
FAST SORT PROGRAM
FASTSORT

User's Guide

Version 3

August, 1978

Model Code No. 50251

D\TAPOINT -----

The leader in dispersed data processing ™

COPYRIGHT© 1978 BY DATAPOINT CORPORATION. PRINTED IN U.S.A.

FAST SORT PROGRAM
FASTSORT

User's Guide

Version 3

August, 1978

Model Code No. 50251

PREFACE

The FASTSORT program produces a sorted copy of a text file on

disk. FASTSORT will run on any DATAPOINT processor with the 5500

instruction set and at least 24K bytes of user memory.

FASTSORT is both efficient and easy to use. Many options are

provided for key specification, output format, and record

selection, but default options allow most sorts to be accomplished

with simple commands.

i

TABLE OF CONTENTS

1. FASTSORT
1 . 1 Int roduct ion
1.2 Command Statement Format
1.3 Collating Sequence File
1.4 Ascending and Descending sequences
1.5 Limi ted ou tput format option
1.6 TAG file output format option
1.7 KEYTAG file output format option
1.8 Disk space requirements
1.9 Using CHAIN to cause a merge
1.10 Incompatibilities with the old sort (SORT)

ii

page

1-1
1- 1
1-1
1-6
1-7
1-7
1-8

1-10
1- 11
1 - 1 1
1- 11

CHAPTER 1. FASTSORT

1.1 Introduction

The FASTSORT command produces a sorted copy of a text file on
disk. FASTSORT will run on any DATAPOINT processor with the 5500
instruction set and at least 24K bytes of user memory.

FASTSORT is both efficient and easy to use. Many options are
provided for key specification, output format, and record
selection, but default options allow most sorts to be accomplished
with simple commands.

1.2 Command Statement Format

The following is the statement format for Datapoint DOS
FASTSORT:

FASTSORT IN,OUT[,:DRk][,SEQ][;[F][Mn][O][Q][R][GNNNTC][S][K1] ... [,On][,KnJ]

Information contained within a pair of square brackets
[] is optional; information within brackets is
order-dependent. Commas may be used to delimit parameters.
(NOTE that commas MUST be used to delimit sort-key groups.)
The first four fields (those ahead of the semi-colon) are
considered to be file specification fields. The fields
following the semicolon are considered to be sort key
parameters. Default conditions are listed below.

The following list defines the parameters which can be
specified:

IN This specifies the input file. This file
must exist on disk. The default extension
is TXT.

OUT This specifies the output file. The default
extension is the extension of the input
file. If no disk drive is specified and the
file exists on a drive on-line to the system
then the output file will over-write the

CHAPTER 1. FASTSORT 1-1

existing file. If no disk drive is
specified and no file of that name exists on
a drive on-line to the system then a file of
the given name will be created on the same
drive as the input file.

:DRk This specifies the drive for the temporary
file. This is only a working scratch file
needed during the sort. If no drive is
specified, the file will be placed on the
same drive as the output file.

SEQ NON-ASCII COLLATING SEQUENCE fILE
This specifies the file which contains the
collating sequence to be used. If omitted,
the ASCII ordering will be used.

F OUTPUT FILE fORMAT.
If 'I' is specified, the output file format
will be one record per sector. If 'I' is
not specified, the output file will be in
the normal text file format, with record
compression. See the'S' parameter
description for determination of space
compression in the output file.

Mn INPUT RECORD LENGTH.
This parameter specifies the maximum number
of characters in an input record. The
default value is the larger of 80 and the
length of the first two input records. This
parameter must be specified if any input
record is longer than 80 characters and
longer than the first two input records. If
one of the tag format parameters ('K' or
'T') is specified, the default of 80 above
is replaced by 1000. Decreasing this
parameter will make the sort run faster, so
it should be as close to the actual maximum
input record size as possible (but not
smaller) if speed is important.

0 ORDER.
This parameter specifies ascending or
descending or der of a key. 'A' or no
parameter indicates ascending, 'D' indicates
descending. Note that if some keys are to
be sorted in ascending order and other keys

1-2 FAST SORT PROGRAM

in descending order, the nOn" specification
described below should preceed each key
whose order differs from the order of the
key preceeding it. However, if all keys are
to be ordered in the same sequence, this
parameter need only be specified once.

Q STABLE SORT NOT REQUIRED. Without the 'Q'
parameter, records with equal keys will be
in the same order in the output file as they
were in the input file; the sort is said to
be stable. The 'Q' parameter specifies that
a stable sort is not required; records with
equal keys will be in random order in the
output file. Specifying this parameter will
result in a smaller temporary file and a
faster sort; this parameter can never affect
the result of a sort if all keys are unique.

R RECORD FORMAT.
This parameter specifies a special output
record format: Limited output file format
or Tag file or Key tag file output. The
actual character entered is 'L' or 'T' or
'K'. The default value is NO SPECIAL OUTPUT
RECORD FORMAT; that is, neither 'L' nor 'T'
nor 'K', so that the records in the output
file will be exact copies (FULL IMAGE
RECORDS) of the records in the input file.

Normally the sort transfers all the
characters of the records of the input file
to the output file. It is possible to
transfer only part of each record.
Including the 'L' parameter in the list of
parameters will cause another question to be
asked wherein you may specify the
limitations. See the section on Limited
Output Format Option.

By entering the 'T' character an output file
is generated which consists only of binary
record number and buffer byte pointers to
the input file records. See the section on
Tag File Output Format Option.

By entering the 'K' character a standard
text format output file is generated which

CHAPTER 1 . FASTSORT 1-3

consists of records' containing a 5 byte user
logical record number, a 3 byte buffer
address, and the key. These records are
space-compressed and have trailing spaces
truncated. See the section on Key tag File
Output Format Option.

G GROUP INDICATOR
This parameter specifies that the input file
consists of PRIMARY and SECONDARY records
and specifies which GROUP is to be sorted.
The actual character entered is 'P' for
PRIMARY or'S' for SECONDARY. There is no
default value.

IF the 'G' option is entered THEN the NNNTC
options MUST ALSO be entered.

In a file with PRIMARY and SECONDARY records
a string of records with a PRIMARY record as
the first record and SECONDARY records
following it is considered one block, or
group, of records.

When the file is sorted on PRIMARY records
the output file has the blocks of records
re-ordered so that the PRIMARY records are
in the sorted sequence; no change is made
in the sequence of the secondary records
following each PRIMARY record. When the file
is sorted on SECONDARY records the output
file has the blocks of records in the same
order as in the input file, but the
SECONDARY records within each block are in
the sorted sequences.

FASTSORT has no provision for the sorting of
PRIMARY and SECONDARY records in the same
run.

NNN NUMERIC position of PRIMARY/SECONDARY flag.
This parameter specifies the character
position for the character (the 'c'
parameter) indicating whether the record is
a PRIMARY or SECONDARY record. The number
MUST be specified if the option is taken.

1-4 FAST SORT PROGRAM

T TyPE of evaluation.
This parameter specifies equivalence or
inequivalence of the group indicator
character; that is, whether the character in
the record will be EQUAL to or NOT EQUAL to
the character specified. The actual
character entered is ':' for equal or 'H'
for not equal. There is no default
char a cter, ':' or 'II' must be gi ven if the
option is taken.

If ':' is given then if the character in the
NNNth position of an input file record is
EQUAL to the group indicator character -­
indicated by 'c' below -- then the record is
a member of the specified sort group -­
indicated by 'G' above. Otherwise, it is
not a member of the specified group.

C CHARACTER, group indicator
This parameter specifies the actual test
character for determination of a record's
membership in the sort group. The actual
character entered is any member of the
available character set -- this means any
combination of eight bits -- except 015.
There is no default character: the character
immediately following the 'T' parameter is
taken to be the 'C' parameter -- except a
015.

S OUTPUT FILE SPACE COMPRESSION. This
parameter affects whether the output file is
space compressed. If 'N' is specified,
spaces in the output file will not be
compressed. If 'c' is specified, spaces in
the output file will be compressed. The 'N'
parameter is implied by the 'I' parameter
unless the 'C' parameter is also specified.
The 'c' parameter is implied by the 'K' or
'L' parameter unless the 'I' or 'N'
parameter is also specified. If none of the
parameter s 'C', 'I', 'K', 'L', or 'N' is
specified, spaces in the output file will be
compressed if and only if the input file
contained compressed spaces.

K1 SSS-EEE

CHAPTER 1. F ASTSORT 1- 5

This is the first sort key specification. If
no key is specified, FASTSORT will assume
the entire record.
SSS is the starting key position.
EEE is the ending key position. EEE must be
greater than or equal to SSS.

On This specifies the order for the nth key
(ascending and descending are indicated by
, A' or ' D '). I f 0 mit t ed the 0 r d er used 0 n
the previous key is assumed.

Kn SSS-EEE
The nth sort key specification.

1.3 Collating Sequence File

By specifying a sequence file, the user may substitute any
collating sequence for the standard ASCII character set. The file
name contains eleven characters, eight of which are the file name
and three of which are the extension (example, EBCDIC/SEQ:DRn).
The last three characters (the extension) must be "SEQ". If the
disk drive number on which the file resides is omitted, FASTSORT
defaults to the same drive from which FASTSORT itself was loaded.
This table may be supplied by the user but must meet certain
requirements to be loaded:

1. It must be an absolute object file.
2. It must begin loading at location 027400.
3. The first eleven bytes must contain the file name and the

extension must be SEQ.
4. The table itself must begin loading at location 027400 and

occupy 256 bytes (overstoring the file name described in
3). For instance, the source for the EBCDIC sequence file
begins:

SET 027400
DC 'EBCDIC SEQ'
SET 027400
DC 0 , 1 ,2, 3 , 4 , 5 , 6 , 7 ,

1-6 FAST SORT PROGRAM

1.4 Ascending and Descending sequences

Changing the collating sequence from ascending to descending
is the same as 'reversing' the file, or placing the last first,
etc. Sorting a telephone directory in ascending sequence on name
produces the familiar order. Should it be sorted in descending
sequence, then Mr. Zyk would be first and Mr. Aardvark would be
last. The order of collation, when alphabetic, numeric, and
punctuation characters all can occur in a column together, follows
the character set order. The sequence may be specified for each
sort key. However, it need not be specified if it is the same as
the key which preceeds it. Therefore, it is possible to sort
portions of the key in ascending order and portions in descending
order.

1.5 Limited output format option

In many cases, especially when making reports, directories
etc. from the data base, it isn't necessary to have the entire
record transferred from the input file to the output file during a
sort. For instance, an entire personnel data base can be sorted
by name to produce an internal company telephone directory.
However, it is obvious that all that is needed is the name and
telephone number, NOT all the other payroll information.
Therefore, FASTSORT permits transferring only that part of the
data base desired.

The following is the generalized statement format for the
limited output specification which is entered as a second line of
parameters:

SSS[-EEE][,<DUPLICATE OF PRECEEDING>J ...

Items within square brackets [J are optional.

The following list defines the parameters which can be
specified:

SSS STARTING position within input record.
EEE ENDING position within input record.

These parameters specify the character
positions within the input record to be
copied to the output record. The EEE
specification is optional; if it is not
specified then only one character, the
character at SSS, will be copied from the
input record to the output record.

CHAPTER 1. FASTSORT 1-7

In the same manner that the key of the records is
specified by fixed column number, i.e. 1-10 for the first
ten characters, the limited output feature specifies that
part of the records to be transferred. Should the response
1-10 be given to the limited output format request, only the
first ten characters of each record will be transferred to
the output file. The limited output format specifier
operates in the same manner as the specification of multiple
discontiguous sort key fields. For instance, 1-10,50-70
would transfer thirty-one characters from each record of the
input file to the output file. The eleventh character in the
output record would be the fiftieth character of the input
record, etc.

To invoke the limited output format option, the
operator includes the 'L' parameter in the specifier list.
If and only if the L is specified during the FASTSORT call,
will there be a second question asked of the operator on the
next line:

LIMITED OUTPUT FILE FORMAT:

This question requires at least one non-trivial field
speCification. The number of field specifications is only
limited by that which can fit on the keyed in line.

Note that the output file requires proportionally less
room than the input file when limited. Often this fact can
be put to use when the disk file space is nearly exhausted
and a sort is required.

1.6 TAG file output format option

For some applications it is useful to have a data file sorted
into several different sequences. However, to have several copies
of a file on disk merely to have it in different sequences
consumes a lot of disk space, and indeed if the file is a very
large file many copies of it may not fit onto one or even four
disk packs.

This problem could be avoided if there were a way to index
into the one main file in any of several different sequences. The
index pointers could exist as a file, and the index entry for each
record in the main file would only have to be three bytes long -­
two bytes for the LRN (Logical Record Number) and one byte for the
BUFPTR (Buffer Pointer -- a pointer to the beginning of the actual

1-8 FAST SORT PROGRAM

desired record within the disk physical buffer).

FASTSORT provides for the generation of such an indexing
file, a TAG file, by the 'T' variation of the 'R' option. The
format of a TAG file is simple:

1. For each record in the input file, the TAG file will have a
three byte binary pointer to the first byte of the record.

2. The format of the pointer is:
Byte 1: MSPLRN (Most Significant Portion of LRN),
Byte 2: LSPLRN (Least Significant Portion of LRN),
Byte 3: BUFPTR (Buffer Pointer).

3. The three-byte binary pointers are blocked 83 to a physical
disk record.

4. The Physical-End-Of-Record mark is an 003 and the rest OOO's.

5. The End-Of-File mark is: beginning at the first byte in the
physical record, six OOO's, one 003, and the rest OOO's.

TAG files may be used by assembly language programs or by RPG
II (as Record Address files).

For users writing their own Assembly language code to use a
TAG file, it is important to know that the MSPLRN and LSPLRN are
together a 16-bit binary pointer to the DOS LOGICAL RECORD NUMBER
of the input file, as opposed to the USER LOGICAL RECORD NUMBER.
The difference is this: The DOS LOGICAL RECORD NUMBER of a file
points to the actual Nth record (starting with zero, the primary
RIB) in the file, whereas the USER LOGICAL RECORD NUMBER of a file
points to the Nth DATA RECORD (starting with the zeroth data
record) in the fil~Thus a DOS LRN of zero points to the very
first record of the file, which is the master copy of the RIB, a
DOS LRN of one points to the second record of the file which is
the RIB copy, a DOS LRN of two points to the third record of the
file (which is the FIRST DATA RECORD of the file and the USER
LOGICAL RECORD NUMBER zero), and so on. The LRN given in the TAG
file can NOT be used with the POSIT$ routine unless it is biased
by -2. It is much easier to simply place the LRN from the TAG
file directly into the LOGICAL FILE TABLE ENTRY for the file that
is indexed.

The case with the BUFFER POINTER byte is similar to the LRN
pointer bytes. The BUFFER POINTER byte from the tag file is the
DOS BUFFER POINTER as opposed to the USER BUFFER POINTER. The
difference is this: the DOS BUFFER POINTER points to the actual

CHAPTER 1. F ASTSORT 1-9

Nth byte of a disk buffer (starting with zero), whereas the USER
BUFFER POINTER points to the Nth DATA BYTE in the disk buffer; the
beginning (zeroth) DATA BYTE in the buffer is the fourth byte in
the buffer; the first three bytes are reserved for the DOS. Thus,
a DOS BUFPTR of zero points to the very first byte in the buffer,
which is the PFN (Physical File Number) of the file, a DOS BUFPTR
of one points to the second byte in the buffer, which is the DOS
LSPLRN, a DOS BUFPTR of two points to the third byte in the
buffer, which is the DOS MSPLRN, a DOS BUFPTR of three points to
the fourth byte of the bu ffer (whi ch is the ve ry firs t DAT A BYT E
in the buffer), and so on. The BUFPTR given in the TAG file can
NOT be used with the GETR$ or PUTR$ routines unless it is biased
by -3. It is much easier to simply place the BUFPTR from the TAG
file directly into the LOGICAL FILE TABLE ENTRY for the file that
is indexed.

If the TAG file option is specified then the LIMITED OUTPUT
FILE FORMAT can NOT be specified.

If a TAG file is generated when the Ip I (PRIMARY SORT) option
is specified then TAG file pointers will be generated only to the
PRIMARY records in the input file.

If a TAG file is generated when the'S' (SECONDARY SORT)
option is specified then TAG file pointers will be generated only
to the SECONDARY records in the input file.

1.7 KEYTAG file output format option

Requesting a Key tag file output will cause a file to be
created. This GEDIT- compatible text file contains the record
pointers and the key. The record pointers (first 8 bytes of the
record) consist of a 5 byte logical record number (range 0 to
65 ,535) and a 3 byte buffer address. The record number is the
user logical record, that is, zero points to the first data
sector. Therefore, the user logical record number, converted to
binary, may be used with the POSIT$ routine. The buffer address
is the modified buffer pointer, that is, one points to the first
data byte in a sector. It may be used by the GETR$ routine if
bi ased by -1.

1-10 FAST SORT PROGRAM

1.8 Disk space requirements

FASTSORT uses a temporary file (SORTMRG/SYS) during a sort.
This file is deleted at the end of the sort. The size of this
file will usually be approximately 10 to 50 percent larger than
the output file, depending on the record size and the sort
options.

1.9 Using CHAIN to cause a merge

Consider a situation wherein a system has a master file
called 'MASTER' and a file of records to be added, in sequence, to
the master file called 'ADDFILE'. To merge these two files in
sorted sequence at the end of each day would normally require a
sequence of keyed in operations which are somewhat complicated and
error prone. CHAIN can cause an effective MERGE and assign it a
single name as follows:

SAPP MASTER,ADDFILE,MASTER
FASTSORT MASTER,SCRATCH; 1-20
KILL MASTER/TXT
NAME SCRATCH/TXT,MASTER/TXT

Note that the procedure:
1) appends the ADDFILE to the MASTER file.
2) Sorts the extended MASTER file into a SCRATCH file.
3&4) Renames the SCRATCH file as the new MASTER file. Thus, it is
apparent that a merge can be effectively achieved using FASTSORT
and by using chain to pre-define the procedure.

1.10 Incompatibilities with the old sort (SORT)

1. FASTSORT will only run on a processor with the 5500
instruction set and at least 24K bytes of user memory.

2. If the maximum input record length is longer than 80
characters (1000 characters if the 'K' or 'T' parameter is
specified) and longer than the first record, FASTSORT
requires the user to specify the length with the Mn
parameter.

3. The temporary file can grow much larger under FASTSORT.
This file will usually be a little larger than the output
file. If no drive is specified for this file, it will be
placed on the same drive as the output file. SORT tried
to place its temporary files on the optimum drive, but
often picked a write protected drive, or one with

CHAPTER 1. FASTSORT 1 - 1 1

insufficient space.
4. The limited output specification is restricted to columns

of the input record. There is no hardcopy output
facility.

5. The assembly language linkage to the sort is available for
compatibility, but programs using this linkage must not
have destroyed the DOS function loader (07400-07717). It
is recommended that programs call FASTSORT using the
recursive CHAIN and the feature whereby a program can
supply the ne xt command line to EXIT$.

6. A tag sort on secondary records will yield tags to the
secondary records only.

7. Under SORT, a secondary sort with the first key descending
reversed the order of the primary blocks. Under FASTSORT,
the blocks always remain in the original order.

8. FASTSORT may produce different results if the input file
contains both compressed spaces and uncompressed multiple
spaces. See the description of the'S' parameter for the
rules under FASTSORT. With SORT, each output record was
an exact binary copy of the corresponding input record if
none of the parameters 'C', 'I', 'K', 'L', or 'N' was
specified.

9. If an attempt is made to run FASTSORT on a 2200, FASTSORT
will automatically load and run SORT if it is present.

1-12 FAST SORT PROGRAM

Manual Name __ _

Manual Number ______________________________________ __

READER'S COMMENTS

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for
improvement.

Name __ Date ________________________________ __

Organization __ _

Street ___ __

City _______________________ State _______ Zip Code ______________ _

All comments and suggestions become the property of Datapoint.

Fold Here

Fold Here and Staple

BUSINESS REPLY MAIL
No Postage Necessary if mailed in the United States

Postage will be paid by:

DATAPOINT CORPORATION
DIRECTOR OF SOFTWARE SUPPORT
MS - N60
8550 DATAPOINT DRIVE
SAN ANTONIO, TEXAS 78284

First Class
Perr:nit
5774

San Antonio
Texas

