
11 fC"f:> ._]

Burroughs Corporation INTER-OFFICE COfrnESPONDENCf

~----------------~------------------;--- -·-·--···-··-···--··

ILOCA llON C 0 R P 0 F~ A T E U NI T [) ~- f' ·1 ..

Santa Barbara Plant
TO: NAME

Computer Systems Group
!------------------ -- ·-- ---

[)Ar L

t====D=i=s=t=r=i=· b=u=t==io=n==============:;::==========·~--1 __ 1_ Fe ~!.Y._C!_~Lt_2 7_§ ___ __

I""" ·~vL:~~~;~yst_em-~~~~opme:t Section
FROM

D. Stearns
SUBJECT: C-C-

QUEUE DESIGN IN 5.1

The document following is a major rewrite of "MCPII 5.1 Queue System and
Interfaces", which originally came out as the code was being written.
Changes were made during development and this documents the revised design.
In particular, your attention is called to Sec ti on 2. 0 "QUEUE DATA STRUCTURES",
which more accurately describes buff er management.

D. Stearns
~:lch!aik'ed". Sy.Stem~'Dev·eloptnent Section

gp

At_t achment:

1.0

2.0

2.1

2~2

2.3

2.4

2.5

3.0

4.0

5.0

6.0

6.1

6.2

6.3

7.0

8.0

9.0

MCPII 5.1 QUEUE SYSTEM AND INTERFACES

CONTENTS

INTRODUCTION ---

QUEUE DATA STRUCTURES -----------------------------------

DESIGN PHILOSOPHY -------------------------------------

QUEUE DESCRIPTORS --------------------------------------

QUEUE DISK ---

MES SAGE DESCRIPTORS ----------.-------------------------

MESSAGE BUFFERS --

QUEUE FILE OPEN AND PARAMETER SPECIFICATION --------------

SUPPORTING BOTH OLD & NEW QUEUE FILES IN 5.1 MCP ---------

FPB FORMAT FOR QUEUE FILES ------------------------------

QUEUE FILE READ/WRITE ------------------------------------

QUEUE FILE FAMILY READ/WRITE --------------------------

WRITE TO TOP OF QUEUE FILE ----------------------------

COBOL SYNTAX FOR Q-EMPTY/Q-FULL ------------------------

l

2

2

2

2 and 3

3

3

4 and 5

5

5 and 6

6

6

7

7

END OF FILE FOR QUEUE FILES -----------------------------

MESSAGE. COUNT COMMUNICATE -------------------------------- 8 and 9

RECOMMENDATIONS FOR USERS OF QUEUE FILES ----------------- 9

7 and 8

Page 1

MCPII 5.1 QUEUE SYSTEM AND INTERFACES

1.0 INTRODUCTION

A message queue system has existed in MCPII since Release III.4, but
maintenance, speed, and working-set considerations have caused a
re-design for 5.1. This note describes the current plan for new queues.
It is 'intended for members of the Programming Activity and TIO, not
for users; the aim is to specify the interfaces between the queue system
within the MCP and other system software -- NDL, compilers, etc. It
does not cover remote files, the NDL/MCS interface, or complex WAIT.

The term "queue" refers to the actual data structure maintained by the
MCP as a means of inter-process communication. Queues have various
attributes: a 20-character name, user count, message count, etc. Most
impor.tant, a queue may contain a list of messages (possibly empty).
A queue user may add to the back or remove from the front of this list.
The queue may be shared -- one or more processes may put messages in the
list and one or more processes may remove messages. Only the MCP may
access a queue directly. User programs must use other interfaces built
upon queues, such as queue files or remote files.

Major changes have been in the following areas:

1. Maximum queue length may be explicitly set at queue create time
(file open for user programs).

2. The "ON INCOMPLETE.IO" branch may be used to prevent a process
from being blocked (a) during a READ on an empty queue or
(b) during a WRITE on a full queue.

3. Message storage in S-memory is minimized by buffer pooling for
all queues.

4. Long queues will be optionally maintained on disk. Disk 1/0 will
be overlapped with user processing whenever possible, like disk
files.

S. The EOF branch on read/write will be defined for queue files in
such a way to permit label equation with, say, card files. New
queue files will not report EOF· on queue-empty.

6. FPB format will change. New fields are required for new queue
parameters, like maximum queue length. Recompilation of existing
programs using queue files will not be required however -- a new
device type will be used to discriminate new and old queue file
FPB's.

7. Queue files may no longer be blocked. Records written to a
queue file are immediately put into the queue.

These changes are described below and in the appendices. COBOL and SDL queue
file syntax is used for examples.

Page 2

2.0 9UEUE DATA STRUCTURES

These structures are transparent to the user. They are the implementation
of queues in 5.1, but they may change in future releases. For this
reason, details should not be relied upon in any application.

2.1 DESIGN PHILOSOPHY

The design of the data structure (Figure 1) was strongly affected
by the need to reduce the S-memory needs of queues. Reusable
structures like message buffers and message descriptors are pooled
for the use of the whole queue system. Empty message buffers and
descriptors are not released to FORGETSPACE - the Q-driver retains
them for later use. This has two good effects: 1) quicker
allocation by avoiding GETSPACE, and 2) less disturbance of the
code working set of the system. Since queue files and remote files
are unblocked, their FIB's need not have buffers; this makes them
the smallest of any FIB's (500-1000 bits).

2.2 QUEUE DESCRIPTORS

For a given queue, the queue name, maximum length, pointers to
first and last messages, etc. are stored in the queue descriptor.
The descriptor must be in S-memory during the existence of the
queue. Users of the queue are given "Q-keys" which serve as
capabilities for the queue. For a queue file, the Q-key is
stored in the FIB. If the queue is empty, the 360-bit descriptor
is the only S-memory structure dedicated solely to the queue.

2.3 QUEUE DISK

Messages stored in a queue may reside on disk or in S-memory.
At queue creation (an area of system disk is obtained for the
queue large enough to hold Q.MAX.MESSAGES of size Q.MAX.MESSAGE.SIZE.
For example, a queue of max length 255 and max message size 200
bytes will require 255 *((200+179)MOD 180) = 510 disk segments.
Pre-allocation guarantees 1) trivial assignment of disk space to
a queued message and 2) low S-memory requirements to remember the
state of the queue disks. Users with cartridge systems may have
to limit Q.MAX.MESSAGES to avoid disk space problems, however.
Queue disk is not locked in the directory - if the system fails
while queues are active, the disk is returned to the available list
during clear/start. Note that even queues with Q.BUFFERS =
Q.MAX.MESSAGES are assigned disk.

The algorithm for putting messages on disk is as follows. If a
message being put in a queue makes the count of messages in
memory equal to Q.BUFFERS, then the tail-most message in memory
is started out to disk. This should free a buffer for a following
queue insert. Exception: See Section 2.5 for queues where
Q.BUFFERSzQ.MAX.MESSAGES.

2.3 QUEUE DISK (Continued)

GETSPACE may also roll messages to disk if it requires the
space. This ensures that messages left in infrequently-read
queues will be cleared out of main memory.

When the first message is removed from the queue, the next
message is checked to see if it is on disk. If so, a look
ahead disk read is initiated to help the reader.

Page 3

Disk I/O descriptors reside in the queue file FIB's for queue
disk I/O. For ~ mode of use - input or output - a program
opening a queue file is given 1 1/0 descriptor. A file opened
input ~ output is given 2. 1/0 descriptors are shared among
all members of a queue file family, so no FIB will have more than
1 or 2.

2.4 MESSAGE DESCRIPTORS

The means of storing messages in the queue is by means of a
linked list of message descriptors. Each message descriptor
(MD) consists of an 80-bit system descriptor and two link fields,
for a total of 128 bits each. The system descriptor actually
describes the message text, according to normal MCP conventions.

To reduce checkerboarding, MD's are allocated in blocks of 10.
Allocation is done by searching the block(s) of 10 for a zeroed
out MD.. If none is found, an additional block is obtained via
GETSPACE. Blocks are surveyed periodically to FORGETSPACE any
spares. At least one block is retained while any queues exist.

2.5 MESSAGE BUFFERS

If a queued message is in S-memory, it is stored in a memory link
called a message buffer (MB). No queue may have more than
Q.BUFFERS messages in MB's, including those in-process between
disk and S-memory. Note that because of the method of handling
queue disk, the queue driver cannot guarantee that any given·
message will be kept in S-memory, even for a queue where
Q.BUFFERS ~ Q.MAX.MESSAGES. For this type queue the queue driver
will not start an I/O to write a message to disk, but GETSPACE
may do so if space is tight.

MB's are allocated from a common pool of empty buffers. The pool
is implemented as a linked list ordered by size so allocation is
both best fit and first fit. If the pool does not contain a large
enough MB, one is obtained from GETSPACE. When a message is
removed from an MB, it is put into the pool. GETSPACE may
recapture MB's for other uses by simply delinking them from the
queue driver's list.

Page 4

3.0 QUEUE FILE OPEN AND PARAMETER SPECIFICATION

In addition to parameters common to all files, the user may specify
three parameters whose interpretation has special meaning for queue
files:

1. Q.MAX.MESSAGES - the maximum number of messages a queue can
store, at which point it is full (max 255).

2.

3.

In

Q.BUFFERS - the highest number of messages (max 255) the user
wishes to allow in S-memory.

Q.FAMILY.SIZE - the number of sub-queues in a multiple queue file.

"?FILE" notation, for example:

?FI MY.Q QUEUE Q.MAX.MESSAGES=20 BUFFERS=3 RECORD.SIZE=80;
?FILE MY.QFF QUEUE Q.MAX.MESSAGES=lO Q.FAMILY.SIZE=3 BUFFERS=2

RECORD.SIZE=80

In SDL notation the same files might look like this:

FILE MY.Q (DEVICE=QUEUE(20)
FILE.MY.QFF(DEVICE=QUEUE(lO) FAMILY(3),

In COBOL notation:

SELECT MY.Q ASSIGN TO QUEUE.

FD MY.Q VALUE OF Q.MAX.MESSAGES IS 20
RESERVE 3 ALTERNATE AREAS.

01 MY.Q.BUF PIC X(80).

SELECT MY.QFF ASSIGN TO QUEUE.

FD MY.QFF FILE CONTAINS 3 QUEUES
VALUE OF Q.MAX.MESSAGES IS 10
RESERVE 2 ALTERNATE AREAS.

01 MY.QFF.BUF PIC X(80).

BUFFERS=3, RECORDS=80);
BUFFERS=2, RECORDS=80);

If a queue file family (QFF") is opened (See Figure 2), the same
parameters apply to every member individually. In MY.QFF above, for
example, all 3 members may hold 10 messages each with 2 each in memory.

Naming is as in old queues - the MFID/FID is the name of the queue for
a single queue file. For a QFF, the MFID is the first 10 characters,
and a FID is synthesized from the member number for each queue in the
family (e.g. the first member of MY.QFF would be "MY.QFF"/"##00000001").

3.0 QUEUE FILE OPEN AND PARAMETER SPECIFICATION (Continued)

When a Q-file is opened, the Q-driver compares the 20-character
name with the names of all queues currently in existence. If a
queue of that name is found, the opener is linked to the existing
queue and the queue's user count is incremented. If the queue

Page 5

does not exist, a new queue is created with the parameters provided
in the FPB.

Queue parameter binding occurs when the queue is first created ~~ that
is, by the first process to open the queue file. If two programs share
a queue (e.g., both agree on the name), the first program to open his
queue file binds the parameters.

Blocking of records is not used in new queue files. Record size sets
an upper limit on the length of a message stored in a queue file.

4.0 SUPPORTING BOTH OLD & NEW QUEUE FILES IN 5.1 MCP

Existing code using Q-files need not be recompiled to run on the 5.1
MCP. This causes one problem, handling queue empty on RE~D; old
queue files gave the "EOF" branch (if present); new queue files will
give the "INCOMPLETE. IO" branch (if present). If the MCP can
discriminate between old and new queue FIB's at run time, this processing
is possible. We use a new device-type for new queue files to allow
this:

FPB.HDWR
FIB.TYPE

61
62

New Queue File
Old Queue File

QUEUE files and the FILE card - Label equation of any file to the symbolic
device "QUEUE" will result in FPB.HDWR set to 61 (new queue). Two new
keywords have been added to the FILE card: "Q. FAMILY.SIZE" and
"Q.MAX.MESSAGES".

Note that the structures created at run time are always new queues.
The FIB-type of old queue-file merely changes the ON-branch used at
queue-empty on read.

5.0 FPB FORMAT FOR QUEUE FILES

Two new fields "FPB.Q.FAMILY.SIZE" and "FPB.Q.MAX.MESSAGES", have been
added to the currently defined FPB items:

01 FPB

~
02 FPB.HDWR

~
02 FPB.BUFFERS

)
02 FPB. INV. CHARS
02 FPB.SERIAL

02 FPB.Q.FAMILY.SIZE

BIT

BIT

BIT
CHAR

BIT

(6)'

(24)'

(2)'
(6)'

(8)'

io 61: new 6 2: old

io number queue
messages allowed
in memory

io last item in
V.O FPB
% number members

Page 6

5.0 FPB FORMAT FOR QUEUE FILES (Continued)

Mapping SDL file syntax onto the FPB is as follows (uncapitalized
letters stand for user-supplied integers):

FILE QFILE (DEVICE=QUEUE(n), BUFFERS=b, RECORDS=t);
% A SINGLE QUEUE QUEUE FILE

FILE QFFl (DEVICE=QUEUE(n) FAMILY(f), BUFFERS=b, RECORDS=r);
% A QUEUE FILE FAMILY

io NEW QUEUE
% MESSAGES ALLOWED IN S-MEMORY

:= n % QUEUE MAXIMUM NUMBER OF MESSAGES
:= f % 0 FOR SINGLE QUEUE FILE

FPB.HDWR := 61
FPB.BUFFERS:= b
FPB.Q.MAX.MESSAGES
FPB.Q.FAMILY.SIZE
FPB.QUEUE.FILE := 1 IF "FAMILY" appears after "DEVICE=QUEUE"

The only queue parameter that can be defaulted is BUFFERS, which will
be set to 2 by the compiler.

6.0 QUEUE FILE READ/WRITE

The meaning of the three ON-branches is given on the following table:

.
EOF EXCEPTION It INCOMPLETE.IO

READ No writers, & Invalid key (on Queue empty but
---l

-

N queue empty QFF only) writers still exist
E
w WRITE Not defined Invalid key (on Queue full

QFF only)

0 READ Queue empty Invalid key QFF Not defined
L
D WRITE Not defined Invalid key QFF Not defined

6.1 QUEUE FILE FAMILY READ/WRITE

A key must be included to identify the specific queue in a QFF
to read/write, just as in random disk files. QFF members are
logically numbered 1 to n. Giving a key of zero on a read is
defined as an unspecific read. The members will be searched
beginning with number 1 and the first queue member found not
empty will be read. A key of zero on a write is invalid.

Note: SDL ·is peculiar in this regard. From an SDL program,
QFF 'members are given key numbers from 0 to n-1, even
though the external names of the queues are numbered
1 to n. An SDL unspecific read with a key can be obtained
by using a key of -1 (or not zero).

See the MESSAGE.COUNT communicate for another QFF facility.

Page 7

6.2 WRITE TO TOP OF QUEUE FILE

This service is provided for NDL primarily, but it may be of
general use for private stack-files for instance. A record
written to a queue file normally goes on the bottom of the queue,
but a record may be inserted at the top with this WRITE. The
function is invoked in the communicate by setting bit 7 of
CT.ADVERB (i.e., SUBBIT(CT.ADVERB, 6, 1)).

SDL syntax is:

WRITE filename TOP (where);

For example:

WRITE MY.Q TOP (BUF);
WRITE QF.FAMILY [l] TOP (BUF);

Write to top is not implemented in COBOL.

6.3 COBOL SYNTAX FOR Q-EMPTY/Q-FULL

COBOL syntax applies the "USE procedure" to handle incomplete
I/O on queue files.

For example:

PROCEDURE DIVISION.
DECLARATIVES.
Q SECTION.
USE FOR Q-EMPTY ON MY.Q.IN
PROC-MY-Q-IN-EMPTY.

-- COBOL procedure code

USE FOR Q-FU_LL ON MY-Q-OUT
PROC-MY-Q-OUT-FULL.

---. COBOL procedure code

7.0 END OF FILE FOR QUEUE FILES

End of file is defined for new queue files in a way similar~to EOF on
all other devices. It is now possible to label-equate an input file
of device type CARD to QUEUE, for instance.

READ EOF

The precise meaning of EOF on READ queue file is that (a) the last
writer on this queue has closed his queue file, and (b) the queue is
empty. EOF is treated as a pseudo-message in the queue. That is,
when the last message has been read from the queue file, the queue
remains "not empty" for WAIT purposes. A subsequent read will result in
the EOF branch being taken. The queue is then empty, but still in EOF
status, so if yet another read is issued on the queue file, the reader
will again take the EOF branch. The EOF can be cleared by either the
reader closing and reopening the file or by the opening of the queue by
a new writer.

Page 8

7.0 END OF FILE FOR QUEUE FILES (Continued)

QFF READ EOF

Reads to specific .members of a QFF are treated exactly like reads on
single queue files. An unspecific read on a QFF will return EOF only if
all members of the family ar~ at EOF (i.e., empty, no writers). When
the last writer clo~es any member queue of a QFF, the event Q.INSERT.OCCURRED
will be caused for the QFF; this will put the reader in the READY.Q
when he WAITS on this event. A subsequent MESSAGE.COUNT conununicate will
show the EOF as a pseudo-message -- the count for that member will be one
more than the count of real messages. When the reader executes a specific
read on the member queue which is at EOF, the EOF branch will be given.
The next MESSAGE.COUNT will show the member queue as containing no messages.
Another read on the member will result in the EOF branch given again
(as with a single queue file).

WRITE EOF

Not presently defined but under consideration.

8.0 MESSAGE.COUNT COMMUNICATE

This conununicate returns the count of messages of the queue file specified.
If a queue file family is specified, the count of each member will be
returned in an array (member 1 in the first position, member 2 in the
second, etc.), up to the limit of the result field. Counts will be returned
either in decimal (COBOL"PICTURE 999") or binary (SDL "BIT(24)") depending
on the value of the first bit of CT.ADVERB. COBOL does not implement
MESSAGE.COUNT.

Fo:i:mat:

CT.VERB
CT.OBJECT
CT.ADVERB BIT 1
CT.l
CT.2

SDL/UPL syntax:

48 (HEX @30@)
File Number
Decimal format results if true
Result field length in bits
Result field address

MESSAGE.COUNT (file-name, address-generator);

8.0 MESSAGE.COUNT COMMUNICATE (Continued)

MESSAGE.COUNT SDL example:

FILE MY.QFF (DEVICE=QUEUE(lO) FAMILY (5)
,BUFFERS=2, RECORDS=80);

DECLARE X FIXED

,Ol PUT.IT.HERE
,05 Q.MSG.COUNT(S) BIT(24)

OPEN MY.QFF (INPUT);

?
process

WAITl(TIME.TENTHS(lOO), Q.INSERT.OCCURRED (MY.QFF));

CASE X;

TIME.OUT.PROCEDURE;

DO; MESSAGE.COUNT (MY.QFF, PUT.IT.HERE);

~
Process messages

END·)
'

END CASE;

9.0 RECOMMENDATIONS FOR USERS OF QUEUE FILES

Page 9

a) Declare short queues (Q.MAX.MESSAGES=l) unless the extra length
is needed for "burst mbde" operation. Long queues tie up resources
and incur long delays for each message, while providing no
additional function. Disk queues are discouraged for the same
reason. Note, however, that if the queue runs empty, the cost of
a disk queue is limited to the system disk required to hold the
queue. Therefore, if you must have the potential for occasional
long queues, try to ensure that the reader has high enough priority
to keep the queue emptied. It will then run as fast and in the same
real memory as a memory queue.

b) Use the INCOMPLETE.IO branch on READ/WRITE only if you have real
time difficulties with another data-stream (for example, datacomm
I/O driving or a reader-sorter). Your program may as well be
blocked on queue empty or full and release the processor to other
tasks. Be careful of deadlock here though.

c) Use the EOF branch on READ's - it notifies the reader of termination
of the Q-writcr. It should serve as a termination condition,
possibly fur ABEND, for the reader.

~ i !J" "I!! 1 : -r..,. -p ... ~ .. 11r ... 1

Co-.,,.,,,,,,._.+,~ .,. Qk4'..,.-Ft·1~

c .. 11,.t ' 1111.Yi~0.. T£..e ~ .. c,.c.
~o ... f ..,,·,.I -tl.r•c. #14S••!l•t.

&.I.ASEL: '~Y. ~·•
Q.1AAt.1t1tE'SfA'U: 10
Q.HS~.(!O""T ::. 3
Q.fJIJf~EtlS: ~

···'·''" : 4t_.
"·"., """"' =-t c.

--------------1111~1.~·•sr

11f=' I IZ4'1' ~SS-SA~f
-'f'EJtT ,,

Q,lAST

---. .-..=====-----~
...__., Ca.. l>eTJ:. r" ~caccss

Ow:t·

'9TM I R.1' 14essA~'
T~..-'T ''

w,.,tf!~ FIB

~ .. :t~
.Io ~tt.,.,,-10~

Fi~u.re ~: II ~1A.4!1u!-f1lf! FAai/y
,,.,.tL. t '1.r~~ 11tt"" t~~c.

"MY. <in=F" n

f: 1 s.-.v llSE =- ra•vr /
°"'"'" F'•S. Q .FA•• .. >'"+~-~

FIS,Q.~A" 1£1.~rH c 3

"~~.~f'F' •
...... c)o~oooo3

' V.~FF''
·~ooo-.looo I

q.Baf=FSK:~
&.,. ,~,,..

Q.4.s4cr = o

-.

·~y.~"

·M:oocoooara
Q. 81le,,.5 ·-

Q ... AY. ,."iae alO

~1~.c.,. ::.1

-.

