

DIGITAL COMPUTER CONTROLS INC

Our new 16-BIT minicomputer is a general purpose MSI unit that incorporates the latest in solid-state components and electronic packaging. It's plug, program and mechanically interchangeable with the latest models in the "11" Series Minicomputers. Software requirements are identical. And you can physically substitute a D-216 for an "11" mainframe without mechanical adjustments.

Memory expansion to 32,768 words

The D-216 incorporates the latest MSI integrated circuit TTL components in a main console capable of receiving core or solid state memory up to a maximum of 32,768 words. The chassis is compact ($10-1/2'' \times 19'' \times 23''$). The front panel is only 8-3/4'' high. And the unit can be rack mounted (on tilt and lock chassis slides), or table mounted in a standalone version.

Expand your system without complicating it

The D-216 DATA-BUS is configured to allow physical and electrical modularity. And that means unlimited system expansion. Without sacrificing either the simplicity of the system or the ease of its maintenance.

With DATA-BUS, instructions operate directly on register information. Data is transferred from input to output, and the CPU is bypassed. The devices themselves are modular subsystems that electrically attach to the DATA-BUS in parallel. I/O instructions are no longer required because of the memory-identity given to a device on the DATA-BUS. Instructions for I/O are accomplished on a word or byte basis in a manner directly comparable to moving data from one location in core to another.

A repertoire of more than 400 specific instructions

Although the Central Processor connects to the DATA-BUS like an I/O device, it controls the assignment of DATA-BUS to the subsystems and performs logical operations, including instruction decoding by utilizing Arithmetic Accumulators, Index Registers, Auto Increment and Auto Decrement Registers. This gives greater flexibility than ever before, and provides an inherent repertoire of more than 400 specific instructions. Addressing modes of the CPU include direct register addressing, sequential addressing, full address incrementing and full address decrementing. In addition, both single and double address order codes are applied on either a byte or word basis.

More power for your money

The power of the D-216 Central Processing unit is demonstrated by features like singleline, multi-level interrupts, an unlimited number of DMA devices attached to the DATA-BUS, stack handling on a last-in, first-out basis with general register stack pointing, direct memory access (with maximum priority during instruction execution in order to store or acquire data at memory cycle speed), and a structural concept which allows you to use it in applications once confined to larger systems.

All this, at a very realistic price.

Compare and decide

Our D-216 16-BIT general purpose computer compares quite favorably with everything else on the market. Compare the speed, the flexibility, and the expansion capability. Then compare the total cost effectiveness (both initially and on a long-term basis).

FUNCTIONAL CHARACTERISTICS

Read/Write Memory

Cycle Time	:	1.2 microseconds
Access Time	:	400 nanoseconds
Word Length	:	16-BITS
Core Memory Size	:	4096 words, expand-
		able to 32,768 words

Read-Only-Memory

Access Time Word Length

: 300 nanoseconds : 16-BITS

Increments of 1024 words available with additional options of Read/Write or Read-Only-Memory.

Direct Memory Access

Rate	:	2,500,000 words per
		second max.
Maximum Latency	:	3.5 microseconds for
		highest priority
		device

Multiple device capability without multiplexer

DATA-BUS Rate : 2,500,000 words per

second Automatic Priority Interrupts

One main level is incorporated initially with optional expansion to 4 main levels with any quantity of sublevels for each main level.

Response Time

7.2 microseconds including storage of existing program counter and status word insertion of new program counter.

Restore Time

4.5 microseconds for restoration of status word and program counter.

General Registers

Eight high-speed Flip-Flop Registers within the Central Processor which can be employed as Accumulators, 16-BIT Index Registers, Auto Increment or Auto Decrement Registers. The eight registers are available as stack pointers while register 6 is specifically utilized as the CPU Stack Pointer. Register 7 is always used as the Program Counter.

Instructions

400 hard-wired instructions through use of the General Register Address Modes.

65,576 Bytes or 32,768 words Machine Addressable.

PHYSICAL CHARACTERISTICS

Table-TopModel:

Dimensions: 11" H x 20" W x 24" D Weight: 60 lbs. (4096 words of core)

Rack-Mounted Model:

Dimensions: 10-1/2" H x 19" W x 23" D with Tilt and Lock Chassis slides Weight: 60 lbs (4096 words of core)

ELECTRICAL CHARACTERISTICS

Power Requirements:

115/230 volts ±10%, Single Phase, 47-63 Hz, 4 Amperes (4096 words of core)

DATA-BUS Logic Levels:

Ground and+3 Volts

Logic:

Integrated Circuitry TTL and Medium Scale Integration.

SYSTEM CONFIGURATION/OPTIONS

The basic system D-216 consists of:

Central Processor, Power Supply, Mounting Box, w/Tilt slides

Add-On Features/Options:

216/PC	Programmers Console with Switch Register, Remote Con- trollable, Key Actuated Panel
216/PF	Power Failure Detection and Auto Restart
216/TTC	Teletypewriter Control
216/PI	Four Level Priority Interrupt
216/EA	Extended Arithmetic
ASR-33TU	Modified Teletypewriter ASR- 33TU
216/MM-4C	4096 Word Memory Module, 1.2 usec Core
216/MM-4S	4096 Word Memory Module, 0.9 usec Semiconductor RAM
216/MM-2S	2048 Word Memory Module, 0.9 usec Semiconductor RAM
216/MM-1S	1024 Word Memory Module, 0.9 usec Semiconductor RAM
216/MM-1R	1024 Word Memory Module, 0.35 usec Read-Only-Memory (ROM)
216/RTC-4	Real Time Clock, Power Line Frequency
corporated in	the basic options that can be in- the main frame there exists an

corporated in the main frame there exists an extensive line of peripherals that can be utilized to extend system storage capability, on-line communications facility or methods for inserting data into a D-216. The following is a brief listing of these optional peripherals:

Single & Multiple Line Communications Interface Equipment Remote Display Terminals A/D-D/A Converters Line Printers Industry Compatible Magnetic Tape High-Speed Paper Tape Reader or Punch Teletypewriters Magnetic Disk Systems

INSTRUCTIONS*

DOUBLE OPERAND GROUP: OPR src, dst MOV (B) MOVe (Byte) ADD ADD SUB SUBtract CMP(B) CoMPare (Byte) BIT(B) Bit Test (Byte) BIC(B) Bit Clear (Byte) BIS(B) Bit Set (Byte)

SINGLE OPERAND GROUP:

OPR dst	
CLR(B)	CLeaR (Byte)
COM(B)	COMplement (Byte)
INC(B)	INCrement (Byte)
DEC(B)	DECrement (Byte)
NEG(B)	NEGate (Byte)
ADC(B)	ADd Carry (Byte)
SBC(B)	SuBtract Carry (Byte)
TST(B)	TeST (Byte)
ROR(B)	ROtate Right (Byte)
ROL(B)	ROtate Left (Byte)
ASR(B)	Arithmetic Shift Right (Byte)
ASL(B)	Arithmetic Shift Left (Byte)
JMP	JuMP
SWAB	SWAp Bytes
XEC	eXECute

* Append B for byte instruction;

i.e., MOVB is MOVe Byte

CONDITIONAL BRANCHES:

B--loc

(location = (offset x 2) + current address address + 2)

BR	BRanch (always)	
BNE	Branch if Not Equal (zero)	
BEQ	Branch if EQual (zero)	
BGE	Branch if Greater or Equal (zero)	
BLT	Branch if Less Than (zero)	
BGT	Branch if Greater Than (zero)	
BLE	Branch if Less or Equal (zero)	
BPL	Branch if PLus	
BMI	Branch if MInus	

BHI	Branch if Hlgher	
BLOS	Branch if LOwer or Same	
BVS	Branch if oVerflow Set	
BCC	Branch if Carry Clear	
or BHIS	Branch if HIgher than	
	or Same	
BVC	Branch if oVerflow Clear	
BCS	Branch if Carry Set	
or BHI	Branch if Hlgher	

OPERATE GROUP: OPR

HALT	HALT
WAIT	WAit for InTerrupt
RTI	ReTurn from Interrupt
IOT	Input/Output Trap
	(Vector at 20)
RESET	RESET
EMTxxx	EMulate Trap
	(Vector at 30)
TRAPxxx	TRAP
	(Vector at 34)
Note: xxx	8-bit trap code

SUBROUTINE CALL:

JSR reg, dst JSR Jum

R Jump to SubRoutine

SUBROUTINE RETURN:

RTS reg		
RTS	ReTurn from Subroutine	

CONDITION CODES OPERATOR: OPR

Instructions clear and set condition codes in status word

CLear Carry (c)
SEt Carry(c)
CLear oVerflow(v)
SEt oVerflow(v)
CLear Zero(z)
SEt Zero(z)
CLear Negative(n)
SEt Negative(n)

ADDRESSING MODES

Source or	
Destination	
Symbolic	Description
R	register
@ R or (R)	register deferred
(R)+	autoincrement
@(R)+	autoincrement deferred
-(R)	autodecrement
@-(R)	autodecrement deferred
x(R)	indexed
@ x(R)	indexed deferred
	(x is the index word)
#n	immediate (n = data)
@ #A	absolute (A = address)
А	relative
@ A	relative deferred

DIGITAL COMPUTER CONTROLS INC

12 Industrial Road, Fairfield, New Jersey 07006 (201) 227-4861

West Coast Sales Office Number One First Street, Los Alto, California 94022 (415) 941-0630