

UPDATE Reference Manual

SR-0013 K

Cray Research, Inc.

Copyright© 1977, 1990 Cray Research, Inc. All Rights Reserved. This manual or parts
thereof may not be reproduced in any form unless permitted by contract or by written
permission of Cray Research, Inc.

CRAY@, CRAY-l<!l>, Cray Ada<!l>, CRAYY-MJ>®, HSX<!l>, SSD<!l>, UNICOS<!l>, and X-MPEA<!l> are
federally registered trademarks and AutotaskingTl.4, CF7TM, CFI'TM, CFT2™, CFT77™, COSTI.l,
CRAYX-MPTM, CRAYXMSTM, CRAYY-MP2ETM, CRAY-2T1o', CS}MTM, Delivering the power ... TM, IOSTM,
MPGSTM, OLNETTM, RQSTM, SEGLDRTM, SMARTETM, SUPERLINI{TM, and UNICHEMTM are trademarks
of Cray Research, Inc.

UNIX is a trademark of UNIX System Laboratories, Inc.

The UNICOS operating system is derived from the UNIX System Laboratories, Inc. UNIX
System V operating system. UNICOS is also based in part on the Fourth Berkeley Software
Distribution under license from The Regents of the University of California.

Because of space restrictions, the following abbreviations are used in place of specific system
names:

Cxtl Includes all models of CRAY X-MP and CRAY-l computer systems.

CEA Includes all models of the Extended Architecture (EA) series, including
CRAYY-MP and CRAY X-MP EA computer systems.

CRAY-2 Includes all models ofCRAY-2 computer systems.

CxtCEA Includes all models of CRAY X-MP computer systems plus all models of
CRAYY-MP and CRAYX-MPEA computer systems. It does not include CRAY-l
computer systems.

Requests for copies of Cray Research, Inc. publications should be sent to the following address:

Cray Research, Inc.
Distribution Center
2360 Pilot Knob Road
Mendota Heights, MN 55120

Order desk (612) 681-5907
Fax number (612) 681-5920

NEW FEATURES

This version of the product introduces another difference between NUPDATE
and UPDATE. NUPDATE offers the following ID keywords: %G%, %H%, %I%,
%M%, %T~, %V%, %Z~.

This new version also introduces option OS on the control statement which
assigns new sequence numbers using the UPDATE 4.0 scheme.

This revision describes how to undefine the default name, UNICOS, under
DEFINE in UPDATE and NUPDATE. In UPDATE, use the -d option to undefine
the default. In NUPDATE, specify -d new_define_name, -U UNICOS, or
*UNDEF UNICOS to undefinethe default.

RECORD OF REVISION RESEARCH, INC. PUBLICATION NUMBER SR-0013

Each time this manual is revised and reprinted, all changes issued against the previous version are incorporated into the new version
and the new version is assigned an alphabetic level.

Every page changed by a reprint with revision has the revision level in the. lower righthand cor.ner. Changes to partof a page are noted
by a change bar in the margin directly opposite the change. A change bar In the margin opposite the pa~e number Indicates that the
entire page is new. If the manual is rewritten, the revision level changes but the manual does not contain change bars.

Requests for copies of Cray Research, Inc. publications should be directed to the Distribution Center and comments about these
publications should be directed to:

CRAY RESEARCH, INC.

655F Lone Oak Drive

Eagan. Minnesota 55121

Revision

A-01

B

B-01

C

D

D-01

Description

May 1977 - Original printing.

June 1979 - This printing represents a complete rewrite of the
manual and brings it into agreement with release 1.06.
Changes are not noted by change bars.

December 1979 - This change packet brings the manual into
agreement with release version 1.07. Changes are noted by
change bars.

December 1979 - This reprint includes change packet A-01.
contains no other changes.

April 1980 - This change packet brings the manual into
agreement with release version 1.08. Changes are noted by
change bars.

It

November 1980 - This reprint incorporates change packet B-01.
It contains no technical changes. With this printing, the
publication number has been changed from 2240013 to SR-0013.

June 1981 - This rewrite brings the documentation into
agreement with the 1.10 version of the released software.
Major changes are the addition of the SQ control statement
option, the NOSEQ directive, and the SEQ directive. Changes
are not noted by change bars. This printing obsoletes all
previous editions.

May 1982 - This change packet brings the manual into agreement
with release version 1.11. Major changes include the addition
of the declared modifications option parameter (DC) on the
UPDATE control statement, the DECLARE directive, the DC
parameter on the IDENT directive, and UPDATE messages. This
change packet also includes miscellaneous technical and
editorial changes.

SR-0013 K iii

iv

D-02 May 1983 - This change packet brings the manual into agreement
with release version 1.12. Major changes include adding the
YANK and UNYANK directives, UPDATE messages, and the Y and C
fields to the identifier table format of the random PL
structure. This change packet also includes miscellaneous
technical and editorial changes.

E January 1984 - This rewrite brings the manual into agreement
with release version 1.13. New directives are COPY, DEFINE,
ELSE, ELSEIF, ENDIF, IF, MASTER, PURGE, RESTORE, REWIND,
SKIPF, and WIDTH. New control statement parameters are ML and
IF; and parameters I, DW, and * were changed. Other changes
include reorganization of section 1 and new examples in
section 4.

E-01 November 1984 - This change packet brings the manual into
agreement with release version 1.14. New additions to the
manual include section 5, and appendixes D and E. AUDPL
messages have been appended to the end of appendix B changing
the name from UPDATE MESSAGES to MESSAGES. NS was added to
the output options in section 2 and changes were made to the
following directives: REWIND, RESTORE, COPY, and DEFINE.

F February 1986 - This rewrite brings the manual into agreement
with UPDATE releases 2.0 and 2.1 operating under the Cray
operating systems COS 1.15 release and UNICOS 1.0 release,
respectively. The COS release added *COMDECKS external
references, the DEF control statement parameter, the
conditional directives SKIP and ENDSKIP, and a new program
library format (variable length record). UNICOS information
was added to sections 1, 2, 3, and 4, and appendixes Band C.
Information on the PLCOPY utility program is in appendix D.
(Under UNICOS, the SKIPF directive does not function.) Binary
Identifier Dataset Format information (formerly appendix D)
has been incorporated into section 5. This printing also
includes miscellaneous technical and editorial changes. All
previous versions are obsolete.

G October 1986 - This reprint with reV1S1on brings the manual
into agreement with UPDATE releases 3.1 and 4.0 operating
under the COS 1.16 release and UNICOS 2.0 release,
respectively. References to a "set of files in a directory"
have been changed to "filenames." References to IDENT.PL and
INFO.PL have been changed to Identifier Table and PL
Information Table, respectively. Three UNICOS UPDATE error
messages were added, and one was deleted. All trademarks are
now documented in the record of revision. All previous
versions are obsolete.

SR-0013 K

H June 1987 - This reprint with revision brings the manual into
agreement with UPDATE release 5.0, AUDPL releases 1.16 and
2.0, and MODECKS release 1.0, all operating under the COS 1.16
and UNICOS 3.0 releases. Major changes include the addition
of the MODECKS utility and the FILE directive. Miscellaneous
technical and editorial changes have also been included.

I June 1988 - This reprint with revision brings the manual into
agreement with UPDATE release 5.1, AUDPL releases 1.16 and
2.0, and MODECKS release 1.1, all operating under the COS 1.17
and UNICOS 4.0 releases. Major changes include the addition
of several new options to the MODECKS utility. This reprint
also includes miscellaneous technical and editorial changes.

J November 1989 - This reprint with revision brings the manual
into agreement with UPDATE release 5.0 for COS. It adds
information for using NUPDATE under COS and for the new
sequence numbering scheme, and it describes the new COS
listing extraction program, UPIC.

K November 1990 - This reprint with reV1Slon brings the manual
into agreement with UPDATE 6.0 release for UNICOS. It adds
new options to the NUPDATE command.

SR-0013 K v

I

PREFACE

This manual describes UPDATE, a program from Cray Research, Inc. (CRI).
UPDATE modifies, edits, and updates source language programs operating
under the Cray Research operating systems UNICOS and COS on CRAY Y-MPt,
CRAY X-MP EAt, and CRAY X-MP computer systems, and under UNICOS on
CRAY-2 systems. UPDATE lets you manage and track software changes.
UPDATE also allows repeated results and simplifies the integration of
separately produced changes into one program.

Readers should be familiar with the general features of COS or UNICOS;
the manual does not teach the basics of either operating system.

The following CRI publications provide related information:

Publication
Number

SR-0009
SR-OOll
SR-0060
SR-0066
SR-2007
SR-2011
SR-2024
SR-2074

SG-2087
SR-3014
SR-3071

Description

Fortran (CFT) Reference Manual
COS Reference Manual
Pascal Reference Manual
Segment Loader (SEGLDR) and Id Reference Manual
CRAY-2 Fortran (CFT2) Reference Manual
UNICOS User Commands Reference Manual
Cray C Reference Manual (COS only)
Cray Standard C Programmer's Reference Manual (UNICOS
only)
Cray Allegro CL User's Guide
Cray Ada Environment Reference Manual
CF77 Compiling System, Volume 1: Fortran Reference
Manual

t In X-mode only (24-bit addressing)

SR-0013 K vii

CX/l Systems

CX/CEA Systems

1976

1982

CRAY-l A
computer systems

CRAY-l S
computer systems

CRAY-l M
computer systems

CRAYX-MP/2
computer systems

1984 I CRAY X-MP/4
ani

CRAYX-MP/l
computer systems

• 100ns clock cycle
1987 CRA Y X-MP/se • IDS integrated into mainframe

computer systems • 1 CPU

• Up to 4 Mwords of memory

• Multiple memory ports

• 1988 • 10-ns clock cycle
CRAYX-MPEA/se .4orl6Mwordsof

computer systems memory available

• 1 CPU

• Dual-instruction mode
for 24-bit (X-mode) or
32-bit (Y-mode) addressing

•
CRAY X-MP,EA
computer systems

• IDS integrated into mainframe

• Multiple memory ports

CEA Systems

Hardware Product Line
• 12.5-ns clock cycle
• Up to 1 Mword of memory

• Efficient vector processing capabilities

• 12.5-ns clock cycle
• Up to 4 Mwords of memory
• Introduction of I/O Subsystem (lOS)

• 12.O-ns clock cycle
• Up to 4 Mwords of memory

• 8.5-ns clock cycle
• Multiprocessor environment (1. 2. or 4 CPUs)

• Up to 16 Mwords of memory

• 24-bit addressing

• Introduction of Peripheral Expander

• Introduction of SSD solid-state storage device

• Multiple memory ports

• • 8.5-ns clock cycle

• Up to 64 Mwords of memory

• 6-ns clock cycle
CRA Y Y -MP • Up to 32 Mwords of memory

computer systems • 8 CPUs
• 1.2. or4 CPUs

• Dual-instruction mode
for 24-bit (X-mode) or
32-bit (Y-mode) addressing

• VMEbus-based
workstation

• Multiple memory ports ..
+

Future
computer systems

• SSD is standard equipment

• Hybrid cooling system

• Dual-instruction mode for
24-bit (X-mode) or 32-bit
(Y-mode) addressing

• Multiple memory ports

...

CRAY-2 Systems

1985 • 4-ns clock cycle
CRAY-2

computer systems • Up to 512 Mwords of memory

• 4 BackgrOWld Processors

• ForegrOWld Processor

• 32-bit addressing

• Liquid immersion cooling

• Local high-speed memory

The following list defines architecture terms:

CX/1 systems

CEAsystems

CRA Y -2 systems

CX/CEA systems

EAM bit (hardware)

EMA feature (software)

X-mode

Y-mode

Definition

This group includes all models of the CRA Y X -:MP and CRA Y -1
computer systems. It is characterized by 24-bit addressing capabilities.

This group includes all models of the Extended Architecture (EA) series,
which are the CRA Y Y -MP and CRA Y X -:MP EA computer systems.
It is characterized by 32-bit addressing capabilities.

This group includes all models of the CRA Y -2 computer systems. It is
characterized by 32-bit addressing capabilities, large common memories,
and immersion cooling.

This group designates all models of CRAY X-MP computer systems
plus all models of the CRAY Y-:MP and CRAY X-MP EA computer
systems. It does not include CRA Y -1 computer systems.

In CX/1 systems, the EAM bit is the Enhanced Addressing Mode bit in
the Flag register. When set, it sign-extends certain instructions for
memory addressing in 8- and 16-Mword systems. In CEA systems, the
EAM bit is the Extended Addressing Mode bit in the Flag register. It is
set by the operating system to select either 24- or 32-bit addressing.

In CX/1 systems, EMA is the Extended Memory Addressing feature for
8- or 16-Mword systems.

This term refers to the 24-bit addressing mode in CEA systems. The
operating systems select this mode with the EAM bit in the Exchange
Package.

This term refers to the 32-bit addressing mode in CEA systems. The
operating systems select this mode with the EAM bit in the Exchange
Package.

CONTENTS

PREF ACE .. vii

1.

2.

INTRODUCTION . .

1.1
1.2
1.3
1.4

1.5

1.6
1.7
1.8
1.9

1.10

OVERVIEW .
CONVENTIONS
READER COMMENTS
DEFINITIONS
1.4.1 Decks
1.4.2
1.4.3
1.4.4
1.4.5
1.4.6
1.4.7
PROGRAM
1.5.1
1.5.2
1.5.3

COMMON

Source decks .
Directives .
Modification sets
Source datasets
Compile datasets
Input datasets . .
LIBRARIES
Program library restrictions
Creating a program library .
Modifying a program library
1.5.3.1 Procedure for modifying a PL .
1.5.3.2 Processing PL modifications

DECK PROGRAM LIBRARIES
UPDATE MODES . . . • . . .
PROGRAM LIBRARY TYPES
ORGANIZING UPDATE INPUT
1.9.1 Associativity of input
1.9.2 Overlapping modifications
1.9.3 Declared modifications
LISTABLE OUTPUT
1.10.1 Page header lines
1.10.2
1.10.3

Messages
Listing options

INVOKING UPDATE AND NUPDATE

2.1

2.2
2.3

UPDATE CONTROL STATEMENT FOR COS
2.1.1 Examples
NUPDATE CONTROL STATEMENT FOR COS
UNICOS COMMAND LINE
2.3.1 Examples

SR-0013 K

1-1

1-2
1-3
1-4
1-5
1-5
1-6
1-6
1-7
1-7
1-7
1-8
1-8
1-9
1-9
1-10
1-10
1-11
1-11
1-11
1-13
1-13
1-14
1-14
1-14
1-15
1-15
1-15
1-16

2-1

2-1
2-8
2-9
2-16
2-22

ix

3.

x

UPDATE DIRECTIVES

3.1

3.2

3.3

CATEGORIES OF UPDATE DIRECTIVES
3.1.1 Modification directives
3.1.2 Input edit directives
3.1.3 Run option directives
3.1.4 Compile dataset directives.
3.1.5 Deck definition directives
DIRECTIVE FORMAT • .
3.2.1 Line identification
3.2.2 Identifier names
3.2.3 Directive format examples ...•
DIRECTIVES
3.3.1 / - Comment•..
3.3.2 BEFORE - Insert before a line .•...
3.3.3 CALL - Call common deck
3.3.4
3.3.5
3.3.6
3.3.7
3.3.8
3.3.9
3.3.10
3.3.11
3.3.12
3.3.13
3.3.14
3.3.15
3.3.16
3.3.17
3.3.18
3.3.19
3.3.20
3.3.21
3.3.22
3.3.23
3.3.24
3.3.25
3.3.26
3.3.27
3.3.28

3.3.29

3.3.30
3.3.31
3.3.32
3.3.33

COMDECK - Introduce a common deck
COMPILE - Specify compile or source datasets . .
COpy - Copy text
CWEOF - Conditionally write end-of-file
DECK - Introduce a deck
DECLARE - Declare deck for modifications . .
DEFINE - Define names
DELETE - Delete lines
EDIT - Edit decks
ELSE - Reverse condition .
ELSEIF - Test condition •
ENDIF - End conditional text
FILE - Close file (UNICOS only)
IDENT - Identify modification set
IF - Begin conditional text
INSERT - Insert after a line . . .
LIST and NOLIST - Resume or stop listing .
MASTER - Change input master character .
MOVEDK - Move a deck • .
PURGE - Remove modification set . . • .
PURGEDK - Remove deck • . .
READ - Read alternative input
RESTORE - Reactivate lines . .
REWIND •
SEQ and NOSEQ - Start or stop sequence number
writing
SKIP and ENDSKIP - Conditionally skip a block
of directives
SKIPF - Skip dataset files .
WEOF - Write end-of-file . .
WIDTH - Change line width in compile dataset
YANK and UNYANK - Delete or restore decks and
modification sets

3-1

3-1
3-2
3-3
3-3
3-3
3-4
3-4
3-5
3-6
3-6
3-7
3-7
3-7
3-8
3-8
3-9
3-10
3-11
3-11
3-12
3-12
3-13
3-13
3-14
3-14
3-15
3-15
3-16
3-17
3-18
3-18
3-19
3-19
3-20
3-20
3-21
3-21
3-22

3-22

3-23
3-24
3-24
3-25

3-26

SR-0013 K

4.

5.

EXAMPLES .

4.1

4.2

4.3

4.4
4.5
4.6

4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

CREATING A PROGRAM LIBRARY
4.1.1 PL creation
4.1.2 Creating a PL and a compile file
4.1.3 Reading input from an alternate dataset
4.1.4 Full UPDATE mode
4.1.5 Calling common deck into a user program
MODIFYING A PROGRAM LIBRARY
4.2.1 Generating a modified PL •
4.2.2 Testing a modification set
GENERATING AND USING COMMON DECK PROGRAM LIBRARIES. .
4.3.1 Generating a PL with common decks ..
4.3.2 Generating a PL with external common decks
4.3.3 Modifying a PL with external common decks
READ FROM ALTERNATIVE DATASETS
INPUT DATASET NOT $IN . . .
MULTIPLE INPUT DATASETS
4.6.1 COS input dataset
4.6.2 UNICOS input dataset.
EXTRACTING DECKS FOR A SOURCE DATASET
GENERATING A COMPILE DATASET FROM SOURCE .
COMPILE DATASET FROM A COMMON DECK
EXTRACTING DECKS FOR COMPILATION (NO SOURCE)
USING *FILE (UNICOS only)
RESEQUENCING A PL. ..
DECK REMOVAL AND POSITIONING . .
PL EDITING .
CHANGING THE DATA WIDTH
CONDITIONAL TEXT
EXAMPLES SHOWING DATASET CONTENT
4.17.1 Create a new PL from an input file.
4.17.2 PL modification . • .
4.17.3 Generating an executable program
4.17.4 PL resequenced version .

AUDPL - PROGRAM LIBRARY AUDIT UTILITY

5.1
5.2
5.3
5.4

RESTRICTIONS • ...
AUDPL CONTROL STATEMENT (COS)
AUDPL COMMAND LINE (UNICOS)
INPUT DIRECTIVES . ..
5.4.1 / - Comment
5.4.2 ACTIVE - Active lines
5.4.3 COND - Conditional text directives
5.4.4
5.4.5
5.4.6
5.4.7

DIR - Dataset or file directives
HISTORY - Modification history
INACTIV - Inactive lines .
PULLMOD - Pulled modification sets or decks

SR-0013 K

4-1

4-1
4-1
4-2
4-2
4-3
4-4
4-4
4-5
4-6
4-7
4-7
4-7
4-8
4-9
4-10
4-10
4-10
4-11
4-12
4-12
4-13
4-13
4-14
4-14
4-15
4-16
4-16
4-17
4-19
4-19
4-20
4-22
4-23

5-1

5-1
5-1
5-6
5-9
5-9
5-10
5-10
5-11
5-11
5-12
5-12

xi

5.

6.

7 •

AUDPL - PROGRAM LIBRARY AUDIT UTILITY (continued)

5.5 OUTPUT . · · · · . · · .
5.5.1 Listing file or dataset . . . · .

5.5.1.1 Text line listing options
5.5.1.2 Summary listing options

5.5.2 Reconstructed modification sets
5.5.3 Modifications file or dataset
5.5.4 Binary identifier list file or dataset

identifier list · . .
5.6 AUDPL SAMPLE LISTING · · . ·
MODECKS

6.1
6.2
6.3
6.4

MODECKS CONTROL STATEMENT (COS)
MODECKS COMMAND LINE (UNICOS)
USING MODECKSUNDER COS
USING MODECKS UNDER UNICOS

UPIC - COS LISTING EXTRACTION PROGRAM

7.1 UPIC INPUT · · ·
7.2 UPIC OUTPUT · . · ·

7.2.1 UPDATE listings
7.2.2 Compilation and assembly listings

7.3 UPIC CONTROL STATEMENT ·
7.4 UPIC EXAMPLES · . · · .

·

.

·

APPENDIX SECTION

A.

B.

xii

CHARACTER SET

MESSAGES . .

B.1
B.2
B.3
B.4

UPDATE MESSAGES
AUDPL LOG FILE MESSAGES
MODECKS ERROR MESSAGES .
UPIC LOG FILE MESSAGES . . .
B.4.1
B.4.2
B.4.3

General messages . .
Control statement error messages • .
UPIC internal error messages . .

·
and

·

. ·
·
·

.

. .

5-13
5-13
5-14
5-15
5-17
5-19

5-19
5-20

6-1

6-1
6-5
6-9
6-10

7-1

7-1
7-2
7-2
7-2
7-2
7-5

A-1

B-1

B-1
B-7
B-9
B-11
B-11
B-12
B-12

SR-0013 K

C.

D.

E.

UPDATE PROGRAM LIBRARY FORMATS

C.1
C.2

FORMAT 1 - SEQUENTIAL PL STRUCTURE (COS ONLY)
FORMAT 2 - RANDOM PL STRUCTURE • . • .

PLCOPY UTILITY PROGRAM • . . . • •

UPDATE DIRECTIVE SUMMARY • . . • . . • • . .

FIGURES

1-1 UPDATE Data Flow
1-2
3-1
C-1
C-2

TABLE

Program Library Sequence
UPDATE Directives . •
PL Format 1 . . . • .
PL Format 2

C-1

C-1
C-3

D-1

E-1

1-3
1-8
3-2
C-1
C-4

1-1 Dataset Contents for Full, Quick, and Normal Modes 1-12

INDEX

SR-0013 K xiii

1. INTRODUCTION

UPDATE is a line-oriented text editor for maintaining programs in the
form of source code, as well as other types of text data. UPDATE creates
and modifies program libraries (PLs) and produces output that you can use
as input to other programs, particularly compilers and assemblers.

UPDATE executes on all CRAY Y-MPt, CRAY X-MP EAt, and CRAY X-MP
computer systems under control of COS or UNICOS, and under UNICOS on the
CRAY-2 computer system. You can invoke UPDATE with the UPDATE COS
control statement or UNICOS command line; both are described in section
2, Invoking UPDATE and NUPDATE.

NUPDATE is a derivative of UPDATE with improved functionality and
performance. Unless otherwise noted, all UPDATE information also applies
to NUPDATE. The principal differences are as follows:

• NUPDATE permits identifiers consisting of up to 240 characters;
UPDATE identifiers are limited to 8 characters.

• NUPDATE does not suppport the COS CL= parameter and the UNICOS
-u option. CL= and -u let you specify called common decks not
found in the PL being processed.

• NUPDATE contains two additional directives, OLDSEQ and OLDPL,
which provide compatibility with the UPDATE sequence number
generation scheme used in UNICOS 4.0, COS 1.17, and earlier
releases, and with the UPDATE PL format, respectively. When using
a variable length PL, NUPDATE lets you have up to 500 characters
per line while UPDATE limits you to 250.

• NUPDATE contains other options that apply only to UNICOS. See
nupdate(l) in the UNICOS User Commands Reference Manual,
publication SR-2011.

• NUPDATE also offers the following ID keywords:

ID Keyword

t In X-mode only

SR-0013 K

Description

Date the version was created; in the form
mm/dd/yy.

Current date; in the form mm/dd/yy.

1-1

ID Keyword

%M%

%T%

%V%

%2%

Description

USM version identification string (VID) of the
retrieved version.

Module (file) name.

Current time; in the form hh:mm:ss.

Time the version was created; in the form
hh:mm:ss.

A 4-character string @(#) that is used by the
what(l) command to retrieve information on
the file. (See the what(l) man page in the
UNICOS User Commands Reference Manual,
publication SR-2011, for more information.)

Three other products, AUDPL, MODECKS, and UPIC, are also described in
this manual. AUDPL, the PL audit utility, provides information about
UPDATE PLs. MODECKS compares a modified UPDATE deck and an original
deck, and it produces a modification file reflecting the differences.
UPIC extracts portions of program listings when you do not want to see
the entire program. AUDPL, MODECKS, and UPIC are intended to be used in
conjunction with UPDATE.

1.1 OVERVIEW

UPDATE performs three main functions: it can create a new PL, modify an
existing PL, and extract source code from an existing PL. Figure 1-1
illustrates two of these functions~ showing the data flow that occurs in
creation and modification runs.

For a creation run, your input must include source decks, and it can
include a source dataset from an earlier UPDATE run, modification sets,
and input directives. Output from a creation run can include a new PL,
listings, a compile dataset, and/or a source dataset.

For a modification run, your input must include a PL, and it can include
new decks, modification sets, and input directives. Output from a
modification run can be a selected listing, a compile dataset, source
decks, and/or a new PL.

UPDATE also lets you extract source code from an existing PL without
creating or modifying one. Examples of UPDATE's extracting capabilities
are given in subsections 4.7, Extracting Decks for a Source Dataset, and
4.10, Extracting Decks for Compilation (No Source).

1-2 SR-0013 K

Program Library Creation To Assembler,
Compiler, or

other Program Listing

Compile Datasets

Source Dataset

New Program Library

To Subsequent

UPDATE Runs
(Creation or

Modification)

Program Library Modif ication To Assembler,
Compiler, or

other Program
Listing

Compile Datasets

Source Dataset

New Program Library

Figure 1-1. UPDATE Data Flow

1.2 CONVENTIONS

To Subsequent

UPDATE Runs

1806

This manual uses the following conventions to describe statement and
directive syntax:

Convention

UPPERCASE

Bold

Underscore

Italic

[]

Choice 1
Choice 2

SR-0013 K

Description

This identifies a COS command verb, and an UPDATE or
AUDPL directive. With UPDATE 5.0, all UPDATE
directives can be given in either uppercase or
lowercase, but not in mixed case. This applies to
both COS and UNICOS.

Bold identifies UNICOS command names, options, or file
names.

Underscoring specifies the accepted abbreviation of a
verb or parameter.

Italic identifies generic terms representing the words
or symbols to be supplied by the user; all variable
entities are presented in italics.

Brackets enclose optional portions of a command format.

Stacked items indicate two or more literal parameters
when only one choice can be used.

1-3

I

I

I
I

I

dataset/file

command(1)

Though the terms dataset and file should be
reserved for use with, respectively, COS or UNICOS,
this manual occasionally uses them interchangeably for
convenience.

Ellipses indicate optional use of a preceding item one
or more times in succession.

The designation (1) following a command name indicates
that the command is documented in the UNICOS User
Commands Reference Manual, publication SR-2011.

1.3 READER COMMENTS

If you have any comments about the technical accuracy, content, or
organization of this manual, please tell us. You have several options
that you can use to notify us:

• Call our Technical Publications department at (612) 683-5729.

• Send us electronic mail from a UNICOS or UNIX system, using the
following UUCP mail address:

uunet!cray!publications

• Send us electronic mail from a UNICOS or UNIX system, using one of
the following Internet addresses:

Pubs0013@timbuk.cray.com (comments specific to this manual)

publications@timbuk.cray.com (general comments)

• Send a facsimile of your comments to the attention of
"Publications" at fax number (612) 683-5599.

• Use the postage-paid Reader's Comment form at the back of this
manual.

• Write to us at the following address:

Cray Research, Inc.
Software Publications and Training Department
655F Lone Oak Drive
Eagan, MN 55121

We value your comments and will respond to them promptly.

1-4 SR-0013 K

1.4 DEFINITIONS

This subsection presents brief definitions for terms used later in this
manual. The terms dataset and file are used interchangeably in these
definitions for convenience; strictly speaking, these terms should be
reserved for use with, respectively, COS or UNICOS. Unless otherwise
noted, these terms are defined in greater detail in subsections 1.4.1
through 1.4.7.

• A deck is a contiguous ordered set of lines that can be
referenced with a single name.

• A program library (PL) is created by UPDATE and contains one or
more decks. Under COS, a PL is a dataset, and under UNICOS, it is
a file. (Subsection 1.5 discusses PLs.)

• A source deck includes all text and directives that were or will
become a deck in a PL; it can be derived from a source dataset. A
source deck can be input to or output from UPDATE.

• A directive is a command to UPDATE from the input or embedded in
the PL.

• A modification set is a group of changes to be applied to
existing decks in a PL.

• A source dataset is a file that is a current, edited copy of one
or more source decks from a PL. UPDATE writes the source
dataset. You can use decks from a source dataset as input to
UPDATE.

• A compile dataset is produced by UPDATE for use as input to an
assembler, compiler, or other program. Under COS, it is a dataset
containing one or more files. Under UNICOS, it is one or more
distinguishable files.

• An input dataset can include source decks, modification sets,
and directives.

• A listing dataset is output by UPDATE; it contains messages and
requested information for you to read. (See subsection 1.10,
Listable Output.)

1.4.1 DECKS

A deck is a contiguous ordered set of lines that can be referenced with
a single name. It can be a program, part of a program, or other data.
It serves as input to UPDATE to become part of a PL. UPDATE supports two
types of decks: regular and common.

SR-0013 K 1-5

• A regular deck begins with the DECK directive; it is placed in
the PL (at one location) and in compile and source datasets.

• A common deck begins with the COMDECK directive; it is placed in
the PL and in the source dataset, but you can copy its contents to
any number of locations in the compile dataset. A common deck
that is defined in one PL can be called from decks in another PL
if the COS CL control statement parameter or the UNICOS -u
command-line option is used. A common deck call can appear
anywhere in a regular or common deck. (See subsection 3.3.3,
CALL - Call Common Deck.) A common deck call is replaced by the
text. of the common deck during compile dataset generation.

1.4.2 SOURCE DECKS

A source deck includes all text and directives that will become a new
deck in a PL, or lines and embedded directives from a single deck in the
source dataset. It begins with a DECK or COMDECK directive and ends with
the last line before the next DECK, COMDECK, IDENT, modification
directive, or the end of input.

1.4.3 DIRECTIVES

Directives--that is, commands to UPDATE--are in the input to UPDATE or
are embedded in the PL. The individual directives are described in
section 3. The UPDATE directives are of the following types:

• Modification directives change a PL; they are entries to
modification sets. The effects of modification directives are
saved, and you can yank (undo) them.

• Input edit directives change a PL, but they are not saved and
cannot be yanked.

• Run option directives do not change a PL, and they are not
saved: most select 1/0 options for a run.

• Compile dataset directives determine the contents of compile
datasets, and they are embedded in the PL.

• DECK and COMDECK directives define decks.

1-6 SR-0013 K

1.4.4 MODIFICATION SETS

A modification set is a group of UPDATE modification directives to be
applied to existing decks in a PL in either a creation or modification
run. You can use the INSERT, BEFORE, DELETE, and RESTORE directives in a
modification set. Source decks, input edit directives, and run option
directives can be in a modification set, but they are not associated with
it. You can remove changes associated with a modification set from the
PL, either temporarily or permanently, using the YANK, UNYANK, and PURGE
directives.

A modification set begins with a modification identifier, specified by an
IDENT directive. It ends with the next IDENT, DECK, or COMDECK
directive, or the end of input.

1.4.5 SOURCE DATASETS

A source dataset is a file written by UPDATE that is a current, edited
copy of one or more decks from a PL. You can use it as input to UPDATE
to create a new PL or to add new decks and common decks to an existing
PL. It consists of a single file of active text lines, compile dataset
directives, and DECK and COMDECK directives from selected decks in the
PL. See table 1-1 for the contents of a source dataset.

The DW parameter on the COS control statement or the -w option on the
UNICOS command line determines the length of each line in the source
dataset. If you specify the COS SQ or UNICOS -0 sq option, you will
also receive sequencing information.

Because the source dataset contains UPDATE directives, it is normally not
used as input to language processors. (The source dataset always begins
with a DECK or COMDECK directive.)

1.4.6 COMPILE DATASETS

A compile dataset contains one or more files of active text lines from
selected decks in the PL. Compile dataset directives are not written to
the compile dataset, but they are processed as the compile dataset is
written. Common decks are expanded, conditional text directives are
evaluated, and the dataset is broken into files by the WEOF, CWEOF, and
FILE directives. See table 1-1 for the contents of a compile dataset.

The COS DW parameter, UNICOS -w option, or the WIDTH directive control
the length of each line. Each text line is associated with an identifier
and sequence number. The identifier is the name of the deck or common
deck for an original line, or the name of the modification set that added
the line. Under COS, sequence information appears in the compile dataset

SR-0013 K 1-7

by default. Under UNICOS, you must explicitly request sequence
information. You will find the identifier and sequence number printed to
the right of the text line, unless the PL has been identified as a
variable-length record PL. In this case, no sequence information appears
in the compile dataset. You can also turn off sequence information with
the COS NS option, UNICOS -0 ns option, or the NOSEQ directive.

1.4.7 INPUT DATASETS

An input dataset can include source decks, modification sets, and input
directives. You can use a source dataset from one UPDATE run as an input
dataset for a later UPDATE run. Specify an input dataset with the COS I
parameter, UNICOS -i option, or the READ directive. Under COS, input
datasets containing more than one file must be specified once for each
file to be read.

1.5 PROGRAM LIBRARIES

A PL is a dataset (in COS) or a file (in UNICOS) containing one or more
decks created by UPDATE. Each deck is specially formatted for use as
input to future UPDATE runs. Following the last deck in a PL, UPDATE
supplies a directory consisting of tables describing each deck, each
modification set identifier, and the entire PL. (See figure 1-2.) These
tables differ, depending on whether the PL has random or sequential
organization. (See appendix C for information on PL formats.)

Deck 1

Deck 2

Deck n

UPDATE
Directory

Figure 1-2. Program Library Sequence

1-8 SR-0013 K

A deck begins with a DECK or COMDECK directive; it contains lines of text
and can contain compile dataset directives. UPDATE assigns an identifier
and sequence number to each text line or directive. The identifier of an
original line from the deck is the deck or common deck name; a line added
later has as its identifier the name of the modification set that added
it. The DECK or COMDECK directive has sequence number 1. UPDATE
sequences the remaining lines in the deck, beginning with number 2.
Lines added by modification sets begin with sequence number 1.

Deleted lines remain in the PL with an inactive status. A descriptor
precedes each text line or directive in the PL, giving the line's
identifier, sequence number, and a correction history recording
modifications to the line.

1.5.1 PROGRAM LIBRARY RESTRICTIONS

The number of lines within one modification set or one deck cannot exceed
131,071. The number of identifiers (that is, modification set
identifiers or deck names) in one PL must not exceed 16,383.

UPDATE cannot read a PL from a magnetic tape dataset.

1.5.2 CREATING A PROGRAM LIBRARY

Create a PL by supplying the following:

• An UPDATE control statement or command line

• UPDATE directives

• Input text

The input text for creation of a new PL consists of one or more source
decks you have prepared, or the source dataset from an earlier UPDATE
run. Modification sets can also be applied in a creation run. Designate
a creation run by specifying p=o on the COS UPDATE control statement, or
by not specifying the UNICOS -p option on the command line (see section
2, Invoking UPDATE and NUPDATE, for details on the control statements).

The DECK and COMDECK directives specify whether a new deck is a regular
deck or common deck. Other directives within the source decks affect the
output listing, call common decks, or write COS end-of-file (EOF)
records. (See subsection 3.1.4, Compile Dataset Directives.)

SR-0013 K 1-9

1.5.3 MODIFYING A PROGRAM LIBRARY

You can modify the PL by adding or purging decks or by adding or deleting
(deactivating) lines from existing decks. You can apply modifications
against an existing PL to produce either a new PL or a current compile or
source dataset.

1.5.3.1 Procedure for modifying a PL

Modify a PL by supplying the following:

• An UPDATE control statement or command line directing the computer
system to modify that PL

• UPDATE directives specifying the modification set identifier or
the deck identifier, the lines to be deleted, and locations of
insertions

• Any new lines to be added

Input for a modification run can include new decks or common decks,
modification sets, input edit directives, and run option directives.
When a PL has been modified, the newly generated PL is known as a new
PL.

A modification set begins with an IDENT directive containing a
modification set identifier; a new deck begins with a DECK directive
containing a deck name. If you wish to insert text at a locat.ion
specified in the directive, that text must immediately follow the
directive. Decks can also contain certain directives such as CALL,
CWEOF, and WEOF. (See subsection 3.1.4, Compile Dataset Directives, for
a complete listing.)

Following a modification run, the new PL, if generated, consists of
modified decks, an updated identifier table, and an updated PL
information file. (See subsection C.2, Format 2, Random PL Structure,
for details on the format.) The sequence of decks and tables in the new
PL is the same as that of the old PL.

Directives can cause lines to be inserted or deleted from the PL. A
deletion does not physically remove the line but deactivates it; that is,
the line is logically removed and does not appear in compile or source
output. UPDATE maintains a record of active and inactive lines (see
subsection C.2, Format 2, Random PL Structure). If the line status bit
indicates an inactive line, the line is effectively deleted until
restored. If the line status is active, the line remains in the deck.

1-10 SR-0013 K

1.5.3.2 Processing PL modifications

UPDATE processes modifications in two passes:

• During the first pass, UPDATE scans the directives and new text
and constructs tables for use during the second pass.

• During the second pass, UPDATE modifies each deck on a
deck-by-deck basis, deleting lines and sequencing and identifying
each new line according to its modification set identifier.

If you want to receive compile output from a modification run, UPDATE
creates it during the second pass. At this time, calls for common decks­
are replaced with current common deck text of the common deck. The calls
can be in the original decks, or you can insert them during a
modification run. Other embedded directives are also executed at this
time.

1.6 COMMON DECK PROGRAM LIBRARIES

Common decks defined with the COMDECK directive in one PL may be called
from decks in other PLs. For documentation purposes, this manual labels
the PL in which a common deck is defined as a Common Deck Program
Library. Called common decks defined in PLs other than the one
currently being processed are labeled Externally Defined Common Decks.

For UPDATE to resolve references to externally defined common decks, the
COS CL parameter or UNICOS -u option must be used in the control
statement (see section 2, Invoking UPDATE and NUPDATE). Externally
defined common decks are processed only in a Read mode. You cannot
modify them or specify them with the Q parameter or -q option or a
COMPILE directive, and they do not appear in a source dataset or new PL.
The externally defined common deck text is copied to the compile dataset.

1.7 UPDATE MODES

The UPDATE control statement specifies either Full, Quick, or Normal
mode. The mode determines the contents of the compile dataset, the
source dataset, and the new PL. (See table 1-1.)

SR-0013 K 1-11

Table 1-1. Dataset Contents for Full, Quick, and Normal Modes

Mode

Full

Quick

Compile
Dataset Contents

All decks and
called common
decks

Only decks
specified by either
COMPILE directives
or the UPDATE Q
parameter or -q
option, and called
common decks

Normal Decks specified
by COMPILE
directives,
modified decks,
and decks calling
modified common
decks

Source
Dataset Contents

All decks and all
common decks defined
in the PL being
processed

Decks and common
decks specified by
COMPILE directives,
and decks specified
by the UPDATE Q
parameter or -q
option

Decks and common
decks specified by
COMPILE directives,
modified decks, and
decks calling
modified common
decks

New PL
Contents

All decks and all
common decks
defined in the PL
being processed

Only decks
specified by
either COMPILE
directives or the
UPDATE Q parameter
or -q option, and
all common decks
defined in the PL
being processed

Same as Full mode

In Full mode (F or -f), UPDATE writes all active lines in the PL and
externally defined common deck texts to the compile dataset. Only the
active lines in a PL are written to the source dataset. The PL
Identifier table determines the sequence, and no COMPILE directive is
necessary.

In Quick mode, UPDATE writes decks specified with the Q parameter or -q
option and decks specified by a COMPILE directive to the compile dataset
or the source dataset, and to the new PL. You cannot name externally
defined common decks with the Q parameter, -q option, or the COMPILE
directive. The PL Identifier table determines the sequence unless the K
or -0 k option is used. Modifications to decks that you did not
specify with the Q parameter or -q option or by a COMPILE directive are
not processed.

1-12 SR-0013 K

In Normal mode (Full and Quick mode parameters omitted), UPDATE writes
decks specified by COMPILE directives, modified decks, and decks calling
modified common decks to compile or source datasets, and all decks are
written to the new PL. Under UNICOS, the -n option, naming the new PL
file name, must be used. You cannot name externally defined common decks
with the COMPILE directive, and UPDATE does not write them to the new PL.

1.8 PROGRAM LIBRARY TYPES

UPDATE distinguishes two types of program libraries: regular and
variable-length record formats.

Under COS, UPDATE stores fixed-length "cards" to the PL and writes
fixed-length lines of text to the compile and source datasets. Under
UNICOS, UPDATE writes fixed-length lines of text to the compile and
source datasets. You can specify them with the DW parameter or -w
option.

Variable-length record PLs store and write variable-length lines of
text. You can create these PLs by specifying DW=* or -w "." at the
time the PL is created; however, you cannot create new PLs of one type
from old PLs of the other type. Variable-length record PLs let you
preserve the end of line locations in the original input text, instead of
removing trailing blanks from the end of the line. The maximum line
length is 256 characters.

Under COS, the storage space required for regular and variable-length
record PLs is not significantly different, because blank compression is
performed on all UPDATE PLs. Under UNICOS, trailing blanks are trimmed
off of input datasets and PLs to save space, and the storage space
required for regular and variable-length record PLs is not significantly
different. If trailing blanks are significant, you must use a
variable-length record format. If the PL is of variable-length record
format, UPDATE does not write sequence information to the compile dataset.

1.9 ORGANIZING UPDATE INPUT

This subsection describes aspects of input to UPDATE that must be
considered if you are to obtain correct output.

SR-0013 K 1-13

1.9.1 ASSOCIATIVITY OF INPUT

The compile and source files resulting from an UPDATE run will be the
same whether input is processed in one UPDATE run or in several. That
is, you can group modifications in different ways in a series of runs
without affecting the result, as in the associative principle of
mathematics. (This does not imply, however, that the order of
modifications can be changed without affecting the result.) Directives
EDIT, COPY, and DEFINE are exceptions to this principle. In addition,
your results will be unpredictable if your input does not begin with an
IDENT directive, or if you have used the MASTER directive but not at the
beginning of each separate section of input. PURGEDK can follow
modifications to the purged deck only if you declare those modifications.

1.9.2 OVERLAPPING MODIFICATIONS

UPDATE can handle modifications to text added earlier in the same UPDATE
run, but overlapping or conflicting modifications generate caution and
note messages. Messages about overlapping modifications are written to
the listing or error datasets if the value given for the ML parameter or
-m option is less than the default of 3. Caution messages indicate
conflicts between directives; these conflicts occur when more than one
directive inserts new text in the same place, and for implicit overlaps,
when newly inserted text is deleted by a later modification set. Notes
appear when a directive explicitly references a line added by an earlier
modification set in the same UPDATE run.

1.9.3 DECLARED MODIFICATIONS

A modification declaration specifies the deck to be modified by
subsequent directives and is required when the declared modifications
option is specified (DC=ON on the COS control statement or the -0 de
option specified in the UNICOS command line). For a modification
declaration, you can use a DECLARE directive or the DC parameter on the
IDENT directive. If modification declarations are required, one of these
kinds of modification declarations must precede modification of a deck.

Modifications following the DECLARE directive affect only the specified
deck or common deck. An UPDATE error is the result for each modification
directive that affects any deck other than the declared deck.

If declared modifications are optional (DC=OFF or DC omitted on the COS
control statement, or the -0 dc option omitted from the UNICOS command
line), DECLARE directives are optional and honored when they appear.
Using an IDENT directive clears the previous modification declaration.

1-14 SR-0013 K

1.10 LISTABLE OUTPUT

UPDATE can produce a listing dataset and an error dataset, as specified
on the UPDATE control statement. The error dataset contains only
messages. The listing dataset contains these messages plus information
requested by the control statement or command-line listing options.

Listable output is divided into pages. Under COS, the LPP parameter on
the OPTION control statement controls the number·of lines per page (see
the COS Reference Manual, publication SR-0011). Under UNICOS, there is
no page control.

1.10.1 PAGE HEADER LINES

Each page of output in the listing and error datasets contains two header
lines with the following information:

• Job name (COS only)

• UPDATE revision level and compilation date

• Current date and time

• Page number for this UPDATE listing

• A description of the output on this page. For the input listing,
this includes the name of the deck, common deck, or modification
set being input. For the modification summary, this includes the
name of the deck or common deck currently being processed.

• Date when the PL was created

• Name·of the last identifier added to the PL

1.10.2 MESSAGES

Listing messages have five levels of severity: COMMENT, NOTE, CAUTION,
WARNING, and ERROR. The COS ML parameter or UNICOS -m option specifies
the highest level to be omitted from a listing or error dataset. The
default is to write only error and warning messages. This parameter does
not affect log file messages (stderr under UNICOS).

SR-0013 K 1-15

1.10.3 LISTING OPTIONS

The UPDATE control statement allows you the following set of options for
listable output. Under UNICOS, your first option-argument must be
preceded by the -0 option and a space. Additional options-arguments
must be separated by one space.

COS
Option

CD

ED

ID

IF

1-16

UNICOS
Option-argument

cd

ed

id

if

Description

Writes a list of decks contained in the
compile dataset. All compile dataset
directives (for example, CALL and WEOF) from
those decks and any invoked common decks are
also written to the listing dataset when you
use this option.

Writes a summary to the listing dataset,
divided according to decks and common decks,
of all modifications to the listing dataset.
ED (or ed) writes the affected line of
text, and the name of the modification set
that adds the change or is yanked or purged,
to the listing dataset. Each line is
accompanied by its identifier and sequence
number and the type of change (INSERT,
DELETE, RESTORE, or PURGE).

Lists in the listing dataset all identifiers
known at the end of the UPDATE run. A deck
name is preceded by a single asterisk (*), a
common deck by two asterisks (**), and a
yanked identifier by a minus sign (-). This
list does not include purged identifiers,
because they are no longer known to UPDATE.
Identifiers that have been unyanked are the
same as identifiers that have never been
yanked.

Writes a list of defined names for the
current UPDATE run and a conditional text
summary to the listing dataset. The
conditional text summary includes a list of
all conditional text directives (IF, ELSEIF,
ELSE, and ENDIF), along with the nesting
level of the directive and the value of the
conditional clause (TRUE, FALSE, or SKIP).
The IF (or if) option also provides you
with the number of text lines, including
compile dataset directives, that were
processed or skipped between each pair of
directives.

SR-0013 K

COS
Option

IN

UM

K

NA

NR

NS

SR-0013 K

UNICOS
Option-argument Description

in

urn

k

na

na

ns

Writes an echo of the input to UPDATE to the
listing dataset. The input is divided
according to decks, common decks, and
modification sets.

Writes to the listing and error datasets a
list of modifications that remain unprocessed
at the end of the UPDATE run, either because
they refer to nonexistent lines or because
they modify decks that were not specified
when using Quick mode.

Orders all decks that are written to the
compile dataset and to new PL datasets, as
directed by the Q parameter values on the
control statement and the COMPILE
directives. This option is ignored in Full
or Normal mode.

NOTE

If a modification set affects two or more
decks and the K option is in effect, the
sequence numbers of inserted lines can be
inconsistent with sequencing that has
occurred without the K option.

Does not abort if directive errors or
modification errors occur. All requested
datasets are generated.

Does not rewind the source dataset or
compile dataset at the beginning or end of
UPDATE execution.

Suppresses line sequence information in
the source and compile datasets. SEQ and
NOSEQ directives are ignored when this
option is used. NS is ignored for
variable-length record PLs.

1-17

OLDSEQ

os

SQ

UM

SSQ

1-18

oldseq

os

sq

urn

ssq

Assigns sequence numbers using the old scheme
rather than the new (default). See subsection
3.2.1, Line Identification, for a description of
the differences between the two. (Applies to
NUPDATE only).

Assigns new sequence numbers using the UPDATE 4.0
scheme

Provides sequence numbers for source and compile
output. The defaults are sequence numbers on the
compile output and no sequence numbers on the
source output.

Writes unprocessed modifications to the listing
dataset and/or the error dataset

Provides sequence numbers for source output only,
not compile output. (Applies to NUPDATE only).

SR-0013 K

2. INVOKING UPDATE AND NUPDATE

This section describes the COS control statements to invoke UPDATE and
NUPDATE and the UNICOS command line to invoke UPDATE. (Section 1
describes the conventions used in the control statements.)

2.1 UPDATE CONTROL STATEMENT FOR COS

The COS UPDATE control statement loads the UPDATE program into the user
field and begins execution. The UPDATE statement is read from the
control statement file of a user job deck. Use the parameters on the
UPDATE statement to specify the datasets to be used, the contents of the
UPDATE listing, and other features of the run.

Format:

[,L=ldn][,E=edn][,S=sdn][,*=m][,I=c][,DW=dw][,DC=dc][, ML=n]

p=pdn

SR-0013 K

,F
,Q[=d1:d2: ... :dn] [,options].
,Q='d1 ,d2 ,···,dj.dk,···,dn '

Dataset name of the program library (PL)

If omitted or P, the input PL is $PL.
If P=pdn, the input PL is pdn.
If P=O, no PL is used; this is for only a creation run.

2-1

2-2

I=idn1:idn2:···:idnn

C=cdn

Names of input datasets; these datasets contain the
directives and text for the UPDATE run. UPDATE reads them
in the order given. You can specify up to 64.

If I or omitted, the input dataset is the next file of
$IN.

If I=idn, the input dataset is a dataset with the name
idn.

If I=O, no input dataset is read (invalid for a creation
run).

If I=idn1:idn2: ... :idnn' the first input
dataset to be read is idn1' the second is idn2'
and so on.

Name of the compile dataset; decks that are determined by
the UPDATE mode (F, Q, or Normal; see table 1-1) are
written on the specified dataset.

If C is omitted, the compile output is written to $CPL.
If C=cdn, the compile output is written to dataset cdn.
If C=O, no compile dataset is generated.

CL=cln1:cln2:···:clnn
Called common decks that cannot be found in the PL being
processed are searched for in the common deck PLs (clnn)
specified on the CL parameter. The search order is the
order in which the libraries are specified. No
modifications can be made to a common deck PL, and
externally defined common deck text is not written to the
source dataset or to the new PL. The common deck text
appears in the compile dataset. The maximum number of
common deck libraries is 64.

DEF=def1 :def2:···:defn
The DEF parameter defines names to be used with an IF
directive. You can use names consisting of up to 8
characters; if they are longer, only the first 8 characters
are recognized. Defined names need not be different from
deck names, common deck names, or modification identifiers,
because they are known only in the UPDATE run being
processed. You may define up to 64 names with the control
statement DEF parameter.

SR-0013 K

N=ndn

L=ldn

E=edn

S=sdn

SR-0013 K

Name of the new PL dataset. The UPDATE mode determines the
contents of the new PL (see table 1-1).

If omitted in a modification run, no new PL is written.

If omitted in a creation run, the new PL is written to
$NPL.

If N, the new PL is written to $NPL.

If N=ndn, the new PL is ndn.

If N=O, no new PL is written.

Name of the listing dataset; this dataset receives the
UPDATE list output.

If omitted or L, the list output is written to $OUT.

If L=ldn, the list output is written to the dataset
named Idn.

If L=O, no list output is generated.

Name of the error listing dataset; this dataset contains
ERRORS, WARNINGS, CAUTIONS, NOTES, and COMMENTS as
requested by the ML parameter.

If omitted or E, the output is written to $OUT.
If E=edn, the output is written to edn.
If E=O, errors are written only to the listing dataset.

NOTE

If E and L specify the same dataset, L is
honored and E is set to o.

Source dataset name; the UPDATE mode determines the
contents of this dataset (see table 1-1). You can use this
dataset as the input for a subsequent creation run.

If omitted or S=O, no source output is generated.
If S=sdn, the source output is written to sdn.
If S, the source output is written to $SR.

2-3

I=C

Dw=dw

2-4

Master character; the first character of directives read
from the input file or written to the source file. Invalid
master characters are comma, period, colon, equal sign, and
space. The keyword alone is invalid.

If omitted in a creation run, the master character for
directives is *

If omitted in a modification run, the master character is
that used in the creation run for the PL.

If *=m, the master character for directives is m.

Comment character; indicates a comment. The keyword alone
is invalid.

If omitted, the comment character is I.

If I=c, the comment character is c.

Data width value; the number of characters of data written
to each line in the compile and source datasets. The dw
range is 1 through 256.

If omitted, or if a DW with no value is specified in a
creation run, columns 1 through 72 contain data;
otherwise, columns 1 through dw contain data.

If DW=* in a creation run, variable-length records are
written to the compile and source datasets.

In a modification run, if the PL was created with DW=*,
only DW=*, DW, or no DW parameter is accepted, and UPDATE
continues to process variable-length text lines for the PL.
In a modification run, if no value for DW is specified, or
DW is unspecified, columns 1 through lastdw contain data;
lastdw is the DW value specified when the PL was
written. If DW=dw, columns 1 through dw contain data.

The number of characters per line written to the new PL is
a maximum of either dW, pldw, or 80; pldw is the
number of characters per line in the existing regular PL.
For variable-length record PLs, the same number of
characters per line appears in the new PL as they did in
the old PL.

SR-0013 K

Dw=dw
(continued)

DC=dc

SR-0013 K

NOTE

For regular PLs, sequence information is
provided in the source and compile datasets
as follows:

When you omit the data width value, when DW
is specified alone, or when you specify the
data width value as dW, the following is
true: dw+1 through dw+8 contain an
identifier, right-justified with leading
spaces; dw+9 contains a period; and dw+10
through dw+15 contain a sequence number,
left-justified with trailing spaces.

When you specify the data width value as
Ldw, the entire sequencing field of the
compile output is left-justified.

For variable-length record PLs, no sequence
information appears in the compile dataset.
Source dataset sequence information, if you
request it, appears three spaces to the right
of the end of the text line.

Sequence information appears by default in
the compile dataset but must be requested in
the source dataset.

Declared modifications option. This ensures that
modifications apply to the correct deck or common deck.
Declaration of PL modifications may be required (see
subsections 1.5.3, Modifying a Program Library, and 3.1.1,
Modification Directives).

If DC is omitted or DC=OFF, the mod declaration is not
required, but it is enforced if present.

If DC=ON or if DC stands alone, the mod declaration is
required.

2-5

2-6

ML=n Message level: highest level of severity for UPDATE
listing messages to be suppressed. For example, ML=2
allows CAUTION, WARNING, and ERROR messages to be printed
to the listing or error datasets. The default, used when
the parameter is omitted or the keyword alone is specified,
is 3. (The ML parameter does not affect UPDATE log file
messages.) The following levels are available:

Level Severity Description

1 COMMENT Currently unused
2 NOTE Information not related to errors
3 CAUTION Possible error
4 WARNING Probable error
5 ERROR Fatal error

F, Q, or omitted
Full, Quick, or Normal UPDATE run. This determines the
contents of the compile dataset, the source dataset, and
the new PL (see table 1-1).

F Full UPDATE mode; all active lines are
processed. The PL Identifier table
determines the sequence. No COMPILE
directive is necessary.

Q[=d1 :d2:···:dn]

Q='dl,d2,···,dj.dk,···,dn '
Quick UPDATE mode. Decks that are specified
with the Q parameter and decks specified by
a COMPILE directive are written to the
compile dataset and/or the source dataset,
and to the new PL. You cannot name
externally defined common decks with the Q
parameter or the COMPILE directive. The PL
Identifier Table determines the sequence
unless the K option is used. Corrections to
decks that are not specified with the Q
parameter or by a COMPILE directive are not
included.

In the first method shown, up to 64 decks
can be specified. After all the input has
been entered, unknown deck names are errors.

SR-0013 K

options
(keyword
only)

SR-0013 K

Q[=d1 :d2 :···:dn]
Q='d1 ,d2 ,···,dj.dk,···,dn '
(continued) In the second method shown, single decks are

separated by commas, and ranges of decks are
separated by periods. After all the input
has been entered, unknown deck names are
errors. The maximum size of the string used
with the second method is 96 characters.

omitted

The two methods cannot be combined.

Normal UPDATE mode. Decks specified by
COMPILE directives, modified decks, and
decks calling modified common decks are
written to compile and/or source datasets.
You cannot name externally defined common
decks with the COMPILE directive, and they
are not written to the source dataset.

The following output options are available on the control
statement. (See subsection 1.10.3, Listing Options, for a
more detailed description of CD, ED, ID, IF, IN and UM.)

CD Writes the generation directives for the compile
dataset to Idn

ED Writes the edited line summary to Idn

ID Writes the identifier summary to Idn

IF Writes a conditional text summary to Idn

IN Lists the input to Idn

K Orders all decks that are written to the compile
dataset and to new PL datasets, as directed by the
Q parameter values on the control statement and the
COMPILE directives. This option is ignored in Full
or Normal mode.

NOTE

If a modification set affects two or more
decks and the K option is in effect, the
sequence numbers of inserted lines can be
inconsistent with sequencing that has
occurred without the K option.

2-7

options
(continued)

2.1.1 EXAMPLES

NA Does not abort if directive errors or modification
errors occur. All requested datasets are generated.

NR Does not rewind the source dataset or compile
dataset at the beginning or end of UPDATE execution.

NS Suppresses line sequence information in the source
and compile datasets. SEQ and NOSEQ directives are
ignored when this option is used. NS is ignored
for variable-length record PLs.

OLDPL Produces a PL in the old UPDATE format. (Applies
only to NUPDATE).

as Assigns new sequence numbers using the UPDATE 4.0
scheme. See subsection 3.2.1, Line Identification,
for a description of the differences between the
two.

SQ Provides sequence numbers for source and compile
output. The defaults are sequence numbers on the
compile output and no sequence numbers on the
source output.

UM Writes unprocessed modifications to the listing
dataset and/or the error dataset.

SSQ Provides sequence numbers for source output only,
not compile output. (Applies only to NUPDATE).

Following are two examples illustrating the use of the COS control
statement. Example 1 shows how a PL is created:

UPDATE,P=O,N=NEWPL,I=INPUT.

When P=O, no existing PL is specified, and the new PL is written to
NEWPL. The input is read from INPUT. The compile output is written to
$CPL; all decks are selected.

Example 2 shows how a PL can be modified:

UPDATE,P,I=MODS,Q=DECK3:DECK2:DECK4,K,NR,NA.

The parameters on this control statement indicate the following:

• P=$PL is implied.

• The input is read from MODS.

2-8 SR-0013 K

• The statement specifies Quick mode (using the Q parameter) with
the K output option. If a single COMPILE directive is used
(*COMPILE DECK1.DECK4), DECKl through DECK4 are written to $CPL in
the following order:

DECK3
DECK2
DECK4
DECKl

• UPDATE does not rewind $CPL before or after execution.

• If directive or modification errors occur, UPDATE does not abort.

2.2 CONTROL STATEMENT FOR COS

The control statement loads the NUPDATE program into the user
field and begins execution. The NUPDATE statement is read from the
control ile of a user job deck. Use the parameters on the
NUPDATE specify the datasets to be used, the contents of the
NUPDATE listing, and other features of the run.

Format:

p=pdn

\

Dataset name of the program~brary (PL)

If omitted or P, the input PL is $PL.
If p=pdn, the input PL is pdn.
If P=O, no PL is used; this is a creation run.

I=idnl:idn2:···:idnn

SR-0013 K

Names of input datasets; these dataset contain the
directives and text for the NUPDATE run. NUPDATE reads
them in the order given. up to 64.

2-9

I=idn1:idn2:···:idnn
(continued) If I or omitted, the input dataset is

$IN.

C=cdn

If I=idn, the input dataset is
idn.

If 1=0, no input dataset is
run).

invalid for a creation

If I=idn1:idn2: ... :idnn' the fi st input dataset to be
read is idn1' the second is id 2' and so on.

Name of the compile dataset; d cks that are determined by
the NUPDATE mode (F, Q, or Nor al; see table 1-1) are

If C is omitted, the compo e output is written to $CPL.
If C=cdn, the compile ou ut is written to dataset cdn.
If C=O, no compile datas t is generated.

DEF=def1:def2:···:defn

L=ldn

2-10

The DEF parameter names to be used with an IF
directive. You can use names consisting of up to 240
characters; if they ar longer, only the first 240
characters are recogni ed. Defined names need not be
different from deck n mes, common deck names, or
modification identifOers, because they are known only in the
NUPDATE run being pr cessed. You may define up to 64 names
with the control st tement DEF parameter.

Name of the new The NUPDATE mode determines the
contents of the table 1-1).

If omitted modification run, no new PL is written.

If omitted a creation run, the new PL is written to
$NPL.

If N, PL is written to $NPL.

If new PL is ndn.

If N=O, is written.

he listing dataset; this dataset receives the
ist output.

or L, the list output is written to $OUT.

SR-0013 K

L=ldn
(continued)

S=sdn

I=C

/

SR-0013 K

If L=ldn, the list output is written to the d aset
named Idn.

If L=O, no list output is generated.

Name of the error listing dataset;
ERRORS, WARNINGS, CAUTIONS, NOTES,
by the ML parameter.

contains
as requested

If omitted or E, the output is wr, tten to $OUT.
If E=edn, the output 0 edn.
If E=O, errors are written onl to the listing dataset.

If E and L specify t dataset, L is

NUPDATE mode determines the
contents of this da aset (see table 1-1). You can use this
dataset as the inp t for a subsequent creation run.

If =0, no source output is generated.
If source output is written to sdn.
If S, the so rce output is written to $SR.

Master chara ter; the first character of directives read
from the in t file or written to the source file. Invalid
master
space.

cters are comma, period, colon, equal sign, and
keyword alone is invalid.

in a creation run, the master character for
is *.

in a modification run, the master character is
t used in the creation run for the PL.

*=m, the master character for directives is m.

indicates a comment. The keyword alone

If omitted, the comment character is I.

If I=c, the comment character is c.

2-11

Dw=dw

2-12

Data width value: the number of characters of data written
to each line in the compile and source dazas s. The dw
range is 1 through 256.

If omitted, or if a DW with no value is speclfled in a
creation run, columns 1 through 72 cor:,.iain data:
otherwise, columns 1 through dw cont~in data.

I
If DW=* in a creation run, variable-/length records are
written to the compile and source ~tasets.

/
In a modification run, if the PL wa£ created with DW=*,

i only DW=*, DW, or no DW parameter,s accepted, and NUPDATE
continues to process variable-lenith text lines for the PL.
In a modification run, if no val~~ for DW is specified, or
DW is unspecified, columns 1 thrhugh lastdw contain data;

1

lastdw is the DW value specifie~ when the PL was written.
If DW=dw, columns 1 through dw/contain data.

I
/

The number of characters per ftine written to the new PL is
a maximum of either dW, p1dwf or 80: pldw is the number
of characters per line in t~e existing regular PL. For
var iable-length record PLs,/ the same number of characters
per line appears in the new PL as they did in the o~d PL.

For regular
provided in
as follows:

/

NOTE
/

i
PLs, ~equence information is
the source and compile datasets,

I

I
.I

/

When you omit ~he data width value, when DW
is specified alone, or when you specify the
data width value as dW, the following is
true: dw+l ~rough dw+8 contain an
identifier,/ight-justified with leading
spaces: dw+ contains a period: and dw+10
through dWfl~ contain a sequence number,
left-justified with trailing spaces.

When you/specify the data width value as
!

Ldw, th~ entire sequencing field of the
compile!output is left-justified.

J
)

;

SR-0013 K

DC=dc

ML=n

For variable-length record PL.S, no sequeic
information appears in the compile datas .
Source dataset sequence information, if/~oU
request it, appears three spaces to tqi right
of the end of the text line. J/

.• '
i

Sequence information appears by de/ault in
the compile dataset, but it must ~e requested
in the source dataset. /

" /
;

!

Declared modifications option. this parameter ensures that
modifications apply to the corrict deck or common deck.
Declaration of PL modification' may be required (see
subsections 1.5.3, Modifying i Program Library, and 3.1.1,
Modification Directives). !

/
/

If DC is omitted or DC=OrF, the mod declaration is not
required, but it is enffS'rced if present.

/'
I

If DC=ON or if DC stapds alone, the mod declaration is
.I

/
required.

I

Message level: highe'st level of severity for NUPDATE
listing messages to/~e suppressed. For example, ML=2
allows CAUTION, WARNING, and ERROR messages to be printed

f
to the listing or ~rror datasets. If you omit the
parameter or speo{fy the keyword alone, the default is 3.
(The ML parametrf does not affect NUPDATE log file
messages.) Th~ following levels are available:

Level

1
2
3

/

se)erity
i

I
,COMMENT

/NOTE
/

! CAUTION
/

4 I WARNING
/

5 /
ERROR

Description

Currently unused
Information not related to errors
Possible error
Probable error
Fatal error

F, Q, or omi tte(
Ful11 Quick, or Normal NUPDATE run. This parameter
dete~mines the contents of the compile dataset, the

SR-0013 K

source
da~set, and the new PL (see table 1-1).

IF

/
I

Full NUPDATE mode; all active lines are
processed. The PL Identifier Table
determines the sequence. No COMPILE
directive is necessary.

2-13

2-14

Q= ' [d 1], [d 2], ••• , [d n] ,

Q=' [d 1], [d 2],···, [djl. [dk]'

omitted

Quick NUPDATE mode. Decks that are
specified with the Q parameter and ecks
specified by a COMPILE directive a e written
to the compile dataset and/or the source
dataset, and to the new PL. You /cannot name
externally defined common decks j~ith the Q

ij
parameter or the COMPILE direct~ve. The PL
Identifier Table determines th¢ sequence
unless the K option is used. /Corrections to
decks that are not specified~ith the Q
parameter or by a COMPILE dilective are not
included. i

,I

/
In the first method shown,jup to 64 decks
can be specified. After ~ll the input has
been entered, unknown deg'k names are errors.

,1

/
In the second method sh~wn, single decks are
separated by commas, ar;t'd ranges of decks are
separated by periods. IAfter all the input
has been entered, unk~own deck names are
errors. The maximum kize of the string used
with the second meth¢d is 96 characters.
The two methods canrlot be combined.

,l

When using a deck ~~me longer than 8
characters, the na~e must be enclosed in
quotation marks. /Further, if you use a deck
name containing a/ period, you must enclose
it in brackets. ITo do a quick NUPDATE run
of deck LONGNAM~.C, you would enter the
following: /

l
I

Q=" [LONGNAME/: C 1 "
!
I

To do a rang~ of two decks with periods in
them, you wo~ld enter the following:

}

./
Q="[LONGN~ME1.Cl.[LONGNAME2.Cl"

J

Normal NuptATE mode. Decks specified by
COMPILE d~rectives, modified decks, and

I
decks calling modified common decks are
written 1~ compile and/or source datasets.
You can t name externally defined common
decks w th the COMPILE directive, and they

written to the source dataset.

SR-0013 K

options
(keyword
only)

SR-0013 K

The following output options are available on th control
statement. (See subsection 1.10.3, Listing Opt'ons, for a
more detailed description.)

CD Writes the generation
dataset to Idn

the compile

ED Writes the edited line summary

ID Writes the

IF Writes a conditional text Idn

IN Lists the input to Idn

K Orders all decks that a e written to the compile
dataset and to new PL atasets, as directed by the
Q parameter values 0 the control statement and the
COMPILE directives. This option is ignored in Full

NA

NR

NS

or Normal mode.

~ NOTE

If a modificftion set affects two or more
decks and tMe K option is in effect, the
sequence n/mbers of inserted lines may be
inconsis~~: with sequencing that has
occurred/without the K option.

/
/

/
Does ybt abort if directive errors or modification
erroqs occur. All requested datasets are generated.

J
/

Do~ not rewind the source dataset or compile
dqtaset at the beginning or end of NUPDATE execution
/
~uppresses line sequence information in the source

//~nd compile datasets. SEQ and NOSEQ directives are
ignored when this option is used. NS is ignored

/ for variable-length record PLs.

I
OLDyL

I
~SEQ

Generates an UPDATE PL rather than an NUPDATE PL

Assigns sequence numbers using the old scheme
rather than the new (default). See subsection
3.2.1, Line Identification, for a description of
the differences between the two.

2-15

options
(continued) SQ Provides sequen e numbers for source and compile

output. The d faults are sequence numbers on the
compile outp and no sequence numbers on the
source outp

UM Writes un rocessed modifications to the listing
dataset error dataset

2.3 UNICOS COMMAND LINE

Under UNICOS, the following command line executes UPDATE. Options on the
UPDATE command line specify the PL file name, the compile file name, the
new PL file name, and the source file name. UPDATE error messages go to
sterr, and the listings go to stdout.

Format:

2-16

update -p pdf -i idf [-c cdf] [-a arguments] [-u udf]

[-d ifp] [-n ndf] [-s sdf] [-x chr] [-y chr] [-w dwv]

[-m n] [-f] [-q decks] [-0 arguments]

-p pdf

-i idf

PL file name. This file is the input PL. You must
include the file name; -p without an argument is invalid.

You can omit -p only for a creation run because, when
-p is missing, the system reads no input PL.

You must specify either the -p or the -i option or
both.

Input file name.

You must specify -i for creation runs. The -i option
without an argument is invalid.

You can specify -i - (note the space between the i and
the second hyphen) to have UPDATE read from standard input.

You must specify either the -p or the -i option or
both.

SR-0013 K

-c edf Compile file name. For multiple compile files, the
file name is appended with a period and a single letter as
defined by default (.f, .s, .p, and .c) or as
specified by the -a option. The default suffixes are
assigned in the following order:

.f - Fortran

.s - Assembly

.p - Pascal

.c - C

Do not allow the file name and the following period and
suffix to exceed 14 characters (the input file name must
not exceed 12 characters). The files must not exist
because they will be created by UPDATE. If you specify
the keyword alone, UPDATE looks for file names in the PL
or input files with *FILE directives. See subsection
3.3.16, FILE, for further information.

-a arguments

-u udf

-d ifp

SR-0013 K

arguments has the form xl x2 ... xN, where each
argument specifies the appended characters that are to
be assigned to multiple compile files. Each character
must be unique and must be one of the 62 alphanumeric
characters. The -a option without an argument is
invalid.

User common deck file name. Called common decks that
cannot be found in the PL being processed are searched for
in the common deck PLs (udf) specified on the -u option.
The search order is the order in which the libraries are
specified. No modifications can be made to a common deck
PL, and externally defined common deck text is not written
to the source file or to the new PL. The common deck text
appears in the compile file. You can use a maximum of 20
common deck file names; UPDATE ignores any beyond that
number. The -u option without an argument is invalid.

Defines names to be used with an IF directive. Names
can consist of up to 8 characters; if they are longer,
UPDATE recognizes only the first 8 characters. If you
specify more than one defined name, a space (rather than a
comma or colon) is the separator character. Defined names
need not be different from deck names, common deck names,
or modification identifiers, because they are known only
in the UPDATE run being processed. You can define up to
64 names with the command-line -d option; UPDATE ignores
any beyond that number. The -d option without an
argument is invalid.

2-17

-n ndf

-5 sdf

-x chr

-y chr

-w dwv

2-18

New PL file name. The UPDATE mode determines the
contents of the new PL (see table 1-1). If omitted in a
modification run or a creation run, no new PL is
written. If you specify -n ndf, the new PL is
written to file ndf. For a normal UPDATE run, the -f
and -q options must be omitted. The specified file
must be empty, because UPDATE will create a new PL in
it. The -n option without an argument is invalid.

Source file name. The UPDATE mode determines the
contents of this file (see table 1-1). The source file
can be the input for a subsequent creation run, but it
must not exist on input, because it will be created by
UPDATE. The -5 option without an argument is invalid.

Master character; the first character of directives read
from the input file or written to the source file.
Invalid master characters are comma, period, colon, equal
sign, and space. If the character is a metacharacter
(for example, an x), you must protect it in one of the
following ways: \., ".", or Ifrl. The -x option
without an argument is invalid.

If omitted in a creation run, the master character for
directives is •

If omitted in a modification run, the master character is
that used in the creation run for the PL.

Comment character that indicates a comment. If the
character is a metacharacter (for example, .), you must
represent it in one of the following ways: \., ".",
or 1.1 The -y option without an argument is invalid.

If omitted in a creation run, the comment character is
/.

If omitted in a modification run, the comment character
is that used in the creation run for the PL.

Data width value; the number of characters of data
written to each line in the compile and source file. The
dwv range is 1 through 256. The keyword alone is
invalid.

If omitted in a creation run, columns 1 through 72
contain data; otherwise, columns 1 through dwv contain
data.

SR-OOI3 K

-w dwv
(continued)

SR-0013 K

If -w 1.1 is in a creation run, variable-length
records are written to the compile and source files.
(The asterisk is a special character and must be
represented in one of the following ways: \., ".",
or I. I) .

In a modification run, if the PL was created with -w
1.1, only -w 1.1 or no -w option is accepted, and
UPDATE continues to process variable-length text lines
for the PL.

In a modification run with -w unspecified, columns 1
through lastdw contain data; lastdw is the -w value
specified when the PL was written. If you specify -w
dwv, columns 1 through dwv contain data.

The number of characters per line written to the new PL
is the maximum of either the dwv, pldw, or BO; pldw
is the number of characters per line in the existing
regular PL. For variable-length record PLs, the same
number of characters per line appears in the new PL as
they did in the old PL.

NOTE

For regular PLs, sequence iriformation is
provided in the source and compile files as
follows:

When you omit the data width value or specify
it as dwv, dwv+1 through dwv+B contain
an identifier, right-justified with leading
spaces: dwv+9 contains a period: and
dwv+10 through dwv+15 contain a sequence
number, left-justified with trailing spaces.

When you specify the data width value as
Ldwv, the entire sequencing field of the
compile output is left-justified.

For variable-length record PLs, no sequence
information appears in the compile dataset.
Source dataset sequence information, if you
request it, appears three spaces to the right
of the end of the text line.

Under UNICOS, sequence information does not
appear by default in either the source or
compile files; you must request it.

2-19

2-20

-m n Message level: highest level of severity for UPDATE
listing messages to be suppressed. For example, -m 2
allows CAUTION, WARNING, and ERROR messages to be printed
to stdout. When -m is omitted, the default is 3. The
-m option without an argument is invalid. The following
levels are available:

Level Severity Description

1 COMMENT Currently unused
2 NOTE Information not related to errors
3 CAUTION Possible error
4 WARNING Probable error
5 ERROR Fatal error

-f, -q decks
Full, Quick, or Normal UPDATE run. This determines the
compile file contents, the source file, and the new PL
contents (see table 1-1).

-f Full UPDATE mode; all active lines are
processed. The PL Identifier Table
determines the sequence. No COMPILE
directive is necessary. The -f option
must be used without an argument.

-q qf1 ,qf2 ,···qfn
-q'd1 ,d2 ,···,dj.dk,···,dn '

Quick UPDATE mode. Decks that you specify
with the -q option and decks specified by
a COMPILE directive are written to the
compile file and/or the source file, and to
the new PL. These decks must be in the same
case as they appear in the PL--whether
uppercase, lowercase, or mixed. You cannot
specify externally defined common decks with
the -q option or the COMPILE directive.
The PL Identifier table determines the
sequence unless you employ the k
option-argument. Corrections to decks that
are not specified with the -q option or by
a COMPILE directive are not included.

In the first method shown, you can specify
up to 100 decks. After all the input has
been entered, unknown deck names are
errors. The -q option without an argument
is invalid.

SR-0013 K

-q qf1 ,qf 2,···qfn
-q'd1 ,d2 ,···,dj.dk,···,dn '
(continued) In the second method shown, single decks are

separated by commas, and ranges of decks are
separated by periods. After all the input
has been entered, unknown deck names are
errors. The maximum size of the string used
with the second method is 96 characters.

omitted

The two methods cannot be combined.

Normal UPDATE mode. Decks specified by
COMPILE directives, modified decks, and
decks calling modified common decks are
written to compile and/or source files. You
cannot specify externally defined common
decks with the COMPILE directive, and they
are not written to the source file.

-0 arguments

SR-0013 K

The following output arguments are available in the
command line. Each argument must be separated by a
space. (See subsection 1.10.3, Listing Options, for a
detailed description.)

cd Writes the generation directives for the compile
file to stdout

de Declared modifications option. This argument
ensures that modifications apply to the correct
deck or common deck. Declaration of PL
modifications may be required (see section 1 and
subsection 3.3.17, on the IDENT directive).

ed Writes the edited line summary to stdout

id Writes the identifier summary to stdout

if Writes a conditional text summary to stdout

in Lists the input to stdout

k Orders all decks that are written to the compile
file as directed by the -q option values on the
command line and the COMPILE directives. This
argument is ignored in Full and Normal modes.

2-21

-0 arguments
(continued)

2.3.1 EXAMPLES

NOTE

If a modification set affects two or more
decks and the k argument is in effect,
the sequence numbers of inserted lines can
be inconsistent with sequencing that has
occurred without the k argument.

na Does not abort if directive errors or modification
errors occur. All requested files are generated.

ns Suppresses line sequence information in the
compile files. SEQ and NOSEQ directives are
ignored when this argument is used. The ns
argument has no effect on the source file output
and is ignored for variable-length record PLs.

op Generates an UPDATE PL rather than an NUPDATE PL.

os Assigns sequence numbers using the old scheme
rather than the new (default). See subsection
3.2.1, Line Identification, for a description of
the differences between the two.

sq Provides sequence numbers for source and compile
output. The default is no sequence numbers. For
an example of the output, see subsection 4.17.1,
Create a New PL from an Input File.

urn Writes unprocessed modifications to stdout

Following are two examples illustrating the use of the UNICOS command
line. Example 1 shows how a PL is created:

update -n newpl -i input -c cplfile

The omitted -p option indicates that there is no existing PL. The new
PL is written to file newpl and the input is read from input. The
compile output is written to cplfile.f; all decks are selected.

2-22 SR-0013 K

Example 2 shows how a PL can be modified:

update -p ./plname -i mods -q DECK3,DECK2,DECK4 -0 k na -c cplfile

The parameters indicate the following:

• The PL file is plname in the current working directory.

• The input is read from the mods file in the current directory.

• Quick mode with the k output option-argument. If you use a
single COMPILE directive (*COMPILE DECK1.DECK4), DECKl through
DECK4 are written to the compile file (-c cplfile) in the
following order:

DECK3
DECK2
DECK4
DECKl

• Because of the na option-argument, UPDATE does not abort if
directive or modification errors occur.

• The compile output is written to cplfile.f.

SR-0013 K 2-23

3. UPDATE DIRECTIVES

UPDATE tasks are specified by a set of directives that usually occupy a
file of the input dataset, but they can reside on one or more separate
datasets.

This section first describes five general categories of UPDATE
directives, and then gives the general format and rules for using them.
Subsection 3.3 describes the directives in alphabetical order. In this
manual, * is used as the master character for directive descriptions
(see subsections 2.1 and 2.2 for descriptions of master characters in COS
and UNICOS, respectively). See section 1 to review the conventions this
manual uses regarding UPDATE directives.

With UPDATE release versions 5.0 and higher, you can issue UPDATE
directives in uppercase or lowercase. You cannot, however, issue the
directives in mixed case. For example, both of the following are valid:

*INSERT
*insert

But using mixed case, as follows, is not valid:

*Insert

3.1 CATEGORIES OF UPDATE DIRECTIVES

The UPDATE directives are grouped into five categories:

• Modification directives
• Input edit directives
• Run option directives
• Compile dataset directives
• Deck definition directives

See figure 3-1 for a summary grouping of all the UPDATE directives.

SR-0013 K 3-1

EDIT /comment CALL
BEFORE

ENDSKIP COMPILE CWEOF COMDECK
COpy (form 1)

DELETE MOVEDK COpy (form 2) ELSE

PURGE DECLARE ELSE IF
IDENT

PURGEDK DEFINE ENDIF
INSERT

SKIP LIST FILE
RESTORE

UNYANK MASTER IF

YANK NOLIST NOSEQ

READ SEQ

REWIND WEOF

SKIPF WIDTH

1805

Figure 3-1. UPDATE Directives

3.1.1 MODIFICATION DIRECTIVES

Modification directives modify text in the program library (PL) by adding
new lines or changing the active status of existing lines. The changes
made by these directives are associated with a modification set, and
these are the only changes that a YANK, UNYANK, or PURGE directive will
affect. The directives in this category are as follows:

• BEFORE
• COPY (form 1)

• DELETE
• IDENT
• INSERT
• RESTORE

The COPY directive has two forms. Form 1 copies text from a section of
the PL to the input stream; and the added text is associated with a
modification set if the COpy directive follows an insertion directive
(BEFORE, DELETE, INSERT, or RESTORE). Form 2 is a run option directive,
described in subsection 3.1.3, Run Option Directives. If a COpy
directive follows a DECK or COMDECK directive, the new text is associated
with that deck or common deck, but not with a modification set.

3-2 SR-0013 K

I

3.1.2 INPUT EDIT DIRECTIVES

Input edit directives make changes to a PL dealing with previous
modifications and the order of decks. They are processed in the UPDATE
run in which they are input, they are not saved in the PL, and they are
not associated with a modification set. Directives in this category are
as follows:

• EDIT

• ENDSKIP

• MOVEDK

• PURGE

• PURGEDK

• SKIP

• UNYANK

• YANK

3.1.3 RUN OPTION DIRECTIVES

Run option directives are processed in the UPDATE run in which they are
input. They do not change the PL, they are not saved in the PL, and they
are not associated with a modification set. Most run option directives
specify input or output options. The comment is also included in this
group. Directives in this category are as follows:

• I comment
• COMPILE

• COpy (form 2)

• DECLARE

• DEFINE

• LIST

• MASTER

• NOLIST

• READ

• REWIND (applicable only under COS)

• SKIPF (applicable only under COS)

• UNDEF (applicable with NUPDATE)

Form 2 of the COpy directive in this group copies text from the PL to a
dataset specified by the user.

3.1.4 COMPILE DATASET DIRECTIVES

Compile dataset directives determine the contents and format of the
compile dataset. These directives are embedded in the PL as lines that
can be added or deleted just the same as text lines. The compile dataset
directives are as follows:

SR-0013 K 3-3

• CALL

• CWEOF

• ELSE

• ELSEIF

• ENDIF

• FILE

• IF

• NOSEQ

• SEQ

• WEOF

• WIDTH

3.1.5 DECK DEFINITION DIRECTIVES

The DECK and COMDECK directives specify whether a new deck is a regular
or common deck. These two directives do not fit the categories described
in the previous paragraphs. They insert new text into the PL and so are
modification directives, but they are not associated with a modification
set. DECK and COMDECK directives are stored in the PL. Unlike the
compile dataset directives, you cannot delete them like text, and you
cannot insert text before them.

3.2 DIRECTIVE FORMAT

A directive has the following syntax:

m

d

Pi

comment

Master character (an asterisk [*] in this manual)

Directive name or abbreviated name (shown only in uppercase
in this manual)

Parameter, dependent on directive

Optional comment

The first comma can be replaced by one or more spaces. If you use a
comment, you must precede it with one or more spaces.

The underlined format of the directives specifies the abbreviation of the
directive. With UPDATE 5.0, directives and abbreviations can be either
uppercase or lowercase, but not mixed case. Par~meters in brackets are
optional.

3-4 SR-0013 K

3.2.1 LINE IDENTIFICATION

Each modification set and each deck (or common deck) has a unique
identifier. This identifier is the name from the corresponding DECK,
COMDECK, or 1DENT directive.

The sequence number for a line from the original deck is derived from the
line's position in the deck. New lines inserted by a modification set
are sequenced in the order in which they will appear in the deck (which
is not necessarily the same order in which they appeared in the input
dataset).

A given line is uniquely referred to by id.seq; id is the deck or
modification set identifier name, and seq is the line sequence number.

Once a deck (or common deck) or modification set becomes a part of a new
PL, id.seq is permanent.

Unless you select the old sequence number generation scheme by
I specifying the -0 os or OLDPL option on the UPDATE command line or

control statement, the new scheme is used.

The new numbering scheme assigns sequence numbers in the order that the
directives are read from the mods file. The old system assigns numbers
in the order that the directives are processed.

In the following example, MOD.2 will appear before MOD.1 using the new
scheme, but MOD.1 will precede MOD.2 under the old scheme:

*IDENT MOD
*1 DECK.2

line2

*I DECK.l
linel

The text files generated from this example, under both the old scheme and
the new scheme, would appear as follows:

Old

DECK.l
MOD.l

DECK.2
MOD.2

New

DECK.l
MOD. 2

DECK.2
MOD. 1

Which scheme you use could become important if you do subsequent updates
to these insertions.

SR-0013 K 3-5

3.2.2 IDENTIFIER NAMES

Each identifier (deck, common deck, defined names, or modification set
name) is a 1- to 8-character name assigned when the identifier is first
used. Names cannot include commas, periods, blanks, colons, or equal
signs, but they can include any other character in the ASCII code range
of 418 through 176 8 (see appendix A, Character Set).

On some directives, you can specify names as an inclusive range. When
you specify a range of names, the parameter consists of the first
identifier name in the range, a period, and the final identifier in the
range.

Format:

decknamefirst·decknamelast

Do not confuse periods as used in the preceding format line with periods
that separate line sequence numbers from deck identifiers or from
modification set identifiers (as described in subsection 3.2.1, Line
Identification). The DELETE, RESTORE, and COPY directives require a
comma to separate names that define a range in order to avoid ambiguity
about the periods used for line sequence numbers.

3.2.3 DIRECTIVE FORMAT EXAMPLES

Examples of UPDATE directive syntax follow.

Syntax

*BEFORE,X.23

*EDIT DECK1.DECK2

@D X.76,Y.79

$ I COMMENT

$$COMMENT

3-6

Description

The default master character (*) is used; line
23 of X is specified.

The range from DECK1 through DECK2 is specified.

The range from line 76 of X through line 79 of
Y is specified; @ is the master character.

The master character is $, and I is the comment
character.

The $ is both the master and comment character.

SR-0013 K

3.3 DIRECTIVES

The set of directives that UPDATE recognizes follows. In this manual, *
is used as the master character for directive descriptions (see
subsections 2.1 and 2.2 for descriptions of master characters in COS and
UNICOS, respectively).

3.3.1 I - COMMENT

A comment, indicated by the comment character, is copied to the list
output.

Format:

*Icomment

I Default comment character; any other comment character is
specified on the UPDATE control statement.

3.3.2 BEFORE - INSERT BEFORE A LINE

BEFORE indicates that lines immediately following it are to be inserted
before the line specified.

Format:

*BEFORE id.seq

id Deck or modification set identifier name

seq Line sequence number

SR-0013 K 3-7

3.3.3 CALL - CALL COMMON DECK

CALL indicates the location in which the specified common deck. is to be
placed when the compile dataset is generated. The combination of common
decks and CALL directives lets you maintain a single copy of common text
and be assured that the most current copy is always used in a deck that
calls it.

You can also call common decks defined in a PL other than the one
currently being processed if you use the COS CL parameter or UNICOS -u
option. By doing so, you can maintain text that is common to more than
one PL in one location. A common deck can contain CALL directives for
other common decks but must not contain a CALL for itself. Indirect
recursion is also prohibited; that is, if common deck A calls common deck
B, common deck B is not allowed to call common deck A. The CALL
directive is embedded in a deck, common deck, or input text, and it is
assigned a sequence number accordingly.

Format:

*CALL cmdk

cmdk Common deck name

3.3.4 COMDECK - INTRODUCE A COMMON DECK

COMDECK introduces a common deck. Lines up to the next DECK, COMDECK,
IDENT, INSERT, DELETE, BEFORE, RESTORE, or end of input compose the
common deck. Other directives are interpreted but do not terminate the
common deck.

The COMDECK directive is the first line of the common deck and is
assigned sequence number 1.

3-8 SR-0013 K

Format:

*COMDECK cmdk[,NOPROP]

cmdk Common deck name

NOPROP No propagation parameter. If you specify NOPROP, this
parameter indicates to UPDATE decks calling this deck that
they are not to be automatically considered as modified
whenever this common deck is modified. If you omit NOPROP,
and the common deck is modified, all decks containing CALLS
for this common deck are also considered modified.

3.3.5 COMPILE - SPECIFY COMPILE OR SOURCE DATASETS

COMPILE specifies the contents of the compile and/or source datasets. In
selecting decks for compile output, you need not specify called common
decks. Externally defined common decks cannot be specified. Generating
source output requires all desired common decks to be specified.

COMPILE directives can occur anywhere in the input, but they must not
refer to unknown decks--such as decks introduced later in the same run
or, of course, misspellings.

Parameter order is significant
UNICOS -k option is selected.
order for the compile and new
written in the order in which

only when the optional COS K parameter or
Parameter order then specifies deck

PL datasets. The decks are otherwise
they appear in the Identifier Table.

Format:

Pi Single deck name or a common deck name

Pj·Pk Range of deck names and/or common deck names

SR-0013 K 3-9

3.3.6 COpy - COpy TEXT

COpy has two forms for performing two different functions.

Form 1 copies text from the old PL for insertion into the new PL, as if
it were in the input stream. In this form, COPY must be used with an
insertion directive (INSERT, BEFORE, RESTORE, or DELETE) or be included
in a new deck or common deck. Text is copied before any modifications
are applied, so you can use this form of COPY to move text from one PL
location to another if lines are deleted from their original location.

Form 2 copies text from the old PL into a separate dataset, which is
specified on the directive. You can also add sequence information to the
copied text if you use the SEQ keyword. The line length is the same as
that for the source dataset.

Under UNICOS, dn can be a path name. COpy opens but does not remove
the file. If dn exists, COpy appends information onto the end of it,
and does not re-create it; otherwise, it creates file dn.

NOTE

Text copied for the COpy directive is from the old PL
and does not include any modifications from the
current UPDATE run.

Formats:

(form 1)

(form 2)

p Name of the deck or common deck from which text is to be
copied

idi Deck name or modification set identifier name

seQi Line sequence number

id1 .seQ1 First line in text range

id2 .seQ2 Last line in text range

3-10 SR-0013 K

NOTE

The starting and ending line have no
default values; that is, COpy p with no
line numbers specified is invalid.

dn Under COS, the name of the dataset to which text is to be
copied. Under UNICOS, the file name to which text is to be
copied. This cannot be a file name already being used by
UPDATE, as specified on the control statement.

SEQ Specified if sequence information is to be added to the
text or copied to the dataset

3.3.7 CWEOF - CONDITIONALLY WRITE END-OF-FILE

Under COS, CWEOF directs UPDATE to write an end-of-file (EOF) to the
compile dataset if the compile dataset was not positioned after an EOF or
at the beginning of data. Under UNICOS, it directs UPDATE to close one
compile file and open a different one if the file is not at the beginning
of data. The new compile file has the same compile file name as the
previous compile file, but it is appended with a period and character
suffix, as described in subsection 2.2 (UNICOS -c and -a options).

CWEOF is embedded in a deck, common deck, or input text, and it is
assigned an identifier and a sequence number. The CWEOF directive is
ignored if you request no compile output. It is also ignored if you
specify the -c option with no argument.

Format:

*CWEOF

3.3.8 DECK - INTRODUCE A DECK

DECK introduces a new deck; it is the first line in the deck and has
sequence number 1. The deck is composed of lines up to the next DECK,
COMDECK, IDENT, INSERT, DELETE, BEFORE, RESTORE, or end of input. Input
edit directives and run option directives are interpreted but do not
terminate the deck. The new deck is ordered within the new PL following
existing decks, common decks, and new common decks. Decks can contain
embedded directives (for example, CALL, CWEOF, or WEOF).

SR-0013 K 3-11

I

Format:

*DECK deck

deck New deck name

3.3.9 DECLARE - DECLARE DECK FOR MODIFICATIONS

DECLARE requires that subsequent modifications be applied to the
specified deck. This is one of two methods of declaring modifications
(see subsection 1.9.3, Declared Modifications).

Format:

*DECLARE P

p Deck or common deck name

3.3.10 DEFINE - DEFINE NAMES

DEFINE defines a name (1 to 8 characters in length) to be used by an IF
directive. Names declared with this directive do not need to be unique
from deck or common deck names or modification set identifiers. Defined
names are known only in the run in which they are defined; they are not
stored in the PL. However, under UNICOS the default is the literal name
UNICaS.

If you are running UNICOS and are using an UPDATE version released prior
to 6.0, use the -d option to undefine UNICOS as the default. This does
not apply to *DEFINE.

Format:

n· 1 Defined name

If you are using NUPDATE, specify -d new_define_name, -U UNICOS, or
*UNDEF UNICOS to undefine the default.

3-12 SR-0013 K

3.3.11 DELETE - DELETE LINES

DELETE lets you delete (deactivate) lines or ranges of lines and,
optionally, replace them with lines appearing after the DELETE directive.

The DELETE directive copies a deleted line to the new PL. Though the
line retains its identification, it is flagged as inactive and is not
included in compile and source output. A deletion range must not cross a
deck boundary.

Formats:

(range delete)

(range delete, short form)

(single line delete)

idi Deck or modification set identifier name

seQi Line sequence number

3.3.12 EDIT - EDIT DECKS

EDIT removes both deleted lines and lines made inactive by a YANK
directive from the specified decks. When using the EDIT directive, you
cannot recover removed lines from the PL. EDIT performs no
resequencing. UPDATE edits only those decks noted explicitly on the EDIT
directive.

SR-0013 K

NOTE

EDIT removes all lines that are inactive after all
modifications in the current UPDATE run have been
applied; this includes lines deleted in modifications
that follow the EDIT directive in the input. EDIT does
not remove lines in ranges that are restored by
modifications following EDIT in the input.

3-13

Format:

Pi Single deck or common deck

Pj·Pk Range of decks and/or common decks

3.3.13 ELSE - REVERSE CONDITION

ELSE reverses the condition from the previous IF or ELSEIF directive
(unless the previous IF or ELSEIF has been skipped), to determine whether
the text following it is written to the compile dataset. You cannot use
ELSE without an IF. You can only use one ELSE with an IF, and ELSE must
follow all ELSEIFs associated with that IF.

Format:

*ELSE

3.3.14 ELSEIF - TEST CONDITION

ELSE IF specifies a condition for evaluation when no previous condition in
the same IF group was true. If the condition is evaluated as true,
ELSEIF writes the text following the directive to the compile dataset,
and skips the text following all further ELSEIF and ELSE directives in
this IF group. If the condition is false or is not evaluated, it ignores
all directives up to the next IF, ELSEIF, ELSE, or ENDIF. ELSEIF must
have a matching IF, and it cannot follow ELSE; otherwise, an error
message is issued.

Format:

*ELSEIF type,name[, ... ,boolean,type,name]

3-14 SR-0013 K

type

name

boolean

Type of conditional name, either DECK, IDENT, or DEF. If
DECK, the name must be a deck or common deck name; if
IDENT, the name must be a modification set identifier; and
if DEF, the name must have been introduced with the DEFINE
directive, or the DEF parameter or -d option. A minus
sign before the type negates the condition.

A deck or common deck name, modification set identifier, or
defined name, depending on the value of type. Each
clause of the condition is true if a name of the proper
type is known or, when negated, if the name is unknown.

A logical operator: AND, OR, or XOR. AND has precedence
over OR and is evaluated first. OR has precedence over XOR.

3.3.15 ENDIF - END CONDITIONAL TEXT

ENDIF ends a conditional text range and an IF group. Each ENDIF must
have a matching IF; otherwise, you will get an error message.

Format:

*ENDIF

3.3.16 FILE - CLOSE FILE (UNICOS ONLY)

Under UNICOS, 'FILE directs UPDATE to close the current compile file, if
there is one, and open a new one.

FILE is embedded in a deck or input text, and it is assigned an
identifier and a sequence number. If you specify the -c option alone
on the command line, UPDATE looks for file names in the PL or input files
with *FILE directives. If you do specify a compile file on the -c
option, or if you do not request a compile file, UPDATE ignores the FILE
directive. If used, a FILE directive must be found in every deck
processed before any code is written out. UPDATE aborts if it does not
find one.

Under COS, FILE is accepted as a directive, but it has no function and is
ignored.

SR-0013 K 3-15

Format:

*FILE path

path A UNICOS path and file name to be opened. All directories
in the path must exist and be accessible by the caller.

3.3.17 IDENT - IDENTIFY MODIFICATION SET

IDENT provides the modification set identifier
with all of the changes in a modification set.
in a modification set. When you are generating
optional; the default identifier is *.NOID.*.

that is to be associated
IDENT is the first line
no new PL, IDENT is

Format:

ident

DC=p

3-16

Modification set identifier

Unknown modification identifier; specifies an identifier
dependency. This dependency is met if UPDATE cannot find
any of the specified identifiers in its list of identifiers
in the PL or among identifiers added earlier in the same
UPDATE run. An identifier is unknown if it is not the name
of a deck, common deck, or modification set that you
already added to the PL.

Known modification identifiers; specifies a known
identifier dependency. The dependency is met if UPDATE
finds all the specified identifiers in its list of
identifiers that are already in the PL or were added
earlier in the same UPDATE run.

Deck or common deck declared to contain lines referenced by
subsequent modifications (see section 1). If all
dependencies are met, p must be known to UPDATE. DC=. is
equivalent to omitting the DC parameter.

SR-0013 K

The number of dependencies is limited only by what fits on the directive
line. If not all dependencies are met, UPDATE skips all input up to the
following IDENT directive or end of input, and the modification set
identifier remains unknown. UPDATE writes a count of skipped IDENTs to
the log file, and writes a warning to the listing and error datasets for
each skipped IDENT.

Another way of writing U and K arguments is to include U= or K= for each
argument, as follows:

The following line provides an example:

*IDENT MOD84,K=MOD83,U=MOD85

This directive assigns identifier MOD84 to the modification set. UPDATE
processes the modification set only if MOD83 is known and MOD85 is
unknown.

3.3.18 IF - BEGIN CONDITIONAL TEXT

IF begins a conditional text range and gives the condition under which
the range is written to the compile dataset. IF is the beginning of an
IF group, which can include ELSEIF and ELSE directives and must end with
an ENDIF directive. You can nest IF groups to any level.

If the condition is true, the text following the directive is written to
the compile dataset, and the text following all ELSEIF and ELSE
directives in the IF group is skipped. If the condition is false, all
directives up to the next ELSEIF, ELSE, or ENDIF in the IF group are
ignored. Skipped text and directives are written to the new PL and to
the source dataset but not to the compile dataset.

Format:

*IF type,name[, ... ,boolean,type,name]

type

SR-0013 K

Type of conditional name: either DECK, IDENT, or DEF. If
DECK, the name must be a deck or common deck name; if
IDENT, the name must be a modification set identifier; if
DEF, you must have introduced the name with the DEFINE
directive, or the DEF parameter or -d option. A minus
sign before the type negates the condition.

3-17

name

boolean

Deck or common deck name, modification set identifier, or
defined name, depending on the value of type. Each
condition is true if a name of the proper type is known; a
negated condition is true if the name is unknown.

A logical operator: AND, OR, or XOR. AND has precedence
over OR and is evaluated first; OR has precedence over
XOR. The number of clauses is limited only by the length
of the directive line.

3.3.19 INSERT - INSERT AFTER A LINE

INSERT indicates that the lines immediately following are to be inserted
after the line specified.

Format:

*INSERT id.seq

id Deck or modification set identifier name

seq Line sequence number

3.3.20 LIST AND NOLIST - RESUME OR STOP LISTING

LIST and NOLIST resume the listing or stop the listing, respectively, of
lines in the input stream. These directives can occur anywhere in the
input, and they control the input listing, but they are otherwise ignored.

The L=O COS UPDATE statement parameter overrides the LIST directive. The
NOLIST directive overrides the COS UPDATE control statement option IN.

Formats:

*LIST

*NOLIST

3-18 SR-0013 K

3.3.21 MASTER - CHANGE INPUT MASTER CHARACTER

MASTER changes the master character for directives in the input.
Directives stored in the PL use an unprintable code for the master
character and are not affected by this directive. It also does not
affect the master character for directives written to the source file.

Format:

*MASTER m

m New master character for directives in the input dataset(s)

3.3.22 MOVEDK - MOVE A DECK

MOVEDK causes UPDATE to move an entire deck from its present location to
a point immediately following a specified destination deck. The
sequencing information within the moved deck remains unchanged. The
moved deck resides at the indicated point immediately after UPDATE has
successfully processed this directive.

Format:

*MOVEDK dk1 : dk2
dk1 : .

dk1 Deck or common deck to be moved

dk2 Destination deck or common deck; the new position of
dk1 is immediately after dk2 .

Specifies beginning of the PL

SR-0013 K 3-19

3.3.23 PURGE - REMOVE MODIFICATION SET

PURGE removes all text added in a modification set, restores all lines
deleted by that set, and deletes all lines restored by it. PURGE starts
with the last modification set listed, working in reverse order. PURGE
is similar to YANK, but its effects are permanent; the affected lines and
the identifier name are not written to the new PL. You can only purge
modification sets added with a version of UPDATE from the COS 1.12
release or later.

Format (the two final periods are not ellipses):

Modification set identifier

Inclusive range of modification set identifiers

Identifier idn and all identifiers introduced after idn

3.3.24 PURGEDK - REMOVE DECK

PURGEDK permanently removes the deck from the PL.

Format:

*PURGEDK dk

dk Name of deck or common deck to be removed

3-20 SR-0013 K

3.3.25 READ - READ ALTERNATIVE INPUT

READ causes UPDATE to begin reading input from the specified dataset
starting at its current position. An end-of-file on an input dataset
causes UPDATE to resume reading from the previous dataset. READ
directives can appear anywhere, but they must not be recursive. There is
a limit of 20 levels of files that can be read.

Format:

*READ dn

dn Name of dataset. (Under UNICOS, it can be a directory path
and file name, or just the file name when in the current
directory.)

3.3.26 RESTORE - REACTIVATE LINES

RESTORE can add new text and restore (reactivate) lines or ranges of
lines that have previously been deleted. The optional new text'appears
on lines immediately following RESTORE and is inserted following the
reactivated line(s). A RESTORE range cannot cross a deck boundary.

Formats:

(range restore)

(range restore, short form)

(single line restore)

Deck or modification set identifier name

Line sequence numbers

SR-0013 K 3-21

3.3.27 REWIND - REWIND LOCAL DATASET

REWIND (applicable only under COS) rewinds a local dataset so that the
dataset is repositioned at its initial point. If the dataset is already
at its initial point, this directive has no effect.

Format:

*REWIND dn

dn Name of dataset to be rewound

3.3.28 SEQ AND NOSEQ - START OR STOP SEQUENCE NUMBER WRITING

SEQ and NOSEQ begin writing and stop writing, respectively, sequence
numbers to the compile dataset. The compile dataset output contains dw
data columns per record without sequence numbers or dw+1S with sequence
numbers. The DW parameter or -w option and the WIDTH directive
determine the value of dw. The SEQ and NOSEQ directives are embedded
in a deck, common deck, or input text, and they are assigned a sequence
number. The SEQ and NOSEQ directives are ignored if you have not
requested compile output, or if you have specified the NS control
statement option (or the ns option-argument under UNICOS). These
directives have no effect on variable-length record PLs.

Formats:

*SEQ

*NOSEQ

3-22 SR-0013 K

3.3.29 SKIP AND ENDSKIP - CONDITIONALLY SKIP A BLOCK OF DIRECTIVES

SKIP and ENDSKIP delimit a block of directives that are to be skipped or
not skipped, depending on the conditions that you specified on the SKIP
directive. You can nest SKIPs, but each SKIP must have a matching
ENDSKIP. If an outer SKIP condition is true, SKIPs nested within that
block and all other text and directives are skipped. You must associate
SKIPs with a KNOWN and/or UNKNOWN identifier condition.
Unconditional SKIPS result in an UPDATE error.

Format:

conditional directives, text

*ENDSKIP

Known modification identifiers; specifies a known
identifier dependency. The dependency is met if UPDATE
finds all of the specified identifiers in its list of PL
identifiers (deck names, common deck names, and previously
added modification identifiers).

Unknown modification identifiers; specifies an unknown
identifier dependency. This dependency is met if UPDATE
cannot find any of the specified identifiers in its list of
PL identifiers.

The number of dependencies is limited only by what will fit on the
directive line.

Another way of writing K and U arguments is to indicate K= or U= for each
argument, shown as follows:

SR-0013 K 3-23

3.3.30 SKIPF - SKIP DATASET FILES

SKIPF (applicable only under COS) skips one or more files in a local
dataset.

Format:

*SKIPF dn[,n]

dn Name of dataset in which to skip a file

n Number of files to skip; default is 1.

3.3.31 WEOF - WRITE END-OF-FILE

Under COS, WEOF causes UPDATE to write an end-of-file to the compile
dataset. Under UNICOS, WEOF directs UPDATE to close one compile file and
open a different compile file. The new compile file has the same compile
directory path and file name as the previous compile file, but it is
appended with a period and character suffix, as described in subsection
2.2 (UNICOS Command Line, -c and -a options).

UPDATE embeds WEOF in a deck, common deck, or input text, and assigns it
a sequence number. WEOF is ignored if you have not requested compile
output. It is also ignored if you use the -c option with no argument.

Format:

*WEOF

3-24 SR-0013 K

3.3.32 WIDTH - CHANGE LINE WIDTH IN COMPILE DATASET

WIDTH changes the number of data characters written to each line in the
compile dataset.

Until a WIDTH directive is encountered in the PL, the data width you
specified with the COS OW parameter, UNICOS -w option, or its default
is used. The WIDTH directive is ignored if you have requested no compile
output, or if a variable-length record PL is being processed.

WIDTH does not affect the number of characters stored for each line in
the PL or written to the source dataset. If the value given with the
WIDTH directive is greater than the number of characters stored in the
PL, each line written to the compile dataset is padded with blanks. If
the number is less, each line is truncated at the right.

Format:

*WIDTH dw

dw

SR-0013 K

Data width; the number of characters of data written to
each line in the compile dataset. Columns dw+l through
dw+15 contain spaces and sequencing information.

3-25

3.3.33 YANK AND UNYANK - DELETE OR RESTORE DECKS AND MODIFICATION SETS

YANK temporarily deletes (deactivates) a deck, common deck, or
modification set from a PL, but only if the entity to be yanked or
unyanked has been created by a version of UPDATE that supported the YANK
directive. YANK deactivates all lines in a deck or common deck whether
they are original to the deck or added later by a modification set.

UNYANK restores (activates) a deck, common deck, or modification set
previously deactivated.

YANK and UNYANK start with the last modification set listed, and they
work in reverse order. You can place both directives anywhere in the
input. They can be within a modification set started by an IDENT
directive, although they are not associated with any modification set.

Formats (the two final periods are not ellipses):

*YANK idl[,id2, ... ,idj.idk, ... ,idn ..]

*UNYANK idl[,id2, ... ,idj.idk, ..• ,idn ..]

Deck, common deck, or modification set identifier name

Inclusive range of identifiers

idn · . Identifier idn and all identifiers introduced after idn

3-26 SR-0013 K

4. EXAMPLES

This section presents examples of UPDATE operating under COS and UNICOS.
See subsection 1.4, Definitions, for UPDATE definitions, and review
subsection 1.2 on the conventions used in this manual.

4.1 CREATING A PROGRAM LIBRARY (PL)

The examples in this subsection show how to create a PL and a compile
file. Examples are also presented to cover reading input from an
alternate dataset, creating in the Full UPDATE mode, and calling common
decks into user programs.

4.1.1 PL CREATION

This example shows the creation of PL PRLIBI. The PL consists of two
decks: deck ABC and common deck XYZ. The input file used in the
examples follows:

*DK ABC
deck ABC
*CDK XYZ
comdeck XYZ

COS JCL:

The P=O entry indicates that there is no existing PL; therefore, the
default input file, $IN, is used. The default parameters $IN, $CPL, and
$NPL files are assumed (see subsection 2.1, COS Control Statement).

UPDATE,P=O.
SAVE,DN=$NPL,PDN=PRLIB1.

UNICOS command:

The absence of the -p option indicates that there is no existing PL,
and that this is a creation run. The input file is infilel.

update -n prlib1 -i infile1 -c cplfile
cft cplfile.f
segldr cplfile.o
cp infile mod2

SR-0013 K 4-1

4.1.2 CREATING A PL AND A COMPILE FILE

This example creates PL PRLIBl, and a compile file, which consists of
deck ABC. The input file used in this example is as follows:

*DK ABC
deck ABC
*CDK XYZ
comdeck XYZ
*C ABC

COS JCL:

The default compile dataset ($CPL) is used, and input is read from $IN.

UPDATE,P=O.
SAVE,DN=$NPL,PDN=PRLIB1.
CFT,I=$CPL.

UNICOS command:

The compile file is indicated as cplfile. By default, an .f
extension is appended to indicate the compile file name. See subsection
2.2, UNICOS Command Line (option -c), for detailed information. UPDATE
reads input from infile.

update -n prlib1 -i infile -c cplfile
cft cplfile.f

4.1.3 READING INPUT FROM AN ALTERNATE DATASET

In this example, PL PRLIB3 is created from input that is read from both
the regular input file and an alternate dataset. Dataset DS1 (or UNICOS
file source/s3) is a previously created source dataset, which can
contain any number of decks. The contents of the regular input file are
as follows:

*READ DSl
*DK XYZ
deck XYZ

COS JCL:

4-2

ACCESS,DN=DS1.
UPDATE,P=O.
SAVE,DN=$NPL,PDN=PRLIB3.

SR-OOl3 K

UNICOS command:

The contents of the regular input file (infile) are as follows:

*READ source/s3
*DK XYZ
deck XYZ

update -n prlib3 -i infile -c cplfile

4.1.4 FULL UPDATE MODE

When creating a new PL, you can make UPDATE processing more efficient if
you request Full mode processing. In this example, PL PRLIB4 is
created with two regular decks and two common decks. The contents of the
input file are as follows:

*CDK CA
common deck CA
*CDK CB
common deck CB
*DK A
deck A
*DK B
deck B

COS JCL:

The F parameter indicates that Full mode processing should be used.

UPDATE,P=O,N,F.
SAVE,DN=$NPL,PDN=PRLIB4.

UNICOS command:

The -f option indicates that Full mode processing should be used.

update -i infile -n prlib4 -f -c cplfile

SR-0013 K 4-3

4.1.5 CALLING COMMON DECK INTO A USER PROGRAM

Th,is example shows how you can call a common deck into a user program.
The common input file consists of the following:

*COMDECK COMxx

*DECK TEMP
IDENT TSTPROG

*CALL COMxx

END

COS JCL:

UPDATE,I,P=O.
CAL,I=$CPL.
SEGLDR,GO.

UNICOS command:

The compile file is an assembly language program; therefore, it requires
an ".S" appended to it by using the -a option.

update -i infile -n prlib5 -c cplfile -a s
as cplfile.s
segldr cplfile.o

The load command (segldr) has no defaults; that is, you must specify
the files to be loaded, or there will be no output. With CRAY X-MP
computer systems, file names to be loaded must end in .0.

4.2 MODIFYING A PROGRAM LIBRARY

The examples in this subsection show how to generate a modified PL and
how to test a modification set.

4-4 SR-0013 K

4.2.1 GENERATING A MODIFIED PL

The sample job that follows performs three functions:

• First, the job updates a previously generated library.

• Next, it creates a compile dataset containing decks A through C
and any common decks they call.

• Finally, it generates an updated version of the PL.

The input file for this example is as follows:

*ID MOD1
*D A.15,A.20

text lines

*1 B.119

text lines
*DK C
deck C
*C A.C

COS JCL:

Modification set named MOD1
Replaces lines 15 through 20 of deck A
with new text lines

Inserts lines after line 119 of
deck B

Introduces new deck

Writes decks_A through C and any common
decks they call to compile dataset

The highest edition number of PRLIB2 is accessed. The *c directive
determines the compile dataset ($CPL) contents. This library is saved as
the next edition of permanent dataset PRLIB2.

ACCESS,DN=$PL,PDN=PRLIB2.
UPDATE,N.
SAVE,DN=$NPL,PDN=PRLIB2.

UNICOS command:

Saves as next higher edition number

Under UNICOS, the new version of prlib2 is in file name prlib3.

update -p prlib2 -n prlib3 -i infile -c cplfile

SR-0013 K 4-5

4.2.2 TESTING A MODIFICATION SET

The following job tests modification set MOD2. The changes are not
permanently incorporated into the library; that is, no new PL is
generated and saved. Under COS, the UPDATE list options are turned off.
Under UNICOS, the listings go to stdout. The *C directive determines
the contents of the compile dataset. The input file used in the examples
is as follows:

*ID MOD2
*D MOD1.2
text lines
*B C.3
text lines
*c A.C

COS JCL:

ACCESS,DN=$PL,PDN=PRLIB2.
UPDATE,L=O,C=COMPILE,F.
CFT,I=COMPILE.
SEGLDR,GO.
REWIND,DN=$IN.
COPYF,I=$IN,O=MOD2.
REWIND,DN=MOD2.
SAVE,DN=MOD2.

UNICOS command:

Replaces line 2 of MODl modifications

Inserts lines before line 3 of deck C

Writes decks A, B, and C and any common
decks they call to compile dataset
COMPILE under COS, and cplfile.f
under UNICOS

Accesses highest edition number

Saves modification set MOD2

update -p prlib2 -c cplfile -i infile -f

4-6 SR-0013 K

4.3 GENERATING AND USING COMMON DECK PROGRAM LIBRARIES

The following examples show how to generate a common deck PL, a PL that
calls external common decks, and how to modify the PL consisting of the
external common decks.

4.3.1 GENERATING A PL WITH COMMON DECKS

The following job generates a PL that contains common deck definitions
that are accessed later by other PLs. The input file used in this
example is as follows:

*COMDECK COM1
coml text
*COMDECK COM2
com2 text

COS JCL:

UPDATE,P=O,N=COMPL.
SAVE,DN=COMPL.

UNICOS command:

update -n compl -i infile

4.3.2 GENERATING A PL WITH EXTERNAL COMMON DECKS

The following job creates a PL containing decks that call externally
defined common decks from PL COMPL. The input file used in the
examples is as follows:

*DECK D1
Dl text
*CALL COM1
Dl text
*DECK D2
D2 text
*CALL PLCOM
D2 text
*COMDECK PLCOM
PLCOM text
*CALL COM2

SR-0013 K 4-7

COS JCL:

ACCESS,DN=COMPL.
UPDATE,P=O,N=PL1,CL=COMPL.
SAVE,DN=PL1.

UNICOS command:

update -n pll -u campI -i infile -c cplfile

4.3.3 MODIFYING A PL WITH EXTERNAL COMMON DECKS

The following job modifies the PL generated in the last example. The
input file used in the examples is as follows:

*ID MOD,DC=D2
*D D2.3
new text to be inserted

COS JCL:

ACCESS,DN=COMPL.
ACCESS,DN=PL1.
UPDATE,P=PL1,N=PL2,CL=COMPL.
SAVE,DN=PL2.

UNICOS command:

update -p pll -n pl2 -u campI -i infile -c cplfile

4-8 SR-0013 K

4.4 READ FROM ALTERNATIVE DATASETS

The following job reads from alternate datasets MOD2 and DECK (mod2 and
deck) as well as the regular input file. The input file for this
example is as follows:

*READ MOD2 (mod2)

*READ DECK (deck)

*D C.12,C.16
*B B.17

text lines
*CDK CD
common deck CD

COS JCL:

Dataset MOD2 contains modification set
MOD2 from the previous example
Contents of dataset DECK:

*DK D
deck D
*CDK CC
common deck CC

Deletes lines 12 through 16 of deck C
Inserts lines before line 17 in
deck B

The Q parameter on the control statement determines the compile dataset
contents.

ACCESS,DN=MOD2,PDN=MOD2.
ACCESS,DN=DECK,PDN=DECK.
ACCESS,DN=$PL,PDN=PRLIB1.
UPDATE,Q=A:B:C:D,N.
CAL,I=$CPL.
SEGLDR,GO.
SAVE,DN=$NPL,PDN=PRLIB1.

UNICOS command:

Accesses latest edition number

Saves next higher edition

The -q option on the UPDATE command line determines the compile dataset
contents. The -a parameter identifies the compile file contents as
assembly language and appends character s (cplfile.s). The compile
file is then input to the assembler (as).

update -q A,B,C,D -c cplfile -p pllib -n npllib -i infile -a s
as cplfile.s Assembles compile file
segldr cplfile.o Loads program

You must follow the load command (segldr) with the name of the program
or file to be loaded, or there will be no output. With CRAY X-MP
computer systems, the name of the program or file to be loaded must end
in .0.

SR-0013 K 4-9

4.5 INPUT DATASET NOT $IN

The following example is specific to COS. The job adds to the PL a
common deck named CE and replaces lines of code in an existing deck with
a call to CEo The input stream is on dataset UPIN. No compile dataset
is generated.

ACCESS,DN=$PL,PDN=MYUPOATEPL.
ACCESS,DN=UPIN,PON=MYUPIN.
UPDATE,N,C=O,I=UPIN.
SAVE,DN=$NPL,PDN=MYUPDATEPL.

The following are contents of directives dataset MYUPIN:

*10 MOD3
*CDK CE
common deck CE
*D C.25,C.463
*CALL CE

4.6 MULTIPLE INPUT DATASETS

Adds common deck CE

CALL directive inserted as text in
place of deleted lines

The following jobs use multiple input datasets. All of the runs have the
equivalent effect on the PL.

4.6.1 COS INPUT DATASET

You can use both the COS I control statement parameter and the READ
directive to specify multiple input datasets. They can. be used alone or
together.

4-10 SR-0013 K

1. ACCESS,DN=MOD1.
ACCESS,DN=MOD2.
ACCESS,DN=MOD3.
UPDATE,P=PL,I=MODl:MOD2:MOD3.

2. ACCESS,DN=MOD1.
ACCESS,DN=MOD2.
ACCESS,DN=MOD3.
UPDATE,P=PL.
lEaF
*READ MODl
*READ MOD2
*READ MOD3

3. ACCESS,DN=MOD1.
ACCESS,DN=MOD2.
ACCESS,DN=MOD3.
UPDATE,P=PL,I=$IN:MOD3.
lEaF
*READ MODl
*READ MOD2

4.6.2 UNICOS INPUT DATASET

You can use both the UNICOS -i command line option and the READ
directive to specify multiple input datasets.

1. cat modl mod2 mod3 I update -p plfile -i - -n nplfile -c cplfile

2. update -p plfile -i infile2 -n nplfile -c cplfile

3.

SR-0013 K

infile2 contains: *READ lusr/dir/modl
*READ lusr/dir/mod2
*READ lusr/dir/mod3

cat infile3 lusr/dir/mod3
cplfile

update -p plfile -i - -n nplfile -c

infile3 contains: *READ lusr/dir/mod1
*READ lusr/dir/mod2

4-11

4.7 EXTRACTING DECKS FOR A SOURCE DATASET

The following job does not change the PL but extracts selected decks, and
any decks they call, for compilation and inclusion on a source dataset.
The master character is specified as $, which was used when PL FPL was
created.

COS JCL:

ACCESS,DN=FPL.
UPDATE,P=FPL,*=$,S,Q=SQRT:TANH:SIN,I=O.
CAL,I=$CPL.
SAVE,DN=$SR,PDN=SRFILE.

UNICOS command:

The source file is indicated as srfile. You must specify the PL master
character within single quotation marks because it is a UNICOS special
character. The assembly language compile file is created in cplfile.s.

update -p plfile -x '$' -s srfile -q SQRT,TANH,SIN -c cplfile -a s
as cplfile.s

4.8 GENERATING A COMPILE DATASET FROM SOURCE

UPDATE generates compile datasets from source datasets without writing a
PL. This can be useful when you need common information in several
places and UPDATE is being used to expand common decks.

COS JCL:

ACCESS,DN=SRFILE.
UPDATE,I=SRFILE,C=COMPILE,P=O,N=O,F.
SAVE,DN=COMPILE.

UNICOS command:

Because the -n option is omitted, no new PL is written.

update -i srfile -c cplfile -f

4-12 SR-0013 K

4.9 COMPILE DATASET FROM A COMMON DECK

A common deck is not written to the compile dataset unless it is called
by a deck written to the compile dataset. If you add a dummy deck that
calls the common deck, you can include a common deck that would not
otherwise be written to the compile dataset. The input file used in this
example is as follows:

*DECK DUMMY
*CALL COM01

COS JCL:

ACCESS,DN=MYPL.
UPDATE,P=MYPL,C=COM01,F.
SAVE,DN=COM01.

UNICOS command:

update -p mypl -c com01 -i infile -f

4.10 EXTRACTING DECKS FOR COMPILATION (NO SOURCE)

Generating a compile dataset that is a subset of the PL decks is a common
task. You do not need an input dataset. The following jobs show the
easiest way to perform the task. Decks ST, CT, E, J, and S are written
to the compile file ($CPL with COS, or cplfile.s with UNICOS) and are
ready for assembly.

COS JCL:

ACCESS,DN=$PL,PDN=COSPL.
UPDATE,I=O,Q=ST:CT:E:J:S.

UNICOS command:

update -p plfile -q ST,CT,E,J,S -c cplfile -a s

SR-0013 K 4-13

4.11 USING *FILE (UNICOS ONLY)

FILE can operate only under UNICOS. The following example shows the use
of FILE. Note that on the UNICOS command line, the -c option is not
given a file name. Because a file was not specified, UPDATE assumes that
the input contains file directives, and it proceeds to open file
compl.f. (If there had been a compile file specified on the -c
option, UPDATE would have ignored the FILE directive.) It closes file
compl.f when it encounters a new one--in this case, file comp2.s.

input:
*dk comp1
*file comp1.f
deck comp1
*DK comp2
*FILE comp2.s
deck comp2

UNICOS command:
update -i input -c -f
cft comp1.f
as comp2.s

4.12 RESEQUENCING A PL

You can resequence a PL by first generating a source dataset from a full
update of the old PL, and then using it as input to an UPDATE creation
run. The new PL has the same decks and common decks as the old PL, but
all modification history information is gone.

COS JCL:

ACCESS,DN=$PL,PDN=OLDPL.
UPDATE,F,S,I=O.
UPDATE,P=O,I=$SR.
SAVE, DN=$NPL, PDN=NEWPL.

UNICOS command:

4-14

update -f -s srfile -p plfile
update -i srfile -n nplfile

SR-0013 K

4.13 DECK REMOVAL AND POSITIONING

The following job shows the PURGEDK and MOVEDK directives in a typical
application. The jobs replace deck B with a new version in the same
position relative to decks A and C. The COS PL MYUPDATEPL and the UNICOS
PL myupdatepl currently consist of the following decks:

CDK CA
CDK CB
DK A
DK B
DK C
CDK CC
CDK CD
DK D
CDK CE

The contents of the input file consist of the following:

*PURGEDK B
*DK B
text lines
*MOVEDK B:A

COS JCL:

ACCESS,DN=$PL,PDN=MYUPDATEPL.
UPDATE,L=O,C=O,N,F.
SAVE,DN=$NPL,PDN=MYUPDATEPL.

UNICOS command:

update -p myupdatepl -n nplfile -i infile -f

SR-0013 K 4-15

4.14 PL EDITING

As modifications to a PL accumulate, you can reduce the size of the PL by
permanently removing deactivated lines from one or more decks. This
process is known as editing. The EDIT directive specifies a deck or
group of decks to be edited. The input file used in this example follows:

*EDIT A.D
*EDIT CA.CD

COS JCL:

ACCESS,DN=$PL,PDN=MYUPDATEPL.
UPDATE,C=O,N.
SAVE,DN=$NPL,PDN=MYUPDATEPL.

UNICOS command:

Edits decks A through D
Edits common decks CA through CD

update -p myupdatepl -n nplfile -i infile

4.15 CHANGING THE DATA WIDTH

The following UPDATE runs first create a PL and then build several new
versions of that PL with varying data widths. The number of characters
stored for each line in the new PL is never less than the number of
characters per line in the old PL. Therefore, if the data width is
decreased later, no characters are lost. You can change the data width
of the compile dataset by using the WIDTH directive, the COS DW
parameter, or the UNICOS -w option.

COS Control Statement Characters per Line

Compile Dataset: New PL:

UPDATE,P=0,N=PL1. 72 80

UPDATE,P=PL1,N=PL2,DW=80. 80 80

UPDATE,P=PL2,N=0. 80 N/A

UPDATE,P=PL2,N=PL3,DW=116. 116 116

UPDATE,P=PL3,N=PL4,DW=112 112 116

UPDATE,P=PL4,N=PL5. 112 116

4-16 SR-0013 K

UNICOS Command Line Characters per Line

Compile Dataset: New PL:

update -n plfile1 -i - 72 80

update -p plfile1 -n plfile2 -w 80 80 80

update -p plfile2 -f 80 N/A

update -p plfile2 -n plfile3 -w 116 116 116

update -p plfile3 -n plfile4 -w 112 112 116

update -p plfile4 -n plfile5 112 116

4.16 CONDITIONAL TEXT

Conditional text directives are used for text and directives that are
always in the PL, but they are not always used to generate the compile
dataset. The conditions that are tested can be either permanent or
temporary. They are permanent if they test the existence of decks or
modification set identifiers in the PL, and they are temporary if they
check for defined names that are known only in the UPDATE run in which
they are defined.

In the following example, deck SUBX contains text that is written to the
compile dataset only if one of the names STACK and MULTI has been defined
in that UPDATE run.

*DECK SUBX
unconditional text
*IF DEF,STACK,OR,DEF,MULTI
conditional text if either STACK or MULTI is defined
*IF DEF,MULTI
conditional text only if MULTI is defined
*ENDIF
conditional text if either STACK or MULTI is defined
*ELSE
conditional text if neither STACK nor MULTI is defined
*ENDIF
unconditional text

When neither STACK nor MULTI is defined, the following compile dataset is
written:

unconditional text SUBX.2
conditional text if neither STACK nor MULTI is defined SUBX.10
unconditional text SUBX.12

SR-0013 K 4-17

When STACK is defined, the following compile dataset is written:

unconditional text
conditional text if either STACK or MULTI is defined
conditional text if either STACK or MULTI is defined
unconditional text

When MULTI is defined, the following compile dataset is written:

unconditional text
conditional text if either STACK or MULTI is defined
conditional text only if MULTI is defined
conditional text if either STACK or MULTI is defined
unconditional text

SUBX.2
SUBX.4
SUBX.8
SUBX.12

SUBX.2
SUBX.4
SUBX.6
SUBX.8
SUBX.12

You can use conditional text directives to surrpund compile dataset
directives whose use is conditional. For example, if you do not want
sequencing information for some decks in the compile datasets for a PL,
you can use directives in-conditional text ranges to turn off the
sequencing.

The following is the source dataset for such a PL:

*DECK A
*IF -DEF,SEQ
*NOSEQ
*ENDIF
text for deck A

*SEQ
*DECK B
text for deck B
*DECK C
*IF -DEF,SEQ
*NOSEQ
*ENDIF
text for deck C
*SEQ

If the name SEQ is not defined in an UPDATE run, the following compile
dataset is written:

text for deck A
text for deck B

text for deck C
B.2

The name SEQ is defined by adding directive *DEFINE SEQ to the input or
specifying DEF=SEQ on the COS control statement, or -d SEQ on the
UNICOS command line. When the name SEQ is defined, the following compile
dataset is written:

4-18

text for deck A
text for deck B

text for deck C

A.5
B.2
C.5

SR-0013 K

4.17 EXAMPLES SHOWING DATASET CONTENT

The following examples show the contents of the input, compile, and
source datasets for several typical UPDATE runs.

4.17.1 CREATE A NEW PL FROM AN INPUT FILE

This example creates a new PL from text and directives in $IN or infile.

COS JCL:

UPDATE,P=0,N=PL1.

UNICOS command:

update -i infile -n pl1 -c cplfile1 -0 sq

The compile dataset ($CPL under COS, and cplfilel.f under UNICOS)
consists of the following:

PROGRAM EXAMPLE EXAMPLE. 2
REAL A(10),B(10) BLOCK1.2
COMMON IBLOCK11 A,B BLOCK1.3
READ *,A,B EXAMPLE. 4
CALL DIVIDE EXAMPLE. 5
WRITE *,A,B EXAMPLE. 6
STOP EXAMPLE. 7
END EXAMPLE. 8
SUBROUTINE DIVIDE DIVIDE.2
REAL A(10),B(10) BLOCK1.2
COMMON IBLOCK11 A,B BLOCK1.3
DO 100 1=1,10 DIVIDE.4

A(I)=A(I)/B(I) DIVIDE.5
100 CONTINUE DIVIDE.6

RETURN DIVIDE.7
END DIVIDE.8

SR-0013 K 4-19

4.17.2 PL MODIFICATION

You can modify the PL in dataset PL1 with the following statements:

COS JCL:

UPDATE,P=PL1,N=PL2,F.

UNICOS command:

update -p pl1 -n pl2 -f -c cplfile2 -i infile2

The following input dataset is read from the next COS file of $IN or from
the UNICOS file infile2:

*IDENT MOD1,DC=DIVIDE
*/

*/ - Modifies subroutine DIVIDE in deck DIVIDE
*/

*BEFORE DIVIDE.5

4-20

IF (B(I).NE.O) THEN
*INSERT DIVIDE.5

*/

ELSE
A(I) =0

ENDIF

*IDENT MOD2A,DC=BLOCK1
*/

*/ - Modifies common deck BLOCK1 in common deck BLOCK1
*/

*DELETE BLOCK1.2

*/

PARAMETER (SIZE=5)
REAL A(SIZE),B(SIZE)

*IDENT MOD2B,DC=DIVIDE
*/

*/ - Modifies subroutine DIVIDE in deck DIVIDE
*/

*DELETE DIVIDE.4
DO 100 I=l,SIZE

*IDENT MOD3A,DC=EXAMPLE
*1 EXAMPLE.2

LOGICAL IA

SR-0013 K

*B EXAMPLE.4
IF (IA(» WRITE *, 'Enter ',SIZE,' values for X and Y:'

*IDENT MOD3B,DC=.
*1
*1 - Adds a new subroutine written in CAL
*1
*DECK EOFl
*CWEOF
*DECK IA

IDENT IA

*
*
*
IA

Returns true if interactive, false if batch

ENTER
GET,Sl
Sl
EXIT
END

NP=O
S6&S7,JCIA,AO
Sl<D'63

Under COS, the following compile dataset is again in $CPL. Under UNICOS,
there are two new compile files. The first file generated (cplfile2.f)
contains the Fortran source code that has the default suffix of .f.
The second file generated is appended with suffix .5 for assembly
language.

PROGRAM EXAMPLE
LOGICAL IA
PARAMETER (SIZE=5)
REAL A(SIZE),B(SIZE)
COMMON IBLOCKll A,B
IF (IA(» WRITE *, 'Enter ',SIZE,' values for X and Y:'
READ *,A,B
CALL DIVIDE
WRITE *,A,B
STOP
END
SUBROUTINE DIVIDE
PARAMETER (SIZE=5)
REAL A(SIZE),B(SIZE)
COMMON IBLOCKll A,B
DO 100 I=l,SIZE
IF (B(I).NE.O) THEN

A(I)=A(I)/B(I)
ELSE

A(I)=O
ENDIF

100 CONTINUE
RETURN
END

eof (COS) or start of file cplfile2.s (UNICOS)

SR-0013 K

EXAMPLE. 2
MOD3A.l
MOD2A.l
MOD2A.2

BLOCKl.3
MOD3A.2

EXAMPLE. 4
EXAMPLE. 5
EXAMPLE. 6
EXAMPLE.?
EXAMPLE. 8

DIVIDE.2
MOD2A.l
MOD2A.2

BLOCKl.3
MOD2B.l

MODI. 1
DIVIDE.5

MODl.2
MODl.3
MODl.4

DIVIDE.6
DIVIDE.?
DIVIDE.8

4-21

IDENT IA IA.2

* IA.3

* Returns true if interactive, false if batch IA.4

* IA.S
lA ENTER NP=O lA.6

GET,Sl S6&S7,JClA,AO IA.7
Sl Sl<D'63 IA.8
EXIT lA.9
END lA.10

4.17.3 GENERATING AN EXECUTABLE PROGRAM

Having the compile dataset divided into more than one file is useful when
a single PL contains subroutines written in more than one language. You
can use a single UPDATE to generate input to more than one language
processor.

COS JCL:

UPDATE,P=PL2,I=O,F.
CFT,l=$CPL,L=O.
CAL,I=$CPL,L=O.
SEGLDR,GO.

UNICOS command:

The first compile file would contain Cray Fortran (CFT) subroutines and
be named cplfile3.f. The second file would contain assembly
subroutines and be named cplfile3.s. The UNlCOS generation job for
program EXAMPLE follows:

update -p plfile2 -f -c cplfile3
cft cplfile3.f
as cplfile3.s
segldr cplfile3.o

4-22 SR-0013 K

4.17.4 PL RESEQUENCED VERSION

You can create a resequenced version of the PL by generating a source
dataset from PL2 and using that as input to UPDATE in a creation run.

The contents of the source dataset used in this example are as follows:

*COMDECK BLOCK1

*DECK

*CALL

PARAMETER (SIZE=5)
REAL A(SIZE),B(SIZE)
COMMON IBLOCK11 A,B

EXAMPLE
PROGRAM EXAMPLE
LOGICAL IA

BLOCK1
IF (IA(» WRITE *, 'Enter ',SIZE,' values for X and Y:'
READ *,A,B
CALL DIVIDE
WRITE *,A,B
STOP
END

*DECK DIVIDE
SUBROUTINE DIVIDE

*CALL BLOCK1
DO 100 I=l,SIZE
IF (B(I).NE.O) THEN

A(I)=A(I)/B(I)
ELSE

A(I)=O
ENDIF

100 CONTINUE
RETURN
END

*DECK EOF1
*CWEOF
*DECK IA

IDENT
*
* Returns
*
IA ENTER

GET,Sl
Sl
EXIT
END

SR-0013 K

IA

true if interactive,

NP=O
S6&S7,JCIA,AO
Sl<D'63

false if batch

4-23

COS JCL:

UPDATE,P=PL2,F,I=0,S=SOURCE.
UPDATE,P=0,N=PL3,I=SOURCE.

UNICOS command:

update -p plfile2 -f -s source
update -n plfile3 -c cplfile4 -i source

The compile dataset from the resequenced PL is as follows:

PROGRAM EXAMPLE
LOGICAL IA
PARAMETER (SIZE=5)
REAL A(SIZE),B(SIZE)
COMMON IBLOCKll A,B
IF (IA(» WRITE *, 'Enter ',SIZE,' values for X and Y:'
READ *,A,B
CALL DIVIDE
WRITE *,A,B
STOP
END
SUBROUTINE DIVIDE
PARAMETER (SIZE=5)
REAL A(SIZE),B(SIZE)
COMMON IBLOCKll A,B
DO 100 I=l,SIZE
IF (B(I).NE.O) THEN

A(I)=A(I)/B(I)
ELSE

A(I)=O
ENDIF

100 CONTINUE
RETURN
END
eof start of cplfile4.s
IDENT

*
*
*
IA

4-24

IA

Returns true if interactive, false if batch

ENTER
GET,Sl
Sl
EXIT
END

NP=O
S6&S7,JCIA,AO
Sl<D'63

EXAMPLE. 2
EXAMPLE. 3

BLOCK1.2
BLOCK1.3
BLOCK1.4

EXAMPLE. 5
EXAMPLE. 6
EXAMPLE. 7
EXAMPLE. 8
EXAMPLE. 9
EXAMPLE. 10

DIVIDE.2
BLOCK1.2
BLOCK1.3
BLOCK1.4
DIVIDE.4
DIVIDE.5
DIVIDE.6
DIVIDE.7
DIVIDE.8
DIVIDE.9
DIVIDE.10
DIVIDE.11
DIVIDE.12

IA.2
IA.3
IA.4
IA.5
IA.6
IA.7
IA.8
IA.9
IA.10

SR-0013 K

5. AUDPL - PROGRAM LIBRARY AUDIT UTILITY

If you want information about program libraries (PLs) written by UPDATE,
use the program library audit utility (AUDPL). From an input PL dataset,
AUDPL lists specified text lines from decks and common decks, lists
changes made to text lines, gives a summary of specified aspects of a PL,
and writes reconstructed modification sets to a modification sets
dataset. AUDPL makes no changes to a PL.

5.1 RESTRICTIONS

You can use AUDPL to process PLs written by a version of UPDATE from
release 1.13 or higher. PLs written by an earlier UPDATE must be
rewritten by a new version of UPDATE before they can be processed by
AUDPL.

The PULLMOD directive and PM control statement parameter work correctly
only for modification sets added by an UPDATE from release 1.12 or
higher. Earlier modification sets do not have valid modification
histories in the PL. Insertions can be reconstructed for these
modification sets, but not deletions.

AUDPL cannot read a PL from a magnetic tape dataset.

If an UPDATE EDIT directive has removed lines deleted by the modification
set, reconstructed modification sets will not be complete.

Modification sets that you added before a PL was resequenced cannot be
reconstructed.

5.2 AUDPL CONTROL STATEMENT (COS)

The AUDPL control statement loads the AUDPL program into the user field
and begins execution. The AUDPL statement is put in the control
statement file of a user job. Parameters on the AUDPL statement specify
the datasets to be used, contents of the AUDPL listing, and other
features of the run.

SR-0013 K 5-1

Format:

5-2

AUDPL [,p=pdn][,I=idn][,L=ldn][,M=mdn][,B=bdn][,*=m] [,I=C]

[,Dw=dw] [,LW=lw] [,JU=ju] ,DK=dk1:dk2:···:dkn
,DK='dkl,dk2,···,dkj.dkk,···,dkn'

p=pdn

I=idn

L=ldn

M=mdn

,PM=id1:id2:···:idn [,LO=string][,CM][,NA][,NR].
,PM='idl,id2,···,idj.idk,···,idn'

Program library dataset name

If omitted or P, the PL is $PL.
If P=pdn, the PL is pdn.
P=O is invalid.

Input dataset name; this dataset contains the directives
for the AUDPL run.

If I, the input dataset is the next file of $IN.
If I=idn, the input dataset is idn.
If omitted or 1=0, no input dataset is read.

Listing dataset name; this dataset receives the AUDPL list
output.

If omitted or L, the list output is written to $OUT.
If L=ldn, the- list output is written to ldn.
If L=O, no list output is generated.

Modifications dataset name; this dataset receives
reconstructed modification sets as selected by the PM
control statement option or the PULLMOD directive.

If omitted or M, the modifications dataset is $MODS.
If M=mdn, the modification sets are written to mdn.
If M=O, no modifications dataset is written.

B=bdn Binary identifier list dataset name; this dataset receives
a list of identifier names from the PL.

If B, the identifier dataset is $BID.
If B=bdn, the identifier dataset is bdn.
If omitted or B=O, no binary identifier list dataset is
written.

SR-0013 K

*=m Master character for directives written to the listing and
modifications datasets. Invalid master characters are
comma, period, colon, equal sign, and space.

If omitted, the master character is read from the PL.

If *=m, m is used as the master character. The
keyword alone is invalid.

I=C Comment character for comments written to the modifications
dataset. (The comment character for AUDPL comments is
always I.)

DW=dw

LW=lw

SR-0013 K

If the option is omitted, the comment character for the
comment directive is I.

If I=c, the comment character for the comment directive
is c. The keyword alone is invalid.

Data width value; the number of characters of data written
to each line in the modifications dataset.

If DW=dw, columns 1 through dw contain data. The DW
range is 1 through 256.

If omitted or if the DW keyword stands alone, columns 1
through lastdw contain data; lastdw was the DW value
on the UPDATE statement when the PL was written.

If it is a variable-length record PL, only DW=*, DW
alone, or DW omitted, are allowed.

Listing width; the length of each line written to the
listing dataset.

If LW=lw, the width of the listing dataset is lw
characters. Valid values are 80 and 132.

When the listing width is specified as Clw, the listing
is continuous; that is, it is not divided into pages.

If omitted or LW, the width of the listing dataset is 132
characters and the listing is divided into pages.

5-3

5-4

JU=ju Justification; how the identifier name and sequence number
of each line are justified.

The identifier and sequence number are printed at the
right of the AUDPL listing, regardless of the value of DW.

If the option is omitted, the JU keyword stands alone, or
JU=C is employed, the identifier name is right-justified,
and the sequence number is preceded by a period and
left-justified.

If JU=N, the identifier name is left-justified and the
sequence number right-justified, with no period in
between. If JU=L, the entire sequencing field is
left-justified, with a period between the identifier and
sequence number.

DK=dk1:dk2:···:dkn
DK='dkl,dk2,···,dkj.dkk,···,dkn'

Decks to which text line list options A, C, D, H, and I and
the PM parameter apply. The DK control statement parameter
has no effect on directives.

In the first method shown, you can specify up to 64 decks.

In the second method shown, single decks are separated by
commas, and ranges of decks are separated by periods. The
maximum size of the string is 87 characters. You cannot,
however, combine the two methods.

If DK is omitted, the text line list options apply to all
decks in the PL. The keyword alone is invalid.

PM=id1:id2:···:idn
PM='idl,id2,···,idj.idk,···,idn'

Pulled modification sets; reconstructs modification sets
for the identifiers in the list. The scope of the search
for text modified by the specified identifiers consists of
the decks specified with the DK control statement parameter.

In the first method shown, you can specify up to 64
identifiers.

In the second method shown, single identifiers are
separated by commas, and ranges of identifiers are
separated by periods. The maximum size of the string is 87
characters. You cannot, however, combine the two methods.
The keyword alone is invalid.

SR-0013 K

LO=string

CM

NA

NR

SR-0013 K

Listing options. The string contains characters
representing options; the default is no list options. The
following summarizes the options. See subsection 5.5.1,
Listing File or Dataset, for descriptions.

Options A, C, D, H, and I are text line options and, if a
DK parameter has been given, apply only to the decks
specified with the DK parameter.

A Writes active lines to Idn
C Writes conditional text directives to Idn; the output

is a subset of the output of option D.
D Writes dataset directives to Idn; the output is a

subset of the output of option A.
H Writes modification histories to Idn, along with

active and inactive text lines
I Writes inactive lines to Idn

Options K, L, M, N, 0, P, S, and X are summary options and
apply to the entire PL.

K Writes deck line counts to Idn
L Writes identifier list to Idn
M Writes modification set cross-reference to Idn
N Writes identifier list in ASCII collation order to Idn
0 Writes overlapping modification set list to Idn
P Writes a short summary of the PL to Idn
S Writes the status of modification sets
X Writes a common deck cross-reference to Idn

Copy modifications; writes the reconstructed modification
sets to Idn as well as to mdn. Keyword only.

No abort; if nonfatal errors are detected, AUDPL does not
abort until all processing has been completed. Keyword
only.

No rewind; does not rewind modifications dataset or binary
identifier list dataset at beginning or end of AUDPL
execution. Keyword only.

5-5

5.3 AUDPL COMMAND LINE (UNICOS)

Under UNICOS, the following command line executes AUDPL. Use the
parameters on the command line to specify the files to be used, the
contents of the AUDPL listing, and other features of the run.

Format:

5-6

audpl -p plfile [-i infile] [-1 lstfile] [-m modfile]

[-b [idfile]] [-x me] [-yee] [-j ju] [-d decks]

[-P modsets] [-0 arguments]

-p plfile

-i infile

-1 lstfile

-m modfile

Program library file name; required there is no default.

Input file name. If you specify -i - the input file is
stdin. If you specify -i in, the input file is in. If
omitted, there is no input file.

The listing file name.
listing file is stdout.
listing file is list.

If -1 is omitted, the default
If you specify -1 list, the

The modifications file name. This file receives
reconstructed modification sets as selected by the -p
control statement option. If omitted, the modification
file is stdout. If you specify -m modf, the modification
file is modf.

-b [idfile]

-x me

This file receives a list of identifier names from the PL.
If you specify -b with no argument, the identifier file is
stdout. If you specify -b idn, the identifier file is idn.
If you omit the -b option, there is no identifier file.

The master character for directives written to the listing
and modification files. Invalid master characters are the
comma, period, colon, equal sign, and space.

If omitted, the master character is read from the PL. If
you specify -x me, me is used as the master character.
The -x option alone is invalid.

SR-0013 K

-y cc

-j ju

The comment character for comments written to the
modifications file. (The comment character for AUDPL
comments is always I.)

If you omit this option, the comment character is I.

If you specify -y ee, the comment character is ee. The
-y option alone is invalid.

Justification; how the identifier name and sequence number
of each line are justified.

The identifier and sequence number are printed to the
right of the AUDPL listing.

If you omit the -j option, or specify -j e, the
identifier name is right-justified, and the sequence
number is preceded by a period and is left-justified.

If you specify -j n, the identifier name is
left-justified and the sequence number right-justified,
with no period in between. If you specify -j 1, the
entire sequencing field is left-justified, with a period
between the identifier and sequence number.

The -j option alone is invalid.

-d decks Decks to which text line list option-arguments a, e, d, h,
and i and the -P option apply. The -d option has no effect
on directives. The two valid formats are as follows (where
dk represents a deck):

SR-0013 K

dk1,dk2,···dkn
'dkl,dk2,···,dkj.dkkl ... ,dkn'

In the first method shown, you can specify up to 64 decks.

In the second method shown, single decks are separated by
commas, and ranges of decks are separated by periods. The
maximum size of the string is 96 characters. You cannot,
however, combine the two methods.

If -d is omitted, the text line list options apply to all
decks in the PL. The -d option alone is invalid.

The syntax using the -d option is nonstandard.

5-7

-p modsets
Pulled modification sets; reconstructs modification sets
for the identifiers in the list. The scope of the search
for text modified by the named identifiers consists of the
decks specified with the -d option.

Single identifiers are separated by commas, and ranges of
identifiers are separated by periods. The maximum size of
the string is 96 characters.

The -P option alone is invalid.

The syntax using the -P option is nonstandard.

-0 arguments
Listing arguments. The arguments contain characters
representing options; the default is no list arguments.
The following summarizes the arguments that are
available. The arguments must be separated by a space.
See subsection 5.5.1, Listing File or Dataset, for
descriptions.

Arguments a, c, d, h, and i are text line options and,
if a -d option has been given, apply only to the decks named
with the -d option.

a Writes active lines to If
c Writes conditional text directives to If; the output

is a subset of the output of option d.
d Writes file directives to If; the output is a subset

of the output of option a.
h Writes modification histories to If, along with

active and inactive text lines
i Writes inactive lines to If

Arguments k, 1, m, n, 0, p, s, and x are summary arguments
and apply to the entire PL.

k Writes deck line counts to If
1 Writes identifier list to If
m Writes modification set cross-reference to If
n Writes identifier list in ASCII collation order to If
0 Writes overlapping modification set list to If
p Writes a short summary of the PL to If
s Writes the status of modification sets
x Writes a common deck cross-reference to If

5-8 SR-0013 K

5.4 INPUT DIRECTIVES

In addition to responding to the list options and other parameters in the
control statement, AUDPL recognizes a set of directives read from the
input dataset or file. These directives specify a more limited part of
the PL than do the list options in the control statement.

The format of the AUDPL directives is the same as that for the UPDATE
directives described in subsection 3.2, Directive Format (see this
subsection for format description).

with AUDPL versions 2.0 and higher, all input directives can be issued in
either uppercase or lowercase; however, you cannot issue the directives
in mixed case.

The following subsections describe the AUDPL directives.

5.4.1 I - COMMENT

A comment appears only in the input dataset or file and is ignored by
AUDPL.

Format:

*Icomment

I Comment character followed by desired comments

SR-0013 K 5-9

5.4.2 ACTIVE - ACTIVE LINES

ACTIVE writes to the listing file or dataset all active text lines in a
text range or an entire deck.

Format:

*ACTIVE deck

id1 .seQ1 First line in text range

id2 .seQ2 Last line in text range

DK=deck Deck or common deck containing the text range

deck Deck or common deck name; specifies entire deck.

5.4.3 COND - CONDITIONAL TEXT DIRECTIVES

You can use COND to write to the listing file or dataset all active text
lines that contain the conditional text directives IF, ELSEIF, ELSE, and
ENDIF.

Format:

*COND deck

id1 .seQ1 First line in the text range

id2 .seQ2 Last line in the text range

DK=deck Deck or common deck containing the text range

deck Deck or common deck name; specifies entire deck.

5-10 SR-0013 K

5.4.4 DIR - DATASET OR FILE DIRECTIVES

Use DIR to write to the listing file or dataset all active text lines
that contain dataset directives.

Format:

*DIR deck

id1 .seQ1 First line in the text range

id2 .seQ2 Last line in the text range

DK=deck Deck or common deck containing the text range

deck Deck or common deck name; specifies entire deck.

5.4.5 HISTORY - MODIFICATION HISTORY

HISTORY writes the modification history for a single line or a text
range. The modification history for a line identifies the modification
sets that have deleted and restored the line. Yanked modification sets
that have affected the line are flagged. All active and inactive lines
in the range are listed.

Format:

*HISTORY deck

id1 .seQ1 First line in the text range

id2 .seQ2 Last line in the text range

DK=deck Deck or common deck containing the text range

deck Deck or common deck name; specifies entire deck.

SR-0013 K 5-11

5.4.6 INACTIV - INACTIVE LINES

With INACTIV, you can write inactive text lines in a text range or an
entire deck.

Format:

*INACTIV deck

id1 .seQ1 First line in the text range

id2 .seQ2 Last line in the text range

DK=deck Deck or common deck containing the text range

deck Deck or common deck name; specifies entire deck.

5.4.7 PULLMOD - PULLED MODIFICATION SETS OR DECKS

PULLMOD allows you to reconstruct one or more modification sets or
decks. The output is written to the modifications file or dataset, which
has the same format as an UPDATE input file. It is then echoed to the
listing file or dataset if you use the CM control statement option.

PULLMOD works correctly only for modification sets added with a version
of UPDATE from release 1.12 or higher. You cannot reconstruct deletions
from earlier modification sets, because those modification sets do not
have valid modification histories in the PL.

Format (all on one line):

*PULLMOD

Single identifier

Range of identifiers

5-12 SR-0013 K

p: Prefix representing all modification sets or decks whose
identifiers begin with the specified characters. The
prefix is followed by a colon.

DK=deck

5.5 OUTPUT

The deck for which the modification set is to be
reconstructed

You can use AUDPL to generate one, two, or three forms of output
datasets: (1) a listing file or dataset, (2) a modifications file or
dataset, and/or (3) a binary-identifier list file or dataset. The
following subsections describe the contents of the files and the commands
that control their content and format.

5.5.1 LISTING FILE OR DATASET

The listing file or dataset contains PL text lines, reconstructed
modification sets, and other information written in response to
parameters in the AUDPL control statement and directives in the input
file.

Under COS, the listing dataset is divided into pages by default. The LPP
parameter in the OPTION control statement controls the number of lines
per page (see the COS Reference Manual, publication SR-0011). Use the LW
control statement parameter to control the width of the listing. It can
also be used to inhibit the division of the listing dataset into pages.

Under UNICOS, the listing file comes out as raw text with no headers and
no page breaks. You can make your listing output more readable by using
a pipe together with the pg command. (For information on using pipes
and on pg, see the UNICOS Primer, publication SG-2010.) The output for
a text line is preceded by the name of the deck to which it belongs and a
flag that gives special attributes of the line. It is also followed by
the line's identifier and sequence number.

A text line continues for as many output lines as are needed to write all
significant characters. Text lines are written according to their
positions in the PL, with active and inactive lines interspersed. The
order of decks and common decks in the listing is determined by their
order in the PL, which is the same as their order in the identifier list.

SR-0013 K 5-13

5.5.1.1 Text line listing options

The AUDPL control statement allows the following set of options for
text-line listable output:

COS
Option

A

I

D

C

H

5-14

UNICOS
Option-argument

a

i

d

c

h

Description

Writes active lines from decks and common
decks specified with the DK parameter. The
ACTIVE directive also writes active lines
from decks and common decks to the listing.

Writes inactive lines from the decks and
common decks specified with the DK
parameter. The INACTIV directive also writes
inactive lines to the listing. Inactive
lines are flagged with '<i>' between the deck
name and the text for the line.

Lists all active text lines containing file
or dataset directives for each deck and
common deck specified with the DK parameter.
The DIR directive writes these lines for
directives in decks or ranges named in the
DIR directive. Directives are flagged with
'<d>' in the flag field of the output for the
line.

Writes all active text lines containing the
conditional text directives IF, ELSEIF, ELSE,
and ENDIF for each deck and common deck
specified with the DK parameter. The COND
directive writes these lines for directives
in decks or ranges specified in the COND
directive. The nesting level of the
directive appears in the flag field of the
output for the line (for example, '<0>' for
the outer level).

Along with the HISTORY directive, writes
modification histories. The listing of each
text line, either active or inactive, is
followed by a list of the changes made to the
line. This list tells you which
modifications have deleted and restored the
line, and whether the modifications that made
the changes have been yanked.

SR-0013 K

5.5.1.2 Summary listing options

The AUDPL control statement allows you the following output options in
the listing dataset:

COS
Option

P

L

SR-0013 K

UNICOS
Option-argument

p

1

Description

Writes general information about the PL. The
summary consists of the following:

• The name of the dataset containing the
PL (under COS only)

• The date the PL was written

• The last identifier added to the PL

• The default master character

• The default data width for the compile
and source files or datasets written by
UPDATE. The data width is determined by
the UPDATE DW parameter that was
specified when the PL was built.

• The number of characters of data stored
for each line in the PL. This may be
more than the number written to the
compile and source files or datasets.

• The number of decks, common decks, and
modification set identifiers in the PL.

Lists all identifiers in the PL (the same
function as the ID option in UPDATE). In the
output, a deck name is preceded by a single
asterisk (*), a common deck by two asterisks
(**), and a yanked identifier by a minus sign
(-). Purged identifiers are not included in
this list, because they are no longer in the
PL. Identifiers that have been unyanked are
the same as identifiers that were never
yanked.

5-15

COS
Option

N

K

M

a

S

5-16

UNICOS
Option-argument

n

k

m

o

s

Description

Writes an ASCII collation order list of all
identifiers in the PL to the listing file or
dataset. The list is divided into separate
sections for common decks, decks, and
modification sets.

Writes the number of active and inactive text
lines in each deck and common deck in the PL
to the listing file" or dataset.

Writes a modification set cross-reference to
the listing file or dataset. The
cross-reference consists of the following:

• A list of decks changed by each
modification set

• A list of modification sets that changed
each deck

Writes a list of overlapping modification
sets in each deck. The list shows, for each
modification set, the modification sets that
overlap it and the modification sets it
overlaps. A modification set overlaps an
earlier modification set if it changes the
status of text lines changed by the earlier
modification set.

Separates the modification set identifiers
into the following groups:

• Active modification sets; active if at
least one change remains unaffected by
subsequent modifications.

• Inactive (or dormant) modification sets;
inactive if every change has been
superseded by a subsequent modification.

• Dead modification sets; dead if no
longer listed in the modification
history of any line, active or inactive,
in the PL.

SR-0013 K

COS
Option

x

UNICOS
Option-argument

x

Description

Writes a common deck cross-reference. The
cross-reference lists the following:

• Common decks called from each deck

• Decks calling each common deck

• Uncalled common decks

The output indicates the number of times a
common deck is called from each deck. Common
decks using the no-propagation option on the
COMDECK directive are flagged with a plus
sign (+) in the cross-reference listing.
Common decks defined in another PL and
referenced in the PL being processed are
flagged with a pound sign (#) in the
cross-reference listing.

5.5.2 RECONSTRUCTED MODIFICATION SETS

You can use the CM option to generate a copy of the reconstructed
modification sets written to the modifications dataset for the PULLMOD
directive and PM parameter. If the data width for the reconstructed
modification sets is greater than the listing width, the reconstructed
modifications are truncated.

Comments written to the reconstructed modification set give the following:

• The name(s) of the deck(s) to which the modification set applies

• A list of earlier modification sets upon which the reconstructed
one depends; that is, modification sets directly referenced by one
or more directives.

• A list of earlier modification sets that the reconstructed
modification set overlaps--that is, modifications sets that had
already modified one or more lines that were deleted or restored
by the reconstructed modification set.

• A list of later modification sets that overlap the reconstructed
one

SR-0013 K 5-17

A reconstructed modification set may differ from the original set. It
produces the same results, however, when applied to a PL from which the
reconstructed modification set and all later modification sets have been
purged. It also produces the same results when applied to the PL before
the original modification set has been added.

The following examples, one each for COS and UNICOS, show the use of
AUDPL to reconstruct a modification set:

Under COS, the procedure is as follows:

UPDATE,P=PL1,N=PL2,F,I=MOD1,S=Sl,C=C1.
AUDPL,P=PL2,PM=MOD1,M=MOD1P.
UPDATE,P=PL1,N=PL2P,F,I=MOD1P,S=SlP,C=C1P.

Under UNICOS, the same procedure looks as follows:

update -p PL1 -n PL2 -f -i mod1 -s Sl -c C1
audpl -p PL2 -P mod1 -m mod1P
update -p PL1 -n PL2P -f -i mod1P -s SlP -c C1P

The following discussion applies to both the COS and the UNICOS examples.

In line 1 of these examples, UPDATE modifies the program library PL1 with
the modification set MOD1 (modI under UNICOS) and writes a new program
library PL2, a source file/dataset Sl, and a compile file/dataset C1
(cl.f under UNICOS).

In line 2, AUDPL uses PL2 to reconstruct MOD1 on the file/dataset MOD1P
(modI and modlP, respectively, under UNICOS).

In line 3, UPDATE modifies the original program library, PL1, with the
reconstructed modification set MOD1P (modlP under UNICOS) and writes
PL2P, SlP, and C1P (clp.f under UNICOS).

As long as modifications from program library PL1 have not been purged
from PL2, and as long as no EDIT directive has been used after MOD1 was
added, the following relationships will hold:

• Modifications dataset MOD1P (modlP under UNICOS) is equivalent
to input file/dataset MOD1 (modI in UNICOS) in that it inserts
and deletes the same text lines (although it may use different
sequences of directives to do so).

• Program library PL2P is identical to program library PL2.

• Source file/dataset SlPis identical to source file/dataset Sl.

• Compile file/dataset C1P is identical to compile file/dataset C1.

5-18 SR-0013 K

5.5.3 MODIFICATIONS FILE OR DATASET

UPDATE writes the modification sets reconstructed by the PULLMOD
directive and the PM control statement parameter to the modifications
file or dataset. You can use the modifications file or dataset as input
to a subsequent UPDATE run.

The DW parameter on the control statement determines the length of each
line in the modifications file or dataset. No end-of-file (EOF) is
written between modification sets, so the modifications file is a single
file. If you specify the NR control statement option, no EOF is written
at the end of the modifications file or dataset.

5.5.4 BINARY-IDENTIFIER LIST FILE OR DATASET AND IDENTIFIER LIST

The file or dataset that receives a list of identifiers from the PL is
called a binary-identifier list dataset under COS and an identifier list
under UNICOS. Under COS, this dataset includes the name of each
identifier and information about whether the identifier is a deck, common
deck, or modification set identifier, and whether it has been yanked.

The COS binary identifier list dataset has one file. Each 3-word record
in the dataset has information about one identifier in the PL.

Record format for the COS binary-identifier list dataset:

o Identifier Name

1 Identifier Type

2 Yank Flag

The identifier name is left-justified and zero-filled.

The identifier type is as follows:

0 For modification set identifiers
1 For decks
2 For regular common decks
3 For common decks with the NOPROP option

The Yank flag is 1 for identifiers that are yanked; otherwise, it is O.

SR-0013 K 5-19

Under UNICOS, the identifier list contains the name of each identifier
and information about whether the identifier is a deck, common deck, or
modification set identifier, and whether it has been yanked.

The format of the identifier list is as follows:

NAME. TYPE. . NOPROP • YANKED

The types possible are deck, comdeck, and modification. If the type is
comdeck, and if the common deck is a NOPROP common deck, .NOPROP is
listed on that line. You will receive one of the following results:

• NAME.DECK
• NAME.MODIFICATION
• NAME.COMDECK
• NAME.COMDECK.NOPROP
• NAME.MODIFICATION.YANKED

5.6 AUDPL SAMPLE LISTING

This subsection provides an example of an AUDPL program listing. See
subsection 4.17, Examples Showing Dataset Content, for the generation of
program library PL2, which is used in this example. Under COS, the job
control statement that generates this example is as follows:

AUDPL,P=PL2,PM=MOD2A:MOD2B:EXAMPLE,LO=AIKLMNOPSX.
COPYF, I=$MOD.

Under UNICOS, the command line that generates this example is as follows:

audpl -p PL2 -P mod2a mod2b example -0 a i kIm n 0 p s x

The AUDPL sample listing is as follows:

***** Program library summary

Dataset containing the program library
(COS only): PL2

Date the dataset was written: 07/16/84

Last identifier added to the PL: IA

5-20 SR-0013 K

Default master character for directives
read from the input and written to a
source dataset:

Default data width for compile and
source datasets:

Data width of text stored in the PL:

Number of decks:

Number of common decks:

Number of modification set identifiers:

***** Identifier list

*

72

80

4

1

5

*EXAMPLE **BLOCKl *DIVIDE MODi MOD2A MOD2B MOD3A MOD3B *EOFl *IA

*** 4 decks 1 common deck 5 modification set identifiers

***** Common decks

BLOCKl

***** Decks

DIVIDE EOFl EXAMPLE IA

***** Modification set identifiers

MODi MOD2A MOD2B MOD3A MOD3B

*** 4 decks 1 common deck 5 modification set identifiers

***** Text line listings

EXAMPLE <d>
EXAMPLE
EXAMPLE
EXAMPLE <d>
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE

*DECK EXAMPLE
PROGRAM EXAMPLE
LOGICAL IA

*CALL BLOCKl
IF (IA(»WRITE*, 'Enter',SIZE, 'values for X and Y:'
READ *,A,B
CALL DIVIDE
WRITE *,A,B
STOP
END

EXAMPLE.]
EXAMPLE. 2

MOD3A.]
EXAMPLE.~

MOD3A. ~

EXAMPLE.~

EXAMPLE. ~

EXAMPLE. t
EXAMPLE. 'j

EXAMPLE. I:

SR-0013 K 5-21

Deck EXAMPLE has 10 active lines,

BLOCK1 <d< *COMDECK BLOCK1
BLOCK1 <i> REAL A(10),B(10)

BLOCK1
BLOCK1
BLOCK1

deleted by MOD2A
PARAMETER (SIZE=100)
REAL A(SIZE),B(SIZE)
COMMON IBLOCKI A,B

Common deck BLOCK1 has 4 active lines,

DIVIDE <d> *DECK DIVIDE
DIVIDE SUBROUTINE DIVIDE
DIVIDE <d> *CALL BLOCK1
DIVIDE <i> DO 100 I 1,10

DIVIDE
DIVIDE
DIVIDE
DIVIDE
DIVIDE
DIVIDE
DIVIDE
DIVIDE
DIVIDE

Deck DIVIDE

EOF1 <d>
EOF1 <d>

Deck EOF1

<d>

deleted by MOD2B

100

DO 100 I 1,SIZE
IF (B(I).NE.O) THEN

A(I) = A(I)/B(I)
ELSE

A(I) 0

ENDIF
CONTINUE
RETURN
END

has 12 active lines,

*DECK EOF1
*CWEOF

has 2 active lines,

*DECK IA
IDENT IA

o inactive lines

1 inactive lines

1 inactive line

o inactive lines

IA
IA
IA
IA
IA
IA
IA
IA
IA
IA

*
*
*

Return true if interactive, false if batch

IA

Deck IA

The entire PL

5-22

ENTER
GET,Sl
Sl
EXIT
END

has

has

NP=O
S6&S7,JCIA,AO
Sl<D'63

10 active lines,

38 active lines,

o inactive lines

2 inactive lines

BLOCK1.1
BLOCK1.2

MOD2A.1
MOD2A.2
BLOCK1.3

DIVIDE.1
DIVIDE.2
DIVIDE.3
DIVIDE.4

MOD2B.1
MOD1.1
DIVIDE.S
MOD1.2
MOD1.3
MOD1.4
DIVIDE.6
DIVIDE.7
DIVIDE.8

EOF1.1
EOF1.2

IA.1
IA.2
IA.3
IA.4
IA.S
IA.6
IA.7
IA.8
IA.9
IA.10

SR-0013 K

Deck type deck name active lines inactive lines

common deck BLOCK1 4 1
deck DIVIDE 12 1
deck EOF1 2 0
deck EXAMPLE 10 0
deck IA 10 0

The entire PL has 38 active lines, 2 inactive lines,
4 decks and 1 common deck.

***** Common decks called by each deck

Deck DIVIDE calls: BLOCK1

Deck EXAMPLE calls: BLOCK1

***** Decks calling each common deck

BLOCK1 is called by: DIVIDE EXAMPLE

***** Active modification sets (last modification to at least one line)

MODl MOD2A MOD2B MOD3A

***** Dead modification sets (not in the modification history of any line)

MOD3B

***** Modification sets that changed each deck and common deck

BLOCKl is modified by: MOD2A

DIVIDE is modified by: MODl MOD2B

EXAMPLE is modified by: MOD3A

***** Decks and common decks changed by each modification set

MODl modifies decks: DIVIDE

MOD2A modifies decks: BLOCKl

MOD2B modifies decks: DIVIDE

MOD3A modifies decks: EXAMPLE

SR-0013 K 5-23

***** Overlapping mods in deck EXAMPLE

EXAMPLE is overlapped by:

EXAMPLE overlaps mod(s):
IEOF

ID MOD 2A
*1

EXAMPLE

EXAMPLE

*1 - MOD2A modifies deck(s): BLOCK1
*1
*DC BLOCK1
*D BLOCK1.2

*1
*1
*1

*ID MOD2B
*1
*1
*1
*DC DIVIDE
*D DIVIDE.4

*1
*1
*1
IEOF

*DECK EXAMPLE

*CALL BLOCK1

5-24

PARAMETER (SIZE=100)
REAL A(SIZE),B(SIZE)

- End of MOD2A

- MOD2B modifies deck(s): DIVIDE

DO 100 I = 1,SIZE

- End of MOD2B

PROGRAM EXAMPLE

READ *,A,B
CALL DIVIDE
WRITE *,A,B
STOP
END

SR-0013 K

6. MODECKS

The MODECKS utility compares two sets of UPDATE decks and creates a
modification file (mod). MODECKS compares a modified deck (an edit file
or dataset) and an original deck (a source file or dataset) and creates
the modification file necessary to create the edit file from the source
file.

MODECKS currently works on all PLs of any data width, including variable
length PLs. However, the maximum line length of any card in the PL is
128 for space and speed reasons.

This section provides, first, the COS control statement and its
parameters, then the UNICOS command line and parameters, and then gives
an example illustrating the use of MODECKS with each operating system.

6.1 MODECKS CONTROL STATEMENT (COS)

You can load and execute MODECKS with the control statement that follows:

Format:

MODECKS[,E=edn],S=sdn[,M=mdn] [,LOCATE][,Q]

S=sdn

SR-0013 K

[~IDENTS=id1:id2: ... idn]

[,ORDER='dk1.dk2,dk3.dk4, ... ,dk-1.dkn'][,NP][,NN][,NM]

[,NH][,PREFIX='x1,X2, ... xn'][,DESC=ddn].

Edit file dataset name. This is a file that has been
edited and changed by the user. If omitted or E, the edit
file is $IN. If E=edn, the edit file is edn. E=O is
invalid.

Source file dataset name. This is a file that has been
created by UPDATE with sequence numbers attached. If
omitted or S, the source file is $SR. If S=sdn, the
source file is sdn. S=O is invalid.

6-1

M=mdn

LOCATE

6-2

Mod file dataset name. This file receives the modification
file that MODECKS creates. If omitted or M, the mod file
is $OUT. If M=mdn, the mod file is mdn. M=O is
invalid.

Tells MODECKS to generate additional comments for certain
INSERT and DELETE directives. If the line being referenced
by the INSERT or DELETE directive does not have the deck
name as part of its sequence number, MODECKS identifies the
nearest line that does contain the deck name, and generates
a comment on the INSERT or DELETE directive.

The following is an example of using LOCATE with MODECKS.
Assume that your source file (SON) reads as follows:

*DECK SAMPLE SAMPLE. 1
Line 1 SAMPLE. 2
Line 2 SAMPLE. 3
Line 2a MOD1.l
Line 2b MOD1.2
Line 2c MOD1.3
Line 2d MOD1.4
Line 3 SAMPLE. 4
Line 4 SAMPLE. 5
Line 4a MOD1.5
Line 4b MOD1.6

Now, assume that your edit dataset (EDN) reads as follows:

*DECK SAMPLE
Line Oa
Line 1
Line 2
Line 2b
Line 2c
Line 2d
Line 3
Line 4
Line 4a
Line 5

SR-0013 K

Q

Your edit dataset calls for the deletion of two lines
(lines 2a and 4b in the SDN) and the insertion of two lines
(new line Oa and line 5 in the EDN). To perform this
operation, you would enter the following control statement:

MODECKS, E=EDN,S=SDN,LOCATE.

The resulting output from MODECKS would look like this:

*I SAMPLE.l
LineOa
*D MOD1.l
*D MOD1.6
Line 5

1 LINE BELOW: SAMPLE. 3
2 LINES BELOW: SAMPLE. 5

The use of LOCATE lets MODECKS tell you where the change
was made in relation to the other identifiers (column 2 in
the output). When you add a new line, MODECKS prints out
the insertion text (the last line of the preceding sample
output) .

Tells MODECKS to compare only the decks that are present in
both the edit and the source files. The default is to
purge decks in the source file but not in the edit file, to
add decks that are in the edit file but not in the source
file, and to produce MOVEDK directives needed to put the
decks in the PL in the same order as they appear in the
Edit file. Keyword only.

IDENTS=idl:id2: ... idn

SR-0013 K

These are identifiers (from 1 to 7 characters) that appear
in the *ID directives of the modifications. You may
specify up to 64 identifiers. For the first 26 *ID
directives, idl is used with the characters "A-Z"
appended, one for each *ID directive. For the 27th to the
52nd *ID directives, id2 is used, and so on. If IDENTS
is omitted, no *ID directives is produced. If you specify
the keyword alone, the identifier defaults to MODIDNT.

6-3

6-4

ORDER='dkl.dk2,dk3.dk4, ... ,dk-l.dkn'

NP

NN

These are the ranges of decks that are to be alphabetized.
You can provide up to 32 ranges. MODECKS produces MOVEDK
directives needed to put the edit decks into alphabetical
order within each range of decks specified. The range of
decks is noninclusive by default. You can enclose the
decks by brackets or parentheses, mixed freely, to aid in
visual clarity; however, the system ignores parentheses. A
left bracket, [, means that the first deck in the range is
included in the alphabetizing scheme; a right bracket,],
means that the second deck in the range is included in the
alphabetizing scheme.

There are two decks predefined in MODECKS: $$FIRST and
$$LAST that match the first and last decks in the file,
respectively. The default is to generate MOVEDK directives
that will move the source file decks into the same order as
the edit file decks. The keyword alone alphabetizes the
entire range of decks; that is, ORDER=' [$$FIRST.$$LAST]'.

Tells MODECKS not to generate PURGEDK directives. The
default is to generate PURGEDK directives for decks that
are found in the source dataset but not in the edit
dataset. NM is implied.

Tells MODECKS not to generate any *DECK directives. The
default is to generate *DECK directives for decks that are
found in the edit dataset but not in the source dataset.
NM is implied.

NM Tells MODECKS not to generate any *MOVEDK directives. The
default is to generate the *MOVEDK directives needed to put
the decks in the ordering scheme specified.

NH Tells MODECKS not to generate a mod header. The default is
to generate a mod header for each identifier dataset as
supplied with the IDENTS option.

PREFIX= 'xl,x2, ... ,xn'

DESC=ddn

Tells MODECKS the prefixes that are to be used when
computing mod dependencies, which is any line being
inserted or deleted and having a standard MODID format;
that is, one consisting of 8 characters and not matching
the deck name. Then MODECKS determines any UPDATE
dependencies that the mod has. The default prefix is the
same as the one specified in the IDENT directives.

Specifies the file containing the mod description to be
inserted into the mod header. If omitted, no description
file is read. If DESC=ddn, the description file is ddn.

SR-0013 K

6.2 MODECKS COMMAND LINE (UNICOS)

Under UNICOS, you can load and execute MODECKS with the following command
line:

Format:

modecks [-e ef] -s sf [-m mf] [-1] [-q] [-i idl id2 ••• idn]

-e ef

-s sf

-m mf

-1

SR-0013 K

[-0 range] [-p] [-n] [-v] [-h] [-x xl x2 ... xn] [-d df]

The edit file name. This is a file that has been edited
and changed by the user. If omitted, the edit file is
stdin. If you specify -e page, the edit file is page.

The source file name. This is a file that has been created
by UPDATE with sequence numbers attached. If you specify
-s skb, the source file is skb. This is a required
option.

The mod file name. This file receives the modification
file that MODECKS creates. If you do not specify a file,
the mod file is stdout. If you specify -m modf, the
mod file is modf.

The -1 option tells MODECKS to generate additional
comments for certain INSERT and DELETE directives. If the
line being referenced by the INSERT or DELETE directive
does not have the deck name as part of its sequence number,
MODECKS identifies the nearest line that does contain a
deck name, and generates a comment on the INSERT or DELETE
directive.

6-5

6-6

The following is an example of using the -1 option with
MODECKS. Assume that your source file reads as follows:

*deck sample sample.l
Line 1 sample.2
Line 2 sample.3
Line 2a modl.l
Line 2b modl.2
Line 2c modl.3
Line 2d modl.4
Line 3 sample.4
Line 4 sample. 5
Line 4a modl.5
Line 4b modl.6

Now, assume that your edit file (page) reads as follows:

*deck sample
Line Oa
Line 1
Line 2
Line 2b
Line 2c
Line 2d
Line 3
Line 4
Line 4a
Line 5

Your edit file calls for the deletion of two lines (lines
2a and 4b in skh) and the insertion of another two lines
(new line Oa and line 5 in page). To perform this
operation, you would enter the following command line:

modecks -e page -s skb -1

SR-0013 K

-q

The resulting output from modecks looks like this:

*1 sample.l
Line Oa
*0 modl.l
*0 modl.6
Line 5

1 LINE BELOW: sample.3
2 LINES BELOW: sample.5

The use of the -1 option lets MOOECKS tell you where the
change was made in relation to the other identifiers
(column 2 in the output). When you add a new line, MOOECKS
prints out the insertion text (the last line is the
preceding sample output).

The -q option tells MOOECKS to compare only the decks
that are present in both the edit file and the source
file. The default is to purge decks in the source file but
not in the edit file, to add decks that are in the edit
file but not in the source file, and to produce MOVEOK
directives needed to put the decks in the PL in the same
order as they appear in the edit file. The -q option
takes no arguments.

-i idl id2 ... idn
These are identifiers will appear in the *10 directives of
the modifications. You may specify up to 64 identifiers.
For the first 26 *IOENT directives, idl is used with the
characters "A-Z" appended, one for each *IOENT directive.
For the 27th to the 52nd *IOENT directives, id2 is used,
and so on. If you omit -i, no *10 directives are
produced. If you specify the -i option alone, the
identifier defaults to MOOIONT.

-0 range The -0 option defines the ranges of decks that are to be
alphabetized. The format is as follows (rng has the
format deckl.deckj):

rngl,rng2, ... rngn

SR-OOl3 K 6-7

-0 range
(continued)

-p

-n

-v

-h

You can provide up to 32 ranges, and MODECKS will produce
MOVEDK directives needed to put the edit decks into
alphabetical order within each range of decks specified.
The range of decks is noninclusive by default. You can
surround the decks by brackets or parentheses, mixed
freely, to aid in visual clarity; however, the system
ignores parentheses. A left bracket, [, means that the
first deck in the range is included in the alphabetizing
scheme; a right bracket,], means that the second deck in
the range is included in the alphabetizing scheme.

There are two decks predefined in MODECKS: $$FIRST and
$$LAST to match the first and last decks in the file,
respectively. The default is to generate MOVEDK directives
that will move the source file decks into the same order as
the edit file decks. The -0 option alone alphabetizes
the entire range of decks; that is, -o'[$$FIRST.$$LAST]'.

The -p option tells MODECKS not to generate PURGEDK
directives. The default is to generate PURGEDK directives
for decks that are found in the source file but not in the
edit file. The -v option is implied.

The -n option tells MODECKS not to generate any *DECK
directives. The default is to generate *DECK directives
for decks that are found in the edit file but not in the
source file. The -v option is implied.

The -v option tells MODECKS not to generate any *MOVEDK
directives. The default is to generate the *MOVEDK
directives needed to put the decks in the ordering scheme
given.

The -h option tells MODECKS not to generate a mod
header. The default is to generate a mod header for each
identifier file as supplied with the -i option.

-x xl x2 ... xn

-d df

6-8

The -x option tells MODECKS the prefixes that are to be
used when computing mod dependencies. A mod dependency is
defined as any line that is being inserted or deleted and
has a standard MODID format; that is, it has 8 characters
and does not match the deck name. Then MODECKS determines
any UPDATE dependencies that the mod has. The default
prefix is the same as the one specified in the -i
directives.

The -d option tells MODECKS which file contains the mod
description that will be inserted into the mod header.

SR-0013 K

6.3 USING MODECKS UNDER COS

The following example illustrates the use of MODECKS under COS. A
MODECKS session can be broken down into three stages. First you transfer
the original deck from COS to the front end, as follows:

ACCESS,DN=PL,ID=MYPL.
UPDATE,P=PL,Q=DECK1,NS,S=DECK1,C=O,N=O.
DISPOSE,DN=DECK1,TEXT='-mydir/tmp/d.edit'.

This example assumes you are running a UNIX front-end system; if you
not using a UNIX system, change only the TEXT entry. For a full
discussion of the UPDATE parameters, see section 2, Invoking Update.
this example, the original deck is accessed without sequence numbers
NS on the UPDATE line).

are

In
(the

Second, you use the front end to make changes to the deck--in this case,
using a UNIX editor:

vi d.edit

Third, you run MODECKS under COS to compare decks:

ACCESS,DN=PL,ID=MYPL.
UPDATE,P=PL,Q=DECK1,SQ,S=DECK1,C=O,N=O.
FETCH,DN=EDIT,TEXT='-mydir/tmp/d.edit'.
MODECKS,E=EDIT,S=DECK1,IDENTS=MODID,M=MODOUT.
UPDATE,P=PL,N=NEWPL,I=MODOUT,F,S=O,C=O.
DISPOSE,DN=MODOUT,TEXT='-mydir/tmp/modout'.

On the MODECKS line, MODECKS compares the EDIT file and the DECKl file
and creates a mod file, MODOUT, to reflect the changes made. UPDATE then
applies the mod to a PL and creates a new PL. Finally, the mod is saved
to the front end using the DISPOSE control statement. There are, of
course, other methods possible. For example, if the deck was on the
front end rather than on Cray disk, you could use FETCH rather than
ACCESS. And if you wanted the mod to be saved to Cray disk rather than
to the front end, you could use SAVE rather than DISPOSE.

SR-0013 K 6-9

6.4 USING MODECKS UNDER UNICOS

The following example illustrates the use of MODECKS under UNICOS. A
MODECKS session can be broken down into three stages. First, you
transfer the original deck, as follows:

update -p PL -s d.edit -0 ns -q deck1

The source file in this example is named d.edit. The original deck is
accessed without sequence numbers (the ns on the command line). (For a
full discussion of the UPDATE parameters, see section 2, Invoking UPDATE.)

Second, you make whatever changes are desired using the editor:

vi d.edit

Third, you run MODECKS, as follows:

update -p PL -s d.src -0 sq -q deck1
modecks -e d.edit -s d.src -m modoutput -i MODID
update -p PL -i modoutput -n NPL -f

In this example, UPDATE gets the original deck with sequence numbers
(using sq on the command line). Then, MODECKS compares d.edit and
d.src and creates a mod to reflect the changes made. Finally, UPDATE
applies the mod to PL and gives a new PL.

6-10 SR-0013 K

APPENDIX SECTION

A. CHARACTER SET

Appendix A contains characters used by UPDATE~ Code values are octal.
Codes 000 through 037 (NUL through US) and 177 (DEL) are not recognized.
Separators are invalid for name, master, and comment characters. The
symbol (s) identifies separators in the following table.

Character ASCII Code Character ASCII Code

Space 040 (s) 1 061

041 2 062

042 3 063

043 4 064

$ 044 5 065

q.o 045 6 066

& 046 7 067

047 8 070

050 9 071

051 072 (s)

* 052 073

+ 053 074

054 (s) = 075 (s)

055 076

056 (s) ? 077

/ 057 @ 100

0 060 A 101

SR-0013 K A-1

Character ASCII Code Character ASCII Code

B 102 y 131

C 103 Z 132

D 104 133

E 105 134

F 106 135

G 107 136

H 110 137

I 111 140

J 112 a 141

K 113 b 142

L 114 c 143

M 115 d 144

N 116 e 145

0 117 f 146

p 120 g 147

Q 121 h 150

R 122 i 151

S 123 j 152

T 124 k 153

U 125 1 154

V 126 m 155

W 127 n 156

X 130 0 157

A-2 SR-0013 K

Character ASCII Code Character ASCII Code

p 160 x 170

q 161 Y 171

r 162 z 172

s 163 173

t 164 174

u 165 175

v 166 176

w 167

SR-0013 K A-3

B. MESSAGES

This section contains UPDATE, AUDPL, and MODECKS log file messages that
are generated by UPDATE. There are three categories: UPDATE, AUDPL, and
MODECKS.

B.1 UPDATE MESSAGES

The UPDATE program generates three types of log file messages:

• Informative: No action is taken.

• Error: Job aborts when UPDATE execution is finished, unless the
UPDATE NA statement parameter is selected.

• Fatal error: Aborts execution immediately.

Under UNICOS, these messages are written to stderr. A code identifier,
as shown, precedes messages, and they are listed numerically by this
code. An explanation follows each message.

UD001 - PL: dn PL DATE: m/d/y LAST ID: id
The name of the dataset containing the PL is dn, m/d/y is the
creation date of this PL version, and id is the name of the last
identifier added to the PL. Class: informative.

UD002 - n UPDATE WARNINGS
UPDATE detected n probable user errors. If ML<4, E~O, and L=O,
warning messages are written to the listing and error datasets. Class:
informative.

UD003 - EMPTY INPUT FILE, DN = dn (with COS)
UD003 - EMPTY INPUT FILE, FILENAME = file (with UNICOS)
The next file in COS dataset dn or UNICOS file file, specified as an
input dataset/file for UPDATE, is empty. Determine whether the primary
input file or READ datasets are nonnull or need to be rewound. Class:
informative.

UD004 - DATASET NOT LOCAL, DN = dn (COS only)
The dataset indicated was not accessed before UPDATE execution.
the PL, an input dataset, or was specified by a READ directive.
fatal error.

SR-0013 K

It was
Class:

B-1

UD005 - RECURSIVE READ OF DN = dn
An attempt was made to read dataset dn recursively with the READ
directive. Class: error.

UD006 - INVALID READ DATASET NAME, DN = dn
A READ directive encountered by UPDATE while reading input contains an
invalid dataset name. Class: error.

UD007 - ERROR IN UPDATE CONTROL STATEMENT
One or more of the following control statement errors exist:

• Both the new PL and the old PL datasets have the same name
• Both F and Q were specified
• p=o and 1=0 (PL creation mode and no input)
• Invalid comment and/or master character
• Invalid DW value

Class: fatal error.

UD008 - MODS WITHOUT IDENTIFIER,' NEW PL SUPPRESSED
A new PL cannot be generated with modifications that are not identified
with an IDENT directive. Generation of a new PL has been suppressed.
This occurs only when the N parameter specifies creation of a new PL, or
in creation runs. Class: error.

UD010 - INVALID PROGRAM LIBRARY, DN = dn (with COS)
UD010 - INVALID PROGRAM LIBRARY, FILENAME = file (with UNICOS)
The dnlfile is not in a PL format recognized by UPDATE. Class: fatal
error.

UD011 - n FATAL UPDATE ERRORS
Update detected n fatal errors. Error messages are written to the
listing and error datasets. Class: informative.

UD012 - PL FORMAT CONVERSION COMPLETE
A sequential format PL has been internally rewritten as a random format
PL. Class: informative.

UD013 - SEQUENCE NUMBER EXCEEDS 131071 FOR ID = id
An attempt was made to add more than 131,071 lines with one identifier.
The insertion must be split over two or more identifiers or decks.
Class: fatal error.

UD014 - NUMBER OF IDENTIFIERS EXCEEDS 16383
Too many deck, common deck, and modification set identifiers are defined
for this PL. Before any new identifiers can be added, you must
resequence the PL by creating a new PL from the source dataset. Class:
fatal error.

B-2 SR-0013 K

UD015 - DECK SPECIFIED BY Q PARAMETER NOT FOUND, DECK = dkname
The listed value for the Q control statement parameter was dkname, but
it is not a deck or common deck in this PL, and it was not introduced by
the input datasets. Class: error.

UD016 - PL MASTER CHARACTER IS: m
m is the master character recorded when the PL was created. It is the
default for the master character used in the input and source datasets.
This is written only if the master character is not the default (*).
Class: informative.

UD017 - n MODIFICATION SETS SKIPPED
Because of unsatisfied IDENT directive dependency conditions, n
modification sets were skipped. Use ML=l on the UPDATE control statement
to get a NOTE message written to the listing and error datasets for each
skipped IDENT. Class: informative.

UD018 - n UNPROCESSED MODIFICATION DIRECTIVES
When UPDATE finished execution, n modification directives were left
unprocessed, either because they modified decks and common decks that
were not specified in a Quick mode UPDATE run, or because they referenced
lines that were not found in the PL. Use the UM option on the UPDATE
control statement to get a list of unprocessed modifications. Class:
informative.

UD019 - n INPUT LINES TRUNCATED TO pldw CHARACTERS
n input lines longer than pldw characters were truncated to pldw
characters. pldw is the number of characters per line stored in the
PL, and it is defined by the DW control statement parameter. The minimum
value, and default, for pldw is 80. Class: informative.

UD020 - MORE THAN 100 FATAL INPUT ERRORS
More than 100 fatal input errors were detected and UPDATE aborted. A
DECK or COMDECK directive may be missing, or the wrong master character
may have been specified. Class: error.

UD021 - n OVERLAPPING MODIFICATIONS
There were n directives that either referenced lines that were inserted
earlier in the same UPDATE run or deleted a range of text that included
newly inserted lines. Use ML=l on the UPDATE control statement to get
NOTE and CAUTION messages about overlaps to determine whether the
overlaps were proper and expected. Class: informative.

UD022 - INVALID DC PARAMETER VALUE
The DC parameter on the UPDATE control statement is equated to an invalid
value. Valid values are ON and OFF. Class: fatal error.

UD023 - INTERNAL UPDATE ERROR: ID NOT IN SEQUENCE TABLE
An UPDATE internal logic error caused the current identifier name not to
be found in the Sequence Table. Class: fatal error.

SR-0013 K B-3

UD024 - INTERNAL UPDATE ERROR: INVALID DIRECTIVE KEY
An UPDATE internal logic error caused an invalid directive key to be
assigned. Class: fatal error.

UD025 - INTERNAL UPDATE ERROR: PL 1/0 STATUS ERROR
An UPDATE internal logic error caused an 1/0 status error to occur during
a read of the PL. Class: fatal error.

UD026 - INTERNAL UPDATE ERROR: $UDT1 1/0 STATUS ERROR
An UPDATE internal logic error caused an 1/0 status error in a character
read of temporary dataset $UDT1. Class: fatal error.

UD027 - INTERNAL UPDATE ERROR: $UDT2 1/0 STATUS ERROR
An UPDATE internal logic error caused a count exhaustion during a
character read of temporary dataset $UDT2. Class: fatal error.

UD028 - INTERNAL UPDATE ERROR: ID NAME NOT IN IDENTIFIER TABLE
An UPDATE internal logic error caused an identifier name to be omitted
from the Identifier Table. Class: fatal error.

UD029 - INTERNAL UPDATE ERROR: DECK NAME NOT IN IDENTIFIER TABLE
An UPDATE internal logic error caused an identifier name to be missing
from the Identifier Table; thus, it was not found when UPDATE tried to
get the name of the next deck to process. Class: fatal error.

UD030 - INTERNAL UPDATE ERROR: ID NUMBER NOT IN IDENTIFIER TABLE
An UPDATE internal logic error caused an identifier to be missing from
the Identifier Table. Class: fatal error.

UD031 - INTERNAL UPDATE ERROR: ERROR IN ID LIST IN OLD FORMAT PL
UPDATE was unable to read the identifier list in an old PL format.
Class: fatal error.

UD032 - INTERNAL UPDATE ERROR: OLD FORMAT PL IS UNREADABLE
UPDATE was unable to read an old PL format. Class: fatal error.

UD033 - INTERNAL UPDATE ERROR: PL INFORMATION FILE READ ERROR
UPDATE had a read error on a partial record read of the PL information
file. Class: fatal error.

UD034 - INTERNAL UPDATE ERROR: UNKNOWN PROCESS TYPE
An UPDATE internal logic error caused an invalid process type (INSERT,
BEFORE, DELETE, or RESTORE) to be returned from a Modification Table
entry. Class: fatal error.

UD035 - INTERNAL UPDATE ERROR: DECK DIRECTIVE IN COMDECK
An UPDATE internal logic error caused a DECK directive to be placed in a
common deck instead of starting a new deck. Class: fatal error.

UD036 - INTERNAL UPDATE ERROR: COMDECK DIRECTIVE IN DECK
An UPDATE internal logic error caused a COMDECK directive to be placed in
a common deck instead of starting a new common deck. Class: fatal error.

B-4 SR-0013 K

UD037 - LIST CONTROL STATEMENT PARAMETER IGNORED
The LIST control statement parameter is not supported and is ignored.
Class: informative.

UD038 - INTERNAL UPDATE ERROR: NEW PL TABLE IS UNSORTED
A call to library routine ORDERS failed; the new PL is ordered as
specified by the K option, but PLs built from it will revert to the old
ordering. Class: informative.

UD039 - INTERNAL UPDATE ERROR: NO SECOND DELETE ENTRY
An UPDATE internal logic error caused the second entry in the
Modification Table for a DELETE or RESTORE range to be missing. Class:
fatal error.

UD040 - INTERNAL UPDATE ERROR: BAD HDC IN PL LINE
When handling deleted lines with bad correction histories, an active line
was found with a header descriptor count of O. Class: fatal error.

UD041 - n MULTIPLE INSERTIONS
There were n locations in which new text was inserted by directives in
more than one modification set. Use ML=2 on the UPDATE control statement
to write CAUTION messages to the listing dataset for each multiple
insertion. Class: informative.

UD042 - INVALID ML PARAMETER VALUE; MUST BE 0-4
An invalid value was specified for the ML parameter on the UPDATE control
statement. Class: fatal error.

00043 - INTERNAL UPDATE ERROR: DELETE TABLE ENTRY NOT FOUND
An UPDATE internal logic error caused an entry to be missing from the
Delete Table. Class: fatal error.

UD044 - DATASET dsnarne USED FOR MORE THAN ONE PURPOSE
Dataset dsnarne was specified by more than one control statement
parameter (for example, both C and S). Class: fatal error.

UD045 - DW=* CANNOT BE APPLIED TO A FIXED LENGTH RECORD PL
A regular PL has been specified with a variable-length record specifier.
This conversion is not allowed. Class: fatal error.

UD046 - INVALID DW VALUE FOR A VARIABLE LENGTH RECORD PL
A variable-length record PL was specified with a DW value other than .,*"
This is not allowed. Class: fatal error.

UD047 - INTERNAL UPDATE ERROR: INCONSISTENT CC AND DW, PLDW
An inconsistency was detected in the PL information file. Class: fatal
error.

SR-0013 K B-5

UD048 - NUMBER OF COMPILE FILES EXCEEDED. APPENDED IS A: numcpl (with
UNICOS only)
The number of created compile files exceeds the number specified by the
-a option or the default value of 4; numcpl is the number given to
the exceeded compile file. This additional file is appended with
numcpl (starting with 1 and incrementing until all files are labeled).
Check the UNICOS command line options -c and -a. Class: caution.

UD050 - ATTEMPT TO act FILE FAILED. type FILENAME = file (with
UNICOS only)
The reason for failure is provided in the following act descriptions:

OPEN

WRITE

SEEK

CLOSE

UPDATE tried to open either a type PL or NPL (new PL)
file. The type specified is either PL FILE or NPL FILE. (If
NPL is the type, the new PL must have write access. If PL is
the type, the PL must have read access.) This message is
followed by the name of the file UPDATE is trying to open.
If the type is PL FILE, check the -p option on the command
line and ensure that the file name is an existing UPDATE PL.
If the type is NPL FILE, UPDATE cannot create the file
specified by the -n option. You may not have permission to
create this file, or the file name may be invalid.

UPDATE tried to write to the NPL FILE (type). The file
name (file) indicates the specific deck, or comdeck, or
UPDATE directory in which this write occurred. TIDENT and
PLINFO names mean that these tables, in the UPDATE directory,
could not be written to the NPL. The NPL file name may be in
error and cannot be used. This error may be caused by an
empty input file. There was an attempt to write the UPDATE
directory, but no decks or comdecks were written first.
(There must be decks or comdecks to which the write is
directed.) This message is followed by the name of the file
to which UPDATE is writing.

UPDATE tried to position a PL or NPL file to a specific deck,
comdeck, or UPDATE directory. The type indicates the
location this seek occurred. TIDENT and PLINFO names mean
that UPDATE was unable to locate this directory table. This
message is followed by the name of the file to which UPDATE
is trying to position.

UPDATE tried to close either the PL or NPL file. The type
given is either PL FILE or NPL FILE. The name of the file
UPDATE is trying to close follows.

UD051 - Expected *FILE or *CFILE AT SEQUENCE: identifier (UNICOS only).
UPDATE is attempting to write output to the compile file, -c was
specified with no argument, and no *FILE or *CFILE directive was
encountered. Class: fatal.

B-6 SR-0013 K

B.2 AUDPL LOG FILE MESSAGES

AUDPL generates three classes of log file messages:

• Informative: No action is taken.

• Error: If the NA option was used, AUDPL continues processing,
using defaults where necessary, and aborts when it is done.
Otherwise, it aborts immediately when the error is detected.

• Fatal error: AUDPL aborts immediately when the error is detected.

Log file messages are preceded by a code identifier as shown, and they
are listed numerically by this code identifier. An explanation follows
each message.

PL001 - PROGRAM LIBRARY REQUIRED; SPECIFY P OR ACCESS $PL
You cannot use AUDPL without a PL for input. p=o was specified on the
control statement, or the P parameter was not used and dataset $PL is not
local. Class: fatal error.

PL002 - LISTING OPTION k USED MORE THAN ONCE
One of the listing options for the LO parameter was used twice. Class:
error.

PL003 - KEYWORD k MUST BE EQUATED
Keyword k on the control statement was used without being equated to a
value. Class: error.

PL004 - INVALID DATA WIDTH, VALID RANGE IS 1-256
The value used with the D~ control statement parameter was not in the
range 1 through 256. Class: error.

PL005 - INVALID LISTING WIDTH, LW MUST BE 80 OR 132
The value used with the LW control statement parameter was not 80 or 132,
optionally preceded by 'C'. Class: error.

PL006 - k IS NOT A VALID LIST OPTION
One of the letters in the string for the LO control statement parameter
was not a valid list option. Class: error.

PL007 - INVALID JUSTIFICATION VALUE, MUST BE C, L, OR U
The value specified for the JU control statement option was not C, L, or
U. Class: error.

PL008 - DATASET dsname USED FOR MORE THAN ONE PURPOSE
The same dataset name was equated to more than one of the control
statement parameters that specify datasets used by AUDPL. Class: fatal
error.

SR-0013 K B-7

PL009 - PROGRAM LIBRARY NOT LOCAL
The dataset specified with the P control statement parameter was not
local to the job. Class: fatal error.

PL010 - INPUT DATASET NOT LOCAL
The dataset specified with the I control statement parameter was not
local to the job. Class: fatal error.

PL011 - OLD PL; RUN THROUGH UPDATE FIRST
The PL in the dataset specified with the P control statement parameter
was written by an UPDATE from before UPDATE release 1.13. Write a new PL
from the old one with an UPDATE from release 1.13 or higher, and use the
new PL as input to AUDPL. Class: fatal error.

PL012 - PROBLEM READING PL
AUDPL is unable to read the PL in the dataset specified with the P
control statement parameter. Check to see that the dataset contains a
valid PL, and if so, report the problem to a system programmer. Class:
fatal error.

PL013 - NAME IN DK LIST NOT IN PL, ID = idname
One of the names in the list for the DK control statement parameter was
not in the identifier directory for the PL. Check the spelling of the
name listed. Class: error.

PL014 - IDENTIFIER IN DK LIST IS NOT A DECK, ID = idname
One of the identifiers in the list for the DK control statement parameter
is a modification set, not a deck or common deck. Class: error.

PL015 - BACKWARD RANGE IN DK LIST: idname1 TO idname2
In the identifier range specified in the message, the second identifier
comes before the first identifier in the identifier directory for the
PL. Check the identifier list from the L list option for the order of
identifiers in the PL. Class: error.

PL016 - SYNTAX ERROR IN DK LIST
The list of identifiers given for the DK control statement parameter
contains a syntax error, possibly because the two list types were
combined. Class: error.

PL017 - NAME IN PM LIST NOT IN PL, ID = idname
One of the identifiers in the list for the PM control statement parameter
is not in the identifier directory for the PL. Class: error.

PL018 - BACKWARD RANGE IN PM LIST: idname1 TO idname2
In the identifier range specified in the message, the second identifier
comes before the first identifier in the identifier directory for the
PL. Check the identifier list from the L list option for the order of
identifiers in the PL. Class: error.

B-8 SR-0013 K

PLOl9 - SYNTAX ERROR IN PM LIST
The list of identifiers given for the PM control statement parameter
contains a syntax error, possibly because the two list types were
combined. Class: error.

PL020 - n INPUT DIRECTIVE ERRORS
There were n errors detected in the AUDPL input directives. Error
messages for input errors are written to the listing dataset. Class:
error.

PL02l - WARNING, NO ACTION REQUESTED OF AUDPL; USE I, LO, PM, OR B
The AUDPL control statement did not specify any actions to be taken
through the LO, PM, or B parameter, and no input dataset was specified.
Class: informative.

PLlOl - INTERNAL AUDPL ERROR: INVALID IDENTIFIER NUMBER
An AUDPL internal logic error caused an invalid identifier number to be
used as the identifier for a text line. Report the problem to a system
programmer. Class: fatal error.

PLl02 - INTERNAL AUDPL ERROR: ORDERS ROUTINE FAILED
An AUDPL internal logic error caused the ret.urn status of $SCILIB routine
ORDERS indicating that it was unable to sort. the table passed to it by
AUDPL. Report the problem to a system programmer. Class: fatal error.

B.3 MODECKS ERROR MESSAGES

MODECKS error messages are preceded by a code identifier as shown, and
they are listed numerically by this code identifier. An explanation
follows each message.

MDOOl - SOURCE DATASET NOT SPECIFIED
The source dataset was not specified. Class: fatal error.

MD002 - EMPTY DATA FILE. DN= -----------
The specified file was empty. Class: informative.

MD003 - NO SEQUENCE NUMBERS FOUND. DN=
The specified source file did not contain sequence numbers in UPDATE
format. Class: fatal error.

MD004 - NO UPDATE DIRECTIVE. DN= ________ __
The specified file did not contain a recognized UPDATE directive as the
first line in the file; that is, a DECK or COMDECK directive. Class:
fatal error.

SR-OOl3 K B-9

MD005 - DECK TOO LARGE, DN= __________ __
The specified deck was too large (more than 500,000 lines) to fit into
the tables. Class: fatal error.

MD006 - MODECKS WILL NOT SUPPORT DW GREATER THAN 128
Because of lack of space, a maximum of 128 characters can be on one line
in the edit or source dataset. Class: fatal error.

MD007 - IS A DUPLICATE DECK
Two decks were encountered with the same name. Class: fatal error.

MD008 - INTERNAL MODECKS ERROR, TABLES CORRUPTED
Because of a logic error, the tables have become corrupted. Class:
fatal error.

MD009 - INTERNAL MODECKS ERROR NOT FOUND IN TABLES
Because of a logic error, the specified deck name was not found in the
table. Class: fatal error.

MD010 - NO MORE IDENTIFIERS SPECIFIED, USING AGAIN
The identifiers specified were not enough to cover all decks that have
been changed in this mod. The specified identifier is duplicated.
Class: caution.

MD011 - DECK IN RANGE NOT FOUND; DECK =
The deck specified in the ordering range was not found in the edit file.
Class: fatal error.

MD012 - FOLLOWS
The decks given in the ordering range were specified in the incorrect
order. Class: fatal error.

MD013 - ERROR IN ORDER SYNTAX
There was an error in the ordering syntax specified. Class: fatal error.

MD014 - UNABLE TO OPEN FILE. DN=
An error was encountered when attempting to open the specified file.
Class: fatal error.

MD015 - IDENTIFIER TRUNCATED TO 7 CHARACTERS
The specified identifier was longer than 7 characters; therefore, it is
truncated to 7 characters. Class: caution.

MD016 - MORE THAN 64 IDENTIFIERS SPECIFIED.
Too many identifiers were specified on the command line. The usage is
printed out. Class: fatal error.

MD017 - PREMATURE END OF FILE ON TEMPORARY FILE.
When creating the mod header, the temporary file was incorrect. Class:
internal fatal error.

B-10 SR-0013 K

MD018 - INTERNAL MODECKS ERROR, NO CHANGED DECKS.
While creating the mod header, no changed decks were detected. Class:
internal fatal error.

MD019 - MORE THAN 500 DEPENDENCIES. NONE WRITTEN.
There were more than 500 dependencies in the generated mod; none were
written. Class: informative.

B.4 UPIC LOG FILE MESSAGES

UPIC messages are coded messages in the range UPOOO through UP099. They
include general messages, messages on control statement errors, and
internal error messages. UPIC runs only under COS.

B.4.1 GENERAL MESSAGES

UPOOl - UPIC Version n.nn
This gives the UPIC release version number. Class: informative.

UP002 - Page size is nnnnnn
This gives the page size UPIC is using for the output dataset. Class:
informative.

UP003 - nnnnnnn lines read, nnnnnnn lines written to xxxxxxx
UPIC prints this message when it has completed processing. xxxxxxx is
the output dataset name. Class: informative.

UP004 - nnnnnnn unrecognized lines read
UPIC failed to recognize one or more lines in the input dataset. The
lines could be from an unsupported language processor, or they could
contain any other text sandwiched between listings. This message is
always preceded by one or more UP006/UP007 message pairs. Class:
informative.

UP005 - nnnn.nnn seconds processing time
UPIC completed scanning the input dataset in nnnn.nnn seconds. Class:
informative.

UP006 - Unknown listing page, begins ...
UPIC failed to recognize one or more lines in the input dataset. The
lines could be from an unsupported language processor or any other text
sandwiched between listings. This message is always followed by a UP007
message, which contains the first 72 characters of the unrecognized
line. Up to 10 UP006/UP007 message pairs may be printed. Once UPIC has
completed processing, it gives a count of unrecognized lines in the UP004
message. Class: informative.

SR-0013 K B-ll

UP007 - <first 72 characters of unrecognized line>
This is the companion message to UP006. See UP006 for a complete
discussion. Class: informative.

B.4.2 CONTROL STATEMENT ERROR MESSAGES

UP011 - CL parameter out of range 1 - nnn
Check your UPIC control statement to ensure you have specified a legal
value for this parameter. Class: fatal.

UP012 - PD option must be 6 or 8 if specified
Check your UPIC control statement to ensure you have specified a legal
value for this parameter. Class: fatal.

UP013 - PS parameter must be positive
Check your UPIC control statement to ensure you have specified a legal
value for this parameter. Class: fatal.

UP014 - * may only be set to a 1-character value
Check your UPIC control statement to ensure you have specified a legal
value for this parameter. Class: fatal.

B.4.3 UPIC INTERNAL ERROR MESSAGES

UP021 - Unknown processor type: xxxxxxxx
UPIC internal error. Routine PRNT does not recognize the noted type of
language processor. Have your systems programmer verify that the main
program (UPIC), and subroutines CKPROC and PRNT, all support the named
processor type. Class: fatal.

UP022 - UPDATE ID table overflow. Maximum is nnnnn.
Probable error in specifying ID and NOID parameters, too many wildcard
character combinations. If you need more Identifier table space,
recompile UPIC with parameter MAXID set to a larger value. MAXID is
declared in common deck UPICBLK. Class: fatal.

UP023 - Debug (ckproc): Processor type is xxxxxxxx
Routine CKPROC produces this message every time UPIC detects a new
listing page. UPIC issues this message only if you have specified the
DEBUG control statement option. Class: informative.

B-12 SR-0013 K

c. UPDATE PROGRAM LIBRARY FORMATS

UPDATE accepts two program library (PL) formats. Format 1 PLs can be
read only. These libraries were created with UPDATE 1.05 or earlier,
but they are still available to you. As a preliminary step, UPDATE
always internally converts PL format 1 to PL format 2. When new PLs
are written, the format 2 structure is always used. UPDATE completely
controls the format of the PLs.

C.l FORMAT 1 - SEQUENTIAL PL STRUCTURE (COS ONLY)

Format 1 (figure C-l) is a sequential PL structure and applies only to
COS operation. Each section of a sequential PL (decks and lists) is
separated by an end-of-file (EOF). Decks consist of individual line
images that, in a sequential PL, are not separated by an end-of-record
(EOR). Details of each format follow.

Deck 1

Deck 2

Deck n

Deck List

ID List

Master Word

Figure C-l. PL Format 1

One 2-word entry for
each DECK/COMDECK

One 1-word entry for
each identifier name

SR-0013 K C-l

PL line format:

o 8

o I S I SEQ

1

(UDC+2)/4 UD n _3

n

Field Word

S o

SEQ o

NCHAR o

UDC o

o

1-(UDC+2)/4

16

UDn_2

Bits

o

1-24

25-31

32-47

48-63

24 32 40

I NCHAR UDC

UDn_1

Line Image

Description

Line status bit:
o Inactive
1 Active

Sequence number

48 56

UDn

Number of characters in line text

Descriptor count

First UPDATE descriptor (identifies
name that introduces the line)

Modification descriptors giving deletion identifier names

The length of the line image is NCHAR bytes.

Descriptor format:

012

Field Bits

D o

1

ID 2-15

ID

15

Description

Descriptor status:
o Deactivated line
1 Activated line

Reserved

Identifier number or name

63

C-2 SR-0013 K

Deck list entry format:

o 8 16 24 32 40 48 56 63

o NA~

1 1//1

Field Word

NAME o

1

ID list entry format:

o 8

Field Bits

NAME 0-63

Master word format:

o 8

CC MC

Field Bits

CC 0-7

MC 8-15

DKCNT 16-39

IDCNT 40-63

Bits

0-63

16 24

Description

Description

Name of DECK or COMDECK
(left-justified, zero-filled)

Reserved

32 40 48

NAME

56

Identifier name (left-justified, zero-filled)

16 40

DKCNT IDCNT

Description

PL check character (1418=lowercase A)

PL master character

Length of the deck list

Length of the ID list

C.2 FORMAT 2 - RANDOM PL STRUCTURE

63

63

Format 2 (figure C-2) is a random PL structure. Each section of a random
PL is separated by an EOF record, and line images within each deck are
separated by EOR. However, the identifier table and PL information
contain no EOR. Details of each format follow.

SR-0013 K C-3

Comdeck 1

Comdeck 2

Comdeck n

Identifier
Table

PL Information
Table

Figure C-2. PL Format 2

PL line format:

0 8 16 24 32 40

0 ISIIIIIIIIIIIIIIIII SEQ HDC

1 UD2 UD 3 UD 4

(HDC+2)/4 UD n _3 UDn_2 UDn_1

n Line Image

Field Word Bits Description

S 0 0 Line status:
0 Inactive
1 Active

0 1-16 Reserved

C-4

48 56 63

UD1

UD5

UDn

SR-0013 K

Field Word Bits Description

SEQ 0 17-33 Line sequence number

HDC 0 34-47 Header descriptor count

UD1 0 48-63 First UPDATE descriptor (specifies
name introducing the line)

UDi-UDn 1-(HDC+2)/4 Modification descriptors

The format of each descriptor is identical to the corresponding
descriptor fields in the PLs of format 1.

Identifier Table format:

o 8 16 24

o

1 TYPE I I / / / / / I I I ID

Field Word Bits

NAME o 0-63

TYPE 1 0-7

T 1 8-9

1 10-15

Y 1 16

t Field is not used under UNICOS.

SR-0013 K

32 40 48 56

NAME

Description

Identifier name (left-justified,
zero-filled)

Identifier type:
o Modification
1 Deck
2 Common deck
3 Common deck/no propagation

Temporary flag (used internally,
always 0 in PL)

Reserved

Yank flag:
0 Mod, deck, or common deck not

deactivated
1 Mod, deck, or common deck

deactivated

63

C-5

Field Word

C 1

ID 1

pas 1

Bits

17

18-31

32-63

Description

Correction History Good flag:
o Correction history information

not attached to deleted line
1 Correction history present in PL

for this modification

Identifier number

Position of deck within PL (0 if
TYPE=O)

PL Information Table format:

Field

CC

MC

C-6

o
1

2

o 8

CC

16

MC III

24 32 40

IDCNT

DATE

LEVEL

3 1///1

48 56 63

IDPOS

DW PLDW

4 1//1

5 SIGNATURE

Word Bits Description

o 0-7 PL check character:
(1428=b - fixed-length record)
(1438=c - variable-length record)

o 8-15 Default master character for input
and source datasets

NOTE

UPDATE 1.13 and higher use 2528 internally to
represent the PL master character, thereby allowing the
master character for input directives to be changed.
Because of this change, previous UPDATE releases cannot
process input directives for PLs created by UPDATE 1.13
and higher.

SR-0013 K

Field Word

PLMC o

o

IDCNT o

IDPOS o

DATE 1

LEVEL 2

3

DW 3

PLDW 3

4

SIGNATURE 5

SR-0013 K

Bits

16

17

18-31

32-63

0-63

0-63

0-43

44-53

54-63

0-63

0-63

Description

Master Character flag. If set,
master character on directives in
PL is 252 8 ; otherwise, MC is
used.

Reserved

Number of Identifier Table entries

PL position of start of Identifier
Table

ASCII date of PL creation

Name of last identifier added to PL

Reserved

Default data width for compile and
source datasets. If 0, 72 is
used; if variable-length record
PL, all bits are set (1777b).

Number of characters saved for
each line in the PL. If 0, 80 is
used; if variable length record
PL, all bits set (1777b).

Reserved

'HIST OK' if bad correction
histories were removed

C-7

D. PLCOPY UTILITY PROGRAMt

You can use the utility program plcopy to convert blocked, single-filed
COS program libraries (PLs) into multifiled, unblocked UNICOS PLs. The
COS PLs must have been created with PL format 2 (UPDATE version 1.06 or
higher). However, if the blank compression character in the PL is
changed, plcopy does not work.

Format:

plcopy -i inpath [-0 outpathJ

-i inpath Path and file name of the COS PL to be converted

-0 outpath

t UNICOS only

SR-0013 K

Path of an empty UNICOS directory that receives the
converted PL. If the directory you specified is not
empty, plcopy aborts and no conversion occurs. If
you do not specify a directory, the current working
directory path is taken.

D-1

E. UPDATE DIRECTIVE SUMMARY

This appendix contains a summary of the UPDATE directives and their
accepted abbreviations. A detailed description can be found on the
referenced pages of this manual.

Directive Abbreviation

I comment None

BEFORE B

CALL CA

COMDECK CDK

COMPILE C

COpy Cy

CWEOF None

DECK DK

DECLARE DC

DEFINE DEF

DELETE D

EDIT ED

ELSE None

SR-0013 K

Description

Indicates documentation
directive

Inserts text before specified
line

Calls common deck

Defines common text
sequence

Specifies compile dataset
contents

Copies text into new PL or
dataset

Conditionally writes end
of file to compile dataset

Defines text sequence

Declares deck for
modifications

Defines name used by IF

Deletes line or text range

Removes inactive lines
from deck

Determines whether following
text is written to compile
dataset

3-7

3-7

3-8

3-8

3-9

3-10

3-11

3-12

3-12

3-12

3-13

3-13

3-14

E-1

Directive Abbreviation

ELSEIF None

ENDIF None

FILE None

ENDSKIP None

IDENT ID

IF None

INSERT I

LIST None

MASTER None

MOVEDK None

NOLIST None

NOSEQ None

PURGE None

PURGEDK None

READ RD

RESTORE R

E-2

Description

Specifies a condition
for evaluation when no
condition in the same IF
group was true

3-14

Ends an IF group 3-15

Closes current compile dataset 3-15
and opens new one (UNICOS only)

Ends a list of directives 3-23
that are to be skipped

Defines modification set 3-16
identifier

Begins conditional text
range and determines whether
following text is written
to compile dataset

Inserts text after specified
line

Starts input listing

Changes the master
character for input
directives

Alters deck position

Stops input listing

Stops sequence number
writing to compile ~ataset

Removes a modification set
permanently from the PL

Removes a deck or common
deck permanently from the PL

Reads input from alternate
dataset

Reactivates deleted lines

3-17

3-18

3-18

3-19

3-19

3-18

3-22

3-20

3-20

3-21

3-21

SR-0013 K

Directive Abbreviation Description Page

REWIND None Rewinds a local dataset 3-22

SEQ None Begins sequence number 3-22
writing to compile dataset

SKIP None Begins a list of directives 3-23
that are to be SKIPPED

SKIPF None Skips over files in dataset 3-24
(COS only)

UNYANK None Restores yanked deck or 3-26
modification set

WEOF None Writes an EOF to the compile 3-24
dataset

WIDTH None Changes line length in 3-25
compile dataset

YANK None Temporarily removes a deck or 3-26
modification set from a PL

SR-0013 K E-3

INDEX

INDEX

Abort (AUDPL), 5-5
none despite error, 2-15

Active lines directive (AUDPL), 5-10
ACTIVE (AUDPL), 5-10
APML with UPIC, 7-1
Assembly

listings and UPIC, 7-2
warnings, omit with UPIC, 7-4

Associativity of input, 1-14
AUDPL, 5-1 through 5-24

control statement (see separate entry)
directives (see separate entry)
messages, B-7
no abort, 5-5
output, 5-13
restrictions, 5-1
sample listing, 5-20
summary options, 5-5
text line options, 5-8

AUDPL command line (UNICOS), 5-6
comment character, 5-7
identifier names file, 5-6
input file name, 5-6
justification, 5-7
listing file name, 5-6
listing options, 5-8
master character, 5-6
modifications file name, 5-6
PL file name, 5-6
pulled modification sets, 5-8

AUDPL control statement (COS), 5-1
binary identifier list dataset name, 5-2
comment character, 5-3
data width value, 5-3
input dataset name, 5-2
justification, 5-4
listing dataset name, 5-2
listing options, 5-5
decks, 5-4
listing width, 5-3
master character, 5-3
modifications dataset name, 5-2
PL dataset name, 5-2
pulled modification sets, 5-4

AUDPL directives, 5-9 through 5-13
ACTIVE, 5-10
/comment, 5-9
COND, 5-10
DIR, 5-11
HISTORY, 5-11
INACTIV, 5-12
PULLMOD, 5-12

SR-0013 K

BEFORE, 1-7, 3 - 7
Binary identifier list dataset name

(AUDPL), 5-2
Blank compression, 1-13, D-1

CAL with UPIC, 7-1
CALL, 1-10, 3-8
Called common decks, 2-2, 2-17
CFT and CFT77 with UPIC, 7-1
Changing the data width example, 4-16
Character set, A-1 through A-3
COMDECK, 1-6, 1-9, 1-11, 3-2, 3-8
Command line, 2-16
Command, convention, 1-3
Comment, 3-4

AUDPL character (COS), 5-3
AUDPL character (UNICOS), 5-7
character, 2-4, 2-11, 2-18

Common deck program library, 1-11, 2-17
Common deck, 1-5, 1-6, 2 -2, 3-8
Comparing decks with MODECKS, 6-1
Compilation

date, 1-15
listings and UPIC, 7-2

COMPILE, 3-9
Compile dataset, 1-5, 1-7, 2-4, 2-5

contents, 1-12
directives, 1-6, 1-7, 3-1

CALL, 3-8
CWEOF, 3-11
ELSE, 3-14
ELSEIF, 3 -14
ENDIF, 3 -15
FILE, 3-15
IF, 3-17
NOSEQ, 3-22
SEQ, 3-22
WEOF, 3-24
WIDTH, 3-25

from a common deck example, 4-13
name, 2-2, 2-10

Compile file name, 2-17
Compile output, 1-11, 2-2
Compression character, D-1
COND (AUDPL), 5-10
Conditional text directives, 1-7

AUDPL, 5-10
Conditional text

example, 4-17
summary, 1-16, 2-7, 2-15, 2-21

Context lines with UPIC, 7-2

Index-l

Control statement
AUDPL, 5-1
COS, 2-1
OPTION, 1-15, 5-13
UPIC, 7-2

Conventions, 1-3
Copy modification (AUDPL), 5-5
COPY, 1-14, 3-10
Correction history good flag, C-6
COS

command verb, convention, 1-3
execution, 2-1
listing extraction program, UPIC, 7-1
program library sequence, 1-8

COS control statement, 2-1 through 2-9
called common decks, 2-2
comment character, 2-4
compile dataset name, 2-2
data width value, 2-4
declared modifications option, 2-5
error listing dataset name, 2-3
input dataset name, 2-2
listing dataset name, 2-3
master character, 2-4
message level, 2-6
mode run, 2-6
new PL dataset name, 2-3
output options, 2-7
PL dataset name, 2-1
source dataset name, 2-3

Creating a PL example, 2-8, 2-22, 4-1, 4-2
and a compile file, 4-2
reading input from an alternate

dataset, 4-2
full UPDATE mode, 4-3
calling common deck into user

program, 4-4
Creation run, 1-2, 2-3, 2-18
CWEOF, 1-7, 1-8, 3-11

Data flow, 1-2
Data width value, 2-4, 2-12, 2-18

(AUDPL), 5-3
Dataset

compile, 1-5, 1-7, 1-14
contents, 1-12
definition, 1-5
error, 1-14
input, 1-5
listing, 1-5, 1-15
magnetic tape, 5-1
source, 1-5, 1-6

Dataset contents example, 4-19
creating a new PL from an input file,

4-19
generating an executable program,

4-22
PL modification, 4-20
PL resequenced version, 4-23

Date, 1-15
Deactivate lines, 3-13
DECK, 1-5, 1-6, 1-8, 1-9, 3-4, 3-11

Index-2

Deck, 1-4, 1-5
common, 1-5, 1-11
identif ier, 1-10
name, 1-16
order, 2-7, 2-21
regular, 1-5
removal and positioning example, 4-15
source, 1-4, 1-5

DECLARE, 1-14, 3-12
Declared modifications, 1-15

option, 2-5, 2-13
DEFINE, 1-14, 3-13
Definitions, 1-5
DELETE, 1-6, 3-13
Differences, UPDATE and NUPDATE, 1-1
DIR (AUDPL), 5-11
Directives, 1-6, 3-1 through 3-26

AUDPL (see separate entry)
errors, examples of NA (na), 2-8, 2-23
format, 3-4
summary, E-1 through E-3
two new ones with NUPDATE, 1-1
UPDATE, 3-1

EDIT, 1-14, 3-13
Edited line summary, 2-7, 2-15, 2-21
ELSE, 3-14
ELSEIF, 3-14
END IF , 3-15
ENDSKIP, 3-23
Error

dataset name, 1-15, 2-3
directive, 2-9, 2-23
listing dataset name, 2-11
messages, 8-1

Examples, 4-1 through 4-24, 5-20
changing the data width, 4-16
compile dataset from a common deck, 4-13
conditional text, 4-17
creating a PL, 2-8, 2-22, 4-1, 4-2, 4-3

and a compile file, 4-2
reading input from an alternate

dataset, 4-2
full UPDATE mode, 4-3
calling common deck into user

program, 4-4
dataset contents, 4-19

creating a new PL from an input file,
4-19

PL modification, 4-20
generating an executable program,

4-22
PL resequenced version, 4-23

deck removal and positioning, 4-15
directive format examples, 3-6
extracting decks

for a source dataset, 4-11
for compilation (no source), 4-13

generating a compile dataset from
source, 4-12

generating and using common deck
PLs, 4-6

SR-0013 K

Examples (continued)
with common decks, 4-6
with external common decks, 4-7
modifying a PL with external common

decks, 4-8
input dataset not $IN, 4-10
modifying a PL, 2-8, 2-22, 4-4, 4-5

generating a modified PL, 4-5
testing a modification set, 4-5

multiple input datasets, 4-10
PL editing, 4-16
read from alternative datasets, 4-9
resequencing a PL, 4-14
UNICOS input dataset, 4-11
UPIC, 7-1, 7-5
using *FILE, 4-14

Execution
COS, 2-1
UNICOS, 2-16

Externally defined common decks, 1-11
Extracting decks for

a source dataset example, 4-11
compilation (no source) example, 4-13

File, 1-4
FILE, 3-15

example, 4-11
Fixed-length record, C-6
Full mode, 1-12, 2-6, 2-13, 2-20

Generating a compile dataset from
source example, 4-12

Generating and using common deck
PLs example, 4-6

with common decks, 4-6
with external common decks, 4-8
modifying a PL with external common

decks, 4-8
Generation directives, 2-7, 2-15, 2-21

HISTORY (AUDPL), 5-11

IDENT, 1-5, 1-10, 1-14,3-16
Identifier, 1-7, 1-8

names, 3-6
purged, 1-16
summary, 2-7, 2-15, 2-21
table, 1-11, 2-6, C-3
up to 240 with NUPDATE, 1-1
UPDATE and UPIC, 7-3
yanked, 1-16

IF, 3-17
IF directive names, 2-2, 2-10, 2-17
IN parameter and UPIC, 7-1
INACTIV (AUDPL), 5-12
Inactive lines directive (AU~PL), 5-8
INDENT.PL file, C-4
INFO.PL file, C-4
Input, 1-14

AUDPL dataset name (COS), 5-2
AUDPL file name (UNICOS), 5-6

SR-0013 K

Input (continued)
COS dataset name, 2-1
dataset, 1-5, 1-7

names, 2 -2, 2-9
not $IN, example, 4-10
UNICOS input dataset example, 4-11

directives, 1-5, 1-6, 1-7
echo, 1-17
edit directives, 1-6, 3-3

EDIT, 3-13
ENDSKIP, 3-23
MOVEDK, 3-19
PURGE, 3-20
PURGEDK, 3-20
SKIP, 3-23
UNYANK, 3-26
YANK, 3 -26

file name, 2-16
listing, 2-7, 2-21
UPIC, 7-1

INSERT, 1-7, 3-18
Insertion directive, 3-10
Invoking UPDATE, 2-1

under COS, 2-1
under UNICOS, 2-16

Job deck, 2-1
Job name, 1-15
Justification (AUDPL), 5-4, 5-7

LDR

Line

maps with UPIC, 7-4
with UPIC, 7-1

identification, 3-5
sequence information, suppress, 2-15

LIST, 3 -18
Listable output, 1-15
Listing, 2-1

dataset, 1-5, 1-15, 1-14
AUDPL, 5-9

dataset name, 2-2, 2-10
AUDPL 5-2

decks (AUDPL), 5-4, 5-7
extraction program, UPIC, 7-1
options, 1-16

AUDPL, 5-5, 5-8
UPIC, 7-4

width (AUDPL), 5-3
LOCATE (MODECKS), 6-2
Locate (-1 option), 6-5
Log file messages, UPIC, B-11
Logical operator, 3-16, 3-18
LPP parameter, 1-15, 5-13

Magnetic tape dataset, 5-1
Maps, load, with UPIC, 7-4
MASTER, 1-14, 3-19
Master character, 2-4, 3-1, C-6

AUDPL, 5-3, 5-6
changing, 2-11
changing for UPIC, 7-3

Index-3

Messages, 1-15, B-1 through B-12
level, 2-6, 2-13, 2-20

MODECKS, 6-1 through 6-10
COS example, 6-9
messages, B-9
UNICOS example, 6-10

MODECKS control statement (COS), 6-1
MODECKS command line (UNICOS), 6-5
Modes, 1-12, 2-6, 2-20

full, 1-12, 2-2, 2-6
no rmal, 1-12, 2 - 2, 2 - 6, 2 - 21
quick, 1-12, 2-2, 2-6, 2-20

Modification
commentary, omit with UPIC, 7-4
datasets (AUDPL), 5-2, 5-6, 5-19
declared, 1-14

option, 2 -13
directives, 1-6, 3-2

BEFORE, 3-7
COPY, 3-10
DELETE, 3-13
IDENT, 3-16
INSERT, 3-18
RESTORE, 3-21

errors, example of NA (na), 2-8, 2-23
history directive (AUDPL), 5-11
identif ier, 1-7
overlapping, 1-14
run, 1-2, 2-3, 2-18
set, 1-5, 1-6, 1-8
set identifier~ 1-6, 1-8, 3-5
write unprocessed, 2-8, 2-22

Modification file (mod), 6-1
Modifying a PL example, 2-8, 2-22, 4-4

generating a modified PL, 4-5
testing a modification set, 4-5

MOVEDK, 3-19
Multiple input datasets example, 4-11

COS input dataset, 4-10
UNICOS input dataset, 4-11

New PL
contents, 1-12
dataset name, 2-2
file name, 2-18

NOID parameter to UPIC, example, 7-5
NOLIST, 3-18
Normal mode, 1-12, 1-13, 2-2, 2-6, 2-14,

2-21
NOSEQ, 1-7, 3-22
NUPDATE

COS control statement, 2-9
introduction to, 1-1
mode, 2-13

OPTION control statement, 1-15, 5-13
Options (listing), 1-16, 2-7, 2-21
Ordering all decks, 2-15
Organizing UPDATE input, 1-14
Output, 1-15, 2-2

AUDPL, 5-13
options, 2-7, 2-21
UPIC, 7-2

Index-4

Overlapping modifications, 1-14
Overview, 1-2

Page header lines, 1-15
Page number, 1-15
Parameter order, with COMPILE, 3-9
PL (see Program library)
PLCOPY utility program, D-1
Procedure for PL modification, 1-10
Processing PL modifications, 1-11
Program library (PL), 1-5, 1-8

audit utility (AUDPL), 5-1 through 5-24
common deck, 1-11
creation, 1-9

COS example, 2-8
UNICOS example, 2-22

dataset name, 2-1, 2-9
AUDPL, 5-2, 5-6
new name, 2-10

editing example, 4-16
modification, 1-10

COS example, 2-8
UNICOS example, 2-22

restrictions, 1-9
organization

random, C-3
sequential, C-1

types, 1-13
Propagation parameter, 3-9
PULLMOD (AUDPL), 5-12
Pulled modification sets (AUDPL), 5-4, 5-8

directive, 5-12
PURGE, 1-7, 3-20
Purged identifiers, 1-16
PURGEDK, 1-14, 3-20

Quick mode, 1-12, 2-2, 2-6, 2-14, 2-20

Random PL organizatio~, C-3
READ, 1-8 , 3 - 21
Read from alternate datasets example, 4-9
Reconstructed AUDPL modification sets, 5-17
Record formats

regular length, 1-13
variable length, 1-13, 2-4, 2-6

Regular deck, 1-5
Regular length records, 1-13
Resequencing a PL example, 4-14
RESTORE, 1-7, 3-21
Restrictions, 1-9

AUDPL, 5-1
Revision level, 1-15
REWIND, 3-22
Rewind, 2-9

Run

AUDPL, 5-5
none, 2-15

creation, 1-2
modification, 1-2

Run option directives, 1-6, 3-3
I COMMENT , 3-7
COMPILE, 3-9

SR-0013 K

Run option directives (continued)
COpy, 3-10
DECLARE, 3-12
DEFINE, 3 -12
LIST, 3 -18
MASTER, 3-19
NOLIST, 3-18
READ, 3-21
REWIND, 3 -22
SKIPF, 3-24

Sample listing (AUDPL), 5-20
SEGLDR

maps with UPIC, 7-4
with UPIC, 7-1

SEQ, 3-22
Sequence

information, 2-5, 2-19
suppress line, 2-8

number, 1-8, 3-5
generation, example, 3-5
old scheme, 2-8, 2-15, 2-22
specification, NUPDATE, 2-16

Sequential PL organization, C-1
SKIP, 3-23
SKIPF, 3-24
SKOL with UPIC, 7-1
Source

code, 1-1
dataset, 1-5, 1-6, 1-7, 2-3, 2-5

contents, 1-12
name, 2-3, 2-11

deck, 1-4, 1-5, 1-6, 1-7
output update, 2-8

Standard error, 2-16
Standard out, 2-16, 2-21
Summary

edited line, 2-7, 2-21
identifier, 2-7, 2-21
conditional text, 2-7, 2-21

Symbolic reference map, list with UPIC, 7-4

Text
editor, 1-1
summary, 1-16
line options (AUDPL), 5-5, 5-8

Time, 1-15

UNICOS
command line, 2-16
conventions, 1-3
execution, 2-16
program library sequence, 1-8

UNICOS command line, 2-16
compile file name, 2-17
data width value, 2-18
input file name, 2-16
IF directive names, 2-17
message level, 2-20
mode run, 2-20
new PL file name, 2-18

SR-0013 K

UNICOS command line (continued)
output options, 2-21
user common deck file name, 2-17

UNYANK, 1-6, 3 -26
UPDATE, 2-1

data flow, figure 1-3
differences with NUPDATE, 1-1
identifiers and UPIC, 7-3
invoking, 2-1

under COS, 2-1
under UNICOS, 2-16

listings with UPIC, 7-2
messages, 8-1
modes, 1-12, 2-3, 2-6, 2-20
program library

formats, C-1
generate

from NUPDATE, 2-15
from UNICOS, 2-22

runs, example, 4-16
UPDATE directives, 3-1 through 3-26

begin conditional text, 3-17
call common deck, 3-8

UPIC

User

change input master character, 3-19
change line width in compile dataset,

3-25
close file, 3-15
comment, 3-7
conditionally skip a block of

directives, 3-23
conditionally write end-of-file, 3-11
copy text, 3-10
declare deck for modifications, 3-12
define names, 3-12
delete (restore) decks and modification

sets, 3-21
delete lines, 3-13
edit decks, 3-13
end conditional text, 3-15
identify modification set, 3-16
insert after a line, 3-18
insert before a line, 3-7
introduce a common deck, 3-8
introduce a deck, 3-12
move a deck, 3-19
reactivate lines, 3-21
read alternative input, 3-21
remove deck, 3-20
remove modification set, 3-20
resume (stop) listing, 3-18
reverse condition, 3-14
skip dataset files, 3-24
specify compile or source datasets, 3-9
start (or stop) sequence number

writing, 3-22
summary of, E-1 through E-3
test condition, 3-14
write end-of-file, 3-24

COS listing extraction program, 7-1
Log file messages, 8-11

common deck file name, 2-17
field, 2-1

Index-5

Variable length records, 1-13, 2-4, 2-6,
C-6

Verb, 1-3

WEOF, 1-7, 3-24
Width, data, value, 2-12
WIDTH, 1-7, 3-25

example, 4 -16

Yank flag, 5-19, C-5
YANK, 1-7, 3 - 26
Yanked identifiers, 1-16

Index-6 SR-0013 K

Reader's Comment Form

UPDATE Reference Manual SR-OO

Your reactions to this manual will help us provide you with better documentation. Please take a mome
complete the following items, and use the blank space for additional comments.

List the operating systems and programming languages you have used and the years of experience wit1
each.

Your experience with Cray Research computer systems: __ 0-1 year __ 1-5 year __ 5+years

How did you use this manual: __ in a class __ as a tutorial or introduction __ as a procedural i
__ as a reference __ for troubleshooting __ other

Please rate this manual on the following criteria:

Excellent POOl

Accuracy 4 3 2 1
Appropriateness (correct technicalleveD 4 3 2 1
Accessibility (ease of finding information) 4 3 2 1
Physical qualities (binding, printing, illustrations) 4 3 2 1
Terminology (correct, consistent, and clear) 4 3 2 1
Number of examples 4 3 2 1
Quality of examples 4 3 2 1
Index 4 3 2 1

Please use the space below for your comments about this manual. Please include general comments ab
the usefulness of this manual. If you have discovered inaccuracies or omissions, please specify the nun
of the page on which the problem occurred.

Name ---------_____ _
Title---------____ _
Company-------------­
Telephone------------------------­
Today's date ------------------------

Address--------------­
City---------------­
State/Country-----------­
Zipcode----------------­
Electronic mail address -------------

-------------------------------mllr------~:~~---~
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 6184 ST. PAUL, MN

POSTAGE WILL BE PAID BY ADDRESSEE

RESEARCH. INC.

ATTN: Publications
655 LONE OAK DR BLDG F
EAGAN MN 55121-9957

Reader's Comment Form

UPDATE Reference Manual SR-OO

Your reactions to this manual will help us provide you with better documentation. Please take a mome
complete the following items, and use the blank space for additional comments.

List the operating systems and programming languages you have used and the years of experience wit]
each.

Your experience with Cray Research computer systems: __ 0-1 year __ 1-5 year __ 5+years

How did you use this manual: __ in a class __ as a tutorial or introduction __ as a proceduralJ
__ as a reference __ for troubleshooting __ other

Please rate this manual on the following criteria:

Excellent Poor
Accuracy 4 3 2 1
Appropriateness (correct technical level) 4 3 2 1
Accessibility (ease of finding information) 4 3 2 1
Physical qualities (binding, printing, illustrations) 4 3 2 1
Terminology (correct, consistent, and clear) 4 3 2 1
Number of examples 4 3 2 1
Quality of examples 4 3 2 1
Index 4 3 2 1

Please use the space below for your comments about this manual. Please include general comments ab
the usefulness of this manual. If you have discovered inaccuracies or omissions, please specifY the nurr.
of the page on which the problem occurred.

Name----------------____________ ___
Title----_________ _
Company------____________________ _
Telephone-------------________ _
Today's date ------------

Address---------------------------­
City -----------------------­
StateiCountry------------­
Zipcode-----------------------------­
Electronic mail address -----------------

-------------------------------mllr------~~~~;---
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL
FmST CLASS MAIL PERMIT NO. 6184 ST. PAUL, MN

POSTAGE WILL BE PAID BY ADDRESSEE

RESEARCH. INC.

AnN: Publications
655 LONE OAK DR BLDG F
EAGAN MN 55121-9957

111111111111111111111111111 II 1111111 II II II 1111 II 1111

