
I \ OECUS \ .. __ .... 1 PROGRAM LIBRARY 

DECUSNO. 

TITLE 

AUTHOR 

COMPANY 

DATE 

SOURCE LANGUAGE 

ATTENTION 

FOCAL8-227a 

FOCL/F - AN EXTENDED VERSION OF 
8K FOCAL/69 

D. E. Wrege 

Georgia Institute of Technology 
Atlanta, Georgia 

May 1, 1973 

PAL 

This is a USER program. Other than requiring that it conform to submittal and review standards, 
no quality control has been imposed upon this program by DECUS. 

The DECUS Program Library is a clearing house only; it does not generate or test programs. No 
warranty, express or implied, is made by the contributor, Digital Equipment Computer Users 
Society or Digital Equipment Corporation as to the accuracy or functioning of the program or 
related material, and no responsibi lity is assumed by these parties in connection therewith. 





FOCL/F - AN EXTENDED VERSION OF 8K FOCAL/69 

DECUS NO. FOCAL8-227a -- -'~"'-- --" _ .. _- ,--.~- -.--~---------

FOCL/F is a version the FOCAL* language Which implements 
several extensions for increased power and versatility. 
Among these are: user defined functions, user defined 
interrupt service, execution of machine language instru-
tions from FOCAL*, arrayed variables, psIS compatibility, 
line number computation, extended commands, ASCII character 
cOnHnands, links for ease of addition of user assembly-code 
subroutines, new TTY-high speed reader control commands. 
A psIS overlay is available for file handling from FOCAL*, 
Which permits device independent program calling/saving, 
variable files, and ASCII files. FOCL/F version 12/1/72 is 
closely compatible with FOCAL-lO, the newly released im­
plementation of FOCL/F on the DECSYSTEM-lO by Rob Warnock III 
at the Chemistry Department of Emory University. This document 
includes additions to the earlier version dated 6/1/72. 

FOCL/F was developed to fit the needs of a 
multi-disciplinary user environment Which includes 
extensive scientific and engineering calculations, 
"on-line" experiment data-acquisition, control and 
analysis, and general educational assistance. It is 
intended to be an extended version of SK FOCAL/69* 
with emphasis upon improved power of the language. 

The FOCAL language provides some unique fea­
tures in the small machine environment. Of partic­
ular significance is the ease of program writing and 
debugging via the resident editor with its MODIFY 
command, and the ability to execute immediately, 
from the command mode, any line or group as the pro­
gram is being written. The recursive nature of the 
language, the ability to call any line or group as a 
subroutine (even if the line or group is part of 
another subroutine), the ability to abbreviate com­
mands, and the efficiency of text storage, permit 
larger and more significant programs to be run in 
minimum machines without bulk storage. The inter­
pretative-interactive system permits decision making 
without coding elaborate decision algorithms. Pro­
gram development time is significantly reduced over 
compiled languages. Programs can be readily exe­
cuted in FOCAL/SK* Whose magnitude is comparable to 
large machine problems. Although the interpreter is 
slower than compiled or assembled code in many cases, 
the ease of program development and the consequent 
time reduction makes the slower runtime a cost­
effective trade-off in the multi-user, multi-problem 
environment, and an extremely effective language to 
use for development. 

In order to provide increased power and to re­
duce variable storage and searching time, a signif­
icant feature has been incorporated into FOCL/F. 
This is the facility to call lines or groups of 
FOCL/F coding as user-defined functions. These 
functions may be called recurSively, passing multi­
ple arguments as "dununy" variables. The dummy vari­
ables are not assigned permanent storage locations, 
resulting in core savings. 

Within these user-defined functions the vari­
ables ~reated are listed separately and the variable 
search is confined to this list rather than search­
ing the entire (global) list. Global variables are 
also accessible however. There are ten user-defined 
functions available, F~-F9. The functions are de­
fined by a "LET" command, e.g. LET F3 = (Line or 
group number). The recursivity of the functions so 
defined is an extremely powerful feature since it 
allows solution of transcendental functions or other 
non-analytic functions in minimum coding. Complex 
variables, matrix algebra, and other functions may 
be simply coded via the user-defined functions. 

FOCL/F has arrayed variables with array-address 
computation so that only three words rather than five 
are required per variable. The computation of the 
address permits direct access rather than searching 
the variable lis~ to improve speed. Unlike BK­
FOCAL/69*, variables and text are stored in con­
tiguous core so that the user may take advantage of 
the variable-text trade-off to provide more efficient 
core utilization. For small programs a larger num­
ber of variables can be used than in other BK ver­
sions. Unlike other FOCALs with variable-text trade­
offs the use of the editol ~IDDIFY command does not 
erase the variables. This permits run-tirr~modf-== 
fications to be made without having to rerun the 
entire program. 

A second major feature, carried over from the 
earlier FOCL/S (and FOCAL+ by D. Dyment) is the 
ability to execute any machine-language instruction 
from within FOCL/F via FX(2, ARGl, ARG2). This 
causes the execution of machine language instruction, 
ARGI, with _ARG2 in the AC. The FX(2, X, Y) function 
is particularly useful in controlling I/O devices 
from FOCL/F. The BRANCH (or BR) command is a con-

*FoCAL-rs"a -registered trademark of the Digital 
Equipment Corporation. 

+This work was an extensive recoding of FOCAL/69 by 
D. E. Wrcgc and supported in part by Institutional 
funds from the State of Georgia. 



ditiona1 "GOTO" to test if the last FX(2,xx) caused 
a "skip" to occur. The FX(l, xx) is similar to the 
FOCAL+ "FCOR" command. Other FX commands added in­
clude FX(3, X, Y) (after J. Alderman) for the log­
ical "AND" on the low order 12 bits of ARG1 and 
ARG2; FX(S, ARG) and FX(10, ARG) are used for octal 
to decimal and vice-versa conversion. An improved 
FRAN function has also been included (see DECUS 
FOCAL-1). 

User-defined interrupt handling has been added to 
permit insertion of appropriate user device codes in 
the interrupt chain, and execution of FOCL/F sub­
routines on the appropriate condition if required. 
With this addition, SKIP tests and FLAG "Clears" are 
executed at machine language speeds, permitting the 
addition of environment-specific devices without the 
necessity of adding machine language patches. 

Eight-bit character handling capability has been 
provided via FIN(arg) and FOUT(arg~ functions in a 
manner similar to the OMSI version. Both ASCII and 
non-standard codes (e.g. IBM-Selectric, etc.) may be 
converted in FOCL/F for output to ASCII devices, or 
for use within the program. 

In order to improve the versatility of FOCL/F, 
links have been provided for user written commands 
and functions, and the user commands may have two 
letter abbreviations to avoid conflicts, and to pro­
vide more senSible mnemonics. Two FX functions, four 
normal functions (FNEW, FCOM, FADC, FN) and eight 
additional commands are provided for those who wish 
to write their own machine language subroutines for 
special applications. The floating point package 
has been modified so that it may be used from any 
field for ease of subroutine coding. 

Other features of FOCL/F include: line number 
computation, a line continuation character providing 
unlimited line length for text, conditional subrou­
tine call via the "ON" command, MOVE command to move 
text from one line-number to another, decrementing 
FOR loops, common array storage (using three words 
instead of five per indexed variable), variab1e-
text trade-off, and a more comprehensive list of 
error messages. 

In order to provide psIS compatible commands, 
some changes have been made. These include: CNTL/C 
(Return to psIS monitor) with CNTL/O being the new 
interrupt character; "E T" erases text; "E V" 
erases variables; "E A" erases text and variables; 
and the "toggling" TTY/high-speed-reader command 
"*" has been deleted and replaced by LIBRARY INPUT 
and OUTPUT commands, with the default condition 
being the TTY. Data may be input from the low-speed­
reader via ASK command if no ECHO is required. How·· 
ever, with minor exceptions, FOCAL/69 programs will 
run under FOCL/F. 

A separate version is available for the S/E 
which sets the TTY reader "run" only when FOCL/F re­
quests a character, thus permitting low-speed tape 
data input via "ASK" and permitting "batch-mode" 
processing via low-speed tape. A second feature is 
that the MQ register displays the contents of the 
core address specified by the switch register. un­
defined interrupts are cleared at the end of the 
interrupt service routine. 

In use, FOCL/F has proven to be a powerful ex­
tension of the extremely versatile FOCAL language. 

ISchneider, D. and Smith, B., "PS/S FOCAL, 1971," 
OMSI 4.1-D, Oregon Museum of Science and Industry, 
por-tia~d~ 'oregon (1971). 

2 

The modified interpreter in FOCL/F is not com­
pletely compatible with the standard DEC supplied 
FOCAL*. The motivation for these changes was based 
on the need to add some psIS compatible commands for 
human engineering. Most of the following incompati­
bilities reflect either a tendancy toward PSIS stan­
dardization or a clean-up of syntactical forms which 
are believed to be purely historical in origin. The 
changes that are made effect mostly the operation 
from the command mode, hence with minor exceptions 
programs that run in FOCAL/69 will run in FOCL/F. 

IF 

CNT/O 

CNT/C 

CNT/U 

* 

E T 
EV 
E A 
FADC 

Note: 

Summary of Incompatibilities 

is the new command mode acknowledge charac­
ter (instead of "*") 
is the new interrupt character (instead of 
CNT/C) return to Focal Command Mode 
Returns to psIS (or other monitor) via an 
effective JMP 7600. [implemented in 1/11/72 
versionJ2 • 

Replaces back arrow [for rubbing out 1inesJ. 
However back arrow still works for "ASK" 
input (as well as CNT/U). (Up arrow) (U) 
(CR) (LF) is echoed upon receipt of CNT/U. 
The high-speed reader command has been re­
placed by a more comprehensive set of li­
brary commands. This incompatibility may 
require some old program modification. 
"ERASE TEXT" erases text. 
"ERASE VARIABLE" erases variables [also "E"J. 
"ERASE ALL" erases both text and variables. 
UNDEFINED. Experience has shown that most 
users wish to code their own FADC handler. 
In FOCL/F commands may be abbreviated to a 
single letter. However if they are spelled 
out the first two letters must be correct. 
e. g. COMMT and C are legal for "COMMENT" but 
"C-" or CALC are illegal. 

KQCI'.L~'-_ INPUT/OUTPUT Specification_I! 

As previously mentioned the "*" or high-speed 
reader command has been deleted. The primary reason 
for this was the user uncertainty about the state of 
the complementing switch during program execution. 
To circumvent this problem, complete control over 
both the high-speed reader and high-speed punch has 
been implemented (as well as control over the TTY). 
A one page high-speed -reader buffer is included to 
reduce the wear on reader clutches. Conceptually 
there are three devices: (1) the input device 
which may be the TTY or the High-Speed Punch, (2) the 
output device which may be the TTY or the H.S. Reader 
or both, and (3) the echo device which may be the TTY 
or the H.S. Reader or both or neither. "IF", ":", 
"(up arrow)U", and other acknowledge characters go 
only to the echo-device. Errors or CNT/O reset the 
devices to TTY. Also when the HSR runs out of tape 
and at the conclusion of the WRITE command the de­
vices are reset (input dev. and outdev. respectively) 
to the teletype the commands are: 

LIBRARY INPUT, TELETYPE 
LIBRARY INPUT, HIGHS PEED 

(L I,T) 
(L I,H) 

~--rhe user may insert a patch here to his monitor 
system or JMP I to 200 to return to FOCL/F com­
mand mode as in FOCAL/69. Viz. 

7600 5601 
7601 0200 



LIBRARY OUTPUT, TELETYPE 
LIBRARY OUTPUT, HIGHSPEED 
LI BRARY OUTPUT, BOTH 

(L O,T) 
(L O,H) 
(L O,B) 

LIBRARY ECHO, TELETYPE (L E,T) 
LI BRARY ECHO, HIGHSPEED (L E, H) 
LIBRARY ECHO, BOTH (L E,B) 
LIBRARY ECHO, NONE (L E,N) 

When input is from the HSR, a one page buffer is 
read in, and characters are fetched from this buf­
fer. Input may be switched to TTY for a while and 
then back to HIGHS PEED with input from the buffer 
resuming where it is left off. In orqer to ignore the 
rest of the HSR buffer (e.g. when there has been a 
mistake and one wishes to start over from the begin­
ning of a tape) an addition command has been imple­
mented: 

LIBRARY INPUT, REWIND (L I,R) 
Examples: 

To input a program from the HSR and list: 
11. L I ,H(ret.) 

To input from the HSR and not echo program: 
11. L E,N;L I,H(ret.) 

To read a data point from tape and then ask for 
response from the TTY followed by another 
data point: . 

#L I,H;A D(J);L I,T.A FLG, !;L I,H;A D(J+L);L I,T 
NOTE that the input from the HSR will be echoed. 

By turning off the ECHO to the teletype, data 
may be input via low-speed paper-tape via the ASK 
command. The user must input the entire list of 
data on the tape, and perform no significant calcu­
lations during input to prevent loss of data. The 
high-speed inputs and the S/e version are not sub­
ject to this limitation. The user should insert 
blank leader or "@" at the end of the files to be 
input on the low speed reader to provide time to 
turn off the reader. 

The most signigicant addition to the FOCAL lan­
guage that FOCL/F has to offer is User Defined 
Functions. Conceptually, a user defined function 
is a method which allows the FOCL/F programmer to 
call a line or a group of FOCAL programming as a 
function. There are 10 user defined functions 
available: F0, Fl, Fx, ••• ,F9. The functions are 
defined via the "LET" command, e.g. 

LET F3 = [line of group numberJ. 
Henceforth, whenever F3 is called the line or group 
specified in the "LET" command is executed. To de­
assign a function: LET F3 = 0. 

In addition there is a general purpose user 
defined function, F(line#,ARGS), where the first 
argument is the line or group to be executed. 

The rules for writing the function are: 
1. Arguments will be passed to the function 

by value in the following order 
A',B',C',D',E',F', ••••• 

2. The value of the function will be the 
value of the variable Z, upon completion 
of the line or group. 

3. All primed variables will be local to the 
function. 

4. All newly created non-primed variables will 
be local with the ex~icn .)f functions 
called by that functLon. 

5. All previously defined non-primed vari­
ables are global. 

6. The function may be called recursively to 
any depth (limited only by the size of 
the stack [Push-down list]). 

3 

Note that F' is a legal variable name in 
FOCL/F. 

Example: 
To write a function, say F7(ARGl,ARG2), which 
will raise ARGI to the ARG2 power: 

ffLET F7 = 30.1 
#30.10 SET Z' = REXP(B'*FLOG(A'» 

When F7 is used in the above example line 30.1 is 
entered with A' = ARGl and B' = ARG2. After 30.1 is 
completed with no errors the function F7 takes the 
value of Z'. Hence, F7(2,0.5) will have the value 
1.414. An equivalent call to this function is 
F(30.l,2,0.5) using the general purpose user defined 
function. 

User defined functions may be used recursively, 
arguments may be any arithmetic expression, and the 
variables A', B', C', ••• are deleted upon successful 
completion of the function evaluation. If any er-
ror occurs or CNT/o is struck while in the function 
these variables will not be deleted. Note that any 
other variables that were created for the first time 
within the function are also deleted. Variable 
search for the primed variables is confined to the 
prime list rather than the entire list. This fea­
ture can result in considerable time saving for com­
plex programs. 

The recursivity of these functions is an ex­
tremely powerful feature of the user defined func­
tions since it allows solution of transcendental 
functions or other normally non-analytic functions. 
For example, suppose that we have a function 

Y = Fl(X)+C*FCOS(Y)+D*FATN(Y/2) 
where Fl is some defined function of X (evaluatable) 
and the last two terms are known to be correction 
terms much smaller than Fl(X). We may define a 
function say F0(X,ARG) where ARG is a guess at the 
value of F0 (e.g. Fl(X». Now we may code F0 to 
iteratively approximate itself as follows: 

LET F0 = 10 
10.1 SET Z, = Fl(A')+C*FCOS(B')+D(FATN(B'/2) 
10.2 IF (FABS(Z'*.OOl)-FABS(Z' -B'»10.3;RETURN 
10.3 SET Z' = F0(A',Z') 

This function will iterate on itself until a .1% 
value is obtained. Note how simple this iterative 
function is with recursive subroutines. 3 

In the past,. interrupt handlers for non-stan­
dard devices have been patched into the interrupt 
service routine by some users via machine language 
overlays. FOCL/F has the additional feature of al­
lowing the addition of up to three user devices to 
the interrupt chain, directly from the high level 
language. Interrupt service for these devices may 
be programmed, to a limited extent, in the high 
level language. This interrupt handling capacity 
is suitable for most non rate-limited devices (e.g. 
PT-08's, HSR, HSP, etc.). 

rupt 
The device lOT's are inserted into the inter-

skip chain via the function 
FX(4,Device#,SKIP lOT, CLEAR IOTt 
where Device # 1, 2, or 3 

SKIP lOT = lOT instruction causing PC 
skip 

CLEAR lOT = lOT instruction causing the 
device flag to be cleared 

The SKIP lOT and CLEAR lOT are in decimal 

:3 "To -iterate' is beautiful, to recurse is devine," 
Anonymous 

4 If using PS8 Overlay see "Hints and Kinks." 



(see FX(lO, ••• )for octal to decimal conversion). 
FX(2,X,Y) is used for other lOT's required for de­
vice service. 

The FX(4,S,Y,z) function makes appropriate 
entries in the interrupt service routine: 

IOTSKPI IUSER SKIP lOT DEVICE #1 
JMP .+5 
IOTCLRI /USER CLEAR lOT DEVICE #1 
DCA UBUFRI lIN CASE IOTCLRI read something 
ISZ SOFTFI IUSER SOFTWARE FLAG 

JMP UDINT ISET UP FOR USER DEFINED INTERRUPT 
IOTSKP2 ICOOTlNUE DEVICE #2 
The high level (FOCL/F) interrup.t service 

routine is defined via the command 
LIBRARY BREAK, lin~ or group # (or L B,#). 

Upon receipt of an interr:upt from a device specified 
by the Fx(4, ••• ) function, the interrupt is handled 
directly in the skip cha~n at machine la:!gu~ Ep!ecE and 
a software user interrupt flag is set (not "SOFTl"). 
When the next carriage return is encountered in the 
currently running FOCL/Fprogram. the following 
sequence of events take place. ' 

1. The text pointers are saved for later 
restoration. 

2. The line or group specified by the LIBRARY 
BREAK command is executed (if non-zero). 
This is effectively a "00" command. 

3. The text pointers are restored and the 
software user interrupt flag is cleared 
(not "SOFTFl"). FOCL/F continues running 
the interrupted main program. 

Normally one would give the LIBRARY BREAK command 
before the FX(4 •••• ) to prevent a missed interrupt. 

FOCL/F has access to the interrupt service, 
routine information through the following functions: 

FX(5.ARG)4 
where ARG is the user device number. Returns num­
ber of times. (=SOFTF), that device interrupted 
since the last FX(5,ARG)~ Note that FX(5,ARG) re­
sets itself after 4096 interrupts. 

FX(6,ARG)5 
If ARG = 0 then FX(6,0) is the number of the lowest 
numbered device causing an interrupt since the last 
FX(5, ••• ). FX(6.0) has a value >3, if there were 
none. 
If ARG I 0 then the UBUFR is returned for device 
ARG. Note that garbage will be returned if ARG <1 
or ARG >3. 

Note: The functions FX(4, ••• ), FX(5, ••• ), and 
FX(6 •••• ) may not be used recursively among 
themselves, i.e. they may not be used in the 
arguments for FX(4 •••• ), FX(5, ••• ), or FX(6, ••• ) 
functions. 

While this facility will service most devices, 
those that are rate limited must be serviced via 
overlaying machine-language device handlers, which 
are added in a manner similar to that described in 
DECUS FOCAL 8-17. .!ot_e. ~arefl!lly' that FOCL/F has 
been extensively recoded thus the symbol table is 
differentfro~ FOCAr..-W and FOCAL/69. 

A useful procedure has been added to allow use 
of negative constants or variables as arguments of 
the FOR statement 

Negative steps are now allowed in the FOR, 
for example: 

FOR I = 1, -3, -15; [command] 

4 

As before with positive increment~ the program will 
execute the statements included in the FOR loop at 
least once, regardless of the limit values; that is 
FOR I = 1. 1, 0, and I = -1, -1, 0 will execute 
once. 

Line numbers may be computed from any arithmetic 
expression. The rule is that the expression for a 
line number must not start with 0-9. If the line 
number begins with a character 0-9, the standard 
line number formation routine is called, which does 
not evaluate expressions. Hence, legal expressions 
are: 

OOX 
GOTO (3*FSQT(Y» 
IF (EXPR) 2.l,X*2,J+2 

Whereas the following are illegal: 
GOTO 3*FSQT(Y) 
IF (EXPR) 2.l,2*X,2+J 

Note that the low order'bits of the evaluation are 
truncated for line number computation, to obtain 
group numbers up to 32 and line numbers up to 99. 
If the expression should have a value greater than 
32; there is an unpredictable truncation. 

ALTMODE is a true line continuation character 
[unlike CNT/K in FOCL/S] with the equivalent status 
of a space. Hence ALTMODE may be used in an arith­
metic expression to continue a long line to the 
next line. ALTMODE is saved internally as the single 
ASCII character ALTMODE, however whatever it is 
printed the sequence (ALTMODE) (ASCII 373) ($) (CR.) 
(LF.) (6 spaces) is typed. The reason for the 
ASCII 373 is so that on input [reading a program 
from paper tape] all of the garbage characters 
may be ignored. 
Example: 

10.10 DO 5; DO 6;fSET X = FATN«Yl-Y2)/$ 
(Yl + Y2» 2 + FLOG(Yl); TYPE 2 $ 
.12 

This line, When executed, will function exactly 
as if the ALTIIODES were spaces, i.e. the last com­
mand on the line will respond with the typing of 
4096. 
This feature allows long subroutines to be coded as 
a single line and also permits a long series of 
commands to .be executed from command mode. 

This latter feature is extremely useful in 
experiment control since a variable sequence "BATCH" 
job list may be defined at run time. (i.e. Subpro­
gram 1 may be run until some condition is met, then 
Subprogram 2, etc., permitting multi-user and/or 
multi-task operation, in an unattended manner). 

The "ON" command is similar to the "IF" command 
except a DO is performed instead of a GOTO. Hence, 
ON is a conditional subroutine call. Example: 

HON (EXPR)2.l,3,X;[more commands] 
In this example if EXPR is less than 0 line 2.1 will 
be executed, if EXPR = 0 group 3 is executed, and if 



EXPR is positive, line or group X will be executed. 
In all cases [more commands] will be executed if 
the line or group number is valid. As in the IF 
command, less than three line numbers (or groups) 
will make the ON command effectively a NOP if there 
is no line number corresponding to the condition of 
EXPR. 

~~OYE Command 

For some time FOCAL users have desired some 
method for changing line numbers. A flexible way 
of preforming this operation is implemented in the 
MOVE command. The syntactical form is: 

MOVE Source Line I, Destination Line I 
This command will move the contents of the source 
line to the destination line number MODIFYing as it 
goes. All control characters applicable to the 
MODIFY command are applicable to the MOVE command. 
(Users of KSR-35 teletypes or other machines with 
hardware FORM/FEED will be happy to know that FOCL/F 
does not echo CNTRL/Ls). 

~~s (non:PS/8yersion) 
In addition to subsc~ipted variables FOCL/F 

has true arrays similar to FOCL/S except that they 
are one-dimensioned arrayed variables only~ Up to 
eight one-dimensional arrays may be specified. 
Arrayed variables make more effective utilization 
of core than normal FOCAL variables. Normal FOCAL 
variables use the index as an extension of the name. 
and require five locations, whereas the arrayed 
variables only require three locations each. Vari­
able storage address computation is performed 
directly rather than searching the variable list~ 
resulting in an increase of speed. These arrays 
occupy a "common" area of core which is specified 
by the "VARIABLE LIMITS" command. The user must 
reserve variable names for these arrays via the 
VARIABLE OPEN command and make sure that they do 
not overlap. No protection is provided for the 
user overwriting one array with another. 

VARIABLE LIMITS, (NO. OF VARIABLES) 
This command sets aside an area of core to 
be used by the arrayed variables. 
VARIABLE OPEN, NAME, ORIGIN 
Reserves the variable NAME for an arrayed 
variable starting at ORIGIN in the reserved 
variable storage area. 
VARIABLE CLOSE, NAME 
Releases NAME from arrayed variable status. 
VARIABLES KILL 
Releases all names from arrayed status. 

For Example: 
To create arrayed variables A(j), B(j), C(j) 
with 5~ elements each - not overlapping 
Iv L,15~;C l5~ VARIABLES 
IN O,A,l 
IN 0,B,51 
IN O,C,lOl 

Note: It is up to the user to make sure that one 
array is not overwriting the other. For 
example in the above case A(5l) will occupy 
the same storage location as B(l). FOCL/F 
will not flag this error. 

FX(l,ARGl,ARG2)4, 5 

The core memory function. This function may be used 
in two distinct ways: FX(l,ARGl) takes as its value 
the contents of the memory location specified by 
ARGI (which must be a decimal value in the range 

5 

0-32767), and FX(l,ARGl,ARG2} which performs simi­
larly, first depositing ARG2 in the memory location 
specified by ARGI. and finally taking the value ARG2. 
Thus the statement 

SET X = FX(l. l2345.FX(1. l2345}+1} 
would increment the contents of memory location 
12345 (field 3. 0071 (8» and set "X" equal to the 
new value. All arguments are decimal. The FX(lO.xx} 
and FX(8,xx) may be used to convert from octal to 
decimal. 

FX(2,ARGl,ARG2)4 5 

The execute function. This will execute the machine 
language instruction specified by ARGI and ARG2 in 
the AC. ARG2 is assumed to be'zero if omitted. 
Needless to say "JMP" instructions and the like 
should be executed with extreme caution. A simple 
example: SET Y = FX(2.3844) will set Y equal to the 
value of the switch register. 

BRANCH5 (note this command can only be abbreviated 
to "BR") 

The branch command is a conditional "GOTO" command. 
This c~mand functions in a manner identical to the 
GOTO command except that it will be a NOP if the 
last instruction caused a skip to occur (the last 
FX(2,xxx» thus the presence or absence of a skip 
may be tested. 

Note: Users of the FX(2,xx} command to control 
peripheral hardware must keep in mind that 
FOCL/F uses the interrupt system for I/O 
servicing; interrupts generated by additional 
devices may be handled via FX(4, }etc. (see 
above. Interrupt Service). PDP8/E owners are 
fortunate to be able to disable the interrupt 
on most peripherals. but others BEWARE!!!! 

FX(3,ARGl.ARG2} 
Performs logical AND between the low order 12 bits 
of ARGI and ARG2. This should be useful for "bit 
banging" and examining status words of peripherals. 
(after original concepts by J. C. Alderman). 

FX(4}, FX(5). FX(6) Described above (Interrupt 
Service) 

FX(8,ARG) 
Converts ARG to its octal equivalent. This function 
knows about two fields only, hence, ARG must be in 
the range ~-8l9l. Note that this function is not 
available in the PS/8 overlay version. 

FX(l",ARG) 
Converts the octal number ARG into its decimal equiv­
alent. Once again FX(l~.xx) only knows about two 
fields, i.e. ARG must be between" and 17777. Note 
that this function is not available in the PS/8 
overlay version. 

FRAN( ) 
FRAN is an improved random number generator which 
generates repeatable random numbers uniform on the 
interval 0 to 1 (non-inclusive of 1). It uses the 
generation formula 

X(N) =- (217 + 3)*X(N-l) modulo 36 
with the lead 23 bits supplying the random number. 
(This algorithm is discussed in detail in DECUS 
FOCAL-l by G. A. Griffith and P. T. Brady in DECUS 
5-25). 

8 Patternedafter FOCAL+ by D. Dyment. 



FIN( ) 
Character input function fetches one 8-bit character 
from the current input device and converts it to the 
decimal equivalent. (See also FX(2, ». 
FOUT(ARG) 
Outputs, ~q, a decimal number, as an 8-bit binary 
character to current output device (ARG in the range 
o to 22510 ) 1 

A tabulation character has been included in 
TtPE OR ASK commands. The general form is a colon 
(:) followed by an arithmetic expression. This will 
cause spacing on the current line to the carriage 
location equal to the integer part of the given ex­
pression, e.g. TYPE :15,"*" will print a "*" in 
the 15th character location from the left margin. 
If the evaluated expression is missing, or has a 
value of zero, a normal tabulation will be preformed 
to the next multiple of eight (8) spaces. (As in 
the "EDITOR"). The "Tlf" command has been deleted 
since the equivalent is "T :1". 

All prior versions of FOCAL have required 
that all commands be terminated by a space, semi­
colon, or carriage return. FOCL/F has expanded 
the list of command word terminators to include 
those commonly legal in FORTRAN, and other "clumsy" 
languages. This list now includes 

( %" ! $ : , ; carriage return, space, 
and ALTMODE. 

Hence the commands "IF(X)", T!, and the like are 
legal in FOCLF. 

1he text, variables, and push-down list are 
all resident in field 0. Hence, with the new struc­
ture there is: (1) no limit to the length of ~ommand 
lines, (2) trade-off of core between text and vari­
ables (allowir~ more variables if the program is 
short), and (3) the ability to gain text or variable 
room at the expense of extended functions. The 
extended functions may be deleted via FX functions 
in the basic version. Later versions may restore 
the direct command mode deletion via the initial 
dialog. The current version has no initial dialog. 
In addition, for those who wish to write their own 
machine language subroutines two FX functions and 
four normal functions (FNEW, FCOM, FADC, FN) are 
available as well as eight commands. In addition 
the floating point package has been modified to 
know about fields - hence may be used any field. 

FOGL/Ko!1 the PDP81E, 

For those lucky owners of 8/E's there are 
several additional features available as a result 
of hardware niceties. 

The teletype reader run is only set when 
FOCL/F needs a character. Thus low-speed input is 
feasible for data input or program input without 
someone standing there turning the reader on and 
off. Also "batch mode" processing is possible by 
putting commands on a paper tape and leaving it in 
the reader. 

The MQ register is loaded with the contents 

6 

of the field one core location specified by the 
switch register upon receipt of each carriage return 
in text or when waiting for teletype I/O. Of course, 
one may specify field 2 only. This feature is very 
handy for debugging while executing. 

If the interrupt service routine cannot find 
an interrupt. a progran. -g~nerated power clear is 
executed to clear the unidentified flag • 

.i-Word OVerlay: 

There is available a four-word overlay for 
FOCL/F. Note that this does not work with the PS/8 
OVerlay. 

Error Mess!lge~ 

The error messages are now in five octal-digit 
format and correspond to the field and core location 
of the error subroutine call. In addition, the list 
of error messages is larger, giving a more compre­
hensive set for easier debugging. For those users 
who wish to write their own machine language sub­
routine~, it is simple to determine the corresponding 
error messages from the listing of their additional 
coding. 

~18-0S/8 OVERLA~ 

There is available a PS/8 overlay which im­
plements device independent program storage/retreval/ 
calling, File variables, and ASCII I/O. Two page 
handlers are allowed. It should be noted that with 
the PS/8 overla~ the size of the text area is reduced 
by about one half. However, this is not a serious 
limitation since programs may be called from files. 

I.i1e Specification - ASCII I/O. 

lnput and output files may be specified in 
FOCL/F via the commands: 

INPUT DEV:NAME.EX 
OUTPUT DEV:NAME.EX 

These commands will do all of the file lookup and 
creation for ASCII I/O. It should be noted that the 
abbreviations for these commands are "IN" and "OU" 
respectively and may ~o~ be abbreviated to a single 
letter. ~lce the input and output files have been 
specified, the use of these files is as in basic 
FOCL/F, 1. e. : 

LIBRARY INPUT, FILE (L I,F) 
LIBRARY INPUT, Tr;LETYPE (L I, T) 

LIBRARY OUTPUT, FILE (L D,F) 
LIBRARY OUTPUT, TELETYPE (L O,T) 
LIBRARY OUTPUT, BOTH (L O,B) 

LIBRARY ECHO, TELETYPE (L E, T) 
LIBRARY ECHO, FILE (L E,F) 
LIBRARY ECHO, NONE (L E,N) 

The only difference between this and basic FOCL/F 
is the use of the word "FILE" instead of "HIGHSPEED". 
Note that the interrupt is turned off while acces­
sing PS/8 devices. 

All input and output is buffered with a single 
PS/8 block (256 words). Hence, the user need only 
wait for peripheral operation every 384 characters, 
long enough to read one block. 



Whenever a L I,F command is giveh; the effect 
is to replace the TTY with the character stream in 
the file. Therefore programs or data may be input 
from any PS/8 device. 

The user must specify When an output file is 
to be closed [made permanent] via: 

LIBRARY OUTPUT, CLOSE. 
Note: It is a restriction in PS/8 that only one out­

put file may be active at a given time on a 
specific device. Hence, care must be taken 
to close any active output file before exe­
cuting "OUTPUTII , IIVARIABLE MAKEII, OR "PRO­
GRAMII commands. 

Example: 
To ASK for ten numbers from the file DATA. FD 
on DTA1, followed by a variable from the 
TTY, followed by a Alphanumeric string 
(terminated by a carriage return) to be out­
put to the file, RESULTS, on SYS: 

10.1 INPUT DTA1:DATA.FD;L I,F:FOR J=l,lO;A DA(J) 
10.2 L I,T;A VARIABLE;OUTPUT SYS:RESULTS;L O,F 
10.3 S CHAR = FOUT(FIN( »;IF(CH-FX(10,2l5»10.3, 

10.4, 10.3 
10.4; L O,T 

If an additional L I,F follows, input will resume 
from DATA.FD, after the 10th variable. The output 
file on the systems device is still open for fur­
ther output. 

To save a program (named PROG) as an ASCII File 
and recall it to run, starting at line 10.1, the 
following syntax is used: (Note alternate method 
below) 

#OUTPUT DEV:PROG.PA 
#LIBRARY OUTPUT,FILE 
if WRITE AiL -
if LIBRARY OUTPUT FILE;TYPE "gOTO 10.1",! 
ifl;rBRARY QUTPUT ,:fr,oSE-

To read back this program then: 
#INPUT DEV:PROG.PA 
#~IBRARY INPUT,!ILE;~IBRARY ~CHO,~ONE 

These commands all may be issued from the command 
mode, or may be incorporated into FOCL/F Text. 

PS/8 Program Storage 

A comprehensive set of commands have been im­
plemented to allow the saving and calling of FOCL/F 
programs saved in psIS files (as ima~ files): 

PROGRAM SAVE, <DEV: >NAME. EX 
PROGRAM GET, <DEV :>NAME. EX 
PROGRAM DELETE,<DEV:>NAME.5fC 
PROGRAM RUN, <DEV:>NAME.EX<;COMMANDS> 
PROGRAM CALL, <DEV:>NAME. EX<; COMMANDS> 
PROGRAM EXIT 

For all of the program commands the default device 
is DSK: expressions in < > are optional, and the 
commands may be abbreviated to one or two letters, 
e.g. PROGRAM EXIT may be written as P E or PR E or 
P EX or PR EX. I 

The SAVE command saves the current progr&~ on 
device DEV with file name NAME. EX. It is recom­
mended that the user use extentions .FP or .FL for 
saved programs, .FV for variable files, and .PA for 
ASCII I/O files. The extension .FL is the default 
extension for all files. 

7 

The GET command loads the program into the 
text buffer and exits to the FOCL/F command (#) mode. 

The PROGRAM RUN command takes two forms: If 
the optional ";COMMANDS" is missing the entire pro­
gram is run ("DO ALLII). If there are more commands 
following the PROGRAM RUN command they are passed to 
the called program as a command line (just as if 
typed in the command mode). 

The PROGRAM CALL command functions similar to 
the RUN command except that the current program, 
calledM AIN. is saved on scratch blocks for later 
res~oration. When the called program has finished 
execution the calling program is restored and con­
tinues running from the point following ";COMMANDS". 
Upon restoration, the header line contains the cur­
rent PS/8 date and the program name "if MAIN". Vari­
ables created in MAIN are global to the called pro­
gram, but variables created in the called program 
are erased When MAIN is restored. Of course, the 
called program may change any global variables to 
pass information back to "MAIN". If the called pro­
gram erases variables, then they are, of course, 
erased When MAIN is restored and variables created 
by the subroutine may now be global (depending on 
how many were created). It is a good rule to 
follow that called programs do not erase variables. 

The "PROGRAM CALL" command is not recursive. 
If a called program calls another program it be­
comes "4fMAIN" and eventually will terminate with an 
error message on completion. If a called program 
executes a "PROGRAM RUN" command, the main program 
can only be restored via a "PROGRAM EXIT" command. 

The PROGRAM EXIT command causes a return to 
MAIN. Whenever a program is SAVED the header com­
ment line is changed to reflect the file name and 
the current system date, e.g. P S,FLPROG will change 
the comment line to 

C PS/S FLPROG .FL MM/DD/YY. 

This line is saved with the program so that Whenever 
it is called the header line is changed to remind 
the user of the file name and the date created. An 
"ERASE TEXT" or "ERASE ALL" restores the name 
"FOCL/F" and upon restoration of a main program from 
a "PROGRAM CALL" command the name is "if MAIN". 

It should be noted that it is impossible to 
reference a file with a null extension. The reason 
for this was that for both input and output file 
names the default extension is always assumed as .FL. 

The PROGRAM DELETE command deletes files. 

PS/8 Variable Storage 

A set of "VARIABLE" commands have been imple­
mented to allow the saving and calling of FOCL/F 
arrayed variables from "virtual core" PS/8 files. 
These commands are 

VARIABLE MAKE, (length in blocks),DEV:NAME.EX 

VARIABLE OPEN, VNAME, DEV: NAME. EX 

VARIABLE CLOSE, VNAME 

VARIABLE KILL 

The "VARIABLE MAKE" command'-creates a perma­
nent PS/8 file on DEV with the filename NAME. EX. 
The default device is DSK and default extension .FL. 
The file length is specified by the "(length in 
blocks)" Which may be any arithmetic expression. 
There are 85 variables per block~_0-is a legal sub-



script • 
. The "VARIABLE OPEN" cOllUlland reserves the vari­

able name VN as an arrayed va~iab1e taken from file 
NAME. EX. There may be up to 8 arrayed variables 
open at any time. Since there are only two buffers, 
one-block each, core resident at any given time it 
is preferred to use these arrayed variables in some­
thing resembling numerical order to minimize loading 
and updating of blocks in core. Also since only 
two are resident at a given time a third variable 
must be loaded over one of the previous ones re­
quiring rather slow access times for even sequential 
use of more than two of these arrayed variables. 
FOCL/F does make an attempt at efficient loading 
by only updating a block if a variable has been 
changed and by loading a new block into the not 
most recently accessed buffer. _. 

The "VARIABLE CLOSE" cOllUlland releases the 
variable name VNAME from reserved status and writes 
any final core resident block back into the file. 
This cOllUlland should always be given prior to dis­
missing FOCL/F or the variable file may not be cor­
rect for future use. 

The "VARIABLE KILL" cOllUlland releases all vari­
able names from reserved status without updating 
the currently open files. ---

Finally, since FOCL/F uses the system scratch 
blocks for an overlay when doing file lookups, it is 
not restartab1e. Therefore whenever the user types 
CNTL/C,FOCL/F will ask 

REALLY? 

and wait for the response "Y". Any other response 
will result in an error message, retaining FOCL/F. 

Another general note: FOCL/F will allow two 
page device handlers. It will first attempt to 
load a one page handler and when that fails will 
try a two page handler. 

NOTE: The PS/8 overlay to FOCL/F starts at location 
02600 to execute once-only initialization code. 
After initialization, the nomla1 restart is from 
location 00200 as in standard FOCAL*. 

Thus the loading procedure is: 

.R ABSLDR 
~FOCLF, FOCFPS,FOCFUN=2600$ 
.SA SYS:FOCLF 
the loading procedure for non-PS/8 FOCL/F is: 

·R ABSLDR 
*FOCLF 
:-SA SYS:FOCLF 

In addition to generalized problem solving, 
FOCL/F may be used for testing and debugging non­
standard hardware, such as interfaces in prototype 
development. Maintenance programs may be written 
with ease in FOCL/F. A major utility is to pro­
vide a means for "on-line" data acquisition and 
control, with all the advantages of a high level 
interactive language. The ease of programming, 
and the flexibility of the interactive mode, permit 
many different kinds of experimental applications 
to be run with 1igg1e or no machine language coding. 
For example, FOCL/F has been used for data acqui­
sition and control of a three-axis neutron dif­
fractometer, reactor control rod reactivity cali­
bration, control of optics experiments at the 
University of Wisconsin Storage Ring Facility, and 

8 

digitization and analysis of optical and graphical 
i.mages. By the addition of small machine language 
functions,' rate-limited experiments may be run 
with rates up to 50 kHz. Higher rate data-break 
devices may be set-up directly from the high-level 
language. 

Hints and Kinks 

There are two ASCII codes for ALTMODE 
depending on the terminal. FOCL/F will accept both 
types on input, however it only echo's the 375(8) 
code •. The only difficulty observable may be when 
searching for the 375 ALTMODE with the 376(8) cha­
acter in a MODIFY or MOVE. To correct this for a 
terminal which uses 376: 

S Z =. FX(l,568Z,254) 

which is the equivalent of changing location 13062 
from a 375 to a 376. 

The extended functions overlay, FOCFUN, is 
only necessary when using the PS/8 overlay. As 
these functions are saved with the program in "PRO­
GRAW' commands, it is possible to change available 
functions depending on the program called. This 
feature is intended to facilitate user. additions of 
special purpose machine.1anguage functions. The 
functions which preform the FX(4,-),FX(5,-), and 
FX(6,-) are contained in the area with the extended 
functions.and therefore they appear to be unavail­
able in !he PS/8 version. They may be restored by the 
cOllUllaIid 

S Z = FX(l,6021,2470)+FX(l,6022,2473)+ 
FX(1,6023,2476) 

and removed via 

S Z = FX(l,602l,1889)+FX(1.6022,l889)+ 
FX(l,6023,l889). 

It is recommended that these functions be not avail­
able for the uninitiated user. 



Appendum: Documentation Update 

The functioning of the IF and ON commands have 
been altered to increase their flexibility~ If a 
line number is left out, e.g. two commas together, 
then the program will continue execution with the 
next statement following the IF or ON command. e.g. 

IF (X), 4.3; MORE COMMANDS 

will only branch to line 4.3 if X=-·O. "More commands" 
will be executed if X~O. The above discription will 
apply also if the evaluated line number is zero. e.g. 

IF (X) 0, 4.3; ~roRE COMMANDS. 

With this construction one may branch only if X is 
non zero, viz 

IF (X)5.2, ,5.2; T "X WAS ZERO"I 

The ''MODIFY'' command has been modified so that 
if no line number is specified, the last line ref­
erenced will be modified. This is very useful for 
modifying lines after an error message results, or 
for mUltiple modifications of the same line, viz 

l2345@5.l0 
1M 
5.10 S z-1/0 [line feed typed after 5.10] 
1M 
~!!..~X.@ 

The interrupt character CNTR/p causes the same 
results as CNTR/o. This break character was added 
to conform to psIS - os/8 standards (see TECD). 

A new command, "EXIT", is implemented in the 
psIS version to allow return to the keyborad monitor 
from within a program without the "REALLY?" question. 

Refreshed display is available, in place of the 
extended functions for PDP-12 owners. 

9 



o 

1"""08 
11i11i1231 

180646 
1"" 65 6 
180113 
1r.J 1" 65 
10111212 
101201 
101260 
101271 
101312 
111341 
101361 
101406 
101470 
111613 
101655 
1111666 
1"1675 
711676 
1111762 
111761 
7120"0 
71112025 
712061 
1112116 
102134 
1112146 
7112236 
1112'-"5 
712504 
1112511 
1"2532 
7112540 
713231 
713306 
713333 
11350" 
115a65 
7115Ja06 
71151511 
115762 
1115767 
1.6iHH' 
7 H1240 
>18311 
111333 
1lf!1344 
7111360 
1 10~2QJ 
7 10~44 
11e~17 
7HI512 
71/.1575 
718636 

FOCLF ERR DIAGNOSTICS 
•••• *****~ ~*********** 

VERSe 12/1172 
USER TYPED ,0 OR ,p. 
INPUT TO FAST FOR OUTPUT: TURN OF TAPE READER 

OCCASIONALLY. 
ANSWER TO "REALLY?" ('C) WAS NOT YES 
TEXT OVERLAPPING VARIABLES IN "PROGRAM GET" 
TEXT OVERLAPPING VARIABLES IN "PROGRAM RUN" 
LOG OF NEGATIVE NUMBER REQUESTED. 
HANDLER READ ERROR IN ASCII I/O INPUT. 
NO ASCII OUTPUT "FILE- DEFINED. 
ERROR LOADING HANDLER FOR ASCII I/O OUTPUT. 
HANDLER ERROR WRITING ASCII 1/0 OUTPUT. 
NO MORE ROOM FOR OUTPUT FILE IN ASCII 1.0. 
UNABLE TO CLOSE ASCII 1.0. OUTPUT FILE. 
ASCII 1.0. OUTPUT FILE ALREADY OPEN. 
IMAGINARY SQUARE ROOTS REQUESTED. 
HANDLER ERROR RESTORING CALLING PROGRAM: TROUBLE. 
DEVICE DOES NOT EXIST ON SYSTEM. 
"s" ILLEGAL IN FILENAME SPEC. 
-s- ILLEGAL IN FILENAME SPEC. 
":- ILLEGAL IN FILENAME SPEC. 
DOUBLE "." IN FILENAME SPEC. 
USER DEFINED INTERRUPT DEVICE NUMBER NEGATIVE. 
USER DEFINED INTERRUPT DEVICE NUMBER G.T. 3. 
UNDEFINED FIELD T FUNCTION 
FILE DOES NOT EXIST ON DEV: 
TENATIVE FILE ALREADY OPEN ON DEV. OR BAD NAME. 
UNABLE TO CREATE SPECIFIED FILE. 
UNABLE TO SAVE PROGRAM 
UNABLE TO DELETE PROGRAM(NOT ON DEV.) 
UNABLE TO CREATE ("MAKE") VARIABLE FILE. 
HANDLER ERROR READING PROGRAM. 
HANDLER ERROR READING PROGRAM. 
HANDLER ERROR READING PROGRAM. 
SYSTEM HANDLER FAILURE. 
SYSTEM HANDLER FAILURE. 
SUBSCRIPT TOO LARGE IN ARRAYED VAR. 
ERROR WRITING VARIABLE FILE BLOCK. 
ERROR READING VARIABLE FILE BLOCK. 
UNABLE TO UPDATE VARIABLE FILE. 
LOG OF NEGATIVE NUMBER OR • REQUESTED. 
IMAGINARY SQUARE ROOTS REQUESTED. 
ARGUMENTS MISSING. 
USER DEFINED INTERRUPT DEVICE NUMBER NEGATIVE. 
USER DEFINED INTERRUPT DEVICE NUMBER G.T. 3. 
UNDEFINED FIELD 1 FUNCTION 
ILLEGAL LINE NUMBER ON INPUT. 
GROUP NUMBER TOO LARGE;31.XX IS LARGEST ALLOWED. 
DOUBLE PERIODS IN LINE NUMBER. 
LINE NUMBER TOO LARGEt XX.99 IS LARGEST. 
GROUP' IS ILLEGALt •• XX 
GROUP DOES NOT EXIST IN "DO" OR "FN". 
LINE DOES NOT EXIST IN "DO" OR "FN". 
PUSH DOWN LIST OVERFLOW; PROGRAM TOO LARGE. 
DUMB FORMAT IN "FOR" OR "SET"! C.R. TOO EARLY. 
LINE NOT THERE IN "GOTO". 
ILLEGAL·COMMANDs MISSING COMMAND OR MIS-SPELLEO 

C9MMAND. 

1111J35 
1111153 
11 UI63 
711214 
111215 
111216 
111217 
1112211 
111221 
111323 
111""2 
711 .. 11 
111525 
111625 
7116 .. 5 
711745 
111154 
1121151 
1125 .. 3 
713111 
113242 
1t.H31 
71H57 
713586 
113513 
113532 
113533 
113534 
1135 .. 1 
113552 
11355 .. 
113645 
7136111 
7 ... 216 
114217' 
7142 .. 3 
110424 .. 
7 ... 255 
114275 
714 .. 77 
1 ... 514 
71 .. 552 
114556 
11 .. 625 

115137 
115143 
115222 
1152 .. 1 
1156 .... 
116526 
11711t 
117 .... 4 
1175118 
111511 

717516 

LEFT OF -:" I N ERRORs ' FOR' OR 'SET' 
EXCESS RIGHT PAREN IN "FOR" OR "SET". 
ILLEGAL TERMINATOR IN 'FOR' 
COMMAND NOT IMPLEMENTED. EXPANDABLE COMMANDS. 
COMMAND NOT IMPLEMENTED. 
COMMAND NOT IMPLEMENTED. 
COMMAND NOT IMPLEMENTED. 
COMMAND NOT IMPLEMENTED. 
COMMAND NOT IMPLEMENTED. 
LINE NUMBER DOES NOT EXIST IN "MODIFY". 
BA D ARGUEMENT IN' FOR', 'SET', OR • ASK • • 
F ILLEGAL FOR FIRST CHARACTER OF VARIABLE. 
VARIABLE OVERFLOWs TOO MANY VARIABLES OR TEXT. 
MISSING OPERATOR IN EXPRESSION OR BAD FORMAT. 
OPERATOR MISSING BEFORE PAREN. 
OPERATOR MISSING BEFORE PAREN. 
DOUBLE OPERATORS OR ILLEGAL FUNCTION NAME. 
PARENS DO NOT MATCH. 
PROGRAM TOO LARGE OR TOO MANY VARIABLES. 
ILLEGAL "LIBRARY" COMMAND. 
ILLEGAL "VARIABLE" COMMAND. 
CONVERSION OF NON-OCTAL NUMBER REQUIRED 
ARGUM'ENT MISSING IN FX(1I1) OR Ji'XClI). 
ARGUMENT MISSING IN FX(3,XX,XX). 
ARGUMENTS MISSING IN Ji'X(3,XX,XX). 
MISSING ARGUMENTS. 
MISSING ARGUMENTS. 
MISSING ARGUMENTS. 
FX FUNCTION NOT AVAILABLE 
VARIABLE IS NOT ARRAYED VARIABLE. 
NAME NOT RESERVED FOR ARRAYED VAR. 
NO ARGUMENTS IN Ji'X(2,X,X). 
NO ARGUMENTS IN Ji'XCl,X,X). 
"FIN" FUNCTION NOT AVAILABLE THIS VERSION 
.. FOUT" FUNCTION NOT AVAILABLE THIS VERS ION 
ILLEGAL SYNTAX IN USER DEFINED FUNCTION. 
ILLEGAL SYNTAX IN USER DEFINED FUNCTION. 
":" MISSING IN "LET FN:LN OR GRP". 
GROUP. NOT ALLOWED IN USER DEFINED FUNCTION. 
VARIABLE NAME ALREADY IN USE. 
ALL VARIABLE NAMES IN USE (ONLY 8 ALLOWED). 
ARRAY SUBSCRIPT TOO LOW. 
ARRAY SUBSCRIPT TOO LARGE. 
ARRAY VARIABLES OVERLAPPING TEXT. VARIABLE LIMITS 

ILLEGAl. 
ILLEGAL "PROGRAM" COMMAND 
PSIS VARIABLES ILLEGAL IN "FOR" COMMAND 
SYSTEM DEVICE HANDLER ERROR 
CALLING PROGRAM DOES NOT EXIST 
INPUT OVERFLOW ERRORs TOO MANY DIGITS. 
TOO LARGE OR NEGATIVE EXPONENT. 
DIVISION BY ZERO REQUESTED. 
INVALID CHARACTER. (RETYPE LINE). 
"liBRARY INPUT,REWIND" NOT AVAILABLE THIS VERSION 
"LIBRARY OUTPUT, CLOSE" NOT AVAILABLE IN THIS 

VERSION. 
NO Y VALUE IN FDIS(X,Y). 


	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10

