A DEFINITION OF
FORMULA ALGOL

Alan J. Perlis

Renato lturriaga

Th.omas A. Standish

[

CENTER FOR THE STUDY OF
INFORMATION PROCESSING

DEPARTMENT OF DEFENSE

CARNEGIE INSTITUTE OF mmw%
ADVANCED RESEARCH PROJECTS AGENCY >€§

b=

A DEFINITION OF FORMULA ALGOLt

Alan J. Perlis
Renato Iturriagatt
Thomas A. Standishttt

-+ The research reported here was supported by the Advanced Research
Projects Agency of the Department of Defense under Contract SD-146
to the Carnegie Institute of Technology. '

. ¥t Partially supported by the National University of Mexico and the
Instituto Nacional de la Investigacion Cientifica.

tt+tNational Science Foundation graduate fellow.

This paper was presented at the
Symposium on Symbolic and Algebraic Manipulation -
of the
Association for Computing Machinery, Washington, D.C.

March 29-31, 1966.

ACKNOWLEDGEMENT

‘Wefare grateful to Professor Robert W. Floyd and L. Stephen Coles
for numerous helpful suggestions regarding the_prepération of the

manuscript,

ABSTRACT

Formula Algol is an extension to ALGOL 60 incorporating formula
manipulation and list processing. This paper defines a current
version of the Formula Algol language which is implemented on the

* CDC G-20.

1, Contents and General Description

1.1 Contents

1.
2.
3.

Contents and General Description

The form and symbol Declarations

Formula Expressions and Symbolic Expressions

3.1 Formula Expressions

3.
'3-
3.

1.1
1.2
1.3

301.4

Syntax
Examples

Semantics of Arithmetic, Boolean,
Conditional, Procedure, Array,
and Assignment Formulae

Evaluation Rules and Evaluated
Formulae

3.1.4.1 Syntax

3.1.4.2 Examples

3.1.4.3 Semantics

3.2 Syﬁbolic Expressions

3.
3.
3.
3.

3.

3.

2.1
2.2
2.3
2.4

2.5

2.6

Syntax
Examples
Semantics

Lists

3.2.4,1 Syntax
3.2.4.2 Examples

- 3.2.4.3 Semantics

Description Lists
3.2.5.1 Syntax

3.2.5.2 Examples
3.2.5.3 Semantics

~Selection Expressions

3.2.6.1 Syntax
3.2.6.2. Examples

3.2.6.3 Semantics

4, Predicates for Formulae and List Structures
4,1 TFormula Patterns

4.1.1 _ Syntax
4.1.2 Semantics
4.1.3 Examples

4.2 List Patterns

4.2.1 Syntax

'4.2.2 Semantics

4.2.3 Examples

4.2.4 Equality Tests

4,2.5 Testing for types

4.2.6 Testing for Membership in a Class

4,.2.6.1 Syntax
4.2.6.2 Semantics and Examples

"5, Other Kinds of Statements and Expressions
5.1 Push Down and Pop Up Statements

5.1.1 Syntax
5.1.2 Examples
5.1.3 Semantics

5.2. Additional Types of For Statements

5.2.1 Syntax
5.2.2 .Examples
5.2.3 Semantics
5.3 Editing Statements and Description List

' Editing Statements
5.3.1 Syntax

- 5.3.2 Semantics
5.3.3 'Examples
5.3.4 Description List Editing Statements

5.4 Transformed Formulae

5.4.1 Syntax
5.4.2 Examples

5.4.3 Semantics

6. Special Functions

7. History and Implementation

1.2 GENERAL DESCRIPTION

Formula Algol is an extension of ALGOL 60 [1] incorporating formula
manipulation and iiét processing. The extension is-accomplished'by add-
ing two new types of data struétures:formulae and list structures, and
by adding an appropriate set of processes to manipulate them. The control
structure of ALGOL 60 is inherited without change. The resulting language
is suitable for expressing a class of formula and list structure manipula-
tions. Algorithms may be written to construct at run-time algebraic
formulae, Boolean formulae, and list structures. Operations are available
which alter or combine formulae and list structures,‘and’which access
arbitrary subexpressiéns. Formulae may be evaluated, substituting numerical
or logical values forvbccurrénces of variables contained within. They may
be subjected to substitution processes causing the feplacement of occurrences
of variables by designated formulae. They may be subjected to processes of
algebraic or logical transformation defined by sets of algebraic or logical
rules in é form akin to Markov algorithms. Predicates are available to deter-
mine precisely the structure and composition of any formula constructible,
and mechanisms are provided to extract subexpressions of a formula provided
its structure is known. Likewise, predicates exist to determine the
structure and composition of any list structure constructiblé; and mechanisms
are pro§ided to extract sublists and subexpressions. Numerical, logiéal,
and formula values may be stored as elements in list structures and retrieval
mechanisms exist to select them for use as constituents in other processes.
Description lists composed of attributes and associated vaiue lists may be
attached to list structures and, in particular, to symbol variables, and pro-
cesses exist for retrieving valué lists and for‘creating, alteriﬁg, and

deleting attribute-value list pairs. Push down stacks of arbitrary depth are

L= 2 -

available for the storage df list structures and,‘in particular, single
symbols, and geﬁerators are provided in the form of new types of 525.
statements Which éséign to .controlled variables the eleménts of a single
1ist'structure;10r alternativeiy, of several 1ist'structﬁrés in parallel,
for use in an arbitrary process, Several Speciai functions in the form

-of standar@ procedures are availaBle for the purposes of creation of names
at run-time, testing the currentvsize of the avaiiablebspace list, taking
a derivative of a formula with respect to a given formula variable, erasing
1iéf structures, and so on.' Finally, both arfays and brocédures may be

defined to have}formulae or list structures as values.

2. “The form and symbol,Declérations

In ALGOL 60 vatriables may‘be declared for each'possible type of data,

ve.g. real,»integgg, Boolean. ‘In Formula Algoi, two new data typésifgzg and
szgﬁol cofrespdndiﬁg to formulae and 1i$t structures respectively ma? be
used‘to“deélé;e‘identifiers, arrays, or ﬁrocedures. That is, lists of

~ identifiers may be declared permitting assignment of formulae or list struc-

tures to eachvés values, arrays may be declared having formulae or list
structﬁres as eléments;jOr procedurés majibe declared whose values are data

strﬁétures of either éf £hese two tfpes.

When the form and symbol declarators are used in the declaration of

simple vafiables, not only is storage reserved for each variable but a side
effect occurs in‘which the value of‘each variable is initialized to the name
of the Qariéble. Thus, in the déclarations form F,G and symbol S,T, thé
atomic formula names F,G and the atomic symboi names S,T are created and
assigned asvthe ﬁalues of F,G,S, aﬁd T respeétively.

An additional property of an identifier X, declared eitﬁer of type form

-3 -

or of type sngol, is that“X may have a description list associated with
it intoVWhich attributes and values may be entered and retrieved. Further-
more, if X is of type szgpol,.x names a push down stack into which may be
stored liét structﬁres and their degenerate cases, symbols, and data terms.
3. Formula Expressions and Symbolic Expressions
3.1 Formuia Expressions
3.1.1 Syntax
<formula expression> ::= <arithmetic expression> |
<Boolean’expressioﬁ> | <an arithmetic expression
(Boolean expression) in which some of the primaries
(Béolean primaries) ha?e been replaced by formula
ptimaries or in which some operators have been pre-
fixed with a dot>t | <assigmment formula> |
<formula expression> <the mark "|W> <identifier>
<the mark "|"> <formula expression>
<formula primary> ::= <array formula> | <procedure formula> |
<transformed formula> | <evaluated formula> | . <identifier> |
<conditional formula>
<array formula> ::= <array identifier> , [<subscript list>]
<procedure formula> ::= <procedure identifier> .
<actual paramgter part>
<transform¢d formula> ::= <identifier> | <schema variable>
<conditional formu1a>4::= . if <formula expression> then

<formula expression> else <formula expression>

t+ This is a short description of what could be a formal syntactic statement.

-4'—

' ,<asgignment foem31&> 1 3= <variable> . e—<formule expression>
: <eva;1uate¢iif§muia> 1= see sec_tidn 3.1.4.1
3.1. 2 Examples
Y3 t 2 + sqrt (F)
"BV ~'C A D
F |T| sin(C)
F <-—F+G
A [LI]
Taylor . (F,X,N)
. F
Ceval (V) F (2,3)
Fl G |

3.1. 3 Semantics of Arithmetic, Boolean, Conditional Procedure, Array,
‘and Ass1gnment Fotmulae

The process by which the value of a Formula Algol expression is
ebtained is.explalned by“means of a recursively defined function called
?yék..:This functibnvdoeseﬁot appéarvexplicitly'in'the.syntax of the source
language, rather it is executed implicitly at run time on each occa31on.
in which the value of an eﬂpression is obtained In the'definitlon of VAL,
single quctatienrmarks‘pleced around an expression, e.g. 'f+g', indicate
that e‘fétmulawcenscructidneprCees is to be evoked causing the creation
inside the computer at tep;cime of a data structure which represents the
expressidn.: Such'data scfccteres can be represented in many ways te.g. trees;
Polish prefix chains, etc]. The choice of such representatiens is |
1mp1ementation dependent and is not part of the language itself. As a
further.notatlonal‘conventiqn,;n}thls-pepe:,‘if Greek 1etters or syntactic

classes are‘uSed‘inside quqﬁe;marks,'they are non-self-referential.

-5 a

Formula Algol is a strict’extension of Algol 60 with regard to
values And types. Exactly as in Algol 60, each value has an associated
type. In the explahation of the function VAL below, the association
of a type with a value is given explicitly by writing an ordered pair
of the form (<type>, <value>).

Formal definition of VAL(E) = (TYPE(E), VALUE(E)).

1. E is a constant which is either a <number> or a <logical value>.

VALUE(E) is the conventional value of a number or
a logical value (identical to that given by the
Algol Report [1])

TYPE(E) is set to integer if the number is an <integer> [1];
it is set to real if the number is a <decimal number> [1];
it is set to Boolean if E is a <logical value> [1].

2, E is of the form . <identifier>

TYPE(E) = symbol if the <identifier> wés declared of type
symbol, otherwise TYPE(E) = form

VALUE(E) = '<identifier>'. This means that an atomic name

is constructed inside the computer.
-3. E is a variable
TYPE(E) = declared type of E

VALUE (E) = value of the last expression, say F, assigned to E
' by an assignment statement or by an extraction

operation (c.f. section 4.1.2)
Such‘assignments are legal if gnd only if given E «F. There.is an
arrow in the fdllowing_graph from TYPE(F) to TYPE(E):
&
\ ;9

Geale’"_:____—.’ integfa - . Bool

-6 -

...,xn)

4, E is a function designétor, Say P(xl,
TYPE(E) = the type that precedes the procedure
" heading in the declaration of P.
-VALUE(E) = the’vaiue produced by the call of the
‘ procedure P with actual parameters:
VALUE(x,), ...,VALUE(x), as defined

- 'in the Algol report.

are formula expressions and

‘QW:@IHJ*VHKKPPPHWMPF

Type (A) Lype (B) real iﬁteger Boolean form‘
real T1 T1 error T4
integer | T1 T2 error T4
Boolean | error error T3 T5
form: T4 T4 - T5 _form

where
real if <op> is a numeric operator

Tl= {Boolean if <op> is a relatiomal operator
‘terror . otherwise
iﬁteger 1f <op}‘iS'a numeric operator othérvthan /
T2‘ real if <op> is /
o Boolean if <op> 'is a relational operator
error otherwise '
(Boolean if <op> is a logical connective
© (error - otherwise -
;- (form if <op> is either a numeric or relational operator
T .
, error otherwise
if <op> is a logical connective
T5= ’

(Case I) E is a binary expression of the form A <op§ B where A and B

TYPE(E) is defined By-the following table:v

form
error

otherwise

-7 -

If TYPE(E) = real, integer, or Boolean then VALUE (E) = is the

number or logic value obtained by carrying out the
operation <op> with arguments VALUE(A) and VALUE(B).
1f TYPE(E) is form, then VALUE(E) is 'a <op> B'
‘where o is VALUE (A) and B is VALUE(B).
(CASE II) E is of the form A . <op> B
TYPE(E) = form
VALUE(E) = 'o <op> B’
where o = VALUE(A) and B ='VALUE(B),

Here we observe that the use of . <op> automatically causes, in all
cases, the constructién of a formula and prevents actual arithmetic or
logical operations from being carried out.

6. (Case I) E ié a unary expression of the form <opl> A where A is any
formula expression and <opl>::= sinlcos|exp|1n|sqrt|arctan|signléntierl
—|+|-|abs

TYPE(E) is defined by the following table:

<opl} sin,cos,exp sign abs
Type (A) 1n, sqrt, eptier t —
real real integer real | error
integer real integer | integey error
Boolean error erroxr error | Boolean
form form form form | form

If TYPE(E) is real, integer, or Boolean then VALUE(E) is the number or
logical valﬁe~obtéined by carrying out the operation <opl> with argument
VALUE(A). If TYPE(E) is form then VALUE(E) is the expression '<opl> o'
where o = VALUE(A).

(Case II) E is . <opl> A
TYPE(E) = form

VALUE(E) = '<opl> o' where o = VALUE (A)

Exaﬁples
’Suppose that at a certain point in a source pfogram that.F and G have been
declared of .type _f_gj_g_l, ‘that X and Y have been declared of type real, that
X has been assigned the véiﬁeJS;é; that Y haslﬁeen-assigned the value 2,
'that F has been éssigned the value G/S, and that G has as its value its
“own name. Considef,the following assignment statements:

a) X « X +Y) 1t 23
b) F «3 x sin(G) + (F +X) 1 Y 3
c) F « SQRT(F) ;

In statement (a) all variables are numeric. Thus the arithmetic expression
(X +Y) 12 is evaluated numerically using the current &alues of X and Y and
the result (27.04) is stored as the wvalue of X. ’In statement (b), the value
of F becomes the formula expression ' sin(G) + (G/S + 3.25 12'. TFinally,
statement (c) replaces the value of F by a formula consisting of the SQRT of
its current value, viz. 'SQRT (3X sin(G) + (6/5 +3.2) 12)'. If it is
desired tOZreassign the‘name 'F' to be the value of F, one may execute the
assignmeﬁf st;tément F «.F. Iﬁ general, we may‘use . F anywhere as a
. primary in any formula expression in which it is desired to refer to the name
rather thén the value of F,
7. E is a cOnditiqnai formula of the form
. if B then A else C

"TYPE(E) = form

VALUE (E) = 'if B then o else y'
where B = VALUE(B), @ = VALUE(A), and vy = VALUE(C), furthermore it is

requiréd TYPE(B) = form or Boolean, otherwise an error will result.

The conditional action represented by this formula can be executed by
applying the eval operator to VALUE(E) (see section 3.1.4). Under evalua-
' tion,.if eval B isitrue then the result is eval o; if eval B is false then

the result is eval v, otherwise the result is the conditional formula

-9 -

'if p then o else y' where p = VALUE(eval B) and where «,B, and y are
given above.
8. E is a procedure formula of the form E = A . (Xl,Xz, cees Xn)

TYPE(E) = form
VALUE(E) = 'A . (nl,nz, T]n)'

where Ny = VALUE(Xi),

A is the name of a declared procedure, and

Xl’XZ’ cees Xn are formula expressions.

Example

Consider the assignment statement

F « Taylor . (G,X,N) ;

where F,G,X, and N are of type form. Executing this statement causes the
construction of the formula 'Taylor . Cﬂl,ﬂz,ﬂ3)' where My = VALUE (G),
n, = VALUE (X), and Ny = VALUE(N), and this procedure formula, stored as the
value of F, represents a postponed procedure call. Applying the gzgl operator
to F causes the procedure Taylor to be called with an actual parameter list

(eval Nys eval nz, eval n3) where the result of the procedure call (which

procedure_must be a function designator, i.e. must have a value) becomes the
value of the expression eval'F. Procedure formulae are the means by which
representations of proce&ure calls may be used in constructing formula data
structufes., If a normal function designator is used as a primary in the
construction of a formula,.the velue resulting from the call of the function
designator is used in the construction of the formula instead of the formula-
representing the érocedure call.v E.G., F « Taylor (C,X,N) ; causes the
procedure Taylor to be called with actual parameters G,X, and N and causes
the resulting vaiue to be stored in F.

9. E is an array formula of the form

A [Xl’XZ’ ceey Xn]

- 10 -

TYPE(E) = form
VALUE(E) = 'A"[ﬂljn29 cevy nn]'
~ where Ny = VALUE(Xi) |

A is name of a deélared array, and

: Xi’XZ’ ceey Xn are formula expressions,.

_Example

.Execﬁting the assignment statement

F «A . [I,J,K];

éauées the coﬁstructiqn of the formula 'A [ﬂl,ﬂz,n3]? where “1 = VALUE(I),
M, = VALUE(@),.and ﬂ3_= VALUE(K). This formula represénﬁs a postponed |
array access of the array element A [I,J,K]. Applying the eval operator
to F with integer values for I,J, and K (see section 3.1.4) causes the
execution of the array access. If a formula is constructed using A-[I,J,K]
as a primary, then the valﬁe of the subscripted variable A [I,J,K] is used
in its construction. If, however, a formula representing the subsgripted
variable;itSelf (in contrast to its value) is desired as a primary in a
formula, then the corresponding array formula A ., [I,J,K] must be used.
| An important application of array formulae is the generation of names
dynamically at rﬁn—timé.: Upon entrance to a block containing the declaration
~ form array A[1:N] ; N array elements are created and thesé beéome available
as ﬁames qfvstorage locations for use in the construction of formulae internal
- to that block. Furthermore, the names of these storage locations may be used
in the construction of f@rﬁulae without any values having been stored into |
them. Later, values may‘be assigned to these 1ocatioﬁs and by means of the

evaluation process, the values may be subStituted for occurrences of the names

of the locations.

- 11 -
10. E is an aszsigmnent formula of the form
A . «B,
?YPE(E).gﬁform3
.VALUE(E) = 'A p'

where § = VALUE(B)

Example

Consider the assignment statement
F «G. «A+ B ;

where the type of F is form and where the types of G,A, énd‘B are any

type other than symbol or Boolean. Executing this statement causes
the construction of the formula 'G « o' where ¢ = value(A+B), and
causes this formula to be assigned to F as a value. Applying the eval
operator to F causes eval (@) to be stored as the value of G, and,
additionally, the value of the expression eval F becomes eval ().
3.1.4 Evaluation Rules and Evaluated Formulae
3.1.4.1 Syntax
<evaluated formula> ::= eval<variable> |
eval <bound variable list> <formula expression> <value list>
subs (<formula expression list>) <formula expréssi§ﬂ>
<value list> | |
reglace (<formula expression>)
<valuelliéﬁ> ::= (<actual parameter list>) |
(<the mark '"<" > <variable> <the mark '">" >) |
<bound variable list> ::= (<formula expression list>) |
Z_;C<thé mark '"<" >‘<variabid> <the mark '>" >)
<formula expression 1i§t> ti= <formula expression> |

<formula expression list>, <formula expression>

- 12 -
3.1.4.2 Examples

eval F
eval (X,Y, Z) F (3,4, 2 5)
* subs (X, Y) F (A.[N] + 6, B. ,Q)/T)

reglace (F)

3.1.4.3 Semantics

We may think of formulae as abstractions of computatlons. By manipulat-
ing formulae we alter the,computations they repfesent At some point in
~the-execution,of4a'program,'we_may wish to-car;y out the computation
.repfesented'by‘a formula; To do this,‘we could substi;uﬁe values for
occurrences ofleariablésteppearing by name only in a formula, and these
values will bé,combined,aCCerding te the computation expressed by the formule
resulting in an evaluated formula. In order to accomplish:the above, we
have the éﬁgliqpereter.

If We’have a formula evnsieting of names of formula variables jdihed
by arithmetic operatofs; then, if we assign each of the formula variables
ve numerieal.yelue, the result of the evaluation of the formula will be a
‘number. Henee, the evélﬁetion of:an arithmetic formula by complete'sebstitu-
tion of numbers for formyle,variables is a computation eerfying the.set of
numbers substituted iﬁtoee hﬁm§er.' Anaiogeusly; substiﬁutien of Boolean
values for formula variablee'in a Boolean formula produces a Boolean value.

On the othee hand, we ﬁeed netvsubstitute arithmetic or Boolean values
for formula ﬁeriables, bﬁtiraﬁher,VWe can substitute dtheriforﬁulae. This,
in this case, evaiuation:of the fofmula, instead of broducing a single value;
expands it,to an enlarged fofmﬁla. Hence, EXél may be used to construct
fdrmulae. | |

A third use ofygzgl is tﬁat‘of‘prodqcing-trivial.simpiifications in a

formula without altering its value and without substitution. This is done

- 13 -
according to the following table:

Simplifications of eval

At 0 -1 Ax 0 -0
At 1A Ax 1A commutative
At -1-1/A Ax =1 -A
At -n- 1/Atn Ax -n--(A X n)
A/ 1A A+0 A
A [(-1)= -A A+ (-n) A - n
A /(-n)-> -(A/n) 0+A A
0/ A0 (-n) + A 5A - n
(-n) / A = -(n/A) A-0-A
A - (-n) -A +n
0 - A 5 -A

(-n) - A »-(n + A)

X V true - true
X A true - X
XV false —X

X A false — false

commutative.

Whenever an expression contains two numeric (Boolean) arguments joined
by an arithmetic (logical) operator, they are combined by eval into a
numeric (Boolean) result according to the operation expressed by this
operator.

A final use of eval is to carry out the array access or procedure call
indicated by an array formula (see section 3.1.3) or a procedure formula
(see section 3.1.3), or to carry out the assignment of a value or the choice
of a value indicated by an assignment formula (see section 3.1.3) or a
conditional formula (see section 3.1.3).

These uses of eval are usually combined. Thus evaluation of a formula
may produce partial expansion, and some trivial simplification simultaneously.

Note: All substitutions are carried out simultaneously.

- 14 -

I. The substitution operation
The operation subs, which evokes a substitution process, is defined
as follows:

Consider a statement of the form

D « subs (Xl’XZ’ ceey Xm) F (Yl’YZ’ eees Yn) @D)

where n2 1 and m 2> 1.
Then
(2) F must be a formula expression.
(b) If TYPE(F) is numeric or Boolean or if VALUE(F) is a number

or logical constant, then the effect of 1 is precisely that
of D «F.

(c) If TYPE(F) = form and VALUE(F) is a formula, then D will
have the value obtained by substituting Y, for each
occurrence of X: in a copy of VALUE(F), p%ovided VALUE(Xi) is

an atomic formula variable. This substitution is performed
for each 1 < m.
(d) Yi may be an expression of any type except symbol. .
II. The evaluation process

The evaluation operator eval is defined as follows: Consider a

statement. of the form

D eval (X),Xy, ooy X)) F (¥5,%,, ooy Y)) a”

Then rules (a), (b), (c), and (d) above apply without change. In additionm,
the resulting fofmula is simplifiéd according to the table above and
executing EXEl‘f where Fvis an assignment formula, a procedure formula or
an array formula,‘respectively, causes the assignment to be executed, the
procedure tb be called, and the array element to be accessed respectively.
When evaluaéing a conditional formula, only if the Boolean formula in

the if clausé yields a Boolean value will the conditional action represented

- 15 -

by the formula be executed.
III. The function replace
The functién designator replace(F) where F is a formula expression
produces a formula which is obtained from F by replaciﬁg every atomic
variable in F by its cur;ently assigned value and by applying eval to the
result. The atomic variables used in the formula F must be declared
either locally or globally to the block in which reElace(F) is executed.
3.2 Symbolié Expressions
3.2.1 Syntax
<symbolic expression> ::= <variable> | <function designator> |
<selection expressiomn> [<value retrieval expression>]
<the mark '"<" > <symbolic expression> <the mark ">" >
3.2.2 Examples
S
Select (L,N)
3 xd of S
color (apple)
< 8>

<< 8 >>
last N of indexlist (M th of S)

3.2.3 Semantics
A symbolic expression is a rule for computing either a single symbol

or a list as a value. This occurs according to the following rules,

1. If S is a variable declared of type symbol, the value of S
is the current contents of S. When an identifier is
declared of type symbol, its contents are initialized to
contain the name of S (this is not true for subscripted
variables). Thus, after declaration and untjl destroyed
by an assignment statement, by a push down statement, or
by an extraction, the value of S is the name of S. Execut-
ing the special assignment statement S « .S restores the
name of S to be the value of S. If a list has been stored
as the contents of S by an assignment statement, then the
value of S is the list. If the contents of S has been

result.

- 16 -

pushed down or popped up the value of S is the symbol
or list at the current top of the push down stack. If
the contents is empty, the value of S is the symbol nil.

If S is a function designator resulting from the declara-
tion of a symbol procedure, the value of S is that assigned
to the procedure identifier by executing the body of the
procedure declaration using actual parameters given in the
function designator call.

If S is a selection expression (see section 3.2.6), then
the value of S is a part of some symbolic data structure
selected according to the selection rules set forth in
section 3.2.6. ’ '

If S is a value retrieval expression, then the value of S
is a function of an ordered pair of symbols (T,U) consist-
ing of the value list assoclated with the attribute U on
‘the description list attached to T (see section 3.2.5).

If S is a symbolic expression of the form <T>, where T is
a symbolic expression, the value of T is first computed
and if the result is a single atomic symbol, say 'V', the
value of S is the contents of 'V' otherwise the result is
a run-time error. The angular contents brackets may be
nested arbitrarily many times to provide arbitrarily many
levels of indirect access.

The sub-language for list processing is so arranged that anywhere an atomic
symbol occurs in a statement or an expression it may be replaced by a
symbolic expression which when evaluated yields an atomic symbol as a .
result. Furtﬁer, anywhere a list may occur in a statement, it may'be

replaced by a symbolic expression which when evaluated yields a list as a

3.2.4 Lists

3.2.4.1 Syntax

<list> ::= <list element> | <list>, <list element>

<list element> ::= <expression> | <list expression> <description list>

<symbolic expression> <description list>

<list expression> ::= [<list>]

<expressiom> ::= <arithmetic expression> | <Boolean expression>

- 17 -

<formula expression> | <formula pattern> |
<symbolic¢ expression> | <list pattern> | <list expression>
3.2.4.2 Examples
[X + sin(Y), false, [A,B,C], F - G]
[A,E,I1,0,U]
3.2.4.3 Semantics
| Symbols may be concatenated_into a list by writing them one after
another, and by separating them with commas. This list may be assigned as
the contents of another symbol by executing an assignment statement. E.g.
Vowel « [A,E,I,0,U] ; In addition to symbol variables, any expression
except a designationai expression may be written as an element of a list
and its value will be entered. For example, let X,Y, and Z be formula
variables, let A,B, and C be Boolean variables, let U,V, and W be real
variables, and let R,S,<and T be symbol variables. Then the assignment

statement
S « [X + sin(Y), 3 + 2xU, if B then R else T, [R,T;R], -36] ;

-when executed causes each expreséion on the right to be evaluated,,and‘the
list of vélues to be sotred into the contents of S. Automatic data term
conversion results from storing non-symbolic values into lists. - The second
from the 1ast item in the above list is the quantity [R,T,R]. This becomes
a sublist. of the:liét stbred into S. Hence, the expression stored into S
is, in reality, a list structure. It is fqrther possible for certain of the
elements of'a iist to béar local description lists (see section 3.2.5.3).
3.2.5 Description Lists

3.2.5.1 Syntax

<description list> ::= /_<attribute value list>

- 18 -

<attribute value list> ::= <attribute value segment> |
<attribute value list> <attribute value segment>
<attribute value segmént> 1= [<attribute> : <list>] |
[<attribute> : <empty>]
<value retrieval expreésioﬁ> $¢= <identifier> (<symbolic expression>) |
the <attribute> of <symbolic expressiom>
<attribute> ::= <symbolic expression> | <formula expression>
3.2.5.2 Examples
Description lists

/[types: mu, pi, rho][color: green][processed: true]

/[properties: continuous, differentiable]

Value Retrieval Expressions

color (apple)

the ancestor of the leftrelative of <S>

3.2.5.3 Semantics

A description list is a sequence of attributes and values. An

attribute may'be any atomic symbol or any formula,. Thevvalue of any type
of expression except a désignational expression may be used as a value.
Each attribute is followed by a list of values associated with it. This
vélué list may contain mbre than one member, it may contain only one
member, or it may be empty; A description list may be attached to one of
three types of ijects:

1. A variable declared of type symbol for which there are
two cases (a) global attachment, and (b) local attachment.

2. A variable declared of type form.
3. A sublist of a list.
Assignment statements are used to construct and to attach description lists.

For example, assuming that all variables involved have been declared of type

- 19 -

symbol, the statements

S e—/[types: mu, pi, rho][ancestors: orthol, para5][color: green] ; (1)

T «[F, A/[mark:1], B,C, A/[mark:2], D,E] ; (2)
assign respectively a description list to S and a list as the contents of
T. The description list attached to S ;s globally attached meaning that
it is permamently bound to S for the lifetime of the variable S which
lifetime is determined by the ALGOL block structure in which S occurs. 1In
thé list assigned as the value of T, the symbol A occurs twice in the second
and fourth positions. The description lists attached to these two separate
occurrences of A are attached locally meaning that the separate occurrences
of a given atomic symﬁol within a list have been given descriptions which
interfere neither Wifh each other nor with the global description list
attached to A if such should occur, and that the attributes and values of a
given local description 1iét are accessible only by means of Symbolig
expressions accessing the particular occurrence of the symbol to which the
given local description list is attached.

In the following examples, suppose F is a variable declared of type

form and that all other variables involved are variables declared of type

sngol.

F « /[properties: continuous, differentiable] ; _ (3)
V «[A, [B,C]/[processed: true],A, [B,C]/[processed: falsel,A] ; (4)
In example (3), a description list is attached to a formula. In example (4),
the list assigned to be the contents of V has two identical sublists [B,C]
in the second and fourthvpositions having different 1§ca1 despription lists.
Value lists stored in déscription lists are retrieved by means of value
.retrievél expressions. To accomplish retrieval two arguments must be

supplied:

- 20 -

(1) an attribute consisting of an atomic symbol or a formula, and

(2) ‘an atomic symb@l or a positiOn in a list structure hav1ng a
deseription list » :

The attrlbute is thenclocated on the &escription list if it is present;

’and its associated value 1ist if any, become the value of the retrieval
'expression; If there is,no description list, or if there is a description
list but ﬁhe attribute does not appear on it, or if the attribute does

appear on it but ﬁas aﬁ{émptyvvalue list, then the Qalue of the retrieval
éxpression is'the symboi‘gi£. .Thﬁs, in examples (1) and (2) above, the

value retrieval expressiqﬁé color (.S), mark (2 nd of T), and mark (3 xd of T)
have the‘values greén, 1,‘éﬁéfgil respectively. The‘cbnstruction, the color
of .S, accomplishes the“samé'fﬁnﬁtion aé color (.S) but is slightly more
versatile ;n that any éymbolic or formula expréssion may be used to calculate
the attribuﬁe‘whereas Q§1y~identifiers may be used for the attribute in the
form <idéntifier>.(<symbolié gXpreésibn>); Thus, for example, the expression
the 3 Eé.gﬁ types(.S) gf <f>. is a legal value retrieval expression whose
attribute is éalculaﬁed by selecting the third element of the list which is

. the value of the expfession types (.S). 1In example (1) above, if it is
desired. to access attrlbutes of -the global descrlptlon 11st of the second
element A, instead of" accesslng only its local description list, then the
element must be selected\byjmeans of a selection expression, stored into a
variable,wand an‘indirécfHéécess of the global description list performed.
E.g." X «2 EQ_QE,T; P «mark (i); are two statements which, in the case of
example (2) ‘above, extréct thé name 'A' and store it as the value of X, and
which then aééess the value list associated with the attribute 'mark' on the
global descriptidn 1isF‘0fbthe value of X (i.e., the global description iist

of A). Tﬁe result is stored in P.

- 21 -

3.2.6 Selection Expressions
3.2.6.1 Syntax
<selection expression> ::= <selector> of <symbolic expression>
<ordinal suffix> ::= st | nd | rd | th
<ordinal selector> ::= <arithmetic primary> <ordinal suffix> | last
- <elementary position> ::= <ordinal selector> | <ordinal selector>
<class name> | <ordina1 selector> <expression> |
<ordinal selector> <augmented type> | <ordinal selector> integer
<arithmetic primary>
<position> ::= <elementary position> | <arithmetic primary>,
<ordinal suffix> before <elementary position> |
<arithmetic primary>»<ordinal suffix> after <elementary position>
<selector> ::= between <position> and <positiom> | all after <positiom>
all before <position> | first <unsigned integer> I
last <unsigned integer> | <position> l all <expressiom> I

all <augmented type> I all <class name>

<augmented type> ::= real | integer | Boolean | form | symbol

- sublist [text | atom | any

3.2.6.2 Examples

3 xd of S
last of S

N th real of S

last sublist of S

last [A,B,C] of §

5 th (|trigfunction|) of §

N th before last Boolean _(_)_f_ S

all symbol of S
last 3 of S

3.2.6.3

- 22 -

. Semantics

‘Selection expressions are formed by composing selector operators with

symbolic expressioné. A symbolic expression is first evaluated producing

a symbolic data structure as a value. A selector operator is then applied

‘to the resulting symbolic data structure to gain access to a part of it.

Assume first that the symbolic data structure, S, on which a selector

operates is a simple list. Then

1.

2.

An ordinal selector refers to an element of this list either by
numerical position, i.e., the n th element, or by designating
the last element. E.g. 3 rd of S, last of S.

An elementary position refers to an element of this list by
designating it (a) as the n th or last instance of an augmented
type, e.g., n th real, last ‘sublist, (b) as the n th or last
instance of an expression, e.g., n.EE (F +6), last [A,B,C],

(c) as the n th or last instance of a member of a class, which
class may be defined as consisting of any arbitrary Boolean

test on an element (see section 4.2.6), e.g., 5 th (|tr1gfunct10n|)
last (lvowell), (d) or as the n th or last, i.e., by ordinal
selection.

A position refers to an element of this list either by designating
its elementary position or by designating it as the n th before
or the n th after some elementary position.

A selector refers to an element by its position or else designates
one of the following sublists of the list

a) The sublist between two positioms, e.g., between 3 rd and 7 th
of S. - -

b) The sublist consisting of all elements before or after a given
position, e.g., all after 3 rd symbol of S, all before last
real of S.

c) The sublists consisting of the first n elements or the last n
elements, e.g., first 3 of S, last k of S,

d) The sublists consisting of (i) all instances of a given express-
- ion, e.g., all F of S, (ii) all instances of a given augmented
type, e.g., all real of S, (iii) all instances of elements
which are members of a glven class, e.g., all (ltr1gfunct10n|)
of S. The elements of the sublists so composed occur in the
same order that they occur in the list from which they are
selected.

w 23 -

Selectors may be compounded to access subilsts and theiy eledients. Suppose
the statement § «[&, {X,%, [A,A], X1, A} bhas been executed. Then the
expression 2 nd of S is a list valued swmbolic expression with the list
[X,X, [A,A]l, X] as value, whereas the expression 3 rd of 2 nd of S has the
list [A,A] as value, and whereas the expression last gf 3 xrd of 2 nd of S
has the single atomic symbol A as wvalue.

It is possible for selectors to refer fo elements or sublists which do
not exist. i*‘or example, suppose the statement 8 #{A,B,C]; has been
executed. Then the expression 5 th of 8 refers to an element which doesn't
e:_d.st. The value of such an expression is the symbol ;g_i:}" Similarly, the
expression first 3 of § refers to a sublist which doesn't exist. The value
of this expression is the iist [A,B5,C,ni},nil]. Generally, the rule is
(1) if a selection expression refers to a sin_gle element which doesn't exisg,
the vaiue of the expression is the symbol nil, and {2) if a selection
expression refers to a sublist required to contain more elements that are
available in the list structure being acceesed, then the symbol 32_1. is
.repeatedly appended to the end pf the insufficient structure until it is of
fequisité' length.

4, Predicates for Formulae and List Strxuctures
4.1 Formula Patterns .
4,1.1 Syntax

<formula pattern> ::= <formula expression> == <formula pattern structure> {
<fomula expression> R »» £formula pattern. structure> f : B |
<extractor> <formula expression> >> <extrac‘tor> <formula patterh o
strucﬁure>

<extractor> :i= <variable> =

- 24 -

<formula pattern structure> :3= <a formula expression 1n,which‘some
of the primaries may have been replaced by pattern primaries
and some of the operators may have been replaced by operator
classes> T

<formula pattern primary> ::= <type> | atom | any | of (<variable>) |
gfs(<proc¢dure identifier>) | (<formula pattern structure>) |
<extractor> <formula patterp primary>

<operator class> ::= <the mark "|{"™ <operator, class name>
<the mark"|™

<operator class name> ::= <variable>

<bperator class éssignment> = <operator class name> «
/[oEerator:v<0perator 1list>] <operator attribuﬁe list>

<operator list> ::= <operator> | <operator list>, <operator>

<operator attribute list> s:= <empty>] fgggg: <logical value list>] l
[index:<variable>] l [comm:<logical value list>][index:<variable>]

<logical value list> ::= true | false ' <logical value list>,‘true l

<logical value list>, false

4,1.2 Semantics

-A éomputation may construct a formula whose structure cannot be
predicted in’advance or a situation may arise in a program where it is
desired‘ to dis;riminate among various formulae in a given class depénding
on their Various properties. For this a mechanism is needed to defermine
precisely the structure of any giveﬁ formula. Formula patterns are used for
this purpose and they constitute a set of predicates over the class of

formula data structures. These formula patterns are sufficient in the sense

t This is a short description of what could be a formal syntactid statement.

- 25 -

that whatever constructions are used to create a formula, the process may
be reversed by the choice of a sequence of predicates, Furthermore, a
giyen formula pattern may be used to represent a class of possible formulae,
and any fo#ﬁulaimay‘be'tested fbr meﬁberéhip in thiénéiéss.

In the definitien of a formula pattern, a formula expression, F, is
_compéred with a formula pattern structure, P, te determine one of two things
(1) corresponding to the construction F==P, whether the expression F is an
exact instance of the formula pattern structnre P ot,_(2) corresponding to
‘the'construction F>>P, whether the formula expression F‘contains an instance
of the formula pattern structutevP.‘ ‘Both constructions F==P and F>>P are

Boolean expressions having values true or false.

The Construction F==

The formula expression F is defined recursively to be an exact instance

" of the formula pattern structure P as follows:

1. If P is a type word: real, integer, Boolean, form, or symbol,
then F==P is true if and only if the value of F is a real number,
an integer, a 1ogical value, a formula, or a list structure
respectively. ' '

2. If P is the reserved word atom, then F==P is true if and only if
‘the value of F is either a number, a- logical val value, or an atomic
formula name. B ~

3. If P is the reserved word any, then F=~P is always true.

4. If P is the construction of (<variable>) where the variable, say S,
© mist be declared of type symbol, and where S has been assigned as
a-value, a list of formula patternm structures, say [P 2, cees Pn]’

then F==P 1s true if and only if F....P1 v F==P2 V... V F==P is

5 true.
~rue

5. If P is the construction of (<procedure 1dent1f1ef>) where the
procedure identifier names a Boolean procedure with one formal
parameter specified of type form, for example, Boolean procedure
B(X); form X; <precedure body>, then F==P is true if and only if

~ the procedure call B(F) yields the value true.

- 26 -

6. If P is of the form A, <op>; B, then F==P is true if and only
if (a) F is of the form A2 <op>, BZ’ (b) A2==A1, (c) BZ==B
and (d) if <op‘>1 is a single operator then <0p‘>2 must be
identical to <op>1 whereas if <opi>1

<op>, must be a member of <op>, as defined below. Similarly,

for unary operators, if P is of the form <opi>1 Bl’ then

F==P is true if and only if (a) F is of the form <op>, B, and

1’.

is an operator class, then

conditions (c) and (d) above are true.

7. If respectively P is of the form
(a) <array identifier> , [51,52, cees Sﬁ]

(b) <procedure identifier> . [Sl,Sz, cees Sn]

(¢) <variable> . « S

1
(d) . if S1 then S2 else 53
where Sl,Sz,:..., Sn are formula pattern structures, then

F==P is true if and only if respectively

(a) F is an array formula with the same array identifier
as P and with a subscript list whose successive

elements are instances of S.,5.,, ..., S .
1°72 > Tn

(b) F is a procedure formula with the same procedure identifier
as P and with an actual parameter list whose successive

elements are instances of 51,32, cens Sn.

(¢) F is an assignment formula with the same left part variable
as P and with a right hand expression which is an instance

of Sl'

(d) F is a conditional formula of the form . if B then C else D
A and B==S‘1, _C==Sz, and D==S3.

Extractors

Assume for some P and some F that F==P is true. If an extractor is
used in P preceding a_formula pattérn primary, then the subexpression in F
which matches the'formuia pattern primary preceded by the extractor is

assigned as the value of the variable found to the left of the colon in the

extractor.

- 27 =

Operator Classes and Commutative Instances

"Before an operator class is used in a formula pattern, it must be
defined, The definition is accomplished by an operator class assignment
which assigns to a variable, which must be declared of type symbol,

"description list of the form
/[oEerator: <operator list>] <operator attribute list>

Suppose R is a variable declared'of type symbol for which the following

operator class assignment has been executed:

R e—/[operator: +, -, /][éomm: true, false, false][index: J]

where J must be a variable declared of type integer and where operator,
comm, and index are reserved words used for special attributes. Let P be

a formula pattern structure having the form

AR | B .

Then F==P is true if and only if (a) F is of the form A2 <op>2.32,'and

(b) one of the two following conditions hold:

(1) A --—-Al, Bz==Bl,
~ value list found on the description list of R. 1In the
specific case above, this list is [+,-,/].

and <op>2‘is,a member of the operator

(ii) B —_A JA —_Bl, and <op>2‘is a member of the 1list of

operators obtained from the operator value list by
deleting those operators whose corresponding logical
values in the logical value list following the attribute
comm are false. (In the specific case above, this
reduced operator list is the list consisting of the
single operator +). Thus commutative instances about
+ are considered, but not commutative instances about
.=, OT /. Note that [comm: true, false, false] need mnot
appear on the description list of R at all in which case
no commutative instances of any operator will be considered.)

- 28 =

If F==P is true, the integer variable used as value of the attribute index
will be set to an integer denoting the position of <op£>2 in the operator
value list. (In the specific case above, J is set to 1,2, or 3 according to
o Was +,-, or / respectively.) The operator <op2>2 is stored as

a data term as the value of R. Later the construction |[R]| can be used in

whether <op>

an expression in blace of an operator, and the operator <opi>2 extrécted
'during the previous matching will be used in thekconstruction of the formula
data structure that the expression represents. Alternatively, R may be
assigned any operator by the assignment statement R « <operator> ; and |[R]|

may be used in the same fashion.

The Construction F>>P

The formula patfern F>>P is true if F contains a subexpression, say S,
(which may be equal to F itself) such that S==P is true. A recursive process
is used to sequence througﬁ the set of sub-expressions of F for successive
testing against the formula pattern structure P. The sequencing has the

properties that if two sub-expressions S, and S, are both ‘instances of P,

1 2
then if 82 is nested insidevsl, then S1 will match P first, and if neither
S1 nor 82 is nested inside the other, then if Sl occurs to the right of S2

in a 1iﬁearized written form of S, then S1 is recognized before Sz.

The formula pattern A:E$>B:P in which extractors précede the right aﬁd
left hand sides of the formula pattern has the following meaning. Fifst,
>>P is tésted.l If the result is Ezgé, then (a) the sub-expression of F
which matchgs P is stored as the value df B, and (b)’a formula is constructed
consisting éf F withbthe‘sub-expression matching P replaced by the previous
value of B ing. the value B had before the assignmént described’in (a) took
place). This formula is stored as the value of‘A.

4,1.3 Examples

- 29 -

4,1.3 Examples
"Example 1. Let A,B,X,Y, and Z be declared of type form, and let R

be declared of type'sggl. Suppose that the statement
Xe3x sin(Y) + (Y -2) / R+ 2% R ;
has peen executed. Consider the statement:
if X>> A:integer X B: sin(M)ggg_gz «~2x B+A;

Since the pattern X>>A:integer X B: siﬁ(form) is true, the assignment

Z «2XxX B+ A will be executed, assigning as the value of Z the formula
2 x sin(Y) + 3 because A has the value 3 and B has the'valué‘sin(Y).

Eiample 2, Let X be of type symbol, A,B,Y,M,T,G, and P be of type
form, and D be of tybe Boolean. Then executing the statements:

X « [real, integer, Boolean] ; G « Y + 8 M -~ T) ;

P « form + A: of(X) X B: form 35 D «G==P; causes D to be set to true because
the pattern G==P is true, and causes A to be set to 8 and B to be set to
M - T.

Example 3. Suppose we execute the statements
F 2 x(sin (Xt2 + Y12) + cos (X12 - Y12)) / 5; G « sin(form) 4+ cos(form)

where all variables used are of type form. Then A:F>>T:G is a pattern with
value true, The value of T will replace the first instance of G in F, i.e.,
the expression sin(Xt2 + Y12) + cos(Xt2 - Y12) (this being the first sub-
expression matching the pattern G according to the sequencing priorities
defined above). A is aésigned the expression 2 X T / 5. Thus A is the same
as F with the first sub—expression of F matching G replaced by the value of T,
Example_&. Assume all variables in the followihg sequence of declara-

tions and statements are of type form.

wse

- 30 -

Boolean procedure HASX(F); value F; form F; HASX « F>>X;

G« (X2 +3) 12X (¥ - 1) ; F «A:of(HASX) X B:(any-1)
T ¢ G==F ’ ’ -

Then T is set to true, A is set to (XTZ + 3) 12, and B is set to Y-l
Here we see that any Boolean procedure may be used in a formula péttérn to
test the properties of a matching sub-expression of a férmula. The full
generality of Boolean prbcedures is thus delivered.
4,2 List Patférns
4.2.1 ‘Syntax
<list»paFterd> 3= <symbolic ekpression> == [<list pattern structure>] |
<list expression> == [<list pattern structure>] I |
<symbolic expression> == <iist expreséioﬁ> |
<symbolic expressiom> == <symbolic expression> |
<list'expression> == <list expression>
<list pattern structuré> :ﬁ: <list pattern primary> |
<1lSt pattern structure>, <list pattern prlmary>
<list pattern primary> ::= $ | $ <arithmetic primary> | <expression>
. <class name> | <augmented type> | <list pattern primary>
<description 1ist>'|’<extractor> <list pattern primary> l
[<1iSt.pattern structure>]
<extractor> ::i= <variable> :
4.2.2 Semantics‘.

Liét pattefns are pfedlcates for determining the structure of lists.
List patterns use the mechanisms found in COMIT [5] to test whether a
linear list is an instance of a certain linear pattern. The 11st patterq
structure descriﬁes the paﬁtern being tested for, and is composed of a
sequence of list pattern ériméries sepafatedvby commas. The symbols $ and

$ n may be used as list pattern primaries with the same significance as in

- 31 -

COMIT (viz. $ stands for any arbitrary number of.consecutive arbitrary
eleﬁents and'$ n stands-fdr n consecutive arbiﬁrary elements). If a
symbolic eXpressiaﬂ ﬁb used as a list péttern pfimary, its value is first
computed, and-if>tha; §a1ﬁe is a list, each element of the list Becomes
"one of the consecutive list pattern pfimaries in the list pattern structure.
Other kinds of elemeﬁts introduced- beiow may also become list pattern
Aprima:ies. | 1

| A 1list pattern comparés a list (determined by either (1) a list
expression, or (2) a list vaiued symbolic expression) to a linear pattern
(described by either (1) a list expression, (2) a list valued symbolic
eﬁpreséion, or (3) a list pattern structure) to see if the list is an
instance of the pattérn. The list pattern is a Boolean primary with values
true and false and thus may be combined with other Boolean expressions by
means of logical operators;

4.2;3 Examples

Example 1. Suppose the statement S « [A,B,C,D] has been executed,

where all variables involved have been declared of type symbol, énd where
. the values of A,B,C, and D are their respective names, Considér the state~

ment:
if 5 == [$1, B, $] then T « [T,B] else T « [T, last of S] ;

Since the contents of S, which is the list [A,B,C,D] is an instance of the
pattern [$1, B, $] (which is read "a single arbitrary constituent, followed
by a B, followed by any'arbitrary number of arbitrary‘constituents"), the
list pattern S == [81, B, $] is EEEé' Therefore, T « [T,B] is executed,
which has the effect of appending a B fo thg.end of the list stored as the

value of T.

- 32 -

As with the formula péttern structures used both as predicates and
selectors for formulae, list paitern structures may function-ﬁot only as
predicates but alsévas selectors, The same mechanism is used'ﬁo accomplish
this. if ény list ﬁé#tern'ﬁrimary in a list patterﬁ strﬁcture is precéded
‘by a variable declared of type symbol followed by a colon, then the correspond-
ing element in the list being tested, in the event there ié a match, becomes
the value of that symbol variable. The value may be accessed at any later
point in the progfam.

Example 2. As in the previous example, suppose‘the statement
S «[A,B,C,D] has beén executed where ali,variables are symbols and where
A,B,C,>and D have as values their respective names. Then, executing the

statement
if S == [T:$2, V:$2] then S «[V,T] ;

changes the contents of S to be the list [C,D,A,B]. Furthermore, the contents
of T has as its value the list [A,B], and V’has as its value the list [C,D].
4.2.4 Equaliiy Tests |
If we have two symbolic expressions, we may test whether their values
.are equalvby means of the relation <symbolic expression> == <symbolic
expréssion>. The valueé‘of the éymbolic eipressions may be single symbols,
.1ists of symbols, formulae, or values of any other type. Naturally, if the:
values of the two symbolic éxprésSions are non-conformable data structures,
the result of the'predicate,will be,jgigg. Similarly, two list expressions
may be teéted for'equality; as may a symbolic expression and a list expressién.
4.2.5 Testing for Types
A single valued symbolic expression having .a value whose type is unknown

may be used in the list pattern <symbolic expression> == <augmented type>

in order to determine the type. An augmented type is either real, integer,

Boolean, form, symbol, sublist, text, atom,'or.any.‘ Here the type text is

- 33 -

assigned to any Formula Algol reserved word entered in quotation marks as
an element of a list. E.g., § «['if',B, 'then', C] vhere 1 st of S ==

text is true and where 3 rd of S == text is true. The type atom is true

for atomic formuldae, numbers, and logical values, aad type any is true
‘for amy arbitrary element not of type symbol.
4.2,6 Testing for Membership in a.Class
Class Definitions
4,2,6.1 Syntax
' <class name> ::= (|<symbolic expression>|)
<class primary> ::= <class name> | [<class expression>]
<é,1ass secondary® ::= <class primary> & ~ <class primary>
<class factor> :i= <class secondary>] <class factor> A <class secondary>
<class expression> :1:= <class factor> ‘ <class expression> V <class factor>
<class definition> ti= let <class name> = [<formal parameter>
<the mark "|"> <Boolean expression>] | let <class name> =
.<class expression>
4.2,6.2 Semantics and Examples
- Sets may be defined by means of class definitions, Fot example,
suppose the statement V e—[A E,1,0,U] has been executed. Then the statement
let (]vowel]) = [X | Among (X,V)] ; defines the set of all vowels where
Among(P,Q) is a I}ooiean procedure which is true i{f P is an element of the
list contained in Q, and false otilerwise. Suppose, now, that having sometime

previously executed the statement S «[A,B,C}, we execute the statement
if 1 st of S == (lvdwell) then delete S ;

The list pattern 1 st of S == (|vowel|) will be evaluated by first computing

the value owf‘hthe expression 1 st of S, which is the symbol A, and second by

- 34 -

substituting A for the formal parameter X in the class definition of.
([vowell). This results in the Boolean procedure Among (A,V) being executed,
the value of which is true. Thus, A is a member of the class (Ivowell),

and the list pattern 1 st of S == (|vowel|) is true. This causes the
‘statement delete S to be executed which erases the value of S.

Class definitions may consist of Boolean combinations of other defined

classes. E.g., let ([A]) = (|B]) A (|C]) ; is legal provided;class

(|B|) and class (|c|) are elsewhere defined. Another example of a class
definition would be let (Iemptyl) = [leglgg] ; This defines the empty -
set. Note: Any arbitrary Boolean expression including a Boolean procedure
vcéll méy be used to define a class. Thus the full generality of Boolean
procedures is delivered.

Class definitions may be used as list pattern primaries in list pattern

structures. When this is done, the element matching the class definition

is tested for membership in the class. If the result is true, the 1i§t
pattern sffucFure continues to be matched against the list being tested. If
the result is false, the list pattern structure fails to match the list being
ftested. E.g. S == [D, (|vowel|), $] is a legal list pattern'which tests
the list which is the value of S to see if it is of the form D, followed by a
vowel, followed by an arﬁitrary number of arbitrary constituents., ‘Similar'to
formula>pattern structures, list pattern structures may be stored as the
value of a variable for use‘in liét patterns. E.g., the statements

S «[$1, B, 8] ; T «[A,B,C,D] ; iﬁ T == S then go to exit ; are equivalent

to the statement if [A,B,C,D] == [$1, B, $] then go to exit ;

Subpatterns are permitted as list pattern primaries so that list
structures may be tested. E.g., [A, $2, symbol, [B,$],D] is a legal list

pattern structure,

- 35 -

5. Other Kinds of Statements and Expressions
5.1 Push Down and Pop Up Statements
5.1.1 Syntax
<push down operator> ::= | | <push down operator> |
<pop up operator> ::= t | <pop up operator> t
<push down statement> ::= <push down operator> <symbolic expression>
<pop up.statement> ;1= <pop up operator> <symbolic expression>
5.1.2 Examples

{1 S

1S

t S

tt S

! 3 rd of indexlist(.S)

5.1.3 Semantics
The contents of any variable declared of type symbol is a push

down stack. The value of a variable consists of the current contents of

the topmost level of the push down stack. Assignment statements uéing
symbol variables on the left replace the current contents of the fopmost
‘level of ‘its push down stack. Applying a single push down operatidn, +,

to the name .of such a variable pushes down each level of the stack making
the topmost level (level 0) empty and replacing the contents stored at level
k with ﬁhe contents stored previously at level k-1, for k = 1,2, ...,
maxlevel,+-l, The empty topmost level may then acquire a value as its
contents by means of the execution of an appropriate assignment statement.

A lower level of the push down stack is inaccessible to the operation of
extracting cofitents until the execution of a pdp up statement reétores it to
the topmost level. Applying a single pop up operator, t, to the name of a

varigble destroys the contents of the topmost>leve1 (level 0) and replaces

- 36 -

the contents stored at level k with the contents stored previously at
level k + 1, for k = 0, 1, ...,‘maxlevei-l. A push down operétor (pop up
operator) consisting of n consecutive occurrences of a single: push A6wn
operator (pop up operator) has the same effect as n consecutive applica-
‘tions of a single push down operator (pop up operator). A push down
operator (pop up operator) is applied to a symbolic expression by (1) evaluat-
iing the symbolic expression and (2) determining if the result is an atomic
symbol or not. (3) If not, nothing is done. (4) If so, the operator is
'appiied to the push down stack named by the atomic symbol as described above.
Whatever structure occupies the contents of a symbol variable, S, may become
the coﬁtents of a 1owef level of‘the push down stack in S by application of
the push down operatof to S. in particular, list structures may be stored in
fhe push down stack in S.

5.2 Additional Types of For Statements

| 5.2.1 Syntax
<for list e1ement> it= ... | <symbolic expressionm>

elements of <symbolic expression>

attributes of <symbolic expression>
<for clause> ::= ... | for <symbolic expressiom> ¢ <for list> do

parallel for [<formal parameter 1list>] «

elements of [<symbolic expression list>] do |

parailel for [<symbolic expression>] «

elements of [<symbolic expression>] do
5.2.2 Examples’
for list elements

S
attributes gf S

elementslgf's

- 37 -

for clauses

for S « 1, true, F46, <>, last of Tl do
for S «elements of <> do

for S e-attributes.gf T 22

parallel for [I,J,K] « elements of [{S], [T], [U]] do

5.2.3 Semantics
We may wish to generate the elements of a 1list or tﬁe attributes

of a description list one by one in order to assign them to the controlled
variable in a for statement. For this purpose, the for list elements,
attributes of S, and elements of S, are introduced. Here, attributes on‘
the deseription list of the value of S, which must be an atomic symbol,
are generated in the order that they occur by attributes of S, and elements
of S, generates the successive elements of the list which is the value of
S. 1In the former ease, S may be any symbolic expression with an atomic
symbol as value. In the latter case, S may be any list valued symbolic
expression. Successive elements generated are assigned to the controlled
variable given in the for clause.

Parallel generation is also permissible. For example: if
S «[A,B,C}, T «(D,E] and U « [F,G,H,I] have been executed where the
variables A through I have as values their respective names, then executing
the statement

parallel for [I,J3,K] ¢« elements of [[S], [T], [U]] do
L' «[L,I,J,K] ;

causes the'foilowing to happen. First, all first elements of the lists
contained in S,T, and U respectively are generated and placed in the contents
of the controlled variables I,J, and K respectively. Control then passeé to
the body of the parallel for statement and returns when finished with its

execution. On the second cycle, all.second elements of S,T, and U are

- 38 -

generated and placed in the controlled variables I,J, and K respectively.
Control then passes to the statement foilowing the do and returns. On the
third cycle, all third elements are generated, on the fourth cycle, all
fourth elements are generated, and so on. If any list runs out of elements
"before any of its neighbors, the symbol nil keeps getting generated as the
n th element of that list whenever n exceeds the number of elements on the
list. The parallel generation stops on the first éycle before the symboly
nil would be generated from all lists. The number of controlled variables
is arbitrary but must be the same as the number of lists designated in the
symbolic expression list.

List valued symbolic expressions may be used to supply lists of controlled
variables and lists 6f lists to generate in parallel, as, for example, in the

construction

parallel for [V] <« elements of [W] do

where the statements V « [I,J,K] and W « [[S], [T], [U]] have been
executed previously. At the end, L should contain [L,A;D,F,B,E,G,C, nil, H,
nil, nil, I].
| ’5.3 Editing Statements and Description List Editing Statements
5.3.1 Syntax
<editing statement> ::= insert <list expression> <insertion locator part>
<symbolic expression> | delete <selector part> of <symbolic
expreésion> | delete <symbolic expressiom> | alter
<selector parf} of <symbolic expression> to <expression> |
<description list editing statement>
<insertion locator> ::= before <position> of] after <position> of
<iﬁser£ion locator list> ::= <insertion locator> |

<insertion locator list>, <insertion locator>

- 39 -

<insertion 1o¢ator part> ::= <insertion locator>
3.(<ihsértiqn locator list>)

‘<se1ectbf 1ist§ ::é <selector> | <selector list>, <selector>

<selector part> ::= <selector>] (<selector list>)

<description list editing statement> ::; the <symbolic expression>
of <symbolic expression> <is phrase> <expreésion>

<is phrase> ::= is | is not | is also

5.3.2 Semantics
Editing statements are used to transform, permute, alter, and

delete elements of lists. The insert cdnstruction causes a list structure

given by a list expression to be inserted at the list of places in a given

list specified by an insertion locator part. The list on which insertion

is to be pefformed is obtained by evaluating the'symbolic expression found

as the last item in the construction. All the insertions take place simul-
taneously. The first delete construction given in the syntax equation for
editing statements above performs simultaneous deletions of a list of parts

within thé list obtained by evaluating the symbolic expression. The list

of parts to be deleted is specified by the selector part in accord with the

semantics of selectors. The second delete construction deletes the symbolic
expression and is equivalent to an erase command. The alter construction is
the same as the first delete construction except it replaces each item of
the list of parts deleted with an arbitrary expression.
5.3.3 Examples
Sﬁppose S « [X,A,A,X] has been executed. Then the statement:

insert Y before last of S; changes the value of S to leok like [X,A,A,Y,X].

Similarly, the étatement: insert [[Y,Z2]] (after 1 st of, before last of) S ;

Changes~thé Valué“dffSrto,lookylike [X, [Y,Z], A,A, [Y,Z], X]. The state-

>mént; délétéHB,gg.befdre last of S; alters the value of S to look like

- 40 -

[A,A,X], and delete all A of S; causes the value qf S to be changed to
[X,X]. In a similar vein, the statement: alter all A of S to [[C,C]];
changes the value of S to look like [X, [C,C],»[C,C], X1. .

5.3.4 Description List Editing Statements

Description list editing statements add or delete values on

description lists. They supplement the role performed by assignment state-
ments in this regard. Suppose that S e~/ [types: mu,pi,rho] [color:red]
has been executed. Then, if the statement: the color of S is green ; is
executed, the value of the éftribute 'color' on the description list of § is
replaced with the new value 'green'. This yields the altered description
1ist />[types: mu,pi,fho] [color:gfeen] as a result, On the other hand,
the statement: the cdlor'gg S is also green ; cduld bé executed. Instead of
replacing the color 'red' with the value ‘green', the latter statement’appends
the value 'green' to the value list following the attribute 'color'. This
yields the description list / [types: mu,pi,rho] [color: red,green] as a
result. Finally, description list editing statements_mayhbe used to delete
values from value lists of a specific attribute. Executing the statement:
:EEE types of S is not pi; alters the above description list to be of the form
/[types: mu,rho]‘[color:vgreen].

5.4 Transformed Formulae

5.4.1 Syntax

<transformed formula> ::= <formula expression> | <schema variable>

<schem variable> ::= <variable>

<schema assigmment> ::= <schema variable> e—[<schéma}]

<schema> ::= <schema elemenﬁ>] <sChema>,‘<schema element>

<schema element> ::= <variable> | <single prodﬁcﬁi§ﬁ>,|

<parallel production>

- 41 -

<single production> ::= <formula pattern structure‘>1 - <formula expression>
<formula pattern structure>1. - <formula expression>
<parallel prodﬁction> tt= [<parallel elements>]
<parallel elements> ::= <variable> | <single production>
<parallel elements>, <variable> |
<parallel e1ement§>, <single production>
5.4.2 Examples
Transformed Formula
"F 1 S
Single Production

A: form X (B:form + C:form) —» .A X .B + .Ax .C

Schema Assignment
S «[PL -R1, [P2 -R2, P3 - R3], P4 — R4]
A complete example is given at the end of the discussion of the semantics.
5.4.3 Semantics
This section uses the concepts of description lists and
formula patterns discussed in sections 3.2.5 and 4.1 resPectively.
‘Let'F and G be formulae, and let P be a formula pattern. .The application

of the production P -G to the formula F is defined as follows:

1. If F==P is false (see section 4.1.2) then the
application is said to fail.

2. 1If F==P is true, then the application is said
to succeed, and F is transformed into the
value of the expression replace(G). As
explained in section 4.1.2, if F==P is true,
and if P contains extractors, sub-expressions
of F matching corresponding parts of P are

1.For the definition of <formula pattern structure>, see section 4.1.1.

YA

assigned as values of the extractors.
Furthermore, if the names of the extractor
‘variables are used as atoms in the construc-
“tion of G, then executing the procedure
replace(G) substitutes these extracted sub-
expressions for occurrences of the names of
the extractor variables causing as a result
a rearrangement of the sub-expressions of F
into the form expressed by the structure of
G. "

For example, the distributive law of multiplication over addition may

be executed as.a transformation by applying the production
_A: any x (B: any + C:any) - .AX .B+ Ax .C (1)

to a given formula. Suppose F «Xt2 X (Y + sin(Z)). Then applying the
pfoducﬁion (1).t° E willireSult in the extraction of the sub-expressions

Xt2, Y, and siﬁ(Z) into the variables A,B, and C respectively, and will

cause the replacement of the atomic names A,B, and C occurring on the right

hand -side 6f (1) with these sub-expres$ions resulting in the transformation

of the value of F into the formula Xt2 x Y + Xt2 x sin(Z).

A schemaﬂis a set of transformation rules. Each rqle is either a

single production or a list of single productions defining a parallel produc-
{tioﬁ. Variables occurring in a schema must have single producﬁions as values.
Expressions of the form F | S are formula primaries, and thus may be used as
consfituents in theAconsﬁruction of formulae. The value of such a formula-
primary.is a formuia which results from applying the productions bf the schema S
to the formula F according to one of the two possiBle sequencing modes explained
as follows. Sequencing. modes give_fhe order in which productions of a given
schema, S, ére épplied to a giveﬁ formula, F, and to its sub—expressioné. The
two sequencing ques differ in the order in which a given producﬁion will be
applied to different sub-expressions of F, aﬁd in the qonditions‘defining,when

to stop.

- 43 -

1. One-by-one sequencing
One-by-one sequencing corresPOnds to a syntactic construction

of the form S é—[Pl,Pz, ceas Pn]. For j « 1 step 1 until n,

production Pj is applied to F. If the application of Pj succeeds,
Pj's transformation is applied to F and control returns to the first
production, Pl’ which is reapplied to the result. If Pj fails to
apply to F, it is applied recursively to each sub-expression of F.

Therefore, production P, is applied to F if and only if production

k
‘ Pk-l is not applicable either to F itself or to any sub-expression of F.
This sequencing will stop either when no production can be applied to F,
or any of its suB-expressions, or when a production containing .- has
been executed.

2. Parallel sequencing

Parallel sequencing corresponds to a syntactic construction of

the form S « [[Pl’PZ’ ceey Pn]]. Here for j « 1 step 1 until n
production Pj is applied to F. If the application_of'Pj failé,

production P,

341 is applied to F, and so on up to Pn. If all single

productions of a parallel production fail at the topmost ievel of F,
then the Whofe sequence is applied recursively to the main sub-
expressions of F. Thus, in parallel sequencing, each one of the
productions is applied'at leyel k of the formula F only if all produc-
tioné have failed at level k-1. The termination condition is reached
when all productions fail at thé bottom level of F or when a production
contaiﬁing .~ has been executed.
In general, a schema will have a combination of both sequencing modes.
The schema variable, S, has to be declared of type symbol. ‘Optionally,
a description list may be associated with S. If the special attribute iﬁéﬁﬁ
occurs in the description list of S,’then when the transformation has been

completed, the value of an integer variable used as the value of the attribute

- 44 -

index is set to 0 if no transformation took place, i.e., no production was
applicaBle to F. The variable.is set to 1 if at least one transformation
took place and exit occurred because no further production of’S was
applicablé. Finally, the variable is set to 2 if a production,containing
.~ was applicable. The following complete example of a schema clears
fractions in arithmetic expressidns.
| begin form F,X,A,B,C ; symbol S,P,T ;

A «A:any ; B « B:iany ;VC «C:any ;

P e—/ [operator: +]>[£ggg: true}] ; T «/ Loperator: X] [comm: true] ;

S «[At (-B) -1/ .At.B ,
A |p| (B/C) ‘->(.Ax .C+.8)/ .c,
A |T| (8/c) » (.Ax .B) / .C,
A -3B/C5(.Ax .C-.B)/ .C,
B/C -A -5 (.B-.Ax .C)/ .C,
A/ B/c) > (.Ax .C)/ .B,

®/c) / A - .8/ (.c/.A),
(B/A) t ¢ »[.Bt .c/ .At .C];

Fe@+3/X)12/ &-1/%) ;

PRINT (F § S) end

‘The above prograﬁ will print X x £X12+3) 12/ (X1 2x (X1 2-1)).
6. kSpeéial Functions

The followiﬁg special functions are available:

Derv(F,X) which takes the derivative of a formula F with
' respect to the formula variable X.

Replace(F) defined in section 3.1.4.3,

Empty(L) which is a Boolean proéedure having the wvalue
A true if the contents of the symbol variable L
is empty, and having the value false otherwise.

- 45 ~

Mark (F) which is a function designator whose value is
the value of F but which marks F with a special
bit. Thus, for the expression Mark(F) + G,
the value is 'o + B' where o = VALUE(F) with a
special bit attached, and where B = VALUE(G).

Test (F) which is a Boolean function designator whose
value is true if F is marked and false otherwise.

Clear(F) which is a function designator whose value is
VALUE(F) but which has the special marker bit
cleared.

Create(N) which is a symbol function designator whose value
.1s a list of N created variables with names given
by a numeric code.

Eradl(S) which erases the description list attached to the
symbol S. ’

Length(L) which is an integer function designator having as
value the number of elements in the topmost level
of the list which is the value of L. This special
function is included as a tightly coded routine
for the sake of efficiency.
Cells which is an integer primary whose value at any
time is the number of cells remaining on the avail-
able space list,
7. History and Implementation
Formula Algol has been under development at Carnegie Institute of
Technology for three years since January 1963, and has undergone continual
evolution and expansion since that date. In August, 1963, an interpretive -
‘version was running and was reported at the Working Conference on Mechanical
Language Structures in Princeton, N. J. [2]. The present version of Formula
Algol has been implemented as a compiler on the CDC G21 computer [6]. Its
syntax analyzer is written as a set of Floyd-Evans productions [3],[4], its
code generators are Writﬁen in the notation of Feldman's Formal Semantic
Language [7], aﬁd its run-time routines are written in machine code for the

.purpose‘of constructing, testing, and manipulating formulae and list strudtures

at run-time. A standard linked list memory scheme has been used.

(1]

£2]

[31

[4]

€51

el

L71

L8l

REFERENCES

Naur, P. et.al., Revised Report on the Algorithmic Language

ALGOL 60, Communications of the ACM, Vol. 6,
pp. 1-17, (January 1963).
Perlis, A, J. and Iturriaga, R., An Extension to ALGOL for

Manipulating Formulae, Communications of the ACM,

Vol. 7, p. 127, (February 1964).
Floyd, R. W., A Descriptive Language for Symbol Manipulation,

Journal ACM, Vol. 8, p. 579, (1961).

Evans, A., An ALGOL 60 Compiler, Annual Review invAutomatic
 Programming, Vol. 4, Pergammon Press.

Yngve, V., H., COMIT Programmers Reference Manual, The M.I.T. Press,

(September 1961).

Iturriaga, R., Standish, T. A., Krutar, R. A.,, and Earley, J. C.,
Techniques and Advantages of Using the Formal
Compiler Writing System FSL to Impleﬁent a'Formﬁla

Algol Compiler, to appear in Proceedings Spring Joint

Computer Conference 1966, Spartan Books.

Feldman, J. A., A Formal Semantics for Computer Languages, Doctoral

Dissertation, Carnegie Institute of Technology, (1964).
Feldman, J. A., A Formal Semantics for Computer Languages and its

Application in a Compiler-Compiler, Communications of

the ACM, Vol. 9, p. 3, (January 1966).

	0001
	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46

