
COBOL LANGUAGE
SPECIFICATIONS

" .

COBOL
User's Guide

Version 1

August. 1976

Model Code No. 50233

DATAPOINT CORPORATION'

The leader in dispersed data processin3~M

COPYRIGHP 1977 BY DATAPOINT CORPORATION. PRINTED IN U.S.A

COBOL LANGUAGE SPECIFICATIONS
COBOL

User's Guide

Version 1

August, 1976

Model Code No. 50233

DATAPOINT CORPORATION

D ATE: Oc to b e r 1 2, 1 976

Erra ta to:

Reference:

Change:

Reference:

Add:

He ference :

Change:

Change:

From:

To:

COBOL MANUAL
Version 1
August, 1976
Model Code 50233

Page 1-1, Section 1~2

CLUASES to CLAUSES

Page 6-13, Section 6~3

(LIB version 2~1 or later) to end of third
paragragh in section~

Appendix C, page C-1

COBOL <sf>{,<cf>}{,clf}{,rlf}{;options} to

COBOL <sf>{,<cf>}{,rlf}{,clf}{;options}

First sentence in first paragraph of Files
section:

<sf> is the name of the source file; <cf>, the
final command object file; <clf>, a user
relocatable library file; <rlf>, the COpy
library file ...

<sf> is the name of source file; <cf>, the final
command object file; <rlf>, a user relocatable
library file; <clf>, the COpy library file~

0725 DATAPOINT DRIVE SAN ANTONIO. TEXAS 78284 - (512) 690-7000

DATAPOINT CORPORATION

D ATE: Oc to b e r 1 2, 1 976

Erra ta to:

Reference:

COBOL HANUAL
Version 1
August, 1976
Model Code 50233

Add: New paragraph following 3rd paragraph:

Re ference:

When the called subprogram is an assembler
language program, the addresses of the
identifiers specified in the USING list are put
together into an argument list in the COBOL
program and the subroutine is called with (HL)
pointing to this argument list. It is up to the
programmer to ensure that the number and type of
arguments agree between the calling and called
routines .•

Page 5-7, Section 5~3

Add: under Formation and Evaluation Rules after item (5):

(6) If the exponent involved in the
exponentiation operation contains no decimal
point, all values for the exponent and the base
are valid. If the exponent contains a decimal
point, all values for the exponent are valid;
however, only non-negative values for the base
are valid in this context~

0725 DATAPOINT DRIVE SAN ANTONIO, TEXAS 78284 (512) 690-7000

DATAPOINT CORPORATION

D ATE : Oc to b e r 1 2, 1 9 7 6

Erra ta to:

Reference:

COBOL MANUAL
Version 1
August, 1976
Model Code 50233

New Appendix

Add: Appendix F~ COBOL System Overlay Functions

Parser Overlays

BA - Parser initializing Overlay
BC - Identification Division Overlay
BE - Environment Division Overlay
BG - Data Division Parse Overlay
BI - Procedure Division Parser Pass
BK - Main Table re-organization
BM - Procedure Division Parser Pass 2
BQ - Parser Termination Overlay

Error message generation

BZ/OA/ZA - Error Message Generation

Symbol Table Overlays

DA - Node Linking Phase
DC - Picture Analysis Phase
DE - Size Computation Phase
DG - Procedure Division Name Generation Phase

Merge Overlays

FA - Build Symbol Table Chains
FC - File Attribute Merge
FK - Data Division Attribute Merge
FM - Build 110 table

Q725 DATAPOINT DRIVE SAN ANTONIO, TEXAS 78284 (512) 690-7000

Translation Ovelays

KA - Control Translation
KD - Arithmetic Translation
KG - I/O Translation

Index Generation/Optimization Overlay

OE - Subscript/Index Generation and Optimization

PIT Generation Overlays

PA - Parameter PIT Generation
PC - Data Division PIT Generator
PE - Literal Allocation
PG - FDB PIT Generation
PK - Procedure Division PIT Generator
PM - GET PIT Generation
PO - PUT PIT Generation
PP - UPDATE PIT Generation
PW - Generate Prologues & Sort Segments
PZ - Subscript Finalization

Object Program Generation Overlays

WA - OPG initialization
WC - OPG Pass 1
WE - OPG Pass 2
WG - OPG Listing Pass
WI/WJ - Recycle OPG
WM - Generate /SYM file
WO - Generate XREF sort file
WQ - Sort and print XREF
WX - Generate TXC file

Termination Overlays

ZW - Error Messages Lister
ZZ - Termination Phase

DATE: January 24, 1977

Addendum to: Cobol User's Guide
Version 1
Model 1150233

Add: Sections 6.6,6.6.1, 6.7,6.7.1,6.7.2,6.7.3,
6.7.4, and Appendix G.

Section 6.6 DOS Command-line Interface Feature

The DOS Command-line interface featur~
gives the COBOL programmer access to the DOS
command line (MCR$).

Section 6.6.1 The COMMAND-LINE Special Variable

Pre-defined in every COBOL program is a
variable named COBOL-LINE which has the
characteristics of a 79 character alphanumeric
string i.e., PICTURE X(79). This variable does
not occupy storage but simply defines the
interface to the programmer.

COMMAND-LINE can be used in any place that
a regular alphanumeric variable can be used
e.g., MOVE, DISPLAY, or ACCEPT, statements.
When the COBOL program starts, COMMAND-LINE
contains the information entered by the user to
the DOS command interpretor. Information moved
into COMMAND-LINE will be there after the
program completes, unless an abort occurs during
execution.

Section 6.7 SPECIAL 1/0 Feature

The SPECIAL 1/0 feature allows the COBOL
programmer to interface to unsupported 1/0
devices using the standard 1/0 statements.

Section 6.7.1 Environment Division Considerations

For files that are maintained on
unsupported I/O devices, the device
specification in the ENVIRONMENT DIVISION has
the form .

SELECT <filename> ASSIGN TO
SPECIAL -<rtnname>[-<integer>]

<rtnname> is the name of a SNAP2 program that
will perform the operations; <integer> is the
number of bytes to be reserved in the File
Descriptor Block (FDB) for the file. If
<integer> is not specified, no space will be
reserved.

Section 6.7.2 Procedure Division Considerations

OPE~, CLOSE, READ, and WRITE statements may
be used with SPECIAL files.

Section 6.7.3 I/O Subroutine

Associated with each SPECIAL file is a
SNAP2 program to perform the actual operations;
more than one file can be associated with a
single program. This program is called once for
every OPEN, CLOSE, READ, or WRITE operation.
The address of the File Descriptor Block is
passed in (HL) and a code specifying what
operation is to be performed is passed in (A).
The file IFDBDEF/TXT, which defines the format
of a File Descriptor Block, contains the
definitions or these codes.

Section 6.7.4 Reserve Area

In each File Descriptor Block associated
with a SPECIAL file is a block of memory called
the Reserve Area. The size of this area is
specified in the SELECT clause for the file.
Initially, the area. contains binary zeros; the
area is supplied so~ely for the use of the I/O
sub-routine and its contents are not interogated
or modified by the COBOL runtime system.

For Appendix G. see printer listing.

PREFACE

Datapoint COBOL adheres to the American National Standard and

contains the following modules (See American National Standard

x3.23 1900):

NUCLEUS, LEVEL 1

TABLE FACILITIES, LEVEL 2

SEWUENTIAL ACCESS, LEVEL

RANDOM ACCESS, LEVEL 1

SORTING FACILITIES, LEVEL 2

SEGMENTATION, LEVEL

LIBRARY FACILITIES, LEVEL 2

AND: Selected Features from Level 2 of Nucleus, Sequential

Access and Random Access:

NAME QUALIFICATION

FULL CONTINUATION FOR WORDS AND LITERALS

COMPLETE FIGURATIVE CONSTANTS

ARITHMETIC EXPRESSIONS

EXTENDED FILE OPTIONS

i

AND: Non-ANSI Extensions:

GEDIT FORMAT FILES

CASSETTES

DATABUS AND EBCDIC NUMERIC FORMATS

INDEXED SEQUENTIAL FILE ACCESS

CALLING PRE-COMPILED SUB-PROGRAMS

DEBUGGING FACILITIES

ii

Acknowledgment

"Any organization interested in using the COBOL specifications as

the basis for an instruction manual or for any other purpose is

free to do so. However, all such organizations are requested to

reproduce this section as part of the introduction to the

document. Those using a short passage, as in a book review, are

requested to mention 'COBOL' in acknowledgment of the source, but

need not quote this entire section.

"COBOL is an industry language and is not the property of any

company or group of companies, or of any organization or group of

organizations.

"No warranty, expressed or implied, is made by any contributor or

by the COBOL Committee as to the accuracy and functioning of the

programming system and language. Moreover, no responsibility is

assumed by any contributor, or by the committee, in connection

therewith.

iii

"Procedures have been established for the maintenance of COBOL.

Inquiries concerning the procedures for proposing changes should

be directed to the Executive Committee of the Conference on Data

System Languages.

"The authors and copyright holders of the copyrighted material

used herein:

FLOW-MATIC (Trademark of'Sperry Rand Corporation), Programming for

the UNIVAC I and II, Data Automation Systems copyrighted

1958, 1959, by Sperry Rand Corporation; IBM Commercial

Translator Form No. F28-8013, copyrighted 1959 by IBM; FACT,

DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell.

have specifically authorized the use of this material in

whole, or in part, in the COBOL specifications. Such

authorization extends to the reproduction and use of COBOL

specifications in programming manuals or similar publications."

iv

TABLE OF CONTENTS

1. OVERALL LANGUAGE CONSIDERATIONS
1.1 Introduction
1.2 Notation Used in Formats and Rules

1 .2. 1 Words
1.2.2 Level Numbers
1.2.3 Brackets, Braces, and the Alternator
1.2.4 The Ellipsis
1.2.5 Format Punctuation

1.3 Language Concepts
1.3.1 Cobol Character Set
1.3.2 Characters Used in Words
1.3.3 punctuation Character
1.3.4 Editing Characters
1.3.5 Characters Used in Arithmetic Expressions
1.3.6 Characters Used in Relations
1.3.1 Separators

1.4 Character String
1.4.1 Words
1.4.2 Data Name
1.4.3 Condition-Name
1.4.4 Procedure-Name
1.4.5 Figurative Constants
1.4.6 Special Registers
1.4.1 Mnemonic Names
1.4.8 Reserved Words
1.4.9 Literals
1.4.10 PICTURE Character String
1.4.11 NOTE Character String

1.5 Concept of Computer Independent Data Description
1.5.1 Logical Record and File Concept
1.5.2 Concept of Levels
1.5.3 Concept of Data Classes
1.5.4 Character Representation and Radix
1.5.5 Algebraic Signs
1.5.6 Overall Structure of a COBOL Source Program
1.5.1 Uniqueness of Data Reference

1.5.1.1 Qualification
1.5.1.2 Subscripting
1.5.1.3 Indexing

1.6 Reference Format
1.6.1 Reference Format Representation
1.6.2 Division, Section, and Paragraph Formats
1.6.3 Data Division Entries

v

page
1-1
1-1
1-1
1-2
1-2
1-3
1-3
1-3
1-4
1-4
1-5
1-5
1-6
1-6
1-6
1-1
1-1
1-1
1-1
1-b
1-b
1-b

1-10
1-11
1-12
1-12
1-13
1-14
1-14
1-14
1-15
1-11
1-11
1-11
1-18
1-19
1-20
1-21
1-24
1-26
1-26
1-28
1-30

2. IDENTIFICATION DIVISION 2-1
2.1 Structure 2-1
2.2 The PROGRAM-ID Paragraph 2-2

3. ENVIRONMENT DIVISION 3-1
3.1 Structure 3-1
3.2 Configuration Section 3-1

3.2.1 The SOURCE-COMPUTER Paragraph 3-2
3.2.2 The OBJECT-COMPUTER Paragraph 3-2
3.2.3 The SPECIAL-NAMES Paragraph 3-2

3.3 The Input-Output Section 3-5
3.3.1 The FILE-CONTROL Paragraph 3-5
3.3.2 Tne SELECT Clause 3-6
3.3.3 The ASSIGN Clause 3-6
3.3.4 The RESERVE Clause 3-7
3.3.5 The FILE LIMIT Clause 3-7
3.3.6 the ACCESS MODE Clause 3-7
3.3.7 The PROCESSING MODE Clause 3-7
3.3.8 The ACTUAL KEY Clause 3-7
3.3.9 The NOMINAL KEY Clause 3-d
3.3.10 The RECORD KEY Clause 3-8

3.4 The 1-0 CONTROL Paragraph 3-d
3.4.1 The RERUN Clause 3-b
3.4.2 The SAME AREA Clause 3-9
3.4.3 The APPLY Clause 3-9

4. DATA DIVISION 4-1
4.1 File Section 4-2

4.1.1 The Complete File Description Entry Skeleton 4-3
4.1.2 Tne BLOCK CONTAINS Clause 4-3
4.1.3 The DATA RECORDS Clause 4-4
4.1.4 The LABEL RECORDS Clause 4-4
4.1.5 The LINAGE Clause 4-4
4.1.6 The RECORD CONTAINS Clause 4-5
4.1.7 The VALUE OF Clause 4-6

4.2 Working-Storage Section 4-8
4.2.1 Noncontiguous Working-Storage 4-8
4.2.2 Working-Storage Records 4-8
4.2.3 Initial Values 4-8
4.2.4 The Skeletal Format of the Working-Storage Section 4-9

4.3 Linkage Section 4-10
4.4 Data Description 4-10

4.4.1 The Complete Data Description Entry Skeleton 4-11
4.4.2 Level-Number 4-15
4.4.3 The data-name or FILLER Clause 4-15
4.4.4 The REDEFINES Clause 4-16
4.4.5 The BLANK WHEN ZERO Clause 4-16

vi

4.4.6 The J~STIFIED Clause
4.4.7 The PICTURE Clause
4.4.8 The S1NCHHONIZED Clause
4.4.9 The USAGE Clause
4.4.10 The VALU~ Clause

5. PROCEDURE DIVISION
5.1 Procedure Division Structure
5.2 Statements and Sentences

5.2.1 Conditional Statements and Sentences
5.2.2 Imperative Statements and Sentences
5.2.3 Compiler Directing Statements and Sentences

5.3 Arithmetic Expressions
5.4 Conditions

5.4.1 Relation Condition
5.4.2 Sign Condition
5.4.3 Class Condition
5.4.4 Condition Name Condition
5.4.5 Switch Status Conditon
5.4.6 Evaluation Rules for Conditions

5.5 Conditioal Statements
5.5.1 The IF Statement

5.6 Arithmetic Statements
5.6.1 The GIVING Option
5.6.2 The ROUNDED Option
5.b.3 The SIZE ERROR Option
5.6.4 Overlapping Operands
5.6.5 The ADD Statement
5.6.6 The COMPUTE Statement
5.b.7 The DIVIDE Statement
5.6.8 The MULTIPL1 statement
5.6.9 The SUBTRACT Statement

5.7 Procedure Branching Statements
5.7.1 The GO TO Statement
5.7.2 The ALTER Statement
5.7.3 The PERFORM Statement
5.7.4 The STOP Statement
5.7.5 The EXIT Statement

5.b Data Manipulation Statements
5.8.1 The MOVE Statement
5.b.2 The EXAMINE Statement

5.9 Input-Output Statements
5.9.1 The OPEN Statement
5.9.2 The START Statement
5.9.3 The SEEK Statement
5.9.4 The READ Statement
5.9.5 The WHITE Statement
5.9.6 'The REWRITE; Statement

vii

4-17
4-18
4-29
4-30
4-32

5-1
5-2
5-2
5-2
5-3
5-4
5-5
5-7
5-t5

5-10
5-10
5-11
5-11
5-11
5-12
5-12
5-13
5-13
5-13
5-14
5-14
5-14
5-15
5-16
5-17
5-18
5-19
5-19
5-20
5-21
5-28
5-29
5-30
5-30
5-32
5-33
5-33
5-34
5-34
5-35
5-36
5-38

5.9.7 The ACCEPT Statement 5-39
5.9.8 The DISPLAY Statement 5-40
5.9.9 The CLOSE Statement 5-40

5.10 Table Manipulating Statements 5-43
5.11 Program Linkage Statement 5-43
5.12 Compiler Directing Statements 5-43

5.12.1 The ENTER Statement 5-43
5.12.2 The NOTE Sentence 5-44

b. SPECIAL FEATURES 6-1
6.1 Table Handling Facility 6-1

6.1.1 Data Division Considerstions 6-1
6.1.1.1 The OCCURS Clause 6-1
6.1.1.2 The USAGE Clause 6-2

6.1.2 Procedure Division Considerations 6-3
6.1.2.1 Relation Condition 6-3
b.1.2.2 Overlapping Operands 6-3
6.1.2.3 The SET Statement b-3

6.2 The Sort Facility 6-5
6.2.1 Environment Division Considerations 6-5

6.2.1.1 The FILE-CONTROL Paragraph 6-5
6.2.1.2 The I-a-CONTROL Paragraph 6-6

6.2.2 Data Division Considerations 6-7
6.2.2.1 The Sort File Description - Complete Entry

Skeleton 6-7
6.2.3 Procedure Division Considerations 6-d

6.2.3~1 The SORT Statement 6-8
6.2.3.2 The RELEASE Statement 6-11
6.2.3.3 The RETURN Statement 6-12

6.3 The COBOL Source Library Feature 6-13
6.3.1 The COpy Statement 6-13
6.3.2 Valid Locations for the COpy Statement 6-14

6.4 The Sub-Program Feature 6-15
6.4.1 The CALL Statement 6-15
6.4.2 The USING Option 6-16
6.4.3 The EXIT PROGRAM Statement 6-17

6.5 The Segmentation Feature 6-17
6.5.1 Segment Classification 6-18
6.5.2 Structure of Program Segments 6-18
6.5.3 Restrictions on Program Flow 6-19

Appendix A. COMPOSITE LANGUAGE SKELETON

Appendix B. ERROR MESSAGES

Appendix C. COMPILATION PROCEDURE

Appendix D. THE RUNTIME DEBUGGER

viii

Appendix E. RESERVED WORDS

ix

CHAPTER 1~ OVERALL LANGUAGE CONSIDERATIONS

1~1 Introduction

This manual contains specifications for the Datapoint subset
of the American National Standard COBOL~ COBOL, the common
business-oriented language, is designed for solving business
problems using an English-like programming language~ The
elementary components of a COBOL program are words and other
character strings~ These components are combined into entities
called entries and sentences~ These entries and sentences are
then combined into the paragraphs, sections, and divisions of a
COBOL program~ In this manual we define the format and meaning of
each of these entities~

This chapter specifies the general features of the COBOL language,
and defines the general concepts used in COBOL~

1~2 Notation Used in Formats and Rules

A General Format is the specific arrangement of the elements
of a clause or a statement~ A clause or a statement consists of
elements~ Elements consist of upper case words, lower case words,
level numbers, brackets, braces, the alternator, connectives and
special characters~ Throughout this manual a format is shown
adjacent to information defining the clause or statement~ When
more than one specific arrangement is permitted, the general
format is separated into numbered formats~ CLAUSES MUST BE
WRITTEN IN THE SEQUENCE GIVEN IN THE GENERAL FORMATS~ (Clauses
that are optional must appear in the sequence shown if they are
used~) In certain cases, stated explicitly in the rules
associated with a given format, the clauses may appear in
sequences other than that shown~ Applications, requirements or
restrictions are shown as rules~

CHAPTER 1. OVERALL LANGUAGE CONSIDERATIONS 1-1

1.2.1 Words

All underlined upper-case words are called key words and are
required when the functions of wh~ch they are a part are used.
Upper-case words which are not underlined are optional to the user
and mayor may not be present in the source program. Upper-case
words, whether underlined or not, must be spelled correctly.

Lower-case words, in a general format, are generic terms used to
represent COBOL words that must be supplied by the user. Except
for the list of words following, such lower-case words occuring in
a general format are replaced, in an actual program, by a single
COBOL word:

a. statement
b. imperative-statement
c. arithmetic-expression
d. character-string
e. comment-entry
f. condition
g. literal

These exceptions represent combinations of COBOL words constructed
in accordance with the definitions specified in Section 5.2 of the
Procedure Division for statement, and imperative-statement.
Condition is defined in Section 5.4 of the Procedure Division.
Arithmetic expression is defined in Section 5.3 of the Procedure
Division. Definition for the term character-string is given in
Section 4.4.8 of the Data Division. Comment-entry is defined in
Section 2.1 of the Identification Division. Literal is defined in
Section 1.4.9 of this chapter.

Where generic terms are repeated in a general format, a number or
letter appendage to the term serves to identify that term for
explanation or discussion.

1.2.2 Level Numbers

When specific level-numbers appear in data descriptions entry
formats, those specific level-numbers are required when such
entries are used in a COBOL program.

1-2 COBOL LANGUAGE SPECIFICATIONS

1.2.3 Brackets, Braces, and the Alternator

when a portion of a general format is enclosed in brackets,
[], that portion maybe included or omitted at the user's choice.
Braces, {}, enclosing a portion of a general format means a
selection of one of the options contained within the braces must
be made. In both cases, the alternatives to be selected are
separated from each other by the alternator, :. When brackets or
braces enclose a portion of a format but only one possibility is
shown, the function of the brackets or braces is to delimit that
portion of the format to which a following ellipsis applies (see
The Ellipsis, below).

1.2.4 The Ellipsis

In text, the ellipsis (..•) may show the omission of a
portion of a source program. This meaning becomes apparent in
context.

In the general format, the ellipsis represents the position at
which repetition may occur at the user's option. The portion of
the format that may be repeated is determined as follows:

Given in a clause or statement format, scanning right to left,
determine the] or } immediately to the left of the ... ; continue
scanning right to left and determine the logically matching [or
{; the ... applies to the words between the determined pair of
delimiters.

1.2.5 Format Punctuation

The punctuation characters, comma and semicolon, are shown in
some formats. However, a semicolon must not appear immediately
preceding the first clause of an entry or paragraph. The use of
these punctuation characters for each division is as follo~s:

Identification Division.

Although not expressly shown in the formats within this
division, the comma and semicolon may be used within the
comment-entry. The paragraph itself must terminate with a

CHAPTER 1. OVERALL LANGUAGE CONSIDERATIONS 1-3

period followed by a space.

Environment Division. Where a comma is shown in the formats,
it is optional and may be included or omitted by the user.
Where a semicolon is shown in.the formats, it is optional and
may be included or omitted by the user. The paragraph itself
must terminate with a period followed by a space.

Data Division. Where a comma is shown in the formats, it is
optional and may be included or omitted by the user. Where a
semicolon is shown in the formats, it is optional and may be
included or omitted by the user. The paragraph itself must
terminate with a period followed by a space.

Procedure Division. A comma used between parentheses for
subscripting or indexing.is required. Elsewhere in the
formats, it may be omitted. A comma must not appear
immediately following the first word of a statement. If
desired, a semicolon can be used between statements.

Use of Certain Special Characters in Formats:

The characters '+', '-', '>', '<', ':', when appearing in formats,
although not underlined, are required when such formats are used.

1.3 Language Concepts

1.3.1 Cobol Character Set

The complete Datapoint COBOL character set consists of the 51
characters listed below:

1-4 COBOL LANGUAGE SPECIFICATIONS

Character
0,1, ••• ,9
A,B, ••• ,Z

+

*
/
=
$

"
(
)

>
<

Meaning
digit
letter
space (blank)
plus sign
minus sign (hyphen)
asterisk
stroke (virgule, slash)
equal sign (equals)
currency sign
comma (decimal point)
semicolon
period (decimal point)
quotation mark
left parenthesis
right parenthesis
greater than symbol
less than symbol

1.3.2 Characters Used in Words

A word is a sequence of not more than 30 characters. Each
character is selected from the set 'A', 'B', 'C', ... , 'Z', '0',
'1', ... , '9', '-', except that the '-' may not appear as the
first or last character in a word. A word is delimited by
separators.

1.3.3 Punctuation Character

The following characters are used for punctuation:

Character

"
(
)

CHAPTER 1.

Meaning
comma
semicolon
period
quotation mark
left parenthesis
right parenthesis

OVERALL LANGUAGE CONSIDERA~IONS 1-5

1.3.4 Editing Characters

Editing characters are single characters or fixed
two-character combinations belonging to the following set:

Character
B
o
+

CR
DB
Z
it

$

Meaning
space
zero
plus
minus
credit
debit
zero suppress
check protect
currency sign
comma (decimal point)
period (decimal pOint)

1.3.5 Characters Used in Arithmetic Expressions

The following character combinations are used in arithmetic
expressions:

Character
+

*
/
**

Meaning
addition
subtraction
multiplication
division
exponentiation

1.3.6 Characters Used in Relations

The following characters are used in relations:

Character
<
=
>

Meaning
less than
equal to
greater than

1-6 COBOL LANGUAGE SPECIFICATIONS

1.3.1 Separators

The space and the punctuation characters, when not contained
within quotation marks, are separators. Where a space is used,
more than one may be used, except for the restrictions set forth
in this chapter.

A character-string is delimited on the right by a space, period,
right parenthesis, comma, or semicolon.

The use of punctuation characters in connection with
character-strings is defined as follows:

(1) A space must follow a period, comma and semicolon when any of
these punctuation characters are used to delimit a
character-string.

(2) A space must neither immediately follow a left parenthesis nor
immediately precede a right parenthesis.

1.4 Character String

A character string is a sequence of contiguous characters
which form a literal, a word, a PICTURE character-string, or a
NOTE character-string.

1.4.1 Words

A word is a sequence of not more than 30 characters. Each
character is selected from the set 'A', 'B', ... , 'Z', '0', '1',
... , '9', '-', except that the '-' may not appear as the first or
last character in a word.

1.4.2 Data Name

A data-name is a word that contains at least one alphabetic
character and that names an entry in the Data Division, including
file description entries.

CHAPTER 1. OVERALL LANGUAGE CONSIDERATIONS 1-1

1.4.3 Condition-Name

A condition-name is a word with at least one alphabetic
character, which is assigned to a specific value within the
complete set of values that a data item may assume. The data item
itself is called a conditional variable. Each condition-name must
be unique, or be made unique through qualification. A conditional
variable may be used as a qualifier for any of its
condition-names. If references to a conditional variable require
indexing, subscripting or qualification, then its condition-names
also require the same combination of indexing, subscripting or
qualification (see Uniqueness of Data Reference, Section 1.5.7).

In addition to being described 'in the Data Division,
condition-names may also be defined in the SPECIAL-NAMES paragraph
within the Environment Division, where a condition-name may be
given to the ON status or OFF status, or both, of hardware or
operating system conditions.

A condition-name is used in conditions as an abbreviation for the
relation condition; this relation condition posits that the
associated conditional variable is equal to the value to which
that condition-name is assigned.

1.4.4 Procedure-Name

A procedure-name is a word which is used to name a paragraph
or section in the Procedure Division. Procedure-names composed
only of the digits '0' through '9' are equivalent if, and only if,
they are composed of the same number of digits and have the same
value.

1.4.5 Figurative Constants

Certain constants, called figurative constants, have been
assigned fixed data-names. These data-names must not be bounded
by quotation marks when used as figurative constants. The
singular and plural forms of figurative constants are equivalent
and may be used interchangeably.

The fixed data-names and their meanings are as follows:

1-~ COBOL LANGUAGE SPECIFICATIONS

ZERO
ZEROS
ZEROES

SPACE
SPACES

HIGH-VALUE
HIGH-VALUES

LOW-VALUE
LOW-VALUES

QUOTE
QUOTES

ALL literal

Represents the value 0, or one or
more of the character 0, depending
on context.

Represents one or more blanks or
spaces.

Represents one or more of the
character that has the highest value in
the collating sequence, namely octal 0377.

Represents one or more of the
character that has the lowest value in the
collating sequence, namely octal 0.

Represents one or more occurrences
of the quotation mark character. The word
QUOTE cannot be used in place of a
quotation mark in a source program to
bound a nonnumeric literal.

Represents one or more of the string of
characters comprising the literal. The
literal must be either a nonnumeric
literal or a figurative constant other
than ALL literal. When a figurative
constant is used, the word ALL is
redundant and is used for readibility
only.

When a figurative constant represents a
string of one or more characters, the length of the string is
determined by the compiler from context according to the following
rules:

(1) When a figurative constant is associated with another data
item, as when the figurative constant is moved to or compared with
another data item, the string of characters specified by the
figurative constant is repeated character by character on the
right until the size of the resultant string is equal to the size
in characters of the associated data item.
(2) When a figurative constant is not associated with another data
item, as when the figurative constant appears in a DISPLAY,
EXAMINE, or STOP statement, the length of the string is one
character. The figurative constant ALL literal may not be used
with DISPLAY, EXAMINE, or STOP.

A figurative constant can be used any place where a literal

CHAPTER 1. OVERALL LANGUAGE CONSIDERATIONS 1-9

appears in -the format, except that whenever the literal is
restricted to having only numeric characters in it, the only
figurative constant permitted is ZERO (ZEROS, ZEROES).

1.4.6 Special Registers

Special registers are data items generated by the compiler to
support the use of certain COBOL features. Seven such special
registers may be generated by the Datapoint COBOL compiler.

(1) TALLY. The word TALLY is the name of a special register whose
implicit description is that of an integer of five digits,
without an operational sign, and whose implicit USAGE is
computational. The primary use of the TALLY register is to
hold information produced by the EXAMINE statement. The word
TALLY may also be used as a data-name wherever an elementary
data item of integral value may appear.

(2) LINAGE-COUNTER. The word LINAGE-COUNTER is the name of a
special register generated for each FD with a LINAGE clause.
The implicit description of a LINAGE-COUNTER is that of an
integer without an operational sign whose implicit USAGE is
computational and whose size is sufficient to hold the maximum
number of lines specified in the LINAGE clause. A
LINAGE-COUNTER may not be explicitly modified by the COBOL
program.

The value of a LINAGE-COUNTER represents the current line
number on a logical page. This value is set to one when the
file is opened and reset to one after advancing (to the top of
the) page. When a WRITE statement to a file with a LINAGE
clause is executed, the value of the LINAGE-COUNTER is
incremented either by the value specified in the ADVANCING
option or by one if, no ADVANCING option is specified.

See The LINAGE Clause, Section 4.1.5, and The WRITE Statement,
Section 5.9.5.

(3) DATE. The word DATE is the name of a special register which
holds the date. Its implicit description is that of an
integer of six digits without an operational sign, and whose
implicit USAGE is computational. The value of a date is
represented by two digits for the year in the century, two for
the month in the year, and two for the day of the month. The
value of DATE may be made accessible to a COBOL program by
executing the ACCEPT DATE statement. (See The ACCEPT

1-10 COBOL LANGUAGE SPECIFICATIONS

Statement, Section 5.9.7.)

(4) FILE-NAME. The word FILE-NAME is the name of a special
register generated for each FD assigned to a disk file. Its
implicit description is that of a group item containing the
three elementary items - MAIN-NAME, EXTENSION, and
DRIVE-NUMBER. The FILE-NAME of a disk file can be set by a
program to specify the exact file to open before it is opened,
and can be read after a file is opened for use in headings,
name verification, etc. The three components of a FILE-NAME
correspond to the DOS components of a name.

(5) MAIN-NAME. The word MAIN-NAME is the name of a special
register generated as the first component ofa FILE-NAME. Its
implicit description is that of an alphanumeric item of eight
characters whose implicit USAGE is display. This register
holds the main name portion of a DOS disk file name.

(6) EXTENSION. The word EXTENSION is the name of a special
register generated as the second component of a FILE-NAME.
Its implicit description is that of an alphanumeric item of
three characters whose implicit USAGE is display. This
register holds the extension portion of a DOS disk file name.

(7) DRIVE-NUMBER. The word DRIVE-NUMBER is the name of a special
register generated as the third component of a FILE-NAME. Its
implicit description is that of an alphanumeric item of two
characters whose implicit USAGE is display. This register
holds either two digits for an explicit DOS drive number or
two spaces for an implicit DOS drive specification (i.e., all
drives).

1.4.7 Mnemonic Names

Mnemonic names are the means of relating system-names with
problem-oriented names, and, also, the status of software switches
with condition-names. (See Section 3.2.3, The SPECIAL-NAMES
Paragraph.), .

CHAPTER 1. OVERALL LANGUAGE CONSIDERATIONS 1·- 11

1.4.8 Reserved Words

A specified list of words which may be used in COBOL Source
Programs, but which may not appear in the programs as user-defined
words. See Appendix E for a complete list of reserved words.

There are three types of reserved words, as,shown below:

(1) Key Words. A key word is a word whose presence is required
when the format in which the word appears is used in a source
program. Within each format, such words are uppercase and
underlined.

Key Words are of three types:
a. Verbs such as ADD, R~AD, ENTER.
b. Required words, which appear in statement and entry

formats.
c. Words which have a specific functional meaning such as

NEGATIVE, SECTION,'TALLY, etc.

(2) Optional Words. Within each format, uppercase words that are
not underlined are called optional words and may appear at the
user's option. The presence or absence of each optional word
within a format does not alter the compiler's translation.
Misspelling of an optional word, or its replacement by another
word of any kind is not allowed.

(3) Connectives. There are three types of connectives:
a. Qualifier connectives that are used to associate a

data-name or a paragraph-name with its qualifier: OF, IN.
b. Series connectives that link two or more consecutive

operands: ,(comma) .
c. Logical connectives that are used in the formation of

conditions: AND, OR, NOT, AND NOT, OR NOT.

1.4.9 Literals

A literal is a string of characters whose value is implied by
an ordered set of characters of which the literal is composed.
Every literal belongs to one of two types, numeric or nonnumeric.

Non-numeric Literals

A non-numeric literal is defined as a string of any allowable
characters in the ASCII character set, excluding the character
quotation mark, bounded by quotation marks. Non-numeric literals

1-12 COBOL LANGUAGE SPECIFICATIONS

can contain 1 through 120 characters. The value of a non-numeric
literal is the string of characters itself, excluding the
quotation marks. Any spaces enclosed in the quotation marks are
part of the non-numeric literal and, therefore, are part of the
value. All non-numeric literals are category alphanumeric (See
the PICTURE Clause, Section 4.4.8).

Numeric Literals

A numeric literal is defined as a string of characters chosen from
the digits 0 through 9, the plus sign, the minus sign, and the
decimal point. Numeric literals of 1 through 18 digits in length
are allowed. The rules for formation of numeric literals are as
follows:

(1) A literal must contain at least one digit.
(2) A literal must not contain more than one sign character. If a

sign is used, it must appear as the leftmost character of the
literal. If the literal is unsigned, the literal is positive.

(3) A literal must not contain more than one decimal point. The
decimal point is treated as an assumed decimal point, and may
appear anywhere within the literal except as the rightmost
character. If the literal contains no decimal point, the
literal is an integer.

The value of a numeric literal is the algebraic quantity
represented by the characters in the numeric literal. Every
numeric literal is category numeric (See the PICTURE Clause,
Section 4.4.8).

If a literal conforms to the rules for the formation of numeric
literals, but is enclosed in quotation marks, it is a non-numeric
literal and it is treated as such by the compiler.

1.4.10 PICTURE Character String

A PICTURE character-string consists of certain combinations
of characters in the COBOL character set used as symbols. The
allowabl~ combinations are explained under the PICTURE clause (See
Section 4.4.8).

CHAPTER 1. OVERALL LANGUAGE CONSIDERATIONS 1-13

1.4.11 NOTE Character String

A NOTE character-string may consist of any characters from
the ASCII character set. This character string is normally
terminated with a period followep"by a space.

1.5 Concept of Computer Independent Data Description

To make data as computer-independent as possible, the
characteristics or properties of the data are described in
relation to a Standard Data Format rather than an
equipment-oriented format. This Standard Data Format is oriented
to general data processing applications and uses the decimal
system to represent numbers (regardless of the radix used by the
computer) and the remaining characters in the COBOL character set
to describe non-numeric data items.

1.5.1 Logical Record and File Concept

The approach taken in defining file information is to
distinguish between the physical aspects of the file and the
conceptual characteristics of the data contained within the file.

Physical Aspects of a File:

The physical aspects of a file describe the data as it appears on
the input or output media and include such features as:

(1) The grouping of logical records within the physical
limitations of the file medium.

(2) The means by which the file can be identified.

Conceptual Characteristics of a File:

The conceptual characteristics of a file are the explicit
definition of each logical entity within the file itself. In a
COBOL program, the input or output statements refer to one logical
record.

It is important to distinguish between a physical record and a

1-14 COBOL LANGUAGE SPECIFICATIONS

logical record. A COBOL logical record is a group of related
information, uniquely identifiable, and treated as a unit.

A physical record is a physical unit of information whose size and
recording mode is convenient to a particular computer for the
storage of data on an input or output device. The size of a
physical record is hardware dependent and bears no direct
relationship to the size of the file of information contained on a
device.

A logical record may be contained within a single physical unit;
or several logical records may be contained within a single
physical unit; or a logical record may require more than one
physical unit to contain it. There are several source language
methods available for describing the relationship of logical
records and physical units. Once the relationship has been
established, the control of the accessibility of logical records
as related to the physical unit is carried out implicitly by the
object program. In this manual references to records mean to
logical records, unless the term 'physical record' is specifically
used?

The concept of logical record is not restricted to file data but
is carried over into the definition of working storage and
constants. Thus, working storage and constants may be grouped
into logical records and defined by a series of data description
entries.

Record Concepts

The Record Description consists of a set of data description
entries which describe the characteristics of a particular record.
Each data description entry consists of a level number followed by
a data-name, if required, followed by a series of independent
clauses, as required.

1.5.2 Concept of Levels

A level concept is inherent in the structure of a logical
record. This concept arises from the need to specify subdivisions
of a logical record for the purpose of data reference. Once a
subdivision has been specified, it may be further subdivided to
permit more detailed data referral.

The most basic subdivisions of a record, that is, those not

CHAPTER 1. OVERALL LANGUAGE CONSIDERATIONS 1-15

further subdivided, are called elementary items; consequently, a
record is said to consist of a sequence of elementary items, or
the record itself may be an elementary item.

In order to refer to a set of elementary items, the elementary
items are combined into groups. Each group consists of a named
sequence of one or more elementary items. Groups, in turn, may be
combined into groups of two or more groups, etc. Thus an
elementary item may belong to more than one group.

Level Numbers

A system of level numbers shows the organization of elementary
items and group items. Since records are the most inclusive data
items, level numbers for records start at 1 or 01. Less inclusive
data items are assigned high~r (not necessarily successive) level
numbers not greater in value than 49. There are special level
numbers 77 and 88 which are exceptions to this rule (see below).
Separate entries are written in the source program for each level
number used.

A group includes all group and elementary items following it until
a level number less than or equal to the level number of that
group is encountered. The level number of an item, either
elementary or a group item, immediately following the last
elementary item of the previous group, must be that of one of the
groups to which the prior elementary item belongs.

Two types of entries exist for which there is no true concept of
levels. These are:

(1) Entries that specify noncontiguous Working-Storage items.
(-2) En tries that specify condi tion-names.

Entries that specify noncontiguous Working-Storage items,
which are not subdivisions of other items, and are not themselves
subdivided, have been assigned the special level number 77.

Entries that specify condition-names, to be associated with a
particular value of a conditional-variable, have been assigned the
special level number 88.

1-16 COBOL LANGUAGE SPECIFICATIONS

1.5.3 Concept of Data Classes

The five categories of data items (see Section 4.4.8, The
PICTURE Clause) are grouped into three classes: alphabetic,
numeric, and alphanumeric. For alphabetic and numeric, the
classes and categories are synonymous. The alphanumeric class
includes the categories of alphanumeric edited, numeric edited and
alphanumeric (without editing). Every elementary item belongs to
one of the classes and further to one of the categories. The
class of a group item is treated at object time as alphanumeric
regardless of the class of elementary items subordinate to that
group item.

1.5.4 Character Representation and Radix

The value of a numeric item is represented in zoned decimal
format. Since this representation is actually combinations of
bits, it is commonly called binary-coded decimal. The ASCII
binary code (a binary-coded decimal form) is also used to
represent characters and symbols that are alphanumeric items. The
size of an elementary data item or group item is the number of
characters in the Standard Data Format representation of the item.

1.5.5 Algebraic Signs

Algebraic signs are used for two purposes:

(1) To show whether the value of an item involved in an operation
is positive or negative; and

(2) To identify the value of an item as positive or negative on
an edited report for external use.

Since the method of representing an operational sign is
standard, an indication that an operational sign is associated
with an item is sufficient.

Editing sign control characters are used to display the sign of an
item and are not operational signs. These editing characters are
available through the use of the PICTURE clause.

CHAPTER 1. OVERALL LANGUAGE CONSIDERATIONS 1-17

1.5.6 Overall Structure of a COBOL Source Program

A COBOL source program is composed of four divisions: the
Identification Division, the Environment Division, the Data
Division, and the Procedure Division. Each division is mandatory
and must appear in order. Each division has additional structure
as shown in the following format:

IDENTIFICATION DIVISION.
PROGRAM-ID. program-name.
[AUTHOR. [comment-entry] ...]
[INSTALLATION. [comment-entry] ...]
[DATE-WRITTEN. [comment-entry] ...]
[SECURITY. [comment-entry] .•.]
[REMARKS. [comment-entry] ...]

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.'
SOURCE-COMPUTER. entry
OBJECT-COMPUTER. entry
[SPECIAL-NAMES. entry]
[INPUT-OUTPUT SECTION.
FILE-CONTROL. {entry} ...
[l-Q-CONTROL. entry]]

DATA DIVISION.
[FILE SECTION.
{file description entry
{record description entry} .•. } ...]
[WORKING-STORAGE SECTION.
[data description entry] .. .
[record description entry] ...]
[LINKAGE SECTION.
[data description entry] .•.
[record description entry] ...]

PROCEDURE DIVISION [USING .•.].
{[section-name SECTION [priority].]
{paragraph-name. {sentence} ••. } .•• } .•.

Each division is completely specified in subsequent chapters.
In brief, the purpose of each division is as follows:

The Identification Division serves to identify the program, and
may include other useful general comments about the program.

1-18 COBOL LANGUAGE SPECIFICATIONS

The Environment Division is divided into a required
Configuration Section and an optional Input-Output Section.

The Configuration Section defines the computer configuration
used to compile and to execute the program.

The Input-Output Section defines the assignment of files
to devices.

The Data Division is used to define the storage used by
the program. It is divided into a File Section where storage
associated with files is described, a Working-Storage Section
where non-file storage is described, and a Linkage Section
where storage defined in other COBOL programs is described
(see Section 6.4, The Sub-Program Feature). All sections are
optional.

The Procedure Division contains sentences which define the
processing performed by the program. Sentences are collected
to form paragraphs. Paragraphs may be collected to form
sections.

1.5.7 Uniqueness of Data Reference

Every name used in a COBOL source program must be unique,
either because no other name has the identical spelling, or
because the name can be made unique through a syntactically
correct combination of qualifiers, subscripts or indices.

Identifier is the term used to reflect that a data-name, if not
unique in a program, must be followed by a syntactically correct
combination of qualifiers, subscripts or indices necessary to
ensure uniqu~ness. The general formats for identifiers are:

Format 1

data-name-1 [{OF I IN} data-name-2] ..•
[(subscript-1 [, subscript-2 [, subscript-3]])]

CHAPTER 1. OVERALL LANGUAGE CONSIDERATIONS 1-19

are:

Format g

data-name-3 [{OF I IN} data-name-4] ...
[(index-name:' [{;-I -} integer]

[, index-name-2 [{+ I -} integer]
[, index-name-3 [{+' I -} integer]]])]

Restrictions on qualification, subscripting and indexing

(1) The commas shown in both formats are required.
(2) A data-name must not itself be subscripted nor indexed when

that data-name is being used as an index, subscript, or
qualifier.

(3) Indexing is not permitted where subscripting is not permitted.
(4) An index may be modified,only by the SET and PERFORM

statements. Data items described by the USAGE IS INDEX clause
permit storage of the values of index-names as data without
conversion. Such data items are called index data items.
(See The USAGE Clause, 'Section 6.1.1.2.)

The details of the process by which a data-name is made unique
through qualification, subscripting, and indexing now follow.

1.5.7.1 Qualification

Every name used in a COBOL source program must be unique, either
because no other name has the identical spelling, or because the
name exists within a hierarchy of names such that the name can be
made unique by mentioning one or more of the higher levels of the
hierarchy. The higher levels are called qualifiers and this
process that specifies uniqueness is called qualification. Enough
qualification must be mentioned to make the name unique; however,
it may not be necessary to mention all levels of the hierarchy.
The name associated with a level indicator is the highest level
qualifier available for a data-name. A section-name is the
highest (and the only) qualifier available for a paragraph-name.
Thus level indicator names and section-names must be unique in
themselves as they cannot be qualified. Subscripted or indexed
data-names and conditional variables, as well as procedure-names
and data-names, may be made unique by qualification. The name of
a conditional variable can be used as a qualifier for any of its
condition-names. Regardless of the available qualification, no
name can be both a data-name and a procedure-name.

1-20 COBOL LANGUAGE SPECIFICATIONS

Qualification is performed by following a data-name or a
paragraph-name by one or more phrases composed of a qualifier
preceded by IN or OF. IN and OF are logically equivalent. The
general formats for qualification are:

Format 1

{data-name-1 I condition-name}
[{OF I IN} data-name-2] •.•

Format g

paragraph-name [{OF I IN} section~name]

The rules for qualification are as follows:

(1) Each qualifier must be of a successively higher level and
within the same hierarchy as the name it qualifies.

(2) The same name must not appear at two levels in a hierarchy.
(3) If a data-name or a condition-name is assigned to more than

one data item in a source program, the data-name or
condition-name must be qualified each time it is referred to
in the Piocedure, Environment, and Data Divisions (except
REDEFINES where, by definition, qualification is unnecessary).

(4) A paragraph-name must not be duplicated within a section.
When a paragraph-name is qualified by a section-name, the word
SECTION must not appear. A paragraph-name need not be
qualified when referred to from within the same section.

(5) A data-name cannot be subscripted when it is being used as a
qualifier.

(6) A name can be qualified even though it does not need
qualification; if there is more than one combination of
qualifiers that ensures uniqueness, then any such set can be
used.

1.5.7.2 Subscripting

Subscripts can be used only when reference is made to an
individual element within a list or table of like elements that
have not been assigned individual data-names (see Section 6.1.1.1,
The OCCURS Clause).

The subscript can be represented either by a numeric literal that
is an integer, or by the special register TALLY, or by a

CHAPTER 1. OVERALL LANGUAGE CONSIDERATIONS 1-21

data-name. The data-name must be a numeric elementary item that
represents an integer. When the subscript is represented by a
data-name, the data-name may be qualified but not subscripted.

The subscript may contain a plus sign. The lowest possible
subscript value is 1. This value' points to the first element of
the table. The next sequential elements of the table are pointed
to by subscripts whose values are 2, 3, The highest
permissible subscript value, in any particular case, is the
maximum number of occurrences of the item as specified in the
OCCURS clause.

The subscript, or set of subscripts, that identifies the table
element is enclosed in parentheses immediately following the
terminal space of the table element data-name. The table element
data-name appended with a subscript is called a subscripted data
name or an identifier. When more than one subscript appears
within a pair of parentheses, the subscripts must be separated by
commas. A space must follow each comma, but no space may appear
between the left parenthesis and leftmost subscript or between the
right parenthesis and rightmost subscript. The format is:

data-name (subscript [, subscript] .•.)

1-22 COBOL LANGUAGE SPECIFICATIONS

[)c\TAPaNT COO'ORATION COBOL Coding Form PAGE OF
oYSTEM ____________ _

PHOGRAM, ___________ _

PROGRAMMER __________ _

DATE

SEQUENCE
L CiA

COBOL STATEMENT

I

I ,

! I!
I : I : I tioVIB ffAlI12V-:A _I L :(11

'" 11rIJ iflln -JL I I : 1 I: Iii

i : : I !A I' "i~ !~i ~T 0 iW-lj ill j I I I : '

l I : i ~ 0 Vl~ ~ Ij 1101 lUl-!~.· : i: ! Ii' I i I

1 iii II/HIE It:~ -rO! Jill .i3" I: ! I! ;

~ !: I I II F' l'II;IAr<:-i; :(!! I ii!) I£~IIIAIL 1T11l"11~1" 171.!!~~ t ~Io ITo IP~IRA-Il I!

i : _ i : ' :1 F iq~2- 1 ,fiU!_!ji 11~f) ~ls1"IAII 111J ' , Sio IT~ p~I~A - '" •
i : ' I' I: 11 : Iii I : I ; " i
I Iii : J : Ii: I; i; I

Figure 1-1. Example of subscript usage.

CHAPTER 1. OVERALL LANGUAGE CONSIDERATIONS 1-23

1.5.7.3 Indexing

References can be made to individual elements within a table of
like elements by specifying indexing for that reference. An index
is assigned to that level of the table by using the INDEXED BY
clause in the definition of a table. A name given in the INDEXED
BY clause is known as an index-name and is used to refer to the
assigned index. An index-name must be initialized by a SET
statement before it is used as a table reference (see Section
6.1.2.3, The SET Statement).

Direct indexing is specified by using an index-name in the form of
a subscript. Relative indexing is specified when the index-name
is followed by the operator + or -, followed by an unsigned
integral numeric literal all enclosed in the parentheses
immediately after the terminal space of the data name. The
general format for indexing is:

data-name (index-name [{+ I -} integ~r]
[, index-name [{+ I -} integer]] ••.)

1-24 COBOL LANGUAGE SPECIFICATIONS

DA.TAPaNT C~TION COBOL Coding Form PAGE OF
SySTEM ___________ _

PROGRAMI ___________ _

PROGRAMMER __________ _

DATE

L SEOUENCE CiA
ls

COSOL STATEMENT : IDENTIFICATION

RI

i

! ill 1 :1 AlfllllJ;Hi I I I i
, : :

i ' i

I

L I I

I J ; iii i
I

; I1~DIE~-I'. I; '1
! I : i: i : ++l-I---f-++4++-f-:+-HH-+-++++-+-HH-+-++.+t-++-H--I-+++++++-~+-+-+--+-----1_t-+-+i +:---r--+--i Ii

:p!'" ... , .. In n V I V(5" ~ltJ • +' +-' -!-f----T-+-+!--f-t--f-I -t-' H

is I N ~L Ie - II~ (lIE'J(.' ' , i i

i I

, ! :

I I

i 'I
I:

: i ilF IT~Bt,6 ... !/j !l,~IDeb(-IA '1~ll:f!K·8 '~ltE~-lc lelGlvAL If~ ~Iqq ~~ :i~ ~I}(I iii
,

I
, i ! i ,
I

1
,
,

I : : i ! I
i J I : j : i ! I

I -;--

1 , :

1 : : i i
" " " l8 ·'1 \. • 0 4. 48 , .

;...vl'l,s ... • • ~7", E.y ,-,"" AP:' ' • .)"'P J .. ;'··, '··.:"'L •. 'CE"·) "el"

Figure 1-2. Example of indexing.

OVERALL LANGUAGE CONSIDERATIONS 1-25

1.6 Reference Format

The reference format, which provides a standard method for
describing COBOL source programs, is described in terms of
character positions in a line on an input-output medium. The
input to the Datapoint COBOL compiler is from a GEDIT-compatible
disk file. Each record from the file is treated as if it were 72
characters long. Shorter records will have blanks appended;
longer records will be trunca ted ;after the 12nd character has been
read. In the latter case the additional characters in the record
will be treated as commentary and ignored in the processing of the
program. Within these definitions, the Datapoint COBOL compiler
accepts source programs written in reference format and produces
an output listing in reference format.

The rules for spacing given in the discussion of the reference
format take precedence over all other rules for spacing.

The division of a source program must be ordered as follows: the
Identification Division, then the Environment Division, then the
Data Division, then the Procedure Division. Each division must be
written according to the rules for the reference format.

1.6.1 Reference Format Representation

The reference format for a line is represented as follows:

1-26 COBOL LANGUAGE SPECIFICATIONS

Margin Margin Margin Margin Margin
L C A B R

I I I 1 1 1 I 1 7 I I I I

1 I 2 3 I 4 5 I 6 I 7 8 I 9 I 0 1 2 I 3 2 I I I I I I I I I I

Sequence Number Area I Area A I Area B I I

I
I

Margin L

Margin C

Margin A
Margin B
Margin R

Continuation Area
designates the first, or left-most, character position of

a line.
designates the seventh character position relative to

Margin L.
designates the eighth character position relative to L.
designates the twelfth character position relative to L.
designates the seventy-second, or right-most, character

position of a line.

The sequence number area occupies the six character
positions beginning at Margin L.

The continuation area occupies one character position beginning at
Margin C.

Area A occupies four character positions beginning at Margin A.

Area B occupies sixty-one character positions beginning at Margin
B.

Sequence Numbers

A sequence number, consisting of six digits in the sequence number
area, may be used to label a source program line.

Continuation of Lines

Any sentence or entry that requires more than one line is
continued by starting subsequent line(s) in Area B. 'These
subsequent lines are called the continuation line(s). The line
being continued is called the continued line. Any word or literal
may be broken in such a way that part of it appears on a
continuation line.

A hyphen in the continuation area of a line indicates that the
first nonblank character in Area B of the current line is the
successor of the last nonblank character of the preceding line

CHAPTER 1. OVERALL LANGUAGE CONSIDERATIONS 1-27

successor of the last nonblank character of the preceding line
without any intervening space. However, if the continued line
contains a nonnumeric literal without a closing quotation mark,
the first nonblank character in Area B of the continuation line
must be a quotation mark, and the continuation starts with the
character immediately after that quotation mark. All spaces at
the end of the continued line are considered part of the literal.
Area A of a continued line must be blank.

If there is no hyphen in the continuation area of a line, it is
assumed that the last character in the preceding line is followed
by a space.

Blank Lines

A blank line is one that is blank from Margin C to Margin R,
inclusive. A blank line can appear anywhere in the source
program, except immediately preceding a continuation line. (See
Continuation of Lines, above.)

Comment Lines

Commentary on lines containing an asterisk in the Continuation
Area may be inserted anywhere in a COBOL Source Program exc~pt
immediately preceeding a continuation line. Any combination of
characters may be placed in Areas A and B. The line will be
listed but will have no further effect on compilation.

Lines containing a slash in the Continuation Area cause a new page
to be started in the source listing and then are treated as if the
Continuation Area contained an asterisk.

See also Section 5.12.2, The NOTE Statement.

1.6.2 Division, Section, and Paragraph Formats

Division Header

The division header starts in Area A with the division-name, is
followed by a space, then the word DIVISION, then a period. After
the division header, no text may appear before the following

1-28 COBOL LANGUAGE SPECIFICATIONS

section or paragraph-header or paragraph-name (that is before the
next line without a hyphen in the continuation area and with a
nonblank character in Area A), except:

PROCEDURE DIVISION USING

Section Header

The name of a section starts in Area A of any line except the
first line of a division reference format, is followed by a space,
then the word SECTION, then optionally a space followed by a
priority number, then a period followed by a space. After the
section-header, no text may appear before the following
paragraph-header or paragraph-name (that is before the next line
without a hyphen in the continuation area and with a nonblank
character in Area A), except:

The COpy statement may be present.

A section consists of paragraphs in the Environment and Procedure
Divisions, and Data Division entries in the Data Division.
Paragraph-names, but not section-names, are permitted in the
Identification Division.

Paragraph-Header, Paragraph-Name and Paragraph

A paragraph consists of a paragraph-name followed by one or more
sentences, or a paragr~ph-header followed by one or more entries.

A paragraph-header starts in Area A of any line following the
first line of a division or a section. The name of a paragraph
starts in Area A of any line following the first line of a
division or a section and ends with a period followed by a space.

The first sentence or entry in a paragraph begins in Area B of
either the same line as the paragraph-name or paragraph-header or
the next nonblank line. Successive sentences or entries either
begin in Area B of the same line as the preceding sentence or
entry or in Area B of the next nonblank line.

A sentence consists of one or more statements, an entry consists
of one or more clauses; all sentences and entries must be followed
by a period followed by a space.

When the sentences or entries of a paragraph require more than one
line they may be continued as described in Continuation of Lines,

CHAPTER 1. OVERALL LANGUAGE CONSIDERATIONS 1-29

above.

1.6.3 Data Division Entries

Each Data Division entry begins with a level indicator or a
level number, followed by a space~ followed by the name of a data
item, followed by a sequence of independent clauses describing the
data item. Each clause, except the last clause of an entry, may
be terminated by a semi-colon followed by a space. The last
clause is always terminated by a period followed by a space.

There are two types of Data Division entries: those which begin
with a level indicator and those which begin with a level number.

The only level indicators in Datapoint COBOL are FD and SD.

In those Data Division entries that begin with a level indicator,
the level indicator begins in Area A followed in Area B by its
associated data-name and a~propriate descriptive information.

Those Data Division entries that begin with level numbers are
called data description entries.

In those data description entries that begin with a level number 1
or 11, the level number begins in Area A followed in Area B by its
associated record-name or item-name and appropriate descriptive
information.

A level number may be one of the following set: 1 through 49, 11,
88. Single digit level-numbers are written either as a single
space followed by a digit or as a zero followed by a digit. At
least one space must separate a level number from the word
following the level number.

Successive data description entries may have the same format as
the first or may be indented according to level number. The
entries in the output listing are indented only if the input is
indented. Indentation does not affect the magnitude of a level
number.

When level numbers are to be indented, each new level-number may
begin any number of spaces to the right of Margin A. The extent
of indentation to the right is determined only by the size of
Margin R.

All successive (numerically higher) level numbers need not be
indented, rather they may begin in the same position as any
preceeding level number.

1-30 COBOL LANGUAGE SPECIFICATIONS

CHAPTER 2. IDENTIFICATION DIVISION

The Identification Division must be included in every COBOL
source program. The Identification Division identifies both the
source program and the resultant output listing. In addition, the
user may include the date the program is written and such other
information as desired under the paragraphs in the General Format
shown below.

Fixed paragraph names identify the type of information contained
in the paragraph. The name of the program must be given in the
first paragraph, which is the PROGRAM-ID paragraph. The other
paragraphs are optional and may be included in this division at
the user's choice, in the order of presentation shown by the
General Format below.

2.1 Structure

The following format shows the structure of the
Identification Division.

General Format

IDENTIFICATION DIVISION.
PROGRAM-ID. program-name.
[AUTHOR. [comment-entry] ...]
[INSTALLATION. [comment-entry] ...]
[DATE-WRITTEN. [comment-entry] ...]
[SECURITY. [comment-entry] ...]
[REMARKS. [comment-entry] ...]

The Identification Division must begin with the reserved words
IDENTIFICATION DIVISION followed by a period and a space. The
comment-entry may be any combination of the characters from the
ASCII character set organized to conform to sentence and paragraph
format. The following text defines the PROGRAM-ID paragraph.
While the other paragraphs are not defined by a General Format,
each is formed of comment-entries in the same manner.

CHAPTER 2. IDENTIFICATION DIVISION 2-1

2.2 The PROGRAM-ID Paragraph

The PROGRAM-ID paragraph gives the name by which a program is
identified.

General Format

PROGRAM-ID. program-name.

The program-name must conform to the rules for formation of a
procedure-name. The PROGRAM-ID paragraph must contain the name of
the program and must be present in every program.

The program-name is used to specify the name of the main object
program module, subject to the following conversion. Up to the
first seven characters of the program-name are used to name the
object module. If any of the characters are '-' (hyphen), they
are replaced with '$.' for compatibility with the DOS link editor.
If the first character is numeric, it is converted as follows:

numeric

o
1
2
3
4
5
6
7
&
9

conversion

J
A
B
C
D
E
F
G
H
I

2-2 COBOL LANGUAGE SPECIFICATIONS

[)\TAPOINT CORPORATION

ILSEQUENCE

I
I

clA :B

lAo rluioll2 I~OIBl)lov.

COBOL Coding Form
SySTEM __________ -:--__ _

PROG'lAM _____________ _

PROGRAMMER ____________ _

DATE

COBOL STATEMENT

: ': A DoiSoL 1-- _.

I
I I I

i! : : I i
C-'

'i i : i 1 I
: ; ! 1

i

i 1 I ! ' i I

~;;
i i I i 1 ! ! :
i :1

....;... I i : r: j , ; !
i i

! .. i I :'IJ~T ' ! I i Ii I-'-~--H-
, I r-rt;; i ! i I 1 I

i I I I
I i i f-------.,- I

! ! ' ! Ii i I I I
:

I I
! iT I i i ! ! I I I I

I ' : : ; i I

~: I
' I

I I I I I I I
! I

1--- i : i i I : i : i i I I

"
'.,'.,

,!
I i

I ; i

I

Figure 2-1. Example of IDENTIFICATION DIVISION.

I
I
t

i

I :

! !

! I

I I

PAGE OF

I

I

I

I

I
! I I

i i!

Ii i

I I

: IDENTIFICATION

Rl
-;'t

: I ! t I !
! i I

I t i
I

i

i

i I

I : ;

i

I
I

I : ;

i i I

I I i
I

CHAPTER 2. IDENTIFICATION DIVISION 2-3

CHAPTER 3. ENVIRONMENT DIVISION

The Environment Division specifies a standard method of
expressing those aspects of a data processing problem that are
dependent upon the physical characteristics of a specific
computer. This division allows specifications of the
configuration of the compiling computer and the object computer.
In addition, information relating to input-output control, special
hardware characteristics and contro~ techniques can be given. The
Environment Division must be included in every COBOL source
program. The Environment Division is made up of two sections:
the Configuration Section and the Input-Output Section.

3.1 structure

The following is the general outline of the sections and
paragraphs in the Environment Division, and defines the order of
presentation in the source program. The general format is as
follows:

General Format

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. source-computer-entry
OBJECT-COMPUTER. object-computer-entry
(SPECIAL-NAMES. special-names-entry]
[INPUT-OUTPUT SECTION.
FILE-CONTROL. {file-control-entry} ..•
(l-Q-CONTROL. input-output-control-entry]]

3.2 Configuration Section

The Configuration Section deals with the characteristics of
the source computer and the object computer. This section is
divided into three paragraphs: the SOURCE-COMPUTER paragraph,
which describes the computer configuration on which the source
program is compiled; the OBJECT-COMPUTER paragraph, which
describes the computer configuration on which the object program
produced by the compiler is to be run; and the SPECIAL-NAMES
paragraph, which relates the system-names used by the compiler to
the mnemonic names used in the source-program.

CHAPTER 3. ENVIRONMENT DIVISION 3-·1

3.2.1 The SOURCE-COMPUTER Paragraph

The SOURCE-COMPUTER paragraph identifies the computer upon
which the program is to be compiled. Since this is fixed
information, this paragraph is only used for documentation.

General Format

SOURCE-COMPUTER. computer-name.

The computer name in the preceeding forma~ should be DATAPOINT.

3.2.2 The OBJECT-COMPUTER Paragraph

The OBJECT-COMPUTER paragraph identifies the computer upon
which the object program is to execute. The format for this
paragraph is as follows:

Genfral Format

OBJECT-COMPUTER. computer-name
[, MEMORY SIZE integer CHARACTERS]
[, USING DEBUGGER].

The computer-name in the preceeding format should be DATAPOINT.
The memory-size clause should specify the number of bytes required
by the object program only, and should not include the storage
required for the operating system. If the memory-size clause is
omitted, the compiler assumes the object program will be executed
on the same system that is used to compile the source program.

The USING DEBUGGER clause specifies that the execution-time
debugger is to be invoked. This permits the user to stop
execution at specified statements and to display or modify the
values of data items.

3.2.3 The SPECIAL-NAMES Paragraph

The SPECIAL-NAMES paragraph provides a means of relating
system-names to user specified mnemonic-names.

3-2 COBOL LANGUAGE SPECIFICATIONS

General Format

SPECIAL-NAMES.
[, system-name-1 IS mnemonic-name] ...
[, system-name-2 [IS mnemonic-name ,]

{ON STATUS IS condition-name-1 .
[, OFF STATUS IS condition-name-2]

I OFF STATUS IS condition-name-2
[, ON STATUS IS condition-name-1]}] ...

[, QUOTE IS APOSTROPHE]
[, CURRENCY SIGN IS literal]
[, DECIMAL-POINT IS COMMA].

The SPECIAL-NAMES paragraph is required if mnemonic-names
or condition-names, the DECIMAL-POINT clause, the CURRENCY SIGN
clause, or the QUOTE clause are used.

The following system-names are legal for system-name-1: CONSOLE,
C01, and CSP. Each may be assigned to a mnemonic-name once. The
mnemonic-name assigned for CONSOLE may be used in the ACCEPT and
DISPLAY statements. The mnemonic-names assigned for C01 (skip to
top of page), and CSP (suppress spacing) may be used in the
ADVANCING option of a WRITE statement.

System-name-2 may be one of SW-O, SW-1, ... , SW-7. If
system-name-2 is used, at least one condition-name must be
associated with it. The status of the switch is specified by
condition-names and interrogated by testing the condition-names
(see Section 5.4.5, Switch-Status Condition).

The clause QUOTE IS APOSTROPHE means that the function of the
quote character is assumed by the apostrophe character. If the
CURRENCY SIGN clause and the QUOTE clause are both used, the QUOTE
clause must precede the CURRENCY SIGN clause.

The literal which appears in the CURRENCY SIGN IS literal clause
is used in the PICTURE clause to represent the currency symbol.
The literal is limited to a single character and must not be one
of the following characters:

a. digits 0 through 9;
b. alphabetic characters A, B, C, D, P, R, S,

V, X, Z; or the space;
c . s p e cia I ch a r act e r s '*', ' +', ' - " ',', '.',

, ; " '(', ')'; or the quote character.

If this clause is not present, only the currency symbol
'$' is used in the PICTURE clause.

CHAPTER 3. ENVIRONMENT DIVISION 3-3

The clause DECIMAL-POINT IS COMMA means that the function of comma
and period are exchanged in the PICTURE clause character-string
and in numeric literals.

Qt\TAPaNT C~TION

SEQUENCE :
CiA

iii

! i ;
I' , : I I: I I

i
Ii

:
, I :

i
11
i

! I : ' !
I I

! I
I :

I : ! i :
! ! I 'i I

I
I
I

Figure 3-1.
DIVISION

3-4

I
I, ---:r- !

I

COBOL Coding Form
SySTEM ____________ _

PAOGRAM ____________ _

PAOGRAMMER ___________ _

DATE

! i ;

COBOL STATEMENT

I
I'

iii

! I!

: ! I

i
I

I ' I

: :

: !

I
I
!

; I
l

:
I

I I

I !
' I

I

i

I
I

!

I

i !

! ~

! i

I
I

i I

PAGE OF

i
; !

I
I I

i ,

I

:

I

I
! i

: IDENTIFICATION

Ai

I! I!!,
I! :
; : !

I
I

I ,

-,---'----i-,

--,--

--'-

i !
I

I
I i

: I i ! i I

Example of SPECIAL-NAMES paragrapQ within ENVIRONMENT

COBOL LANGUAGE SPECIFICATIONS

3.3 The Input-Output Section

The Input-Output Section deals with the information needed to
control transmission and handling of data between external media
and the object program. This section is divided into two
paragraphs: the FILE-CONTROL paragraph which names and associates
the files with external media; and the I-O-CONTROL paragraph which
defines special control techniques to be used in the object
program.

3.3.1 The FILE-CONTROL Paragraph

The FILE-CONTROL paragraph names each file, identifies the
file medium, and allows particular hardware assignments.

General Format

FILE-CONTROL. {SELECT file-name
ASSIGN TO [integer-1] device-name

[, device-name-2] ...
[FOR MULTIPLE {REEL I UNIT}]

[, RESERVE {integer-2 I NO}
ALTERNATE {AREA I AREAS}]

[, {FILE-LIMIT IS I FILE-LIMITS ARE}
{data-name-1 I literal-1} THRU
{data-name-2 I literal-2}]

[, ACCESS MODE IS {SEQUENTIAL I RANDOM}]
[, PROCESSING MODE IS SEQUENTIAL]
[, ACTUAL KEY IS data-name-3
I , NOMINAL KEY IS data-name-3]
[, RECORD KEY IS data-name-4].} ...

All integers must be unsigned.

The FILE-CONTROL paragraph is required when the Input-Output
Section header is present.

CHAPTER 3. ENVIRONMENT DIVISION 3-5

3.3.2 The SELECT Clause

Each file described in the Data Division must be named once
and only once as file-name in the FILE-CONTROL paragraph following
the keyword SELECT. Each selected file must have a File
Description or Sort File Description entry in the Data Division.

3.3.3 The ASSIGN Clause

Integer-1 indicates the number of input-output units of a
given medium assigned to the" file-name. In this system,
integer-1, the device-name series, and the MULTIPLE REEL/UNIT
clauses are treated as commentary. All files used in the program
must be assigned to an input or output medium (device-name).
Device-names may be chosen as follows:

Disk Files

The general format for a mass storage device-name is:

DISK-organization{-D-name-ext-drive I -A}

where organization is V for GEDIT-type files, F for fixed-blocked
files, I for index-sequential files, and R for files used in
RERUN; and where D stands for defined external name, and A for
execution-time name assignment. If the D-form is used, a standard
DOS file-name: name/ext:drive must be converted into
name-ext-drive. As usual the drive may be left unspecified;
however the file-name extension must be specified.

The ACCESS MODE and PROCESSING MODE clauses must be given for mass
storage files. The treatment of mass storage devices in a
sequential access mode is logically equivalent to the treatment of
a tape file.

Files on Tape Devices

The system names for tape devices are: TAPE-A
(industry-compatible 9-track tape in ASCII code), TAPE-E (9-track
tape in EBCDIC code), CASSETTE-1 (rear cassette), and CASSETTE-2
(front cassette). For magnetic tape files, the maximum block size
is 1051 bytes. For cassette files, the maximum block length is
250 bytes.

3-6 COBOL LANGUAGE SPECIFICATIONS

Other Devices

Datapoint COBOL also supports the following input-output devices:
SERVO-PRINTER and LOCAL-PRINTER (servo and local printers whose
maximum record size is 132 bytes), READER (card reader whose
maximum record size is 80 bytes), and CONSOLE (keyboard/display
whose maximum record size is 78 bytes).

3.3.4 The RESERVE Clause

The RESERVE clause is treated as commentary.

3.3.5 The FILE LIMIT Clause

The FILE-LIMIT clause is treated as commentary.

3.3.6 The ACCESS MODE Clause

For the ACCESS MODE SEQUENTIAL clause, the mass storage
records are obtained or placed sequentially. That is, the next
logical record is made available on a READ statement execution or
a specific logical record is placed into the file on a WRITE
statement execution.

For the ACCESS MODE RANDOM clause, the ACTUAL KEY or NOMINAL KEY
entry must be specified. The Mass Storage Control System obtains
each record randomly. That is, the specified logical record
(located using the KEY data-name contents) is made available from
the file on a READ statement execution or is placed in a specific
location on the file (using KEY data-name contents) on a WRITE
statement execution.

3.3.7 The PROCESSING MODE Clause

For the PROCESSING MODE SEQUENTIAL clause, the mass storage
records are processed in the order in which they are accessed.

3.3.6 The ACTUAL KEY Clause

The ACTUAL KEY clause must be specified for fixed organized
mass storage files which are accessed randomly. The data item
must be described as numeric with no decimal positions. The data
item must be properly set before a SEEK, READ, WRITE, or REWRITE
statement is executed which uses the KEY value. The value of an
ACTUAL KEY is the record number starting from one(1).

CHAPTER 3. ENVIRONMENT DIVISION 3-7

3.3.9 The NOMINAL KEY Clause

The NOMINAL KEY clause specifies a search argument for
indexed files. The clause is required for index-sequential mass
storage files being accessed rando~ly or being used with a START
statement. The data item must be set before a SEEK, START, READ,
WRITE, or REWRITE statement is executed which uses the KEY value.

3.3.10 The RECORD KEY Clause

The RECORD KEY clause is required for all index-sequential
files. This clause specifies the location in the record for the
search key. The RECORD KEY must be contained in the record itself.

3.4 The 1-0 CONTROL Paragraph

The I-O-CONTROL paragraph specifies the input-output
techniques, the points at which rerun is to be established, the
memory area which is to be shared by different files.

General Format

~-Q-CONTROL. [; RERUN ON device-name]
EVERY integer RECORDS OF file-name-1] •..

[; SAME [SORT I RECORD] AREA
FOR file-name-2 {, file-name-3} .•.] •.•

[; APPLY CORE-INDEX TO data-name ON file-name-4
{, file-name-5} .••] ••..

The I-O-CONTROL paragraph is optional.

3.4.1 The RERUN Clause

The RERUN clause specifies where the rerun information is
recorded and when the memory dump occurs. Memory dumps are
written on a separate rerun disk file, as specified by the
device-name given in the RERUN clause.

Rerun points can be established when a number of records
(specified by integer) of an input or output file (file-name-1)
have been processed.

3-8 COBOL LANGUAGE SPECIFICATIONS

3.4.2 The SAME AREA Clause

The SAME AREA clause specifies that two or more files are to
use the same memory area during processing. The area being shared
includes all storage areas (including alternate areas) assigned to
the files specified; therefore, it is not valid to have more than
one of the files open at the same time.

More than one SAME AREA clause may be included in a program,
however, a file-name must not appear in more than one SAME AREA
clause.

See Section 6.2.1.2, The I-a-Control Paragraph, for a description
of the SAME SORT AREA and SAME RECORD AREA clauses.

3.4.3 The APPLY Clause

The APPLY CORE-INDEX clause is treated as commentary.

CHAPTER 3. ENVIRONMENT DIVISION 3-9

I)I\TAPOINT COO'ORATION COBOL Coding Form PAGE OF

SEQUENCE :
CiA :B

10 ,1, '.. ILJ '..j

SySTEM ____________ _

PROGRAM ___________ --:-_

PROGRAMMER ___________ _

DATE

COBOL STATEMENT : IDENTIFICATION

RI

i' Iwlpillir -llllo TIl' Orr 5Ie l'.trll IN. I : : .1: 1 :

f l t, 6:- • I ! I I! I i i
: ! : I l i ;

:::-r- -ISE 61 II N ,O:~oi~~ LI~ SASSI. &IN 10 A~I~ sit(- V -iDAI1A .. T~~t·+"-H-f--H-I-+++-Hf-+++-,-t--t-+ I: ·:-i -+-"1-'~
H--t-t-++-t-H--i-+"sfi:(e rr ,~ OT-Ifl E-12 ~~sll~t03 1n 10/';1(-' 1r;-,,«iAM-'~ll i ,-, : I "~"--.• --

: ! I

! : !

H-H-H-I--+-I--+-1--+-t-+-t-t--t-++-++-+-+-++-+-+-H·++++++++++++++-++-+-+-++-+-+-t-+-t--Hi' -~-+-++! +, +, ++:T-:: 1 +-r:--t-:- S~
H-H-H-~~-H~~-++-++~~-+-+~++++++++++++~~~~~~! +--1 rr~, M,~~~,~:~ i 'I I!'

I I i
I , ! J i I I!

I
1

I i ! I ! i I :

I ! I ! ! i

i i i I i i
! I

: 1 i ! 1 i ! ' ! !

: !
I'
I I

! ! i

! 1 , ! ! Ii
i

, I II i
i I I i , I

I I i I

Figure 3-2. Example of the INPUT-OUTPUT SECTION of the
ENVIRONMENT DIVISION.

3-10 COBOL LANGUAGE SPECIFICATIONS

! , '

,

!

.-

! i i

i 1 I

I ! Ii
i III

CHAPTER 4. DATA DIVISION

The Data Division describes the data that the object program
is to accept as input, to manipulate, to create, or to produce as
output. Data to be processed falls into three categories:

a. That which is contained in files and enters or leaves the
internal memory of the computer from a specified area or
areas.

b. That which is developed internally and placed into
intermediate or working-storage, or placed into specific
format for output reporting purposes, and constants defined by
the user.

c. That which is developed internally by some other program and
is referred to from the current one.

Data Division Organization

The Data Division, which is one of the required divisions in a
program, is subdivided into sections. These are the File,
Working-Storage, and Linkage Sections.

The File Section defines the contents of data files stored on an
external medium. Each file is defined by a file description
followed by a record description or a series of record
descriptions. The Working-Storage Section describes records and
noncontiguous data items which are not part of external data files
but are developed and processed internally or data items whose
values are assigned in the source program and do not change during
the execution of the object program. The Working-Storage Section
may specify both logical records and noncontiguous items. The
Linkage Section describes records and noncontiguous data items
which are defined in some other program, and which are referred to
from this program.

Data Division Structure

The skeletal format of the Data Division is as follows:

CHAPTER 4. DATA DIVISION 4-1

DATA DIVISION.
--[FILE SECTION.

{file description entry
{record description entry} ••. } ...]
[WORKING-STORAGE SECTION.
[data description entry] ..•
[record description entry] .•.]
[LINKAGE SECTION.
[data description entry] .. .
[record description entry] ...]

The Data Division is identified by and must begin with the
header, DATA DIVISION. The section header for the File Section is
followed by one or more sets of entries composed of a File
Description entry, followed by associated Record Description
entries. The working-storage header is followed by Data
Description entries for non-contiguous items, followed by Record
Description entries. The ~inkage section is structured like the
working-storage section. Each of the sections of the Data
Division is optional and may be omitted from the source program if
not needed.

4.1 File Section

In a COBOL program the File Description entries (FD and SD)
represent the highest level of organization in the File Section.
The maximum number of File Description entries (FD and SD) is
thirty-two (32). The File Section header is followed by a File
Description entry consisting of a level indicator (FD or SO), a
data-name and a series of independent clauses. These clauses
specify the size of the logical and physical records, and values
of label items and the names of the data records which comprise
the file. The entry itself is terminated with a period. (See
Section 6.2.2.1 for SD.)

A Record Description entry consists of a set of Data Description
entries which describe the characteristics of a particular record.
Each Data Description entry consists of a level-number followed by
a data-name if required, followed by a series of independent
clauses as required. A Record Description entry has a
hierarchical structure and therefore the clauses used with an
entry may vary considerably, depending upon whether or not it is
followed by subordinate entries. The structure of a record
description is defined in Concept of Levels (Section 1.5.2) while
the elements allowed in a Record Description are shown in the Data
Description skeleton.

4-2 COBOL LANGUAGE SPECIFICATIONS

4.1.1 The Complete File Description Entry Skeleton

The File Description furnishes information concerning the
physical structure, identification, and record names pertaining to
a given file.

General Format

FD file-name
[; BLOCK CONTAINS integer-1

{RECORDS I CHARACTERS}]
[; DATA {RECORD IS I RECORDS ARE}

data-name-1 [, data-name-2J ... J
; LABEL {RECORD IS I RECORDS ARE}

{STANDARD I OMITTED}
[; LINAGE IS integer-2 LINES

[WITH FOOTING AT integer-3]J
[; RECORD CONTAINS [integer-4 TO]

integer-5 CHARACTERS]
[; VALUE OF data-name-3 IS literal-1

[, data-name-4 IS literal-2J ..• J.

The level indicator FD identifies the beginning of a File
Description and must precede the file-name. All semicolons are
optional in the File Description but the entry must be terminated
by a period. The clauses which follow the name of the file are
optional in many cases, and their order of appearance is
immaterial.

4.1.2 The BLOCK CONTAINS Clause

The BLOCK CONTAINS clause specifies the size of a physical
record.

General Format

BLOCK CONTAINS integer {CHARACTERS I RECORDS}

Integer must be a positive integer.

When the CHARACTERS option is used, the physical record size is
specified in terms of the number of characters in Standard Data
Format contained within the physical record, regardless of the
types of characters used to represent the items within the
physical record. In this case integer represents the exact size
of the physical record.

CHAPTER 4. DATA DIVISION 4-3

4.1.3 The DATA RECORDS Clause

The DATA RECORDS clause serves only as documentation for
names of data records with their associated files.

General Format

DATA {RECORD IS I RECORDS ARE}
data-name-1 [, data-name-2] ..•

Both data-name-1 and data-name-2 are the names of data
records and must have 01 level numbers.

The presence of more than one data-name indicates that the file
contains more than one type of data record. These records need
not have the same description. The order in which they are listed
is not significant.

Conceptually, all data records within a file share the same area.
This is in no way altered by the presence of more than one type of
data record within the file.

4.1.4 The LABEL RECORDS Clause

The LABEL RECORDS clause specifies whether labels are
present, and if present, identifies the label.

General Format

LABEL {RECORD IS I RECORDS ARE}
{STANDARD I OMITTED}

This clause is required in every File Description entry.
OMITTED specifies that no explicit labels exist for the file or
the device to which the file is assigned. STANDARD specifies that
labels exist for the file or the device to which the file is
assigned and 'the labels conform to the standard label
specifications.

4.1.5 The LINAGE Clause

The LINAGE clause specifies the length of the logical page
and the location within the page of the footing area.

4-4 COBOL LANGUAGE SPECIFICATIONS

General Format

LINAGE IS integer-1 LINES
'[WITH FOOTING AT integer-2J

Integer-1 specifies the exact length of the logical page.

When the FOOTING option is used, the footing area begins at the
line specified by integer-2. Thus integer-2 must be greater than
o and less than integer-1.

This clause generates the special register LINAGE-COUNTER. This
clause must be specified if the END-OF-PAGE option is used in
conjunction with a WRITE statement.

4.1.6 The RECORD CONTAINS Clause

The RECORD CONTAINS clause specifies the size of data
records.

General Format

RECORD CONTAINS [integer-1 TOJ
integer-2 CHARACTERS

Integer-1 and integer-2 must be positive integers.

The size of each data record is completely defined within the
Record Description entry, therefore this clause is never required.
When present, however, the following notes apply:

(1) Integer-2 may not be used by itself unless all the data
records in the file have the same size. In this case
integer-2 represents the exact number of characters in the
data record. If integer-1 and integer-2 are both shown, they
refer to the minimum number of characters in the smallest
size data record and the maximum number of characters in the
largest size data record, respectively.

(2) The size is specified in terms of the number of characters in
Standard Data Format contained within the logical record,
regardless of the types of characters used to represent the
items within the logical record. The size of a record is
determined by the sum of the number of characters in all
fixed length elementary items plus the sum of the maximum
number of characters in all variable length items subordinate
to the record. This sum may be different from the actual
size of the record (see Section 4.4.9, The SYNCHRONIZED
Clause, and Section 4.4.11, The USAGE Clause.)

CHAPTER 4. DATA DIVISION 4-5

4.1.1 The VALUE OF Clause

The VALUE OF clause particularizes the description of an item
in the label records associated with a file, and serves only as
documentation.

Gen~Lal Format

VALUE OF data-name-1 IS literal-1
[, data-name-2 IS literal-2] .•.

A figurative constant may be substituted in the format
above wherever a literal is specified.

4-6 COBOL LANGUAGE SPECIFICATIONS

OA.TAPOINT COO'ORATION COBOL Coding Form PAGE OF
SYSTEM ___________ ~_

PROGRAM ____________ _

PROGRAMMER ___________ _

DATE

SEQUENCE COBOL STATEMENT , IDENTIFICATION

L ClA :B Ri
I"! .', o- j,' '., '0 " .10 0,0 0_1 °1.

1 PlArriA: IDl loll 5il ~~I. ! I i I! I I
I :fl ~ ~f; ~'T lO ~.I r I I I : I

I F=~ 'PR t ~ rr -,F IL~ : i! I ,

1 : :L.iA ~IE ''''' ... liS .:: IIA IN e 10 +J I ' i ! ~
_..J _

W
-r-t- -f-

~-~~ - IN ~tJ " ~ ; ! : l: L;_~ I -~l- ~~ p~ tr-~~ ~- MM 1'1 - IC~
I I

-1f -It..\ j~ ~6 ei IP:\ I'rt'CI Ill: Ix 1(11 l2~ t) • ! i : I i
I I fJll! I iP lOM [MY . ~ f;~.! , I ~i I i - : I I

--

+ rl~--H4- ' I it If I&. 10- ll'iIC 'to IRIE ~!(~lcJI!) i I ! ! :
lt~ --f------

: ' ! ~!2- I~L 10- 12. P!\C TP IRe: x.I(13~ Il- I , , Ii -

I I
,

~It If It. Ip-13 i~11C. TV 1121;; xl (li"l) , + i ! LL_ I~_L-_ ,
~--'-

I ; i iAD)~ ~IM -If , E-l I ! I i !
•

I,
- :

1 it..:A Ii fa ... rc~ D~l'l~ '6T A~IPI-Alf(! I i ! : :

i : I ,
I , ,

~A IIM~ (,5i iJ'l11l I I
,

I'i Ii i ~ i : ,
C::~ I :

, : : ; :[i~ ~rA 1J::;,r: ~l?i~D ll; "~ AMI- II<~ I' : I ! I -
: ~1 :I~ ~~ -I~fi

,

i i , I I, ; i : : .' ,

i i I ; : :
1 leIlz. ~~ I~.rl 1J(lo-NiO -Ij ,~ , ("110 IR!:, ~FI'I II-=-iAlt:::C "0 IAjf .! ! ! I .J.... : ,

~i2 trJc -IFI ElL. d
-J.

~I)(j I i I ! , I I I , IJj~ .., .ulC;rc:::r ~ . I i I i _.L ___
i i ~-- --,- _-4 __ ----------'--

; I I I : _12 If (ILL 161~ : I ! ~I ~TIO~S XI{ ~q l)i. i
: i: ; :

i I
, i ,

! I : i , : i i : I i
,

i i :-+----I i : :
, , I : I i i i I I

I I ! ! , ,
1

, ,

, !
I

,
! l :

•
! , ! I ! ! :

,
I I I i : I I

, ! : I I : i; : I I I I i I i : I : , I :

-------,-
! I I , ill ! , I i i

I i
,

1
!

1

1 : : I 1 I I i I I Ii : I ; i I
: 1, ,- 'C " -18 "

,~ ,,:1 .-.!

Figure 4-1. Example of FILE SECTION of the DATA DIVISION.

CHAPTER 4. DATA DIVISION 4-7

4.2 Working-Storage Section

The Working-Storage Section 1s composed of the section
header, followed by data description entries of noncontiguous
Working-Storage items and record description entries in that
order. Each Working-Storage record name and noncontiguous item
name must be unique since it cannot be qualified. Subordinate
data-names need not be unique if they can be made unique by
qualification.

4.2.1 Noncontiguous Working-Storage

Items in Working-Storage which bear no hierarchic
relationship to one another need not be grouped in records,
provided they do not need to be further subdivided. Instead, they
are classified and defined as noncontiguous elementary items.
Each of these items is defined in a separate data description
entry which begins with the special level-number, 77.

The following data clauses are required in each level 77 data
description entry:

a. level-number 77.
b. data-name.
c. The PICTURE clause.

Other data description clauses are optional and can be used to
complete the description of the item if necessary.

4.2.2 Working-Storage Records

Data elements in Working-Storage which bear a definite
hierarchic relationship to one another must be grouped into
records according to the rules for formation of data description.

4.2.3 Initial Values

The initial value of any item in the Working-Storage Section
is specified by using the VALUE clause of the data description. #.

4-8 COBOL LANGUAGE SPECIFICATIONS

4.2.4 The Skeletal Format of the Working-Storage Section

WORKING-STORAGE SECTION.
11 data-description entry

11 data-description entry
01 data-description entry

02 data-description entry

01 data-description entry
02 data-description entry

03 data-description entry

CHAPTER 4. DATA DIVISION 4-9

[)\TAI'OINT COO'ORATION

SEQUENCE :
L CiA

COBOL Coding Form
SySTEM ___________ _

PROGRAM' ___________ _

PROGRAMMER __________ _

DATE

COBOL STATEMENT

PAGE OF

I IDENTIFICATION

Ri

" :, I i l ,;, ttt" , I! I I ,I J I I' t' : I i 't Ii c..l~ __ -' i, :.' : '
: iii ! • I ,I ! ' , ', Ii' , '"",,, ",j" "~,, I ! " ""-'-" " I---t-t++-" !! ',_~"I " ,-+-" - - "I- """rtr-t-IJ_ 1 , --",,' , ,,'''- t-~ ,'. ,

t"'" ."",, ',-+"! ",""I" " ""-"~"1-7,"~'''~'''''''',,-t-!-, ~-+-,:' -r-t,,-t- -l,...L: r-t- ""f"r t-, "j' ," +",'-t-- -~~'-'--H" ' -i--"----'-"---'-
: I "',, "!: i" I I, I " !! ,i' ' ! I" I I ,

f-",~l i,,,.! '''1 1:1 "-i-"I-J-",+i-!'"llJT't'''~ti-~-,l-I-,Lj--''',,-lJ, :" i i : !~-'" 'LL': ~}= ,r , ' I ,,' I,,, 'i I I j II 'i " , I: ' ,
~ ~ : ;, 7- 'j , 'I • ! ' : :1-" "-:~~"+~ ", ;; I," I I r" 1-t-~- rj- ,- -+r r:"~ ,',t"H-~-r:'" l'~: -~'

I---"T-'-'"i,,,,j,,l+{i,: t' ; "~';" ":-t': ~.l..~-~ !' ! i i !: !+,,- "l,~-L~~i,,--t- -_l.i ,_L,,+,," :4-,!-"+1----'''':~
I---__ .:..""'''_l..,++,,_,,~++ ,''',':- f--t-"",,,, --+H':-~-" ~!- i:' '''-~-, -+- -T1-'-f-L-L-i-;,"~+--'-'--1

, : ': ,!' ,: i, I I I! : Ii' i! ii' i

i i :, i ~ iii! I :J II ill 'ti I r LLl: I II', I
f--" •. ,,--- l.~+" " "'-"~f-'-! ':'tr lTj"~--: "-r"]TITJ": ,t - rTT~tt~~-q+
~ ; i r 1 : 11'1 'r ": "I" ~ ; ;"n [T : " j'" " II i ! -: i i r-': ii,

Figure 4-2. Example of WORKING-STORAGE SECTION of the DATA
DIVISION

4.3 Linkage Section

The Linkage Section is used to describe data defined in other
COBOL source programs to which reference is made in this program.
The Linkage Section has the same structure as the Working-Storage
Section, and the same data-description entries may be used except
for the VALUE clause. In the Linkage Section the VALUE clause may
only be used with condition-names.

4.4 Data Description

4-10 COBOL LANGUAGE SPECIFICATIONS

4.4.1 The Complete Data Description Entry Skeleton

A data description entry specifies the characteristics of a
particular item of data.

Format 1

level-number {data-name-1 I FILLER}
L; REDEFINES data-name-2]
[; BLANK WHEN ZERO]
[; {JUSTIFIED I JUST} RIGHT]
[; OCCURS integer TIMES

[; INDEXED BY index-name-1
[, index-name-2] ...]]

[; {PICTURE I PIC} IS character-string]
[; {SYNCHRONIZED I SYNC} [LEFT I RIGHT]]
(; [USAGE IS]

{COMPUTATIONAL I COMP I DISPLAY
I DATABUS I EBC~I INDEX}]

[; VALUE IS literal].

Format g

8~ condition-name
; VALUE IS literal.

All semicolons and commas are optional in the data
description but the entry must be terminated by a period.

Format 1 is used for record descriptions in all sections of the
Data Division, and for non-contiguous elementary items in the
Working Storage and Linkage Sections.

(1) Level-number in Format 1 may be any number from 1-49, or 77.

(2) The clauses may be written in any order with two exceptions:
the data-name-1 or FILLER clause must immediately follow the
level-number; the REDEFINES clause, when used, must
immediately follow the data-name-1 clause.

(3) The PICTURE clause must be specified for every elementary
item except an index data item, for which this clause is
prohibited from being used. The clauses SYNCHRONIZED,
PICTURE, JUSTIFIED, and BLANK WHEN 'ZERO, must not be
specified except at the elementary item level.

(4) The maximum length of any item, group or elementary, is

CHAPTER 4. DATA DIVISION 4-11

restricted to 32,767 characters.

4-12 COBOL LANGUAGE SPECIFICATIONS

[)I\TAPOINT CORPORATION

SEQUENCE
L ClA

COBOL Coding Form
SySTEM ____________ _

PROGRAM ____________ _

PROGRAMMER ___________ _

DA E

COBOL STATEMENT

PAGE OF

I IDENTIFICATION

R!

: · It-,~~,,,, ,1\ ,lin.. ~.,; i,l(\~J:.Irr I I!, ---: U,_ I ' ii 'i: i I I
'1 1_ i , ~~F UAt" , ii,! I-C-;- i+- -+++r- ' - 'i I, ! i i: '-rr:;' iii ,-- +~ j-'~' .-~- 1-+-"-- i-LJ.- '-+-r - ++r- e- I-!-' __ J H-+- +-'---~

! i ! ulAl.:U G' : is II i5'" • i I: ,: iii I! I I I ! i !! i; i ' :,: I , :

I : :. J-r-+l--'-,' ----~-f+i. t--j-+-j i J • I r j I :, ; i ! I: I

; -LL.i.- : : T- ,'. ,I i'; i+ I' i-I I I i I I I i
I--i~:""""i""""""':-+-: . [r-T IT -.-+-t--~ I I i I ! ! I I I ; i I :; i: : "'---+,-t-!, '--;--11--1

! .' ::::: I , ! I I I 'i! iii il ~ I 1 I! I i

mrH+:fiHi; ;. !~;:gt:~i , .1 '" "" : I !;: ; I: ; ;
',"", -".,

Figure 4-3. Example of Format 1 (record descriptions).

CHAPTER 4. DATA DIVISION ~-13

Format 2 is used for each condition-name. Each condition-name
requires a separate entry with level number 88. Format 2 contains
the name of the condition and the value associated with the
condition-name. The condition-name entries for a particular
conditional-variable must follow the entry describing the item
with which the condition-name is associated. A condition-name can
be associated with any data description entry which contains a
level number except the following:

(1) Another condition-name.
(2) A group containing items with descriptions including

JUSTIFIED, SYNCHRONIZED, or USAGE (other than USAGE IS
'DISPLAY) .

(3) An index data item (see Section 6.1.1.2, The USAGE Clause).

()I\TAPOINT CORPORATION COBOL Coding Form PAGE OF
!;VSTEM ___________ _

PROGRAM _________ _

PROGRAMMER ________ _

A.TE __ _ '------- ---
lOBOl STATEME ,T -------~:,~DE~NT~,F,C~AT~,O~~'

Rl
SEQUf'NCE

C ~A :s

r-- -

r-:-H-- - J_ - i 11-- ,- ----- -- 1-, 1- + 1--

1-+-+-+++ -i'l----~MPll "~t;~~e~'cnlZl(j'- -+-+-H--t-+-t--f--H-:- ~- - - .-- - - ~+--i- c-- --

-- r-
I! i

++-++-l-+++-r-+-l--+-+-+-+++-l- - -t--+-+-H+-+-i +-1

-++~~+++r~-+-I-~:-f-+++-HH~~I4444-~I44+++Hf-I-+·-+-rH

1'1

i
: I

I'

Figure 4-4. Example of Format 2 (condition names).

4-14 COBOL LANGUAGE SPECIFICATIONS

4.4.2 Level-Number

The level-number shows the hierarchy of data within a logical
record. In addition, it is used to identify entries for
condition-names and noncontiguous Working-Storage items.

General Format

level-number

A level-number is required as the first element in each
data description entry.

Data description entries subordinate to an FD or SD entry may have
level-numbers with the values 01-49, or 88. (See Section 4.1.1
for FD; Section 6.2.2.1 for SD.)

The level-number 01 identifies the first entry in each Record
Description. Multiple level 01 entries subordinate to a
particular level indicator in the File Section represent implicit
redefinitions of the same area.

Special level-numbers have been assigned to certain entries where
there is no real concept of level:

(1) Level-number H8 is assigned to entries which define
condition-names associated with a conditional variable and
can be used only in Format 2 of the Data Description
Skeleton.

(2) Level-number 77 is assigned to identify noncontiguous
Working-Storage and Linkage items.

4.4.3 The data-name or FILLER Clause

A data-name specifies the name of the data being described.
The word FILLER specifies an elementary item of a logical record
that cannot be referred to directly.

General Format

{data-name FILLER}

In the File, Working-Storage, or Linkage Sections a
data-name or the key word FILLER must be the first word following
the level-number in each data description. The key word FILLER
may be used to name an elementary item in a record. Under no
circumstances can a FILLER item be referred to directly.

CHAPTER 4. DATA DIVISION !~-15

4.4.4 The REDEFINES Clause

The REDEFINES clause allows the same computer storage area to
contain different data items.

General Format

level-number data-name-1; REDEFINES data-name-2

The REDEFINES clause must immediately follow data-name-1.
The level-numbers of data-name-1 and data-name-2 must be
identical, but must not be 88. This clause must not be used in
level 01 entries in the File Section. Implicit redefinition is
provided by the DATA RECORDS· clause in the File Description entry.
(See Section 4.1.3.)

Redefinition starts at data-name-2 and ends when a level-number
less than or equal to that'of data-name-2 is encountered. When
the level-number of data-name-1 is other than 01, it must specify
a storage area of the same size as data-name-2. It is important
to observe that the REDEFINES clause specifies the redefinition of
a storage area, not of the data items occupying the area.

Multiple redefinitions of the same storage area are permitted.
The entries giving the new descriptions of the storage area must
follow the entries defining the area being redefined, without
intervening entries that define new storage areas. Multiple
redefinitions of the same storage area must all use the data-name
of the entry that originally defined the area.

The data description entry for data-name-2 cannot contain a
REDEFINES or an OCCURS clause, nor can data-name-2 be subordinate
to an entry which contains a REDEFINES or an OCCURS clause.

The entries giving the new description of the storage.area must
not contain any VALUE clauses, except in condition-name entries.

4.4.5 The BLANK WHEN ZERO Clause

The BLANK WHEN ZERO clause permits the blanking of an item
when its value is zero.

General Format

BLANK WHEN ZERO

The BLANK WHEN ZERO clause can be used only for an

4-16 COBOL LANGUAGE SPECIFICATIONS

elementary item whose PICTURE is specified as numeric or numeric
edited. (See The PICTURE Clause, below.) When the BLANK WHEN
~ERO clause is used, the item will contain nothing but spaces if
the value of' the item is zero. When the BLANK WHEN ZERO clause is
used for an item whose PICTURE is numeric, the category of the
item is considered to be numeric edited.

4.4.6 The JUSTIFIED Clause

The JUSTIFIED clause specifies non-standard positioning of
data within a receiving data item.

General Format

{JUSTIFIED I JUST} RIGHT

The standard rules for positioning data within an
elementary item are:

(1) If the receiving data item is described as numeric
a. The data item is aligned by decimal point and is moved

to the receiving character positions with zero fill or
truncation on either end as required.

b. When an assumed decimal point is not explicitly
specified, the data item is treated as if it had an
assumed decimal point immediately following its
right-most character and is aligned as in £ above.

(2) If the receiving data item is a numeric edited data item, the
data moved to the edited data item is aligned by decimal
point with zero fill or truncation at either end as required
within the receiving character positions of the data item,
except where the editing requirements cause replacement of
the leading zeroes.

(3) If the receiving data item is alphanumeric (other than
numeric edited data item) or alphabetic, the sending data is
moved to the receiving character positions and aligned at the
left-most character position in the data item with space fill
or truncation to the right.

When the receiving data item is described with the JUSTIFIED
clause and the sending data item is larger than the receiving data
item, the left-most characters are truncated. When the receiving
data item is described with the JUSTIFIED clause and it is larger
than the sending data item, the data is aligned at the right-most
character position in the data item with space fill.

CHAPTER 4. DATA DIVISION 4-17

The JUSTIFIED clause can be specified only at the elementary item
level. The JUSTIFIED clause cannot be specified for a numeric
edited data item or for an item described as numeric.

JUST is an abbreviation for JUSTIFIED.

4.4.1 The PICTURE Clause

The PICTURE clause describes the general characteristics and
editing requirements of an elementary item.

General Format

{PICTURE I PIC} IS character-string

A PICTURE clause can only be used at the elementary item
level.

A character-string consists of certain allowable combinations of
characters in the COBOL character set used as symbols. The
allowable combinations determine the category of the elementary
item. The maximum number of symbols allowed in the
character-string is 30. The PICTURE clause must be specified for
every elementary item except an index data item, for which this
clause is prohibited from being used.

PIC is an abbreviation for PICTURE.

Categories of Data

There are five categories of data that can be described with a
.PICTURE clause: Alphabetic, Numeric, Alphanumeric, Alphanumeric
Edited, and Numeric Edited.

(1) To define an item as Alphabetic:

a. Its PICTURE character-string can only contain the symbol
, A ' ;

b. Its contents when represented in Standard Data Format
must be any combination of the twenty-six (26) letters
of the Roman alphabet and the space from the COBOL
character set; and

c. Its length must be less than 32,168 characters.

(2) To define an item as Numeric:

a. Its PICTURE character-string can only contain the
symbols '9', 'P', 'S', 'V', '.', '+', and '-';

4-18 COBOL LANGUAGE SPECIFICATIONS

b. Its contents when represented in Standard Data Format
must be a valid combination of the Arabic numerals '0',
, 1 " '2', '3', '4', '5', '6', '7', '8', and '9', and the
item may contain both an operational sign and an actual
decimal point; and

c. Its length must be less than 19 characters.

(3) To define an item as Alphanumeric:

a. Its PICTURE character-string is restricted to certain
combinations of the symbols 'A', 'X', '9', and the item
is treated as if the character-string contained all X's.
A PICTURE character-string which contains all A's or 9's
does not define an Alphanumeric item;

b. Its contents when represented in Standard Data Format
are any allowable characters in the ASCII character set;
and

c. Its length must be less than 32,76~ characters.

(4) To define an item as Alphanumeric Edited:

a. Its PICTURE character-string is restricted to certain
combinations of the following symbols: 'A', 'X', '9',
, B', '0'; and
1) The character-string must contain at least one 'B'

and at least one 'X' or at least one '0' (zero) and
at least one 'X'; or

2) The character-string must contain at least one '0'
(zero) and at least one 'A';

b. Its contents when represented in Standard Data Format
are any allowable characters in the ASCII character set;
and

c. Its length must be less than 32,768 characters.

(6) To define an item as Numeric Edited:

a. Its PICTURE character-string is restricted to certain
combina tions of the symbols 'B', 'P', 'V', 'Z', '0',
'9', ',', '.', '*', '+', '-', 'CR', 'DB', and the
currency sign. The allowable combinations are
determined from the order of precedence of symbols and
the editing rules. The maximum number of digit
positions that may be represented in the
character-string is 18;

b. The contents of the character positions of these symbols
which are allowed to represent a digit in Standard Data
Format must be one of the numerals; and

c. Its length must be less than 256 characters.

CHAPTER 4. DATA DIVISION 1+-19

The size of an elementary item, where size means the number of
character positions occupied by the elementary item in the
Standard Data Format, is determined by the number of allowable
symbols that represent character positions.

Repetition of Symbols

An integer which is enclosed in parentheses following the symbols
, A " ',', ' X', ' 9', 'P', 'Z', '*', ' B', '0', ' +', '-', or the
currency sign indicates the number of consecutive occurrences of
the symbol. Note that the following symbols may appear only once
in a given PICTURE: 'S', 'V', '.', 'CR', and 'DB'.

Symbols Used in a PICTURE Character-String

Tne functions of the symbols used to describe an elementary item
are explained as follows:

A - Each 'A' in the character-string represents a character
position which can contain only a letter of the alphabet or a
space.

B - Each 'B' in the character-string represents a character
position into which the space character will be inserted.

P - The 'P' indicates an assumed decimal scaling position and is
used to specify the location of an assumed decimal point when
the point is not within the number that appears in the data
item. The scaling position character 'P' is not counted in
the size of the data item. Scaling position characters are
counted in determining the maximum number of digit positions
(1~) in numeric edited items or items which appear as operands
in arithmetic statements. The scaling position character 'P'
can appear only to the left or right as a continuous string of
'P's within a PICTURE description. Since the scaling position
character 'P' implies an assumed decimal point (to the left of
'P's if 'P's are left-most PICTURE characters and to the right
of 'P's if 'P's are right-most PICTURE characters), the
assumed decimal point symbol 'V' is redundant as either the
left-most or right-most character within such a PICTURE
description.

S - The letter'S' is used in a character-string to indicate the
presence of an operational sign and must be written as the
left-most character in the PICTURE. The'S' is not counted in

4-20 COBOL LANGUAGE SPECIFICATIONS

determining the size of the elementary item.

v - The 'V' is used in a character-string to indicate the location
of the assumed decimal point and may only appear once in a
character-string. The 'V' does not represent a character
position and therefore is not counted in the size of the
elementary item. When the assumed decimal point is to the
right of the right-most symbol in the string the 'V' is
redundant.

x - Each 'X' in the character-string is used to represent a
character position which contains any allowable character from
the ASCII character set.

Z - Each 'Z' in a character-string may only be used to represent
the left-most leading numeric character positions which will
be replaced by a space character when the contents of that
character position are zero. Each 'Z' is counted in the size
of the item.

9 - Each '9' in the character-string represents a character
position which contains a numeral and is counted in the size
of the item.

a - Each '0' (zero) in the character-string represents a character
position into which the numeral zero will be inserted. The
'0' is counted in the size of the item.

- (comma) Each ',' in the character-string represents a
character position into which the character ',' will be
inserted. This character position is counted in the size of
the item. The insertion character ',' must not be the last
character in the PICTURE character-string .

. - (period) When the character '.' appears in the
character-string it is an editing symbol which represents the
decimal point for alignment purposes and in addition,
represents a character position into which the character '.'
will either be inserted in receiving data items, or expected
in sending data items. The character '.' is counted in the
size of the item. For a given program the functions of the
period and comma are exchanged if the clause DECIMAL-POINT IS
COMMA is stated in the SPECIAL-NAMES paragraph. In this
exchange the rules for the period apply to the comma and the
rules for the comma apply to the period wherever they appear
in a PICTURE clause. The insertion character '.' must not be
the last character in the PICTURE character-string.

CHAPTER 4. DATA DIVISION 4-21

+, -, CR, DB - Tnese symbols are used as editing sign control
symbols. When used, they represent the character position
into which the editing sign control symbol will be placed in
receiving data items. In senqing data items an initial + or -
represents an explicit operational sign. In this case +
indicates that a plus sign represents positive values and a
minus sign represents negative ones, whereas use of -
indicates that a space represents positive values and a minus
sign represents negative ones. The symbols are mutually
exclusive in anyone character-string and each character used
in the symbol is counted in determining the size of the
data-item.

* - Each asterisk, '*', in the character-string represents a
leading numeric character position into which an asterisk will
be placed when the contents of that position is zero. Each
,~, is counted in the size of the item.

$ - (currency symbol) The currency symbol in the character-string
represents a character position into which a currency symbol
is to be placed. The currency symbol is represented in the
character-string by either the dollar sign, '$', or by the
single character specified in the CURRENCY SIGN clause in the
SPECIAL-NAMES paragraph. The currency symbol is counted in
the size of the item.

4-22 COBOL LANGUAGE SPECIFICATIONS

NON-EDITING PICTURE CLAUSES

Value In
Picture Memory

9(5) 12345

999V99 67890

S999V99 56789

X(5) ABCDE

X(5) 12345

99X99 12.34

99AAA99 12MAY76

99PPPV 34

VPPP99 12

Figure 4-5. Example of PICTURE clauses.
Editing Rules

Value
Used

12345

678.90

(-)567.89

ABCDE

12345

12.34

12MAY76

34000

.00012

There are two general methods of performing editing in the PICTURE
clause, either by insertion or by suppression and replacement.
There are four types of insertion editing available. They are:

(1) Simple insertion
(2) Special insertion
(3) Fixed insertion
(4) Floating insertion

There are two types of suppression and replacement editing:

(1) Zero suppression and replacement with spaces
(2) Zero suppression and replacement with asterisks

The type of editing which may be performed upon an item is
dependent upon the category to which the item belongs. The
following table specifies which type of editing may be performed
upon a given category:

CHAPTER 4. DATA DIVISION 4-23

Category
Alphabetic
Numeric
Alphanumeric
Alphanumeric Edited
Numeric Edited

~ of Editing
None
None
None
Simple Insertion, 0 and B
All, subject to rules below

Floating Insertion editing and editing by Zero Suppression and
Replacement are mutually exclusive in a PICTURE clause. Only one
type of Replacement may be used with Zero Suppression in a PICTURE
clause.

Insertion Editing

Simple Insertion Editing. The',' (comma), 'B' (space) and 0
(zero) are used as the insertion characters. The insertion
characters are counted in the size of the item and represent the
position in the item into ~hich the character will be inserted.

Special Insertion Editing. The'.' (period) is used as the
insertion character. In addition to being an insertion character
it also represents decimal point for alignment purposes. The
insertion character used for the actual decimal point is counted
in the size of the item. The use of the assumed decimal point,
represented by the symbol 'V' and the actual decimal point,
represented by the insertion character, in the same PICTURE
character-string is disallowed. The result of Special Insertion
editing is the appearance of the insertion character in the item
in the same position as shown in the character-string.

Fixed Insertion Editing. The currency symbol and the editing sign
control symbols, '+', '-', 'CR', 'DB', are the insertion
characters. Only one currency symbol and only one of the editing
sign control symbols can be used in a given PICTURE
character-string. When the symbols 'CR' or 'DB' are used they
represent two character positions in determining the size of the
item and they must represent the right-most character positions
that are counted in the size of the item. The symbol '+' or '-',
when used, must be the left-most or right-most character position
to be counted in the size of the item. The currency symbol must
be the left-most character position to be counted in the size of
the item except that it can be preceded by either a '+' or a '-'
symbol. Fixed insertion editing results in the insertion
character occupying the same character position in the edited item
as it occupied in the PICTURE character-string. Edit sign control
symbols produce the following results depending upon the value of
the data item:

4-24 COBOL LANGUAGE SPECIFICATIONS

RESULT
EDITING SYMBOL IN DATA ITEM DATA ITEM

PICTURE CHARACTER-STRING POSITIVE OR ZERO NEGATIVE
+ + -- space -
CR 2 spaces CR
DB 2 spaces DB

Floating Insertion Editing. The currency symbol and editing sign
symbols '+' or '-' are the insertion characters and they are
mutually exclusive as floating insertion character in a given
PICTURE character-string.

Floating insertion editing is indicated in a PICTURE
character-string by using a string of at least two of the
allowable insertion characters to represent the left-most numeric
character positions into which ·the insertion characters can be
floated. Any of the simple insertion characters embedded in the
string of floating insertion characters or to the immediate right
of this string are part of the floating string.

In a PICTURE character-string, there are only two ways of
representing floating insertion editing. One way is to represent
any or all of the leading numeric character positions on the left
of the decimal point by the insertion character. The other way is
to represent all of the numeric character positions in the PICTURE
character-string by the insertion character.

The result of floating insertion editing depends upon the
representation in the PICTURE character-string. If the insertion
characters are only to the left of the decimal point the result is
a single insertion character that will be placed in the character
position immediately preceding the decimal point, or the first
nonzero digit in the data represented by the insertion symbol
string, whichever is further to the left in the PICTURE
character-string.

If all numeric character positions in the PICTURE character-string
are represented by the insertion character, the result depends
upon the value of the data. If the value is zero the entire data
item will contain spaces. If the value is not zero, the result is
the same as when the insertion character is only to the left of
the decimal point.

To avoid truncation, the minimum size of the PICTURE
character-string for the receiving data item must be the number of
characters in the sending data item, plus the number of fixed

CHAPTER 4. DATA DIVISION 4-25

insertion characters being edited into the receiving data item,
plus one for the floating character.

Zero Suppression Editing

The suppression of leading zeroes in numeric character positions
is indicated by the use of the alphabetic character 'Z' or the
character ,*, (asterisk) as suppression symbols in a PICTURE
character-string. These symbols are mutually exclusive in a given
PICTURE character-string. Each suppression symbol is counted in
determining the size of the item. If 'Z' is used, the replacement
character will be the space and if the asterisk is used, the
replacement character will be '*'.

Zero suppression and replacement is indicated in a PICTURE
character-string by using a string of one or more of the allowable
symbols to represent leading numeric character positions which are
to be replaced when the associated character position in the data
contains a zero. Any of the simple insertion characters embedded
in the string of symbols or to the immediate right of this string
are part of the string.

In a PICTURE character-string, there are only two ways of
representing zero suppression. One way is to represent any or all
of the leading numeric character positions to the left of the
decimal point by suppression symbols. The other way is to
represent all of the numeric character positions in the PICTURE
character-string by suppression symbols.

If the suppression symbols appear only to the left of the decimal
point, any leading zero in the data which corresponds to a symbol
in the string is replaced by the replacement character.
Suppression terminates at the first nonzero digit in the data
represented by the suppression symbol string or at the decimal
point, whichever is encountered first.

If all numeric character positions in the PICTURE character-string
are represented by suppression symbols and the value of the data
is not zero the result is the same as if the suppression
characters weTe only to the left of the decimal point. If the
value is zero the entire data item will be spaces if the
suppression symbol is 'Z' or all '*', except for the actual
decimal point, if the suppression symbol is '*'.

When the asterisk is used as the Zero Suppression symbol and the
clause BLANK WHEN ZERO also appears in the same entry, the Zero
Suppression Editing overrides the function of BLANK WHEN ZERO.

4-26 COBOL LANGUAGE SPECIFICATIONS

The symbols '+', '-', '*', 'Z', and the currency symbol, when used
as floating replacement characters, are mutually exclusive within
a given character-string.

Precedence Rules

The following chart shows the order of precedence when using
characters as symbols in a character-string. An X at an
intersection indicates that the symbol(s) at the top of the column
may precede, in a given character-string, the symbol(s) at the
left of the row. Arguments appearing in braces indicate that the
symbols are mutually exclusive. The curr~ncy symbol is indicated
by the symbol 'cs'.

'P', fixed insertion '+', and '-' appear twice. The first
occurrence represents their use to the left of the PICTURE's
numeric character positions and the second their use to the right
of the PICTURE's numeric character positions. 'Z', '*', non-fixed
insertion 'cs', '+', and '-' appear twice. The first occurrence
represents the use before the decimal point position, the second
the use after the decimal point position. At least one of the
symbols 'A', 'X', 'Z', '9', or '*', or at least two of the symbols
'+', '-', or 'cs' must be present in a PICTURE string. In the
cases where the preceding Editing Rules and the following chart
conflict, the stated rules have precedence.

CHAPTER 4. DATA DIVISION 4-27

EDITING EXAMPLE5

5end Area Receive Area

Picture Memory Picture Edited Field

9(5) 12345 $ZZ,ZZ9.99 $12,345.00

999V99 23456 $ZZ,ZZ9.99 $ 234.56

999V99 00034 $ZZ,ZZ9.99 $ 0.34

999V99 00005 $ZZ,ZZZ.99 $.05

9 (5) 00000 $ZZ,ZZZ.ZZ

9 (5) 00000 $ZZ,ZZZ.99 $.00

9(5) 1.2345 $**,**9.99 $12,345.00

9 (5) 00000 $** *** ** , .
9(5) 23456 $$$,$$9.99 $23,456.00

999V99 34567 $$$,$$9.99 $345.67

9 (5) 00000 $$$,$$9.99 $0.00

9 (5) 00000 $$$,$$$.ZZ

V99999 67543 $$$,$$9.99 $0.67

59 (5) 12345 -ZZZZ9.99 -12345.00
+

59(5) 12345 -ZZZZ9.99 12345.00
+

59(5) 12345 +ZZZZ9.99 +12345.00

-59(5) 12345 +ZZZZ9.99 -12345.00

59(5) 12345 $$$$$$.99CR $12345.00CR
+

59(5) 12345 $$$$$$.99CR $12345.00

AAA MNP ABABA M N P

XXXX R5PQ XBBXXBBX R 5P 0

X(5) BCDEF XXOXOXOX BCODOEOF

9 (5) 34567 99B999BOOO 34 567 000

9(5) 00000 ZZ99.99 00.00

59(5) 12345 ZZ,ZZZ.ZZ+ 12,345.00-

Figure 4-6. Examples of Editing.

4-28 COBOL LANGUAGE SPECIFICATIONS

FIXED INSERTION OTHER SYl'1BOLS
+ + CR A Z Z + +

B 0 . . - - DB cs X p p S V * * 9 - - cs
B X X X X X X X X X X X X X X X

z 0 X X X X X X X X X X X X X X X 0
H , X X X X X X X X X X X X X X
E-t X X X X X X X X X X p:; .
r:Ll + U)

Z - X
H

+
0 - X X X X X X X X X X X r:Ll
:x: CR
H DB X X X X X X X X X X X Ji.l

cs X X X

A X X X X X
P X X X
P X X X X X X X X X X X X X
S

(J) V X X X X X X X X X X X ...:I
0 Z
~ it X X X X X X
~ Z (J)

* X X X X X X X X X X p:;
r:Ll 9 X X X X X X X X X X X X X X
::t: + E-t
0 - X X X X X

+
- X X X X X X X X X
cs X X X X X
cs X X X X X X X X

4.4.e The SYNCHRONIZED Clause

The SYNCHRONIZED clause specifies the alignment of an
elementary item on the natural boundary of the computer memory.

General Format

{SYNCHRONIZED SYNC} [LEFT I RIGHT]

This clause may only appear with an elementary item.

SYNC is an abbreviation for SYNCHRONIZED.

The intent of the SYNCHRONIZED clause is to increase the
processing efficiency for data items by aligning them on natural
machine boundaries. There are no special boundaries for the

CHAPTER 4. DATA DIVISION 4-29

cs
X
X
X

X

X

X

· Datapoint processors and therefore the SYNCHRONIZED clause has no
effect on a COBOL program which uses it.

The length of a data item is not changed by use of the
SYNCHRONIZED clause.

4.4.9 The USAGE Clause

The USAGE clause specifies the format of a data item.

General Format

[USAGE IS]
{COMPUTATIONAL I COMP I DISPLAY

DATABUS I EBCDIC-:-INDEX}

The USAGE clause can be written at any level. If the
USAGE clause is written at a group level, it applies to each
elementary item in the group. The USAGE clause of an elementary
item cannot contradict the USAGE clause of a group to which the
item belongs.

This clause specifies the manner in which a data item is
represented in the storage of the processor. It does not affect
the use of the data item, although the specifications for some
statements in the Procedure Division may restrict the USAGE clause
of the operands referred to. The USAGE clause may affect type of
character representation of the item.

If the USAGE clause is not specified for an elementary item, or
for any group to which the item belongs, the usage is assumed to
be DISPLAY.

The PICTURE of a COMPUTATIONAL item can contain only 9's, the
operational sign character'S', the implied decimal point
character 'V', and one or more P's.

COMP is an abbreviation for COMPUTATIONAL.

A COMPUTATIONAL item is capable of representing a value to be used
in computations and must be numeric. If a group item is described
as COMPUTATIONAL, the elementary items in the group are
COMPUTATIONAL. The group itself is not COMPUTATIONAL (cannot be
used in computations).

The USAGE IS DISPLAY clause indicates that the format of the data
is a Standard Data Format.

4-30 COBOL LANGUAGE SPECIFICATIONS

For compatibility with the Databus and RPG-II language processors,
USAGE IS DATABUS and USAGE IS EBCDIC may be used.

The PICTURE of a DATABUS item can contain only -'s and the decimal
point character '.'. A DATABUS item represents a numeric value to
be used in computations and must be numeric. If a group item is
described as DATABUS, the elementary items in the group are
DATABUS, but the group itself is not DATABUS.

The PICTURE of an EBCDIC item can contain only 9's, the
operational sign character'S', the implied decimal point
character 'V', and one or more P's. An EBCDIC item represents a
numeric value to be used in computations and must be numeric. If
a group item is described as EBCDIC, the elementary items in the
group are EBCDIC, but the group itself is not EBCDIC.

The meaning of USAGE IS INDEX is discussed in Section 6.1.1.2, The
USAGE Clause.

Representations for Numeric Items

There are four forms of numeric representation which may be used
in Datapoint COBOL - COMPUTATIONAL, DISPLAY, DATABUS, and EBCDIC.
The COMPUTATIONAL form is directly used in arithmetic operations,
while the others are converted to/from COMPUTATIONAL as required.
A COMPUTATIONAL number of length N is represented by N-1 digits,
followed by either a digit (0-9) or one of the letters P-Y. The
letters are used to represented the signed digits, -0, -1, ... ,
-9. If the number has no operational sign or is non-negative,
ordinary digits are used. In COMPUTATIONAL representation the
location of the decimal point is implicit.

An EBCDIC number uses the RPG sign convention and leading zeroes
may be represented as blanks. The characters, {, A-I, are used to
represent the positively signed digits (+0, +1, ... , +9) in this
format and are equivalent to the unsigned digits (0, •.. , 9). The
characters, }, J-R, are used to represent the negatively signed
digits (-0, -1, ... , -9).

A DISPLAY number follows the same conventions as EBCDIC.

A DATABUS number is written with a floating leading minus sign if
negative, and with no explicit sign character if non-negative.
The decimal point for non-integral numbers must be explicitly
represented. Initial zeros may be replaced with blanks.

CHAPTER 4. DATA DIVISION 4-31

4.4.10 The VALUE Clause

The VALUE clause defines the. initial value of working-storage
items.

General Format

VALUE IS literal

General Rules

The VALUE clause must not conflict with other clauses in the data
description of the item or in the data description within the
hierarchy of the item. If the category of an elementary item is
specified as numeric or alphabetic, it does not contradict the
alphanumeric category of group items. The following rules apply:

(1) If the category of the item is numeric, all literals in the
VALUE clause must be numeric literals. If the literal
defines the value of a working-storage item, the literal is
aligned according to the alignment rules except that the
literal must not have a value which would require truncation
of non-zero digits.

(2) If the category of the item is Alphabetic or Alphanumeric,
all literals in the VALUE clause must be nonnumeric literals.
The literal is aligned according to the alignment rules (see
The JUSTIFIED Clause, above) except that the number of
characters in the literal must not exceed the size of the
item.

(3) All numeric literals in a VALUE clause of an item must have a
value which is within the range of values indicated by the
PICTURE clause; for example, for PICTURE PPP99, the literal
must be within the range .00000 through .00099.

(4) The function of the BLANK WHEN ZERO clause or any editing
characters in a PICTURE clause have no effect on
initialization of the item. The VALUE clause is the only
clause that may (depending on its usage) provide
initialization. Editing characters are included however, in
determining the size of the item.

A figurative constant may be substituted for literal in the
format.

Condition-Name Rules

In a condition-name entry, the VALUE clause is required. The
VALUE clause and the condition-name itself are the only two

4-32 COBOL LANGUAGE SPECIFICATIONS

clauses permitted in the entry. The characteristics of a
condition-name are implicitly those of its conditional variable.

Data Description Entries Other Than Condition-Names

Rules governing the use of the VALUE clause differ with the
respective section of the Data Division:

(1) In the File and Linkage Sections, the VALUE clause may be
used only in condition-name entries.

(2) In the Working-Storage Section, the VALUE clause may be used
in condition-name entries, and it may also be used to specify
the initial value of any data item. It causes the item to
assume the specified value at the start of the object
program. If the VALUE clause is not used in an item's
description, the initial value is unpredictable.

The VALUE clause must not.be stated in a data description
entry that contains an OCCURS clause or in an entry that is
subordinate to an entry containing an OCCURS clause. This rule
does not apply to condition-name entries.

The VALUE clause must not be stated in a data description entry
that contains a REDEFINES clause, or in an entry that is
subordinate to an entry containing a REDEFINES clause. This rule
does not apply to condition-name entries.

If the VALUE clause is used in an entry at the group level, the
literal must be a figurative constant or a nonnumeric literal, and
the group area is initialized without consideration for the
individual elementary or group items contained within this group.
The VALUE clause cannot be stated at the subordinate levels within
the group.

The VALUE clause must not be written for a group containing items
with descriptions including JUSTIFIED, SYNCHRONIZED, or USAGE
(other than USAGE IS DISPLAY).

CHAPTER 4. DATA DIVISION 4-33

CHAPTER 5. PROCEDURE DIVISION

The Procedure Division must be included in every COBOL source
program. The Procedure Division contains procedures.

A procedure is composed of a paragraph, or group of successive
paragraphs, or a section, or group of successive sections within
the Procedure Division. If one paragraph is in a section, then
all paragraphs must be in sections. A procedure-name is a word
used to refer to a paragraph or section in the source program in
which it occurs. It consists of a paragraph-name (which may be
qualified), or a section-name.

The end of the Procedure Division and the physical end of the
program is that physical position in a COBOL source program after
which no further procedures appear.

A section consists of a section header followed by one or more
successive paragraphs. A section ends immediately before the next
section-name or at the end of the Procedure Division.

A paragraph consists of a paragraph-name followed by one or more
successive sentences. A paragraph ends immediately before the
next paragraph-name or section-name or at the end of the Procedure
Division.

A sentence consists of one or more statements and is terminated by
a period followed by a space.

A statement is a syntactically valid combination of words and
symbols beginning with a COBOL verb.

The term 'identifier' is defined as the word or words necessary to
make unique reference to a data item.

Execution begins with the first statement of the Procedure
Division. Statements are then executed in the order in which they
are presented for compilation, except where the rules indicate
some other order.

CHAPTER 5. PROCEDURE DIVISION 5-1

5.1 Procedure Division Structure

The Procedure Division is identified by and must begin with
the following header:

PROCEDURE DIVISION
[USING identifier-1 [, identifier-2] ...].

The Procedure Division must conform to one of the
following formats:

Format 1
PROCEDURE DIVISION

[USING identifier-1 [, identifier-2] ...].
{section-name SECTION [priority-number].
{paragraph-name. {sen tence} ... } ... } ...

Format ~
PROCEDURE DIVISION

[USING identifier-1 [, identifier-2] .•.]
{paragraph-name. {sentence} .•• } ...

5.2 Statements and Sentences

There are three types of statements: imperative statements,
conditional statements, and compiler directing statements.

There are three types of sentences: imperative sentences,
conditional sentences, and compiler directing sentences.

5.2.1 Conditional Statements and Sentences

A conditional statement specifies that the truth value of a
condition is to be determined and that the subsequent action of
the object program is dependent on this value. A conditional
statement is one of the following:

IF

ADD (ON SIZE ERROR)
COMPUTE (ON SIZE ERROR)
SUBTRACT (ON SIZE ERROR)
MULTIPLY (ON SIZE ERROR)
DIVIDE (ON SIZE ERROR)

5-2 COBOL LANGUAGE SPECIFICATIONS

GO TO (DEPENDING ON)

READ (AT END)

WRITE (AT END-OF-PAGE)
START (INVALID KEY)
READ (INVALID KEY)
WRITE (INVALID KEY)
REWRITE (INVALID KEY)

PERFORM (UNTIL or VARYING)

In the above list, the options enclosed in parenthesis cause
statements which are normally imperative to become conditional
statements. A discussion of these options is included in the
description of the imperative form of the statement.

A conditional sentence is a coriditional statement optionally
preceded by an imperative statement terminated by a period
followed by a space.

5.2.2 Imperative Statements and Sentences

An imperative statement indicates a specific action to be taken by
the object program.

An imperative statement is any statement that is neither a
conditional statement, nor a compiler directing statement. An
imperative statement may consist of a sequence of imperative
statements each possibly separated from the next by a separator.
Imperative statements are one of the following types of statement:

Arithmetic Statements
ADD
COMPUTE
DIVIDE
MULTIPLY
SUBTRACT

CHAPTER 5. PROCEDURE DIVISION 5-3

Procedure Branching Statements
GO TO
ALTER
PERFORM
STOP
EXIT

Data-Manipulating Statements
IvlOVE
EXAivlINE

Input-Output Statements
OPEN
SEEK
START
READ
WRITE
REWRITE
ACCEPT
DISPLAY
CLOSE

Table-Manipulating Statements
SET

Program Linkage Statements
CALL
EXIT [PROGRAIvl]

Whenever an imperative-statement appears in the General Format
of statements, the imperative statement refers to that sequence of
oonsecutive imperative statements which is ended by a period or an
ELSE associated with a previous IF verb. An imperative sentence
is an imperative statement terminated by a period followed by a
space.

5.2.3 Compiler Directing Statements and Sentences

A compiler directing statement is one of the following:

5-4 COBOL LANGUAGE SPECIFICATIONS

ENTER
NOTE
COpy

A compiler directing sentence is a single compiler directing
statement terminated by a period followed by a space.

5.3 Arithmetic Expressions

An arithmetic expression can be an identifier of a numeric
elementary item, a numeric literal, such identifiers and literals
separated by an arithmetic operator, two arithmetic expressions
separated by an arithmetic operator, or an arithmetic expression
enclosed in parentheses. Arithmetic negation can be expressed by
using a unary '-'. The permissable combinations of identifiers,
literals, and arithmetic operators are given in Table 1.

Those identifiers and literals appearing 'in an arithmetic
expression must represent either numeric elementary items or
numeric literals on which arithmetic may be performed.

Arithmetic Operators

There are five binary arithmetic operators and one unary
arithmetic operator that may be used in arithmetic expressions.
They are represented by specific characters that must be preceded
by a space and followed by a space; however a unary operator must
not be preceded by a space when it follows a left parenthesis.

Binary Arithmetic
Operators

+

*

Unary Arithmetic

Operator

CHAPTER 5.

Meaning

Addition
Subtraction
Multiplication
Division
Exponentiation

Meaning
The effect of multiplication
by numeric literal -1.

PROCEDURE DIVISION 5-5

Formation and Evaluation Rules

(1) Parentheses may be used in arithmetic expressions to specify
the order in which elements are to be evaluated. Expressions
within parentheses are evaluated first, and, within a nest of
parentheses, evaluation proceeds from the least inclusive set
to the most inclusive set. When parentheses are not used, or
parenthesized expressions are at the same level of
inclusiveness, the following hierarchical order of operations
is implied:

Unary - it_
* and /
+ and -

(2) When the order of a sequence of consecutive operations on the
same hierarchical level is not completely specified by
parentheses, the order of operations is from left to right.

(3) The ways in which operators, variables, and parentheses may
be combined in an arithmetic expression are summarized in
Table 1, where:

a. The letter 'P' repre~ents a permissable pair of symbols.
b. The character '-' represents an invalid pair.
c. Variable represents an identifier or literal.

~
it / ** Unary

ymbol Variable + - -
First
Symbol
Variable - P -
* / ** + - P - P
Unary - P - -
(P - P
) - p -
Table 1. Combination of Symbols in Arithmetic

Expressions

()

- p
P -
P -
P -
- P

(4) An arithmetic expression may only begin with the symbols '(',
'-', or a variable and may only end with a ')' or a variable.
There must be a one-to-one correspondence between left and
right parentheses of an arithmetic expression such that each
left parenthesis is to the left of its corresponding right
parenthesis. .

5-6 COBOL LANGUAGE SPECIFICATIONS

(5) Arithmetic expressions allow the user to combine arithmetic·
operations without the restrictions on composite of operands
and/or receiving data items. See, for example, the ADD
statement, Section 5.6.5.

5.4 Conditions

A condition causes the object program to select between
alternate paths of control depending upon the truth value of a
test. Conditions are used in IF and PERFORM statements. A
condition is one of the following:

relation condition
class condition
condition-name condition
switch-status condition
sign condition
NOT condition
condition AND condition
condition OR condition

Any condition may be enclosed in parentheses. The truth value of
a parenthesized condition is determined from the evaluation of the
truth values of its constituents. A parenthesized condition is a
condition in the sense of the last three items of the preceding
list.

The construction

NOT condition

where condition is one of the first six types of conditions listed
above, is not permitted if the condition itself contains NOT.

Conditions may be combined by logical operators. The logical
operators must be preceded by a space and followed by a space.
The meaning of the logical operators is as follows:

Logical
Operato~

OR
AND
NOT

Meaning

Logical Inclusive Or
Logical Conjunction
Logical Negation

Table 2 indicates the relationships between the logical operators
and conditions, A and B. Table 3 indicates the way in which

CHAPTER 5. PROCEDURE DIVISION 5-1

conditions and logical operators may be combined.

Condition Condition and Value
A B A AND B A OR B NOT A

True True True True False
False True False True True
True False False True False
False False False False True

Table 2. Relationship of Conditions, Logical
Operators, and Truth Values

~ Symbol Condition OR AND NOT ()
First
Symbol
Condition - P P - - P
OR P - - p P -
AND P - - p P -
NOT P - - - P -
(P - - P P -
) - P P - - P

Table 3. Combinations of Conditions and Logical Operators

5.4.1 Relation Condition

A relation condition causes a comparison of two operands,
each of which may be an identifier, a literal, or an arithmetic
expression. Comparison of two numeric operands is permitted
regardless of the format as specified in individual USAGE clauses.
However, for all other comparisons the operands must have the same
usage.

The general format for a relation condition is as follows:

{iden tifier-1 I Ii teral-1 I
arithmetic-expression-1} relational-operator

{identifier-2 I literal-2 I
arithmetic-expression-2}

The first operand (identifier-1, literal-1, or
arithmetic-expression-1) is called the subject of the condition;
the second operand (identifier-2, literal-2, or -
arithmetic-expression-2) is called the object of the condition.

5-ti COBOL LANGUAGE SPECIFICATIONS

The subject and the object may not both be literals.

The relational operators specify the type of comparison to be made
in a relation condition. The relational operators must be
preceded by a space and followed by a space. The meaning of the
relational operators is as follows:

Meaning Relational Operator

Greater than or IS [NOT] GREATER THAN
not greater than IS [NOT] >

Less than or IS [NOT] LESS THAN
not less than IS [NOT] <

Equal to or IS [NOT] EQUAL TO
not equal to IS [NOT] =

Comparison of Numeric Operands

For operands whose category is numeric, a comparison is made with
respect to the algebraic value of the operands. The length of the
operands, in terms of number of digits, is not significant. Zero
is considered a unique value regardless of' the sign.

Comparison of these operands is permitted regardless of the manner
in which their usage is described. Unsigned numeric operands are
considered positive for purposes of comparison.

Comparison of Nonnumeric Operands

For nonnumeric operands, or one numeric and one nonnumeric
operand, a comparison is made with respect to the ASCII collating
sequence.

The size of an operand is the total number of characters in the
operand. Numeric and nonnumeric operands may be compared only
when their usage is the same, implicitly or explicitly.

There are two cases to consider: operands of equal size and
operands of unequal size.

(1) Operands of Equal Size. If' the operands are of equal size,
characters in corresponding character positions of the two
operands are compared starting from the high-order end
through the low-order end.

If all pairs of characters compare equally through the last

CHAPTER 5. PROCEDURE DIVISION 5-9

pair, the operands are considered equal when the low-order
end is reached.

The first pair of unequal characters to be encountered is
compared to determine their relative position in the
collating sequence. The operand that contains the character
that is positioned higher in the collating sequence is
considered to be the greater operand.

(2) Operands of Unequal Size. If the operands are of unequal
size, comparison proceeds as though the shorter operand were
extended on the right by sufficient spaces to make the
operands of equal size.

5.4.2 Sign Condition

The sign condition determines whether or not the algebraic
value of a numeric operand is less than, greater than, or equal to
zero. The general format for a sign condition is as follows:

{identifier I arithmetic-expression}
IS [NOT] {POSITIVE I NEGATIVE I ZERO} --- ----

An operand is positive if its value is greater than zero,
negative if its value is less than zero, and zero if its value is
equal to zero.

5.4.3 Class Condition

The class condition determines whether the operand is
numeric, that is, consists entirely of the characters 0, 1,2, 3,
.... , 9, with or without an operational sign, or alphabetic, that
is consists entirely of the characters A, B, C, •.. , Z, space.
The general format for the class condition is as follows:

identifier IS [NOT] {NUMERIC I ALPHABETIC}

The usage of the operand being tested must be described,
implicitly or explicitly, as DISPLAY.

The NUMERIC test cannot be used with an item whose data
description describes the item as alphabetic. If the record
description of the item being tested does not contain an
operational sign the item being tested is determined to be numeric
only if the contents are numeric and an operational sign is not
present.

The ALPHABETIC test cannot be used with an item whose record

5-10 COBOL LANGUAGE SPECIFICATIONS

description describes the item as numeric. The item being tested
is determined to be alphabetic only if the contents consist of any
combination of the alphabetic characters A through Z and the
space.

5.4.4 Condition Name Condition

In a condition-name condition, a conditional variable is
tested to determine whether or not its value is equal to the value
associated with a condition-name. The general format for a
condition-name condition is as follows:

condition-name

The rules for comparing a conditional variable with a
condition-name value are the same as those specified for relation
conditions.

The result of the test is true if the value corresponding to the
condition-name equals the value of its associated conditional
variable.

5.4.5 Switch Status Conditon

A switch-status condition determines the on or off status of
a software switch. The system-name and its associated ON or OFF
value must be named in the SPECIAL-NAMES paragraph of the
Environment Division. The general format for the switch-status
condition is as follows:

condition-name

The result of the test is true if the switch value
corresponds to the setting specified by the condition-name.

5.4.6 Evaluation Rules for Conditions

The evaluation rules for conditions are analogous to those
given for arithmetic expressions (see Formation and Evaluation
Rules in Section 5.3) except that the following hierarchy applies:

arithmetic expression
all relational operators
NOT
AND
OR

CHAPTER 5. PROCEDURE DIVISION 5-11

5.5 Conditioal Statements

5.5.1 The IF Statement

The IF statement causes a condition (see the preceding
section, Conditions) to be evaluated. The subsequent action of
the object program depends on whether the value of the condition
is true or false.

General Format

IF condition; {statement-1 I NEXT SENTENCE};
{ELSE statement-2 I ELSE NEXT SENTENCE}

Statement-1 and statement-2 represent either an
imperative statement or an'IF statement, and either may be
followed by an imperative statement or an IF statement. The
phrase ELSE NEXT SENTENCE may be omitted if it immediately
precedes the terminal period of the sentence.

When an IF statement is executed, the following action is taken:

(1) If the condition is true, the statements immediately
following the condition (represented by statement-1) are
executed, control then passes implicitly to the next
sentence.

(2) If the condition is false, either the statements following
ELSE are executed or, if the ELSE clause is omitted the next
sentence is executed.

When an IF statement is executed and the NEXT SENTENCE option
is present, control passes explicitly to the next sentence
depending on the truth value of the condition and the placement of
the NEXT SENTENCE clause in the statement.

Statement-1 and statement-2 may contain an IF statement. In this
case the IF statement is said to be nested. IF statements within
IF statements may be considered as paired IF and ELSE
combinations, proceeding from left to right. Thus, any ELSE
encountered is considered to apply to the immediately preceeding
IF that has not been already paired with an ELSE.

When control is tra/nsferred to the next sentence, ei ther
implicitly or explicitly, control passes to the next sentence as
written or to a return mechanism of a PERFORM statement.

5-12 COBOL LANGUAGE SPECIFICATIONS

5.6 Arithmetic Statements

The arithmetic statements are the ADD, COMPUTE, DIVIDE,
MULTIPLY, and SUBTRACT statements. They have several common
features. The data descriptions of the operands need not be the
same; any necessary conversion and decimal point alignment is
supplied throughout the calculation. The maximum size of each
operand is eighteen (18) decimal digits.

In the statement descriptions that follow, several options appear
frequently: the GIVING option, the ROUNDED option, and the SIZE
ERROR option. In the discussion below, a resultant-identifier is
that identifier associated with a result of an arithmetic
operation.

5.6.1 The GIVING Option

If the GIVING option is used, the value of the arithmetic
statement is moved after computation to the identifier specified
after the word GIVING. Thus this resultant identifier may be a
numeric edited data item, as well as being a numeric item.

5.6.2 The ROUNDED Option

If, after decimal point alignment, the number of places in
the fraction of the result of an arithmetic operation is greater
than the number of places provided for the fraction of the
resultant-identifier, truncation is relative to the size provided
for the resultant-identifier. When rounding is requested, the
absolute value of the resultant-identifier is increased by one (1)
whenever the most significant digit of the excess is greater than
or equal to five (5).

When the low-order integer positions in a resultant-identifier are
represented by the character P in the picture for that
resultant-identifier, rounding or truncation occurs relative to
the right-most integer position for which storage is allocated.

CHAPTER 5. PROCEDURE DIVISION 5-13

5.6.3 The SIZE ERROR Option

If, after decimal point alignment, the value of a result
exceeds the largest value that cart be contained in the associated
resultant-identifer, a size error condition exists. Division by
zero always causes a size error condition. The size error
condition applies only to the final results of an arithmetic
operation and does not apply to intermediate results, except in
the MULTIPLY and DIVIDE statements, in which case the size error
condition applies to the intermediate results as well. If the
ROUNDED option is specified, rounding takes place before checking
for size error. When such a size error condition occurs, the
subsequent action depends on whether or not the SIZE ERROR option
is specified.

(1) If the SIZE ERROR option is not specified and a size error
condition occurs, the value of the resultant-identifier
affected will be unpredictable.

(2) If the SIZ~ ERROR option is specified and a size error
condition occurs, then the value of the resultant-identifier
affected by the size error is not altered. After completion
of the execution of this operation, the imperative-statement
in the SIZE ERROR option is executed.

5.6.4 Overlapping Operands

When a sending and a receiving item in an Arithmetic
Statement or an EXAMINE or"MOVE statement share a part of their
storage areas, the result of the execution of such a statement is
undefined.

5.6.5 The ADD Statement

The ADD statement causes two or more numeric operands to be
summed and the result to be stored.

Format 1

ADD {identifier-1 I literal-1}
[, identifier-2 I , literal-2] ••.
TO identifier-m [ROUNDED]
[; ON SIZE ERROR imperative-statement]

5-14 COBOL LANGUAGE SPECIFICATIONS

Format ~

ADD {identifier-1 I literal-1} ,
{identifier-2 I literal-2}
(, identifier-3 I , literal-3] ...
GIVING identifier-m [ROUNDED]
[; ON SIZE ERROR imperative-statement]

In Formats 1 and 2 each identifier must refer to an
elementary numeric item, except that the identifier appearing to
the right of the word GIVING may refer to a data item that
contains editing symbols.

Each literal must be a numeric literal.

The maximum size of each operand is eighteen (18) decimal digits.
The composite of operands, which is that data item resulting from
the superimposition of all operands, excluding the data item that
follows the word GIVING, aligned on their decimal points, must not
contain more than eighteen digits.

See Section 5.6.2, The ROUNDED Option; Section 5.6.3, The SIZE
ERROR Option; and Section 1.4.6, Special Register; for a
description of these functions.

If Format 1 is used, the values of the operands preceding the word
TO are added together, then the sum is added to the current value
in identifier-m, and the result is stored in the resultant
identifier-me

If Format 2 is used, the values of the operands preceding the word
GIVING are added together, then the sum is stored as the new value
of identifier-m, the resultant-identifier.

5.6.6 The COMPUTE Statement

The COMPUTE statement assigns to a data item the value of a
numeric data item, literal, or arithmetic expression.

General Format

COMPUTE identifier-1 [ROUNDED] =
{identifier-2 I literal I arithmetic-expression}
[; ON SIZE ERROR imperative-statement]

The identifier-2 and literal options provide a method for
setting the value of identifier-1, equal to the value of
identifier-2 or literal-1. Literal must be a numeric literal.

CHAPTER 5. PROCEDURE DIVISION 5--15

Identifier-2 must refer to an elementary numeric item.
Identifier-1 may contain editing symbols.

The arithmetic expression option permits the use of any meaningful
combination of identifiers, numeric literals, and arithmetic
operators, parenthesized as required. The COMPUTE statement
allows the user to combine arithmetic operations without the
restriction on composite of operands and/or receiving data items
imposed by the arithmetic statements ADD, SUBTRACT, MULTIPLY, and
DIVIDE.

The maximum size of each operand is eighteen decimal digits. See
The ROUNDED Option and The SIZE ERROR Option above, and Special
Register (Section 1.4.6).

5.6.1 The DIVIDE Statement

The DIVIDE statement divides one numeric data item into
another and sets the value'of a data item equal to the result.

Format 1

DIVIDE {iden tifier-1 I Ii teral-1 }
INTO identifier-2 [ROUNDED]
[; ON SIZE ERROR imperative-statement]

Format g

DIVIDE {identifier-1 I literal-1}
INTO {identifier-2 I literal-2}
GIVING identifier-3 [ROUNDED]
[; ON SIZE ERROR imperative-statement]

Format 3.

DIVIDE {identifier-1 I Ii teral-1}
BY {identifier-2 I literal-2}
GIVING identifier-3 [ROUNDED]
[; ON SIZE ERROR imperative-statement]

Format .!±.

DIVIDE {identifier-1 I Ii teral-1}
INTO {identifier-2 I literal-2}
GIVING identifier-3 [ROUNDED]
REMAINDER identfEt:er-4
[; ON SIZE ERROR'imperative-statement]

5-16 COBOL LANGUAGE SPECIFICATIONS

Format 2

DIVIDE {identifier-1 I literal-1}
BY {identifier-2 I literal-2}
GIVING identifier-3 [ROUNDED]
REMAINDER identifier-4
[; ON SIZE ERROR imperative-statement]

When Format 1 is used, the value of identifier-1 or
literal-1 is divided into the value of identifier-2. The value of
the dividend (identifier-2) is replaced by this quotient.

When Format 2 is used, the value of identifier-1 or literal-1 is
divided into identifier-2 or literal-2 and the result is stored in
identifier-3.

When Format 3 is used, the value of identifier-1 or literal-1 is
divided by the value of identifier-2 or literal-2 and the result
is stored in identifier-3.

Formats 4 and 5 are used when a remainder from the division
operation is desired, namely identifier-4. A remainder in COBOL
is defined as the result of subtracting the product of the
quotient and the divisor from the dividend. If the ROUNDED option
is specified, the quotient is rounded after the remainder is
determined.

Each identifier must refer to a numeric elementary item, except in
Formats 2 through 5, where the identifier that appears only to the
right of the word GIVING may refer to a data item that contains
editing symbols. Each literal must be a numeric literal. The
maximum size of each operand is eighteen (18) decimal digits. See
also The ROUNDED Option and The SIZE ERROR Option above, and
Special Register (Section 1.4.6) for a description of these
functions.

5.6.8 The MULTIPLY Statement

The MULTIPLY statement causes a numeric data item to be
multiplied and sets the value of a data item equal to the result.

Format 1

MULTIPLY {identifier-1 I literal-1}
BY identifier-2 [ROUNDED] IT ON SIZE ERROR imperative-statement]

CHAPTER 5. PROCEDURE DIVISION 5-17

Format £

MULTIPLY {identifier-1 I Ii teral-1}
BY {identifier-2 I literal-2}
GIVING identifier-3 [ROUNDED]
[; ON SIZE ERROR imperative-statement]

When Format 1 is used, the value of identifier-1 or
literal-1 is multiplied by the value of identifier-2. The value
of the multiplier (identifier-2) is replaced by this product.

When Format 2 is used, the value of identifier-1 or literal~1 is'
multiplied by identifier-2 or literal-2 and the result is stored
in identifier-3.

Each identifier must refer to a numeric elementary item, except in
Format 2, where the identifier that appears to the right of the
word GIVING may refer to a data item that contains editing
symbols. Each literal must be a numeric literal. The maximum
size of each operand is eighteen (18) decimal digits. See also
The ROUNDED Option and The SIZE ERROR Option above, and Special
Register (Section 1.4.6).

5.6.9 The SUBTRACT Statement

The SUBTRACT statement is used to subtract one, or the sum of
two or more numeric data items from an item, and sets the value of
an item equal to the result.

Format 1

SUBTRACT {literal-1 I identifier-1}
[, literal-2 I , identifier-2] ..•
FROM identifier-m [ROUNDED]
[; ON SIZE ERROR imperative-statement]

Format £

SUBTRACT {literal-1 I identifier-1}
[, literal-2 I , identifier-2] .•.
FROM {literal-m I identifier-m}
GIVING identifier-n [ROUNDED]
[; ON SIZE ERROR imperative-statement]

In Format 1, all literals or identifiers preceding the
word FROM are added together and this total is subtracted from
identifier-m and the difference is stored as the new value of
identifier-me

5-18 COBOL LANGUAGE SPECIFICATIONS

In Format 2, all literals or identifiers preceding the word FROM
are added together, the sum is subtracted from literal-m or
identifier-m and the result of the subtraction is stored as the
new value of identifier-n.

Each identifier must refer to a numeric elementary item except in
Format 2, where the identifier that appears to the right of the
word GIVING may refer to a data item that contains editing
symbols. The maximum size of each operand is eighteen (18)
decimal digits. The composite of operands, which is that data
item resulting from superimposing all operands, excluding the
identifier that follows the word GIVING, aligned on their decimal
points, must not contain more than eighteen digits. See The
ROUNDED Option and The SIZE ERROR Option above, and Special
Register (Section 1.4.6).

5.1 Procedure Branching Statements

5.1.1 The GO TO Statement

The GO TO statement causes control to be transferred from one
part of the Procedure Division to another.

Format 1

GO TO [procedure-name-1]

Format g

GO TO procedure-name-1 [, procedure-name-2] ...
, procedure-name-n DEPENDING ON identifier

Whenever a GO TO statement, represented by Format 1 is
executed, control is transferred to procedure-name-1 or to another
procedure-name if the GO TO statement has been altered by an ALTER
statement.

If procedure-name-1 is not specified in Format 1, an ALTER
statement, referring to this GO TO statement, must be executed
prior to the execution of this GO TO statement.

When, in Format 1, the GO TO statement is referred to by an ALTER
statement the following rules apply:

(1) The GO TO statement must have a paragraph-name.
(2) The GO TO statement must be the only statement in the

CHAPTER 5. PROCEDURE DIVISION 5-19

paragraph.

If a GO TO statement represented by Format 1 appears in an
imperative sentence, it must appe~r as the only or last statement
in a sequence of imperative statements.

A GO TO statement represented by Format 2 causes control to be
transferred to one of the specified procedures named
procedure-name-1, procedure-name-2, etc., depending onthe value of
the identifier being 1, 2, ... , n. If the value of identifier is
anything other than the positive or unsigned integers 1, 2, ... ,
n, then the GO TO state~ent has no effect.

Each procedure-name is the name of a paragraph or section in the
Procedure Division of the program. Identifier is the name of a
numeric elementary item described without any positions to the
right of the assumed decimal point.

5.7.2 The ALTER Statement

The ALTER statement modifies a predetermined sequence of
operations.

General Format

ALTER procedure-name-1 TO
[PROCEED TO] procedure-name-2

[, procedure-name-3 TO
[PROCEED TO] procedure-name-4] .••

During execution of the object program, the ALTER
statement modifies the GO TO statement in the paragraph named
procedure-name-1, procedure-name-3, •.. replacing the object of
the GO TO by procedure-name-2, procedure-name-4, .•. ,
respectively.

Each procedure-name-1, procedure-name-3, .•. is the name of a
paragraph that contains only one sentence consisting of a GO TO
statement without the DEPENDING option. Each procedure-name-2,
procedure-name-4, ..• is the name of a paragraph or section in the
Procedure Division.

A GO TO statement in a section whose priority is greater than or
equal to 50 must not be referred to by an ALTER statement in a
section with a different priority. (See Restrictions on Program
Flow, Section 6.5.3.)

All other uses of the ALTER statement are valid.

5-20 COBOL LANGUAGE SPECIFICATIONS

5.7.3 The PERFORM Statement

The PERFORM statement is used to depart from the normal
sequence of execution in order to execute one or more procedures
either a specified number of times or until a specified condition
is satisfied and to return control to the normal sequence.

Format 1

PERFORM procedure-name-1 [THRU procedure-name-2]

Format g

PERFORM procedure-name-1 [THRU procedure-name-2]
{identifier-1 I integer-1} TIMES

Format}

PERFORM procedure-name-1 [THRU procedure-name-2]
UNTIL condition-1

Format &
PERFORM procedure-name-1 [THRU procedure-name-2]

VARYING {index-name-1 I identifier-1}
FROM {index-name-2 I literal-2 I identifier-2}
BY {literal-l I identifier-}}
UNTIL condition-1

(AFTER {index-name-4 I identifier-4}
FROM {index-name-5 I literal-5 I identifier-5}
BY {literal-6 I identifier-6}
UNTIL condition-2

[AFTER {index-name-7 I identifier-7}
FROM {index-name-8 I literal-8 I identifier-8}
BY {literal-9 I identifier-9}
UNTIL condition-3]]

Each procedure~name is the name of a section or paragraph
in the Procedure Division. Each identifier represents a numeric
elementary item described in the Data Division. In Format 2, and
Format 4 with the AFTER option, each identifier represents a
numeric item with no positions to the right of the assumed decimal
point. Each literal represents a numeric literal. The word
THROUGH may be substituted for THRU.

When the PERFORM statement is executed, control is transferred to
the first statement of the procedure named procedure-name-1. An

CHAPTER 5. PROCEDURE DIVISION 5-21

automatic return to the statement following the PERFORM statement
is established as· follows:

(1) If procedure-name-1 is a paragraph-name and procedure-name-2
is not specified, then the return is after the last statement
of procedure-name-1.

(2) If procedure-name-1 is a section-name and procedure-name-2 is
not specified, then the return is after the last statement of
the last paragraph in procedure-name-1.

(3) If procedure-name-2 is specified and it is a paragraph-name,
then the return is after the last statement of the paragraph.

(4) If procedure-name~2 is specified and it is a section-name,
then the return is after the last sentence of the last
paragraph in this section.

There is no necessary relationship between procedure-name-1
and procedure-name-2 except that a consecutive sequence of
operations is to be executed beginning at the procedure named
procedure-name-1 and ending with the execution of the procedure
named procedure-name-2. In particular, GO TO and PERFORM
statements may occur between procedure-name-1 and the end of
procedure-name-2. If there are two or more direct paths to the
return point, then procedure-name-2 may be the name of a paragraph
consisting of the EXIT statement, to which all these paths must
lead.

If control passes to these procedures by means other than a
PERFORM statement, control passes through the last statement of
the procedure to the following statement as if no PERFORM
statement mentioned these procedures.

If a sequence of statements referred to by a PERFORM statement
includes another PERFORM statement, the sequence of procedures
associated with the included PERFORM must itself either be totally
included in, or totally excluded from, the logical sequence
referred to by the first PERFORM. Thus, an active PERFORM
statement, whose execution begins within the range of another
active PERFORM statement, must not allow control to pass to the
exit of the other active PERFORM statement; furthermore, two or
more such active PERFORM statements may not have a common exit.

Format 1 is the basic PERFORM statement. A procedure referred to
by this type of PERFORM statement is executed once and then
control passes to the statement following the PERFORM statement.

Format 2 is the TIMES option. When the TIMES option is used the
procedures are performed the number of times specified by the
initial value of ~dentifier-1 or integer-1, for that execution.

5-22 COBOL LANGUAGE SPECIFICATIONS

When the PERFORM statement is executed, the value of integer-1
must be positive. If the initial value of identifier-1 is negative
or zero, control passes immediately to the statement following the
PERFORM statement. Following the execution of the procedures the
specified number of times, control is transfered to the statement
following the PERFORM statement.

During execution of the PERFORM statement, reference to
identifier-1 cannot alter the number of times the procedures are
to be executed from that which was indicated by the initial value
of identifier-1.

Format 3 is the UNTIL option. The specified procedures are
performed until the condition specified by the UNTIL option is
true. At this time, control is transferred to the statement
following the PERFORM statement. If the condition is true at the
time that the PERFORM statement is encountered, the specified
procedures are not executed.

Format 4 is the VARYING option. This option is used to augment
the value of one or more identifiers or index-names in an orderly
fashion during the execution of a PERFORM statement. In the
following discussion every reference to identifier as the object
of the VARYING and FROM (starting value) phrases also refers to
index-names. When index-names are used, the FROM and BY clauses
have the same effect as in a SET statement. (See The SET
Statement, Section 6.1.2.3.)

In Format 4, when one identifier is varied, identifier-1 is set
equal to its starting value, identifier-2 or literal-2, when
commencing the PERFORM statement; if the condition is false, the
sequence of procedures, procedure-name-1 through procedure-name-2,
is executed once. The value of identifier-1 is augmented by the
specified increment or decrement, identifier-3, and condition-1 is
evaluated again. The cycle continues until this expression is
true; at which point, control passes to the statement following
the PERFORM statement. If the condition is true at the beginning
of execution of the PERFORM, control passes directly to the
statement following the PERFORM statement.

1,

In Format 4, when two identifiers are varied, identifier-~ and
identifier-4 are set to their initial values, identifier-2 and
identifier-5, respectively. During execution, these initial
values must be positive. When commencing the ~ERFORM statement,
condition-1 is evaluated; if true, control is passed to the
statement following the PERFORM statement; if false, condition-2
is evaluated. If condition-2 is false, prdcedure-name-1 through
procedure-name-2 is executed once, after which identifier-4 is

CHAPTER 5. PROCEDURE DIVISION 5-23

augmented by identifier-6 and condition-2 is evaluated again.
This cycle of execution and augmentation continues until
condition-2 is true. When this condition is true, identifier-4 is
set to its initial value, identifier-5, identifier-1 is augmented
by identifier-3 and condition-1 is reevaluated; identifier-3 and
identifier-6 must not be zero; the PERFORM statement is completed
if condition-1 is true; if not, these cycles continue until
condition-1 is true.

During execution of the PERFORM statement, reference to
index-names or identifiers of the FROM clause has no effect in
altering the numbers of times the procedures are to be executed.
Changing a value of the index-names or identifiers of the VARYING
clause or identifiers of the BY clause, however, will change the
number of times procedures are executed.
The following flow chart 'illustrates the logic of the PERFORM
statement when two identifiers are varied.

5-24 COBOL LANGUAGE SPECIFICATIONS

Let:
Each D-i represent an identifier.
Each L-i represent a literal.
Each C-i represent a condition.
Each P-i represent a procedure-name.

Set
D-1 to D-2 (or L-2)
D-4 to D-5 (or L-5)

False

Execute
P-1 through P-2

Augment
D-4 by D-6 (or L-6)

True

True

Initialize
D-4 to D-5 (or L-5)

Augment
D-1 by D-3 (or L-3)

At the termination of the PERFORM statement identifier-4 contains
its initial value, while identifier-1 has a value that exceeds the
last used setting by one increment or decrement, as the case may
be, unless condition-1 was true when the PERFORM statement was
entered, in which case identifier-1 and identifier-4 contain their
initial values.

For three identifiers the mechanism is the same as for two

CHAPTER 5. PROCEDURE DIVISION 5-25

identifiers except that identifier-7 goes through a complete cycle
each time that identifier-4 is augmented by identifier-6 or
literal-6, which in turn goes through a complete cycle each time
identifier-1 is varied.

The following flow chart illustrates the logic of the PERFORM
statement when three identifiers are varied. Let:

Each D-i represent an identifier.
Each L-i represent a literal.
Each C-i represent a condition.
Each P-i represent a procedure-name.

5-26 COBOL LANGUAGE SPECIFICATIONS

Set
D-1 to D-2 (or L-2)
D-4 to D-5 (or L-5)
D-7 to D-8 (or L-8)

.. ,

True
C-1 Exit

-- False ,

True
C-2

... False

True
C-3

False

Execute Initialize Initialize
P-1 through P-2 D-7 to D-8 (or L-8) D-4 to D-5 (or L-5)

Augment Augment Augment
D-7 by D-9 (or L-9) D-4 by D-6 (or L-6) D-1 by D-3 (or L-3)

CHAPTER 5. PROCEDURE DIVISION 5-27

After the completion of Format 4, identifier-4 and identifier-7
contain their initial values, while identifier-1 has a value
that exceeds its last used setting by one increment or
decrement, unless condition-1 is true when the PERFORM
statement is entered, in which case identifier-1,
identifier-4, and identifier-7 all contain their initial
values.

A PERFORM statement that appears in a section whose priority
is less than the 50, can have within its range only the
following:

(1) Sections each of which has a priority number less than
50, or

(2) Sections wholly contained in a single segment whose
priority number is greater than 49. (See Restrictions
on Program Flow, Section 6.5.3.)

A PERFORM statement that appears in a section whose
priority number is equal to or greater than the 50, can have
within its range only the following:

(1) Sections each of which has the same priority number as
that containing the PERFORM statement, or

(2) Sections with a priority number that is less than the
segment limit. (See Restrictions on Program Flow,
Section 6.5.3.)

When a procedure-name in a segment with a priority
number greater than 49 is referred to by a PERFORM statement
contained in a segment with a different priority number, the
segment referred to is made available in its initial state
for each execution of the PERFORM statement. (See
Restrictions on Program Flow, Section 6.5.3.)

5.7.4 The STOP Statement

The STOP statement causes a permanent or temporary suspension
of the execution of the object program.

General Format

STOP {literal : RUN}

If the RUN option is used, then the object program makes
a normal exit to DOS, the Disk Operating System. Any files open
at this time will not be closed.

5-28 COBOL LANGUAGE SPECIFICATIONS

If a STOP statement with the RUN option appears in an imperative
sentence, then it must appear as the only or last statement in a
sequence of imperative-statements.

If the literal option is used, the literal is displayed on the
console display and the operator is queried as to whether to
continue execution or not. If he responds with the character 'N',
the effect is the same as that of a STOP RUN statement. If he
responds with the character 'Y' the object program continues with
the execution of the next statement in sequence. The literal may
be numeric or nonnumeric or may be any figurative constant, except
ALL literal.

5.7.5 The EXIT Statement

The EXIT statement provides a common end point for a series
of procedures.

General Format

EXIT [PROGRAM].

It is sometimes necessary to transfer control to the end
point of a series of procedures. This is normally done by
transferring control to the next paragraph or section, but in some
cases this does not have the required effect. For instance, the
point to which control is to be transferred may be at the end of a
range of procedures governed by a PERFORM statement. The EXIT
statement is provided to enable a procedure-name to be associated
with such a point.

If control reaches an EXIT paragraph and no associated PERFORM
statement is activa, control passes through the EXIT point to the
first sentence of the next paragraph.

The EXIT statement must appear in a sentence by itself, and must
be preceded by a paragraph-name. The EXIT sentence must be the
only sentence in the paragraph.

The PROGRAM option is used with the Sub-Program Feature. See The
EXIT PROGRAM Statement in Section 6.4.3.

CHAPTER 5. PROCEDURE DIVISION 5-29

5.8 Data Manipulation Statements

5.8.1 The MOVE Statement

The MOVE statement transfers data, in accordance with the
rules of editing, to one or more data areas.

General Format

MOVE {identifier-1 I literal} TO
~entifier-2 [, identifier-3~ ..

Identifier-1 and literal represent the sending area;
identifier-2, identifier-3, .•• , represent the receiving area.

The data designated by the' literal or identifier-1 is moved first
to identifier-2, then to identifier-3, etc. The notes referring
to identifier-2 also apply to the other receiving areas. Any
subscripting or indexing associated with identifier-2, etc., is
evaluated immediately before the data is moved to the respective
data item.

An index data item cannot appear as an operand of a MOVE
statement. (See The USAGE Clause, Section 6.1.1.2.)

Any move in which the sending and receiving items are both
elementary items is an elementary move. Every elementary item
belongs to one of the following categories: numeric, alphabetic,
alphanumeric, numeric edited, alphanumeric edited. These
categories are described in the PICTURE clause. Numeric literals
belong to the category numeric, and nonnumeric literals belong to
the category alphanumeric. The figurative constant ZERO belongs
to the category numeric. The figurative constant SPACE belongs to
the category alphabetic. All other figurative constants belong to
the category alphanumeric.

The following rules apply to an elementary move between these
categories:

(1a) The figurative constant SPACE, or a numeric edited,
alphanumeric edited, or alphabetic data item must not be
moved to a numeric or numeric edited data item.

(1b) A numeric literal, the figurative constant ZERO, a numeric
data item or a numeric edited data item must not be moved to
an alphabetic item.

5-30 COBOL LANGUAGE SPECIFICATIONS

(1c) A numeric literal, or a numeric data item whose implicit
decimal point is not immediately to the right of the least
significant digit, must not be moved to an alphanumeric or
alphanumeric edited data item.

(1d) All other elementary moves are legal and are performed
according to the rules given in General Rule (2).

Any necessary conversion of data from one form of internal
representation to another takes place during the legal elementary
moves, along with any editing specified for the receiving data
item. The following rules apply to legal elementary moves:

(2a) When an alphanumeric edited, alphanumeric, or alphabetic item
is a receiving item, justification and any necessary
space-filling takes place as defined under the JUSTIFIED
clause (see The JUSTIFIED Clause, Section 4.4.6). If the
size of the sending item is greater than the size of the
receiving item, the excess characters are truncated after the
receiving item is filled.

(2b) When a numeric or numeric edited item is a receiving item,
alignment by decimal point and any necessary zero-filling
takes place, except where zeros are replaced because of
editing requirements. If the receiving item has no
operational sign, the absolute value of the sending item is
used. If the sending item has more digits to the left or
right of the decimal point than the receiving item can
contain, the excess digits are truncated. When a data item
described as alphanumeric is the sending item, it is moved as
though it was described as an unsigned numeric integer item.
If the sending item contains any nonnumeric characters, the
results are undefined.

(2c) When a receiving field is described as alphabetic and the
sending data item contains any nonalphabetic characters, the
results are undefined.

Any move that is not an elementary move is treated exactly as
if it were an alphanumeric to alphanumeric elementary move, except
that there is no conversion of data from one form of internal
representation to another.

Data in the following chart represents the 'Legality of the
MOVE/General Rule Reference'. The general rule reference
indicates the rule that prohibits the move or the behavior of a
legal move.

CHAPTER 5. PROCEDURE DIVISION 5-31

Categor] of Receiving Data Item
ALPHABETIC ALPHANUMERIC NUMERIC

EDITED, INTEGER,
ALpHANUMERIC NUMERIC

Category of NON-INTEGER,
Sending Data Item NUMERIC

EDITED
ALPHABETIC Yes/2a Yes/2a No/1a
ALPHANUMERIC Yes/2c Yes/2a Yes/2b
ALPHANUMERIC EDITED Yes/2c Yes/2a No/1a
NUMERIC INTEGER 'No/ 1 b Yes/2a Yes/2b
NUMERIC NON-INTEGER No/1b r~o/ 1 c Yes/2b
NUMERIC EDITED No/1b Yes/2a No/1a

5.tl.2 The EXAMINE Statement

The EXAMINE statement replaces or counts the number of
occurrences of a given cha~acter in a data item.

General Format

EXAMINE identifier
{TALLYING {UNTIL FIRST I ALL I LEADING}

literal-1 [REPLACING BY literal-2]
REPLACING {ALL I LEADING I [UNTIL] FIRST}
literal-3 BY literal-4}

The description of the identifier must be such that usage
is DISPLAY (explicitly or implicitly).

Each literal must consist of a single character belonging to a
class consistent with that of identifier; in addition, each
literal may be any figurative constant, except ALL literal.

Examination proceeds as follows:

(1) For nonnumeric data items, examination starts at the
left-most character and proceeds to the right. Each
character in the data item specified by the identifier is
examined in turn.

(2) If a data item referred to by the EXAMINE statement is
numeric, it must consist of numeric characters and may
possess an operational sign. Examination starts at the
left-most character (excluding the sign) and proceeds to the
right. Each character except the sign is examined in turn.
Regardless of where the sign is physically located, it is
completely ignored by the EXAMINE statement.

5-32 COBOL LANGUAGE SPECIFICATIONS

The TALLYING option creates an integral count which replaces
the value of a special register called TALLY (see Special
Register, Section 1.4.6). The count represents the number of:

(1) Occurrences of literal-1 when the ALL option is used.
(2) Occurrences of literal-1 prior to encountering a character

other than literal-1 when the LEADING option is used.
(3) Characters not equal to literal-1 encountered before the

first occurrence of literal-1 when the UNTIL FIRST option is
used.

When either of the REPLACING options is used the replacement
rules are as follows, subject to the preceeding paragraph:

(1) When the ALL option is used, then literal-2 or literal-4 is
substituted for each occurrence of literal-1 or literal-3.

(2) When the LEADING option is used, the substitution of
literal-2 or literal-4 terminates as soon as a character
other than literal-1 or literal-3 is encountered or the
right-hand boundary of the data item is reached.

(3) When the UNTIL FIRST option is used, the substitution of
literal-2 or literal-4 terminates as soon as literai-1 or
literal-3 is encountered or the right-hand boundary of the
data item is reached.

(4) When the FIRST option is used the first occurrence of
literal-1 or literal-3 is replaced by literal-2 or literal-4.

5.9 Input-Output Statements

5.9.1 The OPEN Statement

The OPEN statement initiates the processing of files. It
performs checking and/or writing of labels and other input-output
operations.

General Format

OPEN [INPUT file-name [, file-name] •.•]
[, OUTPUT file-name [, file-name] ••.]
[, '!-Q file-name [., file-name] .•.]

\

Each of the choices (INPUT, OUTPUT, 1-0) can be specified
only once in a given OPEN statement. The 1-0 option pertains only
to mass storage files.

The OPEN statement must be applied to all files, except sort files

CHAPTER 5. P-ROCEDURE DIVISION 5-33

(see The Sort Facility, Section 6.2). The OPEN statement for a
file must be executed prior to the first READ, WRITE, START, or
SEEK for that file. A second OPEN for a file cannot be executed
prior to the execution of a CLOSE. statement for that file. The
OPEN statement does not obtain or release the first data record.
A READ or WRITE statement must be executed to obtain or release,
respectively, the first data record. If the external medium for
the file permits rewinding, execution of the OPEN statement causes
the file to be positioned at its beginning.

The 1-0 option permits the opening of a mass storage file for both
input and output operations. Since this option implies the
existence of the file, it cannot be used if the mass storage file
is being initially created.

When processing mass storage files for which the access mode is
sequential, the OPEN statement supplies the initial address of the
first record to be accessed.

5.9.2 The START Statement

The START statement is used to sequentially process an
index-sequential file from a specified key.

General Format

START file-name; INVALID KEY imperative-statement

The value of the NOMINAL KEY data item must be set before
the execution of the START statement. After a START statement has
been executed, the next record of the file to be processed by a
READ or WRITE statement will be the record whose RECORD KEY
matches the NOMINAL KEY value. If no record was found, the
imperative statement following the INVALID KEY phrase will be
executed.

5.9.3 The SEEK Statement

The SEEK statement initiates the accessing of a mass storage
data record for subsequent reading or writing.

General Format

SEEK file-name RECORD

5-34 COBOL LANGUAGE SPECIFICATIONS

A SEEK statement pertains only to fixed-format mass
storage files in the random access mode and may be executed prior
to the execution of each READ and WRITE statement.

Two SEEK statements for the same mass storage file may logically
follow each other.

In Datapoint COBOL the SEEK statement has no effect on the
execution of the object program.

5.9.4 The READ Statement

For sequential file processing, the READ statement makes
available the next logical record from an input file and allows
performance of a specified imperative statement when end of file
is detected. For random file processing, the READ statement makes
available a specific record from an imput file and allows
performance of a specified imperative statement if the contents of
the associated ACTUAL KEY or NOMINAL KEY data item are found to be
invalid.

General Format

READ file-name RECORD [INTO identifier];
{AT END I INVALID KEY} imperative-statement

An OPEN statement must be executed for a file prior to
the execution of the first READ statement for that file.

The AT END option is only used for non-mass storage files and for
mass storage files in the sequential access mode. The INVALID KEY
option is only used for mass storage files in the random access
mode.

When a file consists of more than one type of logical record,
these records automatically share the same storage area; this is
equivalent to an implicit redefinition of the area. Only the
information that is present in the current record is accessible.

If after reading the final logical record of a file in sequential
access mode, another READ statement is initiated for that file,
that final logical record is no longer available in its record
area; the READ statement is then completed by the execution of the
AT END phrase. After the AT END condition has been recognized for
a file, a READ statement for that file must not be given without

CHAPTER 5. PROCEDURE DIVISION 5-35

prior execution of a CLOSE statement and an OPEN statement for
that file.

For random file processing the READ statement implicitly performs
the functions of the SEEK statement for a specific mass storage
file, regardless of whether a SEEK statement is executed for the
specified record of this file prior to the execution of the READ
statement for that specified record. If such files are accessed
for a specified mass storage record and the contents of the
associated ACTUAL KEY or NOMINAL KEY data item are invalid, the
INVALID KEY phrase is executed.

If the INTO option is specified, the current record is moved from
the input area to the area specified by identifier according to
the rule for the MOVE statement. Any subscripting or indexing
associated with identifier is evaluated after the record has been
read and immediately before it is moved to the data item. When
the INTO option is used, the record being read is available in
both the data area associated with identifier and the input record
area.

The INTO option may only be used when the input file contains
records of one type.- The storage area associated with identifier
and the storage area which is the record area associated with
file-name must not be the same storage area.

5.9.5 The WRITE Statement

The WRITE statement releases a logical record for an output
file. It can also be used for vertical positioning of a printer.
For random processing of mass storage files, the WRITE statement
allows the performance of a specified imperative statement if the
contents of the associated ACTUAL KEY data item are found to be
invalid.

Format 1

wRITE record-name [FROM identifier-1]
[{BEFORE I AFTER} ADVANCING

{{identifier-2 I integer} [LINE I LINES]
I mnemonic-name I PAGE}]

[; AT {END-OF-PAGE I EOP}
imperative-statement]

5-36 COBOL LANGUAGE SPECIFICATIONS

Format ~

WRITE record-name [FROM identifier-1];
INVALID KEY imperative-statement

EOP is an abbreviation for END-OF-PAGE.

An OPEN statement for a file must be executed prior to executing
tne first WRITE statement for that file.

The logical record released by the execution of the WRITE
statement is no longer available. The record-name is the name of a
logical record in the File Section of the Data Division and may be
qualified.

If the FROM option is specified the data is moved from the area
specified by identifier-1 to the output area, according to the
rules specified for the MOVE statement. After execution of the
WRITE statement is completed, the information in identifier-1 is
available, even though that in record-name is not. Record-name and
identifier-1 must not refer to the same storage area.

The ADVANCING option allows control of the vertical positioning of
each record on the printed page. If the ADVANCING phrase is not
used, the record will be written after the file has been advanced
one line. If the ADVANCING option is used, the automatic single
space is overridden.

(1) If identifier-2 is specified, the printer page is advanced
the number of lines equal to the current value associated
with identifier-2.

(2) If integer is specified, the printer page is advanced the
number of lines equal to the value of integer.

(3) If mnemonic-name is specified, the printer page is advanced
no spaces if the mnemonic-name is defined to be CSP, or to
the top of the form if the mnemonic-name is defined to be
C01.

(4) If' the BEFORE option is used, the record is printed before
the printer page is advanced according to the preceding
rules.

(5) If the AFTER option is used, the record is printed after the
printer page is advanced according to the precedin~ rules.

When identifier-2 or integer is used in the ADVANCING option,
it must be the name of a numeric elementary item described without
any positions to the right of the assumed decimal point. When the
mnemonic-name option is used, the name is identified with a
particular feature specified above. The mnemonic-name is defined

CHAPTER 5. PROCEDURE DIVISION 5-31

in the Special-Names paragraph of the Environment Division,
Section 3.2.3.

If a LINAGE clause is associated with the file, the value of the
associated LINAGE-COUNTER is updated to correspond with the new
position on the page.

The END-OF-PAGE option allows special processing to be performed
if a WRITE statement positions a file to its footing area. If
after execution of a WRITE statement, the file is positioned in
the footing area, the imperative-statement following the AT
END-OF-PAGE phrase is executed. However if the WRITE statement
advances the file past the footing area, the imperative-statement
will not be executed.

The END-OF-PAGE option can only be used with files which have a
LINAGE clause specified in their FD.

Format 2 is used for processing mass storage files. For mass
storage files in the sequential access mode, the imperative
statement in the INVALID KEY clause is executed when the end of
the file area is reached and an attempt is made to execute a WRITE
statement for that file.

For mass storage files in the random access mode, the WRITE
statement implicitly performs a SEEK statement for a specific mass
storage record, regardless of whether a SEEK statement is executed
for this record prior to the execution of the WRITE statement.
The imperative statement in the INVALID KEY phrase is executed
when the contents of the ACTUAL KEY or NOMINAL KEY being used to
obtain the mass storage record is found to be invalid. When the
INVALID KEY condition exists, no writing takes place and the

I information in the record area is available.

5.9.6 The REWRITE Statement

The REWRITE statement is used to update a record of a mass
storage file which has been previously READ.

General Format

REWRITE record-name [FROM identifier]
; INVALID KEY imperative-statement

An OPEN statement with the 1-0 option must be executed

5-3e COBOL LANGUAGE SPECIFICATIONS

prior to using the REWRITE statement. Further a READ statement
for the same record as is specified by the ACTUAL KEY or NOMINAL
KEY value, without intervening I/O to the file, must have been
executed before the REWRITE statement is executed.

The REWRITE statement updates the current record as specified by
the KEY value, or control is passed to the imperative statement
following the INVALID KEY phrase.

5.9.7 The ACCEPT Statement

The ACCEPT statement causes low volume data to be transferred
from the CONSOLE keyboard or from the system date.

Format 1

ACCEPT identifier [FROM mnemonic-name]

Format £

ACCEPT identifier FROM DATE

In format 1, the ACCEPT statement causes the transfer of
data from the CONSOLE keyboard. This data replaces the contents
of the data item named by the identifier. The data being
transferred will contain no more than 78 characters.

If the size of the data read from the keyboard is less than size
of the receiving data item, then the data being transferred
replaces the left-most characters of the receiving data item, and
the remainder of the data item is filled with spaces. If the size
of the data item is less than the size of the data read from the
keyboard, then the left-most characters of the data read are
transferred to the data item, and the remaining keyboard input is
ignored.

In format 2, if the FROM DATE option is used, the system date is
transferred to identifier. (See the DATE special register.)

CHAPTER 5. PROCEDURE DIVISION 5-39

5.9.8 The DISPLAY Statement

The DISPLAY statement causes low volume data to be
transferred to the CONSOLE display.

General Format

DISPLAY {literal-1 I identifier-1}
[, literal-2 I , identifier-2] .•.

The DISPLAY statement causes the contents of each operand
to be transferred to the display in the order listed. At most 80
characters will be transferred.

Each literal may be any figurative constant except ALL. If a
figurative constant is specified as one of the operands, only a
single occurence of the figurative constant is displayed.

When a DISPLAY statement contains more than one operand, the size
of the sending item is the sum of the sizes associated with the
operands, and the values of the operands are transferred in the
sequence in which the operands are encountered. In the following
rules, the sending data item is considered to be the composite of
all operands in the DISPLAY statement.

(1) If the size of the data item being sent is greater than or
equal to 80 characters, the first 80 characters of the data
beginning with the left-most characters are sent to the
display.

(2) If the size of the data item being sent is less than 80
characters, the transferred data is aligned to the left on
the display.

5.9.9 The CLOSE Statement

The CLOSE statement terminates the processing of files with
optional rewind and/or lock where applicable.

General Format

CLOSE file-name-1 [WITH {NO REWIND I LOCK}]
[, file-naroe-2 [WITH {NO REWIND I LOCK}]] •..

Each file-name is the name of a file upon which the CLOSE

5-40 COBOL LANGUAGE SPECIFICATIONS

statement is to operate; it must not be the name of a sort file.
(See Section 6.2, The Sort Facility.) The WITH NO REWIND option
applies only to files stored on tape devices.

In the discussion below, the term 'unit' applies to all
input-output devices; the term 'reel' applies to tape devices.
Treatment of mass storage devices in the sequential access mode is
logically equivalent to the treament of a file on tape or
analoguous medium.

(1) For the purposes of showing the effect of various CLOSE
options as applied to various storage media, all input and
output and input-output files are divided into the following
categories:

a. Non-reel. A file whose input or output medium is such
that the concepts of rewinding and reels have no
meaning.

b. Sequential (single) reel/unit. A sequential file that
is entirely contained in one unit.

c. Random (single) reel/unit. A file in the random access
mode that is entirely contained on one mass storage
unit.

(2) The results of executing each CLOSE option for each type of
file are summarized in Figure 5-1. The definitions of the
symbols in the Figure are given below. Where the definitions
depends on whether the file is an input or output file,
alternate definitions are given; otherwise, a definition
applies to input, output, and input-output files.

A. No Rewind. The current reel is left in its current
position.

B. Standard Close File.

Input Files and Input-Output Files: If the file is
positioned at its end and a label is specified for the
file, the label is processed according to the standard
convention. The behavior of the CLOSE statement when a
label record is not specified but is present, or when a
label record is specified but is not present, is
undefined. If the file is positioned at its end and
label records are not specified for the file, label
processing does not take place. If the file is
positioned other than at its end, there is no ending
label processing. An input file, or an input-output
file, is considered to be at the end of the file if the

CHAPTER 5. PROCEDURE DIVISION 5-41

imperative statement in the AT END phrase of a READ
statement has been executed and no CLOSE statement has
been executed.

Output Files: If a label record is specified for the
file, standard label processing occurs. The behavior of
the CLOSE statement when a label record is specified but
not present, or when a label record is not specified but
is present, is undefined. If label records are not
specified for the file, label processing does not take
place.

C. Standard File Lock. When this option is used, the file
cannot be processed again during the execution of this
object program.

D. Rewind. The file is positioned at its beginning. In the
case of tape, this means that the reel is rewound.

X. Illegal. This is an illegal combination of a CLOSE
option and a file type.

If a file has been opened and is not closed prior to the
execution of a STOP RUN statement, the contents of the file will
be indeterminate.

If a CLOSE statement has been executed for a file, a READ, WRITE,
START, or SEEK statement for that file must not be executed unless
an intervening OPEN statement for that file is executed.

FILE TYPE

SEQUENTIAL RANDOM
CLOSE NON- SINGLE- SINGLE-
OPTION REEL REEL/UNIT REEL/UNIT
CLOSE B B. D B
CLOSE WITH

LOCK B. C B. C. D B. C
CLOSE WITH

NO REWIND X B, A X

Figure 5-1. Relationship of Types of Files and the Options of the
CLOSE Statement.

5-42 COBOL LANGUAGE SPECIFICATIONS

5.10 Table Manipulating Statements

The only table-manipulating statement is the SET statement.
It is discussed in Section 6.1.2.3.

5.11 Program Linkage Statement

The CALL and EXIT PROGRAM statements are discussed in Section
6.4, The Sub-Program Facility.

5.12 Compiler Directing Statements

The compiler directing statements are the COPY, ENTER, and
NOTE statements. The COpy statement is discussed in Section 6.3.1

5.12.1 The ENTER Statement

The ENTER statement is provided to allow a means of using
more than one language in the same program. The Datapoint COBOL
compiler makes no provision for translating other languages,
although any compatible relocatable object program may be called
.using the CALL statement. (See The CALL Statement, Section
6 .4. 1 •)

General Format

ENTER language-name [r~utine-nameJ.

Since the Datapoint COBOL compiler does not allow mixed
source languages, this statement is treated as a comment.

CHAPTER 5. PROCEDURE DIVISION 5-43

5.12.2 The NOTE Sentence

The NOTE sentence allows the programmer to write commentary
which is produced on the listing, ·but not compiled.

General Format

NOTE character-string.

Any combination of the characters from the ASCII
character set may be included in the character-string. If a NOTE
sentence is the first sentence of a paragraph, the entire
paragraph is considered to be part of the character-string.
Proper format rules for paragraph structure must be observed in
this case. If a NOTE sentence appears as other than the first
sentence of a paragraph, the commentary ends with the first
instance of a period followed by a space. (See Chapter 1, Overall
Language Considerations, Section 1.6.1, for alternate methods of
introducing commentary.)

5-44 COBOL LANGUAGE SPECIFICATIONS

CHAPTER 6. SPECIAL FEATURES

6.1 Table Handling Facility

Datapoint COBOL provides a capability for defining tables of
contiguous data items and accessing an item relative to its
position in the table. Language facility is provided for
specifying how many times an item is to be repeated. Each item
may be identified through use of a subscript or an index-name (see
Uniqueness of Data Reference, Section 1.5.7). The table handling
capability provides for accessing items in up to three-dimensional
fixed-length tables.

6.1.1 Data Division Considerstions

6.1.1.1 The OCCURS Clause

The OCCURS clause eliminates the need for separate entries
for repeated data and supplies information required for the
application of subscripts or indices.

General Format

OCCURS integer TIMES
[INDEXED BY index-name-1 [, index-name-2] .•.]

The OCCURS clause is optional in a data description entry
and cannot be specified in a data description entry that has an 01
or 77 level number.

The OCCURS clause is used in defining tables and other homogeneous
sets of repeated data. Whenever the OCCURS clause is used, the
data-name which is the subject of this entry must be either
subscripted or indexed whenever it is referred to in a statement.
Further, if the subject of this entry is the name of a group item,
then all data-names belonging to the group must be subscripted or
indexed whenever they are used as operands.

CHAPTER 6. SPECIAL FEATURES 6-1

The data description clauses associated with an item whose
description includes an OCCURS clause apply to each occurrence of
the item described. (See Data Description, Section 4.4)

Integer must be a positive integer. The value of integer
represents the exact number of occurrences.

An INDEXED BY phrase is required if the subject of this entry, or
an item within it if it is a group item, is to be referred to by
indexing. The index-name identified by this clause is not defined
elsewhere since its allocation and format are dependent on the
hardware, and not being data, cannot be associated with any data
hierarchy. Three levels of indexing are permitted.

The VALUE clause must not be.stated in a data description entry
which contains an OCCURS clause or in an entry which is
subordinate to an entry containing an OCCURS clause. This rule
does not apply to condition-name entries.

6.1.1.2 The USAGE Clause

The USAGE clause specifies the format of a data item in the
computer storage.

General Format

[USAGE IS] INDEX

The USAGE clause can be written at any level. If the USAGE clause
is written at a group level, it applies to each elementary item in
the group. The USAGE clause of an elementary item cannot
contradict the USAGE clause of a group to which the item belongs.

An elementary item described with the USAGE IS INDEX clause is
called an index data item and contains a value which must
correspond to an occurrence number of a table-element. The
elementary item cannot be a conditional variable.

If a group item is described with the USAGE IS INDEX clause, the
elementary items in the group are all index data items. The group
itself is not an index data item and cannot be used in a SET
statement or in a relation condition.

An index data item can be referred to directly only in a SET
statement or in a relation condition. An index data item can be

6-2 COBOL LANGUAGE SPECIFICATIONS

part of a group which is referred to in a MOVE or input-output
statement, in which case no conversion will take place.

The SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE, and BLANK WHEN ZERO
clauses cannot be used to describe group or elementary items
described with the USAGE IS INDEX clause.

6.1.2 Procedure Division Considerations

6.1.2.1 Relation Condition

The result of the comparison of two index-names is the same
as if the corresponding occurrence numbers are compared. In the
comparison of an index-name and a data item (other than an index
data item) or literal, the occurence number that corresponds to
the value of the index-name is compared to the data item or
literal. In the comparison of an index data item and an
index-name or another index data item, the actual values are
compared without conversion. The result of the comparison of an
index data item with any data item not specified above is
unpredictable.

6.1.2.2 Overlapping Operands

When a sending and a receiving item in a SET statement share
a part of their storage areas, the result of the execution of such
a statement is undefined.

6.1.2.3 The SET Statement

The SET statement establishes reference points for
table-handling operations by setting index-names associated with
table elements.

CHAPTER 6. SPECIAL FEATURES 6-3

Format 1

SET {index-name-1 [, index-name-2] ..•
I identifier-1 [, identifier-2J .•. }

TO {index-name-3 I identifier-3 I literal-1}

Format ~

SET index-name-4 [, index-name-5J ...
{UP BY I DOWN BY} {identifier-4 I literal-2}

All references to index-name-1, identifier-1, and
index-name-4 apply equally to index-name-2, identifier-2, and
index-name-5, respectively.

All identifiers must name either index data items, or elementary
items described as an integer, except that identifier-4 must not
name an index data item. When a literal is used, it must be a
positive integer. Index-names are considered related to a given
table and are defined by being specified in the INDEXED BY clause.
In Format 1, the following action occurs:

(1) Index-name-1 is set to a value that corresponds to the same
occurrence number to which either index-name-3, identifier-3,
or literal-1 corresponds. If identifier-3 is an index data
item, or if index-name-3 is related to the same table as
index-name-1, no conversion takes place.

(2) If identifier-1 is an index data item, it may be set equal to
either the contents of index-name-3 or identifier-3 where
identifier-3 is also an index data item. Literal-1 cannot be
used in this case.

(3) If identifier-1 is not an index data item, it may be set only
to an occurrence number that corresponds to the value of
index-name-3. Neither identifier-3 nor literal-1 can be used
in this case.

(4·) The process is repeated for index-name-2, identfier-2, etc.,
if specified. Each time the value of index-name-3 or
identifier-3 is used, it is used as it was at the beginning
of the execution of the statement. Any subscripting or
indexing associated with identifier-1, etc., is evaluated
immediately before the value of the respective data item is
changed. .

In Format 2, the contents of index-name-4 are incremented (UP
BY) or decremented (DOWN BY) by a value that corresponds to the
number of occurrences represented by the value of literal-2 or
identifier-4; thereafter, the -process is repeated for

6-4 COBOL LANGUAGE SPECIFICATIONS

index-name-5, etc. Each time the value of identifier-4 is used,
it is used as it was at the beginning of the execution of the
statement.

6.2 The Sort Facility

The Sort facility provides the capability to order a file of
records according to a set of user-specified keys within each
record. Optionally, a user may apply some special processing
which may consist of addition, deletion, creation, altering,
editing or other modifications of the individual records by input
or output procedures. This special processing may be applied
before and/or after the records are ordered by the sort.

6.2.1 Environment Division Considerations

6.2.1.1 The FILE-CONTROL Paragraph

The FILE-CONTROL paragraph names each file, identifies the
file medium, and allows particular hardware assignments.

General Format

FILE-CONTROL. {SELECT file-name
ASSIGN TO [integer-1] device-name-1
[, device-name-2 J. .. .} ..•

The FILE-CONTROL paragraph is specified in Section 3.3.1
of Chapter 3, The Environment Division.

Each sort-file must be the subject of an ASSIGN clause.

CHAPTER 6. SPECIAL FEATURES 6-5

6.2.1.2 The I-a-CONTROL Paragraph

The I-a-CONTROL paragraph specifies the memory area to be
shared by different files.

General Format

I-a-CONTROL.
T;-SAME {RECORD I SORT} AREA

FOR file-name-1 {, file-name-2} ...] ...

This paragraph is optional.

A file-name that represents a sort-file must not appear in the
SAME clause unless the RECORD or SORT option is used.
The two forms of the SAME clause (SAME RECORD AREA, SAME SORT
AREA) are considered separ~tely in the following:

More than one SAME clause may be included in a program, however;

(1) A file-name must not appear in more than one SAME RECORD AREA
clause.

(2) A file-name that represents a sort-file must not appear in
more than one SAME SORT AREA clause.

(3) If a file-name that does not represent a sort-file appears in
a SAME AREA clause and one or more SAME SORT AREA clauses,
all of the files named in that SAME AREA clause must be named
in that SAME SORT AREA clause(s). (See Chapter 3, The
Environment Division, Section 3.4.2)

The SAME RECORD AREA clause specifies that two or more files
are to use the same memory area for processing of the current
logical record. All of the files may be open at the same time;
however, the logical record of only one of the files can exist in
the record area at one time.

If the SAME SORT AREA clause is used, at least one of the
file-names must represent a sort-file. Files that do not
represent sort-files may also be named in the clause. This clause
specifies that storage is shared as follows:

(1) The SAME SORT AREA clause specifies a memory area which will
be made available for use in sorting each sort-file named.
Thus any memory area allocated for the sorting of a sort-file
is available for re-use in sorting any of the other
sort-files.

(2) In addition, storage areas assigned to files that do not

6-6 COBOL LANGUAGE SPECIFICATIONS

represent sort-files may be allocated as needed for sorting
the sort files named in the SAME SORT AREA clause.

(3) Files other than sort-files do not share the same storage
area with each other. If the user wishes these files to
share the same storage area with each other, he must also
include in the program a SAME AREA or SAME RECORD AREA clause
naming these files.

(4) During tne execution of a SORT statement that refers to a
sort-file named in this clause, any non-sort-files named in
this clause must not be open.

6.2.2 Data Division Considerations

An SD File Description in the File Section gives information
about the name and size of data records in the sort-file. The
name Sort File designates a set of records to be sorted by a SORT
statement. There are no label ·procedures which the user can
control, and the rules for blocking and internal storage are
peculiar to the SORT statement.

6.2.2.1 The Sort File Description - Complete Entry Skeleton

The Sort File Description furnishes information concerning
the physical structure, identification, and record names of the
file to be sorted.

General Format

SD file-name
--[; DATA {RECORD IS I RECORDS ARE}

data-name-1 [, data-name-2] ...]
[; RECORD CONTAINS

[integer-1 TO] integer-2 CHARACTERS].

The level indicator SD identifies the beginning of the
Sort File Description and must precede the file-name.

All semicolons are optional in the Sort File Description but the
entry must be terminated by a period.

The order of appearance of the clauses which follow the name of
the file is immaterial. (See Section 4.1, for an explanation of
the clauses.)

CHAPTER 6. SPECIAL FEATURES 6-1

6.2.3 Procedure Division Considerations

b.2.3.1 The SORT Statement

The SORT statement creates a sort-file by executing input
procedures or by transferring records from another file, sorts the
records in the sort-file on a set of specified keys, and in the
final phase of the sort operation, makes available each record
from the sort-file, in sorted order, to some output procedures or
to an output file. There is no limit to the number of SORT
statements allowed in a program, however the number of File
Description entries (SO and FD) may not exceed thirty-two (32).

General Format

SORT file-name-1 ON {DESCENDING I ASCENDING}
KEY data-name-1 [, data-name-2] •..

[; ON {DESCENDING I ASCENDING}
KEY data-name-3 [, data-name-4] •..] .•.

{INPUT PROCEDURE IS
section-name-1 [THRU section-name-2]

I USING file-name-~
{OUTPUT PROCEDURE IS

section-name-3 [THRU section-name-4]
GIVING file-name~

The Procedure Division may contain more than one SORT
statement appearing anywhere except in the input and output
procedures associated with a SORT statement.

Section-name-1 represents the name of an input procedure.
Section-name-2 represents the name of an output procedure.

Sorted File Sequence

The data-names following the word KEY are listed from left to
right in the SORT statement in order of decreasing significance
without regard to how they are" divided into KEY clauses. The
collating sequence is ASCII. The data-names may be qualified.

The direction of the sort depends on the use of the ASCENDING or
DESCENDING clauses as follows:

(1) When an ASCENDING clause is used, the sorted sequence is from

6-H COBOL LANGUAGE SPECIFICATIONS

lowest value of key to highest value according to the rules
for comparison of operands in a Relation Condition.

(2) When a DESCENDING clause is used, the sorted sequence is from
highest value of key to lowest value according to the rules
for comparison of operands in a Relation Condition.

Files Associated with £ SORT

File-name-1 must be described in a Sort File Description entry in
the Data Division. Each data-name must represent data items
described in records associated with file-name-1. File-name-2 and
file-name-3 must be described in.a File Description entry, not in
a Sort File Description entry, in the pata Division. The actual
size of the logical record(s) described for file-name-2 and
file-name-3 must be equal to the actual size of the logical
record(s) described for file-name-1. If the data descriptions of
the elementary items that make up these records are not identical,
it is the programmer's responsibility to describe the
corresponding records in such a manner so as to cause equal
amounts of computer storage to be allocated for the corresponding
records. The file name entry may be assigned to any hardware
device.

The record description for every record that is a logical record
associated with the sort-file description must contain the KEY
items data-name-1, data-name-2, etc. These KEY items are subject
to the following rules:

(1) Where more than one record description appears, the key items
need only be described in one of the record descriptions.
When the key items are described in more than one record the
data descriptions must be equivalent and their starting
position must always be the same number of character
positions from the beginning of each record.

(2) They may not contain nor be subordinate to entries that
contain an OCCURS clause.

Input Procedure

The input procedure, if present, must consist of one or more
sections that appear contiguously in a source program and do not
form a part of any output procedure. The input procedure must
include at least one RELEASE statement in order to transfer
records to the sort-file. Control must not be passed to the input
procedure except when a related SORT statement is being executed,
because the RELEASE statements in the input procedure have no
meaning unless they are controlled by a SORT statement. The input

CHAPTER 6. SPECIAL FEATURES 6-9

procedure can include any procedures needed to select, create, or
modify records. The restrictions on the procedural statements
within the input procedure are as follows:

(1) The input procedure must not' contain any SORT statements.
(2) The input procedure must not contains any explicit transfers

of control to points outside the input procedures; ALTER, GO
TO and PERFORM statements in the input procedure are not
permitted to refer to procedure-names outside the input
procedure.

If an input procedure is specified, control is passed to the
input procedure before file-name-1 is sequenced by the SORT
statement. The compiler inserts a return mechanism at the end of
the last section in the input procedure and when control passes
the last statement in the input procedure, the records that have
been released to file-name-1 are sorted.

USING Option

If the USING option is specified, all the records in the
file-name-2 are transferred automatically to the file-name-1. At
the time of execution of the SORT statement, file-name-2 must not
be open. The SORT statement automatically initiates the
processing of, makes available the logical records for, and
terminates the processing of, file-name-2. The terminating
function is performed as if the CLOSE statement had been
explicitly written without optional phrases. The SORT statement
also automatically performs the implicit functions of moving the
records from the file area of file-name-2 to the file area of
file-name-1 and the release of the records to the initial phase of
the sort operation.

Output Procedure

The output procedure, if present, must consist of one or more
sections that appear contiguously in a source program and do not
form a part of any input procedure. The output procedure must
include at least one RETURN statement in order to make sorted
records available for processing. Control must not be passed to
the output procedure except when a related SORT statement is being
executed, because the RETURN statements in the output procedure
have no meaning unless they are controlled by a SORT statement.
The output procedure may consist of any procedures needed to
select, modify, or copy the records that are being returned one at
a time in sorted order, from the sort-file. The restrictions on
the procedural statements within the output procedure are as
follows:

6-10 COBOL LANGUAGE SPECIFICATIONS

(1) The output procedure must not contain any SORT statements.
(2) The output procedure must not contain any explicit transfers

of control to points outside the output procedure; ALTER, GO
TO and PERFORM statements in the output procedure are not
permitted to refer to procedure-names outside the output
procedure.

If an output procedure is specified, control passes to it
after file-name-1 has been sequenced by the SORT statement. The
compiler inserts a return mechanism at the end of the last section
in the output procedure. When control passes the last statement
in the output procedure, the return mechanism provides for
termination of the sort and then passes control to the next
statement after the SORT statement. Before entering the output
procedure, the sort procedure reaches a point at which it can
select the next record in sorted order when requested. The RETURN
statements in the output procedure are the requests for the next
record.

GIVING Option

If the GIVING option is used, all the sorted records in
file-name-1 are automatically transferred to file-name-3 as the
implied output procedure for this SORT statement. At the time of
execution of the SORT statement file-name-3 must not be open. The
SORT statement automatically initiates the processing of, releases
the logical records to, and terminates the processing of,
file-name-3. The terminating function is performed as if the CLOSE
statement had been explicitly written without optional phrases.
The SORT statement also automatically performs the implicit
functions of the return of the sorted records from the final phase
of the sort operation and the moving of the records from the file
area for file-name-1 to the file area for file-name-3.

Segmentation as defined in this chapter can be applied to the
sections within the input or output procedures.

6.2.3.2 The RELEASE Statement

The RELEASE statement transfers records to the initial phase
of a SORT operation.

General Format

RELEASE record-name [FROM identifier]

CHAPTER 6. SPECIAL FEATURES 6-11

The RELEASE statement causes the record named by
record-name to be released to the initial phase of a sort
operation. A RELEASE statement may only be used within the range
of an input procedure associated with a SORT statement for a file
whose sort-file description contains record~name. (See The SORT
Statement, preceeding.)

After the RELEASE is executed, the logical record is no longer
available. When control passes from the input procedure, the file
consists of all those records that were placed in it by the
execution of RELEASE statements.

The record-name must be the name of a logical record in the
associated sort-file description and may be qualified.

If the FROM option is used, the contents of the identifier data
area are moved to record-name, then the contents of record-name
are released to the sort-file. Moving takes place according to
the rules specified for the MOVE statement. The information in the
record area is no longer available, but the information in the
data area associated with identifier is available. Record-name
and identifie~ must not refer to the same storage area.

6.2.3.3 The RETURN Statement

The RETURN statement obtains sorted records from the final
phase of a sort operation.

General Format

RETURN file-name RECORD [INTO identifier]
; AT END imperative-statement

The execution of the RETURN statement causes the next
record, in the order specified by the keys listed in the SORT
statement, to be made available for processing in the records area
associated with the sort file. A RETURN statement may only be
used within the range of an output procedure associated with a
SORT statement for file-name.

After execution of the imperative-statement in the AT END phrase,
no RETURN statements may be executed within the current output
procedure.

File-name must be described by a Sort File Description entry in

6-12 COBOL LANGUAGE SPECIFICATIONS

the Data Division~ When a file consists of more than one type of
logical record, these records automatically share the storage
area~ This is equivalent to saying that there exists an implicit
redefinition of the area, and only the information that is present
in the current record is accessible~

The INTO option may only be used when the input file contains just
one type of record~ The storage area associated with identifier
and the storage area associated with file-name must not be the
same storage area~ If the INTO phrase is specified, the current
record is moved from the input area to the area specified by
identifier according to the rule for the MOVE statement~ Any
subscripting or indexing associated with identifier is evaluated
after the record has been returned and immediately before it is
moved to the data item~

6~3 The COBOL Source Library Feature

The COBOL source library feature provides a capability for
specifyingte~t that is to be copied from a library into the
source program, with word substitution as text is copied~ The
effect of the compilation of library text is the same as if the
text were written as part of the source program~

A COBOL source library contains text that is available to a source
program at compile time~ It may contain text for the Environment
Division, Data Division and the Procedure Division available
through the use of the COpy statement~

COBOL library text is placed on the COBOL library through the use
of the Library Pre-Processor (LIB version 2~1 or later)~

6~3~1 The COpy Statement

General Format

COpy library-name
[REPLACING word-1 BY

{word-2 : identifier-1
[, word-3 BY

{word-4 I identifier-2

literal-1}

literal-2}]~~~]

A word in this format may represent one of the following
and must conform to the definition of words (See Character

CHAPTER 6~ SPECIAL FEATURES 6-13

Strings, Section 1.4.):

(1) in any of
any entry

data-name
procedure-name
condition-name
mnemonic-name
file-name

The COPY statement may appear as follows:

the paragraphs in the Environment Division,
of the File Control paragraph,

or in

(2) in any level indicator entries or an 01 or 77 level number
entry in the Data Division,

(3) in a section or paragraph in the Procedure Division.

No other statement or clause may appear after the COpy
statement in the same entry.

The library text is copied from the library and the result of the
compilation is the same as if the text (with substitutions) were
actually part of the' source program. The copying process is
terminated by the end of the library text. The text contained on
the library must not contain any COpy statements.

If the REPLACING phrase is used, each occurrence of word-1,
word-3, etc., in the text being copied from the library is
replaced by the word, identifier, or literal associated with it in
the REPLACING phrase. Use of the REPLACING option does not alter
the material as it appears in the library.

The source material copied from the library will appear on the
listing after the COpy statement, with the substitutions called
for in the COPY statement.

6.3.2 Valid Locations for the COPY Statement

The COPY statement is written in any of the following forms:

6-14 COBOL LANGUAGE SPECIFICATIONS

(1) In the Environment Division:

SOURCE-COMPUTER. copy-statement.
OBJECT-COMPUTER. copy-statement.
SPECIAL-NAMES. copy-statement.
FILE-CONTROL. copy-statement.
SELECT file-name copy-statement.
I-Q-CONTROL. copy-statement.

(2) In the File Section:

FD file-name copy-statement.
SD file-name copy-statement.
01 data-name copy-statement.

(3) In the Working-Storage or Linkage Sections:

77 data-name copy-statement.
01 data-name copy-statement.

(4) In the Procedure Division:

section-name SECTION [priority-number].
copy-s ta temen t .•

paragraph-name. copy-statement.

6.4 The Sub-Program Feature

The Datapoint COBOL sub-program feature allows a COBOL
program to invoke both machine-language sub-programs and
previously compiled COBOL sub-programs.

6.4.1 The CALL Statement

The CALL statement is used to invoke a previously compiled or
assembled program.

General Format

CALL literal [USING identifier-1
[, identifier-2] •.•]

The name of the called program is written as a nonnumeric literal.
(Only the first eight characters are significant.) The

CHAPTER 6. SPECIAL FEATURES 6-15

identifiers in the USING list are the parameters passed on the
call. The parameters in the called program must correspond to
this list, otherwise the result of the CALL is undefined.

Control is passed to the sub-prog~am on the CALL statement. If
the sub-program is a COBOL program, then control is returned when
the sub-program executes an EXIT PROGRAM statement. The called
sub-program may be an assembler language program which is in the
relocatable format produced by SNAP/2.

Since sub-programs may not be segmented, the values of working
storage, PERFORM statements, ALTERed GOTO's, etc, remain unchanged
when the sub-program is subsequently reentered.

6.4.2 The USING Option

The USING option allows COBOL programs to pass information on
a CALL. The USING option is used in a CALL statement to pass
information to the called program, and in the Procedure Division
header of sub-programs to receive information being passed.

Format 1

CALL literal [USING identifier-1
[, identifier-2J .•• J

Format 2

Format

PROCEDURE DIVISION [USING identifier-1
[, identifier-2J •.• J

is used to pass information to the called program.

Format 2 is used in COBOL sub-programs to receive information from
a calling program. In this case execution of the sub-program
always starts with the first statement in the Procedure Division.
Any identifier mentioned in the Division header must be defined in
the Linkage Section.

6-16 COBOL LANGUAGE SPECIFICATIONS

6.4.3 The EXIT PROGRAM Statement

The EXIT PROGRAM statement is used to return control from a
COBOL sub-program to its calling program.

General Format

paragraph-name. EXIT PROGRAM.

The EXIT statement must be the only statement in the
paragraph.

When a COBOL program has been called, the EXIT PROGRAM statement
effects the return of control to the calling program. Otherwise
control passes through the EXIT statement to the next paragraph in
the program.

6.5 The Segmentation Feature

The segmentation feature provides a capability for specifying
object program overlay requirements. COBOL segmentation deals
only with segmentation of procedures. As such, only the Procedure
Division is considered in determining segmentation requirements
for an object program.

Program Segments

Although it is not mandatory, the Procedure Division for a source
program is usually written as a consecutive group of sections,
each of which is composed of a series of closely related
operations that are designed to collectively perform a particular
function. However, when segmentation is used, the entire
Procedure Division must be in sections. In addition, each section
must be classified as belonging either to the fixed portion or to
one of the independent segments of the object program.
Segmentation in no way affects the need for qualification of
procedure-names to insure uniqueness.

Permanent Segments

A permanent segment is a segment in the fixed portion of the
object program which cannot be overlaid by any other part of the
program. The fixed portion is defined as that part of the object
program which is always in memory.

CHAPTER 6. SPECIAL FEATURES 6-17

Independent Segments

An independent segment is defined as part of the object program
which can overlay, and can be overlaid by, another independent
segment. An independent segment is effectively in its initial
state each time the segment is made available to the program.

6.5.1 Segment Classification

Sections which are to be segmented are classified, using a
system of priority-numbers and the following criteria:

(1) Logic Requirements - Sections which must be available for
reference at all times, or which are referred to very
frequently, are norma~ly classified as belonging to one of
the permanent segments, sections which are used less
frequently are normally classified as independent segments.

(2) Frequency of Use - Generally, the more frequently a section
is referred to,' the lower its priority-number; the less
frequently it is referred to, the higher its priority-number.

(3) Relationship to Other Sections - Sections which frequently
communicate with one another should be given the same
priority-numbers.

6.5.2 Structure of Program Segments

Section classification is accomplished by means of a syst~m
of priority-numbers. The priority-number is included in the
section header.

General Format

section-name SECTION [priority-number].

The priority-number must be an integer ranging in value
from 0 through 99. Segments with priority-number 0 through 49 must
be together in the source program and belong to the fixed portion
of the object program. Segments with priority-number 50 through
99 are independent segments.

6-1b COBOL LANGUAGE SPECIFICATIONS

6.5.3 Restrictions on Program Flow

When segmentation is used, the following restrictions are
placed on the ALTER and PERFORM statements.

The ALTER Statement

A GO TO statement in a section whose priority is greater than or
equal to 50 must not be referred to by an ALTER statement in a
section with a different priority.

The PERFORM Statement

A PERFORM statement that appears in a section whose priority
number is less than 50, can have within its range only the
following:

(1) Sections each of which has a priority-number less than 50, or
(2) Sections wholly contained in a single segment whose

priority-number is greater than 49.

A PERFORM statement that appears in a section whose
priority-number is equal to or greater than 50, can have within
its range only the following:

(1) Sections each of which has the same priority-number as that
containing the PERFORM statement, or

(2) Sections with a priority-number that is less than 50.

When a procedure-name in a segment with a priority-number greater
than 49 is referred to by a PERFORM statement contained in a
segment with a different priority-number, the segment referred to
is made available in its initial state for each execution of the
PERFORM statement.

Called Programs

COBOL language sub-programs may not use the segmentation feature.
COBOL programs which use sub-programs, but are not themselves
sub-programs, may be segmented.

CHAPTER 6. SPECIAL FEATURES 6-19

\

6.6 DOS Command-line Interface Feature

The DOS Command-line interface feature gives the COBOL
programmer access to the DOS command line (MCR$).

6.6.1 The COMMAND-LINE Special Variable

Pre-defined in every COBOL program is a variable named
COBOL-LINE which has the characteristics of a 79 character
alphanumeric string i.e., PICTURE X(79). This variable does not
occupy storage but simply defines the interface to the programmer.

COMMAND-LINE can be used in any place that a regular
alphanumeric variable can be used e.g., MOVE, DISPLAY, or ACCEPT,
statements. When the COBOL program starts, COMMAND-LINE contains
the information entered by the user to the DOS command
interpretor. Information moved into COMMAND-LINE will be there
after the program completes, unless an abort occurs during
execution.

6.7 SPECIAL I/O Feature

The SPECIAL 110 feature allows the COBOL programmer to
interface to unsupported 110 devices using the standard 110
statements.

6.7.1 Environment Division Considerations

For files that are maintained on unsupported 1/0 devices, the
device specification in the ENVIRONMENT DIVISION has the form

SELECT <filename> ASSIGN TO
SPECIAL -<rtnname>L-<integer>J

<rtnname> is the name of a SNAP2 program that will perform the
operations; <integer> is the number of bytes to be reserved in the
File Descriptor Block (FDB) for the file. If <integer> is not
specified, no space will be reserved.

I

6-20 SPECIAL FEATURES

6.7.2 Procedure Division Considerations

OPEN, CLOSE, READ, and WRITE statements may be used with
SPECIAL files.

6.7.3 I/O Subroutine

Associated with each SPECIAL file is a SNAP2 program to
perform the actual operations; more than one file can be
associated with a single program. This program is called once for
every OPEN, CLOSE, READ, or WRITE operation. The address of the
File Descriptor Block is passed in (HL) and a code specifying what
operation is to be performed is passed in (A). The file
IFDBDEF/TXT, which defines the format of a File Descriptor Block,
contains the definitions or these codes.

6.7.4 Reserve Area

In each File Descriptor Block associated with a SPECIAL file
is a block of memory called the Reserve Area. The size of this
area is specified in the SELECT clause for the file. Initially,
the area contains binary zeros; the area is supplied solely for
the use of the I/O sub-routine and its contents are not
interogated or modified by the COBOL runtime system.

CHAPTER 6. SPECIAL FEATURES 6-21

APPENDIX A. COMPOSITE LANGUAGE SKELETON

This appendix is intended to display complete and
syntactically correct formats for Datapoint COBOL. It does not
imply legal combinations of language elements.

Four margins are used in the presentation of the skeleton: the
leftmost, margin 1, is the name of the paragraph, section, or verb
for which syntax is provided; the second margin is for
distinguishing different formats; the third margin is the start
of the syntax; the fourth margin is for the continuation of the
Identification division

IDENTIFICATION DIVISION.
PROGRAM-ID. program-name.
[AUTHOR. [comment-entry] ••.]
[INSTALLATION. [comment-entry] ...]
[DATE.-WRITTEN. [comment-entry] •..]
[SECURITY. [comment-entry] ...]
[REMARKS. [comment-entry] ...]

Environment division

ENVIRONMENT DIVISION.

Configuration section

CONFIGURATION SECTION.

Source-computer

Format 1:
SOURCE-COMPUTER. COPY-statement.

Format 2:
SOURCE-COMPUTER. computer-name.

APPENDIX A. COMPOSITE LANGUAGE SKELETON A-1

Object-computer

Format 1:
OBJECT-COMPUTER. COPY-statement.

Format 2:
OBJECT-COMPUTER. computer-name

[, MEMORY SIZE integer CHARACTERS]
(, USING DEBUGGERJ.

Special-names

Format 1:
SPECIAL-NAMES. COPY-statement.

Format 2:
SPECIAL-NAMES. [system-name

{IS mnemonic-name
--[, ON STATUS IS condition-name-1

[, OFF STATUS IS condition-name-2]]
IS mnemonic-name
~ OFF-STATUS IS condition-name-2

[, ON STATUS IS condition-name-1]]
ON STATUS IS condition-name-1
~ OFF STATUS IS condition-name-2]
OFF STATUS IS condition-name-2
~ON STATUSIS condition-name-1}] .•.

[, QUOTE IS APOSTROPHE]
[, CURRENCY SIGN IS literal]
[,DECIMAL-POINT IS COMMA].

Input-Output section

INPUT-OUTPUT SECTION.

File-control

Format 1:
FILE-CONTROL. COPY-statement.

A-2 COBOL LANGUAGE SPECIFICATIONS

Format 2:
FILE-CONTROL. {SELECT file-name

{ COPY-statement .

I-O-Control

I ASSIGN TO [integer-1] device-name-1
[, device-name-2] ...
[FOR MULTIPLE {REEL I UNIT}]

[, RESERVE {integer-2 I NO}
ALTERNATE [AREA I AREAS]]

[, {FILE-LIMIT IS I FILE-LIMITS ARE}
{da ta-name-1 I Ii teral-1} THRU
{data-name-2 I literal-2}]--

[, ACCESS MODE IS {SEQUENTIAL I RANDOM}]
[, PROCESSING MODE IS SEQUENTIAL]
[, ACTUAL KEY IS data-name-3
I , NOMINAL KEY IS data-name-3]
[, RECORD KEY IS data-name-4].} ...

Format 1:
I-Q-CONTROL. COPY-statement.

Format 2:
I-Q-CONTROL. [; RERUN ON device-name

EVERY integer RECORDS OF file-name-1] ...
[; SAME [SORT I RECORD] AREA

FOR file-name-2 {, file-name-3} ...] ...
[; APPLY CORE-INDEX TO data-name ON file-name-4

{, file-name-5} ...]... .

Data division

DATA DIVISION.

File section

FILE SECTION.

File description

Format 1:
FD file-name; COPY-statement.

APPENDIX A. COMPOSITE LANGUAGE SKELETON A-3

Format 2:
FD file-name

[; BLOCK CONTAINS integer-1
{RECORDS I CHARACTERS}]

[; DATA {RECORD IS I RECORDS ARE}
data-name-1 [, data-name-2] .•.]

; LABEL {RECORD IS I RECORDS ARE}
{STANDARD I OMITTED}

[; LINAGE IS integer-2 LINES
[WITH FOOTING AT integer-3]]

[; RECORD CONTAINS [integer-4 TO]
integer-5 CHARACTERS]

[; VALUE OF data-name-3 IS literal-1
[, data-name-4 IS literal-2] •••].

Sort description

Format 1:
SD file-name; COPY-statement.

Format 2:
SD file-name;

[; DATA {RECORD IS I RECORDS ARE}
data-name-1 [, data-name-2] ...]

[; RECORD CONTAINS [integer-1 TO]
integer-2 CHARACTERS].

Record description

Format 1:
01 data-name-1; COPY-statement.

Format 2:
level-number {data-name-1 I FILLER}

[; REDEFINES data-name-2]
[; BLANK WHEN ZERO]
[; {JUSTIFIED I JUST} RIGHT]
[; OCCURS integer TIMES]
[; INDEXED BY index-name-1 [, index-name-2] ••.]
[; {PICTURE I PIC} IS character-string]
[; {SYNCHRONIZED I SYNC} [LEFT I RIGHT]]
[; [USAGE IS]

{COMPUTATIONAL I COMP I DISPLAY I INDEX}]
[; VALUE IS literal].

Format 3:

A-4 COBOL LANGUAGE SPECIFICATIONS

88 condition-name
; VALUE IS literal.

Format 4:
77 data-name COPY-statement

Working storage section

WORKING-STORAGE SECTION.

Linkage section

LINKAGE SECTION.

Procedure. division

PROCEDURE DIVISION
[USING identifer-1 [, identifier-2J ... J.

Accept

Add

ACCEPT identifier [FROM mnemonic-name
I FROM DATE]

Format 1:
ADD {iden tifier-1 I Ii teral-1 }

(, identifier-2 I , literal-2] ...
TO identifier-m [ROUNDED]
[; ON SIZE ERROR imperative-statement]

Format 2:
ADD {iden tifier-1 I Ii teral-1} ,

{identifier-2 I literal-2}
[, identifier-3 I , literal-3J ...
GIVING identifier-m [ROUNDED]
[; ON SIZE ERROR imperative-statement]

APPENDIX A. COMPOSITE LANGUAGE SKELETON A-5
I

Alter

Call

Close

Compute

Copy

Display

ALTER procedure-name-1 TO
[PROCEED TO] procedure-name-2
[, procedure-name-3 TO

[PROCEED TO] procedure-name-4] .•.

CALL literal [USING identifier-1
[, identifier-2] ...]·

CLOSE file-name-1 [WITH {NO REWIND I LOCK}]
[, file-name-2 [WITH {NO REWIND I LOCK}]] .••

COMPUTE identifier-1 [ROUNDED] =
{identifier-2 I literal I arithmetic-expression}
[; ON SIZE ERROR imperative-statement]

COpy library-name
[REPLACING word-1 BY

{word-2 I identifier-1
[, word-3 BY

{word-4 I identifier-2

literal-1}

literal-2}] ...].

DISPLAY {Ii teral-1 I identifier-1}
[, literal-2 I , identifier-2] ...
[UPON mnemonic-name]

A-6 COBOL LANGUAGE SPECIFICATIONS

Divide

Format 1:
DIVIDE {iden tifier-1 I Ii teral-1 }

INTO identifier-2 [ROUNDED]
y;-QN SIZE ERROR imperative-statement]

Format 2:
DIVIDE {iden tif'ier-1 I Ii teral-1 }

INTO {identifier-2 : literal-2}
GIVING identifier-3 [ROUNDED]
[; ON SIZE ERROR imperative-statement]

Format 3:
DIVIDE {iden tifier-1. I Ii teral-1 }

BY {identifier-2 I literal-2}
GIVING identifier-3 [ROUNDED]
[; ON SIZE ERR~R imperative-statement]

Format 4:
DIVIDE {identifier-1 I literal-1}

INTO {identifier-2 I literal-2}
GIVING identifier-3 [ROUNDED]
REMAINDER identifier-4
[; ON SIZE ERROR imperative-statement]

Format 5:

Enter

Examine

DIVIDE {identifier-1 I literal-1}
BY {identifier-2 I literal-2}
GIVING identifier-3 [ROUNDED]
REMAINDER identifier-4
[; ON SIZE ERROR imperative-statement]

ENTER language-name [routine-name].

EXAMINE identifier
{TALLYING {UNTIL FIRST I ALL I LEADING}

literal-1 [REPLACING BY literal-2]
REPLACING {ALL I LEADING I [UNTIL] FIRST}
literal-3 BY literal-4}

APPENDIX A. COMPOSITE LANGUAGE SKELETON A-7

Exit

Go

If

Move

EXIT [PROGRAM].

Format 1:
GO TO [procedure-name-1]

Format 2:
GO TO procedure-name-1 [, procedure-name-2] ...

, procedure-name-n DEPENDING ON identifier

IF condition; {statement-1 I NEXT SENTENCE};
ELSE {statement-2 I NEXT SENTENCE}

MOVE {identifier-1 I literal-1} TO
identifier-2 [, identifier-3]: •.

Multiply

Note

Format 1:
MULTIPLY {identifier-1 I literal-1}

BY identifier-2 [ROUNDED]
[; ON SIZE ERROR imperative-statement]

Format 2:
MULTIPLY {identifier-1 I literal-1]

BY {identifier-2 I literal-2}
GIVING identifier-3 [ROUNDED]
[; ON SIZE ERROR imperative-statement]

NOTE character-string.

A-e COBOL LANGUAGE SPECIFICATIONS

Open

OPEN [INPUT file-name~1 [, file-name-2] ...]
[, OUTPUT file-name-3 [, file-name-4] .. .
[, 1-Q file-name-5 [,. file-name-6] ...

Paragraph names

{paragraph-name. {sentence} ... } ...

Perform

Read

Format 1:
PERFORM procedure-name-1 [THRU procedure-name-2]

Format 2:
PERFORM procedure-name-1 [THRU procedure-name-2]

{identifier-1 I integer-1} TIMES

Format 3:
PERFORM procedure-name-1 [THRU procedure-name-2]

UNTIL condition-1

Format 4:
PERFORM procedure-name-1 [THRU procedure-name-2]

VARYING {index-name-1 I identifier-1}
FROM {index-name-2 I literal-2 I identifier-2}
BY {literal-3 I identifier-3}
UNTIL condition-1

[AFTER {index-name-4 I identifier-4}
FROM {index-name-5 I literal-5 I identifier-5}
BY {literal-6 I identifier-6}
UNTIL condition-2

[AFTER {index-name-7 I identifier-7}
FROM {index-name-8 I literal-8 I identifier-8}
BY {literal-9 I identifier-9}
UNTIL condition-3]]

READ file-name RECORD [INTO identifier];
{AT END I INVALID KEY} imperative-statement

APPENDIX A. COMPOSITE LANGUAGE SKELETON A-9

Release

Return

Rewrite

RELEASE record-name (FROM identifier]

RETURN file-name RECORD [INTO identifier]
; AT END imperative-statement

REWRITE record-name [FROM identifier]
INVALID KEY imperative-statement

Section names

Seek

Set

{section-name SECTION [priority-number].
{paragraph-name. {sentence} ... } •.. } ...

SEEK file-name RECORD

Format 1:
SET {identifier-1 [, identifier-2] ... I

index-name-1 [, index-name-2] ... }
TO {identifier-3 I index-name-3 I literal-1}

Format 2:
SET index-name-1 [, index-name-2] •..

{UP BY I DOWN BY} {identifier-1 I literal-1}

Start

START file-name; INVALID KEY imperative-statement

A-10 COBOL LANGUAGE SPECIFICATIONS

Sort

Stop

SORT file-name-1 ON {DESCENDING I ASCENDING}
KEY data-name-1 [, data-name-2] •..

[; ON {DESCENDING I ASCENDING}
KEY data-name-3 [, data-name-4] ..•] .•.

{INPUT PROCEDURE IS
section-name-1 [THRU section-name-2]

I USING file-name-~
{OUTPUT PROCEDURE IS

section-name-3 [THRU section-name-4]
I GIVING file-name-3}

STOP {RUN literal}

Subtract

Format 1:
SUBTRACT {literal-1 I identifier-1}

[, literal-2 I , identifier-2] ...
FROM identifier-m [ROUNDED]
y;-QN SIZE ERROR imperative-statement]

Format 2:

Write

SUBTRACT {literal-1 I identifier-1}
[, literal-2 I , identifier-2J ...
FROM {literal-m I identifier-m}
GiViNG identifier-n [ROUNDED]
[; ON SIZE ERROR imperative-statement]

Format 1:
WRITE record-name [FROM identifier-1]

[{BEFORE I AFTE~DVANCING
{{identifier I integer} [LINE LINES]
I mnemonic-name I PAGE}]

[; AT {END-OF-PAGE I EOP}
imperative-statement]

Format 2:
WRITE record-name [FROM identifier-1]

INVALID KEY imperative-statement

APPENDIX A. COMPOSITE LANGUAGE SKELETON A-11

APPENDIX B. ERROR MESSAGES

Note: F preceding message indicates fatal erroro A value is
inserted by the compiler between the slashes in the message below
(example: Iname/).

1
2
3
4
5
6
7
8
9 F

10
1 1
12
13

14
15
16
17
18
19 F
20
21 F
22
23
24 F
30 F
31 F
32
33
34
35

36
37
40
41
42

Invalid blank preceding delimiter
Invalid blank preceding right parenthesis
Invalid character preceding left parenthesis
Invalid character following left parenthesis
Invalid character fo~lowing non-numeric literal
Invalid character following right parenthesis
Item exceeds maximum length
First character on continuation card in area A
Unexpected end of source file found
Invalid character in continuation field
No leading quote for non-numeric literal
No closing quote for non-numeric literal
First character on non-continuation card follo~ing
continued non-numeric literal is a quote, but card is not
marked as continued
Invalid blank card(s) or comment cards in continuation
Invalid continuation card
Invalid figurative constant after ALL
Invalid COpy statement
Invalid library name in COPY statement
COPY library member not found
Invalid string in replacing option
Library not open for COpy
End of COpy library found before end of member
Invalid replacing string item Istringl
Maximum replacement string length exceeded
Missing or misplaced IDENTIFICATION header
Invalid IDENTIFICATION DIVISION header
Paragraph name Inamel not in area A
Missing or misplaced PROGRAM-ID paragraph
Invalid program-name
Paragraph name Inamel is either out of sequence or a
duplicate
Period missing following paragraph name or program-name
Invalid item linsertl
Syntax error
Invalid item linsertl
Missing period

APPENDIX B. ERROR MESSAGES B-1

43
44
45
46
47
48
49
50
51
52
53
54
55 F
56
57
5b
59
60
61
62
63
64
65
66
80
81
82 F
d3
84
~5

86
-87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103

Expected item in area A not found
Invalid or missing name clause in SELECT statement
Invalid or missing mnemonic name
Invalid condition status clause
Both Actual Key and Nominal Key were specified
Invalid device name
Invalid file-type in device name
Invalid filename in device name
Invalid cassette-type in device name
Invalid tape specification in device name
Invalid filename-flag in device name
Invalid memory size clause
Invalid Environment Division header
Invalid Section header
Invalid Source-Computer paragraph
Invalid Object-Computer paragraph
Invalid currency sign clause
Invalid name clause
Missing item in name clause
Invalid or missing special name
Missing Status clause for Condition clause
Invalid or missing filename
Invalid device name in RERUN clause
Invalid program name for SPECIAL device in SELECT clause
Syntax error
Invalid item linsertl
Invalid DATA DIVISION header
Invalid File name linsertl
Invalid BLOCK size
Invalid DATA RECORD clause
Invalid LABEL RECORD clause
Invalid LINAGE linsertl
Invalid FOOTING linsertl
Invalid RECORD CONTAINS clause
Invalid VALUE OF clause
Invalid LABEL VALUE clause
Invalid BLANK WHEN ZERO clause
Invalid VALUE item linsertl
Invalid OCCURS item linsertl
Invalid SYNCHRONIZED clause
Invalid USAGE
Duplicate name clause in record entry
Invalid 77 level item
Invalid or misplaced level number
Duplicate clause in record, first one used
Invalid item linsertl in name clause
Expected item in area A not found
Missing period

B-2 COBOL LANGUAGE SPECIFICATIONS

104 Missing LABEL clause in FD
105 Missing name SECTION header
106 Unexpected item /inse~t/ in area A
110 Syntax error
111 Invalid item /insert/
112 Syntax error in verb statement
113 Invalid item /insert/ in verb statement
114 Invalid operand list in verb statement
115 Invalid recelvlng field in verb statement
116 Invalid procedure name /name/ in verb statement
117 Missing /item/ in verb statement
118 Invalid expression in verb statement
119 Duplicate option in OPEN statement
120 Required INVALID KEY clause missing in verb statement
121 Option missing in verb statement
122 Missing period .
123 Missing first section header
124 Missing first paragraph this section
140 Conflict of usage from /name/ to /name/
141 Unmatched level number for /name/
142 Too many subscripts for /namel
143 OCCURS clause specified for level 01 or 77 named /name/
144 Group item named FILLER
145 Multiple items at the same level in a group named /name/
146 No related data item for condition name /name/
147 Element /name/ of array has initial value
160 Picture specified for group item /name/
161 USAGE INDEX specified for group item /name/
162 RIGHT-JUSTIFIED specified for group item /name/
163 BLANK WHEN ZERO specified for group item /name/
164 BLANK WHEN ZERO specified for non-DISPLAY item /name/
1b5 Neither PICTURE nor USAGE INDEX specified for elementary

item /name/
166 Both PICTURE and USAGE INDEX specified for elementary item

/name/
167 USAGE other than DISPLAY for non-numeric item /name/
16H USAGE COMPUTATIONAL specified for DATABUS Numeric

elementary item /name/
169 Invalid PICTURE specification for elementary item /name/
170 Invalid length for elementary item/name/
171 Invalid scale for elementary item /name/
172 Invalid character in picture for item /name/
173 USAGE EBCDIC specified for non-numeric item /name/
180 Redefinition or record /name/ is larger than redefined

item or work area for file /name/
181 Record/name/ is smaller than minimum specified
182 No record of mln1mum size for file /name/
183 No record of maximum size for file /name/

APPENDIX B. ERROR MESSAGES B-3

184 Size of item /name/ overflowed
1&5 Misplaced redefinition named /name/
186 Redefinition /name/ does not follow item redefined /name/
187 Item with value Iname/ is in redefinition or group having

value .
188 FD or SD /name/ in more than one SAME AREA clause
189 SD /name/ found in SAME RECORD AREA clause
190 SAME RECORD AREA is subset of more than one SAME SORT AREA
191 No FD or SD for file /name/ in SAME AREA clause
200 Priority number for section /name/ exceeds maximum
210 Index item /namel has same name as another item
220 F Ambiguous or undeclared name /name/ in SELECT clause
221 Name /name/ specified in SELECT clause is not an FD or SD
222 F ACTUAL or NOMINAL KEY specification for file /name/ is

ambiguous or undeclared - /name/
223 F RECORD KEY specification for file /name/ is ambiguous or

undeclared - /name/
224 More than one SELECT clause found for file /name/
225 F No SELECT clause found for file /name/
226 Device name for file matches that of RERUN file
227 Same file is specified in more than one RERUN clause
228 Illegal to specify RERUN ..• EVERY 0 RECORDS ...
229 Invalid file'specification in RERUN clause
230 Devi~e specification must be the same on all RERUN clauses
231 Length of RECORD key and NOMINAL key not equal for /name/
232 Tape file /namel not fixed format
233 Maximum blocksize of device exceeded for file /name/
234 Invalid ACCESS MODE for unit record or tape file /name/
235 Invalid KEY clause for file /name/
236 Invalid RECORD CONTAINS clause for fixed disk file /name/
237 F No ACTUAL KEY for random file /name/
238 Invalid KEY type for access method for file /name/
239 F No NOMINAL KEY for randomly accessed Indexed file /name/
240 F No RECORD KEY for Indexed file /name/
241 Invalid use of RECORDS option in BLOCK clause /name/
242 ACCESS MODE not specified for disk file /name/ - mode

assumed.
243 Invalid ACCESS MODE for variable disk file /name/
244 Block size not a multiple of record size for tape file

/name/
245 F Record key not part of a record of ISAM file /name/
250 F Undeclared symbol /name/
251 F Ambiguous reference for symbol /name/
252 F Invalid qualifiers given for item /name/
253 F Statement labelled /name/ is not ALTERable
254 F /name/ is not a procedure-name
255 F /name/ used in 1/0 statement is not an FD or SD
256 F OPEN statement type does not match characteristics of

B-4 COBOL LANGUAGE SPECIFICATIONS

257 F

258 F

259 F
260 F
261 F
262 F
263 F
264 f
265 F

266 F
267 F
26b F
269 F
270 F
271 F
272 F
273 F
274 F
275 F
290
291
292

293

294

295
296
297

2ge
299
300
301
302
303 F

304 F
310 F

311 F
312 F
330

device specified for file /name/
Invalid item used as record in WRITE or REWRITE statement
- /name/
Item used as record in WRITE or REWRITE statement is not a
record in an FD or SD - /name/
Index or subscript applied to non-data item /name/
Index or subscript applied to non-table item /name/
Undeclared index name /name/
Item used as index is not an index name - /name/ .
Ambiguous index name /name/
Index item /name/ is not an index for table /name/
Wrong number of subscripts or indices given for table
/name/
Item used as subscript is not a numeric data item - /name/
Data item used as subscript is not an integer - /name/
Data item used as subscript is a table element - /name/
Index displacement too large for table element /name/
No subscripts or indices supplied for table element /name/
Invalid OPEN state~ent for SD /name/
Invalid CLOSE statement for SD /name/
I/O verb does not match type of file /name/
Invalid WRITE on sequentail ISAM file /name/
Invalid OPEN OUTPUT on ISAM file /name/
No OPEN statement found for file /name/
No CLOSE statement found for file /name/
READ statement found for file /name/ which was never
opened for INPUT
WRITE statement found for file /name/ which was never
opened for OUTPUT
REWRITE statement found for file /name/ which was never
opened for I/O
No READ statement found for INPUT or UPDATE file /name/
No WRITE statement found for OUTPUT file /name/
No READ, WRITE or REWRITE statement founa for UPDATE file
/name/ .
REWRITE found, but no READ found for UPDATE file /name/
No SORT statement found for sort file /name/
No input statement found for sort file /name/
No output statement found for sort file /name/
Invalid LINAGE clause for input or random file /name/
No NOMINAL KEY given for Indexed file /name/ used with
START statement
OPEN option invalid for device or file type /name/
Invalid item in PERFORM ... TIMES or GO TO ... DEPENDING
/insert/
GO TO not the only statement in paragraph
EXIT statement not only statement in paragraph
Invalid ROUNDED option ignored

APPENDIX B. ERROR MESSAGES B-5

331
332
333
334
335

336
337
33b
339
340
341

342
343

344

345
346

347

34~
360
361
362

363

364

365

366
367
360

369

380
381

382

F
F
F
F
F

F
F
F

F
F

F
F

F

F
F

F

F
F
F

F

F

F

F
F

Arithmetic operand not numeric /name/
Arithmetic result not numeric or numeric edited /name/
Invalid sending field for MOVE statement /name/
Invalid receiving field for MOVE statement /name/
Invalid combination of operand types in statement - MOVE
/name/TO /name/
Invalid expression in IF or PERFORM statement
Invalid expression in computational statement
Invalid expression in MOVE statement
Invalid use of ON SIZE ERROR ignored
Invalid sending item in SET statement - /name/
Invalid receiving item or combination of sending and
receiving items in SET statement - /name/
Invalid index comparison in IF or PERFORM
Type of item /name/ is inconsistent with a NUMERIC class
test
Type of item /name/ is inconsistent with an ALPHABETIC
class test
Invalid identifier' specified in EXAMINE statement - /name/
Item scanned for in EXAMINE is not a literal of length one
- /string/
Replacement item in EXAMINE is not a literal of length one
- /string/
Composite exceeds maximum lenght. Truncation may occur.
Missing exception condition in READ or REWRITE statement
Invalid source in ACCEPT or DISPLAY statement
Invalid operand in ADVANCING option of WRITE statement for
file /name/
ADVANCING option specified in WRITE statement for
non-sequential file /name/
Invalid ADVANCING option in WRITE statement for file
/name/
ADVANCING option with mnemonic name is invalid for file
with page size /name/
Invalid item in DISPLAY statement /name/
Invalid item in ACCEPT statement /name/
Invalid exception option for READ of /name/ - /insert/
assumed.
EOP exception option requires LINAGE clause in FD - page
size. of 66 assumed /name/
Type of literal does not match that of item /name/
Non-zero digits or non-blank characters in value for
/name/ must be truncated
Unsigned item /name/ has signed value

B-6 COBOL LANGUAGE SPECIFICATIONS

APPENDIX C~ COMPILATION PROCEDURE

In order to compile a COBOL source program prepared by the
editor, type a command to DOS in the following format:

COBOL <sf>! ,<cf>}{ ,rlf}{ ,clf}{ ;options}

Files

<sf> is the name of the sourge file; <cf>, the final command
object file; <rlf>, a user relocatable library file; <clf>, the
COpy library file~ The source file is assumed to have an
extension of 'TXT' if no explicit extension is used~ If no
command object file is specified, the source name will be used~
The object file is assumed to have an extension of 'CMD'~ In
order to use the COpy feature, a COpy library file must be
specified~ COPY libraries are assumed to have an extension of
'INC'4 If a relocatable library file is specified, a 'LIBRARY
<rlf>' command will be issued to the link editor~ This allows the
user to specify where COBOL or SNAP subroutines, called from his
program are found~ The default extension for <rlf> is 'REL'4

In addition to these files, the COBOL system uses the following
default file names, unless overidden by the F option~
'COBOLOBJ/REL' is the name of the intermediate relocatable object
file produced by the compiler~ 'COBOLINK/TXC' is the name of
the command file for the link editor, required to create a 'CMD'
file from the relocatable object program~ 'COBOLSYM/SYM' is the
default symbol table file created when the 'USING DEBUGGER' option
is specified4 In addition to these files 'CBLWORKO/SYS',
'CBLWORK1/SYS', 'CBLWORK2/SYS', and 'CBLWORK3/SYS' will be used as
work files for the compiler, unless the W option is used~ The
user should inspect his disks to determine if adequate space
remains on the disks for these seven files or the subsets which
will be used~

Options

An option list, indicated by a semi-colon (;) following the file
specifications, may be included4 The options are
order-independent and must be one of the following characters:
'LPOAFEWX'~ The action each causes is described below.

APPENDIX C4 COMPILATION PROCEDURE C-1

L - List on local or servo printer
This option causes the source program to be listed, and the PABs
for each segment to be listed as well.

P - List on disk file
This option is used instead of the L option to cause a listing
file to be produced for subsequent output. If used the compiler
displays the following message:

LIST ON FILE:
and the user should specify a partial file name. If no main name
is entered, the main name of the source file is used. If no
extension is entered, 'PRT' is assumed. Thus if the source
program file name is 'TESTPROG/TXT' and if no name is specified
for a print file, 'TESTPROG/PRT' will be the listing file.

o - List the object program
If the L or P option is used, this option causes a SNAP-like
listing of the object program to be produced as well as the source
listing. '

A - Automatic, link edit
When the A option is used, the link editor will be invoked
immediately after compilation, unless the program contains fatal
errors. Otherwise the user is responsible for using the link
editor himself.

F - Request intermediate file names
If the F option is used, the compiler will display the message:

ENTER INTERMEDIATE OBJECT FILE NAMES (R,L,S):
and the user should enter only those names which he wishes to
change. The R file is the relocatable object file, the L file is
the link edit command file, and the S file is the symbol table
file. The default extensions for these files are 'REL', 'TXC',
and 'SYM', respectively.

E - Continue compilation through fatal errors
The compiler displays diagnostic messages after the source program
has been analyzed, before the object program is generated, and
after object program generation. Unless the' E option is
specified, the compiler will terminate compilation at any of these
points if one or more fatal errors have been found in the source
program.

C-2 COBOL LANGUAGE SPECIFICATIONS

W - Modify the work file names
This option is used to change the names or assign the drives to be
used for the compiler work files. If this option is used, the
compiler displays the message:

WORK FILE n:
where n takes on the values 0 through 15, and allows the user to
specify the work file name, as in the P option.

X-Generate cross reference
This option must be used in conjunction with the L or P option.
When XL is specified, a cross reference will follow the source
listing on the printer. When XP is specified, a cross reference
will follow the source listing on the disk file.

APPENDIX C. COMPILATION PROCEDURE C-3

APPENDIX D. THE RUNTIME DEBUGGER

The runtime debugging facility allows the user to examine and
change the state of his program while it is executing, making the
debugging process simpler and faster. In order to use the
debugger, the program must contain the USING DEBUGGER option on
the OBJECT-COMPUTER specification. This causes a symbol table
file to be created for use with the debugging module of the object
library, and the debugging module to be link edited into the
object program.

When the program is executed, the debugger will be entered before
the user's program starts to execute. At this point the user must
load the symbol table file for the program using the 'L' command
(see below). After loading the symbol table file, any other
debugger command may be used. Note that at this time the function
of the 'P' command (PROCEED) is to start at the first statement
of the user's program.

Commands

ABORT - The program may be terminated by typing 'A' to the
debugger when it is waiting for input. At this point, the
debugger exits to the operating system.

BREAK - This command is used to specify a paragraph or statement
at which normal execution should stop, and the debugger called
instead. The debugger allows up to ten breakpoints to be set.
These breakpoints remain set until cleared with the CLEAR
command. A breakpoint is set by typing 'B', space, and either
the name of a paragraph (possibly qualified by 'IN' or 'OF')
or '#' followed by a statement number in the PROCEDURE
DIVISION.

CLEAR - This command clears breakpoints set by the previous
command. Typing 'C', space, and either a paragraph-name or
statement-number will clear the breakpoint (if any) on that
statement. Typing 'C', enter will clear ALL breakpoints.

DISPLAY - Data items in the COBOL program may be displayed on the
screen by typing 'D' followed by the name of the item, which
may be qualified and subscripted using integer subscripts.
The same rules for uniqueness of data reference apply in the
debugger as in the compiler. If the item displayed contains

APPENDIX D. THE RUNTIME DEBUGGER D-1

more than 80 characters, the display will be continued on
several lines. The display key on the console may be used to
suspend the display at the end of each line.

GO - Control may be transferred to any paragraph or statement by
typing 'G' followed by either a paragraph name or 'I'
statement-number. Control returns to the debugger only at the
next breakpoint or if a fatal execution error occurs.

HELP - By typing 'H' enter, a list of the debugger commands will
be displayed.

LOAD - A symbol table file for a program or sub-program may be
loaded by typing 'L', space, file-name. The default extension
is assumed to be 'SYM'. ,In order to load a symbol table, you
must make a link edit listing so that you may enter the
correct PAB addresses when requested by the LOAD command. The
command will ask for the starting locations of the DATADIV and
CODE PABs. After loading a symbol table, the names of data
items and procedure names, and the statement numbers for this
program are accessible to the debugger.

PROCEED - By typing ~pf ,enter you may continue the execution of
your program after a breakpoint has been encountered. The 'P'
command is illegal after an execution error has occurred.
Control returns to the debugger only at the next breakpoint or
execution error.

SET - The values of data items may be set by typing'S' followed
by the name of the data item (as in DISPLAY). Then the user
may type in characters to set the value of the item. The
backspace and cancel keys have their normal effect. If more
than one line is being entered, the DEL key can be used to end
the current line and start a new one. When the ENTER key is
used to terminate the line, it also terminates the SET
command.

(Debugger) - The ROM debugger may be entered from the COBOL
debugger by typing '*', enter. Control is returned to the
COBOL debugger by typing 'E' in the ROM debugger. This
facility is available for use by machine language programmers~
and should be approached with care by less experienced users.

D-2 COBOL LANGUAGE SPECIFICATIONS

APPENDIX E. RESERVED WORDS

The following list contains all reserved words used by the
Datapoint COBOL Compiler

ACCEPT
ACCESS
ACTUAL
ADD
ADVANCING
AFTER
ALL
ALPHABETIC
ALTER
ALTERNATE
AND
APOSTROPHE
APPLY
ARE
AREA
AREAS
ASCENDING
ASSIGN
AT
AUTHOR
BEFORE
BLANK
BLOCK
BY
C01
CALL
CHARACTERS
CLOSE
COMMA
COMP
COMPUTATIONAL
COMPUTE

CONFIGURATION
CONSOLE
CONTAINS
COpy
CORE-INDEX
CSP .
CURRENCY
DATA
DATABUS
DATE
DATE-WRITTEN
DEBUG
DECIMAL-POINT
DEPENDING
DESCENDING
DISPLAY
DIVIDE
DIVISION
DOWN
DRIVE-NUMBER
EBCDIC
ELSE
END
ENTER
ENVIRONMENT
END-OF-PAGE
EOP
EQUAL
ERROR
EVERY
EXAMINE
EXIT

EXTENSION
FD
FILE
FILE-CONTROL
FILE-LIMIT
FILE-LIMITS
FILE-NAME
FILLER
FIRST
FOOTING
FOR
FROM
GIVING
GO
GREATER
HIGH-VALUE
HIGH-VALUES
1-0
I-O-CONTROL
IDENTIFICATION
IF
IN
INDEX
INDEXED
INPUT
INPUT-OUTPUT
INSTALLATION
INTO
INVALID
IS
JUST
JUSTIFIED

APPENDIX E. RESERVED WORDS E-l

KEY
LABEL
LEADING
LEFT
LESS
LINAGE
LINAGE-COUNTER
LINE
LINES
LINKAGE
LOCK
LOW-VALUE
LOW-VALUES
MAIN-NAME
MEMORY
MODE
MOVE
l'-1ULTIPLE
MULTIPLY
NEGATIVE
NEXT
NO
NOMINAL
NOT
NOTE
NUI"1ERIC
OBJECT-COMPUTER
OCCURS
OF
OFF
OMITTED
ON
OPEN
OR
OUTPUT
PAGE
PERFORM
PIG
PICTURE
POSITIVE
PROCEDURE

PROCEED
PROCESSING
PROGRAM
PROGRAM-ID
QUOTE
QUOTES
RANDOM
READ
RECORD
RECORDS
REDEFINES
REEL
RELEASE
REMAINDER
REMARKS
REPLACING
RERUN
RESERVE
RETURN
REWIND
-REWRITE
RIGHT
ROUNDED
RUN
SAME
SD
SECTION
SECURITY
SEEK
SELECT
SENTENCE
SEQUENTIAL
SET
SIGN
SIZE
SORT
SOURCE-COMPUTER
SPACE
SPACES
SPECIAL-NAMES
STANDARD

START
STATUS
STOP
SUBTRACT
SW-O
SW-1
SW-2
SW-3
SW-4
SW-5
SW-6
SW-7
SYNC
SYNCHRONIZED
TALLY
TALLYING
THAN
THEN
THROUGH
THRU
TIMBS
TO
UNIT
UNTIL
UP
UPON
USAGE
USING
VALUE
VARYING
WHEN
WITH
WORKING-STORAGE
WRITE
ZERO
ZEROES
ZEROS

E-2 COBOL LANGUAGE SPECIFICATIONS

APPENDIX F. COBOL SYSTEM OVERLAY FUNCTIONS

Parser Overlays

BA - Parser initializing Overlay
BC - Identification Division Overlay
BE - Environment Division Overlay
BG - Data Division Parse Overlay
BI - Procedure Division Parser Pass
BK - Main Table re-organization
BM - Procedure Division Parser Pass 2
BQ - Parser Termination Overlay

Error message gener~tion

BZ/OA/ZA - Error Message Generation

Symbol Table Overlays

DA - Node Linking Phase
DC - Picture Analysis Phase
DE - Size Computation Phase
DG - Procedure Division Name Generation Phase

Merge Overlays

FA - Build Symbol Table Chains
FC - File Attribute Merge
FK - Data Division Attribute Merge
FM - Build I/O table

Translation Ovelays

KA - Control Translation
KD - Arithmetic Translation
KG - I/O Translation

Index Generation/Optimization Overlay

OE - Subscript/Index Generation and Optimization

PIT Generation Overlays

PA - Parameter PIT Generation

APPENDIX F. COBOL SYSTEM OVERLAY FUNCTIONS F-1

PC - Data Division PIT Generator
PE - Literal Allocation
PG - FDB PIT Generation
PK - Procedure Division PIT Generator
PM - GET PIT Generation
PO - PUT PIT Genera~ion
PP - UPDATE PIT Generation
PW - Generate Prologues & Sort Segments
PZ - Subscript Finalization

Object Program Generation Overlays

WA - OPG initialization
WC - OPG Pass 1
WE - OPG Pass 2
WG - OPG Listing Pass
WI/WJ - Recycle OPG
WM - Generate ISYM file
WO - Generate XREF sort file
WQ - Sort and print XREF
WX - Generate TXC file

Termination Overlays

ZW - Error Messages Lister
ZZ - Termination Phase

F-2 COBOL SYSTEM OVERLAY FUNCTIONS

APPENDIX G. EXECUTION-TIME ERROR MESSAGE

G.1 Primative Functions

001 Cancel or Abort?

This message is issued following every other execution-time
error message when the debugger is not being used. The COBOL
system expects a single character reply of either 'C' for Cancel
or 'A' for Abort. Cancel has the effect of executing a STOP RUN
statement; Abort exits immediately to DOS and aborts any CHAINING
that may be going on.

002 Uninitialized GO TO.

A statement of the form GO TO was executed without having
been ALTERed.

003 Uninitialized Return Point.

A COBOL program was entered at some point other than the
normal entry point and the return mechanism was not properly
established. See an S.E.

004 Uninitialized Perform exit.

A paragraph that was being performed was not entered properly
and the proper linkage was therefore not established. Consult an
S.E.

005 *** Invalid input.

This message is issued whenever a COBOL system function takes
input from the keyboard and the input that was entered was
invalid. Normall~,the function will request the input again and
the user should enter the proper information.

006 Enter external switch settings in binary.

APPENDIX G. EXECUTION-TIME ERROR MESSAGE G-1

A program that makes use of the external switches is being
run. The user should enter up to eight 1's and O's in the proper
order for the program. A '1' indicates a switch is ON; a '0'
indicates a switch is OFF. All eight switches are set and if
fewer than eight settings are entered, the ones that are not
entered will be set to OFF.

007 Continue execution?

This message follows the literal specified by the execution
of a STOP (literal) statement. The system expects a reply of 'Y'
for Y£5 or 'N' for WOo The no reply has the effect of a STOP RUN
statement. The yes reply causes execution to continue at the next
statement in the program.

008 Program xxxxxxxx/yyy not found.

Independent segment 'yyy' of the COBOL program 'xxxxxxxx' was
not found in the DOS directory.

009 Loaded over caller.

An independent segment of the COBOL program was not correctly
link-edited and loads over a portion of the permanent segment.

G.2 Data Type Conversion Functions

050 Negative number has excessive magnitude.

A negative number being moved to data item described with
USAG~ DATABUS contains too many digits.

051 Invalid character in convert to computational.

A data item being moved to a numeric field contains
characters that are not numeric.

052 Invalid digit in comp to binary conversion.

A numeric data item being used as a subscript or being moved
to an index name con tains characters that are not numeric.

G-2 G. EXECUTION-TIME ERROR MESSAGE

G.3 Arithmetic Functions

100 Invalid data in Exponentiation.

An attempt has been 'made to raise a negative number to a
non-integral power.

G.4 Disk Input/Output Functions

150 File format error (filename).

A file (filename) with GEDIT format contains invalid format.

151 File format ~rror (filename).

A file (filename) with fixed length records contain invalid
format

152 Input record shorter than record length (filename).

A record on a file (filename) having fixed length records is
shorter than the record length specified for that file.

153 Input record longer than record length (filename).

A record on a file (filename) having fixed length records is
longer than the record length specified for that file.

154 Index matched low key (filename).

The format of indexed file (filename) is incorrect. Consult
an S.E.

155 DR$ Read error.

An error was detected when trying to read the indexed file
(filename). Consult an S.E.

156 File format error (filename).

APPENDIX G. EXECUTION-TIME ~RROR MESSAGE G-3

File (filename) has invalid format.

157 Attempted to REWRITE 1-0 file with no READ (filename).

(Self-explanatory).

158 File format error when extending.

An error was detected when WRITEing a new record to a keyed
file. Consult an S.E.

159 Attempted READ on file not open INPUT or at EOF
(filename).

(Self-explanatory).

160 Attempted START on file not open INPUT (filename).

(Self~explanatory).

161 Update file must be open 1-0 to write on (filename).

A file for which REWRITE statements are used must be opened
for 1-0 when WRITE statements are issued.

162 Attempted to update a record with no previous READ
(filename).

(Self-explanatory).

163 Attempted to write to file not open for OUTPUT (filename).

(Self-explanatory).

164 Tried to OPEN file already open (filename).

(Self-explanatory).

165 ISAM file key does not match FDB specification (filename).

G-4 G. EXECUTION-TIME ERROR MESSAGE

The key description for an indexed file specified by the
RECORD KEY clause for a file does not match the key upon which the
file is indexed.

166 ISAM data file open error (filename).

An error occurred while trying to open an indexed file.

167 G£TLFT called an unopened file (filename).

This is an internal error. Consult an S.E.

16b Invalid LFT # from FDB in GETLFT. (filename).

This is an internal error. Consult an S.E.

169 Invalid LFT4J: -in RLSLFT.

This is an internal error. Consult an S.E.

G.5 Console Input/Output

200 Tried to open file already open. (filename).

(Self-explanatory).

G.6 Printer Input/Output

250 Invalid opening of printer file. (filename).

Either file is already opened or another file is currently
open on the SERVO-PRINTER.

251 Invalid record-length. (filena~e).

This is an internal error. Consult an S.E.

APPENDIX G. EXECUTION-TIME ERROR MESSAGE G-5

G.7 Magnetic Tape INPUT/OUTPUT

300 No write ring for output tape. (filename).

(Self-explanitory).

301 Deck not in service. (filename).

The magnetic tape deck is not ready.

302 Attempted to open second tape file. (filename).

Only one magnetic tape file may be open at one time.

303 End of tape found. (filename).

Physical end of tape was reached during input. This
indicates a tape format error.

304 Parity ~rror on tape. (filename).

(Self-explanatory).

305 Bad tape. (filename).

A parity error was detected on the tape during output.

I 306 FDB Addresses do not match in tape close.

Internal error;consult an S.E.

307 Format Correct, Continue? (Y or N).

The format of the labels for an input tape as been analyused
and is correct. The labels are displayed before the message. The
operator is requested to verify that the tape mounted is correct,
that the labels are correct, and, if so, reply 'Y' to continue
execution. The user should reply 'N' if either are not correct.

G-6 G. EXECUTION-TIME ERROR MESSAGE

30b Missing VOL1.

A labeled tape does not contain a VOL1 label.

309 Invalid label record length.

The length of a label record is not correct.

310 Not ANS VOL1 label.

The VJL1 label for a file described as TAPE-A is not of the
proper format.

311 Missing or inval~d HDR1.

(Self-explanatory).

312 Missing or invalid HDR2.

(Self-explanatory).

313 Format not = fixed.

Only F(fixed) format magnetic tapes may be processed.

314 wrong block size in label.

The block size specified in the tape label does not match
that specified for the file.

315 Wrong record size in label.

The record size specified in the tape label does not match
that specified for the file.

316 Operator requested.

The operator is requested in order to verify the labels being
generated for a tape output file.

APPENDIX G. EXECUTION-TIME ERROR MESSAGE G-7

317 Missing EOF1.

(Self-explanatory).

318 Block count not = count in trailer.

The number of blocks read from a labeled tape does not match
the number of blocks specified in the trailer label.

G.8 Card Reader

350 Invalid opening of card file. (filename).

An attempt was made to open a card file for some use other
than input.

351 Tried to open 'file already open. (filename).

(Self-explanatory).

352 More Cards?

The card reader is empty. The operator should either put
more cards in the reader and reply 'Y' or reply 'N' if all of the
cards have been read.

353 Reply A for ABORT; Rfor RESUME.

This occurs on abnormal condition with card reader. The
operator is requested to reply appropriately.

354 ** READER CHECK !

(Self~explanatory).

G-8 G. EXECUTION-TIME ERROR MESSAGE

G.9 Cassette Input/Output

400 Tried to open file already open. (filename).

(Self-explanatory).

401 Invalid opening of cassette file. (filename).

The cassette drive for the file is already in use.

402 Read parity error. (filename).

(Self-explanatory).

40j End of tape. (filename).

(Self-explanatory).

404 Cannot position tape. (filename).

(Self-explanatory).

405 End of Cassette tape.

(Self-explanatory).

406 *** ~RROR X on Deck Y ***
(See DOS manual regarding cassette tapes.)

G.10 Sort Facility

450 SORT attempted with insufficient memory.

A minimum of 8K free space is needed in order to SORT.

451 Sort key too long.

APPENDIX G. EXECuTIOH-TIME ERROR MESSAGE G-9

The longest key allowable is 244 bytes.

452 SPACE TRAP in sort key output.

(Self-explanatory).

453 Attempt to sort null file.

(Self-explanatory) ..

454 SPACE TRAP in merge file output.

(Self-explanatory).

G.11 SPECIAL I/O Facility

500 Attempt to OPEN file already ?pen. (filename).

(Self-explanatory).

G-10 G. EXECUTIO~-TIME ERROR MESSAGE

Manual Name ______________________________________ __

Manual Number ____________________________________ __

READER'S COMMENTS

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for
improvement.

Name __ Date ____ ~---------------------------

Organ ization __ __

Street __ _

City ____________ State ______ Zip Code __________________________ __

All comments and suggestions become the property of Datapoint.

Fold Here --

Fold Here and Staple

BUSINESS REPLY MAIL
No Postage Necessary if mailed in the United States

Postage will be paid by:

DATAPOINT CORPORATION
Product Marketing
8400 Datapoint Drive
San Antonio, Texas 78284

First Class
Permit
5774

San Antonio
Texas

