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SUMMARY 

The application of pulse-slimming to digital magnetic 
recording is investigated, and analysed using super­
position. Representative criteria are used to determine the 
maximum achievable packing density both before and 
after slimming. The results indicate that pulse-slimming is 
of little value for an already-optimized recording system, 
but could be used to trade.-off timing margin against 
amplitude margin in a new design. 

• Formerly with Racal Recorders Ltd, Hythe, Hampshire, 
England: now with Burroughs Corporation, Peripheral Products 
Group, 5411 North Lindero Canyon Road, Westlake Village, 
California 91351, USA. 
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1 Introduction 

The superposition technique offers an opportunity for 
many facets of the magnetic recording process to be 
analysed in non-real time, allowing the recording and 
replay mechanism to be elTectively magnified for greater 
insight into the detailed changes produced by variation 
of any of the parameters involved. such as coding 
technique. packing density, or detection process. 

The superposition principle, as applied to magIietic 
recording, states: 'At all packing densities for which the 
read-back process is linear. the net flux in the read-coil 
from any pattern of surface flux-reversals is the algebraic 
sum of the individual flux contribution from each 
reversal acting on its own'. This principle provides a very 
simple means of simulating the effects of any pattern at 
any packing density, since the isolated reversal response. 
called here 'the basic pulse', can be stored on a computer 
as an array of voltage readings. and then any number of 
these basic pulses can be added or subtracted, at the 
correct distances from each other. to produce the total 
output voltage waveform. Measurements can then easily 
be made on this output waveform to calculate peak-shift. 
amplitude. etc, 

The only phenomena which will render superposition 
invalid are those which alter the written transition shape 
in a manner dependent upon the transition density. 
Morrison and Speliotisl report this range of validity to 
go up to 60000 bits/in. a packing density out of reach of 
current technology. Other authors have suggested that 
this figure is too high, but the alternative to 
superposltlon is the dynamic iterative hysteretic 
modeI Z-4. which. although more accurate than super­
position. particularly at very high packing densities. 
involves many times the computational effort, and was 
therefore not considered for this study because of the 
large number of permutations involved in the analysis. 

2 Choice of the Basic Pulse 
The heart of the superposition process is the basic pulse, 
and this must naturally be chosen very carefully. Several 
expressions have previously been chosen to represent the 
basic pulse analytically. Hoagland; proposed the 
Gaussian expression v(t) = exp ( - t Z) which was also 
used by ChU,6 as well as the Lorentzian L"(t) = 1/0 + 12 ), 

used also by Kosters and Speliotis. 7 The mathematical 
justification for the latter is that the Lorentzian is the 
derivative of the arctangent function, which has widelv 
been assumed' to be ; good representation of th~ 
magnetization distribution in an isolated transition 
region, 

Sierra 8.9 has also used the Gaussian expressiQn, whilst 
Jacoby'O modified this to de) = exp (_tl-6). Several 
other expressions were also considered by the author . 

All the results from the superposition program are 
normalized to the width of the basic pulse at 50~~ of the 
maximum amplitude, i.e. to PWso' The latter is now 
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Fig. 1. AnalytiC:1l basic pulses, 

universally accepted as a sound bt!.Sis of comoarison 
between pulses: it is easily measured in practice'due to 
the high slope of the pulse in this region. and produces 
much less error when directly comparing pulses than 
does the more obvious alternative of base width. i.e. PWo• 

The nine basic pulses used are plotted in Fig. l. Only 
one curve is given above the PWso point for clarity. as the 
curves are all very close in this region. It can be seen that 
the expressions account for almost any shape of 
symmetrical pulse likely to be encountered. although 
even an asymmetrical one c-an be :;imulated bv usi~'l 
different expressions on each side of the orilZin. ' -

Several different currentlv·available me~ories were 
used to compare the analytical pulses against. though 
not simply by comparing practical basic pulse shape 
against theoretical one, as this C:lnnot be done 
accurately. Instead. for each of the memories available. 
graphs were plotted of 'all ones NRZl amplitude' and 
'two ones NRZl peak·shift' against packing density. and 
similar graphs were produced for each analytical 
expression using a superposltlon program. Tne 
theoretical graphs were chen compared with the practical 
ones for both location :lnd fit. The clear winner in this 
comparison was found to be L ( 1 + c.l + c"), wi th 
1,(1+tl +I(13 ) and exp(-l.l) fairly good. but the great 
surprise was that the Lorentzian ~ame out very poorly. 

3 The Pulse·Slimming Principle 
Since superposition is .normalized to Pw'o, the 
implication is that the maximum packing density 
achievable by any code and/or detection system is 
inversely proportional to PW,o. The possibility of 
slimming the read· back pulse therefore implies an 

Fig. 1. The waveform rKovery chain. 
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increase in the packing density and storage capacity of a 
'Zlven.store. This must certainly be true if the siimminiZ is 
~ffected 'mechanically'. e,g. by reducing the head.~o. 
surface separation or oxide coating thickness. but the 
validity of the theory of superposition also allows the 
slimming to be performed electronically. after the data 
waveiorm has been read back from the surface. The 
pulse-slimming filter then merely represents an extra 
block in the recovery chain. as shown in Fig. 2. 

4 Addition of Derivatives 
Figure .3 shows how a symmetrical pulse f L'l suffers a 
reduction in PW,o by the subtraction of its second 
derivative (Lon). in the correct proportion. but aiso 
can tams significant baseline undershoot. The further 
addition of a proportion of the fourth derivative t r··") to 
this reduces the undershoot. but also introduc'es 
overshoot as shown, If the initial pulse is substantially 
asymmetrical. odd·order deriv:ltives may be applied to 
correct this. though this ~xtra complication will not be 
considered here. 

Figure 4 shows the effect of the addition of - c" to r in 
various proportions. using the superposition program. 

',The two pulses are first normalized so thac the peak 
amplitude of each is unity. They are then added, and the 
resulting 'Slimmed pulse is also normalized. Its PWso and 
undershoot amplitude are then measured. 

4.1 Differentiation 
Of particular importance to this pulse-slimming 
technique is the differential process, Tne most accurate 
way of producing the derivath'es of ehe read· back 
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waveform involves the use of a delay line. This process 
can be analysed as follows: 

Consider a small portion of the read-back waveform 
(Fig. 5). 

If .' ::= fft), then 

so 

Therefore 

or 

c+6c =f(t.+6t) 

6c =f(t+6t)-v 

=f(r+6t)-f(r). 

Dv;(5c = [f(t+6t)- f(t)]!6t 

dv/dt = lim {[f(C+6t)- f(t)]/8r}. 
(0.-0) 

This shows that the derivative of the read-back 
waveform can be formed by subtracting from it a delayed 
version of itself, and the shorter the delay is, the more 
accurate will be the differentiation. Unfortunately, any 
noise superimposed on the signal which is of a higher 
frequency than the signal fundamental, but not high 
enough that it can be filtered off, will be doubled in the 

.Junil 1980 
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Fig. 5. Read·back waveform. 
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Fig. 6. Worst-case timing error due to non-ideal differentiation. 

worst case. as its period will be much less than the delay, 
and one noise peak could reinforce another. Since the 
amplitude of the signal derivative falls as the delay is 
reduced. a compromise must be found between accuracy 
of differentiation and signal-to-noise ratio. 

Figure 6 shows how the accuracy problem arises in 
practice. For an isolated basic pulse as in (a). the zero­
crossover (z.x.a.) of the derivative always occurs at td/2 
for all values of Cd (the delay between the two signals), 
assuming the pulse is symmetri.cal. For the worst case 
pattern of two ones NRZI (two isolated tran::;itions), 
shown in (b), however. the steep gradient on one side of 
the peak and the gentle gradient on the other combine to 
give a z.x.o. which is not at td/2. It is apparent that 
reducing Cd reduces the error. It should also be noted 
that. for a given (d, increasing the packing density will 
increase the error, as the two gradients mentioned \vill 
differ by even more. 

The superposition program can again be used to give 
quantitative answers to this effect. The results of this 
analysis are shown in Fig. 7, which plots the maximum 
timing error (as a function af PWso ) and the pe:1k 
amplitude of the derivative of the normalized basic pulse 
for all values of delay up to 1·0 x PW50. 

It is suggested that a suitable trade-off between 
accuracy and S./N ratio results from using a dday of 
0·3 x PWso . This yields a maximum timing error of O'5°~ 
PWso at PF = 1·5. and a peak signal of 0-4 after 
differentiating an isolated normalized basic pulse. Since 
the noise has doubled. note that the S/N ratio has been 
reduced by 14 dB, though the actual extent to which this 
loss is felt depends on the particular implementation 
involved. It is clear, however, that the second derivative 
will have a very poor SIN ratio. and ciearly use of the 
fourth derivative, whilst beneficial in .theory. will not be 
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Fig. 1. The effect or using diff::rent length delay lines for differentiation. 

sensible in practice. 
It should be noted that the value of delay suggested 

above should be selected with reference to the worst-case 
PWso in a particular system. This means that for pulses 
with smaller PWso , the effective delay to them is greater 
than optimum, resulting in a greater timing error, but 
because . th~e pulses are non-worst-case to start with. 
they should be able to accommodate this extra error. 

4.2 Implementation 
The circuit shown in Fig. 8 shows an experimental 
implementation of this pulse·slimming technique. The 
short-circuitc::d lumped delay lines perform the differen­
tiation. The delay in the path of the input pulse is to align 
it correctly with the doubly-differentiated one, which is 
delayed by 2 x td (where Cd is the length of the delay line) 
relative to its input. The delays are variable (in finite 

!asie I'1i1S. 
inINt 

~ 

steps) to enable them to be set correctly reiative to the 
PW,o of the input pulse. The variable-gain amplifier. the 
inverter and the summer can aU be effected by means of a 
high-bandwidth dual-beam oscilloscope with trace· 
addition facilities. 

4.3 Effect on Achievable Packing DensitY 
It was shown in Fig. -+ that the maximum possible 
reduction in PW,o using only the second derivative is 
42~~, so it would not seem likely that packing density 
increases will exceed this figure. Indeed, if the slimmed 
pulse was exactly the same shape as the original pulse . 
and the SIN ratio was unaltered, the calculation would 
be as simple as that. but the very complex nature of the 
slimmed pulse means that only detailed practical or 
theoretical analysis can determine the e.'tact effect on the 
achievable packing density. 

The first step in this process is to find a packing 
density limit for a given system before slimming is 
applied. In this instance, this was done using the 
superposition program, by calculating worst-case peak­
shift and amplitude data for a hypothetical recording 
system using NRZl, with a read-back S/N ratio of :0:1 
(26 dB), i.e. isolated basic pulses have a peak amplitude 
of unity. whilst the noise has a peak amplitude of 0·05. 
The detection system postulated was a typical rectify­
and-clip process, as shown in Fig. 9. The read-back 
waveform is first amplified-this may be automatic gain­
controlled amplification. but. if so, perfect a.g.c. action 
will be assumed. The signal is next ful!-\vave rectified. 
and then clipped to remove baseline noise. which would 
otherwise be a problem later on, in the squaring process. 
A certain amount of the noise could be filtered out by 
correct choice of the frequency response of the linear 
amplifier, but a problem arises when the noise has 
components at frequencies lower than the maximum 
significant frequency in the data. Attempted filtration of 
these components wiII result in integration of the data 
waveform. having the effect of increasing the PWso of the 
basic pulses. which dearly limits performance. 

Waveforms pertinent to this detection system are 
shown in Fig. 10 for the worst·case amplitude pattern of 

+ 
$/i"''''<H! 
pulSt 0 .. 1 

£" 
F'1i- 8. Active pulse·slimming tilter (by addition of derivatives). 
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Fig. 9. Rectify-and-dip detection system. 

three isolated ones. For the determination of the 
absolute limit of the system, no margins are allowed. and 
so the clip level is set to the noise level of 0·05. The 
differentiation circuit uses a delay line of total delay 
0·3 x PWso. as described earlier. The signal is finally 
squared to exaggerate the zero crossovers. which are 
then detected using the ideal timing window of half a bit 
period. 

The packing density achievable using this detection 
system may be limited by timing problems or amplitude 
problems. An amplitude limit wiII occur where the worst­
case read-back signal falls to the clip level of 0·05. Figure 
11 is a plot. computed by superposition, of the minimum 
read-back signal against packing factor (PF), where PF 
is the packing density normalized to a bit period IBP) 
equal to PWso , i.e. PF = PWso/BP. The peak producing 
this worst-case signal is the centre'l' of three isolated 1 's, 
i.e. 

0 a I I T I I 0 0 , , , 

l±Fl 
I ... ' I I ! 

It can be seen from the graph that zero amplitude margin 
occurs at PF = 1·88. 

A timing limit will occur where the worst-case peak 
shift plus the differentiator error equals half the timing 
window. Figure 12 shows the worst-case NRZI peak-
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Fig. 10. Rectify-and-clip detection waveforms. 
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shift (for a two 1'$ pattern) against P F, as calculated by 
superposition~ Zero timing margin occurs where peak­
shift = 50~~ BP, i.e. at PF = 2·33. Clearly, the theoretical 
limit for this code with this detection system occurs at 
PF = 1·88 (due to the three l's pattern). 

No allowance has been made so far for docking 
inaccuracies due to such factors as crosstalk, 
differentiator error, incomplete erasure, particle noise 
and phase-lock-loop errors, ail of which can occur in a 
practical system. Additionally a practical system would 
always work with a certain margin on top of the known 
inaccuracies. Taking a figure of 8~ ~ PWso as a reasonable 
allowance for inaccuracies plus margin, it is possible to 
calculate a new timing limit for the system. A curve 
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Fig. 12. Worst-case peak-shift for NRZ1. 
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representing this real-time error \RTE) on top of the 
worst-case peak-shift is shown in Fig. 12. from which it 
can be seen that the new timing limit is at P F :: 1·92. A 
similar construction can be performed for any value of 
RTE, and if 16~;, PW,o were allowed, for example. the­
timing limit would be at [,62. 

To summarize these fe-sults for clarity: 

(a) RTE = 0: Although the timing limit is 2·33, an 
amplitude limit occurs first at 1·88. 

(b) RTE = 8~.~ P Wso: Again, al though timing does 
not limit performance until 1'92, an amplitude 
limit occurs at 1·88. 

Ic) RTE = 16~o PWs~: Timing causes breakdown first 
in this case at 162. 

Consider now a slimmed pulse based on the ratio 
t': 1:" = 1 :k. Assuming. as before, a read-back noise 
amplitude of 0·05. then allowing again for a doubling of 
the noise in each differentiator. it can easily be calculated 
that the peak noise amplitude out of the slimmer is 
[(}05 +O'47k]/( 1 +k). after normalization oi the slimmed 

1~ _ 
-v-

"'(i',,) 

Fig. 14. Timing and amplitude limits aiter puise slimming. 
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pulse. For k = l, the noise amplitude is 0·:6 icompared 
with undershoot at this stage of 0'12). 

The dip-level in the detection system must be set !O (at 
least) the undershoot amplitude plus the noise amplitude 
to avoid erroneous triggering. i.e. dip-l eve! 
to be 0·26 +0-[2 := 0·38. An amplitude breakdown 
occurs at PF = 2·20. where the amplitude of the all-ones 
par!ern I not the usual three l's pattern). after ,limming. 
falls to 0·38. The worst-case peak-shiit pattern changes 
also. It becomestht: thre~ I's paTtern. whose outer peaks' 
peak-shift is plotted in Fig. 13. 

The new packing density limits can be summarized as 
foHows: 

(a) RTE = 0: :l.lthough the timing limit is at 2·57. In 
amplitude limit occurs at 2·20 (ef. [·SS before 
slimming). 

(b) RTE = So~ PWso: The timing limit now precedes 
the amplitude limit, and is at 2'15 fd. 1·88). 

(e) RTE:= 16~~ PWso: Again the timing limit causes 
breakdown. at 1·86 (d. l·62). 

The same analysis can now be applied to other 
slimmed pulses to determine an optimum value of k. 
Figure 14 shows the results of this analysis. lnd it can be 
seen how k can often be chosen to produce simultaneous 
amplitude and timing breakdowns. thus maximizing the 
~ystem margins. Summarizing: 

(a) RTE=O: Although the timing limit is never less 
than 2·32. an optimum amplitude limit occurs for 
k ==- 0-4. at Pf == 2-29. 

(b) RTE = 8~~ PWso: The optimum value of k is 1,2, 
yielding simultaneous amplitude and timing 
margins at 2·t8. 

Th_ Radio and !ier;tronic !/lgin"~. '/01.' 50. No. 5 
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Fig. 16. Active pulse-slimming lilter (by amplitude compensation). 

(c) RTf = 16% PWso: The amplitude limit is greater 
than the timing limit for all values of k, and the 
timing limit = 1·88 for k > 1'6. so the best choice 
is k ~ 1·6, yielding maximum amplitude margin. 

The striking shape of the curves in Fig. 14 for k < 0,4 
deserves some explanation. All the curves show a 
significant improvement in this area, which then rapidly 
reduces. or even reverses. Reference to Fig. 4- again 
shows why this happens: the largest improvement in 
PW,o occurs for k < 0'4, after which point not only does 
the slimming improvement reduce. but also undershoot 
commences, and increases fairly rapidly. It is apparent 
then that k = 0-4 will generally prove to be optimum. 
over a wide range of RTf values. resulting in typical 
packing density increases of 15~~. 

5 Amplitude Compensation 
The basis of this method is the all-ones response shown in 
Fig. 15(a). If the read-back signal is passed through a 
filter having the complementary response shown in (b). 
the result will approach the characteristic shown in (c), 
giving a greater bandwidth. Since the 3 dB point is being 
increased, the implication is that inter-symbol inter­
ference is being reduced and thus peak shift will be 
reduced. 

One of the best ways of achieving the required gain 
characteristic is by the use of transversal filters. This is 
the name given to a class of transmission line devices 
which afford constant delay, or linear phase, filtering. In 
practice, a simple lumped delay line provides this effect. 
A typical implementation of this technique is shown in 
Fig. 16. The circuit can be easily analysed: 

V; = Yin X Z./(Z. + Zo)· 

where Z. is the sending-end impedance of the delay line, 
and Zo is its characteristic impedance 

V2 = Vdcos () 

where () = wed. and td is the electrical length of the line. 
Therefore 

Since 

June 1980 

Vo = V; -kVz 

= VI -kVdcos () 

= VI (1-k sec 8) 

= VlI1(l-k sec 0) x Z,/(Z.+Zo) 

Z. = - j Zo cot 8 

then 
YO/Yin = - j cot 8(1- k sec O)j(l- j cot 11) 

= (k-cos O)(j sin O-cos 11). 
Therefore 

IVo/Vinl = k-cos 8. 

This has the cosinusoidal form shown in Fi g. 17, from 
which it is apparent that for (!Jed < ;t. i.e. w -< ;titd , the 
required frequency response is obtained. 

However, the circuit can also be analysed in a different 
manner. With reference to Fig. 15 again: 

Vtft = 2td ) = Vd2td ) = O·5Yin(2td )+O·5Vln(0) 
and 

so 
VO(2td ) = VI -kV2 

= 0·5Yin(2td) + O'5Yin(O) - kVin(td)' 
Letting k = 1 + e/2. 

2x VO(2td ) = v;n(2td)+Yin(0)-2Vin(tu)-eVin(td ) 

= (Yin(2td )- 2Yin(td)+ Vin(O))-eVin(rdl 

Therefore, 
2Vo = Yi~(O)-eVin(td)' 

This method is therefore shown to be exactly the same 
as the previous pulse-slimming technique. involving the 
addition of v and ,;"' in the appropriate ratio (remember 
that v is delayed by Cd to align it correctly with c"). 

6 Lattice Filters 
This is, notionally. a different method. involving 
postulating the effect of a filter on the isolated pulse. 
deducing the transfer function of the network, and then, 
by Laplace transform techniques. realizing the filter with 
inductors, capacitors and resistors. In effect, however, 
the method can be viewed as another attempt at 
amplitude compensation without recourse to transversal 
filters. 

hl~tlr\L-___ --
I~:I OK __ i ~ 

I I 
I I 
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8 (. CIItd ) 

Flg. 17. Pulse-slimming filter characteristic. 
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Sierra9 has described a passive. symmetrical lattice 
filter for slimming the width of a Gaussian pulse by a 
factor of two. Although the design aim was a SOO~ 

reduction in PWo• and presumabiy PW50 , the results 
show a much less reduction achieved. "".hich would seem 
to indicate that the limits of this method are akin to those 
of the two methods already described. Also. }ince the 
lattice contains 24 accurate passive components. 
including inductors. and is a delicately balanced bridge 
structure, it would seem a less attractive technique than 
the others. 

A simple active equivalent to the symmetrical lattice 
was investigated by Dodd II and by Whi tehouseY The 
active circuit reduces the number of complex filter-arm 
impedances by a factor of four. which dearly benefits a 
parallel system. None of the three authors mentions the 
effect of the filter on noise or undershoot. but it would 
appear from the photographs supplied that this method 
is hampered by these effects to the same extent as in the 
addition of derivatives technique. Also. the three authors 
appear intent on reducing the pulse·width as much as 
possible. As has been shown. a PWso reduction 0f 41°" is 
possible (and maybe more using. say. the fourth 
derivative). but this is not necessarily the optimum 
choice. 

7 Slimming of Asymmetrical ?ulses 
:V1any magnetic recording devices. particularly 'in­
contact' ones. produce markedly asymmetrical pulses. 
due primarily to the shape of the transition region in the 
media. and the influence 0f the vertical component of 
magnetization from the media. 

A similar anaiysis to the foregoing shows that the 
improvements to be obtained on asymmetrical pulses are 
not as great as those which can be achieved with 
symmetrical ones. In general. the m~He asymmetrical the 
pulse. the less the improvement achievable by slimming. 
This can be explained with reference to Fig. 18. With a 
symmetrical pulse. the undershoots on each side of the 
slimmed pulse are of equal amplitude, and since it is the 
maximum value of the undershoot which contributes to 
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Fig. 18. Comparison of slimmed symmetric:!.l and a:symmetrica! pulses. 

breakdown. this is optimum. With an asymmetrical 
pulse of equal PWSQ ' then. after slimming. one 
undershoot is smaller. and one larger. than those for the 
symmetric:l.l pulse. This causes earlier breakdown. One 
other way of viewing this is that an asymmetrical pulse is 
already an asymmetrically slimmed version of a 
symmetrical pulse. thus leaving less margm for ex.tra 
slimming. 

3 Conclusions 
It has been shown how superposition can be effectively 
used to analyse many facets of the magnetic recording 
process. :\n analysis of pulse· slimming techniques has 
shown that only small increases in packin~ density are 
possible by their use. Improvements up to 20°f) are 
obtainable. though it is doubtful whether such a small 
improvement is worthwhile for a system :liready in 
operation. It may be beneficial. however. to use pulse­
slimming to trade otT amplitude margin against timing 
margin. or vice· versa. particularly in the design of a new 
system. where it may aiso be possible to radically al rer 
the detection process to cater for the peculiar type of 
waveform distortion produced by the pulse·slimming. 
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