
RSX

MULTI-TASKER

JULY 198·5

RSX Multitasker

Table Of Contents

The Bag of Tricks: MACR0-11 2
Building RPT for Faster Error Reports 3
Password Encryption for RSX-llM 9
Recovering from a Damaged Files-11 Disk 19

RSX MULTITASKER

The Bag Of Tricks: MACR0-11

Bruce R. Mitchell
Machine Intelligence and Industrial Magic

PO Box 601
Hudson, WI 54016

This column covers MACR0-11 bag-of-tricks routines, as stated in
previous issues of the Multi-Tasker. All MACRO programmers are
encouraged to submit their favorite routines to the Multi-Tasker so
that these useful, interesting, or just plain bizarre tricks can be
put out before the SIG in general for the admiration and
edification of all.

In this month's column, we have a bit of code which is at once both
quite trivial and very useful.

When the Taskbuilder builds a task, it leaves information in the
storage locations for R3 and R4 (general registers) in the task
header. The information left in those locations is the task's
identification, as specified either through the .IDENT directive or
the Taskbuild IDENT= directive. When the task is loaded, of
course, those stored locations are loaded into the CPU's general
registers.

If the task captures those registers as soon as it initializes, it
is able to do a number of useful things with that information. It
can print it on the system console as part of a startup message, to
log the version number of a task which must be up to current
revision level. It can send it to cooperating tasks, to inform
them of what level of interchange protocol it can understand. It
can gleefully squirrel it away and hoard it where nobody will ever
find it (admittedly not very useful). Other uses are possible.

An example of the entry point of a task which captures this
information follows. Note that the information supplied in the
registers is Radix-SO and must be converted to ASCII to be useful.

2

RSX MULTITASKER

!DENT:

NTRYPT:

.BLKB 6 Storage for ASCII version name

.PAGE

.SBTTL NTRYPT Entry Point

Before doing anything else, load and save the
task version number

MOV llIDENT,RO Load version field address in
MOV R3,Rl Get first 3 Rad50 characters
CALL $C5TA Convert to ASCII
MOV R4,Rl Get second 3 Rad50 characters
CALL $C5TA Convert to ASCII

task continues •••

.END NTRYPT

RO

Building RPT For Faster Error Reports

B. z. Lederman
Bankers Trust Co.

P.O Box 318, Church Street Station
New York, N.Y. 10015

Recently, I received a complaint that it was taking too long to
obtain the error log summary reports. (The reports are
automatically printed out as part of our SHUTUP procedure, as a
warning in case there were disk errors while making backup copies
of system disks, or other errors.) When I looked into the matter, I
discovered that the RPT program was very heavily overlayed, and
that it might run faster if built with fewer or no overlays. I
built a copy of the task with no overlays at all (using the
supervisor mode FCS resident library on M-Plus), and tested it on a
lightly loaded 11/70 using some of the typical report commands we
use here and a log file which was 391. blocks long and contained
data from 07-Nov-84 through 16-Jan-85. The results were quite
impressive. A scan for errors which occured during the past week

3

RSX MULTITASKER

with the command

RPT LOG1.RPT=[l,6]LOG.ERR;ll/W:N/SU:A/DA:P:7

was reduced in time from 3 minutes 40 seconds to only
A report listing all error log entries in short format

RPT LOG3.RPT=[l,6]LOG.ERR;ll/W:N

40 seconds.
in the file:

was reduced in time from 15 minutes 24 seconds to 3 minutes 56
seconds (the resulting report file is 510. blocks long). I
compared the output of the two versions of RPT with the CMP
utility, and found them to be identical. Measuring the two tasks
with System Accounting and SPM-11 shows a great reduction in the
system resources consumed by the task: not only are all of the
disk overlays gone, but the number of CPU cycles consumed and disk
QIOs issued are also reduced. Both versions extend themselves to
create internal work space, and end up about the same size when
doing large reports (they will both approach the 32K word task size
limit). I also did a little testing with an identical
non-overlayed version, but which also is built for I-and-D space,
so it would have even more internal work space available. It
expanded to 46K words, but had only a slight improvement in
resources used (somewhat fewer disk I/Os, probably from not having
to re-read from the ERRLOG.ULB library) over the non-overlayed task
without I-and-D space. We are using this version of RPT on our
development system now, and plan to use it on all of our systems in
the future.

If you do not have a system which supports I-and-D space or
Supervisor mode this approach does not work, as there won't be
enough internal work space left after all of the program and FCS
code is built into the task image. The program will give you
summaries, but cannot process any of the device packets as it
apparently cannot get the appropriate modules out of the ERRLOG
library and into memory. Though I have not done much testing in
this area (as I have a version which suits my needs) I did test a
version which has fewer overlays than that distributed by DEC, but
which had enough work space to process an error log file. This is
an area where someone could do a little testing to find out how
"flat" the program can be made, and still have enough space left to
work. There might also be a balance between reading overlays and
having to read the ERRLOG library.

The following is the command file to build the non-overlayed
version. Please be aware of the usual DECUS disclaimer, that all
information is supplied "AS IS", with no warranty whatsoever.

TKB BUILD FILE FOR RPT Non-overlayed
ON AN RSX-llM-PLUS SYSTEM
LINKING TO FCSFSL
B. z. Lederman

4

RSX MULT IT ASKER

OU: [3,54]RPTFSL/-FP/CP/MM/ID, MP: [l,34)RPTID/-SP/MA =

' [l,24]RPT/LB:CTLRPT:GLODAT:FILEIO:INTUTL:VALUTL:INTERP
[l,24]RPT/LB:OPERAT:ARITH:RSXASC:CNVFUN:COMFUN:CNDFUN
[l,24]RPT/LB:RPTINI:USRFUN:CTLFUN:RPTFUN:FILEGE:FILECM
[l,24)RPT/LB:FILEOP:MEMORY:LIMITS:INTSTA:PKTFUN:FILEIN:OPRSUB
[l,24)RPT/LB:MODHAN:FILECO:INTEXT:INTPUT
[l,24)RPT/LB:RADVAL:FILERE:PAGBRK:LOKFUN:FORMAT:INTWRI
[l,24]RPT/LB:CODFUN:TIMCNV:STRFUN:VALRAD:TIMFUN:ARITHE
[l,24)RPT/LB:PDPll:MSGRPT:MSGCOM:DISPLA:DECLAR:SIGNAL

' [l,24]NEISLB/LB

' I
TASK= ••• RPT
IDE NT = 0 2 • 0 1

' PAR=GEN:O:O
PRI=SO
UNITS=lO

ASG=TI: 1
ASG=TI: 2
ASG=SY:3
ASG=SY:4
ASG=SY:S
ASG=T I: 6
ASG=SY:7
ASG=SY: 10

SUPLIB=FCSFSL:SV

; Parameters Options

GBLDEF=LPLINE:74

COMMAND LUN
ERROR LUN
INPUT LUN
OUTPUT LUN
REPORT LUN
USER LUN
CONTROL LUN
MODULE LUN

; USERCM is non-zero to have RPT prompt for the control file to
use.

' GBLDEF=USERCM:O

; Module RWLONG is not used

GBLDEF= •• RWLG:l77777
GBLDEF=FDAMOD:l77777
GBLDEF=FDAOUT:l77777

To increase the size of the execution stack
increase the extension by multiples of
10 (octal) bytes.

EXTSCT=XCSTK0:300

5

RSX MULTITASKER

To increase the size of the value sta~k,
increase the size of PSECT VLSTKO by multiples
of 2.

EXTSCT=VLSTKO: 50

To increase the size of the value heap,
increase the size of PSECT VHEAPO

EXTSCT=VHEAP0:732

'

To increase the size of the declaration stack
increase the extension by multiples of
10 (octal) bytes.

EXTSCT=DCSTKO: 10
I

I havn't tried to change any of the values in the build file to see
if they would have an effect on the speed of the report.

The following are the build command file and ODL file to build a
version with fewer overlays than the distributed version of RPT.

TKB BUILD FILE FOR RPT with fewer overlays.
ON AN RSX-llM-PLUS SYSTEM (or RSX-llM)
LINKING TO FCSRES
B. Z. Lederman

' OU:[3,54)RPTRES/-FP/CP/MM, MP:[l,34]RPTRES/-SP/MA

TASK= ••• RPT
IDENT=02.0l

' PAR=GEN:O:O
PRI=50
UNITS=lO

ASG=TI: 1
ASG=T I: 2
ASG=SY:3
ASG=SY:4
ASG=SY:5
ASG=T I: 6
ASG=SY:7
ASG=SY: 10

LIBR=FCSRES:RO

' ; Parameters Options

' GBLDEF=LPLINE:74

COMMAND LUN
ERROR LUN
INPUT LUN
OUTPUT LUN
REPORT LUN
USER LUN
CONTROL LUN
MODULE LUN

6

RPTRES/MP

RSX MULTITASKER

; USERCM is non-zero to have RPT prompt for the control file to
use.

GBLDEF=USERCM:O

; Module RWLONG is not used

GBLDEF= •• RWLG:l77777
GBLDEF=FDAMOD:l77777
GBLDEF=FDAOUT:l77777

To increase the size of the execution stack
increase the extension by multiples of
10 (octal) bytes.

EXTSCT=XCSTK0:300

To increase the size of the value stack,
increase the size of PSECT VLSTKO by multiples
of 2.

EXTSCT=VLSTKO:SO

To increase the size of the value heap,
increase the size of PSECT VHEAPO

EXTSCT=VHEAP0:732

To increase the size of the declaration stack
increase the extension by multiples of
10 (octal) bytes.

EXTSCT=DCSTKO:lO
I

TKB ODL FILE FOR RPT
ON AN RSX-llM-PLUS SYSTEM (or RSX-llM)
LINKING TO FCSRES
CREATED BY SYSGEN3.CMD VERSION 1.82

B. Z. Lederman Reduce number of overlays •

• NAME

.ROOT

BASE:
BASEl:
BASE2:

RPT

BASE-*(EXECUT, MESSAG), DECSIG-*(DECLAR, SIGNAL)

.FCTR

.FCTR

.FCTR

[l,24]RPT/LB:CTLRPT:GLODAT:FILEIO-BASE1
[l,24]RPT/LB:INTUTL:VALUTL-BASE2
LB:[l,l]SYSLIB/LB:FCSFSR:SAVRl-LIB

7

RSX MULTITASKER

EXECUT:
other:
MAIN:
MAIN 1:
MAIN2:
,

.FCTR

.fctr

.FCTR

.FCTR

.FCTR

MAIN-*(OPEN, other)
INPUT-OUTPUT-CODFUN
[l,24]RPT/LB:INTERP-MAIN1
[l,24]RPT/LB:OPERAT:ARITH:RSXASC-MAIN2
[l,24]RPT/LB:CNVFUN:COMFUN:CNDFUN-LIB

; File handling overlays

OPEN 1:
OPEN 2:
FILEGE:
OPEN:
FILEOP:
GCML:

.FCTR

.FCTR

.FCTR

.FCTR

.FCTR

.FCTR

[l,24]RPT/LB:RPTINI:USRFUN:CTLFUN
[l,24]RPT/LB:RPTFUN-[l,24]NEISLB/LB
[l,24]RPT/LB:FILEGE:FILECM-GCML
OPEN1-0PEN2-FILEGE-FILEOP
[l,24]RPT/LB:FILEOP
LB:[l,l]SYSLIB/LB:.GCML

; Execution overlays

INPUT: .FCTR
[l,24]RPT/LB:MEMORY:LIMITS:INTSTA-LIB-INPUT1-INPUT2

INPUT!: .FCTR [l,24]RPT/LB:PKTFUN:FILEIN:OPRSUB-LIB
INPUT2: .FCTR [l,24]RPT/LB:MODHAN:FILECO:INTEXT:INTPUT-LIB

OUTPUT: .FCTR
[l,24]RPT/LB:RADVAL:FILERE:PAGBRK:LOKFUN:FORMAT:INTWRI-LIB

CODFUN: .FCTR
[l,24]RPT/LB:CODFUN:TIMCNV:STRFUN:VALRAD:TIMFUN:ARITHE-LIB

MES SAG:
FILERE:
PDPll:
MSGRPT:
MSGCOM:
DISPLA:

.FCTR

.FCTR

.FCTR

.FCTR

.FCTR

.FCTR

; DECSIG co-tree

.NAME
DECLAR:
SIGNAL:

LIB:

DEC SIG
.FCTR
.FCTR

.FCTR

.END

FILERE-PDPll-DISPLA
[l,24]RPT/LB:FILERE:PAGBRK-LIB
[l,24]RPT/LB:PDP11-MSGRPT-MSGCOM
[l,24)RPT/LB:MSGRPT
[l,24]RPT/LB:MSGCOM
[l,24]RPT/LB:DISPLA

[l,24)RPT/LB:DECLAR
[l,24]RPT/LB:SIGNAL

[l,24)NEISLB/LB-LB:[l,l]SYSLIB/LB

8

RSX MULTITASKER

Password Encryption For RSX-11 M

Wayne E. Kesling, Sr. Engr.
Monsanto Research Corp.

Mound Rd., M-225
Miamisburg, Ohio 45342

The need for password encryption for RSX-llM users is partially due
to the fact that a priviledged user can TYPE the file that contains
accounting information ([O,O]RSXll.SYS) and see the password of all
users on the system. During boot-up, anyone can CONTROL-C out of
the start-up command file before the BYE command and TYPE the above
file. To prevent the person from obtaining the passwords in this
manner, they can be encrypted before they are entered into this
file by ACNT. The encryption implementation that is described
below is a one-way process. That is, there is encryption but no
decryption. Keep in mind that the encryption routine described is
strictly an example. Any other algorithm could be used, including
the DES algorithm. However, the one described would be very
difficult to reverse and, therefore, would be very difficult to
break without a decryption routine. The use of a KEY to
EXCLUSIVE-OR with the three-word password is unnecessary with a
one-way process but is included to give an example of the use of a
KEY. Also, if a KEY is to be used, it should not be a part of the
source code as in this example. If it is a part of the source
code, it should be disguised in some way that would make it less
obvious to an intruder. Another way of obtaining a key would be to
read a hardware register that has been preconditioned to a known
value. If, for example, you used the contents of the date code
register in a hardware clock, the contents of the RSXll.SYS file
would change every day for every password. This would require a
task to run sometime after midnight each day to update the contents
of RSXll.SYS. The fact that the encrypted passwords changed every
day would be transparent to the users, but.would be very confusing
to an intruder.

It should be noted that, when encryption is in use, ACNT will not
display the passwords. However, ACNT should be removed from the
system to prevent anyone from creating their own account after
gaining access by hitting CONTROL-C during boot-up.

There are two major task to perform to implement
encryption under RSX-llM. They are:

Modification of build files.
Writing the encryption routine.

9

password

RSX MULTITASKER

If you are running a stand-alone system, there are four files to
modify.

ACNBLD.ODL - TKB Overlay descriptor file for ACNT
ACNBLD.CMD - TKB Build command file for ACNT

HELBLD.ODL - TKB Overlay descr:iptor file for HELLO
HELBLD.CMD - TKB Build command file for HELLO

If you are running DECnet, there are two additional files that must
be modified. These are responsible for building the Network
Verification Program (NVP).

NVPBLD.ODL - TKB Overlay descriptor file for NVP
NVPBLD.CMD - TKB Build command file for NVP

An addition is made
encryption routine
is to be placed in.

to the .ODL files to indicate that the
is to be included and which overlay segment it
These modifications are as follows:

[l,24]ACNBLD.ODL

Add overlay module F:

A:
B:
c:
D:
E:
F:

TKB ODL FILE FOR ACNT
ON A MAPPED RSX-llM SYSTEM
USING SYSLIB
CREATED BY SYSGEN3.CMD VERSION 2.01

.ROOT

.FCTR

.FCTR

.FCTR

.FCTR

.FCTR

.FCTR

.END

A-B-C-D-E-F
DL3:[1,24]MLTUSR/LB:ACNT-DL3:[1,24]MCR/LB:ACTFIL:GETNUM
DL3:[1,24]MCR/LB-LB:[l,l]VMLIB/LB:VMDAT:MRKPG:ALVRT:CVRL
LB:[l,l]VMLIB/LB:FNDPG:ALBLK:RDPAG:RQVCB:GTCOR:EXTSK
LB: [1, 1]VMLIB/LB: INIVM-LB: [1, 1]EXELIB/LB
LB: [1 , 1] SY SL I B /LB: CAT B: CST A: CBT A-SY: [1 , 54] RSX 11 M. ST B /SS
DR0:[5,4]ENCODE

[l,24]HELBLD.ODL

Add -DR0:[5,4]ENCODE to segment HELO:

ENCODE.MAC was in the user's UIC [5,4], but could be in a Library.

10

RSX MULT IT ASKER

TKB ODL FILE FOR HELLO/HELP
ON A MAPPED RSX-llM SYSTEM
USING SYSLIB
CREATED BY SYSGEN3.CMD VERSION 2.03

A:
A2:
HELO:
HELP:
LIBl:
LIB2:
STT AB:
SUB:

.ROOT

.FCTR

.FCTR

.FCTR

.FCTR

.FCTR

.FCTR

.FCTR

.FCTR

A-*(HELO,HELP),FCS
DL3:[1,24]MLTUSR/LB:HELROT-DL3:[1,24)MCR/LB:ACTFIL-A2
LB:[l,l]SYSLIB/LB:CAT5:CATB:CBTA:CDDMG:SAVR1-LIB1
DL3:[1,24]MLTUSR/LB:HELLO-LIB2-LIB1-DRO: [5,4]ENCODE
DL3: [1, 24]MLTUSR/LB: HLP-* (STTAB, SUB)
SY: [1, 54)RSXl lM. STB/SS-LB: [1, 1)EXELIB/LB/SS
DL3:[1,24)MCR/LB:COLOG:FMTDV:GNBLK:GETNUM
DL3: [l,24]MLTUSR/LB:HSTTAB-LB:[l,l]SYSLIB/LB:.TPARS-LIB1
DL3:[1,24)MLTUSR/LB:HLPSUB

***** Note: This is only a partial listing. *****

.END

[6,24]NVPBLD.ODL

Add -DR0:[5,4]ENCODE-OVR to segment ROO:

ENCODE.MAC was in the user's UIC [5,4), but could be in a Library.

NVP (network verification) task overlay description file

ROO:
OVR:
OVRl:
OVR2:
OVR3:

• ROOT ROO

.FCTR

.FCTR

.FCTR

.FCTR

.FCTR

IN:[132,24)NVP/LB:NVPMAI:NVPDAT:ACTFIL-DRO: [5,4]ENCODE-OVR
(OVRJc,OVR2,0VR3)
*IN:[132,24]NVP/LB:NVPINI
*IN:[132,24]NVP/LB:NVPOPN-FCS
*IN:[132,24]NVP/LB:NVPCTL:NVPUTI:NVPVFY:NVPSAI

***** Note: This is only a partial listing. *****

.END

11

RSX MULTITASKER

The modification to the .CMD files is simply to comment out the
global definition of ENCRPT. This is necessary to prevent multiple
definitions of ENCRPT since the encryption routine must declare
this global variable.

In each file the only change is the addition of the semicolon in
the statement

;GBLDEF=ENCRPT:O

[l,24]ACNBLD.CMD

TKB BUILD FILE FOR ACNT
ON A MAPPED RSX-llM SYSTEM
USING SYSLIB
CREATED BY SYSGEN3.CMD VERSION 2.03

' SY:[l,54]ACNT/AL/-FP/PR/-IP/MM,[l,34)ACNT/SP=
DL3:[1,24]ACNBLD/MP
T ASK=ACNT
UNITS=5
ASG=T I: 1, SY: 2: 3
PAR=GEN:0:60000
IDENT=05.00
GBLDEF=N$MLIN:64
GBLDEF=W$KLUN:4
GBLDEF=N$MPAG:20
GBLDEF=W$KEXT:24
;GBLDEF=ENCRPT:O
GBLDEF=T$KINC:256
GBLDEF =T $KMAX: 0
I

;IF ALL OTHERS 12K ;WMG028
;**-1

OCTAL NUMBER OF LINES PER PRINTED PAGE
WORKFILE LUN
FAST PAGE SEARCH PAGE COUNT
WORK FILE EXTENSION SIZE (BLOCKS)
ADDRESS OF PASSWORD ENCRYPTION SUBROUTINE
TASK INCREMENT SIZE
TASK MAX SIZE

(O=NOT USED)

[l,24)HELBLD.CMD

TKB BUILD FILE FOR HEL
ON A MAPPED RSX-llM SYSTEM
USING SYSLIB
CREATED BY SYSGEN3.CMD VERSION 2.03

,
SY:[l,54]HEL/-FP/AL/PR/-IP/MM,[l,34]HEL/SP=
DL3:[1,24]HELBLD/MP

12

RSX MULTITASKER

TASK= ••• HEL
IDE NT = 0 2 • 0 1
ST ACK=64
UNITS=7
ASG=T I: 1: 7
ASG=SY:2,C0:3
PAR=GEN:O:O
GBLDEF=HELP$P:l01
GBLDEF=$DNTSB:O
GBLDEF=$USESB:O
;GBLDEF=ENCRPT:O
GBLDEF =T IMOUT: 20
GBLREF=$DIV
GBLREF=$MUL
I

OCTAL PRIORITY OF "HELP"
ADDRESS OF DECNET SUBROUTINE (O=NOT USED)
ADDRESS OF USER SUBROUTINE (O=NOT USED)

ADDRESS OF PASSWORD ENCRYPTION ROUTINE (O=NOT USED)
SECONDS BEFORE TIMEOUT ON PROMPTS

[6,24]NVPBLD.CMD

NVP (network verification) task build command file

' OU:[6,54]NVP.TSK/MM/PR/CP/-FP,MP:[6,34]NVP/-SP=
OU: [6,24]NVPBLD/MP
PAR=GEN:O:O
TASK=NVP •••
ST ACK=60
PRI=l50
UIC=[l,l]
UNITS=3
;GBLDEF=ENCRPT:O ;PASSWORD ENCRYPTION ROUTINE (O NOT USED)
II

The second, and most demanding, task is to write the encryption
routine. This routine determines how secure your passwords are.
It may be a simple mathematic- al manipulation of the ASCII
characters or it may incorporate the DES encryption algorithm.

The address of the password to be encrypted is passed to the
routine in RO and must be saved locally to permit replacement of
the original password with the encrypted version. As stated above,
the routine must contain the definition

.GLOBL ENCRPT

13

RSX MULTITASKER

or the label

ENCRPT::

and must start with a call to the system routine $SAVAL to save and
restore the processor registers. The source code for HELLO and
ACNT says all system registers are preserved and can be used.
- NOT SO. - - -

JSR PC, $SAVAL

The encryption algorithm used in the example is as follows:

1. Save the address that the password is in.

MOV RO,PASWRD

2. Convert the six ASCII password characters to RAD50 format.
This changes the 3-word information to 2-word.

JSR PC,$CATSB ;Convert ASCII 3-character string with
blanks to RADIX SO (RADSO).

Set up for this call is as follows;

1. RO - Address of first of three characters to be converted.

2. Rl - Period disposition flag.

0 Period is terminator.
1 Period is valid character.

3. $CATSB saves and restores R3 through RS and returns the
following results:

1. RO - Address of the next character in the input buffer.

2. Rl - The converted RADSO value.

3. R2 - The terminating character (last character in the
string that was converted, or invalid character that caused
termination).

Condition Code: C (Carry) 1 Incomplete operation.
0 Complete operation.

4. Convert the RADSO data to a random number in floating point
format. The RADSO bit pattern is treated as an integer and is
passed to the FORTRAN routine RAN as a seed. Register RS must
point to a data base containing tha data to be converted. The
following statements are an example, if DATA is the address of

14

RSX MULTITASKER

the data base containing the RADSO data:

MOV DATA,RS
JSR PC,RAN

The data base could look like this:

NUMBER:
DATA:

.BLKW

.WORD

.WORD

3
1
NUMBER

3-word buff er holding data
Beginning of data base
Pointer to data buffer

The floating point output of RAN is returned in RO and Rl. The
fact that the original ASCII password is now represented as a
floating point number is irrelevent since all we are interested
in is a unique bit pattern.

S. Permute the floating point bit pattern. This rearranges the
bit pattern according to a permutation table that is included
in code at PERM: and could be the one used by the DES.

The table must contain one, and only one, value for each bit
position in a 16-bit word.

i.e. 1 '2 '4
10,20,40
100,200,400
1000,2000,4000
10000,20000,40000
100000

6. Add the two permuted floating point words to obtain a third
word thus ending up with a 3-word representation of the
original 3-word password.

7. these three words with a KEY expression. If the DES algorithm
is used, this section of the routine would be different. As
noted above, the use of a KEY in a one-way system is not
necessary.

8. Replace the original password with the above three words.

9. Clear the CARRY bit to indicate a successful operation and
return to the calling program.

CLC
RTS PC

In this case, the calling program is actually $SAVAL, which
takes care of restoring the processor registers.

15

RSX MULTITASKER

The following is a listing of the example ENCODE.MAC routine:

.TITLE ENCRPT

THIS PROCEDURE ENCRPTS THE PASSWORD BEFORE IT IS
USED BY THE SYSTEM. THIS MUST BE ADDED TO THE ODL
FILES OF ACNT, HELLO, AND NVP PRIOR TO TASK
BUILDING. THE ENCRPT GLOBAL IN THE TASK BUILD CMD
FILE MUST BE COMMENTED OUT.

AUTHOR M. CRAREN

.PSECT ENCRPT

.GLOBL ENCRPT

ENCRPT: JSR PC, $SAVAL ;STORE ALL REGS

;CONVERT FROM ASCII TO RAD50. THIS WILL TAKE A THREE WORD PASSWORD AND
;CONVERT IT TO A TWO WORK NUMBER.

MOV
MOV
MOV
JSR
MOV
MOV
JSR
MOV

RO, PASWRD
I/NUMBER, R3
II I , RI
PC, $CAT 5B
RI, (R3)+
III, RI
PC, $CAT 5B
RI, (R3)

;CONVERT THIS TO A RANDOM NUMBER.
;THIS IS A FORTRAN CALL.

;STORE ADDR OF PASWRD.
;PUT ADDR OF NUMBER INTO R3.
;CONVERT ALL CHAR TO RAD50.
;DO THE CONVERSION.
;PUT RESULT INTO NUMBER.
;SET IT UP AGAIN.
;CONVERT NEXT 3 CHARS.
;STORE THE RESULT.

;THE ACTUAL OUTPUT IS IN RO AND RI AS A FLOATING POINT NUMBER.
;THIS IS IRREVELANT BECAUSE THE OUTPUT IS TREATED AS A BIT PATTERN.

MOV
JSR

llDAT A, R5
PC, RAN

;PERMUTE THE WORD.

MOV
JSR
MOV
MOV
JSR
MOV
MOV

/IN UMBER, R5
PC, PERMUT
R3, (R5)+
RI, RO
PC, PERMUT
R3, (R5)
R3, R4

;SET UP ADDRESS FOR RAN.
;CONVERT TO RANDOM NUMBER.
;RESULT IS IN RO AND RI.

;USE NUMBER TO STORE RESULT.
;PERMUTE BITS IN FIRST WORD.
;STORE THE RESULT.
;GET NEXT WORD OF RESULT.
;PERMUTE BITS IN THIS WORD.
;STORE THIS RESULT.
;USE R4 TO FORM SUM.

;FILL IN REMAINING WORD OF ENCODED PASSWORD.

ADD
TST
TST
MOV

-(R5), R4
(R5)+
(R5)+
R4, (R5)

16

;ADD TWO PERMUTED WORDS.
;SET UP ADDR FOR THIRD WORD.

;PUT THE SUM INTO ADDR.

RSX MULTITASKER

MOV I/NUMBER, R 1

;XOR KEY VALUE.

MOV
XOR
XOR
XOR

KEY, RO
RO, (Rl)+
RO, (Rl)+
RO, (Rl)

;PUT ADDR OF NUMBER INTO Rl.

; GET KEY VALUE.
;EXCLUSIVE-OR IT WITH THE
;THREE WORDS OF THE
;ENCODED PASWRD.

;GET LOCATION OF PASSWORD AND FILL IT IN WITH THE ENCRYPTED PASSWORD.

MOV PASWRD, RO
MOV I/NUMBER, Rl
MOV (Rl)+, (RO)+
MOV (Rl)+, (RO)+
MOV (Rl), (RO)

;CLEARING THE CARRY BIT SIGNALS ENCRPTION WORKED.

CLC
RTS PC

;SUBROUTINE TO PERMUTE THE PASSWORD.
;VALUE TO PERMUTE IS IN RO.
;RESULT IS IN R3.
;NO REGISTERS ARE PRESERVED.

PERMUT: CLR R3
MOV 1130., R4

MOVE: ASR RO
BCS ONE
BIC PERM(R4),R3

;R3 IS USED FOR OUTPUT.
;16 WORDS WORTH OF PERMUTES.
;PUT LSB INTO CARRY.
;IF A ONE, GO PERMUTE IT.
;CLEAR PERMUTED POSITION IF o.

The above line is not actually needed. All bits were cleared by CLR R3.

ONE:
END:

BR
BIS
DEC
DEC
BPL
RTS

END
PERM(R4),R3
R4
R4
MOVE
PC

;GO GET NEXT BIT TO PERMUTE.
;SET PERMUTED POSITION.
;DECREMENT FOR NEXT PATTERN
;IN PERMUTATION TABLE.
;GO CHECK NEXT BIT.
;RETURN WHEN DONE WITH WORD.

;PERMUTATION TABLE FOR EACH WORD •

PERM:

• PSECT PERM,RO,D,LCL

.WORD

.WORD

.WORD

1000,200,2,20,4
20000,1,40,100,10,10000,400,4000
2000,100000,40000

;VARIABLES FOR DOING CONVERSIONS.

17

RSX MULTITASKER

.PSECT LOCAL, RW, D, LCL

NUMBER: .BLKW 3 ;3-WORD BUFFER.
DATA: .WORD I

.WORD NUMBER ;ADDRESS OF BUFFER.
PASWRD: .BLKW I
KEY: .WORD 54317

.END

In operation, the following occurs:

I • ACNT encrypts the entered password using the ENCRPT
and stores the encrypted version in [O,O]RSXll.SYS.

subroutine

2. HELLO encrypts the entered password using the ENCRPT subroutine
and compares the results to the contents of [O,O]RSXll.SYS.

3. When doing a DECnet file transfer, NFT uses the network
verification program NVP which performs the same operation as
HELLO. The password is encrypted and compared to the contents
of [O,O]RSXll.SYS.

With a little patience and a lot of luck, this can be implemented
without too much difficulty. It can be performed during SYSGEN
phase II when asked if you want to PAUSE to EDIT files. For a
running system, do SYSGEN phase III to rebuild priviledged tasks
and resave the system with the BOOT block. Also, don't forget to
rebuild DECnet if it is in use.

HAPPY ENCRYPTING!!!!

18

RSX MULTITASKER

Recovering Files From a Damaged Files-11 Disk

Judah Levine
Joint Insitute for Laboratory Astrophysics

National Bureau of Standards and University of Colorado
Boulder, Colorado 80309

We operate a pair of RM03 disks using a single controller on a PDP
11/70. When the controller failed recently, it over-wrote the home
block and many of the low-numbered logical blocks on both volumes.
When the controller was repaired, we were left with two volumes
which could not be mounted, and which were therefore unusable as
file-structured devices.

As is so often the case in these situations, many of our most
important programs had not been backed up to tape. We decided to
attempt to recover as many of the program text files as possible.
Since most of our programs are written in FORTRAN, a typical file
name to recover might be ABC.FTN. We first attempted to search for
the directory entry for this file. If the directory entry could be
found, we tried to find the header block. If we could find the
header block, we used the retrieval pointers stored there to
recover the full file text and to copy the text to another volume.
This process, which we describe in more detail below, was able to
recover about 90% of the FORTRAN text files and averted what might
have been a very serious setback to our work. It worked because
most of the disk blocks were intact, although many of the system
pointers had been over-written. Since we were writing an emergency
recovery task and not a full file-management system, we decided to
recover only FORTRAN or MACRO text files that were not so large or
so fragmented so as to require more than one header block. This
turned out not to be a significant limitation for us. We also
chose not to recover task images since these could be easily
recovered from the FORTRAN text. Recovery of other than text files
does not present any unique obstacles, but some care must be taken
to be sure that the structure of the file described in the old
header block is faithfully copied to the new header block. Error
detection is also more difficult in this case.

We now discuss our method in some detail. The root of all of the
programs is the ability to read any physical block of an unmounted
disk. The code we used for doing this is shown in program FNDFIL,

* The material presented here is based on our experience
data following a hardware failure. It is necessarily
Files-11 disk format and thus product names are used.
imply an endorsement by the National Bureau of Standards.

19

in recovering
specific to the
This does not

RSX MULTITASKER

lines 25 - 38 and 61 - 73.

The Directory Entry

The directory entry for every file is 8 words long. The first and
second words are the file number and file sequence number,
respectively. In normal operation, these point to and validate the
file header block. The fourth, fifth and sixth words are the
filename in radix-50, the seventh word is the file extension in
radix-50 and the eight word is the version number in binary. There
are 32 eight-word entries in a physical disk block. They occupy
words 1-8, 9-16, ••• , 249-256. To search for the entry for file
ABC.FTN, we convert the name to radix-50 and compare the resulting
string to words 4-7, 12-15, ••• , 252-255 of every block on the
disk. If we find a match, the last word of the 8-word group gives
the version number. If the disk were not corrupted, the first two
words of the 8-word group would allow us to read the file header
block and thereby the retrieval pointers. But these pointers
cannot be used directly since we do not know where the index file
is located.

The Header Block

The header block for every file is 256 words long (we assume that
extension headers are not necessary) and corresponds exactly to a
physical block on the volume. The name of the file described by
the header is stored in words 24-27, again in radix-50. To find
the header block for a given file, we therefore perform a second
comparison between the name of the file we are looking for (in
radix-50) and these four words of every block on the disk. Some
care must be used in this search, since the name of a file in the
directory and the name stored in the header block may not be the
same. If file ABC.FTN;N was prepared using EDT, for example, its
header block may be ABC.TMP;l while its directory entry will be
ABC.FTN;N. We deal with this possibility in practice by entering a
file type consisting of blanks. As can be seen from the program,
this results in a search for file ABC.*;* both in the directory
search and in the header search. The match between a given header
and a given directory entry can be confirmed by examining the file
number and file sequence number of both entries.

Once the header block has been found, we extract the owner's UIC,
which should correspond to the known owner of the file, the length
of the file in blocks, the last significant byte of the last block
and the retrieval pointers. These pointers are 4-byte quantities
beginning in word 51. Each pointer consists of three bytes giving
the starting physical block and one byte giving the number of
consecutive blocks in the segment. These parameters can then be
used to recover the file.

20

RSX MULTITASKER

Text Recovery

Program FNDFIL is guaranteed to find both the directory entry and
the header block of any file, if these structures are still intact.
It may also find extraneous blocks including entries for deleted
files and blocks containing binary data which accidentally match
the search string. The recovery program is therefore a separate
program. It accepts a series of retrieval pointers and lengths and
reads these blocks consecutively to recover the file. It writes
the recovered text to any convenient file on another volume. Since
the files we seek to recover were prepared using EDT or EDI, they
use implied carriage control. Each line of text begins with a
16-bit word-aligned quantity giving the length of the line in
characters. If the length is odd, a dummy character is added to
the end of the line so that the next character count will also be
word aligned. Lines may span two physical blocks on the disk
without warning -- indeed the physical block boundary may occur
even between the character count and the text. Program RECOVR
deals with any of these possibilities. If a file does not
completely fill the last block, the bytes after the end of the last
line are simply ignored.

Program RECOVR will fail if one of the physical blocks in the
retrieval pointer chain has been over-written as a result of the
original hardware failure or by subsequent valid writes after the
failure has occurred and before the disk can be stopped. Since the
start of a block almost never coincides with the start of a line,
the program begins reading most blocks in mid-line, and an error is
often not immediately apparent. The error is usually detected when
the program interprets the next word following what it thinks of as
the end of the current line as the byte count for the next line.
If this word contains two ASCII characters (as is likely to happen
if the block is over-written by a fragment of another text file),
the resultant line length will be extremely large. Even if the
block is a binary fragment, the probability that the word yields a
line length that is reasonable is vanishingly small. Although the
probability of detecting an over-written block is therefore quite
high, there is no guaranteed way to recover the text of subsequent
blocks. We have sometimes been able to recover subsequent pieces
of the file by skipping the block in question, starting with the
next block in the retrieval-pointer chain and looking for a byte of
zero. Since all lines are less than 256 bytes long and since zero
is not an ASCII code, a zero byte is an almost certain indication
that the upper byte of a count word has been detected and that the
start of a new line has been found (unless the block has been
over-written by a binary block in which case all is probably lost).
This permits the program to be re-synchronized and to continue.
The subsequent text may or may not be meaningful, and must be
carefully examined. Program RECOVR does not deal with these
situations and simply stops if an unreasonably large line length is
detected. The techniques discussed here were applied by hand, but
could easily be added to RECOVR if desired.

21

RSX MULTITASKER

Conclusions

Using these methods, we recovered about 90% of the text files
immediately with no errors. Another 5% of the files were recovered
with some gaps. In the remaining 5% of the cases, the recovered
text was too fragmentary to be useful.

This hardware failure
disk backup procedure
the same controller.
both copies of a file

points out a weakness in our standard disk to
-- especially when both disks are operated by
A single hardware malfunction can destroy
system with almost no warning.

The recovery procedure also shows a weakness in the Files-11
protection system. The programs outlined here will work on any
unmounted volume and require no special privileges. Any user can
use these techniques to copy any file from such a disk, totally
bypassing the file protection safeguards of the system. Deleted
versions of a file may also be recovered this way. The only way to
prevent this is to spin-down (or otherwise take off-line) disks
that are not mounted as Files-11 volumes.

PROGRAM FNDFIL
c
C THIS PROGRAM READS EVERY BLOCK ON A DISK LOOKING
C FOR EITHER THE DIRECTORY ENTRY OR THE FILE
C HEADER BLOCK FOR A GIVEN FILE. WHEN EITHER IS FOUND,
C THE APPROPRIATE INFORMATION IS PRINTED OUT.
C THE PROGRAM GETS ITS INPUT FROM A FILE NAMED FIND.LST AND
C WRITES WHATEVER IT FINDS OUT TO FILE BLOCKS.LST.
c
C TO FIND A GIVEN FILE, ABC.FTN FOR EXAMPLE, FILE FIND.LST
C MUST HAVE A 2-LINE ENTRY WITH THE FILENAME ON THE FIRST
C LINE AND THE EXTENSION ON THE SECOND LINE:
c
C ABC
C FTN
c
C THE PROGRAM WILL FIND ALL VERSIONS OF THE FILE
c
C IF THE SECOND LINE IS A SERIES OF BLANKS, THE SEARCH IS EQUIVALENT
C TO LOOKING FOR FILES ABC.*;*
c

INTEGER*2 IBUF(256)
BYTE IUIC(2)
EQUIVALENCE (IUIC(l),IBUF(5))
BYTE IRETRV(410)
EQUIVALENCE(IRETRV(l),IBUF(51))
BYTE RNAME(l2)
BYTE NAME(9),EXT(3)
INTEGER*2 INAME(4)
INTEGER*4 IBLRTV
BYTE BBLRTV(4)
EQUIVALENCE (IBLRTV,BBLRTV(l))

22

!BUFFER TO STORE DISK BLOCK

!UIC IN HEADER BEGINS IN WORD 5

!RETRIEVAL PNTRS BEGIN AT 51

!USED TO STORE FIRST BLOCK OF THE
!RETRIEVAL POINTER.

RSX MULTITASKER

c

c

c

c

INTEGER*2 ISB(2),IPRL(6)

INTEGER*4 ILOW,IHIGH
INTEGER*2 IBL(2)
EQUIVALENCE (ILOW,IBL(l))

DATA IOATT /'1400'0/
DATA IORLB /'1000'0/
DATA IODET /'2000'0/

!USED IN QIO-CALL

!USED TO CONVERT I*4 FOR QIO CALL

!ATTACH DEVICE
!READ LOGICAL BLOCK
!DETACH DEVICE

C THE FOLLOWING ASSIGN STATEMENT SETS LOGICAL UNIT 1 TO THE DISK TO
C BE SEARCHED. THE STRING 'DRO:' SHOULD CHANGED IF NECESSARY. THE
C THIRD PARAMETER IS THE NUMBER OF CHARACTERS IN THE DEVICE NAME.
c
C NOTE THAT SINCE THE DISK HAS A CORRUPTED FILE STRUCTURE AND
C THEREFORE CANNOT BE MOUNTED, THE ASSIGN WILL PRODUCE FORTRAN ERROR
C 43. THIS ERROR IS NOT FATAL AND MAY BE IGNORED.
c

CALL ASSIGN (1, 'DRO: ',4)
c
C OPEN COMMAND FILE AND LISTING FILE
c

c

OPEN(UNIT=3,NAME='FIND.LST',TYPE='OLD',
+ ACCESS='SEQUENTIAL',CARRIAGECONTROL='LIST',
+ READONLY,DISPOSE='SAVE',FORM='FORMATTED')

OPEN(UNIT=4,NAME='BLOCKS.LST',TYPE='NEW',
+ ACCESS='SEQUENTIAL',CARRIAGECONTROL='LIST',
+ FORM='FORMATTED',DISPOSE='SAVE')

C SET SEARCH LIMITS. THESE VALUES MAY HAVE TO BE CHANGED DEPENDING
C ON WHAT TYPE OF DISK IS BEING SEARCHED. ILOW IS ALWAYS ZERO TO
C START. IHIGH SHOULD BE SET TO THE SIZE OF THE DISK (AS DETERMINED
C FROM PIP /FR, FOR EXAMPLE). NOTE THAT THE FIRST BLOCK ON THE DISK
C IS NUMBER O.
c

c

ILOW=O
IHIGH=l31679

C ATTACH DEVICE -- STOP ON EXECUTIVE REJECT OR ON ATTACH FAILURE.
c

CALL WTQIO(IOATT,1,1,,ISB,IPRL,IDS)
IF(IDS .NE. 1) THEN
WRITE (4 , 1) IDS

1 FORMAT(' ATTACH REJECTED, IDS='06)
STOP
ENDIF
IF(ISB(l) .NE. 1) THEN
WR IT E (4 , 2) I SB

2 FORMAT(' ATTACH,FAILED, ISB='206)
STOP
ENDIF
CALL GETADR(IPRL(l),IBUF(l))

23

!GET ADDRESS OF INPUT BUFFEF

RSX MULTITASKER

c

IPRL(2)=512 !ALWAYS READ 512 BYTES.
IPRL(3)=0

888 READ(3,23,END=999) IL,(NAME(I),I=l,IL) !READ FILE NAME, END ON EOF
23 FORMAT(Q,9Al)

C PAD NAME WITH BLANKS IF NECESSARY
c

c

IF(IL .LT. 9) THEN
DO 24 I=IL+l,9
NAME(!)=''

24 CO!llTINUE
END IF

C READ FILE EXTENSION AND PAD WITH BLANKS IF NECESSARY
c

c

READ(3,23,END=999) IL,(EXT(I),I=l,IL)
IF(IL .LT. 3) THEN
DO 26 I=IL+l,3
EXT (I)=' I

26 CONTINUE
END IF
WRITE(4,998) NAME,EXT

998 FORMAT(' BEGIN SEARCH FOR FILE='l2Al)

C CONVERT NAME AND EXTENSION TO RADIX-50. IF EXTENSION IS BLANK,
C SEARCH IS ON FILENAME ONLY (9 CHARACTERS = 3 WORDS). IF EXTENSION
C IS NOT BLANK, SEARCH IF ON FULL NAME (12 CHARACTERS = 4 WORDS).
c

c

CALL IRAD50(9,NAME,INAME)
CALL IRAD50(3,EXT,INAME(4))
IF(INAME(4) .EQ. O) THEN
LIMZ=3
ELSE
LIMZ=4
END IF

C CONVERT BLOCK NUMBER TO FORMAT REQUIRED BY QIO CALL
c

c

9 IPRL(4)=IBL(2)
IPRL(5)=IBL(l)

C READ PHYSICAL BLOCK OF DISK. STOP ON EXECUTIVE REJECT OR
C READ FAILED.
c

CALL WTQIO(IORLB,1,1,,ISB,IPRL,IDS)
IF(IDS .NE. 1) THEN
WRITE(4,3)IDS,ILOW

3 FORMAT(' READ REJECTED, IDS='06,' AT BLOCK='IlO)
STOP
END IF
IF(ISB(l) .NE. 1) THEN
WRITE(4,4)ISB,ILOW

4 FORMAT(' READ FAILED, ISB='206,' AT BLOCK='IlO)

24

RSX MULTITASKER

c

STOP
ENDIF

C TEST TO SEE IF THIS IS A DIRECTORY BLOCK. SEE TEXT
c

DO 5 I=l,256,8
DO 35 JJ=l,LIMZ !SEARCH FOR 3 OR 4 WORDS
IF(IBUF(I+JJ+2) .NE. INAME(JJ)) GO TO 5 !EXIT LOOP IF NO MATCH

35 CONTINUE
WRITE(4,6)ILOW !DIRECTORY ENTRY FOUND

6 FORMAT(' DIRECTORY ENTRY IN BLOCK='IlO)
CALL R50ASC(l2,IBUF(I+3),RNAME) !CONVERT NAME TO ASCII

c
C PRINT FILE NUMBER, SEQUENCE NUMBER, NAME AND VERSION
c

c

WRITE(4,36)IBUF(I),IBUF(I+l),IBUF(I+2),RNAME,IBUF(I+7)
36 FORMAT(lX,06,lX,06,lX,06,lX,9Al,lX,3Al,lX,06)

5 CONTINUE

C SEE IF THIS MIGHT BE A HEADER BLOCK. SEARCH FOR NAME AGAIN
c

c

DO 10 JJ=l,LIMZ
IF(IBUF(23+JJ) .NE. INAME(JJ))GO TO 7

10 CONTINUE

C IF MATCH, PRINT OUT NAME FOUND, OWNER, POINTERS, ETC.
c

CALL R50ASC(l2,IBUF(24),RNAME) !CONVERT BACK TO ASCII
WRITE(4,8)ILOW,RNAME,IBUF(28) !PRINT NAME AND VERSION

8 FORMAT(' HEADER BLOCK FOUND, BLOCK='IlO,
+I NAME=',9Al,1X,3Al';'05)

WRITE(4,100) IBUF(2),IBUF(3)
100 FORMAT(' NUM,SEQ='06,1X,06)

WRITE(4,10l)IUIC(2),IUIC(l)
101 FORMAT(' OWNER=['03,','03,']')

WRITE(4,102)IBUF(l3),IBUF(l4) !LAST BLOCK AND LAST BYTE
102 FORMAT(' EOF IN BLOCK'I3' AT BYTE'I4)

c
C PRINT NUMBER OF RETRIEVAL POINTERS. NOTE THAT THIS NUMBER IS
C OFTEN TOO LARGE. RETRIEVAL POINTERS WHICH MAP BLOCKS AFTER THE
C NUMBER OF BLOCKS PRINTED ABOVE SHOULD BE IGNORED.
c

c

WRITE(4,103)IRETRV(l)
103 FORMAT(' NUMBER OF POINTERS='I3)

JORG=O
DO 11 I=l,IRETRV(l)

C CONVERT 3-BYTE RETRIEVAL POINTER TO FORTRAN I*4 VARIABLE.
C NOTE THAT MOST SIGNIFICANT BYTE OF RETRIEVAL POINTER WILL ALWAYS
C BE ZERO.
c

BBLRTV(l)=IRETRV(5+JORG)
BBLRTV(2)=IRETRV(6+JORG)

25

RSX MULTITASKER

c

BBLRTV(3)=IRETRV(3+JORG)
BBLRTV(4)=0
WRITE(4,104)IRETRV(4+JORG)+l,IBLRTV

104 FORMAT(' LENGTH AND FIRST BLOCK='I3,1X,Il0)
JORG=JORG + 4 !ADVANCE 4 BYTES FOR NEXT

11 CONTINUE
7 ILOW=ILOW +l !MOVE ON TO NEXT BLOCK

IF(ILOW .LE. IHIGH) GO TO 9 !GO BACK AND READ

C RESET POINTERS AND LIMITS AND GO TO READ NEXT FILE NAME FOR SEARCH
c

c

ILOW=O
IHIGH=l31679
GO TO 888

C COME HERE WHEN EOF READ FROM SEARCH FILE. CLOSE UP AND EXIT.
c

c

999 CALL WTQIO(IODET,1,1)
CLOSE(UNIT=3,DISPOSE='SAVE')
CLOSE(UNIT=4,DISPOSE='SAVE')
STOP
END

PROGRAM RECOVR

C THIS PROGRAM RECOVERS A TEXT FILE USING THE
C POINTERS FOUND BY A PREVIOUS RUN OF FNDFIL
C THE FILE MUST BE IN STANDARD TEXT FORMAT WITH
C IMPLICIT CARRIAGE CONTROL.
c
C THE SYSTEM CALLS IN HERE TO ATTACH A DISK AND READ A PHYSICAL BLOCK
C ARE THE SAME AS THOSE USED IN PROGRAM FNDFIL. AS IN FNDFIL, THE
C DISK WE ARE SEARCHING IS NAMED DRO IN THIS PROGRAM AND SHOULD BE
C CHANGED AS NECESSARY.
c

c

INTEGER*2 IBUF(256)
BYTE JCAR(512)
EQUIVALENCE (JCAR(l),IBUF(l))
BYTE BLEN(2)
EQUIVALENCE(BLEN(l),JLEN)
BYTE ILIN(l50),NAME(28)

C ARBRITRARILY LIMIT TO 75 RETRIEVAL POINTERS.
c

c

c

INTEGER*4 IBLRTV(75)
INTEGER*2 IBLLEN(75)

INTEGER*2 ISB(2),IPRL(6)

INTEGER*4 ILOW
INTEGER*2 IBL(2)

26

!FIRST BLOCK OF FILE SEGMENT
!NUMBER OF BLOCKS IN SEGMENT

!PARAMETERS FOR QIO CALL

!ARRAY IBL IS USED TO

RSX MULTITASKER

c
c

c

c

c

EQUIVALENCE (ILOW,IBL(l))

DATA IOATT /'1400'0/
DATA IORLB /'1000'0/
DATA IODET /'2000'0/

CALL ASSIGN (1,'DR0:',4)

ILOW=O

!CONVERT I*4 BLOCK NUMBER TO QIO

!ATTACH DEVICE
!READ LOGICAL BLOCK
!DETACH DEVICE

!SEE COMMENTS IN PROGRAM FNDFIL

C ATTACH DEVICE, STOP ON EXECUTIVE REJECT OR ATTACH FAILURE
c

c

CALL WTQIO(IOATT,1,1,,ISB,IPRL,IDS)
IF(IDS .NE. 1) THEN
TYPE 1,IDS

1 FORMAT(' ATTACH REJECTED, IDS='06)
STOP
ENDIF
IF(ISB(l) .NE. 1) THEN
TYPE 2,ISB

2 FORMAT(' ATTACH,FAILED, ISB='206)
STOP
ENDIF
CALL GETADR(IPRL(l),IBUF(l)) !ADDRESS OF BUFFER TO STORE BLOCK
IPRL(2)=512 !ALWAYS READ 512 BYTES (=1 BLOCK)
IPRL(3)=0
TYPE 22 !FILE NAME TO STORE RECOVERED TEXT

22 FORMAT('$ENTER OUTPUT FILENAME=')
READ(5,43) IL,(NAME(I),I=l,IL)

43 FORMAT(Q,28Al)
NAME(IL+l)=O !PAD WITH ZERO BYTE

C BEGIN REQUESTING RETRIEVAL POINTERS AND LENGTHS AS OUTPUT BY
C PROGRAM FNDFIL. COMPUTE TOTAL LENGTH OF FILE AS SUM OF
C RETRIEVAL POINTER LENGTHS. TERMINATE INQUIRY ON A ZERO LENGTH
c

c

ITOT=O
DO 23 I=l,75
TYPE 24

24 FORMAT('$ENTER STARTING BLOCK AND LENGTH=')
READ(5,*) IBLRTV(I),IBLLEN(I)
IF(IBLLEN(I) .EQ. 0) GO TO 25
ITOT=ITOT + IBLLEN(I)

23 CONTINUE

C GET END OF FILE POINTER (LAST SIGNIFICANT BYTE OF LAST BLOCK) AS
C WRITTEN BY FNDFIL.
c

25 TYPE 26
26 FORMAT('$ENTER LAST BYTE=')

READ(5,*)IEOF
INRTV=I-1

27

RSX MULTITASKER

c

ICRTV=l
IF (ITOT • EQ. 1) THEN
JEOF=IEOF
ELSE
JEOF=512
ENDIF

!IF FILE 1 BLOCK LONG, SET LAST BYTE
!OTHERWISE, ALL 512 BYTES ARE
! SIGNIFICANT

C OPEN NEW FILE FOR RECOVERED TEXT
c

OPEN(UNIT=2,NAME=NAME,TYPE='NEW' ,FORM='FORMATTED',
+ ACCESS='SEQUENTIAL',CARRIAGECONTROL='LIST',DISPOSE='SAVE')

c
C CONVERT FIRST BLOCK OF THIS RETRIEVAL POINTER TO QIO FORMAT
c

c

ILOW=IBLRTV(l)
9 IPRL(4)=IBL(2)

IPRL(5)=IBL(l)

C READ THE BLOCK. STOP ON EXECUTIVE REJECT OR READ ERROR.
c

c

CALL WTQIO(IORLB,1,1,,ISB,IPRL,IDS)
IF (IDS • NE. 1) THEN
TYPE 3,IDS,ILOW

3 FORMAT(' READ REJECTED, IDS='06,' AT BLOCK='IlO)
STOP
ENDIF
IF(ISB(l) .NE. 1) THEN
TYPE 4,ISB,ILOW

4 FORMAT(' READ FAILED, ISB='206,' AT BLOCK='IlO)
STOP
ENDIF
IPOS=l !IPOS IS POINTER TO CURRENT INPUT BYTE

C CONVERT NEXT TWO BYTES TO LINE LENGTH. SEE TEXT.
c

c

28 BLEN(l)=JCAR(IPOS)
IPOS=IPOS + 1
BLEN(2)=JCAR(IPOS)
IPOS=IPOS + 1
ICAR=O !POSITION IN OUTPUT BUFFER

C IF LINE IS TOO LONG, PROBABLY AN ERROR. PRINT CHARACTERS OF INPUT
C BUFFER USED FOR LINE LENGTH COMPUTATION AND EXIT.
C SEE TEXT.
c

c

IF (JLEN • GT. 150) THEN
TYPE 123,ILOW,IPOS,JLEN

123 FORMAT(' BLOCK='IlO', BYTE='I5', LENGTH='I5)
TYPE 124,(JCAR(M),M=IPOS-l,IPOS+l)

124 FORMAT (305)
GO TO 999
ENDIF

28

RSX MULTITASKER

C IF WE ARE AT THE END OF A BLOCK, READ THE NEXT BLOCK IN THIS
C RETRIEVAL POINTER SET OR FIRST BLOCK OF THE NEXT RETREIVAL POINTER
C SET.
c

c

IF (IPOS • GT. JEOF) THEN
IBLLEN(ICRTV)=IBLLEN(ICRTV) -1
ITOT=ITOT - 1
IF(IBLLEN(ICRTV) .NE. 0) THEN
ILOW=ILOW +l
ELSE
ICRTV=ICRTV + 1
IF(ICRTV .GT. INRTV) GO TO 999
ILOW=IBLRTV(ICRTV)
ENDIF

!DECREMENT BLOCKS IN THIS SET
!AND NUMBER OF BLOCKS LEFT
!IF MORE BLOCKS IN THIS SET,
!INCREMENT BLOCK COUNTER

!ELSE MOVE TO NEXT RETRIEVAL
!SET UNLESS DONE

C COMPUTE LAST SIGNIFICANT BYTE IN THIS BLOCK, CONVERT TO QIO
C FORMAT AND READ THE BLOCK
c

c

IF(ITOT .EQ. 1) JEOF=IEOF
IPOS=l
IPRL(4)=IBL(2)
IPRL(S)=IBL(l)
CALL WTQIO(IORLB,1,1,,ISB,IPRL,IDS)
ENDIF

C TRANSFER CONSECUTIVE BYTES FROM INPUT BUFFER TO OUTPUT LINE
C UNTIL LINE LENGTH IS SATISFIED. IF END OF PHYSICAL BLOCK
C IS DETECTED IN THE MIDDLE OF THIS, COMPUTE NEXT BLOCK AS ABOVE
C READ THE NEXT BLOCK AND CONTINUE ASSEMBLING THE LINE.
c

DO 27 K=l,JLEN
ICAR=ICAR + 1
ILIN(ICAR)=JCAR(IPOS)
IPOS=IPOS+l
IF(IPOS .LE. JEOF) GO TO 27
IBLLEN(ICRTV)=IBLLEN(ICRTV) -1
ITOT=ITOT - 1
IF(IBLLEN(ICRTV) .NE. 0) THEN
ILOW=ILOW +l
ELSE
ICRTV=ICRTV + 1
IF(ICRTV .GT. INRTV) GO TO 999
ILOW=IBLRTV(ICRTV)
ENDIF
IF(ITOT .EQ. 1) JEOF=IEOF
IPOS=l
IPRL(4)=IBL(2)
IPRL(S)=IBL(l)
CALL WTQIO(IORLB,1,1,,ISB,IPRL,IDS)

27 CONTINUE
c
C WRITE THIS LINE TO OUTPUT FILE
c

29

RSX MULTITASKER

c

WRITE(2,48)(ILIN(L),L=l,JLEN)
48 FORMAT(l50Al)

C IF LINE LENGTH IS ODD, SKIP 1 BYTE TO MAKE SURE LENGTH IS
C ALIGNED ON A WORD BOUNDARY.
c

IF((IPOS .AND. 1) .EQ. 0) IPOS=IPOS + 1
c
C IF WE ARE NOW AT THE END OF A BLOCK, COMPUTE THE NEXT BLOCK AND READ
C IT IN.
c

c

IF(IPOS .LT. JEOF) GO TO 28
IBLLEN(ICRTV)=IBLLEN(ICRTV)-1
!TOT =ITOT-1
IF(IBLLEN(ICRTV) .NE. O) THEN
ILOW=ILOW +l
ELSE
ICRTV=ICRTV + 1
IF(ICRTV .GT. INRTV) GO TO 999
ILOW=IBLRTV(ICRTV)
END IF
IF(ITOT .EQ. 1) JEOF=IEOF
IPOS=l
IPRL(4)=IBL(2)
IPRL(5)=IBL(l)
CALL WTQIO(IORLB,1,1,,ISB,IPRL,IDS)
GO TO 28

C COME HERE WHEN ALL BLOCKS HAVE BEEN READ
c

999 CLOSE(UNIT=2,DISPOSE='SAVE')
CALL WTQIO(IODET,1,1)
STOP
END

30

Printed in the U.S.A.

"The Following are trademarks of Digital Equipment Corporation"

ALL-IN-1 Digital logo RSTS
DEC EduSystem RSX
DECnet IAS RT
DE Cm ate MASSBUS UNIBUS
DECsystem-10 PDP VAX
DECSYSTEM-20 PDT VMS
DECUS P/OS VT
DECwriter Professional Work Processor
DIBOL Rainbow

Copyright C>DECUS and Digital Equipment Corporation 1985
All Rights Reserved

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation orDECUS. Digital Equipment Corporation and DECUS assume
no responsibility for any errors that may appear in this document.

POLICY NOTICE TO ALL ATTENDEES OR CONTRIBUTORS "DECUS
PRESENTATIONS, PUBL/CA TIONS, PROGRAMS, OR ANY OTHER
PRODUCT WILL NOT CONTAIN TECHNICAL DATA/INFORMATION
THAT IS PROPRIETARY, CLASSIFIED UNDER U.S. GOVERNED BY
THE U.S. DEPARTMENT OF STATE'S INTERNATIONAL TRAFFIC IN
ARMS REGULATIONS (/TAR)."

DEC US and Digital Equipment Corporation make no representation that
in the interconnection of products in the manner described herein will
not infringe on any existing or future patent rights nor do the de
scriptions contained herein imply the granting of licenses to utilize any
software so described or to make, use or sell equipment constructed in
accordance with these descriptions.

It is assumed that all articles submitted to the editor of this newsletter
are with the authors' permission to publish in any DECUS publication.
The articles are the responsiblity of the authors and, therefore, DEC US,
Digital Equipment Corporation, and the editor assume no responsibility
of liability for articles or information appearing in the document. The
views herein expressed are those of the authors and do not necessarily
express the views of DECUS or Digital Equipment Corporation.

------------------------·
STATUS CHANGE

Please notify us immediately to guarantee
continuing receipt of DECUS literature. Allow
up to six weeks for change to take effect.

) Change of Address
) Please Delete My Membership Record

(I Do Not Wish To Remain A Member)

DECUS Membership No: ______ _
Name: _____________ _

Company: __________ _

Address: ___________ _:

State/Country: _________ _

Zip/Postal Code: - ----------,

Mail to: DECUS - Attn: Subscription Servi<
219 Boston Post Road, BP02
Marlboro, Massachusetts 01752 u ~

~---------------

I
I
I
I
I
I

,_..J

~~o~
:J>coG)o
:IJCD-1C
G; 0)> (/)
0 en r en
:a-1mc
oOoco
- Zccn
~-U-uO
)>Q~:a
ocnm-u
........ -1z-1
-....J:a--10
Rjooz)>

oOcn
- ~ m cu -u :a
-u c <
0--10
I\:> mm
-:a

(/)

0
0
m
--1
-<

~[O]

r
< ~ ~· c
d3 3..., (nCD
-" 3· - · "U . c:
~!!!-~\);;<=
w!J?~O~:D

• . - Q>
Ill -

:!::-" IO<I>
)> QI <I>

