
66123

22 November 1972

BURROUGHS MICROPROCESSOR

MACHINE IMAGE. GENERATOR

. (MIG)

USER'S MANUAL

......__---Burroughs Corporation --
Federal and Special Systems Group

Paoli, Pa. 19301

66123

22 November 1972

BURROUGHS MICROPROCESSOR

MACHINE IMAGE GENERATOR

(MIG)

USER'S MANUAL

--- Burroughs .·corporation -
Federal and Special Systems Group

Paoli, Pa. 19301

CONTENTS

Section Page

1. INTRODUCTION 1-1

Background 1-1
Machine Image Generator 1-4
Manual Organization 1-4

2. THE BURROUGHS MICROPROCESSOR MACHINE
IMAGE GENERA TOR 2-1

The Microprocessor 2-3

The Logic Unit 2-7
The Memory Control Unit 2-7
The Microprogram Memory 2-7
Control Unit 2-7
External Interface 2-9

The Port Select Unit 2-11
Instruction Set 2-11

Literal Assignment Instruction 2-11
Condition Test Instruction 2-12
Logic Unit Instruction 2-15
External Instruction 2-17

Timing in the Mini- D 2-17

3. OPERATION AND USE 3-1

Front Panel 3-1
Rear Panel 3-2
Utility Boards 3-2
Possible MIG Configurations and Uses 3-3
Loading 3-3

Loading Procedures 3-3

Running 3-5

iii

iv

CONTENTS (Continued)

Section

4. PROGRAMMING

APPENDIX I

APPENDIX II

APPENDIX Ill

APPENDIX IV

APPENDIX V

Language Description Conventions
Semantics
MINIX - Translator
Pseudo Instructions
Microinstructions

Literal Assignment Instructions
Condition Test Instruction
Logic Unit Instructions
External Instructions
Summary

I

SUMMARY OF MICROINSTRUCTION CODES

MINIX TRANSLATOR ORGANIZATION

MINIX EXECUTION

MINIX INDICATOR LIST

MINI-D AND PSU TIME DELAYS

4-1

4-1
4-1
4-3
4-4
4-5

4-6
4-8
4-11
4-15
4-15

I-1

ll-1

Ill-1

IV-1

V-1

Figure

1-1

2-1

2-2

2-3

2-4

2-5

2-6

4-1

4-2

Table

2-1

2-2

2-3

3-1

3-2

ILLUSTRATIONS

Microprocessor Variations

Two Views of the MIG

Microprocessor Organization

MIG Block Diagram

Microprocessor Detail Functions

16-Pin Interfac·e and MOS-LSI Dip Chip ~in
Configuration

Timing in the Mini-D

Summary of Microinstruction Types

Translator Locations Codes and Source Statements

Functional Parts

Set and Reset Conditions

Microprogram Memory Addressing

Microprocessor Bootstrap Loader Program

MIG Loader Character Set

Page

1-2

2-2

2-4

2-5

2-6

2-8

2-16

4-16

4-17

2-3

2-12

2-13

3-4

3-5

v

vi

···~·

/~

/~,.·

Burroughs Microprocessor Machine Image Generator (MIG)

1. INTRODUCTION

BACKGROUND

The programmable logic controller or microprocessor is a relatively new concept
in solid-state control. Its predecessor, the conventional relay bank or solid-state
sequencer, must be wired differently for each control proble~ for the specified
sequence of events. The programmable controller, on the other hand, only re
quires that the new sequence be stored in its memory. The algorithms through
which inputs produce desired outputs are implemented in the stored programs.
Thus the only wiring is that required to connect inputs and outputs.

Programmable logic controllers perform sequencing operations by (1) scanning
inputs such as relay contacts, limit switches, terminal devices, pushbuttons,
valves, et., (2) comparing the inputs to the conditions specified in the program;
and (3) by sending data, energizing or deenergizing outputs in accordance with the
programmed instructions. Current experience suggests that programmable con
trollers offer a cost/ effective problem solution when 50 or more relay functions
are to be implemented. In addition, there are many advantages outside of direct
costs including:

• Reliability - Controllers built from integrated circuits have
inherently higher reliability than a relay.

• Speed - A complete scan of several inputs and the subsequent
operation of several outputs can often be performed in less
time than it takes to operate a typical 20 millisecond relay.

1-1

RANDOM
ACCESS
MEMORY

The RAM with its bootstrap
loader is mounted on a
separate 5" X 7 1/4" P. C.
boardh The RAM permits
dynamic changes to the
program.

When housed in the cabinet*
with its control panel, clock,
power supply and DDP housing,
the combination is referred to
as the Machine Image Generator
(MIG).

T

TTL

BURROUGHS
MICROPROCESSOR

MSI, on a 5" X 7 1/4" P. C. Board

READ
ONLY
MEMORY

The ROM consists of three
DIL chips mounted on the
microprocessor board. The
three ROM chips may be re
placed when it is desired
to change the microprocessor
program.

MOS
LSI, Single DIL Chip

Figure 1-1. Microprocessor Variations

READ
ONLY
MEMORY

ECL
(under development)

The microprocessor memory is included
as part of the DIL chip. In this form
the memory is not alterable and the
microprocessor can only be employed
for its originally intended function.

o Ease of building the control system - The program is entered into
a computer memory, eliminating the complex wiring of relays
or electronic logic. Programs may be tested and debugged
immediately after they are entered, saving days or weeks.
Program changes are made by software modification - usually
no rewiring is necessary

• Computer monitoring and control - These functions are directly
applicable to programmable controllers which have an inherent
ease of interfacing with host computers locally or remotely.

o Adaptability - Types of functions are software dependent.

o Expansion - The number of functions is not limited by a "hard
wired 11 system but can be expanded by addition of hardware
I/ 0 modules (calletj ~i$:!~e_D~p~~I?:.ci~E.tE.9rt~L.2r_PJ2 .. ~:s), and
software modification. ···,. , ,. ... ,, · · ·,. · · .,..,., · _.,, ~

To exploit these advantages, Burroughs has developed a microprocessor which
is basically a miniature version of its successful D-Machine.

The Burroughs D-Machine is a family of digital processors based on advanced
system architecture. The D-Machine utilizes a modular building block architec
ture. Over the past few years the concept of modular building blocks has been
extended to give ·rise to a new and unique concept in the architecture and implemen
tation of data processors. The new concept has been entitled the "Interpreter
Based System" or "D-Machine".

The D-Machine incorporates two design concepts: (1) building block structure
and (2) "soft machine architecture" through microprogramming. In the D-Machine
architecture, the fundamental logic functions have been organized into building
blocks, omitting the control logic associated with conventional processor design.
These fundamental building blocks thus represent uncommitted logic or hardware
which yields maximum flexibility, and which becomes committed to a specific task
by control signals originating outside the basic building block. These control
signals have two sources: The firmware (the microprogram) and the hardware
providing the interface with the external device (device dependent ports).

The Burroughs Microprocessor is a smaller version of the D-Machine and is
referred to as the Mini-D. The Mini-D microprocessor is currently available in
either of two logic families: (Figure 1-1) i.e., Transistor Transistor Logic (TTL)
in Medium Scale Integration (MS!) form or Metal Oxide Semiconductor (MOS) in
Large Scale Integration (LSI).

The TTL version is available in two forms: with Random Access Memory (RAM)
or Read-Only Memory (ROM). When equipped with RAM the microprocessor
consists of two printed circuit cards; the first card is a microprocessor construc
ted from TTL logic, and the second card contains a bootstrap loader and a random
access memory to control the functions of the microprocessor.

1-3

1 _;4

If the Mini-D is to be employed in an application where its program is not required
to be changed, then a read-only memory (ROM) is the economical choice. Under
these conditions only the microprocessor card is necessary; the design of the
microprocessor card having been provided with electrical connections for 256
words of read-only memory (ROM). Thus a complete microprocessor on one
7 1/4-inch by 5-inch printed circuit card may be incorporated into a customer's
product or system. A more economical processor form is available as a single
dual-in-line (DIL) MOS LSI chip. The MOS LSI chip has space for the storage of
2 56 words of memory. These memory words are not alterable but fixed at the
time the chip is manufactured.

The TTL version is designed to have a nominal instruction execution time of
1 µsec., while the MOS version is 10 µsec.

MACHINE IMAGE GENERATOR

Foreseeing the need for a means to develop and debug programs to be employed
in the microprocessor, as well as the development of I/O interfaces, the Burroughs
Corporation has developed a laboratory instrument known as the Machine Image
Generator (MIG). This manua~ describes the operation and programmirg of the
Microprocessor and MIG.

MANUAL ORGANIZATION

This manual is organized into four sections and four appendices. The introduction
provides a brief description of the Burroughs D-Machine series and a detailed
description of the Mini-D or Microprocessor including the differences between the
various logic forms of the Mini-D. Section 2 describes the physical and functional
characteristics of this particular form of the Microprocessor, the "Machine Image
Generator". Section 3 contains the operating instructions for the MIG. Section 4
presents complete programming details as well as general software characteristics.
The appendices contain material which augment the programming section.

2. THE BURROUGHS MICROPROCESSOR MACHINE IMAGE GENERATOR

Foreseeing the need for a mean~ to develop and debug programs to be employed in
the microprocessor as well as the development of I/O interfaces to devices, the
Burroughs Corporation has developed a laboratory instrument known as the micro
processor Machine Image Generator (MIG). The MIG consists of the microprocessor
card, read-write memory, a control panel, power supply, clock oscillator, and
two wire-wrap utility boards; all housed in a 9 1 /2-inch by 8 1 /2-inch by 11 1 /2-inch
cabinet as shown in Figure 2-1. For convenience most interconnections are made
with ribbon cables and 16-pin DIL plugs and sockets.

In all, the MIG consists of five printed circuit or wire wrap boards and a power
supply. In the small raised front portion of the MIG are three printed circuit boards
interconnected by flat-ribbon cables. The smallest of the three is the Panel Board
(PB) which contains the lamps, lamp drivers and switches used to control the micro
processor. The entire microprocessor is contained on the first printed circuit board
(MP-1) and includes three sockets for a 256-word by 12-bit read only memory (ROM).

However, in place of the three ROM chips, three cables carry the eight address
bits to, and 12 memory bits to and from the read-write memory which is located
on the second printed circuit card (MP-2). Also on this card is a Port Select Unit
(PSU) and a 32-word by 12-bit read-only bootstrap loader program. The ROM
program loads the read-write memory from teletype while in the LOAD mode.

In the rear section of the cabinet are two wire-wrap utility boards, one of which
(UB-1) is partially occupied by the clock oscillator, power connections and a tele
type interface. All unpopulated portions of these boards are for the users con
venience in constructing DDP's.

2-1

UTILITY BOARD (UBI

OPENING FOR FLAT RIBBON CABLE

------ CINCH-JONES CONNECTORS

.:!18---
CHASSIS GND

Figure 2-1. Two Views of the MIG

2-2

In addition to the three ribbon cables used for memory interconnections there are
seven other ribbon cables. One connects the control panel with UB-1 and carries
control signals and power. Another cable connects the memory board (MP-2)
with UB-1. and carries teletype inputs to the Mini-D from the TTY interface
on UB-1. Four cables are used to connect the PSU on MP-2 to the utility boards
and can be moved at the users convenience. Finally there is a single flat ribbon
cable that connects MP-1, MP-2, and UB-1 and has the same pin configuration
as the MOS-LSI version of the Microprocessor.

THE MICROPROCESSOR

The microprocessor is an 8-bit serial_ ID§l.Chine (serial by bit_ internally)
with a 256-word by 12-bit microprogram memory. Programmatically it appears
as a parallel machine for most functional operations. The microprocessor
(Figure 2-2) consists of 5 functional parts described in Table 2-1 below.

Table 2-1. Functional Parts

Acronym Unit Functions

LU Logic Unit Data registers, serial adder

MPM Microprogram Memory Microprogram sequences.
Some words have literals,
others have specific controls
created for the microprogrammer.

MCU

cu

EX!

Memory Control Unit

Control Unit

External Interface

Registers for memory
addressing

Timing and condition testing,
successor selection, instructive
decoding

Interface to the external
environment.

Also implemented in the MIG is a bootstrap loader - ROM micromemory containing
a program that loads the read-write memory from a model 33 Teletype or an
equivalent device.

The Microprocessor runs in two modes RUN and LOAD, controlled by a toggle
switch on the front panel. In the RUN mode, the 256 X 12 read-write memory
determines the sequence of operation. The program in the read-write memory is
changed in the LOAD mode. In this mode, with the teletype connected to the phone
plug, the bootstrap program will read characters from the teletype keyboard or
paper tape reader. The block diagram (Figure 2-3) shows the relationship of the
functional parts of the MIG. Figure 2-4 shows the functional details.

2-3

LOGIC
UNIT (LU)

(1) (1~

(8)

Al A2 A3 B '4-

1....-...r-

(1) (1) y x
1(1) t

[SERIAL ADDER I
(1) (4)

Literal

(8) l _Mi ,..,...nin "t,.....l.L.!::Jion 1 (12)1 -~
CONTROL UNIT

l\11 CROPROGRAM (CU)
MEMORY (MPM)

r----1 1. Decode instruction.

' Provide commands
Microaddress for LU and EXI
(8)

2. Control condition
testing and setting

r~

I 3. Determine

MEMORY CONTROL I successor

UNIT (MCU) I
I ' J Next LST

1. MPM addressing ~· Instruction MST

2. MPCR increment Selection AOV

1 or 2 ABT
(4)

3. AMPCR control
(8)

(1) · 1 AMPCR
(1)

--

(1) I DATA IN

(4)

(1)

(1)

1
I
I
I

--'

l
I

J

I
I
I
I
I
I
I

~

External
Control

EXT
Condition

DATA OUT

Mini -Interpreter External Interface
(EXI)

Figure 2-2. Microprocessor Organization

MICROPROCESSOR

LOGIC

l MPCRl-

[ADDER 1~

-

-- (12)

(1)

(8)

Read/Write Microprogram Memory

Microinstruction

(12)]

I
Machine I
Image I
Generator ____ ___.. External Interface

I
I
I

r1 \\'RITE REGISTER J l MEM SELECTOR ----1--
J Loader/Micro
I Select Switch

l 1 (12) 1(12)

READ-WRITE BOOTSTRAP
256 x 12 LOADER-ROM

MICROMEMORY MICROMEMORY

1 l
I (8)p I

1 MAR

Microaddress Js>
(8)

,--------------------
(2)

TELETYPE

WITH
PAPER TAPE

READER

(1)

_{_ll DATA OUT I PORT INTERFACF
LOGIC TIT ,~

ADDRESS

I
T

External Control (4)
+ (1> I DATA OUT - DATA IN EXT I ,. -.

External (!±)I

Control I PORT -
I SELECT

c1 > I --
DATA IN - EXT (1) 1

..... -
I

i-_ I

I

Figure 2-3. MIG Block Diagram

(5)

l2l
(5)

121

(5)
(2)

(5)

121

(2)

(4)

__.. --
......

--
~

--

} Po

1 Po rt

J Po rt 2

J Po rt 3

ro Cl
Hages
ocks

(1) Types of Microinstructions

SELECTION

SELECTION

SELECTION

T

x y

ADDER
ANO

B

(8)

F

SELECTION

LOGIC FUNCTION
(1) (4)

(8)

(8)

(8)

Literal

Condition

Logic

External

(4)'

(12)

IR (3)

MICROMEMORY (1)

(256 x 12)

(8)

MPCR

Figure 2-4. Microprocessor Detail Functions

Save

Step

Skip

Jump

SUCCESSOR
SELECT

(1)

CONDITION
SELECT

(8)

CONDITION
REGISTER

(3) (4)

TIMING
GENERATOR

(4)

(1)

(1)

(1)

2

• (1)

. .. (1) I
Mini- Interpreter I

External
Control

A
B
N9
NlO

External
(EXT)

DATA OUT

PRESET CP

CP In

CP Out

Voltages

Ground

MPCR Clear

External Interface
(EX!)

r .,

The Logic Unit I . I
~·-. j

The logic unit consists of three 8-bit A registers (Al, A2, A3), .an 8-bit B re-
gister, a serial adder, a carry flip-flop, and selectors. The registers are recir
culating static shift registers so that information can be transferred into the adder
without changing the input registers. The inputs to the adder are one of the
A-registers or zeros, and one of B or ~Q!L~~t~~r.~t~-~-i.~.£J>pr~qgr.9-m .. count
.!:~g!§!.~:r). The output from the adder can be to Al, A2, A3, B, AMPCR and external
registers (via the DATA out line). The adder also feeds four conditions to the
condition registers, "least bit true" (LST), 11 most bit true" (MST), "overflow 11

(AOV), and "all bits true" ABT o LST is set if the least significant or first bit
out of the adder is a binary 1 and reset if O. MST is set if the most significant
last bit or eighth bit .is a 1 and reset if O. If all bits out of the adder are binary 1,
ABT is set and otherwise reseto AOV true indicates that an overflow has taken
place in an addition and it is preset or reset in a logic operation.

The Memory Control Unit

The memory control unit consists of two 8-bit registers and a selector, the Micro
program Count Register (MPCR) and the Alternate Microprogram Count Register
(AMPCR). The MPCR is an 8-bit counter that can be incremented by one or two.
The AMPCR is used to store jump addresses for changing the sequence of
instructions. The MPCR is used to select the next instruction (successor) from
the microprogram memory.

The Microprogram Memory

The Memory contains 256 12-bit words. The memory contains only executable
instructions and cannot be changed under program control if a Read Only Memory
is used. The 12 bits of an instruction are decoded into four types: literal, condi
tion, logical, and external (DEV). Eight of the 12 bits can be transferred directly
into the AMPCR or into the B register.

Control Unit l _)
The control unit provides eight testable conditions, condition selection logic,
successor determination, instruction decoding logic and timing for the
processor. The eight conditions which may be tested are AOV, MST, LST, ABT,
(which have already been mentioned), plus 3 local conditions set or reset by the
program, LCl, LC2, LC3, and external asynchronous condition EXT. The
successor selection is either MP CR+l, MPCR+2, or AMPCR, which are also
called STEP, SKIP, and JUMP, respectively. The microprocessor uses an ex
ternal clock line for timing. During each instruction, eight counts are made.
After the eighth count the microprocessor waits for a Memory Cycle Complete
(MCC) pulse before starting the next instruction. The CU also provides two out
going clock pulses. One is an 8-count ciock signal Clock Out (CO) synchronous

2-7

t....:>
I

00

16

Vee
(+5 VDC)

NlO

1

15 14

N9

CLOCK
IN

(CI)

2 3

13 12

MEMORY LAST
CYCLE PULSE
COMPLETE (LP)
(MCC)

CLOCK DATA
OUT OUT
(CO) (DO)

4 5

11

B

CLEAR
(CLR)

6

10

DATA IN
(DI)

EXTERNAL
CONDITION

(EXT)

7

Figure 2-5. 16-Pin Interface and MOS-LSI Dip Chip Pin Configuration

9

A

GROUND
(GND)

8

with the instruction clock. The other is a signal the marks the end of each
instruction called Last Pulse (LP). ·

External Interface

This is the interface that connects the microprocessor to the outside world.
The connection is synchronized by the CLOCK OUT signal described above.
An external asynchronous input level EXT is available to obtain the attention
of the microprocessor. The interface is as in Figure 2-5.

Pins 2 and 14 are reserved for voltage connections in the LSI-MOS version.
Signals N9, NlO, A, and Bare external control lines used to aid in the flow of
information· into and out of the processor. Signals A and B tell the outside world
what type of instruction the Mini-D is executing.

A B

0
0
1
1

0
1
0
1

No externally significant instruction being executed
"BEX" instruction (data input requested)
"OUT." instruction (data output available)
"DEV" instruction (a memory transfer)

Signals N9 and NlO indicate to the outside wordd, which register, of OUTO, OUTl,
OUT2, or OUT3 is specified during a Logic Unit "OUT" instruction. N9 and
Nl 0 are actually the 9th and 10th bits of the instruction word.

The CLR signal is an input used to clear the MPCR to zero address. LP, as
described above marks the end of each instruction. Data is fed into the B register
during a BEX-type· logic instruction serially by way of the Data- In (DI) line.
Output from the Microprocessor come by way of the Data Out line (DO); this line
carries the output from the adder during all logic instructions, and a literal
during the DEV instruction, otherwise the signal is undetermined and constant.
Information is sensed by the microprocessor on the trailing (negative going) edge
of the Clock Out pulse and likewise the DataOut (DO) signal should be sensed by the.DDP
on this edge. Clock In (CI) and Memory Cycle Complete (MCC) are the two timing
signals that must be supplied external to the microprocessor itself. Clock In is the
high speed clock input connection. MCC is a pulse that "initiates" the instruction
cycle.

To provide for teletypewriter input on the Data In (DI) line, the DI signal from.
the EXI and the TTY signal had to be gated for selection. To accomplish this
pin 2 is used as an ungated DI input and pin 10 is the selected or gated DI signal.
Therefore to provide the 16-pin EXI as shown in Figure 2-5 it was necessary to
compensate by plugging the interface cable from MP-2 into a socket on UB-1
and wiring over to an adjacent socket, pin for pin, except that pin 2 from the
interface cable connector connects to pin 10 of the user's interface socket. This
two socket arrangement is wired twice on UB-1 • Once with the internal clock
signals also wired in and once without. I:11 this way the user can disconnect the
supplied clock system and use his own merely by moving the cable connection
from one socket to another (See Figure 2-6).

2-9

2-10

In order to allow operation of the MIG at speeds compatible with either TTL or MOS
MOS versions of the microprocessor there is a "divide by ten" circuit provided as
part of the clock circuit on UB-1. The speed selection is made by rotating the
connector plug 180° (Figure 2-6).

CLOCK
IN

LAST
PULSE

CLOCK
OUT

MCC

Figure 2-6. Timing in the Mini-D

\

j .. ~
I · , l :.·"
f .,:, _\,'. •'

THE PORT SELECT UNIT (\...'\:1' /1--··· . r1J t •. lv l
~ ' I f

In order to aid the user in constructing DDP's the design of the MIG includes four
separate 16-pin inter faces and ports that can be selected by the DEV instr'uC't.ion.
Bits 1 and 2 of the literal transmitted "open" a given port and keep it open until
another DEV instruction opens a different port.

Commo~o each of the four por~ are pins 1 through 7 which carry these signals:
B, N9, N9, NlO, NlO, A B, A B. Also common to each are the DO signal and
the EXT signal on lines 15 and 16 respectively. The signals that are selectively
transmitted, and therefore constitute an 11o"pen" port are MC C on pin 10, J ,p on
pin 12, CO on pin 13 ·and D. I. on pin 14.

INSTRUCTION SET

There are four types. of in~tructions; ~·~.t~r:g.1, c;gJlili.tion, l.,,<2&!£~1 and ~.X.t~,IXU.~l·
Literal instructions bring 8 bits of info into the AM.PCR or B-regsiter. Condition
instruction test one of eight conditions and change successors accordingly. I."'ogic
instructions handle data in the registers and operate .on the eight bit strings.
External (DEV) instructions are literal instructims but with a differerr:e; these
instructions send literals, via DO, to external devices.

Literals Assignment Instruction
- -··-.----

Formats: 1 2 3 4 f> () 7 B
·-<

Literal From MEM to B

1 3 4 5 6

Literal Jump Address to A

Literal Address to MPC
and AMPCR

!J 10

1 0

7 8
..

MPCR

R

11 12

1 1

f) 10 11 12

Not Used 0 0

Not Used 1 Q

Literal assignment instuctions contain a literal in the first 8 bits that is to be
Lrarrnferred to the register specified by the last 2 bits. In executing a "Literal
~" ins true tion the input bits _9-I~ __ s:_Q)JJ.Pl.~JJJ~.nt.~.d .. in_t..Qg __ P.!.:£~"-~,§..LQ.f_JQ.a.di..ng_in.tQ
B. This is not the case when loading into the AMPCR. But there-are-Two·-opffo-ns

available. If bits 11 and 12 are O's then the literal is loaded into the AMPCflJ
but if bit 11 is 1 and 12 is 0 the literal is loaded into the AMPCR and into the
MPCR, with the result that the next ir1struction executed is the one at the address
specified by the literal. ,Bits 9 and 10 are available for memory extension by way
of paging memories.

2-11

2-12

Condition Test Instruction

Format:

1 2 3 4 5 6 7 8 9 10 11 12

Condition Set '!rue False 1 1 1
~ '--v--J...___..,...___ ________ ...

~

...._ _______ False successor

00 Jump
01 Step
10 Skip
11 Save

-----------True successor
00 Jump
01 Step
10 Skip
11 Save

...._ _____________ Set operation

00 Set LCl
01 Set LC2
10 Set LC3
11 None

'--------------------Condition select
000 MST
001 AOV
010 LST
011 ABT
100 LCl
101 LC2
110 LC3
111 EXT

This instruction performs a test on one of eight conditions (specified by bits 1, 2, 3).
If the condition is true then the true successor (bits 6, 7) determines the next
instruction. If the co~n is false, then the false successor (bits 8, 9) determines
the next instruction. @J!le condition is true, then in addition to the true successor
selection, the set field (bits 4, 5) is checked to determine if a local condition is to

be~

Condition

The setting and resetting of the local condition is shown in Table 2-2. As indicated,
the local condition bits (LCl, LC2, LC3) are reset on testing, and the set operation
is used to set a local condition. It should be noted that it is necessary to test a
true condition to be able to set a local condition. The external (EXT) condition
bit is completely controlled by the external interface and usually the OR of the
interrupts from several devices gated by their respective device addresses or
it can be used for timing purposes. The four adder conditions (LST, MST, ABT,
AOV) indicate the result from the last logic unit instruction. These conditions are
not reset by testing and are sustained until execution of another logic unit
instruction.

Table 2 -2. Set and Reset of Conditions

Condition Set Reset

LCl Set LCl Reset by testing

LC2 Set LC2 Reset by testing

LC3 Set LC3 Reset by testing

EXT A level from external devices- Reset by testing
controlled by external inter face
(usually the OR of interrupts
from several devices)

First bit from adder (least ,,, LST '•'

significant bit true - bit 8=1

Last bit from adder (most ,,, MST ,,,

significant bit true - bit 1 =1

All bits true from adder ,,,
ABT ,,,

(bits 1 through 8 are all ones)

AOV Adder overflow true (This is ~:'

really the carry bit for the serial
adder; when eight bits of
information have been serially
added, it represents the over-
flow bit.)

~:'changed only by logic unit instructions.

2-13

2-14

A literal assignment instruction loading the B register or AMPCR may change the
value of an adder input, but this will not change the value of any of these conditions.
Several logic unit operations have unusual side effects on these adder conditions,
as explained in greater detail in "Logic Unit Instruction. "

Successors

The two successors (true - bits 6, 7 and false - bits 8, 9) must be explicitly
selected to determine the next instruction to be executed. Uncondition successors
must have the same successor selected in both true and false field. The
choices for each successor are (Table 2-3):

STEP Step to the next ins true tion in sequence from MPCR.

SKIP Skip to the second next instruction in sequence from MPCR.

SAVE Step and save current MPCR address +1 in AMPCR.

JUMP Transfer control to AMPCR address.

All other microinstructions have an implicit successor of STEP.

Table 2-3. Microprogram Memory Addressfog

Next Next Content Next Content
Sucessor Instruction of of
Command Address MPCR AMPCR

STEP MPCR+l MPCR+l ~:::: ~::::

SKIP MPCR+2 MPCR+2 ~:::: ~::::

SAVE MPCR+l MPCR+l MPCR+l

JUMP AMPCR AMPCR ~:::: >::::

............

-.--.-Not changed by successor specification

Logic Unit Instruction

Format

1 2 I 3 4 5 61 7 a 9 10 11 12 I
x OP and Y Destination
~'----y--/

I ._I -------Destination

Operation and Y Select>:~

0000
0001
oo 1 o>:~
0011>:~

0100
0101
0110
n11
1000
1001
1010::,
1011::,

1100
1101
1110
1111

X Select

00
01
10
11

,,_
,,,

0
Al
A2
A3

0000
X+B+l 0001
X+B 0010
X+Z+l 0011
X+Z 0100
X EQV B (XB v XB) 0101
x XOR B (XE v XE) OHO
X-B (X+B+l) 0111
X-B-1 (X+B) 1000 ii
X NOR B (Xv B) 1001 II
X NAN B (XB) 1010 II
x NOH z (X ___ v "z) 1011 II

X NANZ (XZ) 1100 tlll
XOR B (X v B) 1101 1111
X AND B (XB) 1110 II#
X RIM B (Xv B) 1111 ##
X NIM B (XB)

Command Code

B
Al
A2
A3
OUT 0
OUT 1
OUT 2
OUT 3, AMPCR
B, BEX
Al, BEX
1\2, BEX
1\:3, BEX
B s
Al, s
A2, s
A3, s

Z = AMPCR. When AMPCR is.not selected as a destination, the AMPCR will be
"zero" (i.e., Z = 0) in all operations as a Y select input .

....... .. 1 ...
"f"

Y select '=' B or Z as indicated

#"BEX" indicates serial transfer from an external register to B register via D. I.
while adder transfers to other specified register (if B, then two inputs are ORed).

"S" indicates a one-bit right shift of the destination register end off, with the
MSB bei.ng filled by the adder output.

2-15

2-16

Definition of Logic Unit Instruction

The logic unit instruction specifies the adder inputs, the operation and the
destination specifications for the adder. The X select to the input. of the adder
is either zero or one of the three A registers (specified by bits 1, 2). The opera-·
tion and X-~-~_lect to the input ·of the adder are specified by bits 3, 4, 5, 6 and
include boffi"arithmetic and logic operations on both the AMPCR and B register
as indicated. The destinations of the adder output as shown are specified by
bits 7, 8, 9, 10. The output of the adder can go to B, Al, A2, A3 or AMPCR.'
The adder output always goes ungated to the external interface, when a logic
operation is selected, but if OUTO, OUT!, OUT2 or OUT3 is selected as a
destination, then a special 4-bit code is generated on the external control lines
(as explained in "External Interface') to enable gating from the adder to a specific
external register. Note, if any of the "BEX" destinations are selected, a 2-bit
BEX code is sent out on the external control lines enabling an 8-bit serial transfer
from the external DATA IN register to the B register to take place in parallel
with the adder output into the specified register (i.e., Al, A2, A3, B). If the
destination register is "B, BEX", then an OR of the adder output and the external
input is performed. Normally. the adder output in this case would be set to
transfer zeroes from the adder, thereby allowing a simple external load of the
B register. It should be_n_Q.~~_g_that.Jhe._use ... oCOU.'r.3 ... ~.iU.J\lt.e_r..J.he AMECR
and an AMPC . .R ... 4.~s_tJ_~~J~o.n .. is .the .. E;~.m~ ... i:l:s .. OU.T.3. As noted by '~:~". if the
AMPCR is not selected as the destination register, then the four operations
using AMPCR as a Y select will have "zero" for a Y input. This means
operations using AMPCR as a Y select can only be transferred back to AMPCR.

· Through the use of this feature 0, not 0, X and not X can be transferred to any
destination register except the AMPCR. -- ··

The destinations with the "S" for SHIFT allow the destinations to be shifted right
by one bit, and the most significant bit is supplied by the adder operating
on the least significant bit of the X and Y selected operands. It should be noted,
that the adder operation is performed on all eight bits of the input operands, and
the adder condition bits (LST, MST, ABT, AOV) are set accordingly.

If one wishes to perform a right shift (end off) of one bit on the B destination,
then select (X=:O, X+Z, B, S) for the instruction.

If one wishes to perform a circular shift of one bit on the B destination, then
select (X=O, X+B, B , S) for the instruction. The primary purpose of the shift
of the destination is to achieve right and circular shifts on Al, A2, A3 and B,
but all other allowed functions are valid into the destination's MSB. It is also
interesting to observe, if (X=Al, X+B, Al , S) instruction is used, that the
addition takes place on the bit 8 of both A and B, and the resulting bit is placed
into bit 1 (MSB) of Al. Thereafter, bit & (LSB+l) of Al is added to all bits of
B, and the side effects on the adder condition bits result accordingly. The last
interesting side effect of a serial implementation of the adder is that the adder
overflow (AOV) condition is really the initial and intermediate carry flip-flop
for the serial adder. As such, whenever a +l operation is called for, the initial
carry is set. In fact, the initial carry is set whenever bit 6 of the OP-Y select
field is zero. However, the initial carry flip-flop is enabled for intermediate

carries only on arithmetic functions. For example, on XOR B operation, bit 6 is
zero, therefore AOV is set and remains set until a subsequent logic unit operation
changes it.

External Instruction

Format

1 2 3 4 5 6 7 8 9 10 11 12

Literal & Device 0 0 1 1

The external instruction, also called a DEV instruction, takes the first eight bits
of the word and sends them serially out on the DO line (bit 8 first}. This
instruction has only the use that the programmer and DDP designer give it with
respect to outside devices.

The coding of the function specified by the literal to the device on the outside, and
the design of that device's hardware should be done in parallel in order to minimize
the hardware expense and maximize program efficiency. ·

TIMING IN THE MrNI-D

Timing in the Mini-D is controlled by a clock external to the Mini-D itself. The
instruction time is eight clock pulses at the end of which the Mini-D produces the
LP signal and then waits for an MCC pulse to begin the next instruction in the MIG.
As shown in Figure 2-7, the MCC is synchronized in the 10th clock pulse. The
waiting time between instructions is for memory cycling and instruction decoding.

The user has the option of using the clock supplied with the MIG or supplying his
own. The 10-MHz clock supplied makes the basic instruction time 800 ns plus 200 ns
for memory cycle and instruction decoding. By reversing an adapter on UB-1, the
basic instruction time is increased to 8 µs plus 2 µsallowed for memory cycle and
instruction coding. (See Figure 2-6). This is done by selecting either the output
of the 10 NIHz clock oscillator or the output of a divide by ten counter. The load
mode requires that the instruction time plus memory cycle time total 9 µs; due to the
real-time bootstrap program that is used to load fr.jm the teletype. This 9-µs total
instruction time is automatically selected when the load switch is flipped to the load
position. The M.IG's clock system also provides fae MCC pulse used to start the
instruction.

2-17

ROTATE THIS PLUG FOR r 1 MHz OPERATION.

rn 1

Figure 2-7. Timing in the Mini-D

POSITION FOR
EXTERNAL CLOCKING

3. OPERATION AND USE

The Burroughs Microprocess9r Machine Image Generator is a laboratory instru
ment which aids in the design of device dependent I/ 0 ports· (DDP's) and for the
debugging of microcode. With this in mind, provision has been made for easy
connection with other devices and for testing DDP's in the MIG itself. All
functions are controlled from the front panel and all connections are made at the
rear or through a cutout in the back of the cabinet.

FRONT PANEL

The Front Control Panel has four switches and 20 indicator lights. The two toggle
switches are the RUN/STEP switch and the LOAD/RUN switch. Two pushbutton
switches are START and CLEAR.

Switch

RUN/STEP

LOAD/RUN

Function

In the run 'position the microprocessor runs under clock
control. In the step position a single instruction is executed
every time the START button is pressed.

In the LOAD position the microprocessor is under the control
of the bootstrap program and will load the R/W memory
from the te1etypewriter. In the RUN position,. the micro
processor is under program control. In transition to the
LOAD mode the machine will halt.

3-1

3-2

Switch

START

CLEAR

Function

With RUN /STEP in the step position this
button is used to cause the execution of a
single instruction. If R/S is in the RUN po
sition it causes a resumption of processing
after a halt.

In any mode causes the processor to halt and
clears MPCR to zero.

NOTE: Since RUN/STEP and START are functionally part of the clock system
they function only when the· Mini-D runs on its internal clock.

There are two rows of lights that display information to the user. The top row
is the bit configuration of the micromemory word to be executed next (i.e. at
location specified in MPCR). The bottom row is the address of that word.

THE REAR PANEL

The rear panel of the MIG is designed to provide flexibility in connecting devices
to the MIG. Eight Cinch-Jones 25-pin sockets are on the right of the panel (rear
view). On the right is the power switch and 110-VAC power cord. At the bottom
are (from left to right) a fuse (3A), the fused +5V terminal, a ground connection,
a phone jack for teletype connection, and a chassis ground. Top-center is an
insulated slot.

The eight Cinch-Jones 25-pin connectors and the insu~ated slot are for connecting
from the MIG to other devices. The slot is to allow easy access with flat ribbon
cables with D. I. L. plugs to the U. B's. The Cinch-Jones connectors allow
for a more rugged connection.

Power can be drawn from the MIG at the +5V connector, fused at 3A. Two ground
connections are also on the rear. One is paired with the +5V for power; the
other is a chassis ground terminal. Both connections can be used as a scope
ground.

THE UTILITY BOARDS

Two utility boards are supplied win. each MIG for use in building DDP's.
Burroughs recommends the use of the 14 XA2 Gardner-Denver wire-wrap tool
with the 506445 bit and 500350 sleeve and a 26-gauge wire.

About one and three quarters of a board is available for use, including about
80 I. C. chip positions. One board is partially populated wit~ the clock, and
power connections. It is suggested that the user build his DDP's on these cards
and connect outside devices via the eight Cinch-Jones connectors and/ or flat
ribbon cables.

POSSIBLE MIG CONFIGURATIONS AND USES

The Burroughs Microprocessor Machine Image Generator is designed to be
as flexible as possible in application to a given design problem. The MIG
includes a clock oscillator and timing circuit and a power supply, both of which
can be used for outside devices. However, after DDP's have been developed
it would be desirable to use the microprocessor in the final configuration.
Toward this end the MIG has been designed so that the microprocessor can be
easily disconnected from everything internal to the MIG but power (since removal
of power alters the memory).

LOADING

The Burroughs Microprocessor MIG is equipped with a bootstrap loader program
that is contained in a 32-word X 12-bit read only memory. The m.icrgp_~ .. ~£.~§.§_or:
immediately switches to the bootstrapwhen the RUN/LOAD switch is changed to

theLOA.IS-"posTHon:""···The"bootstrap program as shown in Table 3 .:.1 is a real-time
.#~program designed to load the first fou~. bits after the start space of a teletype
or equivalent device. Such a deviCe must have a 110 bits/sec. send rate as per
Model 33 teletypewriter.

LoadinG Procedure

The MIG loads hexadecimal characters one at a time. After every sixth charac
ter is presented to the Mini-D, the memory is loaded at the address specified by
the first two characters, and the instruction loaded is contained in the next three
characters. The sj.xth pharacter. 'b_Period (or other convenient separator), is not
loaded but is necessary. The character set used is given in Table 3-2.

ill order to load, the TTY must be plugged into the jack in the rear of the MIG
marked "TTY" and turned on. Then switch the RUN/LOAD control to the LOAD
position and hit CLEAR then START. If the teletype is correctly installed the
MIG will loop in address locations 04, 05, and 06. To load from paper tape or
the keyboard the MIG must be preset by loading spaces or zeros, or holding
BREAK key down until the MIG hangs up in address lE. By hitting CLEAR and
then START the MIG is ready to load. It is important that the first character
read is the first character of the first instruction; i.e., no preceeding blanks.

Since no accommodations have been made to ignore carriage return and line feed
as characters, this must be handled in a special way. This is done by preceding
a carriage return by an unused address and the hit carriage retqrn three times
and then L. F. For example, the address / / (HEX FF or 255) could be used.
When the last address has been loaded, depress CLEAR, switch to RUN and the
MIG is ready to run. To run hit START.

3-3

ADDRESS

00
01
02
03
04
05
06
07
08
09
OA
OB
oc
OD
OE
OF
10
11
12
13
·14
15
16

! .17
i8
19
lA
lB
lC
lD

~lE
lF

3-4

Table 3-1. Microprocessor Bootstrap Loader Program

NANO-WORD

000
OCD
9FF
C4B
F2D
005
3E7
485
1A7
C8D
CCB
E65
637
079
OC5
827
20B
FOl 1/~
7A7 r

0.2.Q .. ,/
Ucp)
··707
3FB
C4D
337
8Dl
D8F
OCD
8D5
7E7
187
000

0 =: AMPCR
0 =: A3

INSTRUCTION

IF LCl THEN SAVE ELSE SAVE
4/3B =: B
A3 OR B =: A3, BEX
B + 1 =:Al
IF AOV THEN SAVE ELSE JUMP
A 1 + 1 =: A 1 --·· ·;
IF MST ELSE JUMP. 1

A3 + 1 =: A3
4/33 =: B
A3 NAN B =: Al, BEX

J >

IF ABT THEN SET LC 1 ELSE SKIP
B =: A2, S
0 =:Al
IF LCl THEN SET LCl ELSE JUMP
4/DF =: B
A3 ORB=: B
IF ABT ELSE JUMP
4/02 =: AMPCR
IF LC3 THEN SKIP
IF ABT THEN SET LC3 JUMP ELSE JUMP
4/CO =: B
A3 + B =: A3
IF AOV THEN SET LC3 ELSE SKIP
A2 =: OUTO
IF LC3 THEN JUMP
0 =: A3
A2 =: OUTl
IF ABT THEN SA VE ELSE JUMP
JUMP
0 =: AMPCR

COMMENT

o/o CLEAR REGISTER
o/o RESET LCl, START LOOP

o/o SENSE START BIT

o/o TIME OUT 1/4 BIT-TIME

o/o COUNT TO BIT CENTER

o/o COUNT FOUR BITS

o/o CHAR. FIRST FOUR BITS

°lo COUNT SIX CHARACTERS

°lo LOAD 2 CHARACTERS

°lo LOAD 2 CHAR AND WRITE

Table 3-2. MIG Loader Character Set

Binary Hexadecimal Character Bit Assignment

0000 0 0 011 0000

0001 1 1 011 0001

0010 2 2 011 0010

0011 3 3 011 0011

0100 4 4 011 0100

0101 5 5 011 0101

0110 6 6 011 0110

0111 7 7 011 0111

1000 8 8 011 1000

1001 9 9 011 1001

1010 A- J 100 1010

1011 B K 100 1011

1100 c L 100 1100

1101 D M 100 1101

1110 E N 100 1110

1111 F I (slash) 010 1111

Delimiter . (periold) 010 1110
l l

RUNNING

When running it may be convenient to use a single instruction mode for
debugging purposes. With the STEP/RUN switch in the STEP position the
START button will initiate a single instruction every time it is depressed.
The control lights indicate the instruction that will be executed when the
ST ART button is depressed.

3-5

4. PROGRAMMING

To facilitate the microprocessor programming, Burroughs has developed an
assembler. The source programs are compiled on the B 3500 computer and a
listing and a teletype tape are. produced as output. The contents of the tape can
then be loaded into the microprocessor via the tape reader on the teletype.

The language used to program the MINI-D (MINI-X) has used ALGOL as a
model. Unlike ALGOL almost all of the language is composed of reserved
words, however, since the system designer must have complete control of
all the Interpreter functions. Reserved words have very specific meaning to
MINIX and cause specific microinstructions to l_:>e developed.

LANGUAGE DESCRIPTION CONVENTIONS

Backus-Naur form (BNF) is used as the metalanguage to define the syntax of
MINIX. The following BNF symbols are used:

1. < > Left and Right Broken Brackets are used to bracket the
names of syntactic categories.

2. : : = Colon Colon Equal means "is defined as" and separates the
name of the syntactic category from its ·definition.

3. I
4. {}

5.

Bar separates alternative definitions of a syntactic category.

Left and Right Braces enclose an English language
description of a syntactic unit.

Juxtaposition of metalanguage symbols, symbols, or
reserved words is used to indicate concatenation.

4-1

4-2

Any character or symbol in a metalanguage formula which is not a metalan
guage symbol and is not enclosed within matching braces or broken brackets,
denotes itself.

In addition, to express the language syntactically, this manual will use a modified
COBOL normal notation. The square brackets, [J mean what is contained within
is optional. The parentheses, (), mean one may pick one of the functions inside.

In the BNF terminology, the basic elements of TRANSLANG are as follows:

Letter ::= IAIBlclnlEIFIGiHIIIJIKILIMINlolPIQI

. RI s IT I u Iv I w Ix I YI z I

This would be written in English something like "An element of the syntactic
category of letters is either A or B or C:

Digit : : = 0 11 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9

< Hex Digit > .. < Digit > A I B I c I D IE I F

<Symbol> ::= I I; I+ 1-1: l=I %1 11 1 (l>I':~

< Single Space? ::= {one horizontal blank position}

< Space > : := < Single Space > I < Space > < Single Space >

Note: "a space is any number of continuous single spaces."

< Assignment Op > ..

< Character> : := < Letter > I < Digit > I < Single Space > I < Symbol >

< Comment Character > : := < Character > I . I # I & 1 $ I [1J I/ I\

<Empty> ::= {The null string of characters}

< Comment> ::= {Any sequence of < Comment chara.cters >

except ; } ;

vecause the semi-colon is the comment delimiter.

SEMANTICS

MINIX uses a character set of 56 characters including< Single space > of which
8 are only used in comments. All letters are upper case. ·

Space -.- No space may appear between the letters of a reserved word or within
an < Assignment Op >; otherwise,, they will be interpreted as two or more ele
elements. Spaces are used as a delimiter to separate reserved words,, labels,,
or integers. Spaces may appear between any two basic components without
affecting their meaning,, where basic components indicate words,, symbols,, or
labels.

Parenthese - The parentheses are treated as spaces. They are used for the
convenience of the microprogrammer to make code more readable. (e.g.,,
instruction elements which are irrelevant to the current instruction but are
used only to allow shared use of a nanoinstruction by several M-instructions.)
Parentheses do_ not imply precedence.

Comments - In order to include explanatory material at various points in a
program,, two conventions exist as defined:

1. COMMENT {Any sequence of comment characters except; } ;
The comment statement acts the same as a semi-colon and may
appear anywhere a semi-colon may occur if within a line of
program. As multi-line documentation the semi-colon ter
minator indicates that the microtranslator should resume pro
cessing code. Always follow a comment statement with a
semi-colon.

2. % { any sequence of comment characters until the end of line}
All comment characters after the % in a line of program are
ignored by the microtransla tor.

Comments are for documentation purposes only. They appear only in the source
file, are significant only in listings and do not affect the machine language
generated.

The following printing characters are used for control purposes and should not
be used in comments.

< > ? ! +--

This control character is equivalent to the end of a card if card input is used
to build a source file. It is not part of the character set processed by the
microtranslator.

MINIX - TRANSLATOR

The translator for the Mini-D Interpreter is a one for one translation between
source code and object code. Within the translator are five (5) classes of

4-3

4-4

source statements expressed in a COBOL/ALGOL type syntax. These are:

1. PSEUDO statements

2. Literal Assignment Statements

3. Conditional Test Statements

4. Logic Unit Statements

5. External Service Statements

PSEUDO INSTRUCTIONS

This class of instructions provides for program identification, starting address
assignments, comments, and the termination of the program being assembled.

Syntax

Column 8

PROGRAM PROGRAM NAME (20 Characters maximum).

ADR 4/xx

END

COMMENT (comments (any characters except ;) ;

Semantics

The statements defines four (4) pseudoinstructions. These instructions emit no
microinstructions but are used purely to control the MINIX assembler and provide
a few convenience features to the microprogrammer. Specifics on each
pseudoinstruction are as follows:

PROGRAM - This instruction designates the name to be carried with the program
throughout the assembly process. This must be the first card of the MINIX
Translator.

ADR - This instruction provides the hexadecimal address where the programmer
wishes the program to start in micromemory. 4/xx indicates that ·the hexadecimal
address follows and xx are two hexadecimal characters. This card should be the
second card in the MINIX program deck. If the card is omitted, MINIX will assign
a starting address of HEX (00).

COMMENT. The comment card is transferred with the source code and is for
notation within program at listing time. It must end with a semi-colon.

END. This instruction terminates the program. A file containing a source pro.;.
gram must have a file name of 20 or less alphanumeric characters. Each record
on this file contains 72 data characters (+8 for sequence numbers ignored by the
microtranslator). One line of source program is written per record.

The first record is the program name. It contains the program internal name
for the microprogram. The program internal name should be the saem as the
file name. Only the file name has any external significance. A non empty start
address becomes a hexadecimal absolute microprogram address.

The body of a program contains one or more lines. Following the body is the
end line containing END. Each successive line containing an instruction normally
becomes the next microaddress. Addresses increase strictly through a program.
A start address less than the assembler's next address in the program sequence
causes an error.

MICROINSTRUCTIONS

As mentioned, there are four major types of microinstructions for the micro
processor.

Syntax

[Label:]

Examples

(

Literal Assignment Instruction)
Condition Test Instruction
Logic Unit Instruction
External Instruction

255 =: AMPCR % LITERAL TYPE

IF AOX THEN SKIP ELSE STEP % CONDITION TYPE

(%Comment]

LOOP: Al + B =: A2 % LOGIC TYPE WITH LABEL

Al NOR B =: B

127 =:DEV % EXTERNAL TYPE

4-5

4-6

Semantics

There is a restriction of one instruction per input record. Each instruction,
however, can contain a comment filling out the remainder of the record and
any instruction can be labeled. The label notes to the assembler the address
of this instruction in microprogram memory and can therefore be used in the
literal assignment statement. For loading Jump addresses a labei must start
with a letter which can be followed by any combination of letters or digits.
No spaces or symbols may appear in a label. A label used in a program may
be chosen freely except for the reserved words.

A label can be as little as one letter and as long as 15 letters and digits. The
same label may not be used to locate more than one instruction in the same
program.

Literal Assignment Instructions

This class of instructions allows specifications of varied source statements to
be translated into 8 bits, which is subsequently transferred to the B register,
or AMPCR at execution time in the MINI-D.

Syntax

Literal =: B

Literal =: AMPCR

GOTO Literal

where the literal definition is

[coMPJ
[-] (

DECIMAL INTEGER\

4/xx }

{{[Label]))
\\ [*] [±Integer]

That is there are two main options, namely

(
(Comp]) (Decimal Integer)

[-] 4/xx

and

(([Label])

\\[*]
[±Integer])

The first of these says a literal can either be a decimal Integer or a hex address

For example:

Decimal Integer

255 =: AMPCR

Hexedecimal Integer

4/lF =: B

In addition, COMP defines Ones complement be performed and "-" defines
Twos complement be perform.ed. For example:

COMP 255 =: AMPCR % ZERO JNTO AMPCR

COMP 10 B o/o 11 s COMPLEMENT

-10 B % 2 1s COMPLEMENT

The second of the main options indicates that a literal may be defined as a label
alone, asterisk alone, label ± Integer or Asterisk ±Integer.

For example:

LOOP =: AMPCR % LABEL

~:::: =: B % INSTRUCTION ADDRESS TO B

~:< +2 =: B % PRESENT ADDRESS +2 TO B

Semantics

The Literal Assignment Instruction is used for: (1) loading jump and return
addresses into the registers, (2) constants for loop control, (3) loading char
acter codes for comparisons, (4) loading constants for general use.

The Label internal to the Literal Assignment Instruction is a program point
or a label defined under the Pseudo Instruction.

4-7

4-8

The asterisk indicates assigning this program address (where the assembler is)
to the 8-bit Literal field.

± Integer is used with the LABEL or * designation which causes the address to
be incremented or decremented by the Integer.

The Decimal Integer is a decimal number to be converted and placed in the 8-bit
literal field of the instruction. Thus, the integer number is restricted to 0 through
255. All codes that do not fill the entire eight bits will be generated right
justified. These constants are restricted by hardware to being loaded into the
AMPCR or the B register. Note: When loading a literal into the B register the
value specified is the value loaded.

4/-X:X. represents a hexadecimal specification of the 2 characters to be inserted
in the Literal Field of the instruction.

Condition Test Instructions

This class of instructions allows for the programmatic testing of eight (8)
conditions, the setting of conditions, and the selection of true or false selectors.

Syntax

where

(

Successor

IF Condition

Condition

.LST

MST

AOV

ABT

EXT

LCl

LC2

[IF Condition]

[THEN] [SET Op] True Succ LELSE False Succ~
Successor Set Op

STEP SET LCl

SKIP SET LC2

SAVE SET LC3

JUMP

Specifies on CONDITION TEST INSTRUCTIONS are as follows:

Successor

This conditional test instruction will set up a conditional test on the MST condition
and in the micro code will assign the successor in both the true /false successor
positions.

Examples:

STEP

SKIP

SAVE

JUMP

Successor IF Condition

This conditional test instruction allows the determined successor to be
indentified as the true successor with an implied false successor of STEP,
based on a conditional test. The s)rntax is shown below:

LST
STEP

MST
SKIP

IF AOV
SAVE

ABT
JUMP EXT

LCl

LC2

LC3

Some examples are:

JUMP IF LC2 % JUMP AND RESET LC2

SKIP IF ABT % IF ALL BITS TRUE, SKIP ELSE STEP

4-9

IF Condition THEN Successor

This conditional test instruction allows the testing of a condition with the true
and false succe.ssors specified on the outcome of the test. The syntax is:

LST STEP
MST. STEP

SKIP
AOV

SKIP
ABT SAVE

IF THEN
SAVE ELSE

EXT JUMP

LCl JUMP

LC2

LC3

In cases where ELSE False-succ is omitted STEP will be implied and will be
inserted in the microinstruction. Some examples are:

IF LC2 % RESET LC2, IMPLIES STEP

IF ABT THEN JUMP ELSE STEP % CONDITION BRANCH TRUE

IF ABT THEN STEP ELSE JUMP % CONDITION BRANCH FALSE

IF ABT THEN SKIP % IMPLIED ELSE STEP

IF Condition THEN Set

This conditional test instruction allows the testing of a condition, the setting
of a local condition, and the selection of the true and false successors. The
syntax is:

LST

MST

AOV

IF ABT

EXT

LCl

LC2

LC3

Condition

4-10

THEN
(

SET LCl)
SET LC2

SET LC3

Optional
Set Op

STEP

SKIP ELSE

SAVE

True
Successor

STEP

SKIP

SAVE

JUMP

False
Successor

Some examples are:

IF ABT THEN SET LCl STEP ELSE SKIP

IF AOV THEN SET LC2 ELSE STEP

The Condition Test Instructions are used for one or a combination of the following
purposes: conditional or unconditional transfer of control, and setting and/or_
resetting local condition bits. The eight conditions consist of four adder conditions
(least bit - LST, most bit -, MSR, overflow - AOV, all bits true - ABT), an
external condition (EXT) and three local c'onditions (LCl, LC2, LC3). Note:
setting of a local condition is possible only if a condition test is true.

The condition instruction specifies a true and false successor explicitly or im
plicitly, indicating the control to be used for the next instruction selection. A
successor of the unconditional type results in both successors being identical.
Otherwise, one or two successors may appear in the conditional type. The four
choices for each successor are:

STEP

SKIP

SAVE

JUMP

Step to the next instruction

Skip to the second next instruction

Step and save present addresses
+1 in AMPCR

Transfer control to AMPCR address

Ar..y successor not explicitly stated in STEP by default. All other micro
instructions have an implicit successor of STEP. Note the AMPCR normally
contains the address of an alternative instruction.

Logic Unit Instructions

This class of statements allows for the performance of adder and logical
operations. Within this class are 4 groups: Shifts, Adder 1 OP' s, Adder
2 OP's, and Adder 3 OP's.

4-11

4-12

Syntax

(X S~ect) (Shift)

(Adder) =: (<Destination)
Op 1 AMPCR

(Adder) =: AMPCR
Op 2

(~d;r) =: Destination

Specifics on Logic Unit Instructions are as follows:

Shift

This Logic Unit Instruction will allow the selected register to be shifted right
(R), or right circular (C). The syntax is:

Some examples are:

Al R

B C

Adder Op 1

(Register)

Al
A2
A3
B

(Shift)

R
c

% RIGHT SHIFT 1 BIT, 0 FILL

% CIRCULAR SHIFT 1 BIT

This Logic Unit Inf?truction has a select constant of B, and destinations allowed
are all registers and the AMPCR. The syntax is:

X+B

B

X + B + 1

B + 1

=:

Al

A2

A3

(
Destination)

AMPCR

[BEX]

[s]

X-B AMPCR

- B OUT 0

X--- B - 1 OUTl

XNOR B OUT2

XNIM B OUT 3

XAND B

XNOR B

XEQV B

XNAN B

XOR B

X RIM B

NOT B

NOT 0

0

where X = (O or Al or A2 or A3)

and where Operation

NOR

NIM

AND

XOR

EQV

NAN

OR

RIM

Some examples are:

Al + B =: AMPCR

B =: AMPCR

Al EQV B =: B

NOT B =: B

Definition

X'VB

XB

XB

XBvXB

XBvXB

XB

XvB

XvB

% LOAD AMPCR

% LOAD AMPCR

% EQUIVALENCE

-1

% l 1s COMPLEMENT B

NOT 0

4-13

4-14

Adder OP 2

This Logic Unit Instruction has a Y select constant of AMPCR, and the destination
is restricted to AMPCR. The syntax is:

Some examples are:

(Adder OP 2)

X +AMPCR

AMPCR

X + AMPCR + 1

AMPCR + 1

XNORAMPCR

XNAN AMPCR

NOT AMPCR

AMPCR + 1 =: AMPCR

Al + AMPCR =: AMPCR

Adder OP 3

=: AMPCR

% AMPCR CAN ONLY BE

% TRANSFERRED INTO AMPCR

The Logic Unit Instruction has an X designation with no Y selection and a
destination of everyone but AMPCR. The syntax is:

(Adder OP 3) =: (Destina ti on) (Option)

x Al BEX

x + 1 A2 s
NOT X A3

1 B

OUTO

OU Tl

OUT2

OUT3

Where X =(Al or A2 or A3 or 0)

Some examples are:

A 1 =: A2 BEX % ADDER TO A2, EXTERNAL TO B

0 =· B BEX % EXTERNAL TO B

A 1 =· OUT 1 % Al TO EXTERNAL OUT 1

The logic operations include the selection of adder inputs, the adder operation,
and the destination specifications for the adder. There are three A registers
(A 1, A2, A3) which may be used for data storage within an Interpreter. Any
one of the A registers may be selected to the Adder in the X select part of the
instruction. The B register is the primary interface for external inputs from
external data memory or devices.

The destination of adder OP 1 operations can be A 1, A2, A3 or B. The 8-bit
serial load of B register from external register via "BEX" command is possible
on these destinations. Other adder destinations are AMPCR or the external
output registers (OUTO, OU Tl~ OUT2, and OUT3) on the destination, then this
register is shifted one place to the right and the least significant bit is lost while
the most significant bit is loaded from the adder.

The adder 2 operator can be applied to any X select and the AMPCR. Note
if AMPCR is used as an operand, then AMPCR must be selected as the destination.
Therefore, AMPCR can not be transferred to anywhere except to the AMPCR.
The A MPCR and OUT3 are changed simultaneous when either is specified.

The adder OP3 acts on any X select and has a restriction of the AMPCR not being
selected as a destination. "NOT" select implies the 1 's complement of content
of the X select register. A shift right 11R" or circular "C" one bit can be applied
to A 1, A 2, A 3 and B registers. A shift right "R" implies a zero fill left most bit
(bit 1).

External Instructions

This class of instructions allows for the performance of operation outside the
Mini-D Machine and presently is structured as follows:

Literal =: DEV

Literal - As defined previously

SUMMARY

Figure 4-1 provides a summary of the various types of microinstructions while
figure 4-2 is a printout of the translator l9cations, codes and source statement.

4-15

MICROINSTRUCTION

(

LITERAL ASSIGNMENT INSTRUCTION)

[Label ;i CONDITION TEST INSTRUCTION r 010 Commen·'
:..J LOGIC UNIT INSTRUCTION Lie u

EXTERNAL INSTRUCTION

NOTES : ** Indicates Zero or More Repetitions

() Indicates a Choice

[J Indicates Optionally Present

LITERAL ASSIGNMENT INSTRUCTION Litera I PSEUDO INSTRUCTIONS

(

Litera I :: B ~
Literal :: AMPCR

GOTO Literal

Letter

CONDITIONAL TEST INSTRUCTION

Lobel

()
** Digit

Letter

(
[COMP])
[- J

(La~el) [± Integer]
Decimal Integer
1 / BINARY
3/ OCTAL
4/ HEX
B/ BCL
A/ ASCII
E/ EBCDIC

~ Successors

LST STEP

(

Successor [; If Condition [Then Set Op]])

If Condition [Then ([Set Op;] True Successor) [Else False Successor]]
Set Op [iTrue Successa]

MST
AOV
ABT
EXT

SKIP
SAVE
JUMP

Set Op.

LOGIC UNIT INSTRUCTION

I

(~ Select) (Shift)

(
Adder) -· [Destination J
Op 1 -· AMPCR[,OUT31J

(~~d:r) :: (AMPCR [,ounJ)

(Adder) [D . . J Op 3 =~ estinot1on

EXTERNAL INSTRUCTION
{Literal=: DEV)

x Select

0
At
A2
A3

LCt
LC2 SET LC1
LC3 SET LC2

SET LC3

Shift
Adder Op 1

y = B

R x+ y
c y

x + y + 1
y + t

x-y
- y

x - y -1
-1

x NOR y
x NIM y
x AND y
x XOR y
x EQV y
x NAN y
x OR y
x RIM y

NOT y

(
PROGRAM Program Name)

[LabelQ INSERT File Name

ADR Hex Address

END

Lobel * (Decimo I Integer)
4/ HEX

COMMENT Comment ;

NUMERIC COMPARE OPERATIONS AFTER SUCCESSORS
Logic Unit Test Test

Relation Instruction: True Folse MPCR AMPCR

x < y x - y AOV STEP +1 -
x ~ y x- y-1 AOV SKIP +2 -
x #= y x EQV y ABT SAVE + 1 MPCR+1
x =y x EQVy ABT JUMP AMP CR -
x ~ y x - y AOV
x > y x - y-1 AOV

Adder Op 2
Adder Op 3 y = AMPCR Destination Operation Definitions

x + y x C'fBEX]l NOR xvy

x + ~ + 1
x + 1 A2 [S] NIM x y
NOT x A3 AND x y

y + 1 1 B XOR x y v iy
x NOR y EQV x y v iy
x NAN y OUT 0 NAN Xy

NOT y OUT 1 OR x v y
NOT 0 OUT2 RIM xv y

0 -y y+1
x - y -1 x + y

-1 NOT 0

Figure 4-1. Summary of Microinstruction Types

MINI MIN I SOlJRCE STAT£ME.N1
L..OC CODE

00 PROGRA~ OA-lA cu~

01 A IJ H 4/01
01 FFB START: 4/00 =: 8
02 04-0 B ::. AJ
03 083 4/08 =• DEV
0 IJ E4F IF EXT THf:.N SET LCl SKIP ELSE STEP
05 042 GOTO- ••-1
06 BAf STEP IF LC2
Of OAF STEP IF LC3
Od OC2 GO T-0 I-NPUTl
09 083 INPUT s 4/08 =a DEV
OA FCF IF EXT THE I~ SK!P ELSE STEP
OH OA2 GOTO ·~1

QC 049 INPUT ta B :& A2
OD OE! 0 =• fl BEX
OE 1CF If" MST THEf'.l SK!P EL.SE STEP
OF 132 GOTO INPUT2
10 7FB 4180 : I B
11 055 & :J OU Tl
12 COH 4/3F =' 8
13 045 l~PUT21 B =a Al

% COMMENT SYNC: TO B
14 E9H 4116 =a 8
15 501 A 1 E Q V 8 = a B
16 787 IF AUT THEN STEP ELSE SI< IP
17 092 GOTO INPUT

% COt-if.iENT I:. UT TO B
18 FBB 4/04 =a 8
19 501 Al EQV B =a B
1A 7A7 IF ABT THE~ S Tt:.P ELSE SKIP
18 012 GOTO START
lC 000 4/00 -. -· AMPCR
10 801 A2 + AMPCR =• AMPCk
lE 9A7 ff LC1 THEN STEP ELSE JUMP
lF H3l IF LC2 THEN SET LC3 STEP ELSE SKIP
20 092 GOTO INPUT
21 OR7 ff LC3 THEN srl::P ELSE SKIP
22 342 GOTO GROUP

% COMMENT ADIJRE.SS 1 ro DEV
23 103 4 / 1 (J :I OEV
24 OEl 0 ;: i 8 REX
25 501 At F. Q V A =a B
26 6l7 If AtH THEN SE'T LCl STEP ELSE SKIP
27 018 AOR2 =: B
28 987 IF l. c 1 THEN STEP ELSE SKIP
2.-9 092 GOTO INPUT
2A 038 ROUTINE =r 8
28 092 GOTO INPUT
2C ca·s ROU T.l N E-t. GROUP ;: l 8

Figure 4-2. Translator Locations Codes and Source Statements

4-17

APPENDIX I

SUMMARY OF MICROINSTRUCTION CODES

1 l 2 J 3 l 4 l 5 l 6 I 7 l g 9 10

Literal From MEM-B 1 0

1 I 2 l 3 l 4 l 5 l 6 I 7 l 8 9 l 10

Literal Jump Address---. AMPCR Not Used

TO Literal Not Used

1 2 3 4 5 6 7 8 9 10

Literal -.. Dev 0 0

1 l 2 1 I a 1 9 1 10

X Select Operation and Y Select Destination Select

00
01
10
11

1 l

0
Al
A2
A3

2 l
Condition
Select

000 MST
001 AOV
010 LST
011 ABT
100 .LCl
101 LC2
110 LC3
111 --.""CT"P""Ji

i.:,,J. .. -

0000 X+B+l
0001 X+B
0010':' X+Z+l
0011':' X+Z
0100 X EQV B (Xi1 v XB)
0101 X XOH B (XU v XB)
0110 X-B (X+ii+l)
0111 X-B-1 (X+IT)
1000 X NOR B (:xv-il)
1001 X NAN B (XB)
1010':' X NOR Z(XV'Z)
1011':' X NANZ (XZ)
1100 XOR B (Xv B)
1101 X AND B (XB)
1110 x RIM B (X v B)
1111 X NIM B (XB)
,.,
'When Z is not selected
as destination, Z = O._L

3 4 l 5 6 I 7

Set True
Operation Successor

00 Set LCl 00 Jump
01 Set LC2 01 Step
1 oJ Set LC3 10 Skip
11 None 11 Save

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
10_10
1011
1100
1101
1110
1111

B
Al
A2
A3
OU'l'O, --
OU'l'l
OU'l'2
AMl'Clt,OUTJ

B, BEX
Al, BEX
A2, BEX
A3, BEX
B S
Al S
A2 S
A3 S

a I 9 10

False 1
Successor

00 Jump
01 Step
10 Skip

'11 Save

11 12

1 1

11 12

0 0

1 0

11 13
1.

11 12

0 1

11 12

1 1

LITERAL
INSTRUCTIONS

EXTERNAL
INSTRUCTION

LOGIC UNIT
INSTRUCTION

CONDITION TEST
INSTRUCTION

I-1

APPENDIX II

MINIX TRANS LA TOR ORGANIZATION

The Minix translator is a two pass sequence where pass one develops the symbol
table, and pass two produces the object code for each source statement.

PASS 1

Note

MINI "D"
Program
Source

SYMBOL
TABLE

IS CORE
RESIDENT

READ CARDS
BUILD
SYMBOL
TABLE

\
PROCESS SOURCE

BUILD OBJECT
CODE

MINI-D

LISTING

Intermediate
Source Program Storage

'Q-A-P-ER-TA_P_E_<:_

II-1

APPENDIX III

MINIX EXECUTION

The control card organization required for the B3500 system in executing MINIX
for a MINI-D translation is shown below.

l?END.

rEND

r SOURCE MINI STATEMENTS r ADR 4/ ()
_L PROGRAM (

{ ? DATA B MINIX

? CC EX MINIX

III-1

APPENDIX IV

MINIX INDICATOR LIST

IND Explanation

A Card must contain less than 50 items = item is a separation

between words "A" or special char

B WORD-ITEMS (Labels) are restricted to 20 characters.

C Card Interpreted as Blank

D Label was previously defined.

E Specification of location must have label.

F Invalid Constant Delimiters not .specified.

G Symbol table overflowed

H Invalid Condition Specified (LST MST Etc.)

I No true successor specified.

J Required word omitted "ELSE"

K No DCW DW DR Specification in Hex

L Logic Unit operations must start with Al, A2, A3, B, -,

NOT, 0, AMPCR, or 1.

M No logic Unit Separator or Selec't terminate X =

N Illogical Sequence B. AMPCR, 1 must be selected

0 Invalid Selection for ADDER 1 OP - B Required

P Logic & select must be B or AMPCR

IV-1

Q Illogical Operator OR, NOR, etc. ·

R Logic select off Y must be B Register

S Invalid select must be B Register

T Invalid NOT Select Parameter

U No dest selected

V Adder op 2 requires AMPCR

W AMPCR not allowed in ADDER OP 3.

X No condition specified after SET

Y No false successor Specified--warning Step implied.

Z Period delimiter omitted

0 Label not in symbol table

1 Incomplete instruction NO = :

IV-2

CLOCK IN

CLOCK OUT

MCC

DATA OUT
(Liter al to device)

DATA OUT
(B =: OUTl)

LAST PULSE

A

CLOCK OUT
(at port 3)

APPENDIX V

MINI-D AND PSU TIME DELAYS

I I
11

~~--+-~~,n~-::~~~~~~~~n,~~~
--i l----30ns

~~~~~~~~~~ :I 
I ~ ~Bon, I I 

~~~~,~/............__ 

I
--it30ns

I
~1
I

I
--l

I
l--50ns
I
I

I
~

V-1

Burroughs Corporation
Federal and Special Systems Group

Paoli, Pennsylvania 19301

Printed in U.S. America

