

• UNISYS XE500

BTOS
Programming
Reference Manual

Copyright © 1988 Unisys Corporation
All Rights Reserved
Unisys is a trademark of Unisys Corporation

Relative to Release
Level 7.0

Priced Item

May 1988
Distribution Code SA
Printed in U S America
5029077

The names, places and/or events used in this publication
are not intended to correspond to any individual, group, or
association existing, living or otherwise. Any similarity or
likeness of the names, places, and/or events with the
names of any individual living or otherwise, or that of any
group or association is purely coincidental and
unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY
THE DOCUMENT. Any product and related material
disclosed herein are only furnished pursuant and subject to
the terms and conditions of a duly execut~d Program
Product License or Agreement to purchase or lease
equipment. The only warranties made by Unisys, if any,
with respect to the products described in this document are
set forth in such License or Agreement. Unisys cannot
accept any financial or other responsibility that may be the
result of your use of the information in this document or
software material, including direct, indirect, special or
consequential damages.

You should be very careful to ensure that the use of this
information and/or software material complies with the
laws, rules, and regulations of the jurisdictions with
respect to which it is used.

The information contained herein is subject to change
without notice. Revisions may be issued to advise of such
changes and/or additions.

Comments or suggestions regarding this document should
be submitted on a Field Communication Form (FCF) with
the CLASS specified as 2 (S.S.W.:System Software), the
Type specified as 1 (F. T .R.), and the product specified as
the 7 -digit form number of the manual (for example,
5029077).

v

About This Manual

This manual describes XE520 BTOS programming. It
provides supplemental information concerning Unisys
XEBTOS operating system software for systems and
applications programming. In conjunction with the BTOS
operating system reference manual, this manual will assist
the programmer in understanding the concepts of XEBTOSj
Inter-CPU Communications (ICC); and system requests,
procedures, and services. This manual describes the
specific features provided in XEBTOS that are relative to
programming an XE520 system.

Who Should Use This Manual

Systems and applications programmers should use this
manual to understand XEBTOS concepts. The programmers
should be experienced at systems or applications
programming and have a basic understanding of BTOS and
the XE520.

How to Use This Manual

This manual should be used as a supplement to the BTOS
operating system reference manual, which describes
general BTOS information. This manual details
XE520-specific BTOS operating system features, requests,
procedures, and services.

If you are using this manual for the first time, scan the
table of contents and review the topics before you start. To
find definitions of unfamiliar terms, use the glossary; to
locate specific information, use the index.

5029077

vi About This Manual

How This Manual is Arranged
o Section 1 provides a brief overview of XEBTOS, the

XE520 operating system.
o Section 2 describes the concepts pertaining to routing

information between processors developed for the
XE520environment.

o Section 3 describes the ICC facility, which is an
extension of the Interprocess Communications (IPC)
facility.

o Section 4 lists workstation request block level requests
that have been enhanced to use the XE520.

o Section 5 describes the services and procedures that
have been added to BTOS for the XE52P environment.

A glossary and an index follow section 5.

Conventions

The following conventions are used throughout this
manual:
o All numbers are decimals unless otherwise noted.
o XE520 or XE520 system refers to the XE520 hardware.
o XEBTOS refers to the BTOS operating system that runs

on the XE520 hardware.
o The term_BTOS refers to BTOS II.
o Executive commands appear in uppercase.
o Syntactical elements which are not literal (that is, to be

specified by the user), are underlined.
o Processor board names refer to both the standard board

and the X-board. For example, CP refers to both CP
and CP-X.

About This Manual

Related Product Information

For suggested error message responses, refer to your
System Status Codes Reference Manual.

vII

For an explanation of BTOS and information about request
code processing, refer to your Operating System Reference
Manual.

For more information about BTOS commands, refer to your
Standard Software Operations Guide.

For more information about BTOS system calls and
structures, refer to Volume 2 of the BTOS Reference
Manual or the BTOS II System Procedural Interface
Reference Manual.

For information on installing and implementing XEBTOS,
refer to the XE500 BTOS Installation and Implementation
Guide.

For information on administering the XE520 BTOS system,
refer to the XE500 Administration .Guide.

For information on performing those XE520 tasks that are
routinely performed by anyone using the XE520, refer to
the XE500 BTOS Operations Guide.

For information on customizing the operating systems that
run on both workstations and the XE520 processors, refer
to the BTOS II Customizer Programming Guide.

5029077

Contents

About This Manual ••••..••••.••••.•.••••.•••••••••••••
Who Should Use This Manual •••••••••••••••••••••••••••
How to Use This Manual •••••••••••••••••••.•••••••••••
How This Manual Is Arranged •••••••••••••••••••••••••••
Conventions •••
Related Product Information ••••••••••••••••.•••••••••••

Section 1: System Description ••••••••••••••••••••••••
BTOS Features ••
Multiprogramming •••••••••••••••••••••••••••••••••••••••
Event-Driven Priority Scheduling ••••••••••••••••••••••••••
Interprocess Communication ••••••••••••••••••••••••••••••
Inter-CPU Communication (ICC) ••••••••••••••••••••••••••

Messages and Exchanges •••••••••••••••••••••••••••••••
System Service Processes ••••••••••••••••••••••••••••••

Local Resource Sharing Networks (Clusters) •••••••••••••••••
Overlays •••
File Management System ••••••••••••••••.•••••••••••••••••
BrOS Versions •••
General Structure of eTOS •••••••••••••••••••••••••••••••

Section 2: BTOS Concepts for the XE520 ••••••.••••••
Inter-CPU Communications •••.•••••••••••••••••••••••••
Slot Number •••••••••••••••••••••••••••••••••.•••••••••
Doorbell Interrupt ••••••••••••••••••••••••••••••••••••••
Linear Format ••••••••••••.•••••••••••••.••••••••••••••
CPU Description Table ••.••••••••••••••••.••••••••••••••
Terminal Output Buffer •.••••••••••••••••.••••••••••••••
Channel Number •••••••.••••••.••••••••••••••••••••••••

Section 3: Inter-CPU Communication •.•.•...•..•.•••
XE520 Routing Types •••••••••••••••••••••••••••••••••••
XE520 Linear Addressing •••••••••••••••••••••••••.••••••
Blocks •••••••••••.•••••.•••••••••.•••••••••••••••••••••
Interboard Routing •.•••.••.••••••••••••••••••••••••••••

Sending Requests •••••••••••••••••••••••••••••••••••••
How A Message Is Sent •••••••••.••••••••••••••••••••••••

Local Routing? •••••••••••••••••••••••••••••••••••••••
Remote XE520 Processor Routing •••••••••••••••••••••••
Sending Responses ••••••••••••••••••••••••••••••••••••

How A Message Is Received ••••••••••••••••••.•••••••••••
Request? ••
Response? •••

Sending and Receiving Messages ••••••••••••••••••••••••••
Operations •••

5029077

Ix

v
v
v
vi
vi

vii

1·1
1-1
1·1
1·2
1-3
1-3
1-3
1-4
1-4
1·4
1-5
1-6
1-6

2-1
2-1
2-2
2-2
2-3
2-3
2-6
2-8

3-1
3-2
3-3
3-3
3-3
3-4
3-4
3-4
3-4
3-4
3-6
3-7
3-7
3-7
3-9

x

Section 4: Requests Enhanced In XEBTOS •••••••••••.
General Differences ••••••••••••••••••••••••••••••••••••
Alternate Request Procedural Interface •••••••••••••••••••••
Mode Parameters •••••••••••••••••••••••••••••••••••••••
Programmable Interval Timer •••••••••••••••••••••••••••••
Direct Printing ••
Using the Video Control Block ••••••••••••••••••••••••••••
Using Certain SysConfigBlk Fields •••••••••••••••••••••••••
Using VAM and VDM Operations ••••••••••••••••••••••••••
Using the Cluster Status Utility ••••••••••••••••••••••••••••
Byte-stream Video ••••••••••••••••••••••••••••••••••••••
Communications Byte Streams ••••••••••••••••••••••••••••
Specific Request Difference •••••••••••••••••••••••••••••
AllocExch ••
RequestDirect ••
SetTrapHandler •••••••••••••••••••••••••••••••• -•••••••••
QueryDCB •••
GetVhb ••
ServeRQ •••
SetCommlsr and ResetCommlsr •••••••••••••••••••••••••••
DisableCluster ••

Section 5: XE520 Procedures and Services •...••.•..••
GetProclnfo ••
Description •••
Procedural Interface •••••••••••••••••••••••••••••••••••••

GetProclnfo Examples •••••••••••••••••••••••••••••••••
GetSlotlnfo ••
Description ••
Procedural Interface •••••••••••••••••••••••••••••••••••••
Request Block ••
ExpandSpec ••
Procedural Interface •••••••••••••••••••••••••••••••••••••
Request Block ••
OpenTerminal ••
Descri ption ••
Procedural Interface •••••••••••••••••••••••••••••••••••••
Request Block ••
Drain T erminalOutput •••••••••••••••••••••••••••••••••••
Description ••
Procedural Interface •••••••••••••••••••••••••••••••• " •••••
Request Block ••
SetTerminal. •••
Description ••
Procedural Interface •••••••••••••••••••••••••••••••••••••
Request Block •• .-•••••••••••••••••••••••••••••••••••••••
ReadTerminal ••
Description ••
Procedural Interface •••••••••••••••••••••••••••••••••••••
Request Block ••

Contents

4-1
4-1
4-1
4-1
4-2
4-2
4-2
4-2
4-3
4-3
4-3
4-3
4-4
4-4
4-5
4.-5
4-5
4-6
4-7
4-7
4-8

5-1
5-3
5-3
5-3
5-4
5-5
5-5
5-5
5-6
5-7
5·7
5-8
5-9
5-9
5·9
5·9

5-11
5-11
5-11
5·11
5-12
5-12
5·12
5·12
5-16
5-16
5-16
5-17

WhereTermlnaIBuffer................................... 5.19
Description .•••.•••.•••.••••••••••••••••••••••••••••••• 5·19
Procedural Interface. • • • • • • • • • •• • • • • • •• • • • •• •• • • •••• •••• • 5·19
Request Block. • 5·19
CloseTerminal.. 5·21
Description •• 5·21
Procedural Interface. • • •• • • • • • • • • • • • • • • • • • •• •• • • • •• •••• • • 5·21
Request Block.. • 5·21
RemoteBoot • . • . . • . . . • • • . . 5·22
Description •• 5·22
Procedural Interface • • • •• • • • • • •• • • •• • • • • • • •• •• • ••• • •••••• 5·22
Request Block. • 5·22
RequestRemote . • . . . • • • . • 5·24
Description •• 5·24
Procedural Interface. • 5·24
Request Block.. • 5·24
ReadRemote. • 5·25
Description ••••••••••••••••••••••••.••••••••••••••••••• 5·25
Procedural Interface.. • 5·25
Request Block. • 5·25
SetCommlSR•..................•..........••.• 5·26
Description •• 5·26
Procedural Interface.. • 5·26
Request Block. • 5·27
ResetCommlSR • . • . . 5·28
Description •• 5·28
Procedural Interface.. • •• • • • • • • •• ••• • • •• • • •• ••• • •••• ••• •• 5·28
Request Block. • 5·28
InitCommLine. • . • . • • • • . • • . . . 5·29
Description •• 5·29
Procedural Interface... • 5·30
Request Block. • .. • • • • • 5·30
ResetCommLlne. • • . . • 5·31
Description •• 5·31
Procedural Interface.. • • •• • • •• • ••• • • •••••• •• • • • • • ••• • ••• • 5·31
Request Block • • • • • • • • • • • • • • . • 5·31
OpenTape ••.................•..•......•........•...... 5·32
Description •• 5·32
Procedural Interface.. • • •• • • •• • •••• • •• •••• ••• • • • •••• • •• •• 5·32
Request Block. • 5·33
TapeStatus •. . • • . . . • • . • • • • . . 5·34
Description •• 5-34
Procedural Inturface...................... . • • • • • • • • • • • • • • 5·34
Request Block. • 5·35
TapeOperation ... 5·36
Description •• 5·36
Procedural Interfdce.. • 5·36
Command Parameter. • 5·37
Request Block·. • 5·38

5029077

xii

ReadTapeRecords ••••••••••••••••••••••••••••••••••••••
Description ••
Procedural Interface •••••••••••••••••••••••••••••••••••••
Request Block ••
WriteTapeRecords ••••••••••••••••••••••••••••••••••••••
Description ••
Procedural Interface •••••••••••••••••••••••••••••••••••••
Request Block ••
PurgeTapeUser ••••••••••••••••••••••••••••••••••••• ri •••
Description ••
Procedural Interface •••••••••••••••••••••••••••••••••••••
Request Block ••
CloseTape •••
Description ••
Procedural Interface •••••••••••••••••••••••••••••••••••••
Request Block ••••••••••••••••••••••••.•••••••••••••••••

Contents

5·39
5·39
5·39
5-40
5-41
5-41
5·41
5-42
5·43
5-43
5·43
5·43
5·44
5·44
5·44
5·44

Glossary •......•••.•.•••..••••..•..•.•..•••.••..•••••• Glossary-I

Index.. •• • •• • • •• • • • •• ••• • •• • • •• • • • • • • •• • •• • • •• • •• • • • • • Index-I

Figures

1-1

3-1
3-2
3-3

5029077

Relationship of Processes, Tasks, and an
Application System •.••••••••••••••••••••••••
How a Message Is Sent ••••••••••••••••••••••
How a Message Is Received .•••••••••..•••••
Interaction of Client and System Service
Using ICC •••.•.••••..••••••.•••.••••••••••••

xiii

1·2
3·5
3·6

3·8

Tables

2-1

2-2
2-3
3-1
4-1
4-2
4-3
5-1
5-2

5029077

Slot Numbering for Multlenclosure Systems
(shown In hexadecimal numbers) ••••.••••••
CPU Description Table (CDT) Structure ••••••
Output Buffer Data Structure •.••••••.•••••••
XE520 Request Routing Types .••.•••••••••••
Processor Interpretation of n ••••••••••••••••
DCB Changes In XEBTOS ••••••••••••••••••••
VH B Changes In XEBTOS •••••••••••••••••••
Parameter Block Format ••••••••••••••••••••
Baud Rates ••••••••••••••••••••••••••••••••••

xv

2·2
2-4
2·7
3·2
4-4
4·6
4·7

5·14
5·15

Section 1 1·1

System Description

BTOS Features

The XE520 BTOS operating system is essentially the same
operating system that supports distributed processing on
Unisys workstations. BTOS provides system-wide file and
communications services. Generally, the major features of
BTOS include:
o multiprogramming
o event-driven priority scheduling

o Interprocess Communication
o Inter-CPU Communication
o local resource sharing networks
o overlays
o file management system

Other BTOS features include video display with multiple
split screen and color; an unencoded keyboard (only
encoded versions of keyboard operations are available on
the XE520); communication line support; and sequential,
direct, and indexed sequential access methods.

Multiprogramming

BTOS provides a real-time, multiprogramming
environment. Multiprogramming is supported at three
levels: application systems, tasks, and processes. (See
figure 1-1.)
o Any number of application systems can coexist, each in

its own memory partition. An application system is a
collection of one or more tasks that access a common set
of files and implement a single application.

o Any number of tasks (that is, executable programs) can
be loaded into the memory of a partition and be
independently executed.

o Any number of processes can independently execute the
code (instructions) of each task. A process is the basic
element of computation that competes for access to the
processor.

5029077

1-2 System Description

Figure 1-1 Relationship of Processes, Tasks, and an
Application System

Program Code
Program Data

Process
Process

Program Code
Program Data

Process

Program Code
Program Data

Process
Process
Process

Event-Driven Priority Scheduling

Application
System

To meet the need for high performance, the operating
system kernel provides efficient event-driven priority
scheduling.

Each process is assigned one of 255 priorities and is
scheduled for execution based on that priority. Whenever
an event, such as the completions of an I/O operations,
makes a higher priority process eligible for execution,
rescheduling occurs immediately. This results in a more
responsive system than scheduling techniques that are
entirely time-based.

System Description 1·3

Interprocess Communication

The kernel's IPC primitives, such as Request and Wait (or
Check) are the primary building blocks for synchronizing
process execution and transmitting information between
processes.

Inter-CPU Communication (ICC)

The ICC facility, which is an extension of IPC, provides for
communication between CPUs among the different
processor boards on the XE520.

If the requested system service is on the same XE520
processor board as the client process, the kernel uses IPC.
If, however, the service is on a different processor board,
the kernel uses ICC. ICC passes request and response
messages between processor boards.

The XE520 is compatible with the workstations at the
request level. Whether your program runs on an XE520 or
a workstation, it can access system services in the same
way (either by using the request procedural interface or by
calling the kernel primitives).

Messages and Exchanges

When a process needs to send a message to another
process, it sends the address of its message to an exchange.
Sending only the address, instead of the actual message,
reduces system overhead. At the exchange, the first
process can either wait for a response to its message from
the second process or poll for a response. If it waits for a
response, its execution is suspended until the response
occurs; this is how the execution of different processes is
synchronized. If the first process polls for a response, it
resumes execution of the code which sent the message until
a response occurs.

A single process can serve several exchanges. It can send
messages associated with different priorities of work to
different exchanges. This feature can be used to set
priorities for the work the process is to perform. In
addition, several processes can serve the same eXChange,
thereby sharing the processing of a single kind of message.

5029077

1·4 System Description

All processes share a finite pool of exchanges. The
termination of a process automatically deallocates its
exchanges. A process that continues to work but has no
further use for an exchange should relinquish it.

System Service Processes

BTOS includes system service processes which manage
various classes of system resources, such as files and
memory. These processes receive requests for their services
from other processes through IPC, and they are scheduled
for execution in the same manner as application processes.

A system service process is the only software element that
accesses a particular resource, and the interface to a
system service process through IPC is formalized.

Local Resource Sharing Networks (Clusters)

The cluster configuration that executes in the XE520
processors that run XEBTOS is similar to that of the BTOS
workstations. The XE520 provides services to processes
running on workstations such as file management, queue
management, 3270 terminal emulator, and database
management. Services such as video and keyboard
management are performed at the workstations.

Intercluster communications in the XE520 are handled by
Cluster Processors (CPs) in the XE520 enclosures.
Workstations are connected to CPs with high-speed
RS-422 channels.

Overlays

The code in the run fileaf a program using the Virtual
Code management facility either is part of one of several
overlays, or is resident. (In this discussion, a program that
uses the Virtual Code management .facility is called an
overlay program.)

System Description 1·5

When the overlay program begins execution, the resident
code is loaded into memory, where it remains for the
duration of the program's execution. When a call is made
to a procedure in one of the overlays, the Virtual Code
management facility reads that overlay into memory into
an area of memory called the overlay zone so that the
program can continue execution.

The Virtual Code management facility keeps as many
overlays as possible in memory at once. When another
overlay that would exceed the available space is called into
memory, the Virtual Code management facility uses a
least-recently-used (LRU) algorithm to determine which
currently resident overlay to discard.

XEBTOS supports the segment swapping implementation of
virtual memory, allowing overlaid run files to execute on
every processor board of the XE520.

Refer to your BTOS II Language Development
Programming Guide for more information on overlays.

File Management System

The file management system provides a hierarchical
organization of disk file by node, volume, directory, and
file. Volumes are automatically recognized when placed on
line. A file can have a 50-character file name, a 12
character password, and a file protection. You can
dynamically expand or contract a file without limit as long
as it fits on one disk. You can protect the file by a volume
directory, or file password, depending on the level number
you assign t~ a file. You can control concurrent file access
by read (shared) and modify (exclusive access) modes.

While providing convenience and security, the file system
management also provides the full throughput capability of
the disk hardware. This includes reading or writing any
512-byte sector of any open file with one disk access, .
reading or writing up to 65,024 bytes with one disk access,
overlapping input/output with process execution, and
optimizing disk arm scheduling.

In a cluster configuration, files can be located at cluster
workstations that have local storage, as well as on the
XE520 master.

5029077

1·6 System Description

Two File Header Blocks are created for each volume with a
parameter that is set when initializing the disk. This
defaults to creating the secondary volume structures. The
duplication of critical volume control structures protects
the integrity of disk file data against hardware
malfunction. You can recover a file that has been backed
up by using the Executive MRESTORE command, if either
of the File Header Blocks is valid.

Bros Versions

In workstation BTOS, memory can be divided into "more
than two partitions, each with its own application system,
with all the application systems executing simultaneously.

XEBTOS distinguishes between system and application
partitions but not between primary and secondary
partitions.

System services can be installed only when a single
non-system partition exists.

In the XE520 system, there is a tailored version of BTOS
on each processor. Each version can be customized to meet
the needs of an individual installation. This is discussed in
detail in the BTOS II Customizer Programming Guide.

General Structure of BTOS

The five basic components of the BTOS operating system
are:
o the kernel
o system service processes
o system common procedures
o object module procedures
o device and interrupt handlers

The kernel is the most primitive yet powerful component of
the operating system. It provides process management. and
IPC facilities. The kernel schedules process execution,
including the saving and restoring of process context.

System Description 1·7

A process, the basic element of computation that competes
for access to the processor, consists of the following:
o the address of the next instruction to execute on behalf

of this process
o a copy of the data to be loaded into the processor

registers before control is returned to this process
o a stack
o a default response

When you add a system service process, you assign one of
255 priorities to each process so that BTOS can schedule
the process's execution appropriately.

The .kernel's IPe primitives are the primary building blocks
for synchronizing process execution and transmitting
information between processes.

System service processes are standard processes that
manage system resources. These are scheduled for
execution in the same way as application processes. The
five major categories of system services are:
o task management
o network management
o device management
o memory management

A system service can be accessed directly by using the
Request and Wait primitives, or indirectly, by using a
procedure call from a high-level language. Accessing a
system service directly allows an increased degree of
concurrence between multiple I/O operations and
computation.

System common procedures are standard procedures that
perform some common system functions. They are executed
in the same context and with the same. priority as the
invoking process. Examples of system common procedures
are EXIT, which terminates the execution of an application
system.

5029077

1-8 System Description

Object module procedures are supplied as part of an object
module file or library. They are not part of BTOS itself.
Most application systems require only a subset, not a full
set, of these procedures. An example of an object module
procedure is the Sequential Access Method (SAM).

BTOS device handlers and interrupt handlers are accessed
indirectly through the convenient interfaces of the system
service processes.

You can add your own system processes, system common
procedures, device handlers, and interrupt handlers to
BTOS at system build. System build is the name for the
sequence of actions necessary to construct a customized
version of BTOS.

Section 2 2-1

B10S Concepts for the XE520

This section briefly describes BTOS concepts developed for
the XE520 environment, concepts that pertain to the
routing of information between processors.

Before reading this material, you should be- familiar with
BTOS process management. If not, see the discussions on
interprocess and interstation communications fn the
BTOS II System Reference Manual.

Inter-CPU Communications

The Inter-CPU Communications (ICC) facility is an
upward-compatible extension of the Interprocess
Communications (IPC) facility. ICC enables a process on
one processor to obtain a service provided by a process on
another processor.

When a client process on a particular processor requests a
system service, a request block with all the necessary
information is constructed. If the requested service resides
on a different processor, the request block is queued at the
ICC Server exchange on the first processor. The ICC Server
converts the request block into a message which is
transmitted via the system bus to the ICC Server on the
processor where the requested service resides.

The ICC Server on the second processor then converts the
message back into a request block. A CPU Description
Table (CDT) on the second processor is used to locate the
exchange of the system service that is to perform the
requested service, and the request block is queued there.

The response to the request follows a similar route from
the second processor to the first processor and undergoes
similar transformations. All processors have ICC Servers
and CDTs for interboard communications.

Inter-CPU Communications are implemented with the
following concepts, all of which are new to BTOS for the
XE520.

5029077

2-2 BTOS Concepts for the XE520

Slot Number

The slot number is the eight-bit binary number that
uniquely identifies.a particular processor board in an
XE520 system. Processor slot numbers range from a high
of hex 77 to a low of hex 20. The slot number is used by
certain XEBTOS routines to identify a particular processor
and by the hardware to accomplish interboard addressing.
Table 2-1 shows slot number assignments for
multienclosure systems.

You can use the GetProclnfo and the GetSlotlnfo operations
to retrieve such hardware information and. thereby,
explicitly control ICC routing. You would use these
operations if using one of the XE520 routing types defined
in section 3 is not sufficient.

Doorbell Interrupt

Each XE520 processor can send an interrupt, called a
doorbell interrupt, to any other board in the system.
During initialization, a doorbell interrupt awakens a
processor that has just been loaded with that processor's
version of BTOS. During ICC communication, a doorbell
interrupt alerts the target processor that a request or
response needs processing.

Table 2-1 Slot Numbering for Multienclosure Systems
(shown in hexadecimal numbers)

Enclosure PO PI P2 P3 P4 P5 P6 P7

Base 70 71 72 73 74 75 76 77

Expansion 1 60 61 62 63 64 65 66 67

Expansion 2 50 51 52 53 54 55 56 57

Expansion 3 40 41 42 43 44 45 46 47

ExpanSion 4 30 31 32 33 34 35 36 37

ExpanSion 5 20 21 22 23 24 25 26 27

BTOS Concepts for the XE520 2·3

linear Format

XEBTOS describes structures to be read by the processor
using a linear pointer. A linear pointer is a 4-byte quantity
in which the most significant byte is at the lowest address.
A linear pointer is absolute, not segment based.

Like a linear pointer, a linear offset has the most
significant byte at the lowest address; however, it is a
two-byte quantity. The byte ordering is opposite to the
80x86 convention, which puts the most significant byte at
the highest address. Linear offsets are used in XE520 BTOS
to describe structures that must be read by both
80x86-based processors. A linear offset within a structure
is always taken to be the offset relative to the base
structure.

CPU Description Table

Each XE520 processor contains a CPU Description Table
(COT). You can obtain the address of the CDT by calling
GetpStructure with a structCode value of 27. The table
descri bes the processor to other processors, contains the
offsets of the circular buffers used by other processors to
send ICC requests and responses, and contains some
routing information. The COT for the master File Processor
(FP) contains additional routing information and tables
used to translate line and workstation numbers into
particular slot number-port number pairs. Table 2-2
presents the structure of the COT.

5029077

2-4 BTOS Concepts for the XE520

Table 2-2 CPU Description Table (COT) Structure

Size
Offset Name (Bytes) Contents

0 filler$O 8 Unused

8 bProcessorType 1 Type of processor
FP 10
TP 11
CP 12
SP 13
DP 14

9 fWatchDog 1 Flag that is set once per
second by the master FP
and· must be reset within
one second or the
processor is considered
dead.

10 ibRqTakeptr 2 Current request linear
offset.

12 ibRqPutptr 2 Next available request
linear offset.

14 ibRqStartPtr 2 Base of request circular
buffer.

16 ibRqEndptr 2 End of request circular
buffer.

18 ibRespTakeptr 2 Current response linear
offset.

20 ibRespPutptr 2 Next available response
linear offset.

22 ibRespStartptr 2 Base of response circular
buffer.

24 ibRespEndptr 2 End of response circular
buffer.

26 flockByte 1 Used to ensure no race for
the request and response
circular buffer.

eTOS Concepts for the XE520 2·5

Table 2-2 CPU Description Table (CDT) Structure (continued)

Size
Offset Name (Bytes) Contents

27 blnitErrorStat 1 If initialization detects an
error, the code is placed
here.

28 bMemorySize 1 Memory size in kB/128.

29 bBootStruct$FF 1 Signature, value - hex
OFF

30 bBootStruct$O 1 Signature, value - hexO.

31 bBootStruct$A6 1 Signature, value - hex
OA6.

32 bBootCommand 1 Allowable values:

fRunning 0

fBootMe 1

fDumpThenBoot 2

fDumpThenError 3

fF ailed Diagnostics Hex OFO

fRunningDiagnostics Hex OF1

33 bMasterFp 1 Master FP slot number

34 fOslnitialized 1 Hex OFF when OS has
initialized.

35 fFilier 5

40 rgbFPXlate 8 Array of FP slot numbers.

48 rgBusConfig 240 Array of slot
number/processor types.

288 filler 100 Reserved for future
expansion.

388 oTermTable 2 Linear offset of table that
translates workstation
number to slot
number/port.

5029077

2·6 BTOS Concepts for the XE520

Table 2-2 CPU Description Table (CDT) Structure (continued)

Offset Name

390 sTermTable

392 oLineTable

394 sLineTable

396 oRqRoute (17)

430 sRqRoute (17)

Size
(Bytes) Contents

2

2

2

34

34

Size of preceding table.

Linear offset of table that
translates line number to
slot number/port.

Size of preceding table.

Array of information for
routing requests on each
level to other processors.

Size of segment each
level.

Terminal Output Buffer

The terminal output buffer is the structure used to
describe the virtual terminal output device. It consists of a
circular buffer and associated information. A linear pointer
to the terminal output buffer is returned by both
WhereTerminalBuffer and OpenTerminal. There is no
request interface for output; instead, the client process
manipulates the output buffer data structure described in
table 2-3. Note that all operations that involve
modification of the put pointer (loPotPut) must be
single-threaded; the lock-byte, foLock, ensures this. File
system requests to XE520 masters are not single-threaded
through the master FP or DP.

BTOS Concepts for the XE520 2·7

Table 2-3 Output Buffer Data Structure

Size
Offset Name (bytes) Contents

0 10OutTop 2 Offset from header to first
data byte in the first in,
first out (fifo) buffer. The
first byte is the one at the
lowest address (nearest hex
0000).

2 10OutBot 2 Offset from the header to
the bottom of the fifo. The
bottom byte is one past the
data byte occupying the
highest address.

4 100utGet 2 Offset from the header to
the byte that the output
interrupt routine will fetch
next. After this byte is
fetched, this pointer is
incremented. Thus, the
discipline is
post-incremented.

6 100utPut 2 Offset from the header to
the next client byte. Like
the Get pointer, this pointer
is post-incremented. Note
that if the two pointers are
equal, the buffer is empty.
If the module increment
from the Put pointer equals
the Get pointer, the buffer
is full. All manipulations of
the Put pointer must be
done with the lock byte set.

a foLock 1 A semaphore used to
protect the Put pointer from
multiple writers (including
the Terminal Processor
itself). Setting the sign of
the byte to nonzero will
keep others from using the
Put pointer.

5029077

2·8 BIOS Concepts for the XE520

Table 2-3 Output Buffer Data Structure (continued)

Offset Name

9

10-
17

foCarrier

rgbAP

Channel Number

Size
(bytes) Contents

1

8

A boolean flag describing
the sense of the line carrier
with hex 000 representing
False and hex OFF
representing True. For
dataset lines, this flag
tracks the OCD (data carrier
detect) signal. For
hardwired lines, foCarrier is
always true.

An 8":'byte area reserved for
the use of the clients of the
port.

The channel number is a logical number used to designate a
particular port on a Cluster Processor (CP) or Terminal
Processor (TP).

Channel numbers for a CP are as follows:

Device

8274A

8274B

8251

,

Backpanel Label

Channell

Channel 2

Channel 3

Bros Concepts for the XE520 2·9

Channel numbers for a TP are as follows:

Device Backpanel Label

8274#IA Channell

8274#IB Channel 2

8274#2A Channel 3

8274#2B Channel 4

8251#2 Channel 5

8251#1 Channel 6

8251#4 Channel 7

8251#3 ChannelS

8251#6 Channel 9

8251#5 Channel 10

5029077

Section 3 3·1

Inter-CPU Communication

The Inter-CPU Communication (ICC) facility provides for
communication between CPUs among the different
processor boards on the XE520. ICC is an extension of
Inter-Process communication (IPC).

The XE520 is compatible with the workstations at the
request level. Messages passed between a client and a
system service on the same processor board use IPC. The
kernel routes the request to the system service exchange;
the system service performs its function and responds to
the client's exchange, acknowledging service completion.
Requests routed locally on a single XE520 processor board
also use IPC.

When a client requests a system service, the kernel
examines its request routing table to determine, for
example,
o if the request block is correctly formed
o to which system service the request is to be sent

These actions are taken in the case of ICC or IPC. However,
the destination to which the request is sent determines if
the request is handled as a normal IPC message or if it is to
be routed by ICC.

ICC involves interboard routing or the passing of the
request and the response message between processor
boards. To accomplish this, ICC uses
o processor boards identified by slot numbers
o XE520 routing type information in the operating

system's request routing table
o an ICC Server Agent on each processor board, which

issues requests on behalf of a client on a different
processor board

o communication between processors over a high-speed
bus

o linear pointers and linear offsets for interboard
addressing

5029077

3·2 Inter-CPU Communication

o Y -blocks and Z-blocks for storing copies of request
blocks

o a request ring buffer and a response ring buffer in a
CPU Description Table (COT) on each processor board

o a doorbell interrupt

Processor board slot numbers, linear pointers and linear
offsets, and doorbell interrupts are discussed in section 2.

XE520 Routing Types

Table 3-1 describes each of the XE520 routing types used
to define requests on the XE520. If you are writing a
system service for the XE520, you will need to include an
XE520 routing type in your system service request
definition(s). For more information, refer to the BTOS II
System Reference Manual.

Table 3-1 XE520 Request Routing Types

Field Description

rLocal* The request is served on the same board. The
service exchange is indicated by the service
exchange field in the operating system request
routing table. ,.

rRemote*

rMasterFP

rHandle*

The request is routed remotely, however, if a file
specification for a remote board is included in the
request block. In this case, a file system filter calls
RequestRemote and routes the request to the board
specified by a slot number in the Master Processor
global slot number table.

Same as rLocal if the request is served locally. If the
request is not served locally, it is searched for in the
Master Processor global slot number table.

When a system service calls ServeRq during
installation, ServeRq updates the Master Processor
global slot number table to reflect the system
service's slot number.

The request is routed to the Master FP.

The request is routed by an indexed field in the file
handle.

Inter-CPU Communication 3·3

Table 3-1 XE520 Request Routing Types (continued)

Field Description

rFileld The first byte of control information in the request
block contains the slot number of the board to
which the request is routed.

fMasterCp (Unused)

rLine# The request is routed to the Cluster Processor (CP)
that handles this line. This routing type is used by
the MegaFrameDisableCluster operation.

Each CP has two lines. For example, CPOO has lines
1 and 2; CPOOI has lines 3 and 4; and so on.

*This type is frequently used.

XE520 Linear Addressing

XE520 linear addressing becomes important if you are
writing programs that will run on multiple boards. For
example, if a client requires a system service located on a
processor board other than the one that the client is on,
you cannot use equivalent addresses in your program logic.

Blocks

Blocks are areas of memory allocated for ICC and for
cluster communication. Y -blocks and Z-blocks are used for
holding ICC messages. A Z-block is used if the message can
fit into a small number of bytes; otherwise, a Y -block is
used. The size and number of these blocks is determined at
system initialization.

Interboard Routing

Each XE520 processor board provides for the sending and
receiving of messages. In the following description of
interboard routing, the actions for the sending and·
receiving of messages are described separately.

5029077

3·4 Inter-CPU Communication

Sending Requests

In figure 3-1, a client calls a Request located at the
address referenced by the pointer (pRg). The kernel uses
the request code (Rq) as an index into the routing table to
determine the XE520 routing type. The routing type tells
the kernel where to route the request.

How A Message Is Sent

Sending a message is summarized in figure 3-1.

Local Routing?

If request routing indicates that the request is to be served
locally and a local server exists, ICC is not used. The
request is routed using the normal procedures of IPC.

In figure 3-1, the pointer (pRq), when referencing a
request served locally is a logical memory address.

Remote XE520 Processor Routing

If request routing indicates that the request is to be served
off board (for example, on a different XE520 processor),
ICC is used to send the request.

To send the request, the kernel

1 Enters the client's return address into the CDT request
ring buffer on the receiving XE520 processor.
The ring buffer entry consists of 5 bytes that describe
the client's return address: 1 byte defines the client
board's enclosure and slot number; 4 bytes define the
client's request block linear address.

2 Sends a doorbell interrupt to the receiving board.

Sending Responses

Figure 3-1 also shows sending responses.

A response to a request originated remotely must be sent
back to the client on the requesting XE520 processor .. The
kernel recognizes a response to be routed remotely by the
request block response exchange number.

I nter-CPU Communication

Figure 3-1 How a Message is Sent

OS Routing Table
----~ ... ----

ReQUTCodO

1-___ -1 XE520 Routing Type

Ring Buffer Entry

I Enclosure/Slot Number
.... ___ of Client

Unear Address
of Request Block
(pRq)

To return the remotely response, the kernel takes the
following actions:

3·5

1 copies the pb/cb response buffers and a status code to
the client's request block memory on the client's board

2 frees the Z-block (or Y -block) holding a copy of the
client's request block (in the server's processor
memory)

5029077

3·6 Inter-CPU Communication

3 places the client's return address in the CDT response
ring buffer on the client's board

4 sends a doorbell interrupt to the client's XE520
processor

How A Message Is Received

Receiving a message is summarized in figure 3-2.

In figure 3-2, the doorbell interrupt from the sending
board alerts the ICC Server Agent on the receiving XE520
processor that it has received a remote message in one of
its CDT ring buffers.

Figure 3-2 How a Message Is Received

ZBlock:

Return Address
of Request Block

Request Block

Inter-CPU Communication 3·7

The ICC Server Agent examines the ring buffer entry to see
if it is a request or a response.

Request?

If the ring buffer entry is a request, the ICC Server Agent

1 Calculates the size of the request by examining the size
of the client's request block memory. The ICC Server
Agent uses the size to reserve a Z-block (or a Y -block)
in the receiving XE520 processor's memory.

2 Copies the request block contents and the client's return
address into the reserved Z-block.

3 Calls Request, providing the memory address of the
Z-block.
In figure 3-2, Request(pZblock) ·repeats the sending
requests procedure in figure 3-1.

The kernel on the receiving board routes the request to the
specified service exchange. The message is processed using
IPC.

Response?

If the ring buffer entry is a response, the ICC Server Agent
calls the Respond primitive (pRq) to alert the kernel on the
receiving board to route the response back to the client's
local response exchange.

Sending and Receiving Messages

Figure 3-3 shows the interaction of client A on a Cluster
Processor (CP) board and system service B on a File
Processor (FP) board.

In figure 3-3, client A on the CP board requests (AI) a
service provided by system service B on the FP board. The
kernel on the CP board places the request block return
address in the FP board's CDT request ring buffer and.
rings the FP's doorbell.

The ICC Server Agent on the FP board copies the request
block contents to a Z-block (or Y -block) in the FP
processor and calls Request (AI'). The kernel on the FP
board examines Request (AI'), and sends it to system

5029077

3·8 Inter-CPU Communication

Figure 3-3 Interaction of Client and System Service Using
ICC

service B's service exchange, satisfying system service B's
Wait (B2). System service B processes the request and
responds (B3).

The kernel on the FP board acts on the Respond (B3) by
copying the response back to client A's request block,
placing an entry in the CP's CDT response ring buffer, and
ringing the CP's doorbell.

The ICC Server Agent on the CP board examines the
response ring buffer and calls Respond (B3'). The kernel on
the CP board sends Respond (B3') to client A's response
exchange, satisfying the client's Wait (A3).

Note that Request and Respond function in two ways in
figure 3-3. One set of Request and Respond send
information to another board; the other Request and
Respond are queued at an exchange.

Inter-CPU Communication 3·9

Operations

The ICC operations are described below. These operations
are not available to BTOS workstations. (Refer to section 5
for a complete description of each operation.)

GetProcInfo returns the name of the processor on which
the caller is running.

GetSlotInfo determines the slot numbers of other
processors in the XE520.

RemoteBoot causes another dormant processor to be
bootstrapped with a specified System Image.

RequestRemote requests a system service from a remote
processor by sending the request to the ICC Server Agent
of that remote processor.

5029077

Section 4 4-1

Requests Enhanced in XEBTOS

XE520 processor boards and workstations execute most of
the same BTOS II standard software run files, and the
XE520 and workstations support a single version of
CTOS.lib. For more information, refer to the XE500 BTOS
Administration Guide.

In addition, most of the XEBTOS requests have the same
names and functions as their workstation counterparts and
are compatible at the request block level. This section lists
those requests which have been enhanced to make use of
the XE520 hardware.

General Differences

The general differences between XEBTOS and workstation
BTOS II are described in the following subsections.

Alternate Request Procedural Interface

With XEBTOS, you can use an alternate request procedural
interface to issue requests with other than the default user
number. This eliminates the requirement for you to
manually construct request blocks. You invoke this feature
by prefixing the name of an operation with "alt" and
supplying the desired user number as the first parameter
to the procedure. For example, to issue a Close File request
with user number 5 and file handle fh, you make the
calling s~quence AltCloseFile (5, fh).

Mode Parameters

XEBTOS supports the mode peek parameter. Mode peek is
a possible value for one of several mode parameters;
examples of additional parameters are mode read, mode
write, mode access, mode append and mode modify. All of
these parameters are 16-bit values representing ASCII
constants. In these ASCII constants, the first character (m)
is the high-order byte and the second character (r, w, and
so forth) is the low-order byte.

5029077

4·2 Requests Enhanced In XEBTOS

Mode peek allows read access to a file without preventing
a different user from modifying the file. Mode peek opens a
file in the same way mode modify opens a file. The
operating system puts existing mode peek handles into a
state where subsequent operations return error 235. Then
it allows mode modify to open the file. Mode peek is useful
with files like the Executive Message file, which you may
want to update but find constantly opened.

Programmable Interval Timer

The XE520 programmable interval timer runs at a
frequency of 19.5 KHz (providing a 51.3 msec resolution)
as it does on workstations. You may have to alter your
applications to run them under the 51.3 msec resolution.
Refer to the BTOS II Customizer Programming Guide.

Direct Printing

XEBTOS does not support direct printing.

Using the Video Control Block

XEBTOS does not maintain the video control block (VCB).
The system common pointer which pointed to the VCB in
workstation BTOS now points to the CPU description table
(COT). Therefore, programs that make direct use of the
video control block must be converted before they can run
under XEBTOS. For more information on the COT, refer to
section 2.

Using Certain SysConfigBlk Fields

You must change programs running on workstation BTOS
which use the fLocalFileSystem and WsType fields of the
System Configuration Block to run under XEBTOS. If the
Hardware Type field in the System Configuration Block
contains a value outside the range between 10 and 19, .
assume your system is now running on workstation BTOS
and change the fLocalFileSystem and W sType fields.

Requests Enhanced in XEBTOS 4·3

Using VAM and VDM Operations

The XE520 supports a subset of the Video Access Method
(V AM) operations only and one Video Display Method
(VDM) operation only. Supported V AM operations include
PosFrameCursor, PutFrameAttrs, and ScrollFrame; the
supported VDM operation is ResetFrame.

Operations within the V AM subset and the operation
within VDM are restricted to provide the functionality of a
dumb terminal and do not cause any operation to take
place. In addition, PutFrameChars, a VDM operation,
outputs characters on the screen but ignores the specified
screen coordinates.

Using the Cluster Status Utility

The Cluster Status utility reports cluster errors seen by
workstations. Cluster Status utility polling and response to
polling occur at interrupt level, and termination requests
are sent as a single transaction.

Line 0 is invalid when running the workstation Cluster
Status utility from a workstation that is clustered to an
XE520. This is the only restriction.

Byte-stream Video

In XEBTOS, byte-stream escape sequences (beginning with
hex OFF) are ignored. The output model is that of an
RS232-C serial terminal. Standard byte-stream sequences
are supported.

Communications Byte Streams

Communications byte streams support the 8251 chip on
both the Cluster Processor and Terminal Processor
processor boards. The support of the chips allows you to
access port C on the CP board and ports E through J of the
TP board in the same way as other RS232-C
communication ports.

5029077

4·4 Requests Enhanced In XEBTOS

The interpretation of n as in [Comm]n depends on whether
it is executed on a Terminal Processor or on a Cluster
Processor. n has to be running in the processor with the
port that is being addressed. Table 4-1 illustrates the
different interpretations.

Table 4-1 Processor Interpretation of n

Terminal Cluster
n Channel Processor Processor

A 1 8274#1A 8274A

8 2 8274#18 82748

C 3 8274#2A 8251

D 4 8274#28

E 5 8251#2

F 6 8251#1

G 7 8251#4

H 8 8251#3

9 8251#6

J 10 8251#5

Specific Request Difference

Changes in specific requests that have been enhanced to
make use of the XE520 hardware are listed in this
subsection. Refer to the BTOS II System Reference Manual
for more information.

AllocExch

The AllocExch service allows direct interboard message
passing. XEBTOS assigns unique exchange values across all
XE520 processor boards to accomplish this. Applications
should not expect the values of exchanges to be in any
particular range under XEBTOS. Exchanges can have any
value up to 65,535.

Requests Enhanced in XEBTOS 4·5

RequestDirect

The RequestDirect kernel primitive allows direct interboard
message passing. Each XE520 processor board has a unique
exchange value; the value is returned whenever you call
the AllocExch service. RequestDirect works with the
Genetic Print System (GPS) to install multiple printer
drivers. The GPS routing switch uses RequestDirect to
issue work to drivers installed on different boards.

SetTrapHandler

The SetTrapHandler operation does not create trap
handlers that are part of a partition's context; therefore,
trap handlers are not switched when processes run in a
different context. Instead, the trap handlers are global to
the processor board on which SetTrapHandler executes.
Because of this, only one program per processor board can
use software traps. The software trap handler's primary
client is the Pascal floating-point run-time library.

QueryDCB

The QueryDCB service copies the Device Control Block
(DCB) of the specified device to the specified memory area.
The information is truncated if it cannot fit in the memory
area. There is a DCB for each physical device. For example,
the DCB for a disk includes the number of tracks per disk
and the number of sectors per track. The DCB points to a
chain of I/O blocks.

QueryDCB needs no password. To prevent security
violations, a string of zeros is returned in the DCB device
(sbPassword) field.

The DCB structure is slightly different under XEBTOS.
Table 4-2 lists these changes.

5029077

4·6 Requests Enhanced in XEBTOS

Table 4-2 DCB Changes in XEBTOS

Size
Offset Field (Bytes) Description

65 gaplength 1 WdlOlO/Wd2010
intersector gap parameter.

66 writePrecompt 1 Cylinder after which write
precomposition is used.

67 stepRate 1 WdlOlO/Wd2010 step rate
value.

76 fEccFormat 1 True if disk formatted in
ECC mode.

77 reserved 1

78 fOnLine 1 True if drive is on line (used
in polling).

79 flnhibitEcc 1 For SMD drives.

GetVhb

The GetVhb service copies the Volume Horne Block (VHB)
of the specified device to the specified memory area. If the
specified area is not large enough to hold the requested
information, XEBTOS truncates the information.

GetVhb requires no password. To prevent security
violations, zeros are returned in the vol Password field of
theVHB.

The VHB structure is slightly different under XEBTOS, as
shown in table 4-3.

Requests Enhanced in XEBTOS

Table 4-3 VHB Changes In XEBTOS

Offset Field (Bytes)

247 SeekStepRate 1

248 gapsize 1

249 WritePreCompCyl 1

250 devType 1

251 reserved 5

ServeRQ

4·7

Description

Wdl0l0jWd2010 step
rate value.

Wdl0l0/Wd2010
intersector gap
parameter.

Cylinder after which
write precomposition is
used.

00 == fixed disk
81 == EPI tape

The ServeRQ service is the part of a dynamically installed
system service process that serves a specified request code.
Future requests containing this request code are queued at
a specified exchange.

ServeRQ functions the same way on XEBTOS as on
workstation BTOS. The XE520 enhancement involves the
visibility of the request. If the routing type of the request
is rRemote, the server is globally visible to all processors in
the XE520 system. Otherwise, only the pr.ocessor on which
ServeRQ is issued can see the server.

SetCommlSR and ResetCommlSR

The SetCommISR service establishes the Communications
Interrupt Services Routines (CISRs) for the specified
communications channel. Separate CISRs are established to
process transmit, external/status, receive, and special
receive conditions. The ResetCommISR purges the CISRs.

5029077

4·8 Requests Enhanced in XEBTOS

Allowable values for the parameter iLine, which identifies
the SIO channel, are extended on a Cluster Processor as
follows:
o 0 refers to Channel 1
o 1 refers to Channel 2 (8274 Channels B and A,

respectively).

Note: SetCommlSR and ResetCommlSR are now available for
backwards compatibility only. InitCommLine has been
implemented as a replacement for SetCommlSR. ResetCommLine
has been implemented as a replacement for ResetCommlSR.

DisableCluster

The DisableCluster service allows an application system on
the master terminal to disable polling of the cluster
terminals after a specified time period. This service is also
used to resume polling of the cluster terminals.
DisableCluster optionally disables all cluster lines except
for that line where the request was issued.

Section 5

XE520 Procedures and Services

This section describes procedures and services that have
been added to BTOS for the XE520 environment. These
procedures and services fall into five categories.

Return Information:

GetProclnfo returns information about the processor on
which the application is running.

5·1

GetSlotlnfo returns the slot numbers of the processors in
a particular category.

ExpandSpec returns an expanded file specification that
includes information from the caller's path.

Handle terminal input/output:

OpenTerminal prepares a terminal for I/O.

DrainTerminalOutput ensures that a terminal output
buffer is empty. Usually·used prior to a SetTerminal
operation.

SetTerminal ascertains or changes the characteristics,
both hardware and software, of a terminal.

ReadTerminal reads one or more characters from a
terminal.

WhereTerminalBuffer locates a terminal buffer for
output.

CloseTerminal closes an open terminal.

Route interprocessor communications:

RemoteBoot loads a designated processor with an
operating system and starts the execution of the image.

RequestRemote sends a request to a particular processor.

ReadRemote receives standard read requests mapped by
the ICC if remote Direct Memory Access (DMA) is required.

Route comunications:

SetCommISR establishes the Communications Interrupt
Services Routines (CISRs) for the specified communications
channel.

5029077

5-2 XE520 Procedures and Services

ResetCommISR purges the Communications Interrupt
Services Routines (CISRs) previously established for the
specified communications channel.

InitCommLine allocates a communications channel (serial
port) to the user and specifies how interrupts from the
channel are to be serviced.

ResetCommLine resets the comm line

Handle half-inch magnetic tape:

CloseTape removes a user's exclusive access to a specified
tape drive, thereby making the tape drive available to
another user. For half-inch tape, CloseTape rewinds the
tape. The tape is not rewound for QIC tape.

Open Tape gives a user exclusive access to a tape drive.

PurgeTapeUser aborts all outstanding tape requests from
a user and removes the user's exclusive access to all tape
drives.

ReadTapeRecords reads the next n fixed length records
from tape into a user buffer.

TapeStatns returns tape status information and clears
outstanding error conditions.

TapeOperation sends non-data transfer commands to the
tape drive.

WriteTapeRecords writes one or more fixed length
records.

The remainder of this section details these procedures and
services.

XE520 Procedures and Services 5·3

GetProclnfo

Description

The GetProcInfo service fills a caller-supplied array with
the name of the processor on which the caller is running.
The format of the processor name is ttnn.

tt is the board type-one of the following strings: FP, CP,
SP, DP, or TP.

nn is the two-digit relative slot number (in decimal) of the
board.

Procedural Interface

GetProclnfo (pMySlotRet, pTypeRet, pNumberRet,
pbNameRet, cbNameMax, pbNameLenRet): ercType

pMySlotRet is a pointer to a byte where the slot number
of this board is placed. Refer to section 2 for a further
description of how slot numbers are sequenced.

pbTypeRet is a pointer to a byte where the processor type
is placed. Processor types conform to the hardware type
codes that are used in the Processor Type field of the CDT.

pbNumberRet is a pointer to a byte where the ordinal
number of the processor is placed. To determine a
processor's ordinal number, view the base enclosure from
the rear and count processors of the same type from left to
right (the slot numbers decrease). If the system has a
second enclosure (an expansion enclosure to the left of the
main enclosure), continue counting processors from left to
right. Continue the count through any further enclosures in
the same manner.

pbNameRet and cbNameMax is a (pointer, length) pair
that defines the location and size of the array to receive
the name of the processor.

pbNameLenRet is a pointer to a byte where the length of
the name of the processor is placed.

pbType and pbNumber point to the binary equivalents of
the characters pointed to by pbNameRet and cbNameMax.

5029077

5-4 XE520 Procedures and Services

GetProclnfo Examples

If the GetProclnfo service is called in the second Cluster
Processor, the results would be:

MySlotRet - hex 75 (an arbitrary value for this example)
TypeRet - hex 011
NumberRet - hex 01
N ameRet - CPO 1

If this routine is called in the third File Processor, the
results would be:

MySlotRet - hex 51 (an arbitrary value for this example)
TypeRet - hex 010
NumberRet - hex 02
N ameRet - FP02

XE520 Procedures and Services

GetSlotl nfo

Description

GetSlotinfo determines the slot numbers of other
processors in the system.

5-5

The GetSlotinfo primitive fills a caller-supplied array with
the slot numbers of all of the processors of a specified
type, and it returns the number of processors of the
specified type. GetSlotinfo may be used to find the slot
number of the master File Processor.

If the caller supplies an array too small to hold all of the
slot numbers, as many entries as possible are placed in the
array, then status code 211 is returned. This status code
tells you that the buffer size is invalid. The number of
processors is correctly returned.

Procedural Interface

GetSlotinfo (bCode, pbSlotArrayRet, cbSlotArrayRet,
psProcessorCountRet): ercType

where bCode takes on one of the following values:

bCode Processor Type

1 File Processor

2 Terminal Processor

3 CI uster Processor

4 Application Processor

5 Storage Processor (not part of a DP)

6 Disk Processor

7 Master File Processor

5029077

5·6 XE520 Procedures and Services

Other values of bCode are reserved for future expansion.

pbSlotArrayRet and cbSlotArrayRet is a (pointer, length)
pair that defines the location and size of the area to
receive the slot numbers of the processors specified by
bCode.

psProcessorCountRet is a pointer to a word in which the
number of processors of the type specified in bCode will be
placed.

Request Block

GetSlotlnfo is a system common procedure with the
following error codes:

211 - ercBadBufferSize

154 - ercNoSuchCode

XE520 Procedures and Services 5·1

ExpandSpec
The ExpandSpec service expands an incomplete file
specification to a full specification that contains the node,
volume, directory, file and password, if required, of the
caller. ExpandSpec accepts the incomplete specification
values from pbFilespec and pbPassword. It completes the
specification by obtaining information from the caller's
default path.

ExpandSpec can only expand specifications for users at the
workstation where the request was issued. The returned
specification is in canonical form. For example, the volume
name returned will always contain the name assigned to
the volume when it was initialized rather than [Sys) or
[Scr). For unmounted or uninitialized volumes, the volume
name field will be returned as the device name. In the case
of the <$ > directories, the expanded directory name will
always be returned.

Procedural Interface

ExpandSpec (pbFileSpec, cbFileSpec, pbPassword,
cbPassword, pSpecRet, sSpecMax, specType): ercType

pbFilespec and cbFilespec describe the partial
specification to be expanded.

pbPassword and cbPas8word describe the password, if
any.

pSpecRet and sSpecMax describe the expanded file
specification format returned.

specType indicates whether the specification is a volume,
directory, or file type with 1 being the volume, 2 being the
directory, and 3 being the file.

5029077

5·8 XE520 Procedures and Services

Request Block

Offset Field Size Contents

0 sCntInfo 1 6
1 RtCode 1 0
2 nReqPbCb 1 2
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2 253
12 specType 2
14 reserved 2
18 pbFileSpec 4
22 cbFileSpec 2
24 pbPassword 4
28 cbPassword 2
32 pSpecRet 4
36 sSpecMax 2

XE520 Procedures and Services 5·9

OpenTerminal

Description

This request initiates the use of a specified port on either a
CP or TP. The returned output buffer address is in linear
format and is used for subsequent input/output operations.

On an RS232-C serial terminal, this request resets the
terminal characteristics to the initial state specified in the
configurations file and asserts DTR.

Procedural Interface

This is a level 3 request and, as such, has no procedural
interface.

Request Block

Offset Field

0 sCntInfo
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode
12 bDestCPU
13 bSourceCPU
14 bPort
15 bWindow
16 ppOutputBufferRet
20 spOutputBufferRet

Size

2
1
1
2
2
2
2
1
1
1
1
4
2

Contents

4
o
1

hex 3012

bDestCpu is the slot number of the CP or TP to which the
terminal is connected.

bSourceCpu is the slot number of the client.

bPort is the physical port number of an RS232-C serial
terminaL

5029077

5-10 XE520 Procedures and Services

bWindow is the window number, which must be zero for
RS232-C serial terminals.

ppOutputBufferRet and spOutputBufferRet is the output
buffer for the terminal specified by bDestCpu. This
returned pointer is in linear format. (Refer to section 2 for
a description of linear format and terminal output buffers.)

XE520 Procedures and Services 5·11

DrainTerminalOutput

Description

This request is issued by the client to ensure an empty
output buffer. DrainTerminalOutput only returns after all
output has been flushed. This request is commonly used
prior to a SetTerminal request.

Procedural Interface

This is a level 3 request and, as such, has no procedural
interface.

Request Block

Offset Field

0 sCntInfo
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode
12 bDestCPU
13 bSourceCPU
14 bPort
15 bWindow

Size

2
1
1
2
2
2
2
1
1
1
1

Contents

4
o
1

hex 3012

bDestCpu is the slot number of the CP or TP that is to
handle the request.

bSourceCpu is the client slot number.

bPort refers to the physical port number of an RS232-C
serial terminal or the logical port nuinber of a PT 1500.

b Window is the number of the referenced window of the
PT 1500 (must be zero for RS232-C serial terminals).

5029077

5-12 XE520 Procedures and Services

SetTerminal

Description

This request is used by the client to perform out of band
functions on the port, such as changing the baud rate of
the port, turning on XON/XOFF recognition, and sending
break requests.

Procedural Interface

This is a level 3 request and, as such, has no procedural
interface.

Request Block

Offset Field

0 sCntInfo
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode
12 bDestCPU
13 bSourceCPU
14 bPort
15 bWindow
16 bFunctionCode
17 bDummy

18 pParamBlock
22 sParamBlock
24 sParamReg
28 sParamRet

Size

2
1
1
2
2
2
2
1
1
1

1
1

4
2
4
2

Contents

6
1
1

hex 3016

(for
alignment)
2

XE520 Procedures and Services 5·13

bDestCpu is the slot number of the CP or TP connected to
an RS232-C serial terminal connected directly to a port.

bSourceCpu is the slot number of the client.

bPort is the physical port number of an RS232-C serial
terminal.

bWindow is the number of the window, which must be
zero for RS232-C serial terminals.

bFun~tionCode takes on one of the following values:

Value

o

1

2

3

4

5

6

5029077

Function

Read parameter Block. Reads the parameter
block described in Table 5-1.

Write Parameter Block. Writes the parameter
block.

Flush Input Buffer. Empties the input buffer.

Flush Output Buffer. Empties the output
buffer.

Send Break. Sends a 1/4 second break.

Suspend output. Stops output.

Resume Output. Resumes output that has been
suspended.

5·14 XE520 Procedures and Services

Table 5-1 Parameter Block Format

° bBaud 1 A value from the baud rate in
Table 5-2.

1 bStopBits 1 0, 1, 2, but ° -1.5 stop bits.

2 bParity 1 0, 1, 2 - odd, even, none.

3 bCharBits 1 5, 6, 7 or 8 data bits.

4 fFlowGen 1 If true, then send XOFF /XON.

5 fFlowAct 1 If true, then accept XOFF /XON
sequences from the terminal.

6 fFlowany 1 If the Flow Act. field is true and
this field is true, then any
character can serve as an XON.

7 fLeadinEnable 1 If true, then every <01>
character in the input is
followed by a byte that gives a
delay time in 20-msec units.

8 fNoHangOnClose 1 If true, then the line will not be
placed on-hook when a
CloseTerminal request is
received.

9 bOwner 1 Slot number of owner of port.
Read only.

XE520 Procedures and Services 5-15

Table 5-2 Baud Rates

bBaud Rate bBaud Rate

1 50 8 600

2 75 9 1200

3 110 10 1800

4 134.5 11 2400

5 150 12 4800

6 200 13 9600

7 300 14 19200

5029077

5·16 XE520 Procedures and Services

ReadTerminal

Description

This request is used by the client process to read data from
one of the asynchronous ports on a CP or TP.

The user specifies a buffer size and a timeout value.
ReadTerminal returns when one of the following three
conditions occurs:
o The number of requested characters is received.
o The timeout has elapsed. The timeout begins after the

first character is received.
o An error is detected.

Procedural Interface

This is a level 3 request and, as such, has no procedural
interface.

XE520 Procedures and Services 5·17

Request Block

Offset Field Size Contents

0 sCntInfo 2 6
2 nReqPbCb 1 0
3 nRespPbCb 1 2
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2 hex 3016
12 bDestCPU 1
13 bSourceCPU 1
14 bPort 1
15 bWindow 1
16 bFunctionCode 1
17 bDummy 1
18 psCountRet 2 2
22 ssCountRet 2
24 pDataRet 4
28 sDataMax 2

bDestCpu is the slot number of the CP or TP connected to
an RS232-C serial terminal connected directly to a port.

bSou_rceCpu is the slot number of the client.

bPort is the physical port number of an RS232-C serial
terminal or the logical port number of aPT 1500.

bWindow is the number of the referenced window, which
must be zero for RS232-C serial terminals.

bTime is the number of 20-msec time units to wait for the
request to be satisfied after the first character is received.
This allows a large amount of data to be received,
particularly if the data rate is high. If there is little data,
the timeout causes a partially filled buffer to be returned.

5029077

5-18 XE520 Procedures and Services

bDummy is a filler byte that ensures word alignment of
the rest of the request block.

psCountRet and ssCountRet describe the area to receive
the count of the number of bytes actually read. The
returned count will be in linear format (byte swapped from
I:lorma180186 usage.)

pDataRet and sDataMax describe the area to receive the
output data.

XE520 Procedures and Services

WhereTerminalBuffer

Description

This request is used by the client to locate the output
buffer. The returned address of the output buffer is in
linear format.

Procedural Interface

5·19

This is a level 3 request and, as such, has no procedural
interface.

Request Block

Offset Field

0 sCntInfo
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode
12 bDestCPU
13 bSourceCPU
14 bPort
15 bWindow
16 ppOutputBufferRet
20 spOutputBufferRet

5029077

Size

2
1
1
2
2
2
2
1
1
1
1
4
2

Contents

4
o
1

hex 3014

4

5-20 XE520 Procedures and Services

bDestCpu is the slot number of the CP or TP to which the
terminal is connected.

bSourceCpu is the slot number of the client.

bPort is the physical port number of an RS232-C serial
terminal.

bWindow is the number of the referenced window, which
must be zero for RS232-C serial terminals.

ppOutputBufferRet and spOutputBufferRet are the
output buffers for the terminal specified by bDestCpu. This
returned pointer is in linear format. (Refer to section 2 for
a description of linear format and terminal output buffers.)

XE520 Procedures and Services 5·21

CloseTerminal

Description

This request is sent by a client to indicate that it is
finished with a port. It causes any pending ReadTerminal
request to be returned with an error.

If the line is connected to a data set and NoHangUpOnClose
has not been selected, it is placed back on-hook in
anticipation of a new call. If NoHangUpOnClose has been
selected, DTR is not deasserted.

Procedural Interface

This is a level 3 request and, as such, has no procedural
interface.

Request Block

Offset Field

0 sCntInfo
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode
12 bDestCPU
13 bSourceCPU
14 bPort
15 bWindow

Size

2
1
1
2
2
2
2
1
1
1
1

Contents

4
o
o

hex 3013

bDestCpu is the slot number of the CP or TP to which the
terminal is connected.

bSourceCpu is the slot number of the client.

bPort is the physical port number of an RS232-C serial
terminal.

bWindow is the number of the referenced window, which
must be zero for RS232-C serial terminals.

5029077

5·22 XE520 Procedures and Services

RemoteBoot

Description

This request, issued by the master FP only, causes another
processor to be bootstrapped with a specified operating
system. The specified target processor must have passed
boot ROM checks and be ready to boot. There must be
sufficient memory available (according to the remote
processor CDT) to hold the designated operating system.

The target processor's CDT is updated with current
configuration data. A doorbell interrupt initiates the
execution of the operating system. If the t~rget processor
does not set the CDT flag fOsInitialized with 30 seconds
after the doorbell interrupt, then status code 153 is
returned. This status code tells you that the target
processor did not respond to the remote boot.

Procedural Interface

This is a level 3 request and, as such, has no procedural
interface.

Request Block

Offset Field

0 sCntInfo
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode
12 fh
14 bSlot
15 fReserved

Size

2
1
1
2
2
2
2
2
1
1

Contents

4
o
o

hex 3002

()

XE520 Procedures and Services 5-23

fh is the file handle of the operating system to be loaded
into the designated processor. This operating system must
have a valid BTOS.RUN file header. The loaded system
must contain a valid linear eDT pointer in location hex
IF8.

bSlot is the slot number of the target processor.

fReserved must be set to zero.

5029077

5·24 XE520 Procedures and Services

RequestRemote

Description

The RequestRemote primitive is issued by a process on one
processor to request a system service from a process on
another processor. The request bypasses the ICC server
agent on the client process's processor. !tis sen~ directly to
the ICC server agent on the remote processor, which infers
from the request block the appropriate service exchange
and sends the request there.

The ICC routes the response, without any server
intervention, from the remote process to the response
exchange on the client process, which is also specified in
the request block.

A client process may use the RequestRemote primitive
directly when it is necessary to bypass the normal request
routing mechanisms of the operating system.

It is the responsibility of the client process to ensure that
the specified remote processor actually exists.

Procedural Interface

RequestRemote (bRemoteCpuld, pRq): ercType

bRemoteCpuld is the slot number of the remote processor.

pRq is the local memory address of the request block.

Request Block

RequestRemote is a kernel primitive.

XE520 Procedures and Services 5·25

ReadRemote

Description

The ReadRemote operation receives standard read requests
mapped by the ICC if DMA is required.

Procedural Interface

ReadRemote has no procedural interface. You must make a
request block and issue the request using the Request,
RequestDirect, or RequestRemote operations. For details on
these operations, refer to the BTOS II System Procedural
Interface Manual.

Request Block

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode
12 fh
14 lfa
18 pBufferRet
22 sBufferMax
24 psDataRet
28 ssDataRet

5029077

Size

1
1
1
1
2
2
2
2
2
4
4
2
4
2

Contents

6
o
2
o

12325

2

5·26 XE520 Procedures and Services

SetCommlSR

Description

The SetCommISR service establishes the Communications
Interrupt Services Routines (CISRs) for the specified
communications channel. Separate CISRs are established to
process transmit, external/status, receive, and special
receive conditions.

Note: SetCommlSR is now available for backwards compatibility
only. InitCommLine has been implemented as a replacement for
SetCommlSR.

Procedural Interface

SetCommISR (iLine, pDS,pTxIsr, pExtIsr, pRxIsr,
pSpRxIsr): ercType

iLine is SIO Channel A if it is 0 and SIO Channel B if it
is 1.

pDS is the memory address of any byte in the memory
segment to be used as the data segment of the CISRs. The
segment base address part of pDS is to be used as the data
segment base (that is, loaded into the DS register) when
any of the four CISRs is activated.

pTxIsr is the memory address (CS:IP) of the CISR that is to
process Transmit-Data-Buffer-Empty interrupts.

pExtIsr is the memory address (CS:IP) of the CISR that is
to process External/Status interrupts.

pRxI is the memory address (CS:IP) of the CISR that is to
process Receive-Character-Available interrupts.

pSpRxIsr is the memory address (CS:IP) of the CISR that is
to process Receive-Special-Condition interrupts.

XE520 Procedures and Services 5·27

Request Block

Offset Field Size Contents

0 sCntInfo 1 22
1 RtCode 1 0
2 nReqPbCb 1 0
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2 101
12 iLine 2
14 pDS 4
18 pTxIsr 4
22 pExtisr 4
26 pRxIsr 4
30 pSpRxIsr 4

5029077

5-28 XE520 Procedures and Services

ResetCommlSR

Description

The ResetCommISR service purges the Communications
Interrupt Services Routines (CISRs) previously established
for the specified communications channel. Future
interrupts from the specified channel are ignored.

Note: ResetCommlSR is now available for backwards
compatibility only. ResetCommLine has been implemented as a
replacement for ResetCommlSR.

Procedural Interface

ResetCommISR (iLine): ercType

iLine is SIO Channel A if iLine is 0 and SIO, Channel B if
iLine is 1.

Request Block

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode
12 iLine

Size

1
1
1
1
2
2
2
2
2

Contents

2
o
o
o

102

XE520 Procedures and Services 5·29

InitCommLine

Description

InitCommLine allocates a communications channel (serial
port) to the user and specifies how interrupts from the
channel are to be serviced.

InitCommLine performs only partial initialization of the
8274-type controller. InitCommLine resets the designated
communications channel before responding. This allows
time for chip initialization before interrupts can occur, and
it means InitCommLine can and should be called with
interrupts enabled. Your program is responsible for all
other 8274-type initialization.

You must specify Status Affects Vector by setting bit 2
(04h) in Write Register 1 during channel initialization. If
you fail to set this bit, input/output can be disrupted in
progress on another channel, as well as preventing
interrupts from being vectored appropriately to your
channel.

For the B24 workstation, InitCommLine resets the
designated Comm channel before responding to the user.
On the B24 workstation ports A and B, the user must
specify STATUS AFFECTS VECTOR by setting bit 2 (04h)
in Write Register I during channel initialization. Failure to
set this bit may disrupt I/O in progress on another channel,
and prevent interrupts from being vectored appropriately
to your channel.

The channel is unavailable to other users until
ResetCommLine is issued. Task termination does this
automatically if you fail to issue ResetCommLine.

If you are using a Comm line interface in a modemless
synchronous configuration, you must divide the baud rate
by a factor of 16 when using InitCommLine.

5029077

5·30 XE520 Procedures and Services

Procedural Interface

InitCommLine (pbSpec, cbSpec, pbClcb, cbClcb, pbRet,
cbRet): ercType

pbSpec is the memory address of the device specification
string.

cbSpec is the length of the string (word).

pbClcb is the memory address of the Communications Line
Configuration Block (CLCB).

cbClcb is the size in bytes of the CLCB.

pbRet is the memory address of an area into which the
system writes return values.

cbRet is the size in bytes of the return area (normally 19).

Request Block

Offset Field

0 sCntInfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 -ercRet
10 rqCode
12 reserved
18 pbSpect
2{} cbSpec
24 pbClcb
28 cbClcbq
30 pbRet
34 cbRet

Size

1
1
1
1
4
2
2
2
6
4
2
4
2
4
2

Contents

6
o
2
1

1006h

XE520 Procedures and Services 5·31

ResetCommLine

Description

ResetCommLine makes the specified communications
channel available for use again. No further interrupts are
routed to the user who executed the InitCommLine. If an
interrupt is received after ResetCommLine is executed but
before another InitCommLine, the MPSC or 2681 (on the
B24 workstation) channel is reset. (MPSC is a
multi-protocol serial controller.)

Procedural Interface

ResetCommLine (commLineHandle):ercType

Request Block

Offset Field

0 sCntInfo
1 RtCode
2 nReqPbCb
3 'nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode
12 CommLineHandle
14 reserved

5029077

Size

1
1
1
1
2
2
2
2
2
4

Contents

6
o
o
o

1007h

5·32 XE520 Procedures and Services

OpenTape

Description

OpenTape gives a particular user exclusive access to the
magnetic tape drive. It returns a tape handle to be used on
subsequent tape requests. Open Tape does not position the
tape.

Procedural Interface

Open Tape (pbTapeName, cbTapeName, fStreaming,
fHighDensity, fclear, mode, pThRet): ercType

pbTapeName and cbTapeName specify the memory area
of tape to open. Tape names take the form [tapen] for
half-inch tape drives where n is a tape number and [qic]
for a quarter-inch cartridge (QIC) tape drive. Any
characters following the tape number are ignored by this
request.

fStreaming is a flag indicating whether data transfer is to
be performed with the transport at high speed. The flag is
significant only for tape drives with high-speed streaming
mode; it is ignored for other drives.

fHighDensity is a flag indicating if high density is selected
for tape operation. The flag is significant only for
remote-selectable dual-density drives. At this time only
1600 bpi is supported.

fClear is a flag indicating whether, after a data error, a
TapeStatus request must be issued to clear the error
condition before sending another request.

mode is a word indicating read (mr) or write (mw) as the
mode. If a tape without a write-ring is opened for write,
an error is returned.

pThRet is the memory address of the word to which the
tape handle is returned.

XE520 Procedures and Services 5·33

Request Block

Offset Field Size Contents

0 sCntInfo 2 6
2 nReqPbCb 1 1
3 nRespPbCb 1 1
4 userNum 2
6 exehResp 2
8 ere Ret 2
10 rqCode 2 190
12 fstreaming 1
13 fhighdensity 1
14 fclear 1
15 reserved 1
16 mode 2
18 pbTapeName 4
22 ebTapeName 2
24 pthRet 4
28 ebThRet 2 2

5029077

5·34 XE520 Procedures and Services

TapeStatu5

Description

TapeStatus allows users to determine the status of a tape
drive. The TapeStatus request also clears outstanding error
conditions.

The tape status returned is one or a sum of the following
bit values which are listed with their meanings. For
example, if a tape were write-protected, ready, and
on-line, the status would be hex 4A (hex 2 + hex 8 + hex
40).

Status Returned
(hex)

2

4

8

10

20

40

Meaning

The formatter is currently
write-protected.

The formatter is busy and is not
ready for commands.

The tape drive is currently ready
for new commands.

The end of the tape has been
reached.

The tape is at the load point.

The tape drive is on-line.

Procedural Interface

TapeStatus (th, pStatusRet): ercTape

th is the tape handle returned by OpenTape.

pStatusRet is the memory address of the word in memory
to which tape status is returned.

XE520 Procedures and Services 5-35

Request Block

Offset Field Size Contents

0 sCntInfo 2 6
2 nReqPbCb 1 0
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2 196
12 th 2
18 reserved 4
22 pStatusRet 4
26 pStatusRet 2 2

5029077

5·36 XE520 Procedures and Services

TapeOperation

Description

The TapeOperation service allows the user to issue to the
tape drive such non-data-transfer commands as rewind
tape, erase, and skip records.

In the TapeOperation procedural interface, the command
parameter has one argument, the subop parameter, which
some commands use and others do not. However, even if
the subop parameter is not used, it must be present in the
TapeOperation procedure call; TapeOperation will not work
without it. 0 (zero) is a safe value to put into the subop
parameter for commands that do not use this parameter.

In the command parameter list, for those commands which
use the subop parameter, n represents the number of times
the command is performed. If n is positive, the command is
performed with the tape moving forward. If n is negative,
the command is performed with the tape moVing backward.
For commands that use the supop parameter, !! cannot be
zero.

Procedural Interface

TapeOperation (th, fFast, command, subOp): ercType

th is the tape handle returned by OpenTape.

fFast is a flag indicating operations are performed in
high-speed mode. This flag overrides the parameter given
in the OpenTape command, allowing the user to selectively
skip single records at low speeds, skip long files at high
speeds, and erase short lengths of tape.

command is the command code (not the command name)
for the operation to be performed. (Refer to the Command
Parameter list).

subop is the argument to be supplied to certain comma!1ds.
(Refer to the Command Parameter list.)

XE520 Procedures and Services 5-37

Command Parameter

Command Name Code,Subop Description

Rewind (1,0) Rewinds the tape to the
load point. This
procedure call does not
return until the rewind
is complete (tape is at
beginning of tape
[BOT)). During the
rewind, the tape server
can process other users t
requests for operations
on other tape drives.

Unload (2,0) Rewinds and unloads
the tape. This procedure
call does not return
until the rewind is
completed and the
unload begins.

SkipRecord (3,!!) Skips !! records

SearchMark (4,!!) Searches for n
consecutive tape marks.

WriteTapeMark (5,!!) Writes n consecutive
tape marks. The!!
parameter must be
positive.

Erase (6,!!) Erases n*3.5 (n times
3.5) inches of tape. !!
must be a positive
number.

EraseTape (7,0) Erases the tape until
end of tape (EDT) is
reached.

5029077

5·38 XE520 Procedures and Services

Command Name Code,
Subop

RewindAsync (8,0)

UnloadAsync (9,0)

Description

Rewinds the tape to the
load point. This
procedure returns
immediately after the
command is issued.
Hence, you can overlap
rewind with the
application task.

Rewinds and unloads
the tape. This procedure
call returns immediately
after the command is
issued.

Below are two examples of the TapeOperation procedure.
The first includes a command with the subop parameter
and the second includes a command without it.

TapeOperation (th, FALSE, 3, -1)

backspaces the tape one record.

TapeOperation (th, TRUE, 1, 0)

rewinds the tape to the load point.

Request Block

Offset Field Size

° sCntInfo 2
2 nReqPbCb 1
3 nRespPbCb 1
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2
12 th 2
14 fFast 1
15 command 1
16 subop 2

Contents

6

° °
193

XE520 Procedures and Services 5·39

ReadTapeRecords

Description

ReadTapeRecords reads the next!! fixed-length records
from the tape into a user buffer. The buffer must be
aligned to a word boundary, and its size must not exceed
the buffer size specified during installation of the tape
server.

Any number of records can be read, as long as they
collectively do not exceed the user buffer size. The
nRecords parameter must be greater than zero. A read in
the reverse direction is not allowed.

If an error condition occurs, nRecordsRet reflects the
number of records successfully read. CbRet is updated with
the number of bytes read.

If an error occurs and the fClear flag was set when the
tape was opened, then issuing a TapeStatus request allows
the user to try to read the tape again. If another
ReadTapeRecords is issued before a TapeStatus request, an
ercTapeErrorOutstanding status code results, and the user
is not allowed to read the tape until TapeStatus is issued.

This command cannot detect an overrun on read, that is,
reading a block that is larger than the memory buffer. An
overrun on read, therefore, does not cause an
ercTapeTruncated error status. It is not a fatal error.

Procedural Interface

ReadTapeRecords Cth, nRecords, pb, cb, pNRecordsRet,
PCbRet): ercType

th is the tape handle returned by OpenTape

nRecords is the number of records to read.

pb is the memory address in the user area to store the tape
records read.

5029077

5·40 XE520 Procedures and Services

cb is the buffer size in bytes of the user area.

pCRecordsRet is the memory address to store the number
of records that were successfully read.

pCbRet is the memory address to store the number of
bytes transferred to the user buffer.

Request Block

Offset Field

0 sCntlnfo
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode
12 th
14 nRecords
16 reserved
18 pb
22 cb
24 pCRecordsRet
28 cbcRecordsRet
30 pCbRet
34 cbcbRet

Size

2
1
1
2
2
2
2
2
2
2
4
2
4
1
4
1

Contents

6
o
.3

191

2

2

XE520 Procedures and Services

WriteTapeRecords

Description

WriteTapeRecords writes one or several fixed length
records. The nRecords parameter must be greater than
zero.

Writing in the reverse direction is not allowed.

The number of records written and the count of bytes
written are returned, even if an error stops the writing.

5·41

Buffer alignment and size restrictions are the same as for
ReadTapeRecords.

Procedural Interface

WriteTapeRecords (th, nRecords, pb, cb, pCRecordsRet,
pCbRet): ercType

th is the tape handle returned by OpenTape.

nRecords is the number of records to write.

pb is the memory address of the bytes to write on tape.

cb is the number of bytes to write. The size of each record
is computed as cbln records.

pCRecordsRet is the memory address at which the number
of records successfully written is stored.

pCbRet is the memory address at which the number of
bytes written to tape is stored.

5029077

5·42 XE520 Procedures and Services

Request Block

Offset Field Size Contents

0 sCntInfo 2 6
2 nReqPbCb 1 1
3 nRespPbCb 1 2
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2 192
12 th 2
14 nRecords 2
16 reserved 2
18 pb 4
22 cb 2 2
24 pCRecordsRet 4
28 cbCRecordsRet 1 2
30 pCbRet 4
34 cbcbRet 1 2

XE520 Procedures and Services 5·43

PurgeTapeUser

Description

PurgeTapeUser aborts all the user's outstanding tape
requests and releases all tape drives held exclusively by
the user.

PurgeTapeUser, an asynchronous operation, does not wait
for the drive to reset its current operation. A drive
performing a rewind operation cannot be stopped by
PurgeTapeUser.

Procedural Interface

PurgeTapeUser (work): ercType

work is a temporary 2-byte area for the service.

Request Block

Offset Field

0 sCntInfo
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode
12 work

5029077

Size

2
1
1
2
2
2
2
2

Contents

2
o
o

195

5-44 XE520 Procedures and Services

CloseTape

Description

CloseTape removes a user's exclusive access to the tape
drive, making the drive available to other users. The tape
position is not affected.

Procedural Interface

CloseTape (th): ercType

th is the tape handle returned by OpenTape.

Request Block

Offset Field

0 sCntInfo
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode
12 th

Size

2
1
1
2
2
2
2
2

Contents

2
o
o

194

Glossary-1

Glossary

$ Directories. The $ directories are special directories required
for the BTOS software to operate correctly. When a request with
the directory <$> is given as a part of a file specification to
BTOS, the directory name is expanded to the form <$nnn>,
where nnn is the user number of the application system.

Allocation Bit Map. The Allocation Bit Map controls the
assignment of disk sectors. It has 1 bit for every sector on the
disk and the bit is set if the sector is available. The Allocation Bit
Map is. disk-resident.

AllocExch. AllocExch is a BTOS system procedural interface call
that allocates exchanges. On the XE520, it allows direct
interboard message passing on XE520 processor boards.

Application Process. An application process executes code in
the application system. It is not a system service process. Also
see System Service Proces~.

Application System. An application system is the collection of
all tasks currently in an application partition. The tasks in an
application system access a common set of files and implement a
single application. The tasks execute asynchronously. Also see
Task and Application Partition.

Application System Control Block (ASCB). The Application
System Control Block (ASCB) communicates parameters, the
termination code, and other information between an exiting
application system and a succeeding application system in the
same partition. Also see the Variable-Length Parameter Block.

ASCB. See Application System Control Block.

Bad Sector File. The Bad Sector File contains an entry for each
unusable sector of a disk. The size of the Bad Sector File is 1
sector.

Bootstrap. To bootstrap (or boot) the system is to start it by
reloading BTOS from disk. On other systems, this may be
referred to as Initial Program Load (IPL).

BSWA. See Byte Stream Work Area.

BX. Base general register.

5029077

Glossary-2

Byte Stream. A byte stream, a concept of the Sequential
Access Method, is a readable (input) or writable (output)
sequence of 8-bit bytes. An input byte stream can be read until
either the reader chooses to stop reading or it receives status
code 1 (End of File). An output byte stream can be written until
the writer chooses to stop writing. Also see Byte Stream Work
Area, Communications Byte Stream, Sequential Access Method,
and Spooler Byte Stream.

Byte Stream Work Area. The Byte Stream Work Area is a
130-byte memory work area for the exclusive use of Sequential
Access Method procedures. Any number of byte streams can be
open concurrently, using separate Byte Stream Work Areas.

cb. A cb is the count of bytes in a string of bytes.

Client Process. A client process is a process"that makes a
request of a system service. Any process, even a BTOS process,
can be a client process since any process can request system
services.

Cluster Processor. A Cluster Proccessor is a board in the
XE520 system that runs communications software and supports
workstations, a parallel printer, and up to three RS232-C serial
devices.

Cluster Workstation. A cluster workstation is a workstation in a
cluster configuration connected to a master workstation. B24,
B26, B27, and B28 workstations can serve as cluster
workstations.

Communication Byte Stream,. A communications byte stream
is a byte stream that uses a communications channel.

Communications Interrupt Service Routine. A
Communications Interrupt Service Routine (CISR) is similar to a
mediated interrupt handler except that a CISR serves only one of
the two communications channel of the SIO communications
controller.

Compact System. A compact system is a version of BTOS that
provides all operating system functions except the concurrent
execution of multiple applications systems. A compact system has
a primary application partition and can execute application
systems one at a time. The operating system is specified as
compact during.system build.

Glossary-3

Configuration File. A configuration file specifies the
characteristics of either the parallel printer, the serial printer, or
any other device attached to a communications channel.
Examples of characteristics are number of characters per line,
baud rate, and line control mode (XON/XOFF, CrS). A
configuration file is created by the Create Configuration File
command and is used by printer, spooler, and communications
byte stream.

Contingency. A contingency can refer to a variety of hardware
and software conditions that have undesirable effects. These
conditions can be hardware faults such as a memory parity error,
inconsistencies detected by BTOS such as a bad checksum of a
Volume Home Block, or conditions detected by the application
system. BTOS always terminates execution when it detects an
inconsistency.

CPo See Cluster Processor.

CPU. The CPU (central processing unit) is the microprocessor.

Crash Dump Area. The Crash Dump Area (the file
[Sys]<Sys>CrashDump.Sys) contains a binary memory dump in
the event of a system failure.

CWS. See Cluster Workstation.

DAM. See Direct Access Method.

Data Segment. A data segment contains data. It can also
contain code, although this is not recommended. If a data
segment is shared among several processes, concurrency control
is the responsibility of those processes. A data segment that is
automatically loaded into memory along with its task image is
called a status data segment. A dynamic data segment is
allocated by a request from the executing process to the memory
management facility.

Date/Time Format. The date/time format provides a compact
representation of the date and time of day that precludes invalid
dates and allows simple subtraction to compute the interval
between two dates. The date/time format is represented in 32
bits to an accuracy of one second.

DAWA. See Direct Access Work Area.

DCB. See Device Control Block.

5029077

Glossary-4

Default Response Exchange. Each process is given a unique
default response exchange when it is created. This special
exchange is automatically used as the response exchange
whenever a client process uses the procedural interface. For this
reason, the direct use of the default response exchange is not
recommended. The use of the default response exchange is
limited to requests of a synchronous nature. That is, the client
process, after specifying the exchange in a Request, must wait for
a response before specifying it again (indirectly or directly) in
another Request. Also see Exchange and Response Exchange.

Device. A device is a physical hardware entity. Printers, tapes,
floppy disks. and Winchester disks are examples of devices.

Device Control Block. There is a Device Control Block (DCB)
for each physical device. The DCB, generated at system build,
contains information about the device. The kind of information for
a disk, for example, includes how many tracks are on a disk and
the number of sectors per track. The DCB points to a chain of
I/O Blocks. The DCB is memory-resident.

Direct Access Method. The Direct Access Method (DAM)
provides random access to disk file records identified by record
number. The record number is specified when the DAM file is
created. DAM supports COBOL Relative 1-0. but can also be
called directly from any of the Unisys languages. Also see Direct
Access Work Area.

Direct Access Work Area. A Direct Area Work Area (DAWA) is
a 64-byte memory work area for the exclusive use of the Direct
Access Method (DAM) procedures. Any number of DAM files can
be open simultaneously using separate DAWAs. Also see Direct
Access Method.

Directory. A directory is a collection of related documents.
programs, or other data store on a volume. A directory is
protected by a directory password.

Directory Password. A directory password protects a directory
on a volume.

Directory Specification. A directory specifications consists of a
"node (node name), volname (volume name), and a dirname
(directory name).

Dirname (Directory name). A dirname is the third element of a
directory specification or a full file specification.

Glossary-S

Disk Processor. A Disk Processor is an XE520 processor board
that is formed by connecting an SC board to an SP board. The
Disk Processor supports I/O to half-inch magnetic tape drives
and SMD disks.

OP. See Disk Processor.

OS. Data Segment

Ere. An Erc is a error code.

Error message. An error message is a message that appears on
the screen when an error occurs in the file management system
or a subsystem.

Exchange. An exchange is the path over which messages are
communicated from process to process (or from interrupt handler
to process). An exchange consists of two first-in, first-out
queues, one of processes waiting for messages, the other of
messages for which no process has yet waited. An exchange is
referred to by a unique lS-bit integer. Also see Default Response
Exchange and Response Exchange.

Executive. The Executive is the BTOS user interface program; it
provides many convenient utilities for file management.

Exit Run File. An exit run file is a user-specified file that is
loaded and activated when an application system exits. Each
application partition has its own exit run file.

ExpandSpec. ExpandSpec is an XEBTOS procedural interface
call that returns an expanded file specification so that it includes
information from the caller's path.

FALSE. FALSE is represented in a flag variable as O.

FeB. See File Control Block.

fh. File handle.

FIFO. First in, first out.

File. A file is a document, program, or other set of related data
stored as a unit in a directory on a single volume.

5029077

Glossary-6

File Access Methods. Several file access methods augment
the capabilities of the file management system. The file access
methods are object module procedures that are located in the
standard BTOS library and are linked to application systems as
required. They provide buffering and use the asynchronous
input/output capabilities of the file management system to
automatically. overlap input/output and computation. Also see
Direct Access Method, Record Sequential Access Method, and
Sequential Access Method.

File Area Block. There is a File Area Block (FAB) for each Disk
Extent in an open file. The FAB specifies where the sectors are
and how many there are in the Disk Extent. The FAB is pointed to
by a File Control Block or another FAB. The FAB is
memory-resident.

FCB. See File Control Block.

File Control Block. There is a File Control Block (FCB) for each
open file. The FCB contains information about the file such as
the device on which it is located, the user count (that is, how
many file handles currently refer to this file), and the file mode
(read or modify). The FCB is pointed to by a User Control Block
and contains a pointer to a chain of File Area Blocks. The FCB is
memory-resident.

File Header Block. There is a File Header Block (FHB) for each
file. The FHB of each file contains information about that file
such as its name, password, protection level, the date/time it was
created, the disk address and size of each of its Disk Extents. The
FHB is disk-resident and is 1 sector in size.

Filename (File name). A filename is the fourth element of a
full file specification.

File Password. A file password protects a file in a directory on
a volume.

File Processor. A File Processor is an XE520 processor board
that supports I/O operations to disk devices.

File Protection Level. A file protection level specifies the
access allowed to a file when the accessing process does not
present a valid volume or directory password.

GlossarY-7

FP. See File Processor.

Frame. A frame is a separate, rectangular area of the screen. A
frame can have any desired width and height (up to the
dimensions of the screen.

Full File Specification. A full file specification consists of a
node (node name), volname (volume name), dirname (directory
name), and filename (file name).

GetUserNumber. GetUserNumber is a BTOS procedural
interface call that returns the user number. XEBTOS uses a
modified version of the call.

Indexed Sequential Access Method. The Indexed Sequential
Access Method (ISAM) provides efficient and flexible, random
access to fixed-length records identified by multiple keys stored
in disk files.

Internal Interrupt. An internal interrupt (often called a trap) is
caused by and is synchronous with the execution of processor
instructions. The causes of internal interrupts are an erroneous
divide instruction, the Trap Flag, the INTO (interrupt on overflow)
instruction, and the INT (interrupt) instruction.

Interrupt. An interrupt (external or internal) is an event that
interrupts the sequential execution of processor instructions.
When an interrupt occurs, the current hardware context (the
state of the hardware registers) is saved. This context save is
performed partly by BTOS.

Interrupt Handler. An interrupt handler is a locus of
computation that is given control when an interrupt occurs. Since
an interrupt handler is not a process, it is permitted to invoke
only few specific operations. BTOS interrupt handlers are
provided for each interrupt type. Each interrupt handler services
two kinds of interrupt handlers: mediated and raw ..

lOB. See I/O Block.

I/O Block. The I/O Block (lOB) is used by BTOS as temporary
storage during Read, Write, and other input/output operations.
The lOB contains information obtained from the request block.
The number of lOBs specified at system build must be adequate
for the maximum number of input/output operations that will be
in progress simultaneously. The lOB is memory-resident.

5029077

Glossary-S

IPC. Interprocess Communication.

ISAM. See Indexed Sequential Access Method.

Kernel. The kernel is the most primitive and the most powerful
component of BTOS. It executes with higher priority than any
process but it is not itself a process. The kernel schedules
process execution; it also provides interprocess communication
primitives.

Linker. The Linker links one or more object files into a task
image stored in a run file.

Log File. The Log File (the file [Sys]<Sys>Log.Sys) is an
error-logging file. An entry is placed in the Log File for each
recoverable and nonrecoverable device error.

Logical Memory Address. (Usually abbreviated as memory
address). A logical memory address is a 32-bit entity that
consists of a 16-bit offset. The physical memory address of a
byte is computed by multiplying the segment base address by 16
and adding the offset. A byte of memory does not have a unique .
logical memory address. Rather, any of 4096 combinations of
segment base address and offset refer to the same byte of
memory.

Master File Directory. There is an entry for each directory on
the volume in the Master File Directory (MFD), including the Sys
Directory. The position of an entry within the MFD is determined
by randomization (hashing) techniques. The entry contains the
directory's name, password, location, and size. The Master File
Directory is disk-re~ident.

Master Workstation. A master workstation is the hub of a
cluster configuration. It provides a file system, queue
management facility, and other services to all the cluster
workstations. In addition, if supports its own interactive and batch
application systems. Also see Cluster Workstation.

Master Workstation Agent Service Process. The Master
Workstation Agent Service Process reconverts an interstation
message to an interprocess request and queues it at the
exchange of the master workstation system service process that
performs the d~sired function. Also see Cluster Workstation Agent
Service Process.

Glossary-g

Mediated Interrupt Handler. A mediated interrupt handler
(MIH) is easier to write than a raw interrupt handler; permits
automatic nesting by priority since processor interrupts are
enabled during its execution; and can communicate its results to
processes through certain kernel primitives. Also see Interrupt
Handler.

Memory Address. See Logical Memory Address.

Message. A message is the entity transmitted between
processes by the interprocess communication facility. It conveys
information and provides synchronization between processes.
Although only a single 4-byte data item is literally communicated
between processes, this data item is usually the memory address
of a larger data structure. The larger data structure is called the
message, while the 4-byte data item is conventionally called the
address message. The message can be in any part of memory
that is under the control of the sending process. Sy convention,
control of the memory that contains the message is passed along
with the message.

MFD. . See Master File Directory.

MIH. See Mediated Interrupt Handler.

Mode peek. Mode peek is one of several mode parameters
used in STOS procedural interface calls. Mode peek allows you to
read a file without preventing a different user from modifying the
file.

Multiprogramming. Multiprogramming is supported at three
levels by STOS. First, any number of application systems can
coexist, each in its own partition. Second, any number of tasks
can be loaded into the memory of the partition and be
independently executed. Third, any number of processes can
independently execute the code of each task. Also see Application
System, Process, and Task.

Object Module Procedure. An object module procedure is a
procedure supplied as part of an object module file. It is linked
with the user-written object modules of an application system
and is not supplied as part of the System Image. Most application
systems require only a subset of these procedures. When the
application system is linked, the desired procedures are linked
together in the run file of the application. The sequential Access
Method is an example of object module procedures. Also see
System Common Procedure.

5029077

Glossary-l0

Offset. The offset is the distance, in bytes, of the target
location from the beginning of the hardware segment. Also see
Logical Memory Address and Physical Memory Address.

Operation. An operation is a BTOS primitive, service, or
procedure.

Overlapped. In the context of file access methods, overlapped
means that although the application system makes a call to an
access method read or write operation and that operation returns,
input/output can continue simultaneously and automatically with
the computations of the application system.

Partition Descriptor. A Partition Descriptor is located in each
application partition and contains the partition name, the
boundaries of the partition and of its long- and short-lived
memory areas, and internal links to partition descriptors in other
partitions.

Partition Handle. A Partition Handle is a I6-bit integer that
uniquely identifies a secondary application partition. It is returned
by the CreatePartition operation and is used to refer to the
partition in subsequent operations such as LoadPrimaryTask,
GetPartitionStatus, and RemovePartition.

pb. A pb is the memory address of a string of bytes.

pb/cb. A pb/cb is a 6-byte entity consisting of the 4-byte
memory address of a byte string followed by the 2-byte count of
the bytes in that byte string.

PCB. See Process Control Block.

Physical Memory Address. Each byte of memory has a unique
20-bit physical memory address. Software uses logical memory
addresses, not physical memory addresses. The physical memory
address of a byte is computed by multiplying the segment base
address by 16 and adding the offset. Also see Logical Memory
Address, Offset, and Segment Base Address.

Primary Application Partition. The primary application
partition is for interactive programs that use the keyboard and
video display to interact with the user. Such partitions can be
loaded with interactive programs chosen by the user, such as the
Editor, Word Processor, or terminal emulators.

Glossary-!1

Primitive. A primitive is an operation performed by the kernel.
Also see Kernel.

Procedural Interface. A procedural interface is a convenient
way to access system services and is compatible with FORTRAN,
Pascal, and assembly languages.

Procedure. A procedure is a subroutine.

Process. A process is the basic entity that competes for access
to the processor and which BTOS schedules for execution.
Associated with a process is the address (CS:IP) of the next
instruction to execute on behalf of this process; a copy of the
data to be loaded into the processor registers before control is
returned to this process, a default response exchange, and a
stack. A process is assigned a priority when it is created so that
BTOS can schedule its execution properly.

Process Context. The context of a process is the collection of
all information about a process. The context has both hardware
and software components. The hardware context of a process
consists of values to be loaded when the process is scheduled for
execution. This includes the registers that control the location of
the process's stack. The software exchange and the priority at
which it is to be scheduled for execution. The combined hardware
and software context of a process is maintained in a system data
structure called a Process Control Block. Also see Context Switch
and Process Control Block.

Process Control. The context of a process is the collection of
all information about a process. The context has both hardware
and software components. The hardware context of a process
consists of values to be loaded when the process is scheduled for
execution. This includes the registers that control the location of
the process's stack. The software context of a process consists of
its default response exchange and the priority at which it is
scheduled for execution. The combined hardware and software
context of a process is maintained in a system data structure
called a Process Control Block. Also see Context Switch and
Process Control Block.

Process Control Block. The combined hardware and software
context of a process is maintained in a system data structure
called a Process Control Block. A Process Control Block is the
physical representation of a process. Also see Process Context.

5029077

Glossary-12

Processor. A processor consists of the central processing unit
(CPU), memory, and associated circuitry. Also see CPU.

RAM. Random Access Memory.

Randomizing Techniques. A file entry in a directory (or a
directory entry in a Master File Directory) is located by means of
the character string that identifies the file (or the directory). The
character string is converted to a psuedorandom number, which
is then converted to the address of the sector where the entry is
expected to be located. If the entry is not in the expected sector,
then adjacent sectors are searched.

rDevice. rDevice (OF7h) is the value of the routing code for
system services that are BNET II compatible and that are
installed more than once on different XE520 processor boards.

ReadRemote. ReadRemote is an XEBTOS procedural interface
call that reads one or more characters from a terminal.

Ready State. The ready state is one of three states in which a
process can exist. A process is in the ready state when it is ready
to run, but a higher priority process is currently running. Any
number of processes can be in the ready state simultaneously.
Also see Running State and Waiting State.

Record Fragment. A record fragment is a contiguous area of
memory within a record. A record fragment is specified using an
offset from the beginning of the record and byte count.

Record Number. A record number specifies the record position
relative to the first record in a file. The record number of the first
record in a file access method file is 1.

Record Sequential Access Method. The Record Sequential
Access Method (RSAM) provides blocked, spanned, and
overlapped input and output. An RSAM file is a sequence of
fixed- or variable-length records. Files are opened for read;
write, or append operations Also see Blocked, Record Sequential
Work Area, and Spanned. .

Record Sequential Work Area. A Record Sequential Work Area
(RSWA) is a 150-byte memory work area for the exclusive use of
the Record Sequential Access method procedures. Any number of
RSAM files can be open simultaneously using separate RSWAs.
Also see Record Sequential Access Method.

Glossary-13

Request. A request asks a system service process to perform
an operation.

Request Block. A request block is a block of memory provided
by the client process that contains highly structured information.
The memory address of the request block is provided by the
client process during a Request primitive and by the system
service process during a Respond primitive. A request block is the
element that the application system (or BTOS) sends to BTOS to
request that a particular operation be performed.

Request Code. A request code is a 16-bit value that uniquely
identifies a system service. For example, the request code for the
Write operation is 36. The request code is used both to route a
request to the appropriate system service process and to specify
to that process which of the several services it provides is
currently requested.

Request Control Block. A Request Control Block (RCB) is an
internal data structure. There is one for each concurrent request.
The number of RCBs is a system build parameter.

RequestDirect. RequestDirect is a BTOS kernel primitive that
allows direct interboard message passing on the XE520.

Request Level. Sixteen request levels are supported in a
request table. Twelve requests levels are reserved for internal use
and four are available to the user. A request code structure is
composed of 16 4KB request levels, each containing up to 4KB
request definitions. Half of these levels have a procedural
interface and validity checking structures. Various levels are
reserved for internal use.

Request Table. A request table is a table that defines the file
specification and sib routing for requests. The request table
suppo"rts 16 request levels. Twelve request levels are reserved for
internal use and four are available to the user. The table contains
information on file specifications, routing rules, destination,
exchange, local service code, and procedural information.

Response Exchange. A response exchange is the exchange at
which the requesting client process waits for the response of a
system service. Also see Default Response Exchange and
Exchange.

5029077

Glossary-14

ROM. Read-Only Memory.

RSAM. See Record Sequential Access Method.

RSWA. .Record Sequential Work Area.

Run File. A run file is created by the linker and contains a task
image.

Running State. The running state is one of three states in
which a process can exist. A process is in the running state when
the processor is actually executing its instructions. Only one
process can be in the running state at a time. Also see Ready
State and Waiting State.

SAM. See Sequential Access Method.

SAMgen. See SAM Generation.

SAM Generation. Sam generation permits the specification of
the device-dependent object modules to be linked to an
application system.

Segment. A segment is a contiguous (usually large) area of
memory that consists of an integral number of paragraphs.
Segments are usually classified into one of three types: code,
static data, or dynamic data. Each kind of segment can be either
shared or nonshared .. Also see Code Segment and Data Segment.

Segment Base Address. A segment base address is the
high-order 16 bits of the 20-bit physical memory address. (The
low-order 4 bits are implicitly 0.) The 8086 processor segment
registers CS, OS, SS, and ES contain segment base addresses.
Also see Logical Memory Address and Physical Memory Address.

Sequential Access Method. The Sequential Access Method
provides device-independent access to devices (such as the video
display, printer, files, and keyboard) by emulating a conceptual,
sequential character-oriented device known as a byte stream.

Server Process. A server process (such as the spooler, remote
job entry, and batch manager) is a system service that has
established itself as an active server for a particular queue.

Service Exchange. A service exchange is an exchange that is
assigned to a system service process at system build. The system
service process waits for requests for its services at its service
exchange. Also see Service Exchange Table.

Glossary-15

Service Exchange Table. The Service Exchange Table is
constructed at system build. It resides in the System Image and
translates request codes to service exchanges. Also see Service
Exchange.

Service Process. See System Service Process.

SetTrapHandler. SetTrapHandler is a BTOS procedural
interface call that sets trap handlers. In XEBTOS, it does not
create trap handlers that are a part of a partition's context;
instead, it sets trap handlers that are global to the processor
board on which it executes.

Size. The size of a data item or structure always refers to the
number of bytes contained.

SP. See Storage Processor.

Spanned. A record file in which a record can begin and end in
different physical sectors is spanned. Also see Record Sequential
Access Method.

Spooler. The spooler is a dynamically installed system service
that transfers text from disk files to the printer interfaces of the
workstation on which the spooler is installed. It can
simultaneously control the operation of several printers. A
disk-based priority-ordered queue controlled by the queue
manager contains the file specifications of the files to be printed
and the parameters (such as the number of copies and whether
to delete the file after printing) controlling the printing. This
allows the spooler to resume printing automatically when
reinstalled following a BTOS reload. Also see Spooler Byte
Stream.

Spooler Byte Stream. A spooler byte stream automatically
creates? uniquely named disk file for temporary text storage. It
then transfers the text to the disk file and expands the disk file as
necessary. When the spooler byte stream is closed, a request is
queued through the queue manager to the spooler to print the
disk file and delete it after it is printed. This is spooled printing.

SlAM. Standard Access Method.

Status Code. A status code reports the success or failure of the
requested operation. The system service process stores a status
code in a request block, for the client process to examine.

5029077

Glossary-16

Storage Controller. A Storage Controller is an XE520 processor
board that is used with an SP to form a Disk Processor board.

Storage Processor. A Storage Processor is an XE520 processor
board that controls half-inch magnetic tape drives.

Submit Facility. The submit facility permits a sequence of
characters from a file to be submitted for characters typed at the
keyboard. The use of submit files allows the convenient repetition
of command sequences. Also see Submit File.

Submit File. A submit file is a file used in the submit facility. It
contains the same sequence of characters that would be typed to
the desired programs. When a submit file is activated by a
request from an application process or a command to the
Executive, a character from the file is returned to the application
process whenever it requests a character from the keyboard. A
recording file and a submit file cannot be used simultaneously.
Also see Recording File and Submit Facility.

Sys.Cmds. Sys.Cmds is the Executive's command file. It
contains information about each command known to the
Executive. [Sys]<Sys>Sys.Cmds is used if there is no Sys.Cmds
file in the Application System Control Block. The New Command
command is used to enter additional commands into Sys.Cmds.

System Administrator. See System Manager.

System Build. System build is the collective name for the
sequence of actions necessary to construct a customized BTOS
System Image. System build allows the specification of
installation-specific parameters and the inclusion of user-written
system services.

System Common Address Table. The System Common
Address Table contains the 4-byte logical memory address of
each of a number of BTOS system data structures. It starts· at
physical memory address 240h.

System Common Procedure. A system common procedure
performs a common system function, such as returning the
current date and time. The code of the system common
procedure is included in the System Image and is executed in the
same context and at the same priority as the invoking process.
The Video Access Method, for example, is a system Common
procedure. Also see Object Module Procedure.

Glossary-17

System Configuration Block. The System Configuration Block
allows the application system to determine detailed information
about the System Image (workstation configuration and system
build parameters).

System Data Structures. System data structures are data
areas contained within BTOS that are necessary for its operation.
These structures are often configuration-dependent. A File
Control Block and a File Area Block are examples of system data
structures.

Sys(tem) Directory. The Sys(tem) Directory of each volume
contains entries for system files, including the Bad Sector File,
the File Header Blocks, the Master File Directory, the System
Image, the Crash Dump Area, the Log File, and the Executive.
The Sys Directory is created by the IVolume command rather
than by the CreatDir operation. Also see Sys(tem) Volume.

System Event. A system event affects the executability of a
process. Examples of system events are an interrupt from a
device controller, Multibus device, timer, or Real-Time Clock, or
a message sent to another process. The system event causes a
message to be sent to an exchange at which a higher priority
process is waiting; this, in turn, causes BTOS to reallocate the
processor.

System Image. The System Image (the file
[Sys]<Sys>Syslmage.Sys) contains a run-file copy of BTOS.

System Manager. The system manager is the person
responsible for planning, generating, extending, and controlling
the use of BTOS to improve the overall productivity of the
i nsta lIation.

System Memory. System memory is a contiguous area of
memory beginning at address 0 that is permanently reserved for
use by BTOS.

System Partition. A system partition contains BTOS or
dynamically installed system services. Also see Application
Partition.

System Service. A system service is an operation performed by
a system service process.

5029077

Glossary-18

System Service Process. A system service process is a BTOS
process that services and responds to requests from client
processes. Both Unisys and user-written system service
processes can be dynamically installed or linked to the System
Image at system build. A system service process is scheduled for
execution in the same manner that an application process is
scheduled. Also see Application Process and Client Process.

Sys(tem) Volume. BTOS is bootstrapped from the Sys(tem)
Volume. The Sys(tem) Directory of the Sys(tem) Volume contains
entries for system files that are not necessary in the Sys
Directories of other volumes. These additional entries must be
placed in [Sys]<Sys> when the volume is initialized.
Syslmage.Sys, CrashDump.Sys, and Log.Sys are created (but not
initialized) by the IVolume command. The other file entries are
created using the CreateDir operation or the Create Directory
command. These system files are the System Images, the Crash
Dump Areas, the Log File, the Debugger, the Executive, the
Executive's command file, and the standard character font. Also
see CrashDump Area, Executive, Log File, Sys(tem) Directory, and
System Image.

Task. A task consists of executable code, data, and one or
more processes. Also see Application System, and Run File.

TP. See Terminal Processor.

Terminal Processor. A Terminal Processor is an XE520
processor board that supports a parallel printer and up to 10
RS232-C serial devices.

TRUE. TRUE is represented in a flag variable as hex OFF.

UCB. See User Control Block.

User Control Block. There is a User Control Block (UCB) for
each user number. The UCB contains the default volume, default
directory, default password, and default file prefix set by the last
Setpath and SetPrefix operations. The UCB is memory-resident.

User File Block. The User File Block contains a pointer to the
File Control Block for each open file.

User Number. A user number is a I6-bit integer that uniquely
identifies an application system. Each application partition has a
different user number. Processes in the same application
partition share the same user number. A process obtains its user
number with the GetUserNumber operation. In the primary
application partition of a standalone or master workstation, the
user number is always O.

VAM. See Video Access Method.

VCB. See Volume Control Block.

VDM. . See Video Display Management.

VHB. See Volume Home Block.

Glossary-19

Video Access Method. Video Access Method (VAM) is one of
three video management software levels that controls the
monitor's screen.

Video Control Block. The Video Control Block (VCB) contains
all information known about the video display, including the
location, height, and width of each frame, and the coordinates at
which the next character is to be stored in the frame by the
Sequential Access Method. The VCB is located in BTOS memory
at an address recorded in the System Address Table.

Virtual Code Management. Virtual code management is a
facility that uses virtual memory to permit the execution of an
application system that exceeds the physical memory of its
partition.

Video Display Management. Video Display Management (VDM)
is one of three video management software levels that controls
the monitor's screen.

Volname. (Volume name) A volname is the second element of a
full file specification.

Volume. A volume is the medium of a disk drive that was
formatted and initialized with a volume name, a password, and
volume control structures including the Volume Home Block, the
File Header Blocks, and the Master File Directory. A floppy disk
and the medium sealed inside a Winchester disk are examples of
volumes.

Volume Control Structures. Volume control structures allow
the file management system to manage (allocate, deallocate,
locate, avoid duplication of) the space on the volume not already
allocated to the volume control structures themselves. A volume
contains a number of volume control structures: the Volume
Home Block, the File Header Blocks, the Master File Directory,
and the Allocation Bit Map, among others.

5029077

Glossary.20

Volume Home Block. Each volume has a Volume Home Block
(VHB). The VHB is the root structure (that is, the starting point
for the tree structure) of information on a disk volume. The VHB
contains information about the volume such as its name and the
date it was created. The VHB also contains pointers- to the Log
File, the System Image, the Crash Dump Area, the Allocation Bit
Map,the Master File Directory, and the File Header Blocks. The
VHB is disk-resident and 1 sector in size.

Volume Password. A volume password protects the volume.

Waiting State.- The waiting state is one of three states in which
a process can exist. A process is in the waiting state when it is
waiting at an exchange for a message. A process enters the
waiting state when it must synchronize with other processes. A
process can enter the waiting state only by voluntarily issuing a
Wait kernel primitive that specifies an exchange at which- no
messages are currently queued. The process remains in the
waiting state until another process (or interrupt handler) issues a
Send (or PSend, Request, or Respond) kernel primitive that
specifies the same exchange that was specified by the Wait
primitive. Any number of processes can be in the waiting state at
a time. See Ready State and Running State. '

Index

A
Allocation Bit Map, Glossary· 1
AllocExch, 4-4, Glossary-1
Alternate request procedural interface, 4-1
Application process, Glossary-1
Application system, Glossary-I
Application System Control Block, Glossary-1
ASCB, Glossary-1

B
B24 workstation, 5-29, 5-31
Bad Sector File, Glossary-1
Band functions, 5-12
Baud rate

changing a port's, 5-12
Blocks, 3-3
Bootstrap, Glossary-1
Break request

sending, 5-12
BSWA, Glossary-1
BlOS version, 1-6
BX, Glossary-1
Byte stream, Glossary-2
Byte Stream Work Area, Glossary-2
Byte-stream video, 4-3

C
cb, Glossary-2
COT, 2-3
Changing the baud rate of a port, 5-12
Changing the default user number

of a request procedural interface, 4·1
Channel number, 2-8

for a Cluster Processor, 2·8
for a Terminal Processor, 2-9

Client process, 2-1, Glossary-2
CloseTape, 5-44

procedural interface, 5·44
request block, 5·44

CloseTerminal, 5-21
procedural interface, 5·21
request block, 5·21

Cluster Processor, 4-3, Glossary-2
channel numbers, 2-8

5029077

Index-l

Index .. 2

Cluster Status
restrictions, 4·3
using the utility, 4·3

Cluster workstation, Glossary~2
Clusters, 1·4
Communications byte stream, 4-3, Glossary-2
Communications Interrupt Service Routine, Glossary-2
Compact system, Glossary-2
Configuration file, Glossary-3
Contingency, Glossary-3
Conventions, vi
CP,Glossary-3
CPU, Glossary-3
CPU Description Table, 2-3

for a File Processor, 2·3
structure, 2·4, 2-5, 2·6

Crash Dump Area,Glossary-3
CWS, Glossary-3

D
DAM, Glossary-3
Data segment, Glossary-3
Date/time format, Glossary·3
DAWA, Glossary-3
DCB, 4-5, Glossary-3
Default response time, Glossary-4
Device, Glossary-4
Device Control Block, 4-5, Glossary-4
Device handlers, 1-8
Direct Access Method, Glossary-4
Direct Access Work Area, Glossary-4
Direct printing, 4-2
Directory, Glossary-4
Directory password, Glossary-4
Directory specification, Glossary-4
Dirname, Glossary-4
DisableCluster, 4-8
Disk Processor, Glossary-5

file systems requests to, 2·6
Doorbell interrupt, 2-2, 3-4

RemoteBoot, 5·22
DP, Glossary-5
DrainTerminalOutput, 5-11

procedural interface, 5·11
request block, 5·11

DS, Glossary~5

E
Ensuring an empty output buffer, 5-11
Ere, Glossary-5
Error message, Glossary-5
Event-driven priority scheduling, 1-2
Exchange, 1-3, 4-4, Glossary-5
Executive, Glossary-5
Exit run file, Glossary-5
Expanding an Incomplete file specification, 5-7
ExpandSpec, 5-7, Glossary-5

F

procedural interface, 5-7
request block, 5-8

FALSE, Glossary-5
FCB, Glossary-5, Glossary-6
fh, Glossary-5
FIFO, Glossary-5
File, Glossary-5
File access methods, Glossary-6
File Area Block, Glossary-6
File Control Block, Glossary-6
File Header Block, Glossary-6
File management system, 1-5
File name, Glossary-6
File password, Glossary-6
File Processor, Glossary-6

CPU Description Table for, 2-3
file systems requests to, 2-6
RemoteBoot issued by, 5-22

File protection level, Glossary-6
File specification

expanding an incomplete, 5-7
Filename, Glossary-6
FP, Glossary-7
Frame, Glossary-7
Full file specification, Glossary-7

G
GetProclnfo, 3-9, 5-3

examples, 5-4
procedural interface, 5-3

GetSlotlnfo, 3-9, 5-5
procedural interface, 5-5
request block. 5-6

GetUserNumber, Glossary-7
GetVhb, 4-6

security when using, 4-6

5029077

Index-3

Index-4

H
Hardware Type

field in the System Configuration Block, 4·2

ICC, 1-3
ICC Server Agent, 3-7
Identifying a processor board, 2-2
Indexed Sequential Access Method, Glossary-7
InltCommLine, 5-29

procedural interface, 5·30
request block, 5·30

Installing multiple printer drivers, 4-5
Interboard routing, 3-3
Internal Interrupt, Glossary-7
Inter-CPU Communication, 1-3, 2-1, 3-1

operations, 3-9
Interprocess Communication, 1-3, 3-1
Interrupt, 2-2, Glossary-7
Interrupt handler, 1·8, Glossary-7
I/O Block, Glossary-7
lOB, Glossary-7
IPC, 1-3, 3·1, Glossary·8
ISAM, Glossary-8

K
Kernel, 1-6, Glossary-8

L
Least-recently-used algorithm, 1·5
Linear addressing, 3·3
Linear format, 5-10, 5·20
Linear offset, -2-3
Linear pointer, 2-3
Linker, Glossary-8
Log File, Glossary-8
Logical memory address, Glossary-8

M
Master File Directory, Glossary-8
Master workstation, Glossary-8
Master Workstation Agent Service Process, Glossary-8
Mediated Interrupt handler, Glossary-9
Memory address, Glossary-9
Message, 1-3, Glossary-9

receiving, 3·6
sending, 3·4

M FD, Glossary-9
MIH, Glossary-9

Mode
modify, 4·2
peek, 4·2

Mode parameters, 4-1
Mode peek, 4-2, Glossary-9
Multiprogramming, 1-1, Glossary-9

N
NoHangUpOnClose

after CloseTerminal, 5·21

o
Object module procedure, 1-8, Glossary-9
Offset, Glossary-10
OpenTape, 5-32

procedural interface, 5·32
request block, 5·33

OpenTerminal
procedural interface, 5-9
request block, 5-9

Operation, Glossary-10
Output buffer

ensuring an empty, 5-11
Overlapped, Glossary-lO
Overlays, 1-4
Overrun on read, 5-39

p

Partition Descriptor, Glossary-10
Partition Handle, Glossary-IO
pb, Glossary-10
pb/cb, Glossary-10
PCB, Glossary-IO
Physical memory address, Glossary-10
PIT, 4-2
PosFrameCursor, 4-3
Primary application partition, Glossary-IO
Primitive, Glossary-II
Printer drivers

installing multiple, 4·5
Printing

direct, 4·2
Procedural Interface, Glossary-II

CloseTape, 5·44
CloseTerminal, 5·21
DrainTerminalOutput, 5·11
ExpandSpec, 5·7
GetProclnfo, 5·3
GetSlotlnfo, 5·5
InitCommLine, 5·30
OpenTape, 5·32

5029077

Index-S

Index-6

Procedural Interface (continued)
OpenTerminal, 5-9
PurgeTapeUser, 5-43
ReadRemote, 5-25
ReadTapeRecords, . 5-39
ReadTerminal, 5·16
RemoteBoot, 5·22
RequestRemote, 5·24
ResetCommlSR, 5·28
ResetCommLine, 5·31
SetCommlSR, 5·26
SetTerminal, 5·12
TapeOperation, 5·36
TapeStatus, 5·34
WhereTerminalBuffer, 5·19
WriteTapeRecords, 5·41

Procedure, Glossary-11
Process, 1-7, Glossary-11
Process context, Glossary-11
Process control, Glossary-11
Process Control Block, Glossary-11
Processor, Glossary-12
Programmable Interval timer, 4-2
PurgeTapeUser, 5·43

procedural interface, 5-43
request block, 5-43

PutFrameAttrs, 4-3

Q
QueryDCB, 4-5

R
RAM, Glossary-12
Randomizing techniques, Glossary-12
rDevice, Glossary-12
ReadRemote, 5-25, Glossary-12

procedural interface, 5-25
request block, 5-25

ReadTapeRecords, 5-39
procedural interface, 5-39
request block, 5-40

ReadTerminal, 5-16
after a CloseTerminal request, 5-21
procedural interface, 5-16
req uest block, 5-17

Ready state, Glossary· 12
Record fragment, Glossary-12
Record number, Glossary-12
Record Sequential Access Method, Glossary-12
Record Sequential Work Area, Glossary-12
Recovering a·file, 1-6

RemoteBoot, 3-9, 5-22
procedural interface, 5-22
request block, 5-22

Request, Glossary-13
changing the default user number, 4-1
differences in specific, 4-4
enhancements using XE520 hardware, 4-4

Request block, Glossary-13
CloseTape, 5-44
CloseTerminal, 5-21
DrainTerminalOutput, 5-11
ExpandSpec, 5-8
GetSlotlnfo, 5-6
InitCommLine, 5-30
OpenTape, 5-33
OpenTerminal, 5-9
PurgeTapeUser, 5-43
ReadRemote, 5-25
ReadTapeRecords, 5-40
ReadTerminal, 5-17
RemoteBoot, 5-22
RequestRemote, 5-24
ResetCommlSR, 5-28
ResetCommLine, 5-31
SetCommlSR, 5-27
SetTerminal, 5-12
TapeOperation, 5-38
TapeStatus, 5-35
WhereTerminalButfer, 5-19
WriteTapeRecords, 5-42

Request code, Glossary-I 3
Request Control Block, Glossary-13
Request level, Glossary-13
Request table, Glossary· 13
RequestDirect, 4-5, Glossary-13
RequestRemote, 3-9, 5·24

procedural interface, 5-24
request block, 5-24

ResetCommlSR, 4-7, 5-28
procedural interface, 5-28
request block, 5-28

ResetCommLine, 5·31
procedural interface, 5-31
request block, 5-31

ResetFrame, 4·3
Response exchange, Glossary· 13
Responses

sending, 3-4
ring buffer, 3·7
ROM, Glossary .. 14

5029077

Index-7

Index-S

Routing
local, 3·4
remote XE520 processor, 3·4

RSAM, Glossary-14
RSWA, Glossary-14
Run file, Glossary-14
~unning state, Glossary-14

S
SAM, Glossary-14
SAM Generation, Glossary-14
SAMgen, Glossary-14
Scroll Frame, 4-3
Segment, Glossary-14
Segment base address, Glossary-14
Segment swapping

on the XE520, 1·5
Sending requests, 3-4
Sequential Access Method, Glossary-14
Server process, Glossary-14
ServeRQ, 4·7
Service

GetProcinfo, 5·3
Service exchange, Glossary-14
Service Exchange Table, Glossary-IS
Service Process, Glossary-IS
SetCommlsr, 4-7
SetCommlSR, 5-26

procedural interface, 5·26
request block, 5·27

SetTerminal, 5·12
output, 5·11
procedural interface, 5·12
request block, 5·12

SetTrapHandler, 4-5, Glossary-IS
Single-threaded operations, 2-6
Size, Glossary-IS
Slot number, 2-2
SP, Glossary-IS
Spanned, Glossary-IS
Spooler, Glossary-IS
Spooler byte stream, Glossary-IS
STAM, Glossary-IS
Status code, Glossary-IS
Storage Controller, Glossary-16
Storage Processor, Glossary-16
Submit facility, Glossary-16
Submit file, Glossary-16
Sys.Cmds, Glossary-16
System administrator, Glossary-16

System build, 1-8, Glossary-16
System Common Address Table, Glossary-16
System common procedure, 1-7, Glossary-16

GetSlotlnfo, 5-6
System Configuration Block, 4-2, Glossary·17

Hardware Type field in the, 4-2
System data structures, Glossary. 17
Sys(tem) Directory, Glossary-17
System event, Glossary·17
System Image, Glossary-17
System manager, Glossary-17
System memory, Glossary· 17
System partition, Glossary-17
System service, Glossary-17
System service process, 1·7, Glossary·18
System service processes, 1-4
Sys(tem) Volume, Glossary-18

T

TapeOperation, 5-36
command parameter, 5-37
examples, 5-38
procedural interface, 5-36
request block, 5-38

TapeStatus, 5-34
procedural interface, 5-34
request block, 5-35

Task, Glossary-18
Terminal output buffer, 2-6, 5-10, 5-20
Terminal Processor, 4-3, Glossary-18

channel numbers, 2-9
TP, Glossary-18
TRUE, Glossary-18

U
UCB, Glossary-18
User Control Block, Glossary-18
User File Block, Glossary-18
User number, Glossary-18

V
VAM, 4-3, Glossary-19
VCB, 4-2, Glossary-19
VDM, 4-3, Glossary-19
VHB, Glossary-19
Video Access Method, 4-3, Glossary-19
Video control block, 4·2, Glossary-19
Video Display Management, Glossary-19
Video Display Method, 4-3
Virtual Code· management, 1-4, Glossary·19

discarding an overlay in, 1-5

5029077

Index-g

Index-l0

Virtual terminal output device
structure for describing, 2-6

Volname, Glossary-19
Volume, Glossary· 19
Volume control structure, Glossary-19
Volume Home Block, 4·6, Glossary·20
Volume password, Glossary·20

W
WhereTerminalBuffer, 5·19

procedural interface, 5-19
request block, 5-19

WriteTapeRecords, 5-41
procedural interface, 5-41
request block, 5-42

X
XE520

procedures, 5-1
routing types, 3-2
services, 5-1

XE520 request routing types, 3-2, 3-3
XEBTOS

differences between eTOS and, 4-1

$ directories, 5·7, Glossary-I
8274-type controller

initialization of, 5-29

Help Us To Help You
Publication Title

Form Number Date

Unisys Corporation is interested in your comments and suggestions regarding this manual. We will use them to
improve the quality of your Pr'oduct Information, Please check type of suggestion:
o Addition 0 Deletion D Revision D Error

Comments

Name

Title Company

Address (Street, City, State, Zipl

Telephone Number

Help Us To Help You
Publitation Title

Form Number Date

Unisys Corporation is interested in your comments and suggestions regarding this manual. We will use them to

improve the quality of your Product Information. Please check type of suggestion:
o Addition D Deletion D Revision D Error

Comments

Name

Title Company

Address IStreet, City, State, Zip I

Telephone Number

BUSINESS REPLY MAIL
First Class Permit No. 817

Postage Will Be Paid By Addr~ssee

Unisys Corporation
AnN: Corporate Product Information
P.O. Box418
Detroit, M148232-9975 USA

Detroit, MI 48232

1.1 •. II. . I ... I. I .• II. .• I. 11.1 •. I. I. • I ... I. 1.1 III

BUSINESS REPLY MAIL
First Class Permit No. 817

Postage Will Be Paid By Addressee

Unisys Corporation
AnN: Corporate Product Information
P.O. Box 418
Detroit, MI 48232-9975 USA

Detroit, MI 48232

1.1 •. 11 •. 1 .•• 1.1 •. 11 ••. 1.11.1 .. 1.1 .. 1 ... 111.1 111

No Postage
necessary
if mailed in the
United States

No Postage
necessary
if mailed in the
United States

