ----n-l-_-, _________ .
~3~itS~

1 .6

1 .6 The "contents of" Operators

The interpretation placed on identifiers in Bliss coupled with the dot

operator discussed earlier· allow a programmer direct access t:o, and control

over, fields within words, to pointers to such fields which are themselves

stored within memory, to chains of such pointers; etc. Two additional

"contents of" operations besides the dot are provided which a,re more effi-

cient in certain cases, but which are defined in terms of the dot and

pointer operations. These operators are @ and\, and are defined by the

following (where. t is a temporary):

@E = .E < 0, 36, 0, 0 >
\ E = . (t ~ E) < 0, 36, • t < 1 8, 4 >, • t < 22, 1 > >

Thus, both @E and \E specify a full 36 bit value. @E uses only the right-

o most 18 bits of E as the absolute address from which to fetch the value.

\E interprets the rightmost 23 bits of E as an indirect bit, index register

field and base address. Whichever form is used, the compiler attempts to

optimize the code produced; thus, for example, identical code is produced

for .x, @x., and \ x, if they occur in an expression.

Suppose that the assignment "X ~y < 3, 15, R1, 0>;" has been executed~

that is a pointer has been stored in X (that pointer has P=3, 8=15, X=Rl,

I=O), and further that register R1 contains two. Now:

(1) Z ~ .X stores the value of X, i.e., the pointer, into Z

(2) Z ~ •• X stores the value of the fifteen bit field (which ends three
bits from the right) on the second word following Y into Z

(3) Z ~@ .X stores the value of Y into Z

(4) Z ~\ .X stores the value of, the second word following-Y into Z

o (5) .X ~ 5 stores 5 into the relevant fifteen bit field of the second
word following Y

2.1

2.1 Expressions

Every executable form in the BLISS language (that is, evel~y form

except the declarations) computes a value. Thus all commands are expres

sions and there are no "statements" in the sense of Algol or Fortran.

In the syntax description e is used as an abbreviation for expression.

e ~ simpleexpression I controlexpression

J

)

0

0

2.2

2.2 Simple Expressions

The semantics of simpleexpressions is most easily described in terms

of the relative precedence of a set of operators, but readers should also

refer to the BNF-like description in 4.1. The precedence number used

below should be viewed as-an ordinal, so that 1 means first and 2 second

in precedence. Ln the following table the letter E has been used to ~enote

an actual expression of the appropriate syntactic type, see 4.1.

Precedence Example

1 compoundexpression

1 1 block

1 EO (E1 ' ~ , • • • , En)

1 name[El,~,···,EnJ

1 name

1 literal

2 E<pointer par&neters>

3 .E

3 (o)E

3 \E

4 El t~

5 EoJeE

5 Ells.

5 El MOD ~
6 -E

6 E+E

6 El -E2

Semantics

The component expressions are
evaluated from left to right
an~ the final value is that of
the last c.omponent expression.

A function call, see 3.4.

A structure access, see 3.5.

A pointer to the named item,
see 1.4.

Value of the converted li tE~ral,
see 1.3.

A partial word pointer, see 1.5.

Value (possibly partial word)
pointed at by E:.

Equivalent to .f<O.36.0.0>.

Equivalent to o(t~)< O,36,.t< 18,4>,
.t<22,1».

El shif ted 10gi.ca11y by ~ bi ts;
left if E2 posi.tive; r.lgh~ if
~ negative. (Shifts are modulo 256J

Product of E' s.

El divided by Ez·
El modulo E2 •

Negative of E.

Sum of E' s.

Difference between El and Ez.

2.2a

36 [Note all integer arithmetic is carried out modulo 2 with a residue

35
of -2 •]

Precedence ExamE1e Semantics

5 E1 FMPR "e:z Floating product of E1 and ~.

5 E1 FDVR e:z Floating divide of El by ~.

6 FNEG E1 Floating negatE! of
E1-

6 E1 FADR ~ Floating sum of E1 and ~.

6 E1 FSBR ~ Floating difference of E1 and ~.

7 E1 EQL ~ E = 1 ~
7 E1 NEQ ~ El r ~
7 E1 LSS ~ E1 < ~ :)
7 E1 LEQ ~ El ~ ~
7 E1 GTR ~ E1 > Ez
7 E1 GEQ Ez E1 ~ Ez

[Truth is represented by 1, falsity by 0.]

8 NOT E bitwise complement of E

9 E AND E bitwise and of E's

10 E OR E bitwise inclusive or of E's

11 E XOR E bitwise exclusive or of E's

11 E EQV E bitwise equivalence of E's

12 E'" ~ The value of this expression is
identical to that of ~,but as
a side effect this value is st6red
into the partial word pointed to
by E1; with associative use of ... ,
the assignments are executed f~om

) right to left: thus E1 ... Ez ... ~
means E1 ... (~ ... E3).

G

o

o

2.2b

There is no guarantee regarding the
order in which a simpleexpression is
evaluated other than that provided by
precedence and nesting: thus
(R ~ 2; @ R * (R ~ 3» may evaluate
to 6 or 9.

The reader should refer to the PDP-lO reference manual for a oomplete

definition of the arithmetic operators under various special input value

conditions.

2.3. 1

2.3.1 Control Expressions

The controlexpressions provide sequencing control over the e:x:ecution

of his program; there are five forms:

controlexpression ~ conditionalexpression I loopexpression I
choiceexpression I escapeexpression I coroutineexpression

The general goto statement has deliberately been omitted from the

language to improve readability and structuring of programs.

;J

o

o

2.3.2

2.3.2 Conditional Expressions

conditionalexpression ~IF e, THEN e 2 ELSE e3

e, is computed and the resulting value is tested. If it is odd*, then e
2

is evaluated to provide the value of the conditional expression, otherwise

e
3

is evaluated.

conditionalexpression ~IF e, THEN e
2

This form is equivalent to the IF,..THEN-ELSE form with 0 rep lacing e'3.

However, it does introduce the. "dangling else" ambiguity. .This is resolved

by matching each ELSE to the most recent unmatched THEN as the'conditional

expression is scanned from left to right.

* Only the least significant bit of e, is tested; a zero bit is interpreted as
false and a one bit as true. Thus any odd integer value is interpreted as
true and any· even value as false.

2.3.3 Loop Expressions

The value of each of the six loop expressions 1s -', except when an

EXITLOOP is used, see 2.3.4.

loopexpression ~WHILE e, DO e2

The e, is computed and the resulting value is tested. If it 1s odd, then

e2 is computed and the complete loopexpression is recomputed; if it is ~ven,

then the loopexpression evaluation is complete.

loopexpression ~UNTIL e3 DO e2

This form is equivalent to the WHILE-DO form except that e, is replaced by

NOT(e3)·

loopexpression ~ DO e2 WHILE e,

The expressions e2,e, are computed in that sequence. The value resulting

from e, is tested: if it is odd, then the complete loop expression is

recomputed; if it is even, then the loopexpression evaluation is complete.

loopexpresslon ~DO e2 UNTIL e3

This form is equivalent to the DO-WHILE form except that e, is replaced by

NOT(e3)·

loopexpression ~ INCR name FROM e, TO e2 BY e3 DO e4

This is a simplified form of the Algol 68 for-loop. The "name" is declared

to be a REGISTER or a LOCAL for the scope of the loop. The expression e, is

computed and stored in name. The expressions e 2 and e3 are computed and

stored in unnamed local memory which for explanation purposes we shall name

U2 and U3• Any of the phrases ·"FROM e,'" "TO e2" or "BY e3" may be omitted"-

J

J

o

o

o

2.3.38

35
in which case default values of e1 = 0, e2 = 2 -1, e3 = 1 are 3upp1ied.

The following loopexpression is then executed:

BEGIN REGISTER name; LOCAL U2,U3; U2
1

f- e2 ; U3 ... e
3

;

UNTIL .name GTR .U2 DO (e4 ; name'" .name +.U3)

END

The final form of a loopexpression is:

loopexpres8ion ~ DECR name FROM el TO e2 BY e3 DO e
4

This is equivalent to the INCR-FROM-TO-BY-DO form except that the final

loop is replaced by

BEGIN REGISTER name; LOCAL U2,U3; U2 ... e2 ; U3 f- e
3

;

UNTIL .name LSS .U2 DO (e4 ; name'" .name - .U3)

END

If any of the FROM, TO, or BY phrases are omitted from a DECR expression,

default values of e l= 0, e2 = _2
35

, and e3 = 1 are supplied. Notice that

in both forms the end condition is tested before the loop, hence the loop

is potentially executed zero or more times.

2.3.4

2.3.4 Escape Expressions

The various forms of escapeexpressions permit control to leave its

current environment. They are intended for those circumstances when other

controlexpressions would have to be contorted to achieve the desired effect.

escapeexpression ~ environment level escapevalue I RETURN escapevalue

environment -+ EXIT I EXITBLOCK I EXITCOMPOUND I EXITLOOP I EXITCOND

EXITCASE I EXITSET I EXITS ELECT

level -+ r Ce1

escapevalue ~ I e

Each of these expressions conveys to its new environment a value, say E,

obtained by evaluating the escapevalue, which may optionally be omitted imply-

ing E = O. The levels field, which must evaluate to a constant, say n, at

compile time, determines the number of levels of the specified control environ-

ment to be exited; the levels field may optionally be omitted in which case

one level is implied. The maximum number of levels which may be exited in

this way is limited by the current function (routine) body or the outermost block.

RETURN terminates the current function, or routine, with value E.

EXITBLOCK terminates the innermost n (where n is the value of the
"levels" field) blocks, yielding a value of E for the
outermost one exited.

EXITCOMPOUND terminates the innermost n compound expressions, yielding
a value of E for the outermost one exited.

EXITLOOP terminates the innermost n loop expressions, yielding a
value of E for the outermost one exited.

EXITCOND terminates the innermost n conditional expressions,
yielding a value of E for the outermost one exited.

EXIT terminates the innermost n control scopes (whether blocks,
compounds, conditionals, or loops with E as the value
of the outermost.

)

o

o

2.3.4a

EXITCASE terminates the n innermost case expressions yielding
a value of E for the outermost of these.

EXITSET terminates the n innermost set expressions, yielding a
value of E for the outermost of these.

EXITSELECT terminates the n innermost select expressions, yielding
a value of E for the outermost of these.

2.3.5

2.3.5 Choice Expressions

choiceexpression ~ CASE elist OF SET expressionset TES

elist ~ e I e, elist

expressionset ~ lei; expressionset I e expressionset

Let us suppose that the actual e's within the elist are El'E2' ••• '~ and

that the actual expressions within the expressionset are TIO;TIl;",;TI. Then

the expressions TIE ,TIE , ••• TI~ are executed in that order.
1 2 '1n

The value of

the case expression is that of rr~.

choiceexpression ~ SELECT elist OF NSET nexpressionset TESN

nexpressionset ~ ne I ne; nexpressionset

ne ~ e:e

This fO.rm is somewhat similar to the case expression except thiat the

expressions in the nexpressionset are not thought of as being sequentially

numbered--instead each expression in the nexexpressionset is tagged with an

"activation" expression. Suppose we have the following select expression

then the execution proceeds as follows: first El , ~, Ej are evaluated,

then Eq" E6 , Ea and ElO are evaluated; correspondingly ES is evaluated if

and only if ~ is equal to one of El , Ez, or E3• Similarly E7 is evaluated

if and only if E6 is equal to one of El , ~, or Ej, etc. The <)rder of

comparison of Eq" ~, etc. is from left-to-right, and the value of the

select expression is the last of ES' E7 , etc. to be evaluated (or -1 if

none is evaluated).

J

o

o

o

2.3.5a

In place of one of the selection expressions, E4' ~, etc. one of

the two reserved words OTHERWISE or ALWAYS may be used, e.g., "ALWAYS:E
9
".

The expression following an "OTHERWISE:" will be executed just in the case

that none of the preceding selection criteria were satisfied. The expres-

sian following an "ALWAYS:" will always be executed independent of the

selection criteria. In the following example

z ~ SELECT .x,.y OF

NSET

1: El

7:~

OTHERW IS E : E3

36: E4

ALWAYS: ~
94: E6

TESN;

(1) El will be executed if .x=l ~ .y=l, then (2) E2 will be executed if

.x=7 ~ .y=7, then (3) E3 will be executed in the case neither El ~ E2
was executed, i.e., .x:/:1, .y:/:l, .xr7, and .y:/:7, then (4) E4 will be executed

if .x=36 or .y=36, then (5) E5 will always be executed, and finally (6) E6

will be executed if .x=94 or .y=94. The value assigned to z will be

that of ~ unless .x=94 or .y=94 in which case the value assigned to z

6
will be that of E •

Note that although OTHERWISE and ALWAYS may be placed in any nset-e1ement,

it makes no sense to use more than one OTHERWISE or to use an OTHERWISE

after an ALWAYS since in these cases the latter OTHERWISE's can have no

effect.

2.3.6

2.3.6 Co-routine Expressions

The body of a function or routine may be activated as a co-routine

and/or asynchronous process; the additional syntax is

coroutineexpression ~ CREATE e1 (elist) AT e2 LENGTH e
3

THEN e
4

I
EXCHJ (e

6
, e

7
)

The effect of a 'create' expression is to create a context, tha,t is

an independent stack, for the routine (function) named by e1 ' with para-

meters specified by the elist, at the location whose address is specified by e2 and of

size e
3

words. Control then passes to the statements following the 'create'. When

two or more such contexts have been established, control may be passed from

anyone to any other by executing an exchange- jump, EXCHJ. (%, e7t where the

value of e6 must be the stack base, e2 , of a previous 'create' expression.

The value of ~ is made available to the called routine as the value of its

own EXCHJ which caused control to pass out of that routine. Thus the

value of the EXCHJ operation is defined dynamically by the co-routine which

** at some later time re-activates execution of the current co-routine.

Should a process, the body of which is necessarily that of a function

(or routine), execute a 'return', either explicitly or implicitly, the ex-

pression e
4

(following the 'then' in the 'create' expression of the creating

process) is executed in the context of the created process. The normal

responsibilities of e4 include making the stack space used for the created

context available for other uses and performing an EXCHJ to some other

process.

The facilities described above, namely 'create' and 'exchj', are

adequate either for use directly as co-routine linkages or for use as primi-

tives in constructing more sophisticated co-routine facilities with macros
-!(
Not~ that the 1st EXCHJ to a newly created process causes control to enter

from its head with actual parameters as set up by the CREATE.
"k"/(

The value e
7

is not available to the called routine on the 1st EXCHJ to it.

o

o

o

2.3.6a

and/or procedures. It should be noted in the context that if the created

processes are functions (rather than routines) the resulting processes con

tinue to have access to lexically global variables which may be local to an

embracing function (access to lexically local variables which have been

declared 'own' is available in either case). In such a case the resulting

structute is a stack tree in which all s~gments of the tree below the

lexical level of the (function) process are available to it.

Two additional complexities are added if the create and exchj

are to be used for asynchronous, and possibly parallel, execution of pro

cesses. One is synchronization, by which we man a mechanism by which a

process can coordinate its execution with that of one or more others. A

typical example of the need for synchronization occurs when two processes,

independently update a common data base, and each must be sure that the

entire updating process is complete tefore any other process attempts to

use the data base. The second complexity arises in connection with inter

rupts, and in particular from the fact that certain operations must not be

interrupted (some exchj operations for example). It is possible that cer

tain situations require synchronization mechanisms but do not need to be

concerned about the interrupt problem--as for example, a user program with

asynchronous processes, which is 'blind' to interrupts, and which some

monitor systems view as a single 'job'.

The nature of "appropriate" synchronization primitives and mechanisms

for temporarily blinding the processor to interrupts (or interrupts in a

certain class) are highly dependent upon the nature of the processes being

used and the operating system, or lack of one, underlying the Bliss program.

As a consequence, no syntax for dealing with either problem is included in

2.3.6b

the language; in any case, the amount of code necessary for these facilities

is quite small.

The co-routine user is well advised to read and understand the material

on the run-time representation of Bliss programs contained in section IV.

J

J

J

o

o

3.1

3.1 Declarations

All de.clarations, except MAP and SWITCH, introduce names each of

which is unique to the block in which the declaration appears. Except

with STRUCTURE and MACRO declarations, the name introduced has a pointer

bound to it.

The declarations are:

declaration ... functiondeclarationlstructuredeclaration!

binddeclarationlmacrodeclarationl

allocationdeclarationlmapdeclaration

Before proceeding with a detailed discussion of the declarations

we sha'll give an intui tive overview of the effect of these declarations.

3.1.1

3.1.1 Storage (an introduction)

A Bliss program operates with and on a number of storage "segments".

A storage segment consists of a fixed and finite number of "words", each

of which is composed of a fixed and finite number of "bits" (36 for the

PDP-10). Any contiguous set of bits within a word is called a "field".

Any field may. be "named", the value of a name is called a "pointer" to

that field. In particular, an entire word is a field and may be named.

In practice a segment generally contains either program or data,

and if the latter, it is generally integer numbers, floating point IDlmbers,

characters, or pointers to other data. To a Bliss program, however, a

field merely contains a pattern of bits.

Segments are introduced into a Bliss program by declarations, clilled

allocation declarations, for example:

global g;

~ x,y [5J, z;

local p [lOOJ;

register rl, r2 [3J;

function f(a,b) = .at.b;

Each of these declarations introduces one or more segments and binds the

identifiers mentioned (e.g., g, x, y, etc.) to the name of the first

word of the associated segment. (The function declaration also initializes

the segment named "f" to the appropriate machine code.)

The segments introduced by these declarations contain one or more

words, where the size may be specified (as in "local p[lOO]"), or dej:aulted

to one (as in "global g;"). The identifiers introduced by a declaration

)

)

J

o

o

o

3,1.1a

are lexically local to the block in which the declaration is made (that

is, they obey the usual Algol scope rules) with one exception - namely,

"global" identifiers are made available to other, separately compiled

modules. Segments created by ~, global, and function declarations are

created only once and are preserved for the dur.ation of the execution of

a program. Segments created by local and register declarations ar~ created

at the time of block entry and are preserved only for the duration of the

execution of that block. Register segments differ from local segments only

in that they are allocated from the machine's array of 16 general purpose

(fast) registers. Re-entry of a block before it is exited (by recursive

function calls, for example) behaves as in Algol, that is, local and

register segments are dynamically local to each incarnation of the block.

There are two additional declarations whose effect is to bind identi-

fiers to names, but which do not create segments; examples are:

external s· ,
bind y2 = y+2, pa = p+.a;

An external declaration binds one or more identifiers to the names

represented by the same identifier declared global in another, separately

compiled module. The bind declaration binds. one or more identifiers to

the value of an expression at block entry time. At least potentially the

value of this expression may not be calculable until run time - as in

'pa = p+.a' above.

3.1.2

3.1.2 Data Structures (an introduction)

Two principles were followed in the design of the data structure

facility of Bliss:

- the user must be able to specify the accessing algorithm

for elements of·a structure,

- the representational specification and the specification

of algorithms which operate on the information represented

must be separated in such a way that either can be modified

without affecting the other.

The definition of a class of structures, that is, o'f an accessing

algorithms to be associated with certain specific data structures, may be

made b'y a declaration of somewhat the following fonn:

structure <name>[<formal parameter list>] = E

Particular names may then be associated with a structure class, that is

with an accessing algorithm, by another declaration of somewhat the form:

map <name> <name list>

Consider the following example:

begin

structure ary2[i,j] = (.ary2+(.i-l)*l~(.j-l»);
~ x[lOO),y[lOO],z[lOO];

~ap ary2 x:y:z;

x[.a,.b] y[.b,.a);

)

o

o

3.1.2a

In this example we introduce a very s~p1e structure, ary2, for two dimen

sional (lOXlO) arrays, declare three segments with names 'x', 'y', and

'z' bound to them, and associate the structure class 'ary2' with these

names. The syntactic forms "x[El,EzJ" and "y[~,Eq.]" are valid within

this block and denote evaluation of the accessing a1,gorithm defined by the

ary2-structure declaration (with an appropriate substitution of actual for

formal parameters).

Although they are not implemented in this way, for purposes of exposi

tion one may think of the structure declaration as defining a function with

one more formal parameter than is explicitly mentioned. For example, the

structure declaration in the previous example,

structure ary2[i,j] = (.ary2+(.i-l)*10+(.j-l»;

conceptually is identical to a function declaration

function ary2(fO,fl,f2) = (.fO+(.fi-l)*lO+(.f2-l»;

The expressions "x[.a,.b]" and "y[.b,.a]" correspond to calls on this

function - i.e., to "ary2(x,.a,.b)" and "ary2(y,.b,.a)".

Since, in a structure declaration, there is an implicit, un-named

formal parameter, the name of the structure class itself is used to denote

this "zero-th" parameter. This convention maintains the positional cor

respondence of actuals and formals. Thus, in the example above, ".ary2"

denotes the value of the name of the particular segment being referenced,

and 'x[.a,.b]' is equivalent to:

(x+(. a-1)*10+(. b -1))

3.l.2b

The value of this expression is a pointer to the designated element of

the segment named by x.

In the following example the structure facility and bind declaration
10 --

have been used to encode a matrix product (zi,j = k~lXikYkj). In the

inner block the names .1 xr' and 'yc' are bound to poi~ters to the base of

a specified row of x and column of y respectively. These identifiers

are then associated with structure classes which allow one-dimensional

access.

begin

end

structure aryZ[i,j] = (.aryZ+(.i-l)*lO+l.j-l»,

own

map .

row[iJ = (.row+.i-l),

col[j] = (.eol+(.j-l)*lO);

x[lOO],y[lOO],z[lOO];

aryZ x:y:z;

iner i from 1 to 10 do

begin bind xr = x[.i,l], zr = z[.i,l]; map row xr:zr;

incr j from 1 to 10 do

begin

register t; bind ye=y[l,.jJ; map col yc;

t+-O ;

incr k from 1 to 10 do t ~ .t+.xr[.kJ*.yc[.k];

zr[.j] ~ .t;

end;

end;

J

o

o

o

3.1.3

3.1.3 The Actual Declaration Syntax

The e~ample declarations in the preceding two sub-sections are valid

Bliss syntax; however. they do not reflect the complete power of the

declarative facilities. The following sections (3.2 - 3.5) are definitive

presentations of the actual syntax and semantics of these declarations.

The actual declarations presented in the following sections differ from

the examples given previously in that they admit greater interaction

between the allocation declarations and structure declarations.

3.2

3.2 Memory Allocation

There are five basic foons of allocation declaration:

allocation declaration ~ allocatetype msidlist

allocatetype ~ GLOBAL I REGISTERloWNI LOCAL I EXTERNAL

msidlist ~ msidelementlmsidelement~ msidlist

msidelement ~ structure sizedchunks

structure ~ I structurename

sizedchunks ~ sizedchunklsizedchunk: sizedchunks

sizechunk ~ idchunklidchunk [elist]

idchunk ~ namelname:idchunk

As with most other declarations ~ the allocat.ion declarations

introduce names whose scope is the block in which the declarations occur.

REGISTER and LOCAL declarations cause allocation of storage at each block

entry (including recursive and quasi-parallel ones)~ and corresponding

de-allocation on block exit. Storage for OWN and GLOBAL declarations is

made once (before execution begins) and remains allocated during the

entire execution of the program. EXTERNAL declarations do not allocate

storage~ but cause a linkage to be established to storage declared with

the same name in a GLOBAL declaration of another module. Space for

allocation is taken from core for LOCAL, OWN~ and GLOBAL declarations,

and from the machine's high speed registers for REGISTER declarations.

The initial contents of allocated memory is not defined and should

not be presumed.

Each msidelement defines a set of identifiers and simultaneously

maps these identifiers onto a specified structure. (If the structure

part is empty, the default structure 'vector' is assumed, see section

3.5). Each sizedchunk allows, by interaction with the associated

J

J

J

o

o

o

3.2a

structure of the msidelement, specification of the size of the segment

to be allocated - and the values of the "undotted structure formals"

to be used in accessing an instance of the structure (again, see 3.5).

3.3 Map Declaration

map declaration ~ MAP msidlist

The map declaration is syntactically and semantically similar to

an allocation declaration except that no new storage or identifiers are

introduced. The purpose of the map declaration is to permit re-definition

of the structure and elist information associated with an identifier (or

set of identifiers) for the scope of the block in which the map declaration

occurs.

o

o

o

3.4

3.4 Bind Declarations

bind declaration ~ BIND equivalencelist

equivalencelist ~ equivalence I equivalence, equivalencelist

equivalence ~ msidelement = e

A bind declaration introduces a new set of names whose scope is the

block in which the bind declaration occurs. and binds the value of these

names to the value of the associated expressions at the time that the

block is entered. Note that these expressions need not evaluate at

compile time.

3.5

3.5 Structures

structure declaration ~ STRUCTURE name structureformallist = structuresize ~

structureformallist ~ I enamelist]

structuresize ~ I [e2]

Structure declarations serve to define a class· of data structures

by defining an explicit "access algorithm", el,to be used in accessing

elements of that structure. The class of structures introduced by such

a declaration is given a name which may be used as the structure name in

an allocation declaration or map declaration.

The names in the structure formal list are formal parameter identifiers

which are used in two distinct ways:

1. "dotted" occurrences of the formal names positionally correlate

with the values of elist elements at the site of a structure

access. (Recall that a structure access is syntactically

pI ~ name [e1istJ.) These are referred to as "access formflls"

and "access actuals" respectively.

2. "undotted lt occurrences of the formal names positionally correlate

with the values of the elist elements at the site of the declara-

tion which associated the variable name with the structure

class. These are referred to as "incarnation formals" and

"incarnation actuals" respectively.

In addition to the explicit formal names, the structure name, in "dotted"

form, is used as an access formal to denote the name of the specific:

segment being accessed (that is, to denote the pointer to the base of

the segment).

)

)

c

c

If present, the structure size, i.e., [e], is used to calculate

(from the incarnation actua1s) the size of the segment to be allocated

by an allocation declaration. After substitution of incarnation actua1s,

this expression must evaluate to a constant at compile time.

The simple example of a two-dimensional array given in section 3.1.2

might now be written:

begin

structure ary2[i,jJ = [i*j](.ary2+(.i-l)*j+(.j-1»;

?wn ary2 x:y:z[lO,10];

x[.a,.b] 4- .y[.b,.a];

end-
~,

The default structure VECTOR, mentioned in section 3.2 is defined by

structure vector [iJ = [i] (.vector + .i);

If defaulted, the size part of a structure declaration is defaulted

to the product of the incarnation actua1s.

3.6

3.6 Functions

function declaration ~FUNCTION name (namelist) = e I
FUNCTION name = e I
ROUTINE name(namelist) = e I
ROUTINE name = e

The FUNCTION and ROUTINE declarations define the name to be that of a poten-

tially recursive and re-entrant function whose value is the expression e.

The syntax of a normal subroutine-like function call is

pl --7 pl (elist) I pl ()

elist --7 e I elist, e

where pl is a primary expression. Clearly, pl must evaluate to a name which

has been declared as a FUNCTION or ROUTlNE either at compile time or at run

time. The names in the name list of the declaration define (lexically local)

the names of formal parameters whose actual values on each incarnation are deter-

mined by the elist at the call site. All parameters are implicitly Algol

I1call-by-value"; but notice that call-by-reference is achieved by simply pre-

senting pointer values at the call site. Parentheses are required at the call

site even for a ROUTINE or a FUNCTION with no formal parameters since the name

on its own is simply a pointer to the function or routine. Extra actual para-

meters above the number mentioned in the name list of the function (or routine)

declaration are always allowed; however, too few actual parameters can cause

*/<
erroneous results at run time. A ROUTINE differs from a FUNCTION in having an

abbreviated and hence faster prolog. Restriction: a routine may not refer

directly to local variables declared outside it, nor may it call a FUNCTION.

* Note: If extra parameters are presented, and say, n are expected, then the
rightmost n actual will correspond to the fo~al parameters. See section IV
for details of the access mechanism.

o

o

o

c

c!

function declaration ~ GLOBAL ROUT1NE name (namelist) = e I

GLOBAL ROUTINE name = e

A ROUTINE name is like an OWN name in that its scope is limited to the block

in which it is declared and its value is already initialized at block entry.

The prefix GLOBAL changes the scope of the ROUTINE to that of the outer

block of the program enveloping all the modules. Note that this inhibits

a GLOBAL ROUTINE from access to REGIST8R names declared outside it. This is

in addition to the other limitations of ROUTINES cited on the previous page.

Functions and routines may also be activated as co-routines and/or

asynchronous processes, and indeed, the body of a single function may be

used in .any or all of these modes simultaneously. (See 2.3.6.)

function declaration ~ FORWARD namepar1ist

nameparlist ~namepar namepar1ist, namepar

namepar -? name (e)

';~

FORWARD's tell the compiler how many parameters, given by e are ex-

pected by an undeclared function (or routine) name which will be declared

later i!!. the current block. The compiler permits the number of actual

parameters in a function (or routine) call to be greater than or equal to

the number of formals declared.

* Clearly e must evaluate to a constant at compile time.

3.7

3.7 Simple Macros

A limited macro facility is provided to improve the usabilitY,of the

language. This facility provides simple replacement of a macro keyword

(and arguments) by a suitably defined string (with appropriate actual string

substitution for the formal parameters). Nested macro calls are permitted.

Recursive macro calls and nested macro definitions are not permitt~d.

macrodeclaration ~ MACRO macdefinitionlist

macdefinitionlist ~ macdefinition I
macdefinitionlist, macdefinition

macdefinition ~ name l (namelist) = stringwithout$ $ I
name2 = stringwithout$ $

The stringwithout$ is scanned for occurrences of atoms that match elements

of the namelist (if any). The first $ terminates the macdefinition without

exception.

macroca11 ~ name l (ba1ancedstringlist) I
name2

balancedstring1ist ~ ba1ancedstring I
balancedstring1ist, ba1ancedstring

A balancedstring is any string for which the number of right brackets

("(", "[", or "<") in the string equals or exceeds the number of corres

ponding left brackets. This includes the null string. A ba1ancedstring

is' associated with the formal parameter in the corresponding ordinal

position in the macdefinition.

o

o

o

c

3.7a
, '

Note that

1. "Extra" balancedstrings will be simply ignored, but parsed

as described above.

2. Null balancedstrings are accepted.

3. The m8crocall may present fewer balancedstrings than the

macrodefinition, in which case the null string will be used for

the "missing" arguments.

4. Amacrocall must have a balancedstringlist if the macrodefinition

had a namelist.

The expanded string from a macro replaces the macrocall in the program

prior to lexical processing and scanning resumes at the head of this string.

Hence macrocalls may be nested. Indeed, parts of a "nested" call may come

from the actual parameter(s) of the containing macro, from the body of the

containing macro or even from the text following the containing macro.

As with other declarations, macros have a scope given by the block

in which they are defined - with this exception: Any macro being expanded

at the end of a block will, in effect, be purged but its expansion will run

to completion. This might occur, for example, if a macro contained an END as in:

BEGIN

MACRO QQSV = END B'" "TQ" $;

QQSV

END

This may lead to anomolous behavior depending on the specific program.

3.7b

Macros may be used to provide names to bit fields so as to improve

readability.

MACRO EXPONENT = 27,8 $;
MACRO MANTISSA = 0,27 $;
MACRO SIGN = 35,1 $;
LOCAL X;
X <SIGN> t- 0; X <EXPONENT> ~ 27; X <MANTISSA> ~ • I;

Macros may be used to extend the syntax in a limited way_

MACRO NEG = 0 GTR $;
MACRO UNLESS(X} = IF NOT(X) $;

Macros may be used to effect in-line coding of a function.

MACRO ABS (X) = BEGIN REGISTER TEMP;

, .
IF NEG (TEMP ~ X) THEN -. TEMP ELSE • TEMP END $;

HERE THE ACTUAL PARAMETER SUBSTITUTED FOR X MAY NOT INCLUDE THE
NAME TEMP •

o

o

o

c

(,

c

11-1.1

II. SPECIAL LANGUAGE FEATURES

The previous chapter describes the basic features of the BLISS

language. In this chapter we describe additional features which are

highly machine and implementation dependent.

1.1 Special Functions

A number of features have been added to the basic BLISS language which

allow greater access to the PDP-10 hardware features. These features have

the syntactic form of function calls and are thus referred to as "special

functions". Code for special functions is always generated in line.

11-1.2

1.2 Character Manipulation Functions

Nine functions have been specified to facilitate character manipula-

tion operations, They are:

scann (ap) copynn (ap" aP2)

scani (ap) copyni (aPl' aP2)

replacen (ap, E) copyin (aP1' aP2)

replacei (ap, E) copyii (aPl' apZ)

incp (ap)

For each of these E is an arbitrary expression, and ap is an expression

whose value is a pointer to a pointer. The second of these pointers is assumed

to point to a character in a string.

scann (ap) is a function whose value is the character from the
string.

scani (ap) is like scann except that, as a side effect, the
string pointer is set to point at the next character
of the string before the character is scanned.

replacen (ap, E) is a function whose value is E and which, as a side
effect, replaces the string character by E.

replacei (ap, E) is similar to replacen except that the string pointer
is set to point at the next character of the string
before the value of E is stored.

copynn
copyni
copyin
copyii

(ap" ap2)} these functions are similar in that they each effect
(aPl' aP2) a copy of one character from a source string (pointed
(ap" aP2) at by .ap,) to a destination string (pointed at by •aP2)
(ap" aP2) and have as value the character copied. They differ

in that copynn advances neither pointer,waile copyni
advances .aP2' copyin advances .ap" and copyii advances
both. In each case the pointer is advanced before the
copy is effected.

incp (ap) advances .ap to the next character

o

o

o

II-l.2a

c
Suppose that ~ string {of 7 bit ASCII characters} is stored in memory

beginning at location S. The string is terminated by a null (zero)

character. The following skeletal code will transform it into a 6-bit

string with blanks deleted:

register p7, p6, c;

p7 ~ (s-l) <1, 7;>; p6 ~ (s-1) <0,6:>;

while (c ~ scani (p 7» n€!g 0 do

if .c neg" " then replacei (p6, .c);

end---'

c

c)

II-1.3

1.3 Machine Language

It is possible to insert PDP-10 machine language instructions into a

Bliss program in the syntactic form of a special function

where

op is one of the PDP-10 machine language'mnemonics (see table
below).

is an expression whose least significant 4 bits will become
the accumulator (A) field of the compiled instruction.
This expression must yield a value at compile time of a
declared register name or a literal.

is an expression whose least significant 18 bits will
become the address (Y) field of the compiled instruction.

is an expression Whose least significant 4 bits will become
the index (X) field of the compiled instruction.

is an expression whose least significant bit will become
the indirect (I) bit of the compiled instruction.

o

o
(A table of machine language instruction mnemonics follows. Defaults for EI -E4 are 0.)

The 'value' of these machine language instructions is uniformly taken

to be the contents of the register specified in the accumulator (A) field

of the instruction. (This makes little sense in a few cases) but was

adopted for uniformity.)

In order for the compiler to conserve space during compilation) the

mnemonics for the machine language operators are not normally pre loaded

into the symbol table. Therefore, in order to use this feature of the

language, it is necessary for the programmer to include one of the follow-

tng special declarations

declaration ~MACHOP mlist 1 ALLMACHOP

mllst ~ name ~ e I mlist) name = e

in the head of a block which embraces occurrences of these special functions. o

11-1.38

(Note: The e's in an m1ist must be the high order nine bits of the actual

values of the machine operation and must evaluate at compile time.) Symbol

table space for these names is released when the block in which the declara

tion occurs is exited.

NOTE: The description of fields Ez, E3, E4 needs some simplification in

the case where E2 is a name. The compiler attempts to produce a single

instruction for the machine language expression whenever possible. For

example, consider the expression MOVEM(5,A) where A is a local variable.

The compiler, noting that the index register has been defaulted to zero,

produces a 22 bit address using the F register for the index register field

of the instruction.

7C

11-1.3 b

* PDP-l0 ·Instruction Mnemonic Table o

MOV I; ~:I~:lti:v:dC 1-' "--'-'_ ... _ ... _ .. , j ! III .\1'

ADD ._-------,
e SW:Jppcd Irmllcdiak III -\('

LI" 'IRightl !Right! !~:l~.:red -. :~: ~~~:~h)fY
I aIt word r .of Lo. Let' Z .a...e t t cro~

Extend sign

Block Transfer

EXCHange AC and memory

use present pOinter}, d {loaD Byte into At'

I.ncrement pointer an DePosit Byte in mcmory

Increment Byte Pointer

PUSH down} { ,....,
POP up and Jump

'~~r:~~ I
SETto~ AMc ~----~

emory
Complemen t of Ac J
Complement of Memory !
!

,...., 1 ~~ Immediate
AND I with Complement of Ac !-to Memory
inclusive OR with Complement of Memory - Both

Complements of Both

eXclusive OR ____________J

Inclusive OR }

EQuiValence

SKIP if memory}
JUMP if AC ----------,

Add One to } I memory and SkiPlor
Subtract One from AC and Jump t i-_

{
Immediate} o' Compare Ac . I M and SkIp If AC-
WIt 1 emory

never
Less
Equal
Less or Equal
Always
Greater
Greater or Equal
Not equal

, {POSitive Add One to Both halves of AC and Jump If N 0

cgattve

SUBtra1.:1
MULtiply

Jntcgcl MUltiply ------}I-
III Vide Immcdial\:
III tcger Dl Vide . t () Mt:ll1oJ y

j
and Round l~l Both

Floatillg AdD 1 I ""
FloatiIlg SuBtract _____ Long
Floating MultiPly to Memory
Floating DiVide to Both

Floating SCale

Double Floating ~egatc

Unnormalized Flouting Add

Arit~lmetic ,SHift II""'"
logIcal SHIft C b' d

. ROTate om me

Jump

to SubRoutine
and Save Pc
and Save Ac
and Restore Ac
if Find First One
on Flag and Clear it
on OVerflow (JFCL 10,)
on CaRrY 0 (JFCL 4,)
on CaRrY 1 (JFCL 2,)
on CaRrY (JFCL 6,)
on Floating OVerflow (JFCL 1,)
and ReSTore
and ReSTore Flags (JRST 2,)
and ENable PI channel (JRST 12.)

HALT (JRST 4,)

eXeCuTe

DATA}

BlocK :{IIn
Out

CONditions ,
. d Sk' 'r(all masked bits Zero
111 an Ip 1 some masked bit One

!
with Direct mask 1

T
. . with Swapped mask

est AC R ' ight WIth E

Left with E !
No modification 1 ! never
set masked bits to Zeros d k' if all masked bits Equal 0
set maskcd bits to Ones an S Ip if Not all maskcd bits equal 0
Complcment, masked bits Always

Reproduced with permission of Digital Equipment Corporation from the PDP-IO
Reference Handbook.

I

(

1.4 Compilation Control

The actions of the compiler with respect to a program may be

controlled by specifications a) in the initial input string from a TTY,

b) in the module head, c) by a special SWITCHES declaration. Not all

actions can be controlled from each of these places, but many can.

Some actions once specified have a permanent effect (such as whether to

create a high segment or low segment program) while the effect of others

can be modified (such as listing control). The table in section 1.4.4

gives a list of various compiler actions and the associated switch and/or

source language constructs which modify those actions. This list is

subject to change.

c

c

I1-1.4.l

1.4.1 Command Syntax

The general format of the initial command to Bliss is:

ohjdev: file.ext,lstdev:file.ext ~ sorcdev:file.ext, ••• ,sorcdev:file.ext

The "objdev:fi1e.ext" and/or "lstdev:fi1e.ext" ~ay be omitted with the

implication that the corresponding file is not to be generated. The

".extrt may be omitted on any of the file specifications and the following

defaults assumed:

object file: REL

listing file: LST

source file: BLI

As with DEC CUSP's, switches of the form /x (x=A,B, ••• ,Z) may be placed

anywhere in a command string.

o

o

o

Il-l.4.2

1.4.2 Module Head

As explained in 1.1.1 the syntax for a module is

module ~ MODULE name (parameters) = e ELUDQ1

The 'parameters' field may contain various information which will affect

the compiler's action with respect to the current program. The syntax

of this field is

parameters ~ parameter I parameter,parameters

The allowed forms of 'parameter' are given in tabular form in section

11.1.4.4 under the column headed ''module head syntax".

c

1I-1.4.3

1.4.3 SWITCHES Declaration

declaration ~ SWITCHES switch list

switch list ~ switch I switch, switch list

The SWITCHES dec1~ration allows the user to set various switches

which control the compiler's actions. The effect of a SWITCHES declara

tion is limited to the scope of the block in wQich the declaration is

made. The various allowed forms of 'switch' are given in tabular form

in section 11.1.4.4 under the column headed "SWITCHES DECLARATION".

o

o

o

c

c

c

l.4~4 Actions

COMMAND
SWITCH

/L

/K

/N

/M

/H

/1

/S

/x

MODULE HEAD
SYNTAX

LIST

NOLIST

NOERS

MLIST

HISEG

INSPECT

NOINSPECT

SYNTAX

DREGS=e

11 ... 1.4.4

'SWITCHES'
DECLARATION

LIST"

NOLIST

NOERS

MLIST

INSPECT

NO INSPECT

ACTION

Enable listing of the source text.
This switch is assumed true initi
ally.

Disable listing of the source text.

Do not print error messages on
the TTY.

Enable listing of the machine
code generated.

Make this module a highsegment
module. Initially modules are
assumed to be two segmentsg

When ~ this switch will cause
a special word to be emitted
immediately prior to each function
or routine body. This word contains
information to facilitate a SIMULA
like inspection mechanism (see
IV.l.4). The default initial value
of this switch is false. ---
This sets the inspection switch
false.

Enable listing of compiler.statistics.
Information relevant to the imple
mentation will be printed at the end
o~ compilation.

Syntax check only! No code will
be"" genera ted - this speeds the
compilation process and is there
fore useful during the initial
stages of program development.

'e' specifies the number of
'declared'-type registers to be
used. Unless specified this value
is defaulted 'to a small number .
(three at the time of this writing)

COMMAND
SWITCH

/0

lu

IE

Ic

IR

Iv

MODULE HEAD
SYNTAX

OPTIMIZE

NOOPTIMIZE

EXPAND

NO EXPAND

SREG = e
VREG = e
BREG = e
FREG = ·e

NORSAVE
RSAVE

LOSEG

11-l.4.4a

'SWITCHES'
DECLARATION

OPTIMIZE

NOOPTIMIZE

EXPAND

NOEXPAND

NORSAVE
RSAVE

LOSEG

ACTION

Registers with absolute names
el, ••• ,e are reserved (usually
for inte¥-module communication).

Because of the possibility of
computed addresses in Bliss
programs, it is not possible
for. the compiler to determine
whether optimization of sub
expressions is possible,across
";"'R in a compound expression.
Therefore the compiler operates
in two modes - one in which it
does optimize such common sub
expressions and one in which
it does not. When the 'optimize
switch is ~ the compiler
attempts to optimize across a
"; " • The defaul t mode is for
the switch to be ~.

Sets the optimization switch
(see above) to false.

Give trace of macro expansions.

Turn off trace of macro expansion.
This is default initial state.

}

The user may use these to choose
specific registers to be used as
the S, V, B, and F, respectively

Print a cross-reference to all
identifiers at the end of compilation

(assumes a listing is being printed).

The compiler normally generates code
to save all declarable registers
around an EXCHJ operation. This
default may be overriden by a IR
or NORSAVE. RSAVE reverts to the
default.

Force entire compilation into the
low segment.

o

o

o

c

c

COMMAND
SWITCH

/G

MODULE HEAD
SYNTAX

STACK
(see text at
right)

ENTRIES - (nl ' • ,~) .

lI ... l.4.4b

'SWITCHES'
DECLARATION ACTION

The syntax of the module
head permits automatic al
location and initialization
of the run-time stack. The
syntax is

STACK/STACK«litera1 siz~1 .
STACK=<explicit-staclC>. ___ -

where

<explicit-stack>::=<stypa>
<s -name-sz>

<stype>::=GLOBALloWN!EXTERNAL
<s-name-sz>::=«ID><ss-OPTN»
<ss-OPTN>::=/<literal>

The defaults are

'STACK'= STACK=OWN(STACK,*lOOO)
'STACK(lit)'= STACK-OWN(STACK,lit)
etc.

All routine names are forced to
be 'global'.

An 'entry' block is created at
the beginning of the '.REL' file
for the names n1, n2 ' ••• n. These
names must subsequently We declared
'global' in the module. Th-is per-
mits FUDGE2 to be used to create
a library.

IV-l.l

1.1 Registers

The sixteen registers are divided into three main classes:

1. Reserved registers:

These registers are declared in the module head. Their scope

is the entire module and they may also be accessed from within any

global routine. They are never saved.

2. Bliss run-time registers:

After the reserved registers have been allocated, the lowest

four remaining addresses are assigned as the run-time registers.

In particular, if there are no reserved registers, 0 through 3 are

assigned as the S, B, F, and V registers respectively. The names

SREG, BREG, FREG, and VREG are available at the outermost blocks

of the module and, as in the case of reserved registers, these names

are accessible from within any global routine.

3. Temporary registers:

All the remaining registers fall into this class and are divided

into two 'subclasses:

a. savable:

These registers are used for declared registers,

control registers in incr-decr loops, and when necessary

for computing temporary values. Any of these registers

which are used in the body of a function or routine are

saved in the prolog and restored in the epilog. Of course

if F is not a global routine and F is within the scope of

o

o

o

c~

c~'

IV-l.la

IV. RUN TIME REPRESENTATION OF PROGRAMS

1.0 Introduction

In order to make the fullest possible use of Bliss, it is important

to understand the run-time environment in whic~ Bliss programs run. The

address space is occupied by various types of information:

(1) program

(2) constants

(3) static size variable areas (globals and owns)

(4) stacks

Programs are 'pure' (they do not modify themselves) therefore program

and constant areas are placed in contiguous, write-protected regions

and may be shared (see the 'HIGSEG' switch declaration, section 11.1.4).

Static variable storage and stack space are placed in readable/writable

memory. The key to understanding the run-tUme environment in the stack

configuration and register allocation is illustrated in Figure IV.I.

Each process (co-routine) has its own stack configured as shown in IV.I.

Connnents:

IV-l.lb

of register R, then R is not preserved. The user must

declare the size of this block of registers in the module

head. (DREGS =). These registers are allocated from the

highest addresses.

b. non-savable:

These are the registers used for calculating in~er

mediate results. They are saved at the call site of a

function or routine only if they contain a needed result

and are never saved in the prolog or epilog.

a. If one wishes to load a collection of Bliss modules together,

they must request precisely the same reserved registers and request the

same number of savable temporaries.

b. The two classes of temporary registers are managed quite differ

ently in that the savable registers obey a stack discipline (to minimize

saving and restoring) and the non-savable are used in round-robin fashion

(to lengthen the life of intermediate results). The present version

of the compiler requires a minimum of 4 non-savable registers--i.e., the

maxbnum value of DREGS = 8 - * of reserved regs. In general the compiler

can produce better code if DREGS. is kept to the minimum value which the

lexical scope of declared registers and/or incr-deer loops allow.

o

o

o

c

(

~/

IV-l .2

1.2 The Stack and Functions

The first 17 10 locations of each stack are reserved for state informa

tion (registers plus program' counter) for a process when it is inactive. The

use of these cells is explained more fully in 1.4. The configuration

above these 17 state words depends upon the depth of nesting of function

calls, but each such nested call involves a similar (not identical), use

of the stack; Figure IV.l illustrates a typical stack configuration

after several nested functional calls. At a time when one of these

functions is executing

*

(1) The S-register points to the highest assigned cell in the

stack; the S-register is used to control the allocation

of the stack area.
,~

(2) The F-register pointe to the 'local base of stack'j below

the F-register are the parameters to the function and the

return address. 'The stack cell actually pointed to by

the F-register contains the previous value of the F-register

at the time at which the current function was entered.

(3) ,The calling sequence which is used to enter a function (or

routine) is

PUSH S,P1 push 1st parameter onto the
stack

PUSH S,P2 push 2nd parameter onto the
stack

PUSH S,p push nth parameter onto the
n stack

PUSHJ S,FCN jump to the called function

SUB S, [nooooon] delete the parameters

(4) Above the F-register are stored the "displays", D1 • • .D f •

'below' in ,the sense of decreasing address values.

IV-l.2a

One display is used for each lexical nesting of the decla

ration of the function which is currently executing. The

value of the displays are the F-register values for the

most recent recursive entries for the lexically embracing

functions.' The displays are needed and used to access

variables global to the current functions but local to.

embracing functions. Such access is prohibited in routines,

and consequently no displays are saved on a routine entry.

(5) Above the displays are saved any savable registers which

are destroyed by the execution of the function body.

These registers are restored before the function exits.

(6) Any local variables in the function are stored on top of

the saved registers. Space is acquired/deleted for locals

on block entry/exit by simply adding/subtracting a constant

to the S-register. Some of these locals are automatically

generated by the compiler.

(7) An excessive number of declared registers, or the evaluation

of an unbelievably complex expression may exhaust the avail

able registers, forcing the area above the locals to be used

for storing partial results of an expression evaluation.

(8) The V-register is used to return the value of the function

or routine.

Figure IV.2 illustrates the code generated surrounding the body of afunc

tion. The code surrounding a routine body is identical with the exception

that the displays are never saved. In this illustration the S, B, F, and

'V registers are shown occupying physical registers 0-3. In practice other

registers may be chosen if these registers are reserved in the module head.

o

o

o

c

.-I

.-I
as
C)

c:l
0

-.-I
.u
0
c:l
:I
~

ro
f...I
0

4-1

c:
0

-.-I
.u
ro
~
co

-.-I
4-1
c:l
0
u
~
C)
as
.u

C
C/)

C

Figure IV. 1

Stack Structure and Registers for a Process

r t L
rn

................. ~, .. rII~ ..

Local Variab les

+ L
0

_~"""4~~~.f1h~"~~,,~·,:,

R z

Register Save Area

~
1

Display

~

f
retur~naddr

Parameters

-l- Pz
P1

I

1

The stack con

figuration shownf return addr

above is repeate

~ for each nested

call. t
Register save

2()

17

area when process

is inactive 5

*
4

3
State info for
inactive pro- 2
cess

J 1
0

i
!
(

PC

~E1P
WASTE

STACK

-< 17E:j
,......-- -

4

3 V

2 F

B

o S

Registers

Declared and

working regis ter Sl
I

Figure IV.2

Function Prolog and Epilog

FCN: PUSH S,F save old F-register

PUSH S, 1 (F) copy display zero

)
PUSH S, f (F) copy disp lay f

HRRZ F,S set up new F

SUBI F,f subtract no. displays }~ PUSH S,F new display created

PUSH S,R save register a
Not

PUSH S,R save register
z

[BODY OF FUNCTION OR ROUTINE]

Generated

_For

Routines

POP

. . .
S,R

z

S,R a

restore register

...
restore register POP

SUB S, [(f+ 1)00000 (f+ 1)] eliminate disp lays } ~
POP S,F

POPJ S,

BENTER: MOVEM

BEXIT:

MOVEM

ADD

SUB

Figure IV.3

Block Entry and Exit

Rj ,1+j (F)

S ,[nOOOOOn]

S,[(n+j)OOOOO(n+j)]

save in-use working registers

save in-use working. registers

INCR S-relister by no. locals in blk

DECR S-register by no. locals in b1k

(note: in-use reg~s left in stack.

re-10aded only when used)

o

o

o

c

IV ... 1 .3

1.3 Access to Variables

This section briefly indicates the mechanisms by which generated code

accesses various types of variables (formals. owns and globals, locals,

etc.) The exact addressing scheme used by the compiler in any particular

case is highly dependent upon the context; however, the following material

should aid in understanding the overall strategy.

(a) OWN and GLOBAL variables are accessed directly.

(b) Formal parameters of the current routine are accessed negatively

with respect to the F-register. If the current routine has n

formals, then the ith one is addressed by

(-n + i - 2) (F)

(c) Local variables of the current routine are accessed positively

with respect to the F-register. To access the ith local cell,

one uses

(i + d + r + 1) (F)

where d is the number of displays saved and r is the number of

register3 saved on function entry.

(d) Formal parameters and local variables which are not declared in

the currently executing function are accessed through the dis·

play. The appropriate display is copied into one of the working

registers then accessed by indexing through that register in a

manner s~ilar to that shown in (b) or (c) above.

The first four characters of the name introduced in the module head

is used to name various regions in the produced code. These names are

declared "external" and therefore aV$ilable in DDT. If 'xxxx' are the

IV.l.3a

first four characters of the module name, then

xxxx

xxxx. F

xxxx.o

XXXX.G

xxxx ••

XXXX.P

is the location of the first instruction in the main
body of the module.

is the location of the "literal" area which contains
constants generated by the compiler.

is the location of the "own" area in which is stored
all variables declared 'own' in the module.

is the location of the "global" area in which is stored
all variables declared "global" in the module ..

is the module name recognized by DOT.

is the first location of the "plit" area.

o

o

o

(,

c

V.l

V. COMPILER IMPLEMENTATION

This table contains a description of the implementation of the Bliss

compiler. At every instant of time this section will necessarily be in

complete and possibly erroneous. It will be e~tendE~d and corrected as

time permits and the compiler changes.

The initial contents of the section is a set of diagrams of the major

tables in the compiler.

v.2

o

LT J. "
value

'0 """ 1--

)t-
1

r ,
LEXEME t

LINKF

~S VE VE =01 YES -
NO

, N value
.~

I literal

I table
hashed o

I and
treated

VE ~if value in next field
as

bit= 1 if index into LT in next field
circular

(tlbig" literals only)

-, \ LS {T symbol 7 bit= 1 if, literal
I (

t f , t

~2n

....

THE LITERAL TABLE o

c

/- ·····,_·_···---!fOPOFTABLE ::t index of last cell assigned

~
REEHEAD ~ index of first element in frees pace list (FSL)

(
--ENDOFSPACE = index of last element (total size in cells)

, rENDLNK (=0) op of table 1*f' ;:;:1 ah:aYi!l.sSi£nr o!. °E ~s~ - r .--~ ... ,,~.- -1

I ,J.. I II t t' '1' end of space

I Il_ _ _ _ _ J_. __ ._- .. L ...
____ \ .,....... ,J

. ------...-............ unass igned and not on FSL

----------------, -"-.

routine RELEASESPACE lin~areas into FSL:

routine GETSPACE assigns areas from FSL:

FSL = set of areas linked
together such that
Oth cell contains size
of area, 1st cell
has link to next ar~a.
(End of chain has
o link.)

Yes

space
assigned

Yes (returne 'yes' rare YJ
;-__01,. GARBAGE COLLECTION

beyond
ENDOF SPACE ? CALLEXECFORSPACE

FREE SPACE LIST

1 .. Run down FSL; for each
free cell, mark corres
ponding bit in AVL

I ~'n~]iN~ I~P~~1rlvst):
2. Check for adjacent marked

bits hot linked in.as one
area.

3. Rebuild FSL, collapsing
adjacent areas. ----~J

Portion of FSL after
rebuilding ..

V.4

The entire program is • l1"ked list, and is itself linked'to global variable PROGRAM:

PROGRAM -

Header [

M~header {

CODE

hea r
it

HDR

HDR

HDR

0 -
HDR

0

HDR __ ~_w _
0

HDR

0

HDR
0

(example) CODE if .a then ~

.b else .0

class field
if-then-else Hclass (.type of co de for header)

1'- ~ubclass (=number of cells total)
--

if-then-else -'---7init.ially the same

1
as header class

---)index (ie., which
field
item among

if-then-else the subheaders)
-

2 ,._-------,--
if-then-else _ ._ .. _.
3,· w_
if-then-else -_._ .. _---
4

--
i;f-then-else
5

After processing, the above is equivalent to:

I-T-E Header

Sub headers

Subheader
class
changed to: IF THEN Label ELSE Label

After more processing, the above may change to:

••• and so on.

THE CODE TABLE

o

o

o

c

V.,5

SCALE OF 7-BIT CHARACTER CODES

I , I - - -I I
~ ~---~y--'
character 1 ~

'-r' '--.r-" ~

I ~ character

/ code
DELIMITERS for

DELIMITER TABLE

DT

one
delimiter

1---------. -----~
computation on code

(need only 20 values,
not 128--eliminate

"gaps")

128

N index into DT

~~ ________ ~The 20 entries in DT are contiguous.

I t

LJ
DELIMITER TABLE

RAW
TEXT

character

4 bits 3

TYPEDOPE

\..'---------------11'] 4 bits + B
THE TYPE TABLE

o o

RAW
TEXT

o digits 0-7l
1 digits 8-9
2 letters

! " I I LEXAN

(lexical
'--_I analyzer)

5 CR
6,
7 special'

delim •
• ,; :+-* / etc

10

17 ignore
class

ract r

'lexemes

o

c

c~

v. 7

GRAPHHEAD--Everything with the same hash code is linked together.

\

\
\

\ ,
\

\
\

\
\

\

\
\

,-_____________ ~\FUNNYBIT--Equals I if the parents of this
, {node are invalid, 0 otherwise.

~"------------~(~~~RRKBIT--~ormallY 0; 1 to mark GT entries
which are contained in valid
registers. Used onl~ for GT-purge.

,~------______ }~ovSULTF __ Equals 1 if RESULTWORD contains
a valid result of applying the code
generation routines to this node and
subnodes.

~-ft--------~)OCCF--Occurrence count, or the number of
1l0ide!ll which point to this node.

I,-----~~~~AVGEF--Equals I to save GT-entries across
for.ks (such' as if-then-else). Entry
with non-zero SAVGEF never purged.

----~~~~~ZF--Number of two-word cells in the GT-entry.

III I I I
RESULTWORD

SUBNF--Subnode field, equal to number of
operand lexemes (1 for unary operators,
2 for binary, etc.)

II LINKF j

OPERATOR LEXEME Link to
next node
with same
hash code;
the infor
mation in
each node
occurs only
once in the
whole list.

OPERANDI

OPERAND2

OPERAND3

L-----------------------~----

THE GRAPH TAB IE

OPERAND LEXEME

-,

KTEJ
- ,----

g ~ D D L LTE
0 POSN SIZE T S STE T

ttIlf:nJtr RTE LSSTE
t I • t

short litera1L[0 01 value 13 13 in range -2 to 2 -1

long literal I 0 1 I index to literal table
I I I l

name N I 1 f-t--index to symbol table)
conteit~ of I ,.4ndtx to RT .,J

reg s er @R
1

l reg ster name I 0 o ' 0 0 0 0 -0 0 0 0 0 0 0 0 0 0

;~ P(literal)-t I f-- S(l1teral)"t :
I

pointer N<P,S> I I 1 ~ index to symbol table ~
i

.N<P ,S> 1 : (f I (- f ~ P) I (S >1 N

€N 1 10 0 0 0 0 0 I 1 0 0 1 0 0, I (N)
I

I I

..eN . 1 0 1 10 0 0 0 0 0 I 1 0 0 1 0 01 I (N) <:
I I I 1 01

.
not@N I 0 1 1 10 0 0 0 0 0 0 0 1 0 I (

N • ~
Q)

I I I I

not@(N+@R) 10 1 1 '0 0 0 0 0 0 :1 0 0 1 0 0' , R-----11 ~ [N , ,~ ~
I I r I J

NOTES: 1. Neg and Not may not both be set.

S=O indicates P,S unset.

The name of a declared register is a literal.

2. A graph-table lexeme is considered a special form of

operand lexeme and is distinguished by a left-half equal to~~077777.

OPERAND LEXEMES

o o o

c
BUFF

!anecnt I
Values associated
with BUFF are:

I
line no. char.

* 16 no.

The sequence is:

V.9

current line image in ASCII

b e g i n 1 o c a 1 x . (, ---

l\BUFF () oints to next character to be , p
scanned

(2)CHAR, contains the character to be scanned

(3)NCBUFF, used for printing error messages-
points to place in line where error
was detected

(4)VALIDBUF, if this line has been printed
if this line has ~ been printed

READ a line
PROCESS that line
PRINT previous line (check VALIDBUF first)
READ next line
(repeat)

As characters are read, ACCUM is being built:

ACCUM

beg _-

PACCUM, points to last character pulled out of BUFF
and put into ACCUM

BUFF and ACCUM

V.lO

The major purpose of the lexical analyzer is to maintain the WINDOW;

routine WRUND (read until next delimi·ter) keeps the WINDa.1 filled.

Meanwhile, another window-like structure remembers the NCBUFF for

lexemes 1n the WINDOW, for use when errors are detected.

WINDOW

SYM DEL FUTSYM FUTDEL

operand lexeme operator lexeme operand lexeme operator lexeme

\
\
\
\

\

or empty

REALS

I

, ,
I

I

(never empty) or empty (never empty)

\ I
I

\ I.
\ ,
\ ,

REALFS :II ST index of
names in
sym and/or futsym ,

I , ,

I

, ,
\
\

, ,
I

\
\
\ ,

•

NSYM I ~EL [NFUTSYM I
The above are values of NCBUFF for these atoms.

For x+-.x+l ••• the BUFF and WINDa.l look like:

Ix I +-1·

~NCBUFF

~ (xl+ld •••

SYM DEL FUTSYM FUTDEL

I X I +- ~empty> I • I
THE WINDOW

NFUTDEL I

o

0

o

()

,
STE , 4

GTP --
GLOBAL TABLE POINTER

~. .. ,

THE GLOBAL TABLE

r for something

declared GLOBAL

NEXT

ELEMENT
-, IN ,

GLOBAL

TABLE

(')

<:
•
t-'
t-'

Ptr.
from
HASHT

HASHT (hash table for all symbols)

TABLE (the symbol table)

....
o

t
....
o

1
___ 0

1

V.12

:~

CIJ CIJ

-·-'-"·'--'--t-:--~- -
___ . __ . __ ~.~_ ~'-'&"'-x-"""----lio--_------I

OCCURRENCES OF
A SYMBOL ARE
LINKED IN THE
REVERSE ORDER
OF DECLARATION.

\. ,

'-~--- - - -----'

I

I

I
I

I

I
I

I
I

I

I entr~ n (2

2 0

\
\
\

\
\

\

cells)

own

\

\

\
\

\ ,
,
\

LINK

Additional Informa-
tion

AJP
I

I~

\

(example)

begin
local AJP; .

•
begin

own AJP;
• o

end;
end;

THE SYMBOL TABLE

- rBLOCKLI~VEL

/ >FCNLE VEL
{func tion level}

/' "TYPE f

rLINK
\

(end) ,
1 0 local LINK

Add'l Info.

""'"

AJP

Symbol

l.)

j

o

o

o

c

c

V.13

For the code:

structure vee [1J • (ovec+.1)<O.36:>;
local X;
map vee X;
• • ..
x[S]t- 1 ;

bagin
map newstr X;
end;

x(3)t- 4;
• •

the STE would look like the following, until block 2 is entered:

On
blo
abo
int
tab

STE for x

x ...

entering
ck 2, the
ve is put
o map
Ie, creating

MAPTB

-

STE r x

1.

j

I
x

I

link~

\.
I

incarnation
actuals

~-~ , , " . ~ r ,< •

---~- . ' ... _ - -. '"'----'''

.-

MAPTB entry

incarnation

r-
actua1s

.-.

STE for
structure

l' ~ vee

STE for new

~ ,

I l
newstr

str

A unique map table exists for each block. level; only IIremapped" variables
have entries in the table.

THE MAP TABLE

Header cell

FCNLIST

Subheader-type cells

o

Each subheader points to
routine/structure/funtion
body code. The code may
disappear, but thfu list
remains throughout.

--

THE FUNCTION LIST

o

Subheader

p
... , S .,

7 f
n

If this node is ~ never used, "bottom"
word filled with 7' s. j

(If the node is ~
used) bottom word
points to the
most recent use
-of the function/
structure/routine,
whose node is in
turn li~ to tpe
next most recent
use, etc.

tr. to
TE for
unction
ame

<
J:'o-

o

POINrER

RELOCF indicates whether ADDR is CMN, GLOBAL, etc.

RELOCF

POSN SIZE I INDEX ADDR
N
D

7"

unused

POINTER TABLE

<
VI

A.l

APPENDIX A: SYNTAX

module ~ MODULE name (parameters) e ELUDOM

block ~ BEGIN blockbody END I (blockbody)

compoundexpression ~ BEGIN expressionsequence ~ND I (expressionsequence)

blockbody ~ declarations; expressionsequence

declarations ~ declaration I declaration; declarations

expressionsequence ~ lee; expressionsequence

comment ~ I ! restofline endoflinesymbol I ~ sttingwithnopercent %

literal ~ number quotedstring

number ~ decimal octal I floating

decimal ~ digit 1 decimal digit

octal ~ * oit I octal oit

floating ~ decimal.decimal I decimal.decimal exponent.

exponent ~ E decimal I E + decimal I E - decimal

digit ~ 01112 --- 19

oit ~,01112 --- 17

quotedstring ~ leftadjustedstring I rightadjustedstring

leftadjustedstring ~ 'string'

rightadjustedstring ~ "string"

e ~ simpleexpression, I controlexpression

simpleexpression ~ pll ~ e I pll

pll ~ plO I pll XOR pIa I pll EQV plO

plO ~ p9 I plO OR p9

p9 ~ p8

p8 ~ p7

p7 p6

p9 AND p8

NOT p7

p6 relation p6

o

o

o

c

A.2

p6 p5 - p5 I p6 + p5 I p6 - p5

p5 p4 p5 * p4 I p5 / p4 I p5 MOD p4

p4 p3 p4 t p3

p3 p2 I . p3 I @p3 I \ p3

p2 pI I pI <pointerparameters>

pI literal

name

name [elist] =

pl (elist)

pl() I
block I

compoundexpression

relation EQL I NEQ I LSS I LEQ I GTR I GEQ

pointerparameters position, size modification

modification I , index I , index, indirect

position I e

size I e

index I e

indirect I e

controlexpression conditionalexpression I loopexpression I
choiceexpression I escapeexpression I coroutineexpression

conditionalexpression IF e l THEN e2 I IF e1 THEN e2 ELSE e3

loopexpression WHILE e l DO e2

loopexpression UNTIL e l DO e2

loopexpression DO e2 WHILE e1

loopexpression DO e2 UNTIL e
l

A.3

loopexpression ~ INCR name FROM e l TO e2 BY e3 DO e4

loopexpression DECR name FROM e1 TO e2 BY e3 DO e4

escapeexpression environment level escapevalue I RETURN escapevalue

environment EXIT I EXITBLOCK I EXITCOMPOUND I EXITLOOP I EXITCONDITIONAL

EXITCASK I EXITSET I EXITSELECT

level I [el

escapevalue I e

choiceexpression CASE elist OF SET expressionset TES

elist e I e, elist

expressionset lei; expressionset Ie; expressionset

choiceexpression SELECT elist OF NSET nexpressionset TESN

nexpressionset I ne I ne; nexpressionset

ne e:e

coroutineexpression CREATE e l (elist) AT e2 LENGTH e3 THEN e4 I

EXCHJ (e
4

, e
S

)

declaration functiondeclarationlstructuredeclarationl

binddeclarationlmacrodeclarationl

allocationdeclarationlmapdeclaration

allocationdeclaration allocatetype msidlist

allocatetype GLOBALIREGISTERIOWNILOCALIEXTERNAL

msidlist msidelementlmsidelement, msidlist

msidelement structure sizedchunks

structure I structurename

sizedchunks sizedchunklsizedchunk: sizedchunks

sizechunk idchunklidchunk [elist]

idchunk name I name: idchunk

o

o

o

c

c

A.4

mapdeclaration ~ MAP msidlist

binddeclaration ~ BIND equivalencelist

equivalencelist ~ equivalence I equivalence, equivalencelist

equivalence ~ msidelement = e

structuredeclaration ~, STRUCTURE name structur~formallist = structuresize

structureformallist ~ I enamelist]

structuresize ~ I [e]

function declaration ~ FUNCTION name (namelist) = e I

FUNCTION name = e

ROUTINE name(namelist) = e I
ROUTINE name = e

pl ~ pl (elist) I pI ()

elist ~ e I elist, e

functiondeclaration ~ GLOBAL ROUTINE name (namelist) = e I
GLOBAL ROUTINE name = e

functiondaclaration ~ EXTERNAL nameparlist

FORWARD nameparlist

nameparlist ~ namepar nameparlist, namepar

namepar ~ name (e)

macrodeclaration ~ MACRO definitionlist

definitionlist ~ definition I definitionlist, definition

definition ~ name (namelist) =stringwithout$ $ I
name = stringwithout$ $

macrocall ~ name (balancecstringlist) I name

balancedstringlist ... balancedstrtng·1 balancedstringlist, balancedstring

declaration ... MACHOP mlist I ALLMACHOP

mlist ... name = e I mlist, name = e

A.S

module ~ MODULE name(parameters) = e ELUDOM

parameters ~ parameter I parameter,parameters

declaration ~ SWITCHES switch list

switchlist ~ switch I· switch, switchlist

name ~ letter I name letter I name digit

letter ~ AIBI •.. JzlalbJ ... /z

o

o

o

c
B.1

* APPENDIX B: INPUT-OUTPUT CODES

The table heginning on the next page lists the COml)kte kldype code. The
lower case character set (codes 140-176) is not availabh: on the Model 35,
but giving one of these codes. causes the teletypl' to print the corresponding
upper case character. Other differences between lhe 35 and 37 are men~
Honed in the table. The definitions of th~ control t:odes arc those given b}'
ASCII. Most control codes, however, have no efred on th(.' console teletype,
and the definitions bear no necessary relation to the us ... ' of the codes in con
junction with the PDP-) 0 software.

The line printer has the same codes and charach .. rs as the teletype. The
64-character printer has the figure and upper case ~l'ts, codes 040-137
(again, giving a lower case code prints the upper case character), The "96"··
character printer has these plus the lower C:ise sd. cooes 04.0..;..176. The
latter printer actually has only ninety~five characters unless a speciaJ charac
ter is "hidden" under the deletccode. 177. A hkld(.'11 charactl:f IS printed by
sending its code prefixed by the delete codc. Hence a character hidden under
DEL.is print ... 'd by sending the printer two 177s in a row.

Besides printing characters, th~ iine printer responds to ten control charac··
ters, lIT. CR, LF, VT, FF. DLE and DC i -4. The 12H-dlarader printer uses
the entire set of 7-bit codes for printable characters, with characters hiddl-'n
under the ten control characters that affect the printer and 'llso under null
and delete. In all cases, prefixing DEL causes the hidden*character to he
printed. The ex tra thirty-three characters that complt!h:' the set art! or~ered
special for each installation.

The first page of the table of card ",'odes 'pages J lists the column
punch required to represent any charadcr in the two DEC I.'odes. The octal
codes listed are those used by the PDP-] 0 softwan:. In other words, when
reading cards, the Monitor translates the column pundl into the octal code
shown~ when punching cards, 'it produces th.: liskd cl)l~mlll punch when
given the corresponding code. lhe rcmall1ing pagl'~ of tIlt." tahk' show the
relationship between the DEC card codes and several I BM card punches.
Each of the column punches is produced by a singit! key on any punch ror
which a character is listed; the charactc..'r being. th~lt which is printed at the
top of the card.

* . .' f Digital Equipment This appendix reproduced with the.perm~ss~on 0

Corporation from the PDP-lO Reference Handbook.

Even
Parity

Uit

U

I

o
I

o

o

o
()

U

I

o
1

o
o

1

o

o
o

]

o

o

7-Bit
Octal
Code Character

000 NUL

00 I SOH

002 STX

003 FTX

004 FOT

005 ENQ

006 ACK

007 BEL

010 BS

011 liT

012

OIJ

014

015
016

017

020

021

022

023

024

025
026

027

030

031
OJ~

033

034
035

LI-"

VT

FF
CR

SO

SI

DLE

DCI

1)("2

1)('3

DC4

NAK
SYN

ETB

CAN

EM

SUB
ESC

FS
(;S

B.2

11'011'1: 1(1"11"'1' (11'1-,

TI~l,F'J "PI,: ('(ll)t,

Rt.'marks

Null. tape feed, Rl'pL'ats ()11 ~1()(,kl .~7. Cnntrol shift POll MoJt'1 .15.

Start of heading: ,also SOM, start of J1\1:S"agl', ('ontrol A.

Start of text; aht) EOA, elld of ~l(.ldrl'''~. COl1trol B,

End of tex t: also l:OM, end of Illl"'agl'. l. ontrol ('.

End of transmissipn (ENO); ,huts ~lll TWX 11l~1(·hinl.'s. Control D,

Enquiry (ENQR 't'): also W R U, "\Vl!o an: you,!'t Triggl'rs identification
("Here is , . , ") at relllote station II' ~() l'411ipped. Control E.

Acknowledge: Ulsl) RU, ·'An.' YOU ... ')" COlltn)l r.
Rings the bell. Control (;.

Backspace: al:-;o FEO, format \.'ffl'c1or. BaL'kspi.lI.":l'S some machines.
Repeats on Model '37. Control H 011 \1odt.'1 ~S.

Horizontal tah. Control 1 PIl '1oth.'1 35.

Line reed or lillt' span: (NI'\\ 1.Ii\1· L adv,lIH:rs paper to 'H.'xt line. Repeats
on Model 37. Duplk;lh:d hy (Olltnl\ J on Model 35.

Vertical tab (VTAIP. ContrClI " Oil \1otkl 35.
1,1

Form feed to top of Ih!xt p;lgc I PA(;I l. Control L.

Carriage rdurn to 1'\\~inl1illg of lilll.'. (ontnll M on MOlh." 35.

Shift out: l'hi.tll!!l" rihhull color to red Control N.

Shift in: change') ribhon L'olor to blurk. ControlO.

Dat.t link escape. Control P (DCO).

Devkc control t, turn:-. tranMlllth.'r (1'l'adcf) Ofl, Control Q (X ON),

Oevi(.'t~ control 2. turns Plllll'h llr ;tlIxiliary on. Control R rr APE,
AUX ON).

Device control 3. tUnts tran:>.mitter (rl'uder') otT. Control S (X OFF).

Device control 4. turll" 1"lllh:11 or auxiliary off. Control T (~,
AUX OFF).

Ncg"t~vc acknowlcdgl': also I-'J{R. ~'rror. Control U,

Synchronou~ idle (SY~CI. ('ontrul V.

End of transm ",sion blork: also LE~l, logh.:.t1 ~Ild of m~d iUIll. Control W.

Cancel (CANCL). C,,)!llrol :X.

End of ml'diulll. Control y,

Substitll\~. Control Z.

b~~apc, prefix. This l'udt: is gcnnakd by l'ontrol shift K on Mod~1 ~~,
but the M onitor trall~lak'\ It i (l I '7 ~.

File s~parator. (''''l1lft]1 ~lIi·ft r. .)11 \-lodL'l 35.

Group ~L'paratol. ('~lf\trol.llil t \1 (\11 \1ndel ,~~.

o

o

o

B.3

"IntlYl" (litH

C~ Even '-~it
Parity Octal

Bit Code Churnc:ter Hemarks

0 03h RS Rel'ord ~~,·par4.lt()r. «('I1tIOI shifl ~ 011 \1ndl'l ~5.

1 037 US Unit Sl'parator, (\mtrol ~hil t 0 011 ~lodd .\5.
] 040 SP Space.

0 041

0 042 "
) 043 #
0 044 $

045 tt'

1 046 &

0 047 Accent acuh;' or apostrophe.

0 050 .(

051)

1 052 III Repeats on Model 37.

0 053 +
1 054

C
0 0·55 Repeats on Model J 7.

0 056 Repeats on Model 37,

1 057 /
0 060 ",

061

06:!
., ...

0 063 3

I 064 4

0 065 5

0 066 6
067 .7

070 8

0 071 9

0 072

073

0 074 <

075 = Repeats on Modt') ,'\ 7.

076 >

0 077 ?

100 (ll:

0)01 A

0 102 B

B.4

B4 IN!'I'I (I" 11'1', I : 'PI "

Even 7-Bit 0 Parity Octal
Bit Code Chanu.'tcr H (,lila r" ,

I 103 C

0 104 D

I 105 E
10() I:

() 107 G

0 110 H

111

I J 2 J

0 I J J K
) 114 L

0 11 S M

0 116 N

1 I) 7 0

0 120 P
1 :2 I Q

I 122 ·R
0 123 S ()
] 124 T

0 125 LJ

0 126 V

127 W

130 X RCpl'ats on Mot.kl 37.

0] 31 Y
0 132 Z
1 133 I Shift K on \1olh,'1 35.

0 134 \ Shift L ·on Model]5.

135 J Shift M 'on Modd 35.

I 136 t
0 137 Repeats 011 ~todc1 37 .

b 140 A'-'~t.'l1t grave.

141 a

1 142 b

0 143 ",'

1 144 d

0 145 c

0 146 f

J 147 g 0

c
Even 7·Bit
Parily Ortal

Uit ('ode (,hararic.'r

150 h

o 151

o
1
()

o
1

o
o
I

o

I

o
o

t
o

o
o

REPT

15~

153

154

155
15()

157
160

161

16:!

163

164

j

k

1

m

n

o

p

q

s

165 u
v

w

x
17] y

J7~

]73

174

l75
176

177

z

{
I
}

DEL

PAPER ADVANCE

LOCAL RETURN

LOC LF

LOCCR

INTERRUPT, BRFAK

PROCEED, BRK RLS

HERE IS

u.s·

l{cpeah on ~lodd 37.

This code generated by A LT MODE on Model 35. ..

This I.'ode gent·rah.'ct hy ESC key (if present) on ModeJ 35. but the
Monitor translates it to 175.

Delete, rub out. Repeats on Model J7.

Keys That Generate No Codes

Model 35 only: eauses any other key that is struck to repeat continuously

until REPT is r~le(J~cd.

Model 3 7 lo~al1ine ft'ell.

Model 37 local l'arriagl..' return.

. Modt'l 35 local line fced.

MoLlei 35 local ~arria~e return.

Opens the lint.' (machine s\.'JHls a con (inuons string of null char~H:tcrs).

Break n.'k'ase.< not applicabk)

Transmits prl:lh:h .. ·rmim.'J 21 ~\.:harackr message.

B.6

I :--1'\ I «I[' "'II I ,1·1

0
(:\ R I) co III S

PDJ)-IO PDP ·10
A Character ASCII DEC n29 DI:(' O~() (·!t;II.H'll'r ;\ sell DEC O.!9 DLe 026

Sp{lce 040 SOil!' S()/1(' I ()t) x ·t k 4 , 041 11 x 2 12 x 7 A 101 12 I 12 1
04~ H 7 o x S B IO~ 12 2 12 ~

043 K J OX6 l 1(1.\ J 2 3 J 2 3
S 044 II X .3 l'I X 3 0 104 12 4 12 4
(.~ 045 o H 4 o X 7 I· 105 I ~ 5 12 5
& 046 I~ 11 8 7 F 10(1 1.2 (I 12 ()

047 8 5 Sf) (; 10 I I .., .~ _ J 1 ~ 7
(050 I:! 8 5 084 It. II 1 I () 12 8 12 X
) 05] 11 8 5 128 ... • I 111 1 2 <) J 2 <)

* 052 t 1 84 It 8 4 J 112 1 I I 11 1
+ 053 1286 J 2 K 11 J t J "'I II .." - •.

054 083 08~ L 114 1 t 3 11 3
055 1 f I 1 \1 115 11 4) 1 4
056 J:: 8 3 128] f' -11 it II 5 11 5

/ 057 01 o I 0 117 II 6 II h

0 O()Q 0 0 P 120 II 7 11 7
061 I I <) 121 II X J 1 8 0 ., 062 2 , R 122 11 9 II <)

3 003 3 3 S 123 o 2 o 2
4 064 4 4 T 124 03 o 3
5 065 5 5 L' 115 04 04
6 066 (, 6 V 126 o 5 o 5
7 067 7 7 \V 127 06 Oh
8 070 8 8 X 130 o 7 07
9 071 9 <) Y 13) 08 08

072 8 2 1] ~ 2 or 1 I 0 Z 1.12 09 09
073] 1 8 6 082 I 133 t ~ 8 :: I J 8 5

< 074]284 1286 \ 134 11 8 7 8 7
= 075 8 6 '8 3 I 135 OR:: 1285

> 076 086 '11 8 6 t I .1() 1287 R 5
.) 077 o X 7 12 8 .1 or 12 0 137 OX5 8 :;

IJillur.l' 7 9
,Hode Switch 1202468
End of File I ~ I) 0 I

The octal codes given ahovl' are tI~osc generated hy til\,' Monitor from the ..:olumn punches. The card
rt'ader interC.JCe actually supplies a dirl.'ct binary l'qlli\'ah.'nt or tht' ..:olumn punch, as liskd in the following
two pages.

0

B.7

,',\It II l',\jr1',

C ' Column Column
Punch Ch:aracter Octal I)unrh Character Octal

i"'v'OIlC ' Spuc'e OOO() I ~ lJ 4001

0 0 1000 II 1 J ~4()O

O..lOO II 2 h: ~200
, "' O~OO II J L ~IOO -
J 3 0100 II ~ \1 2041.1

4 4 0040 '1 :=; N 2020

5 5 0020 ')] () 0 2010

6 6 0010 II 7 P ~O04

7 7 0004 J 1 H Q 2002
8 8 OOO~ II (.) R :?OOI

9 9 0001 o 1 / 1400
12 1 A 4400 o ~ S 1200
I') , - ... B 4~OO 03 T 1100

12 3 C 4JOO 04 U 1040
12 4 D 4040 05 V 1020
12 5 E 4020 06 W 1010
12 6 F 4010 07 X 1004

C 12 7 G 4004 O~ y 1002
]2 8 H 4002 09 Z ·1001

Column 026 Data 026
Punch Processing Fortran 029 DEC 026 DEC 029 Octal

12 & + & t- & 4.000
II 2000
120 .) 5000
110 3000
8 2 4- 0202
8 3 # = fr = # 0102
8 4 (~: (iJ ((I; @ 0042
S 5 t 0022 .
8 6 -. = 0012
8 7 \ " 0006
1282 ¢ .) 4202
1283 4102
J 2 8 4 II <' <: 4042

C~
1285 (, (402~

1286 + < + 4012

)lumn
l\lndl

l~ 8 7

II 8 2

11 8 3

1184

1185

1186

1187

082

083

084

085

086
087

12 11 o 1

1202468

7 9

016 l.hta
Processing

$

*

026
Fortran

$
lie

(

B.8

IN I'l' I m! (I'l:r (. lIlIES

$

*
)

...,
Set' note

-
>
?

DEC 026

s

>
&

C'

(

DEC 029

r

f

$

)

\
]

>

End of File End of File
J\Jode Switch ,\10(/£' Switch

Binary Biliary

NOTE: There is a single key for the 0 8 2 punch on tht' 029 but printing is suppressed.

Octal

4006

2202
2102

2042

2022

2012

2006

1202
1102

1042

1022

1012
1006

7400

5252

xx05

The Monitor translates the octal code for the I ~ 0 punch in DEC 02(, to 4~0:! (which corresponds to a I

12 8 2 punch), and the code for 11 0 to 2202 (11 8.2),

()

(:)

()

c

c

C.l

APPENDIX C: WORD IpRMATS

<PtS> refers to a field S bits wide and P bits up from the right hand

end of the word, thus:

r-{36 -S ~ P1irii/zZ1--P ~
referenced partial word

The format of a pointer is

P :::: <30,6>
S :::: <24,6>
I :::: <22, 1>
X :::: <18,4>
Y :::: <0, 18>

The format of an (non r/O) instruction is

The

The

F :::: <27,9>
A :::: <23,4>
I,X,Y as above

format of an integer

SIGN :::: <35,1>
MAGNITUDE :::: <0,35>

format of a floating

SIGN :::: <35,1>
EXPONENT :::: <27,8>
MANTISSA :::: <0,27>

number is

point number is

Position
Size
Indirect address
IndeX

Function code
Accumulator

D.l

APPENDIX D: BLISS ERROR MESSAGES

NUMBER MESSAGE

*

-J(
0

1

2

3

4

5

6

7

10

undeclared identifier

error in simple expression

not the correct matching close bracket

expressions must be separated by a delimiter

an operator must be followed by a simple expression

a relational expression must not be followed by a relational operator

a unary (binary) operator must (not) be preceded by a delimiter

a control expression must not be used as a subexpression

left part of an assignment is incorrect

11 too many ~fS (current implementation allows "8)

12

13

righthand side of an assignment is incorrect

an actual parameter expression should not be empty

14 a simple expression should be followed by a delimiter

15 a subscript expression should not be empty

16 too many subscripts (current implementation allows 8)

20 OF must be followed by SET in CASE strot

21 incorrect escape expression

22 missing control variable in INCR or DECR

23 the constituent expressions of a complex expression should not be empty

25 declarations are only allowed in a block head

26

27

30 current close hr does not match marked open bracket (paired with err 31)

31 not the correct close bracket

32

33

34

35

36

37

illegal control variable name in INCR or DEeR

empty condition in WHILE-DO, UNTIL-DO, DO-WHILE, or DO-UNTIL

Warnin~ messa~e* not fatal

()

c

C

NUMBER

40

41

D.2

MESSAGE

illegal up-level addressing

too many parameters in a pointer expression

42 too many close brackets, or not enough opens (compiler exited to high
est level before the eof on input file)

"/(

43 as 42, except warning only, recovery attempt(!d

44 FROM-TO-BY-DQ out of order in INCR/DECR' 'expression

45 empty DO part, may not be defaulted in INCR/DECR expression

46 empty condition in if-then-else not permitted

47 missing THEN

50 empty FROM,TO, or BY expression in incr/decr

51 number of levels in escape expression is not a literal

52 missing 'J' in number levels part of an escape expression

53 empty expression not permitted as pointer-pointer in special function

54 missing f)' in a special function

55 missing 'or' in select expression

56 missing or misplaced 'NSET' in selec~ expression

57 labeling expression of nset-element may not be empty

60

61

62

63

64

65

66

67

70

71

72

73

missing or misplaced ".tt in a SELECT expression

missing or misplaced TESN in select expression

empty elist element in SELECT expression

'SET' is not an allowed stmt beginner

No '(I after EXCHJ

Empty new-base expression in EXCHJ

Missing ')' in EXCHJ

Missing AT in CREATE

Missing AT-expression or LENGTH in CREATE

Missing LENGTH-expression or THEN in CREATE

Missing '(' after CREATE

NUMBER

74

75

76

77

100

D.3

MESSAGE

symbol to be declared is not an identifier

missing ":III" on a routine, function, or structure declaration

missing formal parameter list right delimiter, i.e., ")"1"]"1","
missing right bracket on the size portion of a "namesize"

missing delimiter on a list, i.e., "," or If. II .,

101 missing ")" on a name par.

102

103

104

105

* 106

* 126

* 127

130
* 131
* 132

133

134

135

136

137

140

141

142

missing

missing
"="
If II ,

in a machop declaration

n.1I ";" in allocation declaration

structure access not to an identifier, e.g., l[E], 'vector' assumed

register is neither reserved or • system' type,~ see MODULE declaration

register value out of range (0-15)

register number is not a literal

,ttemot,d .structure access to a variable which has not been mapped, vector assumed
extra incarnation actuals ••• ignored

size expression must not be a block

symbol may not be addressed, and hence may not be mapped

invalid expression in a FORWARD declaration

invalid expression in a MACHOP declaration

may not map a symbol of this type

attempting to map onto an undeclared structure

incarnation actual or resulting size expression is not a literal

143 symbol previously. declared in the current context '(blocklevel)

144 invalid attempt to escape fran routine or function

145 warning: using a temporary register may invalidate code

146 register position of a machine OPe must be reg name or literal

147

150

170 illegal macro name

171 .empty fonnal list in macro definition

172 more than 31 fonnals in macro formal list

* Warning n essage, not fatal

c/
NUMBER

~'(

173
1:

174
"J'~

175
,':

176
i~

177
-;'(

200

201

250

300

350

400

450

500

600'

613

614

615

616

617

620

621

622

623

624

625

626

627

630

631

632

633

c 634

D.4

MESSAGE

illegal formal parameter

macro definition during macro expansion suppressed

recursive macro call

macro in use at block purge time

"(" missing on macro call

missing exponent on floating constant: ¢ assumed

compile time (floating) division by zero

module declaration within module body

stack declaration not. own, global or external

stack syntax error (pointer 'is accurate)

stack length invalid

trying to reserve a register in use already

special register reg num~not valid

trying to declare a special register already in use

module errors; compilation starts at pointer

reserved;-special+declarable exceeds l2--reservationignored

misSing equals in special reg.

module declaration errors with a trivial program

syntax errors in entries switch

declared entry point is not defined

plit missing. right paren

compile time expression error

load time expression error

negative plit duplication factor

may not use long string in this context

NUMBER

760

761

762

763

764

765

766

767

770

771

772

773

774

775

776

777

D.5

ESSAGE

no temporary register avail.ble

no declared registers available (INCR/DECR)

no declared registers available (declaration)

overlay compiler error in attempt at overlay

> 100 attempts made to expand space and failed

gt savef overflow

reg. table use field overflow

graph table UCCF overflow

literal table capacity exceeded

pointer table capacity exceeded

report these
errors to the
implementors!

operand pair without intervening deillniter

compiler error

Note: on some errors related to internal consistency
checks the compiler may rpunt--that is, print
an error message, abort compilation, and return
to the user with an 11".1'(11. These errors should
always be reported to the implementors.

I~

Security ClossHicoUoe

DOCUMENT CONTROL DATA • R&D'

C I 1-....... ~_(~So~C 'II~',...;'r!'!"c~,'~a ;../~" c.~'~/o It_ ... '_"~I# ~'o.;..d ,_o""",l_e""",b_.,_,._c_'_._"d /n_d_.1t_'_"' __ .. n_" ... o ... 'e_".O.-" .. In .. I1"""' ' .;..b •,.n~' .. etetJ~ w~h;.;.n __ th;.;. • ..;;o;.;.";.;';.;;; • .;.;;II_r.;.l.p:;.;;o;.,_, ';.;;e;..;c;.;,'.e.;;.;e;.;.;";.;.;'.;;.;:d:L'J ___ -I
.' "ORIGINATING '\CTtVITV (Corp.,." 'u'hor) aa. REPORT SECURITY CLAU'P'ICATION

c/

Carnegie-Mellon University
Department of Computer Science
Pittsburgh. Pennsylvania 15213

3. REPO~T TIT'-E

BLISS REFERENCE MANUAL

.... PIUCfUPTIVE NOTE' ('Type 0# -PIlI' and Inc,.,.I". de".)

Scientific Interim

UNCLASSIFIED
lb. GROUP

W. A. Wulf, D. Russell, A. N. Habermann, Co Geschke',
J. Apperson, D. '\Tile, and R. F. Brender

G. REPORT OATEt

Januarv 15_ 1970
6 ... CON TRAC Y QR GRAN T NO.

F44620 .. 67 ... C .. 0058
b. PAOJEC T NO..

c.

d.

9718

6154501R

681304
10. DISTRIBUTION STATEMENT

7 •• TOTAL NO. OP' PAGEl)'

64
O ... ·ORIGINATO,.·. REPORT NUMBERCS.

Ob. OTHER REPORT NOlS) (Any 011,41, numb." thet ma, b •• "'l2I1ed
,hi. repor')

1. This document has been approved for public release and sale;
its distribution is unlimited.

I" SUPP,-e:MENTAAV NOTES 12. SPONSORING MILITARV ACTIVITV

~ir Force Office of Scientific Research
TECH, OTHER 1400 Wilson Boulevard (SRMA)

Arlington, Virginia 22209
13. ABSTRACT

This document describes the BLISS implementation language as written for the
PDP-lO. BLISS is a language specifically designed for use as a tool in imple
menting large software programs. Special attention is given in the language
design to the requirements of the systems programming task, such as: space and
time efficiency, the representation of data structures, the lack of run-time
support facilities, flexible control structures, modularization, and parameteri
zation of programs.

Security C18uUlcat1on

, .,

J

	Title
	Preface
	Table of Contents
	I. Language Definition
	II. Special Language Features
	IV. Run Time Representation of Programs
	V. Compiler Implementation
	Appendix A. Syntax
	Appendix B. Input-Output Codes
	Appendix C. Word Formats
	Appendix D. Bliss Error Messages

