IESSON 2

MAGMETITSM

ELECTRICITY AND MAGNATISM:

In treating such phonomena as the flow of elactricity, a generai law (Ohn's Law) is used, in which the magritude of the wffect is siven as the ratio of a driving force divided by an oppotitan ratiax drandaxt upon the properties of the medium in winich the actatre facer rinco.

Current - $\frac{\text { Elocteniot veyenea }}{\text { heslistmo }}$
In treating magnotisw, it is convonient for pariowe of satcanticy. ts
 magnetic Rlow. The magnetic lines of induction ane the clowed elrcusten along which the flow takes place. Materialy are then ciatselfied good or bad mgnetic conductors according to the eave with which they wre magnetized.
Magnatic Flux is anslogores to flow of currens in electricity pho unt
 Magpotic Indaction is deflned as the total Fiux pac und amoan axd is. therefore, the flox density the uait of which is the Gaxsax

$$
\text { Gausses }=\frac{\text { Maxwello }}{\text { Sq. Centimeters }}
$$

Magnetcmotive Force moy be regarded as the cause of manootic flux. The und of magnetomotive force is the Gilbert.

Reluctance is the resistance a body offers to being magnotized and depends upon the constants of the circuit similar to resistance in the electrical circuit. It is directly proportional to the longth and inversely peroportionel to the area and the permeability of the medium. Unit of reluctance is the Oersted.

```
WHERE \(\varnothing\) - Total Flux
    N - Total No. of tums
    L - Mean length of magnetic lines
    U - Permeability
    A - Area of cross section
```

The equation of the "Law of the Magnetic Circuit":

Magnetic Flux - Magnetomotive Force Reluctance

Another similarity between magnetics and electrical circuits ia seen in the stated "Law of the Magnetic Circuit w:

If, in a magnetic circuit, the flux is one mexwain what the magnotomenve force is one albert, the reluctance is one Dezedud.

Magnetizing Curve

If a piece of magnetized iron is placed in infield which may be varied at will, it is found, starting at $H=0$ and gramalig increasing it, that the induction B increases slowly at first, remaining nearly proportional to the field, then increases rapidly after a certain interval of H, after which a further increase produces on my relatively mad changes in B. This curve showing value m of inducting for diffent magnetizing fields is called the magnetizing, Curve sad la repreastod by $O B$ in fIgure one.

FIGURE 2

The three parts of the curve are accounted for by assuming that, in the unagretized condition, the magnetic axis of the nolecular magets are distributed entirely at mandom. Under the action of weak magretic field, these molecular magnets are all upmug to alightextent frour their initial positions, giving rasultant component in the direction of the applied field, amount of differmation baing proportionan to tho
 up and new alignments are formed. As ench lock enw part of a chain, neighboring groups becoma natabie, broan anc torm othar

 increases in field 1 produce only samil chance

Hysteresis Loop

If after the induction has been carried to the point maked + B max on figure one, the magnetizing field is gradually docroason, the whuotwon doen not attract the magnetization curve, but takes on tailues, for given elele;

 certain value, सc, has been reached, the resultant induction is zero. A furthar negative increase in pield to - f nax. gives reverse value of induction m max. oqual in magntude to $+B$ nax. With an increase in H to its orfigina poaitive value $\mathrm{H}_{\mathrm{H}} \mathrm{H}$ max.", B assumes values shown by lower carve of figure one, symetrical with respect to the origin of the นpper curve.

This teadency of any mathal to persist in given magrietic atate is lmown as Mryoterestis", and the corresponding curve as the lyatemesis Curve. Br is called the retentivity, and 虎, the coercive pleld. The area of the hyeteresis loop is a mearare of the energy conurued by molecular friction in each cubic centhnetor of material carmied once

 the ring.

The area of the loop divided by 4 gives the enemgy Lost per cycle per cubic centimeter of material. The shape of the loog wailem with the quality of the iron.

Retentsity
Coerdue Foree

Hard ateelo	High	Righ
Soft steels	High	Low
Smedinh Lron	Low	Luw

For a given material, the area of thi loop degende on the Lintita al induction.

INTRODUCTION:
The principle circuit component of INTEMIDCX Model IV is the Bistable Ferromagnetic Core herein called EIMAG. The principal advantages of the Bimag component are its rectangular hysterisis loop, physical size and low power consumption.

PHYSICAL PROPERTIES: Bimag cores are normally toroidal in shape, with a diameter between 90 mils and ono-half inch, and may be in either of two forms:

1. Metallic tape cores, which consist of strips of metallic tape wrapped around a bobbin which is usually made of ceramic.
2. Ferrite cores, made from a in powder of magnetic materials that are pressed into core shapes.

MAGNETIC PROPERTIES: -
A. Magnetic Circuits - Hysteresis Loop B

Figure 1
Where: 1 - Current
N - No. Turns
\varnothing - Flux Generated

Figure 2
Where: E - Amp. Turns (NI)
B - Flux/Onit area
Bf - ONE State
Bow - Zero State

When a current I_{1} Rows through winding N_{1}. Aux ϕ is generated.
A plot of I_{1} vs. ϕ_{1} will result in the wsteresis loop show in

Figure 2. A more general graph is obtained if the axis of the hysteresis loop is changed $\operatorname{rom} \phi$ to $B,(B-\phi / \hbar)$ and I to $H,(H-N I)$, generally referred to as the Bu H curve, where B is flux density and H is the magnetizing force.

The points B_{1} and B_{2} are the points of residual magnetism. If the current was increased from ZRRO to a value that caused saturation of the core, and then was reduced to zero, the state of flux in the core would be at one of these points. Assume the core is in the B_{2} state. Positive current will cause the state of the core to change from B_{2} to B_{3}, provided the current saturates the core with thus. If then the current is reduced to zero, the state of the core will be at point B_{1}. Passing from point B_{2} to B_{3}, to B_{1} is called COMPLETE SWITCHING of the magnetic core. By definiion, the state of the core, when at point B1, is called the ONE state; when at point B_{2}, it is called the ZRRO state.

Reference is again made to Figure 2. Assume the core is in the ZERO state (at point B_{2}). If I is varied in the positive direction from zero to some small value and then returned to zero, the core will return to the ZERO state. But there is some point at which after increasing I in positive direction and then reduced to zero, the core will not return to the zERO state, but will return to a point between B_{1} and B_{2}, indicated by B_{6}. The point on the B-H curve at which the core will not return to this zero state for some value of I, is termed the THRESHOLD POTNT. The passing from point B_{2} to B_{6} is called PARTIAL SWITCHING of the magnetic core. Since the hysteresis loop is symmetrical, the sane statements are true of negative values of I (with the core in the ONE state).

If the core is at point E_{2} (the ZERO state) and a negative magnetizing force is applied, the core will be driven into saturation to point E_{4} and will retiarn to B_{2} when the magnetizing force is returned to $Z E R O_{\text {, }}$ Flux is generated in going from B_{2} to B_{4}. This is termed core NOISE.

B. Magnetic Core us a Bistable Device.

The hysteresis loop, most desirable for a core to operate as a prod bistable device, is the rectangular loop shown in Figure ia. The hysteresis loop for a Blame core approaches this rectangular shape as shown in Figure ib. The Square Hysteresis Loop gives maximum voltage storage. Therefore a low $O B \not \subset / O B \max$ ratio most desirable. The Ideal ratio being lii.

-
(a)

(b)

FIGURE 3
C. Magnetic Core Schematic Symbols.

(a)

(b)

FIGURE 4
The core and windings of figure la may be represented by the schematic drawing of Figure lib. The dot notations are used to indicate INKE POLARTTY of the windings. The dot notation has the following properties:

Page 4

(1) A conventional current entering the NON-DOT terminal will switch the core from the $Z E R O$ state to the ONE state.
(2) A conventional current entering the DOT terminal will switch the core from the ONE state to the ZRRD stats.
(3) Switching the core from the ZERO state to the ONE state generates a flux that will induce voltages in all other windings of the same core which will cause a current to flow into the dot terminal of these windings.
ie: CURRENT OUT OF THE DOT IS CURPENT INTO THE DOT.
(4) Switching the core from the ONE state to the ZRRO state generates a flux that will induce voltages in other windings of the same core which will cause a current to flow out of the dot terminal of these windings.
ie: CURRENT INYO THE DOT IS CURRENT OUT OF THE DOT.

TRANSFER LOOPS

SINGLE DIODE TRANSFER LOOP

The purpose of this circuit is to transfer the ONE state from core T-1 to core T-2. Figure 5 shows the schematic diagram of a single diode loop circus. ${ }_{\text {I }}^{I_{0}} I_{i 0}^{\prime}$

FIGURE I - SINGLE DIODE TRANSFER LOOP
$\underline{L O G I C}-$ Core $T-1$ is in the ONE state. (Figure 1)
Core $T-2$ is in the ZERO state.

LOGICAL OPERATION

Current I_{0} enters the dot terminal of winding No. This current switches core 2-i from tho ONE state to the ZERO state and causes a transfer current 1 in NI, which is a forward current for the diode. Current 1 enters the non-dot terminal of winding N_{2} and switches core $T-2$ from the ZERO state to the ONE state. Thus the ONS that was in core T-I is transferred to core T-2. This is called Unconditional Transfer of information, since the information in core T-I is always transferred to core $T-2$ when the circuit is operated as explained.

The purpose of the diode 1 s to prevent the lose of information stored in T-2 by a current I_{0} ' flowing in winding N_{0} that is opposite to current I_{0}.

Other than this use the diode only uses up voltage required to drive \mathbb{N}_{2}.

LOGIC - Core T-1 is in the ZERO state. (FIgure 1)
Core T-2 is in the ONE state.
Current I_{1} flows into the non-dot terminal of N.

LOGICAL OPERATION
Current I_{1} would switch T-1 to the ONE state, producing a current in that flows into the dot winding of N_{2}, switching $\mathrm{T}-2$ to the ZERO state, except for the high back resistance of the crystal diode. This resistance limits current in to a value well below the threshold current for winding N_{2}, thus keeping T-2 in the ONE state.

FIGURE 2 - SINGLE DIODE TRANSFER LOOP

LOGIC - Core T-1 is in the ZARO state. (Figure 2)
Core $\mathrm{T}-2$ is in the ONE state.
Current I_{2} flows in winding N_{3}.

LOGICAL OPERATION
Current 12 switches core $T-2$ to the $2 E R O$ state. In sensing the core in the manner a transfer current is produced in N_{2} in the same direction as 1. This current i being in the correct direction so as to cause the diode to conduct would
seem to be the proper current to switch core T-1 to the ONE state and thus transfer the ONE from T-2 to T-1. This however, would be transferring in reverse as well as forward and this is not the desire of this type of circuit. Therefore, the output winding of a core, N_{1} in this case, is wound with mary turns (approximately 40 turns) and the input winding of a core, NI in this case, is wound with few turns (approximately 4 turns).

This accomplishes two things, the main of which is to prohibit the before mentioned condition, as follows:
(1) Since the turns ratio of $\mathrm{N}_{2} / \mathrm{N}_{1}$ is small, the impedance ratio of $\mathrm{Z}_{1} / \mathrm{Z}_{2}$ is large and the current induced in winding N_{2} due to current I_{2} is small, thus the current flow (i) in N_{1} will not completely switch T-1. T-1 will be partially switched from the ZERO state, and this partial switching is referred to as NOISE (Refer to Lesson 1 - Magnetic Properties of Blags).
(2) Since few turns are used, more switching current is required to provide the proper NI (ampere turns) to switch $2-2$. This is allowed for in design.

NOTE: SWITCHING
T-2 mast be completely switched before T-1 has completed switching. However, after T-2 has been switched the current requirement presented to T-1 by T-2 no longer exdets. The load on T-1 is thus removed and only the very Low DC resistance of N_{2} is seen. This will draw more than T-2's share of
 driver current thu e taking switching current away from T-1. Due to the NI to Switching-Time relationship (FIGURE 3) TAILOUT will result. (Less Ampere Turns More Switching Time required). The circuit is thus designed to allow for the extra tie to complete the switching of $\mathrm{x}-1$.

BIASED DIODE TRANSFER LOOP

The purpose of this circuit is to transfer information from core $T-1$ to core T-2 only when current 12 flows. This is called Conditional Transfer, of information. FICURE 4 shows the schematic diagram of a Biased Diode Transfer Loop, sometimes called a Split Winding Transfer Loop.

FIGURE 4 - BIASED DIODE OR SPLIT WINDING TRANSFER LOOP

LOGIC - Core T-I is in the ZERO state. (FIGURE 4)
Core T-2 is in the 2 zRO state.
Current I_{2} flows into N_{2} center-tap.

LOGICAL OPERATION
Current I_{2} divides into I_{a} and i_{b}. The impedance path to i_{a} and to $i_{b} i_{s}$ equal, thus the currents are equal. (The impedance of N_{2} in the path of i_{a} is balanced by a choke place in the path of i_{b} equal to N_{1}.) Note that current ia flowing into the dot winding of N_{1} will see a la impedance since care T-1 is in the ZERO state. Thus core $T-2$ will remain in the ZERO state since the flux generated by equal and opposite currents, will cancel in core $7-2$.

```
LOGIC - Core T-1 is in the ONE etate. (FIGURE L)
    Core T-2 is in the zERO state.
    Current I_ flowe into N}\mp@subsup{N}{2}{}\mathrm{ center-tap.
```


Page 5

LOGICAL OPRRATION
Current 1a flowine into the dot terminal winding of Ny will now see a migh fupodace since it will switch the state of the core T-I. The to this Heher impodance in the lee i_{m} is flowing in ia will be smaller than ib. Current ib will then override the effect of ia and switch core 7 "- 2 to the ONE state while L_{a} is switching $T-1$ to the ZeRO state. Thus the transfer of information from core 7.1 to core 2.m.

If a current in should flow into the dot terntnal of winding No shom 1n FIGURE 4 a current would be incuced ir winding H_{1} which woukt ilow out of the dot, but the back resistance of diode I woula luat the current flow to well below the threshold value. Note that core $\mathrm{T}-1$ will be switched to the zero state by 1_{1} but core $5-2$ will not be switched, thus no transfer of information and a condthonal transfer cercuit is accomplished.

The advantuge of the Bissed DLode Pransfer Loop 18 the absiluy to be CLRARED whout Bit Transfer. It is used however, at thes due to nolse problems where a Single Diode Loop could be used but would give trouble dute to erroneovs read-oute by the nowe pulses.

$\operatorname{LESSON} 5$

LOCICAL STMBOLS

1) In a loghea atugra all cores and arivers are mepmesmbed.
2) A magntac come 15 mpresented by a oxpola

 cracla.

 blochod-in tradiglo.

 the magnetsc cort must bo brought, (Trom the other stats) to procuce thut outprot.

NOTES

atranter ingut.

 ONE for mone othex catputs.
6) If there is no mpetal unductor aby output may be producea wy ayy
 the transfer thate If an output may bo produced by ony one of weveral Lmpts. It must be comected by conectine bat inste the expela to the transfer 1mput able to produce it.

Page 2

ONLI THIS TRANSFER INPUT CAN PRODUCE AN OUTPUT:
7) A driver is represented by a large D with an arrow touching it to indicate the imput, and a straight line leaving it, to indicate the output.
8) Basic timing pulses are represented by the lotter t, a subscript indicating the time of occurence.
9) An arrow on a line indicates the direction of the logical flow along this line.
\longrightarrow

\longrightarrow

ह
\cdots

$-\infty$

Logical switch for selection of one of several input sources.

Logical switch for selection of one of several output destinations.

A square core.

A core switched to the ONE state at Time t_{1} 。

A core switched to the ZNRO state at

 Time t_{1}.

Preset of core into ONE state. This refers to initial setting. Where the symbol is not used, preset is understood to be ZGIRO.

4 core producing transfor if switched from the ONE to the $2 E R O$ state at times t_{1} or t_{3}. This is unconditional transfor.

A core producing transfer as above except only at time ti. This is conditional transfor. (t3 puts core into ZERO state without producing transfer.)

A core producing conditional transfer at time ty when switched from the 2SKRO to the ONE state.

Current Driver.

NOMENCLATURE
Lower case t for basic clock drivers. Upper case symbols for all other core pulses or drivers. Subscripts indicate the time that a pulse or driver occurs with respect to the basic clock drivers. For example, a sampling pulse occuring at timo t_{7} may be called S_{7} :

Or a driver which fires at time to which is used to gererate output may be callad G06:

Pulse goes to more than one place (arrows at each point of divergence). For examplo, a care with double output:

Inclusive - or - several pulses go to one winding (Triangle at point of convergence.)

Inclusive - or - several pulses to one winding at the same time. (Dot at point of convergence.)

Inclusive - or - several input windings which put core into the ONE state.

EXAMPLES: OF INCLUSIVE OR:
Two cores producing transfer if either or both are switched from ONE to ZERO at th. (OR circuit). Both cores must be read out at same time.

Same as above with both cores read out at different times. Designs are identical and one input winding is used.

Two inputs of different designs OReN on separate windings.

Top core transfer inhibited by bottom core. Action occurs at ts.

Double inhibit (exciugive-or). Action occurs at t_{2}.

Conditional input A at t_{2} overridden by conditional input B at t_{2}. The double arrow indicates greater strength.

Pago 8

Current clamp. Core held powerfully in ZERD state for long period of time. This symbol indicates that the core cannot possibly owitch while clamp exists.

The following circult diagrams and logical schematics illustrate the basic rules.

1. Transfer Loop-a single diode transfor loop is show in Fig._ 1 . A split winding transfor loop is show in Flg._2_
2. FIE. \qquad shows a circuit in which an output may be produced by any of the transfer imputs a, b or c. Note, that a connecting bar is not used.

FIGURE 1 SINGLE DIODE LOOP

FICURE 2 SPLTT WINDING LOOP

Page 2

LOGIC - T-1 is set to the ONE state. (FIGURE 1)
All other cores are in the ZFRO state.

LOGICAL OPERATION
At t_{1} core T-1 is read to the ZeRO state giving an output which sets $T-2$ to the ONE state, thus the ONE bit of informetion is transforred. At the oNE is transferred to $\mathrm{T}-3$ with t_{2} having no effect on Ta as it is in the ZkRO state already. At the next t_{1} core $T-1$ is unaffected, but the $0 N E$ in $T-3$ is transferred to T-L. Thus the ONE that began in core T-1 has shifted down the register until its present position in T-4.

MAGNETTC COUNTER

FIGURE 2 - MOD 2 MAGNETIC COUNTER

Page 3

LOOIC - T-1 is set to tho ONE state. (FIGURE 2)
All other cores are in the reRO state.

LOGICAL OPERATION

The counter is the same in operation as the Magnetic Shift Reglater except that the output of T-4 is fed back to $\mathrm{T}-1$ thus reseting $\mathrm{T}-1$ at the sam time an output is obtained from T-4. This makes a complete and continuous loop not requiring any external resetting until all cores have been cleared for a new indial start-up. Operating in this manner every other t_{2} will give an output thus dividing the input pulsed by two. This is called a Mod 2 countor. A Mod 3 counter would have the same hook-up but using six cores to give an input to output division of three, thus a pattern may be seen in this for the arrangement of cores for specifle counter divisions.

CYCLE DISTRIBUTOR

This is a Magnotic Countor with nore than one output. Such would be the case if another output was taken off core T-3 in FIOURE 2.

IDIER

The odd core of a counter are callod IDLERS as it is only used for bit transfer. Thus two cores are required for one BIT transfor.

The use of one driver for each core olfminates the idler cores as in FIGURE 3.

FIGURE 3 - SHIFTER RSGISTER WITHOUT IDLER CORES

FIGURE 1 - INCLUSIVE OR

LOGIC - Cores T-1, T-2 \& T-3 in the ZERO state. (FIGURE 1)
At t_{1} time, no transfor input occurs.

LOGICAL OPERATION

Transfer current t_{2} will split evenly and T-3 will remain in the ZFRO state. Next, consider at t_{1} time transfer input a or b or both occur. Transfer current t_{2} will divide, and switch T-1 and/or T-2, thus causing an unbalance in loop Z, with the larger portion of the current entering the non-dot terminal of winding N_{3}. This will switch T-3 to the ONE state, while T-1 and/or T-2 are being switched to the ZERO state.

JOINT DENIAL -

After $T-1$ is set to the ONE state a
t_{1} input will transfer the ONE to T-2 unless t_{3} or t_{4} or both occur first which would kill the OXE in T-1.

EXCLUSIVE OR

FIGURE 2 - EXCLUSIVE OR
LOGIC - Cores T-1, T-2, T-3 \& T-4 are in the ZERO state. (FIGURE 2)
LOGICAL OPERATION
Inputs a_{1} and b_{1} switch $T-1$ and $T-2$ respectively to the ONE state. Current t_{2} will split evenly since the impedance paths are equal. If only a_{1} exists, the unbalanced current will switch T-3 to the ONE state. If by exists, I-4 will be
switched to the ONE state. Thus an output is obtained for a_{1} or b_{1} input, but not if both inputs are present or if both inputs are absent.

INHIBIT

FIGURE 3 shows the schematic and logical diagram of an INHIBIT circuit. The INHIBIT output is connected by a triangle to the output it inhibits. There is a transfer of information if an output from Tel exists logically and if an output from T-2 does not exist logically.

The inhibiting output may have as its sole function the inhibiting of another output, or may perform a transfer action on another receiving core depending upon the type of circuit.

FIGURE 3 - INHIBIT

LOGIC - Core T-3 is in the ZERO state. (FIGURS 3)
Transfer inputs a_{1} and b_{1} set cores $T-1$ and $T-2$ to $O N E$ state respectively.

LOGICAL OPERATION

Current t_{2} will split evenly since the impedance paths are equal, leaving $T-3$ in the ZERO state. If transfer input al exists however, and b_{1} does not, then the impedance path thru the dot winding of T-3 and T-I is greater than the path thru the non-dot winding of T-3. The greater current, therefore flows thru the lower impedance paths thus switching $\mathrm{T}-3$ to the ONE state, thus completing a conditional transfer for this circuit.

To analyze the logic of a circuit involving the output windings of several cores, it is combenient to consider the notion of logscal output of a core: When a core is switched from the non-transfor state to the transfor state, the transfer input is always assumed to produce a logical output. The various logical outpats of the different cores are mixed, and the exdstence or absence of a physical output depends upon the logical medring. This is illustrated in Fig._

LOGICAL OPERATIONS

All logical operations can be expressed in terms of INCLNSIVE OR, AND, and INHIBIT functions. These are sumarized in the following truth table:

TABLB I

Symbols to represent these functions have been establishod and are described below. INCLNSIVE OR-The two logical outputs are joined at a function mariced by a small dot. (see Fig. 4)

LOGICAL REPRESENTATION

PING PONG

$$
\text { FIG. } 4 \text { SPLIT WINDING TRANSFER LOOP }
$$

OR

INCLUSIVE

