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SUMMARY

The application of pulse-slimming to digital magnetic
recording is investigated, and analysed using super-
position. Representative criteria are used to determine the
maximum achievable packing density both before and
after slimming. The results indicate that pulse-slimming is
of little value for an already-optimized recording system,
but could be used to trade-off timing margin against
amplitude margin in a new design.
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1 Introduction

The superposition technique offers an opportunity for
many facets of the magnetic recording process to be
analysed in non-real time, allowing the recording and
replay mechanism to be effectively magnified for greater
insight into the detailed changes produced by variation
of any of the parameters involved, such as coding
technique, packing density, or detection process.

The superposition principle, as applied to magnetic
recording, states: ‘At all packing densities for which the
read-back process is iinear, the net flux in the read-coil
from any pattern of surface flux-reversals is the algebraic
sum of the individual flux contribution from ecach
reversal acting on its own’. This principle provides a very
simple means of simulating the effects of any pattern at
any packing density, since the isolated reversal response.
called here "the basic pulse’, can be stored on a computer
as an array of voltage readings, and then any number of
these basic pulses can be added or subtracted, at the
correct distances from each other. to produce the total
output voltage waveform. Measurements can then easily
be made on this output waveform to calculate peak-shift,
amplitude, etc.

The only phenomena which will render superpositicn
invalid are those which alter the written transition shape
in a manner dependent upon the transition density.
Morrison and Speliotis' report this range of validity to
go up to 60000 bits/in. a packing density out of reach of
current technoiogy. Other authors have suggested that
this figure is too high, but the alternative to
superposition is the dynamic iterative hysteretic
model?™* which, although more accurate than super-
position. particularly at very high packing densities.
involves many times the computational effort, and was
therefore not considered for this study because of the
large number of permutations involved in the analysis.

2 Choice of the Basic Pulise

The heart of the superposition process is the basic pulse,
and this must naturally be chosen very carefully. Several
expressions have previously been cnosen to represent the
basic puise analytically. Hoagland® proposed the
Gaussian expression u(t) = exp (—t?) which was also
used by Chu,® as well as the Lorentzian v(t) = 1/(1 +¢3),
used also by Kosters and Speliotis.” The mathematicai
justification for the latter is that the Lorentzian is the
derivative of the arctangent function, which has widely
been assumed to be a good representation of the
magnetization distribution in an isolated transition
region.

Sierra®-® has also used the Gaussian expression, whilst
Jacoby*?® modified this to u{r) =exp (—t'"®). Several
othser expressions were also considered by the author.

All the results from the superposition program are

‘normalized io the width of the basic pulse at 50% of the

maximum amplitude, i.e. to PWs,. The latter is now
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Fig. 1. Analytical basic pulses.

universally accepted as a sound basis of comparison
terween pulses: it is easily measuraed in practice due to
the high slope of the pulse in this region. and produces
much less error when directly comparing pulses than
does the more obvious alternative of basewidth, i.z. PV,.

The nine basic pulses used are plotted in Fig. L. Only
one curve is given above the PW,, point for clarity. as the
curves are all very close in this region. [t can be sesn that
the expressions account for almost any shape of
symmetrical pulse likely to be encountersd. although
even an asymmetrical one can be simulated by using
different expressions on each side of the origin.

Several different currently-available memories were
used to compare the analytcal pulses against. though
not simply by comparing practical basic pulse shape
against theoretical one. as this cannot be done
accurately. Instead, for sach of the memories available,
graphs were plotted of "all ones NRZ1 amplitude’ and
two ones NRZ1 peak-shift’ against packing density. and
similar graphs were produced for each analytical
expression using a superposition program. The
theoretical grapns were then compared with the practical
ones for both location and fit. The clear winner in this
comparison was found to be [, (l+¢t*+¢*). with
Ll +22+1t) and exp ( —¢?) fairly good. but the great
surprise was that the Lorentzian came out very poorly.

3 The Puilse-Slimming Principle

Since superposition is normalized to PW,,, the
implication is that the maximum packing density
achievable by any code and/or detection system is
inversely proportional w0 PWye. The possibility of
slimming the read-back pulse therefore implies an
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Fig. 3. Pulse-slimming by addition of derivatives.

increase in the packing density and storage capacity of a
given.store. This must certainly e true if the slimming is
effected ‘mechanically’. e.g. by reducing the nead-to-
surface separation or oxide ccating thickness. but the
validity of the theory of superposition also allows the
slimming to be performed electronically. after the daia
waveform has been read back from the surfacs. The
pulse-slimming filter then merely represents an extra
block in the recovery chain. as shown in Fig. 2.

4 Addition of Derivatives
Figure 3 shows how a symmetrical pulse {r) suffers a
reduction in PW,, bv the subtraction of s second
derivative (¢”), in the correct proportion. but aiso
contains significant baseline undershoot. The further
addition of a proportion of the fourth derivative (¢™) to
this reducss the undershoot. but also introduces
overshoot as shown. If the inital pulse is substanually
asymmetrical. odd-order derivatives may be applied to
correct this, though this extra complication will not be
considered here.

Figure 4 shows the effect of the addition of —¢" to ¢ in
various proportions, using the superposition program.
«The two pulses are first normalized so that the peak
amplitude of each is unity. They are then added. and the
resulting slimmed pulse is also normalized. Its PW,, and
undershoot amplitude are then measursd.

4.1 Differentiation

Of particuiar importance to this pulse-slimming
technique is the differential process. The most accurate
way of producing the derivatives of the read-back
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Fig. 4. PW., and undershoot of slimmed pulse.

waveform involves the use of a delay line. This process
can be analysed as follows:

Consider a small portion of the read-back waveform
(Fig. 35).

If v = f{t), then
c+0v = f(t+91)

o)
ov = f(t+dt)—v
= f(t+dt)—f(r).
Therefore
dv/dt = [ flt+de)— fle)]/oc
or

dv/dr = l)lim {Lfe+00)— f(1)]/0¢}.
3t—0)

This shows that the derivative of the read-back
waveform can be formed by subtracting from it a delayed
version of itself, and the shorter the delay is, the more
accurate will be the differentiation. Unfortunately, any
noise superimposed on the signal which is of a higher
frequency than the signal fundamental, but not high
enough that it can be filtered off, will be doubled in the
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v
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Fig. 5. Read-back waveform.
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Fig. 6. Worst-case timing error due to non-ideal differentiation.

worst case, as its period will be much less than the delay,
and one noise peak could reinforce another. Since the
amplitude of the signal derivative falls as the delay is
reduced, a compromise must be found between accuracy
of differentiation and signal-to-noise ratio.

Figure 6 shows how the accuracy problem arises in
practice. For an isolated basic pulse as in (a), the zero-
crossover (z.X.0.) of the derivative always occurs at ty/2
for all values of ty (the delay between the two signals),
assuming the pulse is symmetrical. For the worst case
pattern of two ones NRZI (two isolated transitions),
shown in (b). however, the steep gradient on one side of
the peak and the gentle gradient on the other combine to
give a z.x.0. which is not at t4/2. It is apparent that
reducing ¢ty reduces the error. It should also be noted
that, for a given ¢, increasing the packing density will
increase the error, as the two gradients mentioned will
differ by even more.

The superposition program can again be used to give
quantitative answers to this effect. The results of this
analysis are shown in Fig. 7, which plots the maximum
timing error (as a function of PW,) and the peak
amplitude of the derivative of the normalized basic pulse
for all values of delay up to 1-0 x PW,. '

It is suggested that a suitable trade-off between
accuracy and S/N ratio results from using a delay of
0-3 x PWj,. This yields a maximum timing error of 0-3%
PWs, at PF =13, and a peak signal of 04 after
differentiating an isolated normalized basic pulse. Since
the noise has doubled, note that the S/N ratio has besn
reduced by 14 dB, though the actual extent to which this
loss is felt depends on the particular implementation
involved. It is clear, however, that the second derivative
will have a very poor S/N ratio, and clearly use of the
fourth derivative, whilst beneficial in theory, will not be
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Fig. 7. The effect of using different length delay lines for differsntiation.

sensible in practice.

It shouid be noted that the value of delay suggested
above should be selected with reference to the worst-case
PW,, in a particular system. This means that for pulses
with smaller PI¥,, the effective delay to them is greater
than optimum, resulting in a greater tming error, but
because these pulses are non-worst-case to start with,
they should be able to accommodate this extra error.

4.2 Implementation

The circuit shown in Fig. 8 shows an experimental
implementation of this pulse-siimming technique. The
short-circuited lumped delay lines perform the differen-
dation. The delay in the path of the input pulse is to align
it correcdy with the doubly-differentiated one, which is
delayed by 2 x t4 (where t4 is the length of the delay line)
relative to its input. The délays are variable (in finite

steps) to enable them to be set correctly relative to the
PW,, of the input pulse. The variable-gain amplifier, the
inverter and the summer can all be effected by means of a
high-bandwidth dual-beam oscilloscope with trace-
addition facilides.

4.3 Effect on Achievable Packing Density

It was shown in Fig. 4 that the maximum possible
reduction in PW,, using only the second derivative is
4294, so it would not seem likely that packing density
increases will exceed this figure. Indeed, if the slimmed
pulse was exactly the same shape as the original pulse,
and the S/N ratio was unaltered, the calculation would
be as simple as that, but the very complex nature of the
slimmed puise means that only detailed practical or
theoretical analysis can determine the exact effect on the
achievable packing density.

The first step in this process is to find a packing
density limit for a given system before slimming is
applied. In this instance, this was done using the
superposition program, by calculating worst-case peak-
shift and amplitude data for a hypothetical recording
system using NRZ1, with a read-back S/N ratio of 20:1
{26 dB), i.s. isolated basic pulses have a peak amplitude
of unity, whilst the noise has a peak amplitude of 0-03.
The detection system postulated was a typical rectify-
and-clip process, as shown in Fig. 9. The read-back
waveform is first amplified—this may be automatic gain-
controlled ampiification, but. if so, perfect a.g.c. action
will be assumed. The signal is next full-wave rectified.
and then clipped to remcve baseline notse, which would
otherwise be a problem later on, in the squaring process.
A certain amount of the noise could be fiitered out by
correct choice of the frequency response of the linear
amplifier. but a problem arises when the noise has
components at frequencies lower than the maximum
significant frequency in the data. Attempted filtration of
these components will result in integration of the data
waveform. having the effect of increasing the PV, of the
basic pulses. which clearly limits performancs.

Waveforms pertinent to this detection system are
shown in Fig. 10 for the worst-case amplitude pattern of
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Fig, 8. Active pulse-slimming filter (by addition of derivatives). -
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Fig. 9. Rectify-and-clip detection system.
three isolated ones. For the determination of the

absolute limit of the system, no margins are allowed, and
so the clip level is set to the noise level of 0-05. The
differentiation circuit uses a delay line of total delay
0-3x PWs,, as described earlier. The signal is finally
squared to exaggerate the zero crossovers, which are
then detected using the ideal timing window of half a bit
period.

The packing density achievable using this detection
system may be limited by timing problems or amplitude
problems. An amplitude limit will occur where the worst-
case read-back signal falls to the clip level of 0-05. Figure
11 is a plot, computed by superposition, of the minimum
read-back signal against packing factor (PF), where PF
is the packing density normalized to a bit period (BP)
equal to PW;,, i.e. PF = PW,,/BP. The peak producing
this worst-case signal is the centre‘l’ of three isolated 1’s,
i.e.

»

- It can be seen {rom the graph that zero amplitude margin
occurs at PF = 1-88.

A timing limit will occur where the worst-case peak
shift plus the differentiator error equals haif the timing
window. Figure 1Z shows the worst-case NRZ1 peak-
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shift (for a two 1's pattern) against PF, as calculated by

superposition. Zero timing margin occurs where peak-

shift = 50%; BP, i.e. at PF = 2-33. Clearly, the theoretical

limit for this code with this detection system occurs at

PF = 1-88 (due to the three 1's pattern).

No allowance has been made so far for ciocking
inaccuracies due to such factors as crosstaik,
differentiator error, incomplete srasure, particle noise
and phase-lock-loop errors, ail of which can occur in a
practical system. Additonally a practical system would
always work with a certain margin on top of the known
inaccuracies. Taking a figure of 8%, PW;, as a reasonable
allowance for inaccuracies plus margin, it is pessible to
calculate a new uming limit for the system. A curve
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Fig. 12. Worst-case peak-shift for NRZ1.
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Fig. 13. Worstcase NRZ! peak-shift for the slimmed pulse (v —¢").

representing this real-time error (RTE) on top of the
worst-case peak-shift is shown in Fig. 12, from which it
can be seen that the new uming limitis at PF = [92. A
similar construction can be performed for any value of
RTE, and if 16% PW,, were allowed, for example. the
timing limit would be at 1-62.

To summarize these results for clarity:

(a) RTE =0: Although the timing limit is 2-33, an
amplitude limit occurs first at 1-88.

(b) RTE =38°%, PW,,: Again, although timing does
not limit performance unul 192, an amplitude
limit occurs at 1-88.

(c) RTE = 16°, PW.,: Timing causes breakdown first
in this case at 1-62.

Consider now a slimmed pulse based on the ratio
v:v” = 1:k. Assuming, as before, 2 read-back noise
amplitude of 0-03. then allowing again for a doubling of
the noise in each differentiator, it can easily be calculated
that the peak noise amplitude out of the slimmer is
[0-05 +0-47k]/(1 +k), after normalization of the slimmed
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Fig. 14. Timing and ampiitude limits aiter puise slimming.
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Fig. 15. Pulse-slimming by amplitude compensation. (a) Replay
response: (b) Filter characteristic: (¢) Improved replay respoase.

pulse. For & = |, the noise amplitude is 0-26 icompared
with undershoot at this stage of 0-12).

The clip-level in the detection system must be set to (at
least) the undershoot amplitude plus the noise amplitude
to avoid erroneous triggering, i.s.  clip-level
to be 0-26+0-12 = 0-383. An amplitude breakdown
occurs at PF = 2-20, where the amplitude of the all-ones
pattern (not the usual three |'s pattern), after slimming.
falls to 0-38. The worst-case peak-shift pattern change
also. [t becomes the thres ['s pattern, whose outer peaks’
peak-shift is plotted in Fig. 13.

The new packing density limits can be summarized as
foliows:

fa) RTE =0: Although the timing limit is at 2-37, an
amplitude limit occurs at 2-20 (cf. 1-38 before
slimming).

(b) RTE = 8% PW,,: The timing limit now precedes
the amplitude limit, and is at 2-15 (ef. 1-88).

{c) RTE = 16% PW.,: Again the timing limit causes
breakdown, at 1-86 (cf. 1-62).

The same analysis can now be applied to other
slimmed pulses to determine an optimum value of A.
Figure 14 shows the results of this analysis. and it can be
seen how k can often be chosen to produce simuitaneous
amplitude and timing breakdowns, thus maximizing the
system margins. Summarizing:

(a) RTE =0: Although the timing limit is never less
than 2-32, an optimum amplitude limit occurs for
k=04, at PF =229

{b) RTE =8%, PW,,: The optimum value of & is 1-2,
yielding simultaneous amplitude and uming
margns at 2-18.

The Radio and Eiaczonic &ngineer, /ol 50. MNo. 5



N

A SUPERPOSITION-BASED ANALYSIS OF PULSE-SLUMMING TECHNIQUES FOR DIGITAL RECORDING

P4 Buiter

Zq

Ot 00 Q ] 3utfer

Yia 2o

v, Vs
. ta ;J; ‘

laverting
amplifier

Fig. 16. Active pulse-slimming filter (by amplitude compensation).

{c) RTE = 16°%, PW;,: The amplitude limit is greater
than the timing limit for all values of k, and the
timing limit = 1-88 for k > 16, so the best choice
is k ~ 16, yielding maximum amplitude margn.

The striking shape of the curves in Fig. 14 for k < 0«4
deserves some explanation. All the curves show a
significant improvement in this area, which then rapidly
reduces, or even reverses. Reference to Fig. 4 again
shows why this happens: the largest improvement in
PW,, occurs for k < 04, after which point not only does
the slimming improvement reduce, but also undershoot
commences, and increases fairly rapidly. It is apparent
then that k = 0-4 will generally prove to be optimum,
over a wide range of RTE values, resulting in typical
packing density increases of 15%;.

5 Amplitude Compensation

The basis of this method is the all-ones response shown in
Fig. 15(a). If the read-back signal is passed through a
filter having the complementary response shown in (b),
the result will approach the characteristic shown in (¢),
giving a greater bandwidth. Since the 3 dB point is being
increased, the implication is that inter-symbol inter-
ference is being reduced and thus peak shift will be
reduced.

One of the best ways of achieving the required gain
characteristic is by the use of transversal filters. This is
the name given to a class of transmission line devices
which afford constant delay, or linear phase, filtering. In
practice, a simple lumped delay line provides this effect.
A typical implementation of this technique is shown in
Fig. 16. The circuit can be easily analysed:

Vl = Vin x Zs/(zs +ZO)'

where Z, is the sending-end impedance of the delay line,
and Z, is its characteristic impedance

Vy = V,/cos 6

where 6 = wty, and ¢, is the electrical length of the line.
Therefore

Vo=V —kV2
=V, —kV,/cos 6
= V(1 —ksecH)
=V, (l~ksec8)xZ,/(Z,+2Z,)
Since
Z,=—jZ,coth

June 1980

then
VoiVia = —j cot 8(1 —k sec 8)/(1 —jcot §)
= (k—cos 8)(j sin 8 —cos b).
Therefore
VorVial = k—cos 6.

This has the cosinusoidal form shown in Fig. 17, from
which it is apparent that for mey < 7. Le. @ < 2ty the
required frequency response is obtained.

However, the circuit can also be analysed in a different
manner. With reference to Fig. 15 again:

Vil = 2tq) = V1 (2tq) = 0-5¥,,(2t4) + 0-5¥,(0)
and
Val2ty) = Vialty)
sO
Vol2ty) =V, —kV2
= 0-5¥,(214) + 0-3V0(0) — k¥, (1)
Letting k = | +¢/2.
2x Vo(ztd) = l’;n(ztﬁ)'*' Vm(o)_ ZVin([d)—.CVin([d)
= (Vin(z"d)_ 2Vin(td)+ Vin(o))_cy;n(td)
Therefore, h
Vo = Vial0) = c¥alrg).

This method is therefore shown to be exactly the same
as the previous pulse-slimming technique. involving the
addition of v and ¢” in the appropriate ratio (remember
that v is delayed by ¢, to align it correctly with ¢”).

6 Lattice Filters .

This is, notionally, a different method. involving
postulating the effect of a filter on the isolated pulse,
deducing the transfer function of the network, and then,
by Laplace transform techniques, realizing the filter with
inductors, capacitors and resistors. In effect, however,
the method can be viewed as another attempt at
amplitude compensation without recourse to transversal
filters.

3.4

3 (=wty)

Fig. 17. Pulse-slimming {lter characteristic.
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Sierra® has described a passive, symmetrical lattice
filter for slimming the width of a Gaussian pulse by a
factor of two. Although the design aim was a 30°
reduction in PW,, and presumabiy PW;,, the results
show a much less reduction achieved. which would sesm
to indicate that the limits of this method are akin to those
of the two methods already described. Also. since the
{attice contains 24 accurate passive components.
including inductors, and is a delicately balanced bridge
structure, it would seem a less attractive technique than
the others.

A simple active equivalent to the symmerrical lattice
was investigated by Dodd!! and by Whitehouse.'? The
active circuit reduces the number of compiex filter-arm
impedances by a factor of four. which clearly benefits a
parallel system. None of the thres authors meations the
effect of the filter on noise or undershoot. but it would
appear {rom the photographs supplied that this methed
is hampered by these effects to the same extent as in the
addition of derivatives technique. Also, the three authors
appear intent on reducing the pulse-width as much as
possible. As has been shown. a PW,, reduction of 42°, is
possible (and maybe more using, say. the [ourth
derivative), but this is not necessarily the optimum
choice.

7 Slimming of Asymmeztrical Pulses

Many magnetc recording devices. particularly ‘in-
contact’ cnes. produce markedly asymmetrical puises,
due primarily to the shape of the transition region in the
media, and the intluence of the vertical component of
magnetization from the media.

A similar analysis to the foregoing shows that the
improvements to be obtained on asymmetrical pulses are
not as great as those which can be achieved with
symmetrical ones. In zeneral. the more asymmetrical the
puise, the less the improvement achievable by slimming.
This can be explained with reference to Fig. 18. With a
symmetrical pulse, the undershoots on each side of the
slimmed pulse are of equal amplitude, and since it is the
maximum value of the undershoot which contributes to

Symmawicai Asymmetrical

"’nad f—'-\ /
Ystimmed

A l- -
Fig. 18. Comparison of slimmed symmetrical and asymmetrical pulses.
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breakdown. this is optimum. With an asymmetrical
pulse of =qual PWi,. thea. after siimming. one
undershoot is smaller. and oae larger. than those for the
symmetrical pulse. This causes earlier breakdown. One
other way of viewing this is that an asymmetrical pulse is
already an asymmetrically slimmed version of a
symmetrical pulse. thus leaving less margin for extra
slimming.

8 Conclusions

It has besn shown how superposition can be effectively
used to analyse many facets of the magnetic recording
process. An analysis of pulse-siimming techniques has
shown that only small increases in packing density are
possible by their use. Improvements up to 20°, are
obtainable. though it is doubtful whether such a small
improvement is worthwhile {or a system already in
operation. [t may be beneficial. howsever, 10 use pulse-
slimming to trade off amplitude margin against tming
margin. or vice-versa, particularly in the design of a new
system, where it may aiso be possible to radically ulter
the detection process to cater for the peculiar type of
waveform distortion produced by the pulse-siimming.
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