

Programmers Interface Kit

This section describes the features and operation of the Programmers Interface Kit (PIK) used in
the Engineering Capture System (ECS). The PIK allows you to access the ECS database using
‘C’ language calls. You can create your own custom interfaces using the PIK.
This section of the manual is intended as a reference manual for CAD support programmers
only. This module is not provided for users. It is not expected that average ECS users will make
use of the PIK routines.
The PIK is a separate module available on a site license basis.
The major topics covered in this section are:
 • Contents of PIK
 • Memory allocation
 • Hierarchy data extraction
 • Flat schematic data extraction
 • Function definitions

Page 2 Programmer's Interface Kit February 1992

Contents

Programmer's Interface Kit ..3
Files Supplied...3
New For Release 2.4 in Hierarchical Data Extraction4
New For Release 2.4 in Symbol and Schematic Data Extraction.......................4
Memory Allocation ..4
Character Strings..5

Procedural Interface: Hierarchy Data Extraction ..7
Overview..7
Global Variables...8
The Process ..8
Data Types ...9
Context...9
Attributes ...9
Relationships..12
Database Element Numbers..13
Searching For a Particular Element...14
Accessing Parameters...15
Traversing the Data Structures - "Local" Context ...15
Traversing the Data Structures - "Hierarchical" Context20
Utility Functions...22

Procedural Interface: Symbol & Schematic Data Extraction...24
Overview..24
Coordinate System ...24
Data Types ...25
Global Variables...27
Loading and Saving Data ...27
Active Symbol..28
Traversing The Symbol Data Structures ...28
Accessing Symbol Data - Attributes ...29
Traversing The Schematic Data - Sheets...30
Traversing The Schematic Data - Symbol Data ..30
Traversing The Schematic Data - Net Data...30
Traversing The Schematic Data - Flattening Busses and Instances....................31
Traversing The Schematic Data - Graphic Data ..32
Traversing Schematic Data - Miscellaneous Data ...32
Accessing Schematic Data - Attributes ...33
Adding Schematic Data - Attribute Overrides...34
Schematic Data - Attribute Names..35
Schematic Data - Miscellaneous ...35
Utility Functions...37

Index ...38

February 1992 Programmer's Interface Kit Page 3

Programmer's Interface Kit

 The Programmer's Interface Kit provides the software functions needed to
programmatically interface with the Engineering Capture System. The functions are written in
the 'C' language and compiled into libraries which may be linked with the User's application
code.

 The Kit is divided into two sections which interface to different portions of the
Engineering Capture System. The sections are:

1. Hierarchy Data Extraction
This library contains the functions which interact with the Navigator's Hierarchical Data
Structures. Applications that utilize this library may be launched from the Process or
Tools menu of the Navigator. These applications run as child processes of the Navigator
and are dependent on its presence.

Applications treat the design as a single structure and are able to traverse the entire
logical data base. The logical data base "flattens" buses and iterated symbol instances so
that the resolution to individual elements has already been performed. Access to the
graphical information of the schematic data files is not available in this mode.

This interface kit provides access to the logical structure of the design. It has been used
to build the net list extraction programs in the ECS. It also provides the basis for the the
ECS - Design Analysis Tools.

2. Symbol & Schematic Data Extraction
This library of functions provides access to the data structures contained in the Symbol
(.sym) and Schematic (.sch) files. Applications that utilize this library are self contained.
They may either be run as stand-alone processes or be launched by the Navigator.

The data is presented as it appears in the schematic or symbol. Buses and iterated symbol
instances are not flattened. The application functions must process these structures as
appropriate. Access to the graphical as well as logical data is available in this interface.

The intended applications for this kit include graphical data base exportation and net list
extraction where the busing structure is to be preserved. The ECS programs for VHDL
net list extraction as well as the ASCOUT programs are built with this kit.

Files Supplied
 The Programmer's Interface Kit contains three object files and several header (.h) files
which will be included in the application programs. The header files are placed in the "h"
directory and include:
 win.h The platform specific definitions and macros
 pikproc.h The typedefs and definitions for the Hierarchy Data.
 pikfuncs.h The function prototypes for the Hierarchy Data Extraction.

Page 4 Programmer's Interface Kit February 1992

 spikproc.h The typedefs, definitions and prototypes for the Schematic Data.
 attr.h The attribute definitions.

 The object file libraries that are supplied are platform dependent and include the
following files:
 For the UNIX Workstation:
 pik_u.o The main function for Hierarchical Data Extraction
 spik.o The Symbol & Schematic Data Extraction Library
 For the PC:
 pik.lib The Hierarchical Data Extraction Library
 pik.res The resource file for Hierarchical Data Extraction
 scpik.lib The Symbol & Schematic Data Extraction Library
 scpik.res The resource file for Symbol & Schematic Data Extraction
 For the Macintosh:
 Pik1.π The Hierarchical Data Extraction Library (Part 1)
 Pik2.π The Hierarchical Data Extraction Library (Part 2)
 PreProc.π The PreProcess function for Hierarchical Data Extraction
 PostProc.π The PostProcess function for Hierarchical Data Extraction
 Scpik1.π The Symbol & Schematic Data Extraction Library (Part 1)
 Scpik2.π The Symbol & Schematic Data Extraction Library (Part 2)

New For Release 2.4 in Hierarchical Data Extraction
 Several routines have been changed for the 2.4 release. The Process and PreProcess
functions now have the argc and argv parameters similar to the parameters to main. These
parameters can be used to supply options in addition to the flags /A through /Z which are always
available to PIK programs.

 The following new routines have been added. Get_TNA_Override,
Get_TPA_Override, ForEachTNA, ParentInstanceOf, FindPinNamed, PinDefiningNet,
AddExt, FileInPath and GetIntlDateTimeString.

New For Release 2.4 in Symbol and Schematic Data Extraction
 There have been some changes to data structures. The style parameter was added to the
_gr_item structure. The _date_time and _table structures are new.

 Several routines have been changed for the 2.4 release. The SysError function no longer
has a number as its first parameter. The MajorError function should be used instead of
SysError.The ForEachNetPin function has been changed slightly. The User_Function is
passed both the schematic pin and symbol pin handle. The function behavior is the same except
when called during a ForEachNetFlattened traversal.

 The following new routines have been added. GetInstanceCoordinates,
GetInstanceName, GetPinCoordinates, GetPinName, GetPinNumber, GetRefDesignator,
Get_SIA, Get_SPA, Get_Table_Attr, Get_Table_Data, Add_Table_Attr, Add_Table_Data,

February 1992 Programmer's Interface Kit Page 5

ForEachInstanceTextWindow, ForEachNetFlattened, ForEachTable,
GetSymbolDateTime, MajorError and GetIntlDateTimeString.

Memory Allocation
 Each of the platforms have different memory management and pointer requirements. The
PC platform requires that memory be allocated with the GlobalAlloc function, locked with
GlobalLock, unlocked with GlobalUnlock and freed with GlobalFree. The Macintosh uses
NewHandle, HLock, HUnlock and DisposeHandle. The Unix platform uses malloc and free. In
order to produce applications which run on all platforms, a set of memory management routines
are provided to insulate the application from this platform dependant problem.

 These functions allocate _far memory on the PC. This means that the memory must be
referenced by a 32 bit pointer. If it is necessary to allocate more than 64K of data the memory
pointers should be cast as _huge. The PC platform has a restriction that "huge" data must be
represented as an array of objects each of which is a power of 2 in size. The reason for this
restriction is that a single structure must not cross a 64K segment boundary.

 The _huge keyword is meaningful on the PC platform and is discarded on the other
platforms. A function for changing a "huge" character pointer to a "near" one is provided on the
PC platform. This function call, Fn is defined as null on the Macintosh and Unix platforms.
This function must be used with care as all it does is copy the huge string to a local static string
buffer and return the address of that buffer. Subsequent calls to Fn will return the same address.

typedef char _huge * MEMPTR
typedef unsigned long MEMBLOCK
typedef long MEMSIZE

MEMBLOCK env_AllocMem(MEMSIZE size)
This routine allocates a block of memory of the given size and returns a handle
(MEMBLOCK) to it. The returned value of should be used when locking, unlocking,
reallocating or freeing this block of memory. The function env_GraspMem must be
used to access the data in this block. The memory is initialized to all zeros.

MEMBLOCK env_ReAllocMem(MEMBLOCK handle, MEMSIZE size)

This routine attempts to reallocate the given block to the new size. The handle returned
may not be the same as the original handle parameter The memory must not be locked
(see env_UnGraspMem) when this function is called. The additional memory is not
initialized to zero.

MEMPTR env_GraspMem(MEMBLOCK handle)

This routine locks the given block of memory and returns a _huge pointer (MEMPTR) to
it. The block must be unlocked with env_UnGraspMembefore being freed with
env_FreeMem.

Page 6 Programmer's Interface Kit February 1992

void env_UnGraspMem(MEMBLOCK handle)
This routine unlocks the given block of memory. This routine must be called to unlock
any memory block that was locked with env_GraspMem before calling
env_ReAllocMem or env_FreeMem.

void env_FreeMem(MEMBLOCK handle)

This routine frees the given block of memory. The memory must not be locked when this
routine is called.

MEMSIZE env_CompactMem(MEMSIZE size_wanted)

This routine attempts to perform a memory compaction to see if it would be possible to
allocate a block of memory of the given size. The return value indicates the amount of
memory available.

Character Strings
 In order to maintain compatibility with the PC platform, the functions that work with
character string pointers are written to use huge pointers. It is recommended that character
strings that are passed to these functions always have the cast (char _huge *) included. Likewise,
the return values from these functions must be processed as huge pointers. These pointers may
not be passed as arguments to any of the standard C library functions. The strings may be copied
to a temporary local buffer with the function function Fn.

char *Fn(char huge *string)
On Unix and Macintosh platforms this function is "#defined" to do nothing. On the PC
platform, this function copies the given string into a local static string of 256 bytes and
returns the address of that static string.

 This function is intended to be used to convert one or two arguments in calls to sprintf.

Because there are only two static buffers used for this function, every second call to this
function (on the PC) will replace the results of the previous call. This limits the multiple
use of this function to two arguments in a single sprintf function call. Saving the returned
pointer from this function will not give the proper results.

 In general, when a huge pointer needs to be processed as a near string, the hstrcpy

function should be used to copy the string to a local buffer.

int hstrlen(char _huge *str)

A version of strlen which uses the huge form of pointers on the PC. This routine is
"#defined" as strlen on the Unix and Macintosh platforms.

int hstrcmp(char _huge *str1, char _huge *str2)

A version of strcmp which uses the huge form of pointers on the PC. This routine is
"#defined" as strcmp on the other platforms.

February 1992 Programmer's Interface Kit Page 7

int hstricmp(char _huge *str1, char _huge *str2)
A version of stricmp which uses the huge form of pointers on the PC. This routine is
"#defined" as stricmp on the other platforms.

int hstrncmp(char _huge *str1, char _huge *str2, size_t len)

A version of strncmp which uses the huge form of pointers on the PC. This routine is
"#defined" as strncmp on the other platforms.

char _huge *hstrncpy(char _huge *dest, char _huge *source, size_t len)

A version of strncpy which uses the huge form of pointers on the PC. This routine is
"#defined" as strncpy on the Unix and Macintosh platforms.

char _huge *hstrcpy(char _huge *dest, char _huge *source)

A version of strcpy which uses the huge form of pointers on the PC. This routine is
"#defined" as strcpy on the Unix and Macintosh platforms.

char _huge *hstrcat(char _huge *dest, char _huge *source)

A version of strcat which uses the huge form of pointers on the PC. This routine is
"#defined" as strcat on the Unix and Macintosh platforms.

char _huge *hmemcpy(char _huge *dest, char _huge *source, unsigned long len)

A version of memcpy which uses the huge form of pointers on the PC. This routine is
"#defined" as memcpy on the Unix and Macintosh platforms.

Page 8 Programmer's Interface Kit February 1992

Procedural Interface: Hierarchy Data Extraction

Overview
 The procedural interface to the Navigator's hierarchy data structure provides the means to
build tools and processors that work with the logical data description of the design. These tools
are linked to the Navigator and appear on the Navigator's menus. They are launched by the
Navigator and they run as child processes of the Navigator.

 This interface is used to build the net list extraction processors that are included in the
Engineering Capture System. Flattened net list processors, such as "spicenet", as well as
hierarchical net list processors, such as "hspicent" and "silosnet" are built with this interface.

 This interface is also used to build analytic tools such as the "checkckt" program included
in the ECS-Design Analysis Tools.

 The routines comprising this interface are contained in the "pik" object library which is
located in the appropriate PIK directory or folder of the Programmer's Interface Kit. This
directory contains the platform dependent files which are needed to build a "pik" application.

Several key concepts used in implementing this interface are:

1. Each element in the data base is referenced by a handle. The handle is an unsigned long
data element which does not have any numeric significance. The handles are the means
by which the various routines interact with the data base.

2. The data traversal routines are written in a call-forward style. When the traversal routine
is called, it is provided with a function which it should call for each item encountered in
the traversal. The traversal routine will scan the data base and call the specified routine
for each qualified item. After the last item is encountered, the traversal routine will
return to the calling routine.

As the data base is traversed, the User_Functions are called and passed handles to the
elements being accessed. These handles are used to extract data as well as to provide the
starting point for a lower level traversal.

The called function returns a boolean to indicate whether or not the traversal should
abort. Normally, the return value is FALSE. The TRUE return might be used to stop a
traversal which was searching for a particular item after the item was found. The
returned value will be passed back to the function which initiated the traversal.

February 1992 Programmer's Interface Kit Page 9

3. The data extraction routines are typically called to extract the data about the item
presently encountered in a traversal. The routines return with a handle, data value,
pointer to a data string or pointer to a data structure. When a pointer is returned, the
calling routine should consider the structure or string to be read-only. The returned data
structure or string is a static structure which will be replaced when the next call to the
data extraction routine is made.

4. The routines for adding attribute information to the symbols and schematics utilize the
handles to identify the item. Attributes added to an item over-write the previous value for
that item.

Global Variables
 There are several global variables provided in the interface:

unsigned long permission_mask
This variable is declared in the Application and used by the PIK main functions. It is
used to restrict access to the PIK application on the basis of the "OEM" version of the
program. Normally, this variable should be set to all 1's (0xffffffff).

unsigned long command_flags

This variable is set by the PIK front end to represent the control flags passed on the
command line. The command line flags are chosen by the user during the Setup of the
Process or Tools menu. Each bit in the variable represents the first letter of the control
flag. The low bit of the low word would represent a flag of -A.

 Typical code to test these bits could be:

J_Flag = (int)(command_flags >> ('J' - 'A')) & 1;

char szRootName[]

This variable contains the name of the root schematic.

TD_PTR Root_TD
This variable contains the Descriptor Handle of the root schematic (See below for a
description of TD_PTR).

The Process
 Applications built with this interface are divided into three functions. The first and third
functions are optional and are intended to provide "hooks" onto which various user interface and
analytic functions may be attached. If either or both of these functions are not provided, dummy
routines will be linked from the object library.

 The three functions which may be written as part of the application are:

Page 10 Programmer's Interface Kit February 1992

int PreProcess(int argc, char *argv[])
This function which is typically is used for setup of the process. The command_flags
have already been processed and may be accessed. The command_flags represent only
the flags which were specified as a single character following a forward slash. The
remaining arguments are available in the argv array. The first argument is not
meaningful and the last argument is usually the name of the design. Data extraction and
processing is not possible since the hierarchy data structures are not available to this
function.

 The dialog box interface used in the "silosnet" and "spicenet" processors are typical

examples of the functions which might be performed under the PreProcess function.
The command_flags are used to pre-select the control parameters and the dialog box that
is opened permits the user to override the normal defaults.

 The "OK" and "Cancel" buttons give the user the means of continuing or aborting the

process. A non-zero return value is an indication that the process is to be aborted.

void Process(int argc, char *argv[])

This is the main processing function in the application. Prior to calling this function the
interface attaches the Hierarchy data base and prepares to access the data. The data
extraction and analysis work is performed as part of this function. The command_flags
have already been processed and may be accessed. The command_flags represent only
the flags which were specified as a single character following a forward slash. The
remaining arguments are available in the argv array. The first argument is not
meaningful and the last argument is usually the name of the design.

 When this function returns, the interface releases the data structures prior to calling the

last application function (PostProcess).

void PostProcess(void)

This function may be used to report the process results to the user by opening an dialog
box. It may also use the data extracted in the process step to do further analysis or
simulation of the circuit. However, when this function is called the design data and
traversal functions are no longer available.

Data Types
 There are several data types which are used to pass data between the interface and the
user's application. Most of the data types are represented by handles. The handles are defined as
unsigned long integers. A NULL handle is not a valid handle. The following handle data types
are defined:

typedef use
TD_PTR Descriptor Handle - Represents the basic schematic and symbol information
TI_PTR Instance Handle - Represents the instantiation of a symbol in a schematic
TN_PTR Net Handle - Represents the net within the schematic

February 1992 Programmer's Interface Kit Page 11

TP_PTR Pin Handle - Represents the instance of a pin in the schematic
TG_PTR Generic Pin Handle - Represents the description of the original pin
TA_PTR Attribute Handle - Represents an attribute of a symbol, pin or net

Context
 There are two different methods for traversing the design data base. The "flattening"
traversal functions visit each instance of the design in its full "hierarchical" context. This
method is useful for producing flat Spice net lists which require a complete and exact description
of the design including all of the instance specific attributes. The "non-flattening" traversal
functions visit each schematic used in the design in its "local" context which models each
schematic as if it were the root of the design. Since the "non-flattening" traversal functions visit
each block once, they are used to create hierarchical net lists. The "context", or path, to the
element is maintained by the traversal routines.

Attributes
 Each element of the design has a set of attributes associated with it. Default values for
symbol and pin attributes may be assigned in the symbol editor.

 When the symbols are placed in the schematic, the Schematic Editor provides commands
for adding and/or overriding the default attribute values. The Schematic Editor may also assign
attributes to the nets that interconnect the symbols.

 A schematic may appear multiple times in the design hierarchy. Initially, every instance
of a given schematic will have the same values for the attributes as were defined in the
Schematic Editor. The Navigator provides commands to add or override attributes on an
instance specific basis.

 An element in the design may be viewed in either its "local context" or its "hierarchical
context". In the "local context" the view is of the original symbol and schematic as defined in
the respective editors. Any instance specific attribute overrides that were added in the navigator
are not visible.

 In the "hierarchical context" the symbol or schematic is viewed as an instance in the
design. All attribute values are on an instance specific basis. Attributes that depend on values
from other levels in the hierarchy, including the net names on external signals and symbol pins,
are mapped into the schematic. The order of precedence is to return the Navigator assigned
values if any, then the schematic editor assigned values, and finally if no other values are
present, the default values (for symbol and pin attributes) that were assigned to the symbol.

 In the "local context" the Navigator assigned values are ignored (except when processing
the root schematic) and the Schematic or Symbol Editor assigned values are returned.

 Each of the attribute accessing routines use an attribute number to access the attribute.
The attribute numbers that are pre-assigned in the ECS system are listed in the header attr.h.

Page 12 Programmer's Interface Kit February 1992

Each attribute is "#defined" to a mnemonic which is used in the code. User defined attributes
should have numbers in the range of 100-199. Note that attribute numbers are used internally
but the user sees the names of the attributes as they were assigned by the Setup program.

 The following functions access the attributes in the design according to the context in
which the view is being viewed. If no value is assigned, these routine all return a pointer to a
NULL string (""). Note that sometimes the value returned is only a pointer to a temporary
buffer which may be overridden by the next call to one of the attribute functions.

char _huge *Get_TDA(TD_PTR descriptor, int attr_num)

Retrieves the default value (assigned by the Symbol Editor) for the symbol attribute
attr_num of the given descriptor. Note, when attr_num represents a derived attribute this
function will return the format string (as it was assigned by the Symbol Editor) in its raw
form.

char _huge *Get_TIA(TI_PTR instance, int attr_num)

Retrieves the symbol attribute attr_num for the given symbol instance. The value
returned is a pointer to the character string value of the attribute.

 For instance names or derived attributes, the pointer returned is the address of a

temporary buffer which contains the attribute value. If it is necessary to save this value,
the value must be copied from this temporary buffer to some permanent storage area.

char _huge *Get_TNA(TN_PTR net, int attr_num)

Retrieves the net attribute attr_num for the given net .

 Net attributes which are entered in the Navigator are assigned to the segment of the net

which appears at the highest level of the hierarchy. This corresponds to the segment in
the schematic which is a "local net". Attributes assigned to nets in the schematic editor
should not be assigned to "global" or "external" nets.

 If working in the "hierarchical context", use the function FindNetRoot to find the highest

level net segment.

 The pointer returned for net name attributes is the address of a temporary buffer which

contains the attribute value. If it is necessary to save this value, the value must be copied
from this temporary buffer to some permanent storage area.

char _huge *Get_TPA(TP_PTR pin, int attr_num)

Retrieves the pin attribute attr_num for the given pin.

 For derived attributes the pointer returned is the address of a temporary buffer which
contains the attribute value. If it is necessary to save this value, the value must be copied
from this temporary buffer to some permanent storage area.

February 1992 Programmer's Interface Kit Page 13

char _huge *Get_TGA(TG_PTR generic_pin, int attr_num)
Retrieves the default value (assigned by the Symbol Editor) for the pin attribute attr_num
of the given generic pin. The handle to the generic pin for a pin may be obtained from
the function GenericPinOfPin.

char _huge *Get_TIA_Override(TI_PTR instance, int attr_num)

Retrieves the override value for symbol attribute attr_num for the given symbol instance.
If the value of this attribute has not been overridden, the function returns a pointer to a
NULL string ("").

 The pointer returned for derived attributes is the address of a temporary buffer which

contains the attribute value. If it is necessary to save this value, the value must be copied
from this temporary buffer to some permanent storage area.

char _huge *Get_TNA_Override(TN_PTR net, int attr_num)

Retrieves the override value for net attribute attr_num for the given net. If the value of
this attribute has not been overridden, the function returns a pointer to a NULL string
("").

char _huge *Get_TPA_Override(TP_PTR pin, int attr_num)

Retrieves the override value for pin attribute attr_num for the given pin. If the value of
this attribute has not been overridden, the function returns a pointer to a NULL string
("").

 The pointer returned for derived attributes is the address of a temporary buffer which

contains the attribute value. If it is necessary to save this value, the value must be copied
from this temporary buffer to some permanent storage area.

char _huge *Get_Inst_Name(TI_PTR instance)

Retrieves the "local" instance name for the given symbol instance. This is equivalent to
calling Get_TIA when viewing the hierarchy in local mode.

char _huge *Get_Net_Name(TN_PTR net)
Retrieves the "local" net name for the given net segment. This is equivalent to calling
Get_TNA when viewing the hierarchy in local mode.

 The following functions may be used to access a range of attributes and to find the name
of a particular attribute.

int ForEachTIA(TI_PTR instance, int attr_first, int attr_last, int mode,

 int (*User_Function)(int the_num, char *the_name, char _huge *the_val)
)
Scans the attributes on the given symbol instance between numbers attr_first and
attr_last.

 The mode determines which level of attribute overrides to view:

Page 14 Programmer's Interface Kit February 1992

 mode = 1 View default values only Similar to Get_TDA.
 mode = 2 View "local" value only Similar to Get_TIA in local view
 mode = 4 View "overrides" only Similar to Get_TIA_Override
 mode = 6 View all Similar to Get_TIA

 Each time an attribute in the range has a value, the User_Function is called with the

number, name and value of the attribute.

int ForEachTPA(TP_PTR pin, int attr_first, int attr_last, int mode,

 int (*User_Function)(int the_num, char *the_name, char _huge *the_val)
)
Scans the attributes on the symbol-pin between the numbers attr_first and attr_last.

 The mode determines which level of attribute overrides to view:
 mode = 1 View default values only Similar to Get_TGA.
 mode = 2 View "local" value only Similar to Get_TPA in local view
 mode = 4 View "overrides" only Similar to Get_TPA_Override
 mode = 6 View all Similar to Get_TPA

 Each time an attribute in the range has a value, the User_Function is called with the

number, name and value of the attribute.

int ForEachTNA(TN_PTR net, int attr_first, int attr_last, int mode,

 int (*User_Function)(int the_num, char *the_name, char _huge *the_val)
)
Scans the attributes on the net between the numbers attr_first and attr_last.

 The mode determines which level of attribute overrides to view:
 mode = 2 View "local" value only Similar to Get_TNA in local view
 mode = 4 View "overrides" only Similar to Get_TNA_Override
 mode = 6 View all Similar to Get_TNA

 Each time an attribute in the range has a value, the User_Function is called with the

number, name and value of the attribute.

 The PIK application may need to add or modify the attribute values in the design. The
following functions are used to update a "local" copy of the design data base. In order for these
attribute values to become permanently added to the design, a call to UpdateTree is required at
the end of the PIK Process.

int Add_TDA(TD_PTR descriptor, int attr_num, char _huge *value)

int Add_TIA(TI_PTR instance, int attr_num, char _huge *value)

int Add_TNA(TN_PTR net, int attr_num, char _huge *value)

February 1992 Programmer's Interface Kit Page 15

int Add_TPA(TP_PTR pin, int attr_num, char _huge *value)

int Add_TGA(TG_PTR generic_pin, int attr_num, char _huge *value)

Page 16 Programmer's Interface Kit February 1992

Relationships
 The hierarchy data structure is a specialized relational data base which contains the
design. Within the data base are several types of records that interrelate to form the structure.
These records reflect the relationships that existed in the Schematic and Symbol descriptions that
were used to build the data base. There are several relationships that must be discovered in order
to obtain the needed information about an element. The following routines provide that access:

TD_PTR DescriptorContainingNet(TN_PTR net)
Returns the handle to the Descriptor which represents the schematic on which the given
net appears.

TD_PTR DescriptorOfInstance(TI_PTR instance)

Returns the handle to the Descriptor which represents the given symbol instance.

TN_PTR FindNetRoot(TN_PTR net)

Returns the handle to the "master" Net in which the given net segment is connected. This
is used in the "hierarchical context".

TI_PTR FirstInstanceOf(TD_PTR descriptor)

Returns the handle to the first Instance of the symbol represented by the given descriptor.
This is useful for obtaining a typical instance of a symbol for extracting its pin attributes.
Use the traversal function ForEachInstance to access all of the instances of a symbol.

TG_PTR GenericPinOfPin(TP_PTR pin)

Returns the handle to the Generic Pin which corresponds to the given pin. This is used to
access the default attribute values of the pin.

TI_PTR InstanceContainingPin(TP_PTR pin)

Returns the handle to the Instance in which the given pin is contained.

TD_PTR OwnerOfInstance(TI_PTR instance)

Returns the handle to the Descriptor which represents the schematic in which the given
symbol instance appears.

TN_PTR NetContainingPin(TP_PTR pin)

Returns the handle to the Net to which the given pin is connected. This is the net
segment appearing in the same schematic which contains the pin. Use the FindNetRoot
function to find the "master" net in which the pin appears.

TN_PTR NetDefinedByPin(TP_PTR pin)

Returns the handle to the Net in the schematic represented by the given pin.

February 1992 Programmer's Interface Kit Page 17

TI_PTR ParentInstanceOf(TD_PTR descriptor)
Returns the handle to the parent Instance of the symbol represented by the given
descriptor. The handle will be NULL if there is no parent instance. This may be used in
the "hierarchical context" to obtain the parent instance of a symbol. Use the function
Get_TIA to access the attributes of the parent instance.

TP_PTR PinDefiningNet(TN_PTR net)

Returns the handle to the Pin in the parent symbol which represents the given net. This
function only works for nets which are external to the schematic. Use the function
NetLocExtGbl to determine if a net is external to the schematic.

Database Element Numbers
 The hierarchy data base assigns unique numbers to each instance, net, and driving (output
or bidirectional) pin in the design. No assumptions should be made about the sequencing of
these numbers. These numbers may be obtained or used to find the element with the following
functions:

unsigned long InstanceNumber(TI_PTR instance)

Returns the number of the given instance.

unsigned longNetNumber(TN_PTR net)

Returns the number of the given net.

unsigned longPinNumber(TP_PTR pin)

Returns the number of the given instance pin. The corresponding "Find" function is not
supplied.

Searching For a Particular Element
Several functions are provided which find elements by their name or by one of their other

attributes.

TD_PTR FindDescriptorNamed(char *name)

Returns the handle to the descriptor with the given name. Does not change hierarchical
context.

TI_PTR FindInstanceNamed(char *name)

Returns the handle to the instance with the given name. The name is the full hierarchical
name with dots '.' used as the delimiter between the level names. This function sets the
context of the hierarchy view and should not be called within a hierarchical traversal
unless the context is saved with SavePath and then restored later with RestorePath.

Page 18 Programmer's Interface Kit February 1992

TI_PTR FindInstanceNumbered(unsigned long number)
Returns the handle to the instance that is numbered with the given number. This function
sets the context of the hierarchy view and should not be called within a hierarchical
traversal unless the context is saved with SavePath and then restored later with
RestorePath.

TI_PTR FindInstanceRefNamed(char *name)

Returns the handle to the instance with the REFNAME attribute value equal to the given
name. If the REFNAME attribute is followed by the gate name, the function will search
for the instance which has both the given REFNAME value and which has the correct set
of PINNUM attributes to correspond to the given gate. e.g. U1/B will search for an
instance whose REFNAME is U1 and whose PINNUM attributes correspond to the
second gate in the package. This function sets the context of the hierarchy view and
should not be called within a hierarchical traversal unless the context is saved with
SavePath and then restored later with RestorePath.

TN_PTR FindNetNamed(char *name)

Returns the handle to the net segment with the given name. The function FindNetRoot
should be used to find the "master" net handle. The name is the full hierarchical name
with dots '.' used as the delimiter between the level names. This function sets the context
of the hierarchy view and should not be called within a hierarchical traversal unless the
context is saved with SavePath and then restored later with RestorePath.

TN_PTR FindNetNumbered(unsigned long number)

Returns the handle to the net that is numbered with the given number. This function sets
the context of the hierarchy view and should not be called within a hierarchical traversal
unless the context is saved with SavePath and then restored later with RestorePath.

TP_PTR FindPinNamed(char *name)

Returns the handle to the pin with the given name. The name is the full hierarchical
name with dots '.' used as the delimiter between the level names. The last portion of the
name is the name of the pin on the specified instance. Either a dot '.' or a minus sign '-'
may be used as the separator between the instance portion of the name and the pin portion
of the name. This function sets the context of the hierarchy view and should not be called
within a hierarchical traversal unless the context is saved with SavePath and then
restored later with RestorePath.

TP_PTR FindPinWithAttribute(TI_PTR instance, int attr_num, char *value)

Scans the pins of the given symbol instance until a pin is found having attribute attr_num
with value equal to the given value. Note that case is ignored while searching for the
match. The handle to the symbol instance pin is returned.

Accessing Parameters

February 1992 Programmer's Interface Kit Page 19

int DescriptorType(TD_PTR descriptor)
Returns the type code of the given descriptor indicating the type of symbol defined. See
the header file for the definition of the 'SY_' codes.

int GateNumberOfInstance(TI_PTR instance)

Used for Printed Circuit Board applications. The symbol instance must be of type "gate".
This function returns the number of the gate within the package that contains the pin
numbers that are assigned to the pins of the given instance. The gate numbers start at '0'
for the first gate in the package.

int GlobalPin(TP_PTR pin)

Returns TRUE if the given pin is an artificial pin that was added to connect the global
nets in the hierarchy.

int NetInOutBid(TN_PTR net)

Returns the classification of the given (external) net as being "Input" - 1, "Output" - 2, or
"BiDir" - 3.

int NetLocExtGbl(TN_PTR net)

Returns the classification of the given net segment as being "local to schematic" - 0,
"external" (represented by a pin) - 1 or "global in the design" - 3.

int PrimitiveCell(TD_PTR descriptor)

Returns TRUE if there is not a schematic represented by the descriptor cell in the
hierarchy.

Traversing the Data Structures - "Local" Context
 There are several mechanisms for traversing the data structures. Each mechanism results
in a different view of the data. The routines are designed to call the User_Function as it visits
each element in the traversal. When the User_Function is called, it is passed a handle to the
element which is being accessed.

 The first group of functions traverse the data structures in a "local" context. As each
element is visited, the traversal views that element as being at the "root" level of the hierarchy.
This method is generally used when creating "hierarchical" net lists. The routines are:

int ForEachDescriptor(int (*User_Function)(TD_PTR the_desc))
This routine visits each of the descriptors in the hierarchical data base. When it calls the
User_Function, it passes the handle to the descriptor being visited.

 This routine could be used to extract a list of the different symbols which are in the

design. Each symbol would be listed once even though it may have been used more than
once in a schematic or in more that one schematic of the design. The code fragment for
extracting this list would be:

Page 20 Programmer's Interface Kit February 1992

int List_Type(TD_PTR td)
 { fprintf(file, "%s\n", Fn(Get_TDA(td, NAME)));
 return(FALSE);
 }

void Process()
 { fprintf(file, "Types Used:\n");
 ForEachDescriptor(List_Type);
 return;
 }

 This traversal will provide a listing that was ordered with the higher blocks first. It is
often necessary to extract a listing in a bottom-up order. In hierarchical net lists, this
corresponds to a "declare before used" order. The following routines are intended for that
purpose.

void SetupBlockScan(void)
This function is called prior to performing the traversal. It clears all of the "done" marks
in the data structure (see MarkBlockDone.

int ForEachBlockOrCell(int (*User_Function)(TD_PTR the_desc))

This function traverses the data structure in a bottom-up order. As it visits each
descriptor for the first time, it calls the User_Function passing the handle to the
descriptor. The following example creates the "Types Used:" listing with each block
listed after all of the blocks that it uses:

int List_Type(TD_PTR td)
 { fprintf(file, "%s\n", Fn(Get_TDA(td, NAME)));
 return(FALSE);
 }

void Process()
 { fprintf(file, "Types Used:\n");
 SetupBlockScan();
 ForEachBlock(List_Type);
 return;
 }

int ForEachBlock(int (*User_Function)(TD_PTR the_desc))

This function performs the same task as the one above except that it does not call the
User_Function when it visits a descriptor which does not have any sub-circuits. This is
the version that is typically used for creating hierarchical net lists such as "silosnet" and
"hspicent".

 It is common that a branch of the design is represented in the simulator by a model. In
this case, the symbol representing the model would have its "xxxModel" attribute set to the

February 1992 Programmer's Interface Kit Page 21

model name. The underlying circuitry should not be visited in the traversal since the model
already represents that portion of the design.

void MarkBlockDone(TD_PTR descriptor)

This routine is used with the ForEachBlock to mark those blocks which are not to be
visited. A code fragment that utilizes this function to avoid listing those sections
represented by a SilosModel is:

int List_Type(TD_PTR td)
 { fprintf(file, "%s\n", Fn(Get_TDA(td, NAME)));
 return(FALSE);
 }

int Check_For_Model(TD_PTR td)
 { if (*Get_TDA(td, SILOSMODEL))
 MarkBlockDone(td);
 return(FALSE);
 }

void Process()
 { fprintf(file, "Types Used:\n");
 SetupBlockScan();
 ForEachDescriptor(Check_For_Model);
 ForEachBlock(List_Type);
 return;
 }

int TestMark(TD_PTR descriptor)

This function returns TRUE if the given descriptor has been marked by the
MarkBlockDone function.

 A descriptor represents a schematic. In creating a net list, the symbols on the schematic
are listed along with the connections to each of their pins. This process involves nesting levels
of traversal functions under the ForEachBlockScan or ForEachDescriptor traversal.

int ForEachSubBlock(TD_PTR descriptor, int (*User_Function)(TI_PTR the_inst))

This function traverses each of the sub-blocks that are instantiated in the block
represented by the descriptor parameter. The order in which the sub-blocks are visited is
indeterminate. As each sub-block is visited, the Instance handle is passed to the
User_Function.

int ForEachInstancePin(TI_PTR instance, int (*User_Function)(TP_PTR the_pin))

Traverses each of the pins in the symbol instance and calls the User_Function with the
handle of the pin. The order is the order of the pins in the symbol definition and will
remain constant for each instance of a given symbol.

Page 22 Programmer's Interface Kit February 1992

 Expanding on the 'List_Type' function of the example above to list the type and instance
name and the nets connected to each of the pins of each sub-block in each descriptor:

int List_Instance_Pin(TP_PTR tp)
 { TN_PTR tn;
 tn = NetContainingPin(tp);
 fprintf(file, " %s", Fn(Get_TNA(tn, NAME)));
 return(FALSE);
 }

int List_Sub(TI_PTR ti)
 { TD_PTR td;
 td = DescriptorOfInstance(ti);
 /* print symbol type then instance name */
 fprintf(file, "%s ", Fn(Get_TDA(td, NAME)));
 fprintf(file, "%s (", Fn(Get_TIA(ti, NAME)));
 ForEachInstancePin(ti, List_Instance_Pin);
 fprintf(file, ")\n");
 return(FALSE);
 }

int List_Type(TD_PTR td)
 { fprintf(file, "SubCkt %s\n",
 Fn(Get_TDA(td, NAME)));
 ForEachSubBlock(td, List_Sub);
 return(FALSE);
 }

 Each sub-circuit in a hierarchical description should have a list of the ports of the sub-
circuit listed with the sub-circuit definition. This list should be in the same order as the list of the
connections to the ports made in the symbol instances. This is extracted by using one of the
instances of the circuits to look up the pins and their names. In the case of the top level circuit,
this may not be possible if a symbol for the circuit does not exist. In this case, any order is
acceptable so a list of all external signals would work.

int ForEachBlockNet(TD_PTR descriptor, int (*User_Function)(TN_PTR the_net))

Traverses the nets that are in the given descriptor's schematic and calls the
User_Function with the handle of each net.

 This would expand the 'List_Type' function to:

int List_Block_Pin(TP_PTR tp)
 { fprintf(file, " %s", Fn(Get_TPA(tp, NAME)));
 return(FALSE);
 }

int Check_Block_Net(TN_PTR tn)
 { if (NetLocExtGbl(tn) == EXTERNAL_NET)

February 1992 Programmer's Interface Kit Page 23

 fprintf(file, "%s", Fn(Get_TNA(tn, NAME))
);

 return(FALSE);
 }

int List_Type(TD_PTR td)
 { TI_PTR ti;
 fprintf(file, "SubCkt %s (",
 Fn(Get_TDA(td, NAME)));
 ti = FirstInstanceOf(td);
 if (ti) ForEachInstancePin(ti, List_Block_Pin);
 else ForEachBlockNet(ti, Check_Block_Net);
 fprintf(file, ")\n");
 ForEachSubBlock(td, List_Sub);
 return(FALSE);
 }

int ForEachNetLocalPin(TN_PTR net, int (*User_Function)(TP_PTR the_pin))
This function traverses the given net in the "local" context and calls the User_Function
for each pin connected in the net. This function may be called in either a “local” or
“hierarchical” traversal.

 The complete net list program is:

FILE *file;

int List_Instance_Pin(tp)
 { TN_PTR tn;
 tn = NetContainingPin(tp);
 fprintf(file, " %s", Fn(Get_TNA(tn, NAME)));
 return(FALSE);
 }

int List_Sub(TI_PTR ti)
 { TD_PTR td;
 td = DescriptorOfInstance(ti);
 /* print symbol type then instance name */
 fprintf(file, " %s", Fn(Get_TDA(td, NAME))

);
 fprintf(file, " %s (", Fn(Get_TIA(ti, NAME))

);
 ForEachInstancePin(ti, List_Instance_Pin);
 fprintf(file, ")\n");
 return(FALSE);
 }

int List_Block_Pin(TP_PTR tp)

Page 24 Programmer's Interface Kit February 1992

 { TG_PTR tg;
 tg = GenericPinOfPin(tp);
 fprintf(file, " %s", Fn(Get_TGA(tg, NAME)));
 return(FALSE);
 }

int Check_Block_Net(TN_PTR tn)
 { if (NetLocExtGbl(tn) == EXTERNAL_NET)
 fprintf(file, "%s", Fn(Get_TNA(tn, NAME))

);
 return(FALSE);
 }

int List_Type(TD_PTR td)
 { TI_PTR ti;
 fprintf(file, "SubCkt %s (",
 Fn(Get_TDA(td, NAME)));
 ti = FirstInstanceOf(td);
 if (ti) ForEachInstancePin(ti, List_Block_Pin);
 else ForEachBlockNet(td, Check_Block_Net);
 fprintf(file, ")\n");
 ForEachSubBlock(td, List_Sub);
 fprintf(file, "EndSub\n");
 return(FALSE);
 }

int Check_For_Model(TD_PTR td)
 { if (*Get_TDA(td, xxxMODEL))
 MarkBlockDone(td);
 return(FALSE);
 }

void Process()
 { char filename[40];
 sprintf(filename, "%s.xxx", szRootName);
 file = fopen(filename, "w");
 if (file)
 { SetupBlockScan();
 ForEachDescriptor(Check_For_Model);
 ForEachBlock(List_Type);
 fclose(file);
 }
 return;
 }

 The preceding functions visit each element in the hierarchy once. They are used to create
net lists which describe the circuit as a hierarchy of circuits containing sub-circuits. This is a
more compact description of a design where the same elements are repeated in the hierarchy.

February 1992 Programmer's Interface Kit Page 25

The main disadvantage is the lack of definition for attaching the instance specific attribute
values.

Traversing the Data Structures - "Hierarchical" Context
 The next functions traverse the data structures in the "hierarchical" context visiting each
instance in the hierarchy. The traversal function calls the User_Function for each instance
visited in the hierarchy. This results in a "flattened" representation of the design. This is often
useful when attributes are to be attached to the specific instances in the design.

 During these traversals, the concept of a "context" is maintained. A current path, which
depicts the path to the schematic which contains the instance, is maintained. If it is necessary to
jump to a different instance in the hierarchy, this path must be "saved" by the User_Function and
"restored" before the User_Function returns to the traversal function.

void SavePath(void)
Saves the current path. This function maintains a single save buffer. Repeated calls will
destroy the previously saved path.

void RestorePath(void)

Restores the last saved path.

 The application may choose between two traversal orders. The "Net" order traversal
visits each net in the design. This traversal order is typically used when the design is to be
viewed "by-net" as in a typical point-to-point net list.

 Each net is visited only once at its "highest" point. This is either in the "root" schematic
or in the schematic in which the net is "local".

int ForEachNet(int (*User_Function)(TN_PTR the_net))

As each net is visited, the User_Function is called and passed the handle to the net. The
routine only visits the highest level of each net so the FindNetRoot function is not
needed to find the "master".

The following code fragment will produce a list of all the net names in a design:

int List_Net(TN_PTR tn)
 { fprintf(file, "%s\n", Fn(Get_TNA(tn, NAME)));
 return;
 }

void Process()
 { ForEachNet(List_Net);
 return;
 }

Page 26 Programmer's Interface Kit February 1992

int ForEachNetPin(TN_PTR net, int (*User_Function)(TP_PTR the_pin))
This function traverses the given net and calls the User_Function for each pin connected
in the net.

 The previous example can be expanded to provide a full net list. This is essentially the

same program supplied as source code in the Programmers Interface Kit.

int List_Net_Pin(TP_PTR tp)
 { TI_PTR ti;
 ti = InstanceContainingPin(tp);
 fprintf(file, " %s", Fn(Get_TIA(ti, NAME)));
 fprintf(file, "-%s", Fn(Get_TPA(tp, NAME)));
 return(0);
 }

int List_Net(TN_PTR tn)
 { fprintf(file, "%s", Fn(Get_TNA(tn, NAME)));
 ForEachNetPin(tn, List_Net_Pin);
 fprintf(file, "\n");
 return(0);
 }

void Process()
 { ForEachNet(List_Net);
 return;
 }

 A similar set of functions are available for traversing the data by symbol and pin.

int ForEachInstance(int (*User_Function)(TI_PTR the_inst))
This function traverses the entire design visiting each block and cell in the hierarchy. It
calls the User_Function at each element it visits.

int ForEachPrimitiveInstance(int (*User_Function)(TI_PTR the_inst))

This function traverses the entire design visiting each leaf cell in the hierarchy. It calls
the User_Function each time it encounters a leaf cell.

 The "pinorder" net list program is an example of this type of traversal. A simplified

version of that program would be:

FILE *file;

int List_Inst_Pin(TP_PTR tp)
 { TN_PTR tn;
 tn = FindNetRoot(NetContainingPin(tp));
 fprintf(file, "%s ", Fn(Get_TPA(tp, NAME)));
 fprintf(file, "%s\n", Fn(Get_TNA(tn, NAME)));

February 1992 Programmer's Interface Kit Page 27

 return(0);
 }

int List_Instance(TI_PTR ti)
 { TD_PTR td;
 td = DescriptorOfInstance(ti);
 fprintf(file, "%s", Fn(Get_TDA(td, NAME)));
 fprintf(file, " %s\n", Fn(Get_TIA(ti, NAME))

);
 ForEachInstancePin(ti, List_Inst_Pin);
 fprintf(file, "\n");
 return(0);
 }

void Process()
 { char filename[40];
 sprintf(filename, "%s.xxx", szRootName);
 file = fopen(filename, "w");
 if (file)
 { ForEachPrimitiveInstance(List_Instance);
 }
 return;
 }

Page 28 Programmer's Interface Kit February 1992

Utility Functions

int AddExt(char *name, char *ext)

Removes any existing file extension from the name and replaces it with the extension
specified in the ext parameter. A null string ("") removes the extension including the '.'.
For compatibility among all platforms the ext should not exceed three characters after the
period.

char *FileInPath(char *path_name)

This function returns a pointer to the file portion of path_name. It skips over any part of
the path_name which represents the directory name.

char *GetIntlDateTimeString(char *buff)

This function creates a formatted string in buff with the current date and time expressed
in the correct local format.

int UpdateHierarchy(char *filename, int save)

This command tells the Navigator to read a file containing attribute overrides. The
Navigator will add the attribute values to the Hierarchy Data Base. The save parameter,
if TRUE, instructs the Navigator to make the values a permanent part of the data base.

int UpdateTree(int repaint)

This function is typically called at the end of the Process to cause the Navigator to accept
any changes that have been made to the data structures as a result of the process. It is
mainly used in "back-annotation" types of processes where attributes were added or
modified in the data structures.

The repaint parameter if TRUE, tells the Navigator to repaint the schematic views to
reflect the new attribute values.

 The following three functions are used to control and interrogate a flag which is attached
to each descriptor.

int ClearDescriptorFlag(TD_PTR descriptor)

int GetDescriptorFlag(TD_PTR descriptor)

int SetDescriptorFlag(TD_PTR descriptor)

 The ClearDescriptorFlag and SetDescriptorFlag functions are designed so that they
may be the User_Function in a traversal of the descriptors, i.e.:

ForEachDescriptor(ClearDescriptorFlag);

February 1992 Programmer's Interface Kit Page 29

int ForEachGlobalNetName(int (*User_Function)(char *the_name))
Parses the list of global net names and calls the User_Function with the name of the
global net.

int MajorError(char *string)

Displays an alert prompt showing the given string. The function waits until the user
clicks the "OK" button before proceeding.

int SpawnTask(char *program, char *command_line, int wait)

Launches the selected program with the command_line as arguments. The wait variable
determines if the Application may proceed or must wait until the launched program has
completed. The PC and Macintosh platforms do not support the wait option.

Page 30 Programmer's Interface Kit February 1992

Procedural Interface: Symbol & Schematic Data Extraction

Overview
 The procedural interface to the symbol and schematic data bases provides a means
extracting the graphical and structural data. The interface consists of a several data base
traversal routines combined with a set of data extraction routines.

 A set of routines is also included in this interface which permits attribute values to be
assigned in the symbol and schematic data files. These are used for building library maintenance
utilities and for creating a schematic level (as opposed to hierarchy level) back annotation
interface.

 The routines comprising the interface are contained in the "scpik" object library which is
located in the appropriate PIK directory or folder of the Programmer's Interface Kit.

The key concepts used in implementing this interface are:

1. Each element in the data base is referenced by a handle. The handle is an unsigned short
data element which does not have any numeric significance. The handles are the means
by which the various routines interact with the data base.

2. The data traversal routines are written in a call-forward style. When the traversal routine

is called, it is provided with the function which it should call for each item encountered in
the traversal. The traversal routine will scan the data base and call the specified routine
for each qualified item. After the last item is encountered, the traversal routine will
return to the calling routine.

 As the data base is traversed, the User_Functions are called and passed handles to the

elements being accessed. These handles are used to extract data as well as to provide the
starting point for a lower level traversal.

 The called function returns a boolean to indicate that the traversal should abort.

Normally, the return value is FALSE. The TRUE return might be used in a traversal
which was searching for a particular item and the item was found. The returned value
will be passed back to the function which initiated the traversal.

3. The data extraction routines are typically called to extract the data about the item

presently encountered in a traversal. The routines return with a handle, data value,
pointer to a data string or pointer to a data structure. When a pointer is returned, the
calling routine should consider the structure or string to be read-only. The returned data
structure or string is a static structure which may be modified when the next call to the
data extraction routine is made.

February 1992 Programmer's Interface Kit Page 31

4. The routines for adding attribute information to the symbols and schematics utilize the
handles to identify the item. Attributes added to an item over-write the previous value for
that item.

Coordinate System
 The schematic and symbol data is based on a grid coordinate system. The coordinate
system has its origin in the upper-left corner of the schematic sheet and at the origin of the
symbol. Positive "X" is to the right and positive "Y" is down. All coordinate values are
expressed in terms of grid units.

 Graphic elements may be on any grid unit. Circuit elements, including symbol pins and
origins, symbol instances and wire elements are constrained to grid units that are multiples of 4.

Data Types
 There are several data types which are used to pass data between the interface and the
user's application. The first class of data type is the item handles. All handles are defined as
unsigned short integers and will be in the range of 1 through 65,535. A NULL handle is not a
valid handle. The following handle data types are defined:

 typedef use
NT_PTR net_handle
BR_PTR branch_handle
ST_PTR symbol_type_handle
SI_PTR symbol_instance_handle
SP_PTR symbol_pin_handle
TB_PTR table_handle
PN_PTR pin_handle (from symbol definition)

 There are also a few structures that are defined for passing data to the call function.

struct _gr_item { Describes Graphic Line Items
int type; Type of the item (see GR_ in include file)
int width; 0 = Normal, 1 = Heavy line weight
int style; 0= Normal, 1= dash, 2= dot, 3= dashdot, 4= dashdotdot
int x[4], y[4]; coordinates
};

struct _gr_text { Defines Graphic Text Items

int x, y; Origin of the text string
int font; 0 = Small, 1 = Medium, 2 = Large
int rot; 0 = Horizontal, 1 = Rotate 90 degrees
int just; Justification - 1 through 9 - see below
char *string; The text string
}

struct _bounding_box{

int l, t, r, b; The bounding box of a symbol
};

Page 32 Programmer's Interface Kit February 1992

Justification of text is indicates the location of the text origin relative to the string.

Justification is performed prior to rotation and rotation is about the origin. The
following diagram indicates the location of the origin for each text point.

Justification Codes

struct _pin { Symbol Data - Pin Record

short xo, yo; Origin of the pin
short name_offset; Offset of pin name from pin (0 - 31)
short name_dir; Direction of name from pin
short name_font; Text size (0, 1, 2) to use for name
}

name_dir field values are:

0 Don't show name
2,4,6,8 Justify as in text (above)
0x12, 0x14... Same but Rotated 90 degrees

struct _twin { Attribute Text Windows

int number; Number of the Text Window
int xo, yo; Origin of text in the window
int font; Text size (0, 1, 2) to use
int just; Justification of the text
int rot; Rotation of the text
}

struct _inst { Symbol Instances

short xo, yo; Origin of Instance
short rot_mir; Rotate/Mirror - Value 0 - 7
short l, t, r, b; Bounding Box of the Symbol
}

R/M=0 R/M=1 R/M=2 R/M=3

R/M=4 R/M=5 R/M=6 R/M-7
Table of Rotation / Mirror Codes

February 1992 Programmer's Interface Kit Page 33

struct _wire { Connectivity Elements
short type; Type of Element
short xo, yo; Start of Element
short x1, y1; End of Element
short name_flag; Justification if Name Flag - Same as Text above
short io_flag; I/O Indicator if Name Flag
SP_PTR sp; Pointer to Symbol Pin
}

element type fields used

0 - Wire xo, yo, x1, y1 - constrained to 8-directions
1 - Name_Flag xo, yo, name_flag, io_flag
2 - Tap xo, yo (tap end), x1, y1 - orthogonal only
3 - Pin xo, yo, sp

struct _table { Data Tables

short xo, yo; origin of table
short rows, cols; number of rows and columns
short row_0_height; height of first row
short col_0_width; width of first column
short height; height of remaining rows
short width; width of remaining columns
int font[6]; Text size (0, 1, 2) to use
int just[6]; Justification of the text
int rot[6]; Rotation of the text
}

font, jus and rot for tables:

0 name
1 title
2 row 0, column 0
3 row 0 (column > 0)
4 column 0 (row > 0)
5 everything else (row > 0 and column > 0)

struct _date_time { Date and Time

int year; e.g. 1991
int mon; 1 = Jan, 2 = Feb, etc.
int day; 1 to 31
int hour; 0 to 23
int min; 0 to 59
int second; 0 to 59
}

Global Variables
Global variables are used in the schematic PIK. The following variable is defined in the

application program.

Page 34 Programmer's Interface Kit February 1992

unsigned long permission_mask
This 32 bit mask has bits set for each of the OEM versions of ECS which is permitted to
use the application. The values for this mask is defined in the header file "spikproc.h".
Normally, this variable should be set to all 1's (0xffffffff).

char FullFileName[256];

This character string has the full path name of the schematic file which is currently being
processed.

Loading and Saving Data
int Initialize(void)

This function must be called before any other routines are called. Its main purpose is to
load the "ecs.ini" files which establish the working environment.

 Functions are provided to access the schematic and symbol data files. Each routine
returns TRUE if successful and FALSE if an error occurred.

int LoadSymbol(char *name)
Loads the symbol with the specified name and the ".sym" suffix. The symbol file is
checked for validity. The directories on the project and symbol library paths are searched
until a symbol is found.

int LoadSchematic(char *name)

Loads the schematic with the specified name and the ".sch" suffix. The schematic file is
checked for validity.

int SaveSchematic(char *name)

Saves the updated version of the schematic file with the specified name. Uses the
FullFileName as the path and root of the filename in which to save the symbol. Returns
FALSE if unable to save the file.

int LoadSymbolsUsed(void)

May only be called after the schematic is loaded. This routine loads all of the symbol
files that are used in the schematic. The directories on the project and symbol library
paths are searched until a symbol is found.

int FreeMemory(void)

Discards all memory used by symbol and schematic files. Always returns TRUE.
Should be used at the end of the process and between processing individual files.

char *GetSymbolPath(char *name)

Returns a character string with the path to the symbol. The full path name is copied into
the name buffer.

Active Symbol

February 1992 Programmer's Interface Kit Page 35

 The concept of an Active Symbol is used by the routines to determine the symbol which
is being examined. Initially, no symbol is active. When the LoadSymbol function loads the
main symbol, it becomes the active one. During traversals of the symbol types and instances in
the schematic, the appropriate symbol is set to active (assuming the LoadSymbolsUsed function
has been called). The main symbol can be reactivated by calling the MainSymbol function.

int MainSymbol(void)
Causes the main symbol to become the Active Symbol. If LoadSymbol did not
successfully load the main symbol, this function returns FALSE.

int GetTypeOfSymbol(void)

Returns the type code of the Active Symbol. See the "spikproc.h" file for the type names
and values. Returns -1 if there is no Active Symbol.

int SymbolType(void)

Returns the type code of the Active Symbol. See the "spikproc.h" file for the type names
and values. There must be an Active Symbol.

struct _bounding_box *GetSymbolBoundingBox(void)

Returns a pointer to the bounding box which encloses all pins and graphic line elements
of the Active Symbol.

struct _date_time *GetSymbolDateTime(void)

Returns a pointer to the structure which contains the date and time information about the
Active Symbol.

Page 36 Programmer's Interface Kit February 1992

Traversing The Symbol Data Structures
 There are several routines that are used to traverse the symbol data structures. This set of
routines expects that a symbol is currently selected as the Active Symbol. If no symbol is active,
it is considered a programming error and the function will issue a System level error and exit.

 Symbol data files consist of lists of each element type. Traversing the data structures
involves scanning the appropriate list. As each element in the list is viewed, the user supplied
function is called with the handle to the element.

 The called function is expected to return FALSE if the traversal is to continue and TRUE
if the traversal is to be aborted. The traversal routine will return TRUE if it was not permitted to
complete the traversal.

int ForEachSymbolPin(int (*User_Function)(PN_PTR the_pn, struct _pin *pin))
Traverses the pins in the currently active symbol. The User_Function is passed a pointer
to the structure describing the pin.

int ForEachSymbolTextWindow(int (*User_Function)(struct _twin *twin))

Traverses each of the attribute display windows in the currently active symbol. The
User_Function is passed a pointer to the structure describing the text window.

int ForEachSymbolGraphicItem(int (*User_Function)(struct _gr_item *gr_item))

Traverses the graphic elements in the symbol. The User_Function is passed a pointer to
the structure describing the element.

int ForEachSymbolGraphicText(int (*User_Function)(struct _gr_text *gr_text))

Traverses the graphic text elements in the symbol. The User_Function is passed a pointer
to the structure describing the text item.

Accessing Symbol Data - Attributes
 Attributes may be attached to the symbol definition and given fixed or default values in
the Symbol Editor. The values may be obtained with the following functions. If no value is
preassigned, the functions return a NULL string ("").

char _far *Get_SYA(int Attrib_Number)
Accesses the attributes assigned to the currently active symbol. Returns a pointer to the
value of the specified attribute.

char _far *Get_PNA(PN_PTR pin, int Attrib_Number)

Accesses the attributes assigned to the specified pin in the currently active symbol.
Returns a pointer to the value of the specified attribute.

February 1992 Programmer's Interface Kit Page 37

int ForEachSymbolAttribute(int min, int max,
 int (*User_Function)(int the_num, char _huge *the_value))
Traverses each of the symbol attributes that have been defined. If the attribute number is
in the range of min <= attrib_number <= max, the User_Function is invoked and passed
the attribute number and the value of the attribute. The name of the attribute may be
obtained with the function GetSymAttrName.

int ForEachSymbolPinAttribute(PN_PTR pin, int min, int max,

 int (*User_Function)(int the_num, char _huge *the_value))
Traverses each of the attributes that have been defined for the specified pin. If the
attribute number is in the range of min <= attrib_number <= max, the User_Function is
invoked and passed the attribute number and the value of the attribute. The name of the
attribute may be obtained with the function GetPinAttrName

Traversing The Schematic Data - Sheets
int ForEachSheet(int (*User_Function)(int the_sheet_num))

Traverses the sheets of the schematic. Passes the number of the sheet to the
User_Function.

int GetSheetWidth(int sheet_number)

Returns the width of the given sheet expressed in grid units.

int GetSheetHeight(int sheet_number)

Returns the height of the given sheet expressed in grid units.

Traversing The Schematic Data - Symbol Data
int ForEachSymbolType(int (*User_Function)(ST_PTR the_sym_type))

Traverses each of the symbol types used in the schematic. Passes the handle of the
symbol type to the User_Function

int ForEachSymbolInstance(int sheet_number, ST_PTR symbol_type,

 int (*User_Function)(SI_PTR the_sym_inst, struct _inst *inst))
Traverses each of the symbol instances of the specified type and on a selected sheet. If
sheet_number is NULL, instances on all sheets are visited. If the symbol_type handle is
NULL, symbols of all types are visited. The User_Function is passed the handle of the
instance and a pointer to the structure describing the instance.

int ForEachInstancePin(SI_PTR symbol_instance,

 int (*User_Function)(SP_PTR the_sym_pin, PN_PTR pn, struct _pin *pin))
Traverses the pins in the given symbol_instance. The User_Function is passed the handle
of the symbol pin, the handle of the pin in the symbol definition, and a pointer to a
structure describing the pin. If the symbols for the schematic are not loaded, the pn
handle is NULL.

Page 38 Programmer's Interface Kit February 1992

int ForEachInstanceTextWindow(SI_PTR symbol_instance,
 int (*User_Function)(struct _twin *twin))
Traverses each of the attribute display windows in the given symbol_instance and passes
a pointer to the structure describing the text window.

Traversing The Schematic Data - Net Data
 A net may be either a scalar signal or a bus. The relationship between scalar nets and
buses is "many:many". A scalar may be contained in one or more buses and a bus may include
one or more scalars. A variety of traversal routines are supplied to permit flexibility in selecting
the nets to traverse.

int ForEachNet(int (*User_Function)(NT_PTR the_net))

Traverses each of the nets. Passes the handle of the scalar or bus net to the
User_Function.

int ForEachBus(int (*User_Function)(NT_PTR the_net))

Traverses each of the nets which are buses (contain scalar nets). Passes the handle of the
bus to the User_Function.

int ForEachScalar(int (*User_Function)(NT_PTR the_net))

Traverses each of the scalar nets. Passes the handle of the scalar net to the
User_Function.

int ForEachNetNotBus(int (*User_Function)(NT_PTR the_net))

Traverses each of the scalar nets which is not a member of any bus Passes the handle of
the scalar net to the User_Function.

int ForEachNetInBus(NT_PTR net, int (*User_Function)(NT_PTR the_net))

Traverses each of the scalar nets in the bus specified in the net parameter. Passes the
handle of the scalar net to the User_Function.

int ForEachBusContainingNet(NT_PTR net,

 int (*User_Function)(NT_PTR the_net))
Traverses each of the buses that contain the scalar net. Passes the handle of the bus to the
User_Function.

 Nets electrically connect a group of symbol pins. The following routine traverses all of
the branches of a net and visits each pin. Pins that are connected by a bus are not considered part
of the same net as pins that are connected by the scalars within the bus.

February 1992 Programmer's Interface Kit Page 39

int ForEachNetPin(NT_PTR net,
 int (*User_Function)(SP_PTR the_sym_pin, PN_PTR pn))
Traverses the pins in the given net. Passes the handle of the symbol pin and the handle of
the pin in the symbol definition to the User_Function. When ForEachNetPin is called
from inside of any traversal except ForEachNetFlattened, it only recognizes the pins
connected by net and not any of the buses containing net. When ForEachNetPin is
called from inside ForEachNetFlattened, any pins connected by buses containing net
will be visited. Also pins of iterated instances will be visited for each instance of the
symbol.

 Nets, scalar and bus, are made up of one or more branches. A branch is a contiguous set
of wire elements. Multiple branches of a net are connected by the appearance of a name_flag on
a wire of each branch. The branches of a net may appear on one or more sheets of the schematic.

int ForEachBranch(NT_PTR net, int sheet_number,
 int (*User_Function)(BR_PTR the_branch, the_sheet_num))
Traverses each of the branches of the selected net on the specified sheet. If sheet_number
is NULL, branches on all sheets are visited. The handle of the branch and the number of
the sheet containing the branch are passed to the User_Function.

int ForEachWire(BR_PTR branch, int (*User_Function)(struct _wire *wire))

Traverses each of the wire elements of the given branch. The User_Function is passed a
pointer to the structure describing the wire. The traversal will not start on a name_flag
unless it is an isolated element. Bus taps will be reported separately from the connecting
wire segment and will always be 4 units long.

Page 40 Programmer's Interface Kit February 1992

Traversing The Schematic Data - Flattening Buses and Instances
 In contrast to the Hierarchy Data Structures, the Schematic Data Structures are not
flattened. Most of the functions for Schematic data extraction visit the elements just as they
appear in the schematic. This is convenient for converting the data to another format. The
following functions are intended to simplify the process of extracting flat net lists from the
Schematic Data Structures.

int ForEachNetFlattened(int (*User_Function)(NT_PTR the_net))

Traverses each of the nets. Passes the handle of the scalar or bus net to the
User_Function. This function behaves the same as ForEachNet except that
ForEachNetFlattened sets an internal flag which will cause ForEachNetPin to flatten
each bus, bus pin and iterated instance in the schematic.

 The following functions are designed to be called from within a call to ForEachNetPin
inside of a ForEachNetFlattened traversal. Each of these functions contain a static string which
holds the value which is preserved until a subsequent call to the function modifies it.

char *GetInstanceName(SI_PTR symbol_instance)

Returns a pointer to the static string containing the instance name of the symbol_instance
connecting to the signal being visited in a ForEachNetFlattened traversal.

char *GetRefDesignator(SI_PTR symbol_instance)

Returns a pointer to the static string containing the reference designator of the
symbol_instance connecting to the signal being visited in a ForEachNetFlattened
traversal. In the case of an iterated symbol the reference designator attribute will contain
a list of reference designators. This function returns NULL if the list of reference
designators was too short for the number of iterated instances.

char *GetPinName(PN_PTR pin)

Returns a pointer to the static string containing the name of the pin connected to the
signal being visited in a ForEachNetFlattened traversal. If the net is contained in a bus
that is visiting a bus pin, the pin name will reflect the position of the net within the bus.
This function returns NULL if there is no pin which matches the position of the net in the
bus.

char *GetPinNumber(SP_PTR the_symbol_pin, PN_PTR pin)

Returns a pointer to the static string containing the pin number of the pin connected to the
signal being visited in a ForEachNetFlattened traversal. If the pin is a bus pin on a
Component type symbol the pin number will be the n'th pin number from the bus pin
attributes BUSPIN1 through BUSPIN8 (#90 - #97) where n is the position of the net
within the bus. This function returns NULL if there is no pin number which matches the
position of the net in the bus.

Traversing The Schematic Data - Graphic Data

February 1992 Programmer's Interface Kit Page 41

int ForEachGraphicItem(int sheet_number,
 int (*User_Function)(struct _gr_item *gr_item))
Traverses the graphic elements on the given sheet. The User_Function is passed a
pointer to the structure describing the graphic item.

int ForEachGraphicText(int sheet_number,

 int (*User_Function)(struct _gr_text *gr_text))
Traverses the graphic text elements on the sheet. The User_Function is passed a pointer
to the structure describing the text item.

Traversing Schematic Data - Miscellaneous Data
int ForEachGlobalNetName(int (*User_Function)(char *the_name))

Traverses each of the global signals and passes the signal name to User_Function.

int ForEachTable(int sheet_number,

 int (*User_Function)(TB_PTR the_table, struct _table *table))
Traverses each of the tables on the given sheet. If sheet_number is NULL, tables on all
sheets are visited. The User_Function is passed the handle of the table and a pointer to
the structure describing the table.

Accessing Schematic Data - Attributes
 Attributes may be attached to symbol types, instances, instance pins, and nets. Individual
attribute values may be accessed with the following functions. If no attribute is defined, a NULL
string ("") is returned. Attribute numbers that are reserved are listed in the header file attr.h.

char _huge *Get_NA(NT_PTR net, int Attrib_Number)

Accesses attributes that are associated with the given net. Returns a pointer to the value
string of the requested attribute.

char _huge *Get_DA(ST_PTR symbol_type, int Attrib_Number)

Accesses attributes associated with the given symbol_type. Typically, the name of the
symbol is the only attribute in this class. Returns a pointer to the value string of the
requested attribute.

 The following functions access attribute values which were assigned or overridden on an
instance basis in the schematic editor. Attribute values which were originally assigned to the
symbol definition may be obtained with the functions Get_SYA and GET_PNA.

char _huge *Get_IA(SI_PTR symbol_instance, int Attrib_Number)

Accesses attributes that are associated with the given symbol_instance. Returns a pointer
to the value string of the requested attribute.

Page 42 Programmer's Interface Kit February 1992

char _huge *Get_PA(SP_PTR symbol_pin, int Attrib_Number)
Accesses attributes that are associated with the given symbol_pin. Returns a pointer to
the value string of the requested attribute.

 The following functions access attribute values regardless of the attribute origin. These
functions do all of the work necessary to get the correct value of an attribute. If the attribute has
been overridden, the override will be returned. If there is no override, the default value will be
returned. If the attribute number represents a derived attribute, the attribute will be evaluated.

char _huge *Get_SIA(SI_PTR symbol_instance, int Attrib_Number)

Accesses attributes that are associated with the given symbol_instance. The default value
from the symbol definition will only be accessed if the symbol has been loaded. Returns
a pointer to the value string of the requested attribute.

char _huge *Get_SPA(SP_PTR symbol_pin, PN_PTR pn, int Attrib_Number)

Accesses attributes that are associated with the given symbol_pin. The default value from
the symbol definition will only be accessed if the symbol has been loaded. The PN_PTR
may be passed to speed up the function. If the pn handle is NULL the function will find
the matching PN_PTR from the symbol definition (If it needs it). Returns a pointer to the
value string of the requested attribute.

 The following functions access attribute values and data from Data Tables.

char _huge *Get_Table_Attr(TB_PTR table, int Attrib_Number)

Accesses attributes that are associated with the given table. The name of the table is
attribute number 0 and the title of the table is attribute number 1. Returns a pointer to the
value string of the requested attribute.

char _huge *Get_Table_Data(TB_PTR table, int row, int column)

Accesses data from the specified row and column of the given table. Returns a pointer to
the value string of the requested data.

 Routines are provided to scan the attributes. Each of the routines scans the attribute list
of the specified item and calls the User_Function for each attribute encountered in the specified
range.

int ForEachNetAttribute(NT_PTR net, int first, int last,
 int (*User_Function)(int the_attr_num, char _huge *the_value))
Scans the list of attributes attached to the given net. If there is an attribute whose number
is between first and last, the User_Function is called.

 As above, these routines return the attribute values which were assigned in the schematic
editor. To obtain the values that were originally assigned in the symbol editor, use the functions
Get_SYA and GET_PNA.

February 1992 Programmer's Interface Kit Page 43

int ForEachInstanceAttribute(SI_PTR symbol_instance, int first, int last,
 int (*User_Function)(int the_attr_num, char _huge *the_value))
Scans the list of attributes attached to the given symbol_instance. If there is an attribute
whose number is between first and last, the User_Function is called.

int ForEachPinAttribute(SP_PTR symbol_pin, int first, int last,

 int (*User_Function)(int the_attr_num, char _huge *the_value))
Scans the list of attributes attached to the given symbol_pin. If there is an attribute whose
number is between first and last, the User_Function is called.

int ForEachTypeAttribute(ST_PTR symbol_type, int first, int last,

 int (*User_Function)(int the_attr_num, char _huge *the_value))
Scans the list of attributes attached to the given symbol_type. If there is an attribute
whose number is between first and last, the User_Function is called.

Adding Schematic Data - Attribute Overrides
 Attributes on symbol instances and symbol pins have the values that were assigned in the
symbol definition. Assignment of an attribute in the schematic overrides the default value on an
instance specific basis.

int Add_IA(SI_PTR symbol_instance, int Attrib_number, char _huge *Value)

Sets the value of the specified attribute for the given symbol_instance. Deletes any
previous value. Specifying a null string as a value will cause the default value to be used.

int Add_PA(SP_PTR symbol_pin, int Attrib_number, char _huge *Value)

Sets the value of the specified attribute for the given symbol_pin. Deletes any previous
value. Specifying a null string as a value will cause the default value to be used.

 Attributes on nets are not given any default values. When extracting flattened net lists
from hierarchical designs, the net attributes attached to net segments are ignored for all but the
segment appearing as a local net in a schematic or in the root level schematic.

int Add_NA(NT_PTR net, int Attrib_number, char _huge *Value)
Sets the value of the specified attribute for the given net. Deletes any previous value.
Specifying a null string as a value will cause the attribute to be deleted.

The following functions add attribute values and data to Data Tables.

int Add_Table_Attr(TB_PTR table, int Attrib_Number, char _huge *Value)

Adds attributes to the given table. The name of the table is attribute number 0 and the
title of the table is attribute number 1. Deletes any previous value.

int Add_Table_Data(TB_PTR table, int row, int column, char _huge *Value)

Adds data to the specified row and column of the given table. Deletes any previous
value.

Page 44 Programmer's Interface Kit February 1992

Schematic Data - Attribute Names
 The user assigned names of the various attributes are defined in the "ecs.ini" file. The
following routines translate between names and numbers.

char *GetNetAttrName(int Attrib_Number)
Returns names for attributes that are associated with nets.

char *GetPinAttrName(int Attrib_Number)

Returns names for attributes that are associated with symbol pins.

char *GetSymAttrName(int Attrib_Number)

Returns names for attributes that are associated with symbol definitions and instances.

WORD GetNetAttrNumber(char *attrib_name)

Returns the number of an attribute that is associated with nets.

WORD GetPinAttrNumber(char *attrib_name)

Returns the number of an attribute that is associated with symbol pins.

WORD GetSymAttrNumber(char *attrib_name)

Returns the number of an attribute that is associated with symbols.

int GetAttrOfWindow(int window)

Returns the attribute which is currently displayed in the specified window. Returns -1 if
no attribute is selected.

February 1992 Programmer's Interface Kit Page 45

Schematic Data - Miscellaneous
NT_PTR FindNetNamed(char *name)

Returns the handle of the net with the given name.

char *GetCoordinateUnits(void)

Returns the units in which the coordinate space is defined, i.e. Inches, Centimeters or
Millimeters

int GridSize(void)

Returns the size of the grid in 1/100ths of the physical unit.

SI_PTR InstanceContainingPin(SP_PTR symbol_pin)

Returns handle of instance containing the given symbol_pin.

int IsBusName(char *name)

Returns TRUE if the name is not a scalar signal.

int InOutBidir(NT_PTR net)

Returns a value indicating whether the net is local to the schematic (0), external to the
schematic, i.e., an i/o port (1) or a global net (2).

int LocExtGbl(NT_PTR net)

Returns a value indicating whether the net is an input net (0), an output net (1) or a
bidirectional net (2). This function only works for nets which are external to the
schematic.

PN_PTR MatchingSymbolPin(SP_PTR symbol_pin)

Returns the handle of the pin on the symbol definition which corresponds to the given
symbol_pin.

NT_PTR NetContainingPin(SP_PTR symbol_pin)

Returns handle of net containing the given symbol_pin.

NT_PTR NetContainingPoint(int x, int y)

Returns the handle of the net containing the specified point on the currently active sheet.
Returns NULL if nothing is at the point.

int ParseInstanceName(SI_PTR symbol_instance, char _huge *instance_name,

 int (*User_Function)(SI_PTR the_sym_inst, char *the_name))
Parses the instance_name into the individual names. This is used to flatten iterated
symbols used in schematics.

Page 46 Programmer's Interface Kit February 1992

int ParseNetName(char *net_name, int (*User_Function)(char *the_name))
Parses the net_name into scalar signal names. This is used to expand buses for net
listing.

ST_PTR TypeOfInstance(SI_PTR symbol_instance)

Returns handle of symbol type describing the given symbol_instance.

char *GetInstanceCoordinates(SI_PTR symbol_instance)

Creates a string which will describe the given symbol_instance. The error viewer in the
Schematic Editor will interpret the string correctly and will place an 'X' at the indicated
location. The string will be of the form: <pp,xx,yy> with the page, x and y locations of
the symbol_instance. The string is created in a static buffer which will only remain valid
until the next call to GetInstanceCoordinates.

char *GetPinCoordinates(SP_PTR symbol_pin)

Creates a string which will describe the given symbol_pin. The error viewer in the
Schematic Editor will interpret the string correctly and will place an 'X' at the indicated
location. The string will be of the form: <pp,xx,yy> with the page, x and y locations of
the symbol_pin. The string is created in a static buffer which will only remain valid until
the next call to GetPinCoordinates.

Utility Functions
 Several utility functions are included with the data extraction functions for convenience.

int AddExt(char *name, char *ext)
Removes any existing file extension from the name and replaces it with the extension
specified in the ext parameter. A null string ("") removes the extension including the '.'.
For compatibility among all platforms the ext should not exceed three characters after the
period.

char *FileInPath(char *path_name)

This function returns a pointer to the file portion of path_name. It skips over any part of
the path_name which represents the directory name.

char *GetIntlDateTimeString(char *buff)

This function creates a formatted string in buff with the current date and time expressed
in the correct local format.

int MajorError(char *string)

Displays an alert prompt showing the given string. The function waits until the user
clicks the "OK" button before proceeding.

February 1992 Programmer's Interface Kit Page 47

int SpawnTask(char *program, char *command_line, int wait)
Launches the selected program with the command_line as arguments. The wait variable
determines if the Application may proceed or must wait until the launched program has
completed. The PC and Macintosh platforms do not support the wait option.

int SysError(char *message)

Reports the message using an alert box technique. When the user acknowledges the
message, the function causes an exit. This is intended for severe errors which prohibit
further processing.

Page 48 Programmer's Interface Kit February 1992

Index

_bounding_box 25
_date_time 27
_gr_item 25
_gr_text 25
_inst 26
_pin 26
_table 27
_twin 26
_wire 26
Add_IA 34
Add_NA 35
Add_PA 34
Add_Table_Attr 4, 35
Add_Table_Data 4, 35
Add_TDA 12
Add_TGA 12
Add_TIA 12
Add_TNA 12
Add_TPA 12
AddExt 4, 22, 37
attr.h 3, 10, 33
BR_PTR 25
ClearDescriptorFlag 23
command_flags 8, 9
DescriptorContainingNet 13
DescriptorOfInstance 13
DescriptorType 15
env_AllocMem 5
env_CompactMem 5
env_FreeMem 5
env_GraspMem 5
env_ReAllocMem 5
env_UnGraspMem 5
FileInPath 4, 22, 37
FindDescriptorNamed 14
FindInstanceNamed 14
FindInstanceNumbered 14
FindInstanceRefNamed 14
FindNetNamed 14, 35
FindNetNumbered 15
FindNetRoot 11, 13, 14, 21
FindPinNamed 4, 15

FindPinWithAttribute 15
FirstInstanceOf 13
Fn 5, 6
ForEachBlock 17
ForEachBlockNet 18
ForEachBlockOrCell 16
ForEachBranch 31
ForEachBus 31
ForEachBusContainingNet 31
ForEachDescriptor 16
ForEachGlobalNetName 23, 33
ForEachGraphicItem 32
ForEachGraphicText 32
ForEachInstance 13, 22
ForEachInstanceAttribute 34
ForEachInstancePin 17, 30
ForEachInstanceTextWindow 4, 30
ForEachNet 21, 30, 32
ForEachNetAttribute 34
ForEachNetFlattened 4, 31, 32
ForEachNetInBus 31
ForEachNetLocalPin 19
ForEachNetNotBus 31
ForEachNetPin 4, 21, 31, 32
ForEachPinAttribute 34
ForEachPrimitiveInstance 22
ForEachScalar 31
ForEachSheet 30
ForEachSubBlock 17
ForEachSymbolAttribute 29
ForEachSymbolGraphicItem 29
ForEachSymbolGraphicText 29
ForEachSymbolInstance 30
ForEachSymbolPin 29
ForEachSymbolPinAttribute 30
ForEachSymbolTextWindow 29
ForEachSymbolType 30
ForEachTable 4, 33
ForEachTIA 11
ForEachTNA 4, 12
ForEachTPA 12
ForEachTypeAttribute 34

February 1992 Programmer's Interface Kit Page 49

ForEachWire 31
FreeMemory 28
FullFileName 27
GateNumberOfInstance 15
GenericPinOfPin 11, 13
Get_DA 33
Get_IA 33
Get_Inst_Name 11
Get_NA 33
Get_Net_Name 11
Get_PA 33
Get_PNA 29, 33, 34
Get_SIA 4, 33
Get_SPA 4, 33
Get_SYA 29, 33, 34
Get_Table_Attr 4, 34
Get_Table_Data 4, 34
Get_TDA 10, 12
Get_TGA 11, 12
Get_TIA 10, 11, 12, 13
Get_TIA_Override 11, 12
Get_TNA 10, 11, 12
Get_TNA_Override 4, 11, 12
Get_TPA 11, 12
Get_TPA_Override 4, 11, 12
GetAttrOfWindow 35
GetCoordinateUnits 35
GetDescriptorFlag 23
GetInstanceCoordinates 4, 36
GetInstanceName 4, 32
GetIntlDateTimeString 4, 23, 37
GetNetAttrName 35
GetNetAttrNumber 35
GetPinAttrName 30, 35
GetPinAttrNumber 35
GetPinCoordinates 4, 36
GetPinName 4, 32
GetPinNumber 4, 32
GetRefDesignator 4, 32
GetSheetHeight 30
GetSheetWidth 30
GetSymAttrName 29, 35
GetSymAttrNumber 35
GetSymbolBoundingBox 28
GetSymbolDateTime 4, 28
GetSymbolPath 28

GetTypeOfSymbol 28
GlobalPin 15
GridSize 36
hmemcpy 6
hstrcat 6
hstrcmp 6
hstrcpy 6
hstricmp 6
hstrlen 6
hstrncmp 6
hstrncpy 6
Initialize 27
InOutBidir 36
InstanceContainingPin 13, 36
InstanceNumber 14
IsBusName 36
LoadSchematic 28
LoadSymbol 27, 28
LoadSymbolsUsed 28
LocExtGbl 36
MainSymbol 28
MajorError 4, 23, 37
MarkBlockDone 16, 17
MatchingSymbolPin 36
MEMBLOCK 5
MEMPTR 5
MEMSIZE 5
NetContainingPin 13, 36
NetContainingPoint 36
NetDefinedByPin 13
NetInOutBid 15
NetLocExtGbl 13, 15
NetNumber 14
NT_PTR 25
OwnerOfInstance 13
ParentInstanceOf 4, 13
ParseInstanceName 36
ParseNetName 36
permission_mask 8, 27
pikfuncs.h 3
pikproc.h 3
PinDefiningNet 4, 13
PinNumber 14
PN_PTR 25
PostProcess 9
PreProcess 4, 8

Page 50 Programmer's Interface Kit February 1992

PrimitiveCell 15
Process 4, 9, 23
RestorePath 14, 15, 20
Root_TD 8
SavePath 14, 15, 20
SaveSchematic 28
SetDescriptorFlag 23
SetupBlockScan 16
SI_PTR 25
SP_PTR 25
SpawnTask 23, 37
spikproc.h 3
ST_PTR 25
SymbolType 28
SysError 4, 37
szRootName 8
TA_PTR 9
TB_PTR 25
TD_PTR 9
TestMark 17
TG_PTR 9
TI_PTR 9
TN_PTR 9
TP_PTR 9
TypeOfInstance 36
UpdateHierarchy 23
UpdateTree 12, 23
win.h 3

