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ABSTRACT 

This P,aper describes a general purpose, microprogrammable, 
hardware building block called an Interpreter, an 
LSI-multiprocessing system in which the Interpreter is used, 
and a machine structure, implemented via firmware on the 
Interpreter. 

The Interpreter consists of five types of functional modules, 
each partitioned for eventual implementation with LSI arrays 
of 450-750 gates and less than 126 signal pins. One of these 
functional units is the writable microprogram memory, 
whose contents define the function of the Interpreter. The 
flexibility of the Interpreter is typified by its present use as a 
device controller, a stand-alone emulator of other machines, 
and as a multiprocessor. 

The Interpreter's main design concept allows functions 
formerly performed by software alone to be now performed 
by the emulating hardware. In this presentation an 
instruction set, which includes .those software functions 
frequently and consistently used in operating systems, is 
emulated. The order code will allow for easy table and list 
manipulation or handling since much of scheduling and 
resource handling is confined to such operations. 

The ability to write code independent of the data to be 
processed is provided by accessing information through 
descriptions. These descriptions can locate the requested 
information, describe its structure, impose controls on the 
use of the information and provide signals to the operating 
system for special functions. 

INTRODUCTION 

Presently, the trend in computer science is toward 
mu 1 ti processing systems which can increase processing 
efficiency, reliability and throughput. The control of 
multiprocessing is more complex than that of conventional 
systems. Methods of development of these systems have in 
the past been limited by the hardware upon which they are 
implemented. With the advent of microprogrammed 
computers, firmware can now be developed to emulate a 
machine structure which can handle control structures more 
efficie'n ti y. 

The concepts of microprogramming [ 1, 2, 3, 4], 
multiprocessing [5, 6, 7, 8] and avionics computers [9, 10] 
have been well covered. The purpose of this paper is to 
present, in Part I, a brief description of the Interpreter (a 
microprogrammable, hardware building block) and the 
Switch Interlock (a building block used to interconnect a 
configuration of Interpreters as a multiprocessor), and, in 
Part II, the description of an approach to writing an 
opera ting system for such a multiprocessor. 

PART I. INTERPRETER BASED SYSTEMS 

Interpreter-based systems emphasize two basic 
concepts: building block structure and soft machine 
architecture through microprouamminl!:. The 
microprogrammable builiding block structure was developed 
primarily due to the constraint of a design predicated upon 
eventual implementation of each functional unit with 
LSI. This constraint forced simplicity, modularity and 
versatility into the system. This gives a design usable in a 
wide range of applications, which is the only way to achieve a 
sufficient volume of parts to make LSI economically 
feasible. This resulted in a machine that is: · 

1 . microprogrammable, to avoid irregular control logic 
and to provide the versatility required, 

2. modular in 8-bits in the functional unit that 
performs the logic, arithmetic, and shifting in order 
to match the word length to the problem (important 
for emulation), and 

3. mod u 1 a r in the interconnection scheme for 
multi-Interpreter systems as the number of 
Interpreters, memories or devices or path width 
changes. 

These three characteristics provide the added benefit of 
decreasing design time by eliminating the need for new 
hardware developments for each new product. 

THE INTERPRETER 

Figure 1 is a summary diagram of an Interpreter. The five 
functional parts are tabulated below. 

MCU Memory Control Unit 

cu Control Unit 

LU Logic Unit 

MPM MicroProgram Memory 

NM Nano Memory 

Registers for mem­
ory addressing; 
expandable. 

Registers for con­
ditional control am' 
logic commands. 

Width 1 to 8 bytes; 
data registers, adder, 
shifter. 

Microprogram 
sequences: some 
words have literals, 
others have nano 
addresses. 

Specific controls for 
the first three units. 

This paper describes the results of effort supported, in part, by the Avionics Laboratory, Wright-Patterson AFB. Ohio, under Contract 
No. F33615-69-C-l 200 and Contract No. F33615-70-C-l 773. 
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Figure 1. Interpreter Block Diagram 

During the operation of the Interpreter, microprogram 
instructions and literals (data, jump addresses, shift amounts) 
are read out of the MPM. Data and jump addresses from the 
MPM are sent to the MCU, shift amounts, to the CU, and 
instructions are used as addresses for the NM. The output of 
the NM is a set of 56 controls which are transmitted to the 
C'U, MCU and LU. The addressing of the proper locations in 
the MPM is handled by the selection of one of two 
microprogram count registers in the MCU and sendmg the 
contents of the selected register plus zero, one or two as an 
address to the MPM. 

The LU performs the shifting and the arithmetic and logic 
functions required, as well as providing a set of scratch pad 
registers and the data interfaces to and from the Switch 
Interlock (SWI). Of primary importance 1s the modul_anty of 
the LU, providing expansion of the word kngth 111 8-b1t 
increments from 8 bits through 64 bits usmg the same 
functional unit. The CU contains a condition register, logic 
for testing the conditions, a shift amount register for 
controlling shift operations in the LU, and part of the control 
register used for storage of some of the control signals to be 
sent to the LU. The MCU provides addressing logic to the 
Switch Interlock for data accesses, controls for the selection 
of micro instructions, literal storage, and counter 
operation. This unit is also expandable when larger 
addressing capability is required. 
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Logic Unit (LU). 

A functional block diagram of the LU is shown in Figure 
I. The design of the LU is predicated upon implementation 
with one LSI silicon slice per 8 bits. 

All A registers are functionally identical. They temporarily 
store data within the Interpreter and serve as a primary input 
to the adder. Any of the A registers can be loaded with the 
output of the barrel switch in one clock time. Selection gates 
permit the contents of any A register to be used as one of the 
inputs to the adder. 

The B register is a primary external interface (from the 
Switch Interlock). It also serves as the second input to the 
adder, and can collect certain side effects of arithmetic 
operations. The B register may be loaded with any of the 
following (one per instruction): 

1. The barrel switch output 

' The adder output 

3. The data from the Switch Interlock 

4. The MIR output 

5. The carry complements of 4- or 8-bit groups with 
selected zeros (for use in decimal arithmetic or 
character processing) 

6. The barrel-switch output ORed with 2, 3, or 4 
above. 



The output of the B register has true/complement selection 
gates which are controlled in three separate sections: the 
most significant bit, the least significant bit, and all the 
remaining central bits. Each of these parts is controlled 
independently, and may be either all ZEROs, all ONEs, the 
true contents or the complement (ONEs complement) of the 
contents of the respective bits of the B register. 

The MIR buffers information being written to S memory or 
sent to a device. It is loaded from the barrel switch output 
and its output is sent to the Switch Interlock, or to the B 
register. 

The adder in the LU is a modified version of a 
straightforward carry lookahead adder such as that discussed 
by MacSorley [I I l and others. Therefore the details of its 
operation will not be included. 

Inputs to the adder are from selection gates which allow 
various combinations of the A, B, and Z inputs. The A input 
is from the A register output selection gates and the B input 
is from the B register true and complement selection 
gates. The Z input is an external input to the LU and can be: 

1. The output of the counter in the MCU into the most 
significant 8 bits with all other bits being ZEROs. 

2. The output of the literal register in the MCU into 
the least significant 8 bits with all other bits being 
ZEROs. 

3. An optional input (depending upon the word 
length) into the middle bytes (which only exists in 
Interpreters that have word lengths:;:,, 24 bits) with 
the most and least significant bytes being 
ZEROs. Usually this input will be the AMPCR. 

4. All ZEROs. 

MICRO 
PROGRAM 
MEMORY 

MPM 

(16 BITS) 

I 
M1crolnstruC1ions 
Type I Nano Addrl!Ss 

lnpul Cloer Control• fl>J': 
AMPCR/BR 1 IBR2/MARfCTR/SAR 

Using various combinations of inputs to the selection gates, 
any two of the three inputs can be added together, or can be 
added together with an additional ONE added to the least 
significant bit. Also, all binary Boolean operations between 
any two adder inputs can be done. 

The barrel switch is a matrix of gates that shifts a parallel 
input data word any number of places to the left or right, 
either end-off or end-around, in one clock time. 

The output of the barrel switch is sent to: 

I. A register 

2. B register 

3. Memory Information Register (MIR) 

4. Least significant 16 bits to MCU 

5. Least significant 3 to 6 bits to CU (depending on 
word length) 

Control Unit (CU). 

One CU is required for each Interpreter. The design of the 
CU is predicated upon implementation with one LSI silicon 
slice. This unit has five major sections: the shift amount 
register (SAR), the condition register (COND), part of the 
control register (CR), the MPM content decoding, and the 
clock control (Figure 2). 

The functions of the SAR and its associated logic are: 

I. To load shift amounts into the SAR to be used in 
the shifting operations. 
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2. To generate the required controls for the barrel 
switch to perform the shift operation indicated by 
the controls from the Nanomemory. 

3. To generate the "complement" of the SAR 
contents, where the "complement" is defined as the 
amount that will restore the bits of a word to their 
original position after an end-around shift of N 
followed by an end-around of the "complement" of 
N. 

The condition register section of the CU performs four major 
functions: 

I. Stores 12 resettable condition bits in the condition 
register. 

2. Selects 1 of 16 condition bits ( 12 from the register 
and 4 generated during the present clock time in the 
Logic Unit) for use in performing conditional 
operations. 

3. Decodes bits from the memory for resetting, setting 
or requesting the setting of certain bits in the 
condition register. 

4. Resolves priority between Interpreters in the setting 
of global condition (GC) bits. 

The 12 bits of the condition register are used as error 
indicators, interrupts, status indicators, and lockout 
indicators. 

The control register is a 36-bit register that stores all control 
signals from the Nanomemory that are used in the LU, CU, 
and MCU for controlling the execution phase of a 
microinstruction. 

The MPM content decoding determines the use of the MPM 
output (literal or address) based upon the first four bits of 
the MPM. Several decoding options are available. 

Memory Control Unit (MCU). 

One MCU is required for an Interpreter, but a second MCU 
may be added to provide additional memory addressing 
capability. The design of the MCU is predicated upon 
implementation with one LSI silicon slice. This unit has 
three major sections (shown in Figure 2): 

I. The microprogram address section contains the 
micoprogram count register, the alternate 
microprogram count register, the incrementer, the 
microprogram address controls register, and their 
associated control logic. This section is used to 
address the MPM for the sequencing of the 
microinstructions. 

2. The memor'y/device address section contains the 
memory address register, base registers one and two, 
the output selection gates, and the associated 
control logic. 

3. The Z register section contains registers which are 
the Z inputs to the LU adder: a loadable counter, 
the literal register, selection gates for the input to 
the memory address register and the loadable 
counter and their associated control logic. 

Nanomemory (NM). 

The Interpreter is controlled by the output of the 56-bit wide 
Nanomemory which may be implemented with a read/write 
memory, a read-only memory, wired logic or a combination 
of the three. In any case, it has a typical form factor of 64 
words by 56 bits, expandable in 64-word increments. 
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Each of the 56 bits represents a unique enable line to control 
the gates and flip-flops within the LU, CU, and MCU. Each 
Nanomemory word represents a specific microinstruction 
that is executed by the simultaneous presentation of a 
specific enable pattern for the 56 outputs represented by 
corresponding ONEs and ZEROs in its word. 

Theoretically, a Nanomemory could provide 256 (!Ol 7) 
different word or output combinations. This number of 
words in a Nanomemory is obviously impractical. Somewhat 
fewer instructions would be considered reasonable. In fact, a 
set of 5 I 2 words has been found to be more than adequate 
for most Interpreter characterizations. 

A unique feature of the Interpreter-Based System with its 
separate Nanomemory and Microprogram Memory is that the 
explicit enable lines for each microinstruction need be stored 
in the N memory only once, regardless of the number of 
times that a specific microinstruction is needed in a 
program. To accomplish this saving in memory, the 
Microprogram Memory contains not the full microinstruction 
needed, but rather the address in the Nanomemory where the 
explicit ONEs and ZEROs are stored that are needed to 
execute that instruction type. Thus, several microprogram 
sequences, each using the same microinstruction (e.g., 
transfer A to B) need only store in the Microprogram 
Memory the address of the Nanomemory word containing 
that operation. 

Microprogram Memory (MPM) 

Each I nte4'preter requires a source of microprogram 
instructions to define the operation of the Interpreter. To 
maintain the clock period of the Interpreter, this source must 
have a fast read access time and a cycle time less than the 
clock period just as for the N memory. Slower read access 
time memories may be used, b.ut this will add directly to the 
clock period. 

Two possible solutions for providing this source of 
microprogram instructions are listed below: 

I. A semiconductor MPM. This memory can be a 
read-only memory (ROM) if the Interpreter is to be 
dedicated to the function defined by the ROM. A 
read-write memory can be 'used for experimental 
purposes or when the function of the Interpreter 
might be changed, such as reconfiguration in a 
multiple Interpreter system. 

2. A buffer into a slower speed, wider word memory. 

The advantage of splitting what is normally considered to be 
the microprogram memory into two parts is more graphically 
illustrated by comparing the total memory requirements of 
the two approaches shown in Figure 3. The total number of 
bits (TJ) in Figure 3(a) is TJ = 56M. The total number of 
bits (T2) in Figure 3(b) is T2 =Mk+ 56N. Figure 4 shows a 
plot of the total number of bits vs. M and N for both 
approaches. From this figure it is obvious that in some cases 
one memory is the proper approach. It should be 
remembered that the approach with two memories will 
require that the total access time through both memories be 
equal to the one memory approach resulting in memories 
that are more expensive per bit. Also of importance is that .r:-o J __ _ 

k-tSloi;2 N<t 

N MEMORY I ~ROS 
~ -· 56 BITS -----1 f-- 568115 --l 

tot '" 
Figure 3. Two Methods for Implementing Microprogram Source 



many applications require a writeable MPM. If the N Table I. Nanocodes 
memory is read only or decoding, a savings in cost results in 
the split memory approach due to fewer total bits that must 
be writeable. 

T 1 = total no. of bits for single memory 

~ 
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._ T 2 = total no. of bits in MPM and nanomemory 
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Figure 4. Plot of Total Size Versus Implementation Technique 

MICRO PROGRAM TIMING AND SEQUENCING 

A commercial user of an Interpreter Based System would 
write a program in an H-language (e.g., ALGOL) which would 
then be compiled into an S-language program, which would 
then be stored in an S-memory for execu lion. Each 
S-instruction is executed through the use of an M-program. 

The M-program provides basically two functions: 

I. Fetching and interpretation of the S-instruction. The 
interpretation depends primarily on the format(s) of 
th~ S-instruction. 

2 Execution of the indicated S-instruction operation 
as defined by a set of M-instructions for that 
operation. 

The N-instructions are in turn addressed by M-instructions. 

A microinstruction may contain either a constant (Type II 
microinstruction) or the address of a nanoinstruction (Type I 
microinstruction). The function of the 56 enables in a 
nanoinstruction are summarized in Table I. A Type II 
microinstruction may load the literal register, the shift 
amount register, or the alternate microprogram count 
register. 

The execution of a microinstruction requires one or more 
sequential time periods, called phase I, phase 2 and phase 
3. The constant interval of time from the end of one clock 
pulse to the end of the next is a phase. Phases of successive 
microinstructions usually overlap, so that phase I of a 
current microinstruction is being executed while phase 2 or 3 
of a prior microinstruction is also being executed. 

For a type II microinstruction, phase 1 provides sufficient 
time to execute the instruction and no additional phases are 
required. For a type I microinstruction, the events taking 
place in each of the three phases are identified below. The 
timing relationship between Type I and Type II 
microinstructions is shown in Figure 5. 
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Nano-Bits Function 

1-4 Select conditions 
5 Selects true or complement of condition. 
6 Specifies conditional or unconditional LU 

7 

8-10 
11-16 

17-26 
27 

28-31 
32-33 
34-36 
37-40 

41 
42 

43-48 

49-50 
51-54 

55-56 

operation. 
Specifies conditional or unconditional 
external operation (memory or DDP). 
Specify set/reset of condition. 
Microprogram address controls (wait, skip, 
step, etc.). 
Selects A, B, and Z. 
Carry control 
Select Boolean and basic arithmetic operations. 
Select shift operation. 
Select inputs to A registers. 
Select inputs to B register. 
Enables input to MIR. 
Enables input to AMPCR. 
Enable and select input to address registers 
and counter (MAR, BR 1, BR2, CTR). 
Select SAR preset. 
Select external operations (read, write, lock, 
etc.). 
Not assigned. 

1. Phase 1 always overlaps phase 2 or 3 of a prior Type 
I instruction. Phase 1 includes condition testing and 
adjusting, selection of the controls for next 
instruction address computation and initiation of S 
memory and device operations (conditionally) and 
Logic Unit operations (conditionally). 

2. Phase 2 may require a variable number of clock 
times. It is used to delay phase 3 for conditions as 
shown in Figure 5. 

When fetching of the next instruction from the 
Microprogram Memory is delayed, the Type I 
instruction currently being executed (there always is 
one) remains in phase 2 until the fetch can be 
made. The duration of phase 2 is determined 
dynamically by the microprogram. 

When the next instruction is Type II, the current 
Type I instruction is held in phase 2 for one clock 
time, while the Type II instruction is executed. 

3. Phase 3 requires one clock time. It always overlaps 
phase 1 of the next Type I instruction (there may be 
intervening Type II instructions). Phase 3 is used to 
perform the logic unit operations including the 
destination selection. 

The actual sequencing of instruction fetches may best be 
understood by reference to Figure 2. 

Words in the N memory are addressed by the output of the M 
memory. The M memory is addressed from the combination 
of the microprogram count register (MPCR), the alternate 
microprogram count register (AMPCR), and the 0/1 /2 
inc re menter (!NCR). The selection of the appropriate 
combination of data paths among these three is controlled by 
the microprogram address (MPAD) controls. These controls 
were selected as one of two alternative sets of controls from 
the N memory during the previous clock time, based upon 
the value of a condition selected during the same previous 
clock time. In the case of a Type II instruction, a fixed 
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Phasing of Type I and Type II Instructions 

combination of controls (a STEP) will be forced into the 
MPAD control register independently of conditions, and the 
instruction currently being executed by the Logic Unit will 
be held in suspension (i.e., no results will be loaded into the 
destination registers) and the same operation will be repeated 
the next clock time as shown in Figure 5. This allows the 
next Type I instruction to make decisions based upon 
conditions being generated during the previous Logic Unit 
operation. It should be noted that the Type II instruction 
can affect the Type I instruction being held in 
suspension. For example, if the Type II loads the SAR, the 
Barrel Switch (BSW) will shift by the new contents of the 
SAR. 

The successor microprogram address choices available are 
listed in Table II. The MPCR usually contains the address of 
the instruction currently being executed and the AMPCR 
usually contains the address of an alternative instruction 
minus one. 

MICROPROGRAMMING EXAMPLES 

A sample M-instruction is given by 

Al+ B-Al, LMAR, CSAR; 

This statement is one nanoinstruction that performs the 
following functions. The contents of register Al are added 
to the contents of register B and the result is stored in 
register A I. The contents of the LIT (Literal register) are 
placed in the MAR (memory address register). The value of 
the ~AR (shift amount register) is complemented. The 
capability is also provided for conditional branching to a 
subroutine or other instruction string with one of the eight 
successors listed above. In the above example, where no 
successor word is specified, the STEP instruction is implied, 
~h1ch means that the Interpreter will step to the next M 
Instruction in sequence in the MPM. The above example 
could be made conditional as follows: 

If LCI then Al + B - Al, LMAR, CSAR; jump else 
step; 

This '!1e~ns if the local condition bit is equal to one, then do 
the md1cated operations that follow after the THEN 
statement and JUMP to the instruction address "that is 
~~i;ent~y in the AMPCR plus one. If LC I is false then the 
si~p~ indicated after the ELSE statement takes place, i.e., 
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An example of a microprogram using M-instructions is given 
below for a fixed-point, binary multiply. The resulting 
average execution time is (6.5 + 2.5N) clocks where N is the 
number of bits in the magnitude of the operands. 

Assumptions 

(I) Sign-magnitude number representation 

(2) Multiplier in A3; multiplicand in B 

(3) Double length product required with resulting 
most significant part, with sign, in Band least 
significant part in A3 

I. A3 XOR B-;ifLCI 

2. BOTT-A2; if MST then Set LC! 

Comment: Step I resets LC I. Steps I and conditional 
part of 2 check signs; if different, LCI is set. 

3. Booo- B, LCTR 

Comment: Steps 2 and 3 transfer multiplicand (0 sign) to 
A2 and clear B. 

4. "N"-LIT; I-SAR 

Comment: Steps 3 and 4 load the counter with the 
number (N = magnitude length) to be used in terminating 
the multiply loop and load the shift amount register 
with I. 

5. A3 R-A3 ;Save 

Comment: Begins test of least bit of multiplier and sets 
up loop 

6. LOOP: If not LST then BOTT C-R skip else step 

7. A2 +BOTT C-B 

8. A3 OR BTQO R-A3, INC; If not COY then jump else 
step 

Comment: 6 thru 8 - inner loop of multiply (average 2.5 
clocks/bit) 

9. If not LC I then BOTT B: skip else step 

10. BJTT-B 

Comment: If LCI = 0, the signs were the same, hence 
force sign bit of result in B to be a 0. 

Table II. Successor Microprogram Addresses 

MPM Address Next Next 
Successor (MPAD) MPCR Value AMPCR Value 

WAIT MPCR MPAD * 
STEP MPCR +I MPAD * 
SAVE MPCR +I MPAD MPCR 
SKIP MPCR +2 MPAD * 
JUMP AMPCR + 1 MPAD * 
EXEC AMPCR +I * * 
CALL AMPCR +I MPAD MPCR 
RETN AMPCR +2 ,MPAD * 

* no change 



MICROPROGRAMMING DESIGN TOOLS 

There are two primary design tools for the 
microprogrammer. One is a microprogram translator 
(TRANSLANG) which is a computer program used to 
convert English language type statements defining the action 
of the Interpreter on each micro-instruction, into binary 
patterns for the M and N memories. TRANSLANG features 
include: 

Error checking of TRANSLANG and hardware syntax 

Collection of statistics on the static multiple use of N 
instructions 

Lists program and contents of MPM and N-memory 

Merging of TRANSLANG programs. 

The second tool is an interactive clock by clock execution 
model that is driven by microprograms prepared using 
TRANSLANG. The model is written in APL. Model features 
include: 

Variable byte width logic units, S-memory and devices 

Event-time oriented interaction with S-memory or 
devices 

Optional execution traces 

Traps for state monitoring at execution of selected M or 
N words 

Execution timing and dynamic event counts. 

SWITCH INTERLOCK 

The Switch I11terlock (SW!) connects Interpreters with 
devices and S-memories. Connection with a device is by 
reservation for exclusive use by an Interpreter and is 
maintained until released. Connection with an S-memory 
module is for the duration of a single data word exchange, 
but is maintained until some other module is requested or 
some other Interpreter requests that memory module. 

The SWI is intended to connect many Interpreters to many 
devices and to many memory modules. It is important to 
keep the number of wires in the crosspoints to a 
minimum. Consequently, a variety of combinations of serial 
and parallel data transmission paths are allowable. The 
amount of parallelism depends on the bandwidth necessary 
to complete the transmission in the number of clocks 
(usually one) required by the system. The serial transmission 
rate is significantly higher than the Interpreter's clock, and 
hence many bits can be transferred in one clock time. 

Consistent with the building block philosophy of the 
Interpreter-Based System, the Switch Interlock is partitioned 
to permit modular expansion for increments of data and 
address path widths. Each incremental module is predicated 
upon implementation with LSI, as are the functional units of 
the Interpreter. 

The six basic modules of the switch interlock are described 
below: 

l. Memory/Device Controls (MDC) - This unit is useci 
as an interface between the Interpreter and the 
control in (2) and (3) below, and as the control for 
the high frequency clock used for the serial 
transmission of data. There is one MDC per 
Interpreter. 

Memory Controls (MC) - This unit is for resolving 
conflicts between Interpreters requesting the use of 
the same S-memory module and for maintaining an 
established connection after completion of the 
operation until some other module is requested or 
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some other Interpreter requests that memo 
module. This unit handles two to four Interpret:~ 
and up to 8 S-memory modules. System expansio 
using this module may be in number of Interpretern 
or in number of memory module ports. s 

3. Device Controls (DC) - This unit resolves conflicts 
between Interpreters trying to lock to a device and 
check~ the lock status of_ any Interpreter attemptin 
a device operat10n. This umt handles up to l 
Interpreters and up to 8 ports. System expansio 
using this module may be in number of Interpreter~ 
or m number of device ports. 

4. Output Switch Network (OSN) - This unit sends 
data from an Interpreter to an addressed device or 
data and address from an Interpreter to an addressed 
memory module, (i.e., the OSN is a 
"demultiplexer"). This unit handles two bits for up 
to 4 Interpreters and 8 device ports or memory 
modules. 

5. Input Switch Network (ISN) - This unit returns data 
from an addressed device or memory module to the 
Interpreter (i.e., the !SN is a "multiplexer"). This 
unit also handles two bits for up to 4 Interpreters 
and up to 8 device ports or memory modules. 

6. Shift Register (SR) - These units are optional and 
are parallel-to-serial shift registers or serial-to-parallel 
shift registers using a high frequency clock. These 
are used for serial transmission of data through the 
ISN's and OSN's. 

Figure 6 is a block diagram of a Switch Interlock connecting 
up to 4 Interpreters to 8 device ports and 8 memory 
ports. The shift registers shown are optional and may be 
eli_minated with the resulting increase in the width of the !SN 
and OSN transfer paths. Although it is not indicated by this 
figure, the switch interlock is expandable in terms of number 
of Interpreters, devices, memory modules, and path widths. 

Overall Switch Interlock Control 

The Interpreter has control over the SWI. Specifically, in an 
Interpreter based system utilizing one or more Interpreters, 
only Interpreters can issue control signals to access memories 
or devices. 

A memory or device cannot initiate a path through the 
SWI. They may, however, provide a signal to the Interpreter 
via a display register or other similar external request device 
and may send control signals to the MDC. Transfers between 
devices and memories must be via and under the control of 
an Interpreter. 

Controls are routed from the Interpreters via the MDC to the 
MC and the DC which, in turn, check availability, determine 
priority and perform the other functions that are 
characteristic of the switch interlock. 

Switch Interlock Timing 

There are no hardware timeouts in the SWI. Events. are 
initiated by the Interpreter for access to memories or 
devices. The Interpreter awaits return signals from the 
MDC. Upon reception of these signals, it proceeds with its 
program. Lacking such positive return signals, it will either 
wait, or retry continuously, depending upon the Interpreter 
program (and not the SWI). Any timeout waiting for a 
response may be performed by either the programmer or a 
device that will force a STEP in the microprogram after a 
preset length of time. 
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Among the significant signals which are meaningful responses 
to an Interpreter and testable as conditions are the following: 

Switch Interlock has 
Accepted Information 

Read Complete 

EXT Request 

The MAR and MIR may be 
reloaded and a memory or 
device has been connected. 

Data is available to be gated 
into the B register. 

lnspect for interrupt from 
device or memory. 

The rationale for this approach is consistent with the overall 
Interpreter-based system design which permits the maximum 
latitude in the selection of memory, devices and their 
speeds. Thus the microprogrammer has the ability (as well as 
the responsibility) to provide the timing constraints for any 
system configuration. 

Device Operations 

The philosophy of device operations is based upon an 
Interpreter using a device for a "long" period of time without 
interruption. This is accomplished by "locking" an 
Interpreter to a device. The ground-rules for device 
operations are listed below: 

I. An Interpreter must be locked to a device port to 
which a read or a write is issued. 

2. An Interpreter may be locked to several device 
ports at the same time. 

3. A device port can only be locked to one Interpreter 
at a time. 

4. Since only the Interpreter that is locked to a device 
port can unlock it, when an Interpreter is finished 
using a device port it should be unlocked so other 
Interpreters can use it. The exception is the case 
where devices locked to a failed Interpreter may be 
unlocked with "privileged" instruction by another 
operative Interpreter. 
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Memory Operations 

Memory-like modules normally cannot be locked and arc 
assumed to require minimum access time and a short "hold" 
time of a memory module by any single 
Interpreter. Conflicts in access to the same module are 
resolved in favor of the Interpreter that last accessed the 
module, otherwise the highest priority requesting 
Interpreter. Once access is granted, it continues until that 
memory operation is complete. When one access is complete, 
the highest priority request is honored from those 
Interpreters then in contention. The Interpreter completing 
access is not able to compete again for one clock. Thus the 
two highest priority Interpreters are assured of access. Lower 
priority Interpreters may have their access rate significantly 
curtailed. 

CIRCUITS AND PACKAGING 

The circuit form chosen for the Interpreter is 
TTL. Tradeoffs for various logic forms are covered elsewhere 
[ 12]. 

TTL was chosen for the following reasons: 

1. TTL has been used in military applications because 
it can be operated over large temperature excursions 
and has proven reliable. 

2. Most bipolar LSI manufacturers are using TTL for 
their most complex array, which increases the 
confidence that LSI can be manufactured at a low 
cost. 

3 The power dissipation of this circuit is such that the 
LSI wafer can be used without any significant 
cooling problems. 

Implementations using two different manufacturing 
techniques are being pursued. One is using 14, 16 and 24 pin 
packages that are commercially available. The other is using 
discretionary wired LSI for the Air Force where volume is a 
primary concern. 50 - 80 gate MS! is being pursued as 
possible back-ups for both methods. 
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Figure 7. 

The LSI avionics multiprocessing system being built for the 
Air Force is scheduled for delivery in late 1971. It will 
consist of five, 32-bit Interpreters which are connected to 
each other, to four memory modules, and to up to eight 
device ports by a Switch Interlock. The LU, CU, and MCU 
functional modules of the Interpreters are each implemented 
with two discretionary wired LSI arrays mounted on 
opposite sides of a finned 5" X 5" X 1/2" (Figure 7). The 
MPM and N-memory are implemented with standard available 
flat packs and are mounted on the same castings. These are 
then sandwiched together for each Interpreter as shown .in 
Figure 7. The Switch Interlock is i!flplemented with a 
combination of custom MSI and standard complex function 
TTL, also partitioned to fit onto the same castings. 

Each of the four main memory modules will initially be 4K X 
36 bit core memories, being replaced by l 6K X 34 bit plated 
wire memory modules for latter versions where power, 
weight, and volume require it. The entire multiprocessor 
with five Interpreters, the switch interlock and four l 6K X 
34 bit plated wire memory modules will occupy 1.8 cubic 
feet, weight 140 pounds and consume 570 watts. 

INTERPRETER APPLICATIONS 

Device controller design is an important microprogramming 
task. The objective is to provide as many logic functions as 
possible for device control through microprogramming. The 
only justifications for any logic other than level converters in 
the device interface is either the microprogram is simplified 
(saving MPM locations) or the Interpreter must be free to do 
other tasks in order to meet its requirements for device 
handling. By this means design flexibility is maintained, 
optiQnal features are easily incorporated, and many special 
hardware controllers (typically one or more per device) are 
replaced by common hardware specialized through 
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Interpreter 

microprograms. The opportunity for shared use of one 
Interpreter among several devices. dynamically being 
interleaved as needed, represents a significant potential for 
system simplification. Use of the Interpreter as a device 
controller is presently being pursued. 

A second application area being pursued for the Interpreter is 
for implementing stand-alone processors for small accounting 
machine applications where a microprogrammable processor 
provides the flexibility of using several different mixes of 
low-cost peripheral devices. 

Emulation of an existing processor and/or its 1/0 channels is 
another microprogramming task. The objective is to run 
programs prepared fot the emulated machine. To do this, the 
emulated machine registers are mapped into S-memory 
and/or the actual registers of an Interpreter with n;iore 
frequently used registers such as the program count reg1Ster 
or base address register usually being resident in the 
Interpreter. The operation codes accessible to programJ 
become S-instructions. Other S-instructions may be add/eO 
for I/O commands, depending on how much of the I 
processing is absorbed by the Interpreter. 

Aside from the obvious advantage of microprogramming to 
emulation speed, other factors which aid emulation are the 
variable width of the logic unit to match the wor~ lengthhof 
the emulated machine, the one-clock time shifting ?~ t e 
barrel switch for breaking apart instructions, cond1t10nal 
testing, and true/complement selection of sections of the B 
register. Emulations of the Burroughs D 825 and B 300, as 
well as other machines, are currently being done. 

A fourth application area is the emulation of higher~leve~ 
language processors. One task presently being pursuedd1s/\ 
direct implementation of an APL processor. A secon as 



being undertaken is the more global problem of designing ~nd 
implementing a meta-compiler m the format of an extensible 
S-language which in turn will be used to build compilers for 
other problem oriented and higher level languages (such as 
FORTRAN and COBOL). The extensible language is 
implemented on . a virtual network of processors with a 
distributed operating system. 

A fifth microprogramming task is the development of an "S" 
language to aid in the construct.ion of muHiprocessing 
operating systems. Embedded m this language will be those 
operating system structures and functions used commonly 
and frequently by most control processes. This task is 
explored in Part II of this paper. 

PART II. S MACHINE INTERPRETER LANGUAGE 
EMULATION 

Multiprocessing is accomplished in our system by a 
combination of multiprogramming (interleaved execution) 
and paraflel processing (simultaneously running multiple 
processors or interpreters}. Microprogramming allows us the 
opportunity to develop a particular set of system 
characteristics using a very basic but general collection of 
hardware tools. Burroughs has been involved in the concept 
of integrating hardware and software as a design principle for 
many years [ 13]. A microprogrammed interpreter now 
allows for a "soft" or "virtual" computer which enables a 
system designer to develop a unique instruction set (''S" 
language) for his particular system. 

Multiprogramming requires the ability to interleave the 
execution of processes. Thus an Interpreter is not exclusively 
allocated to a process for its entire execution time but may 
be shared by many processes. The system accomplishes 
multiprogramming by the technique of queueing and 
dynamic resource allocation. Each process is a set of 
resources which must contain all of the information 
necessary to describe its own status during execution as well 
as during the waiting periods for an Interpreter. This concept 
is implemented by creating for each process its own unique 
work area containing a stack. Thus two resources always 
necessary to every process in order to function are a unique 
work area and an Interpreter. 

Parallel Processing occurs when more than one Interpreter is 
available on a system. Processes may then be executed 
simultaneously. Since the system structure is such that an 
Interpreter is treated as another resource, Interpreters may be 
easily added or deleted from the system. One additional 
mechanism needed for parallel processing is the, "Lock" 
instruction. This will prevent simultaneous accessing of data 
or execution of code by independent Interpreters (e.g., two 
Interpreters simultaneously allocating the same tree memory 
space). An Interpreter entering system tables must lock out 
all other Interpreters until it becomes safe for them to 
proceed again without the danger of conflicts. 

The primary objective of an operating system is to optimize 
and synchronize the process to be run and to allocate to 
them the available system resources [ 14]. Operating systems 
are organized about tables, lists, queues of stacks, used for 
the purpose of storing of information concerning the 
resources available as well as the processes needed to 
run. Communication between modules of the system are 
accomplished through queues. Thus this system contains 
J\llltructions which allow for the easy handling of tables and 

.her data structures. The flexibility afforded an operating 
system in performing its tasks of resource allocation is related 
to the time at which the binding of programs and data takes 
place. In a multiprocessing system binding of resources must 
occur close to execution time since a single process must not 
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be permitted to affect the binding poiicy of the 
system. Resources must also be released as soon as possible 
to permit reallocation to others. In our system we include 
base registers, and description driven resource allocat~n 
which aid in the deferment of binding. · 

The "S" language developed for the multiprocessing system 
will include part of the operating system in its control 
structure. Venus describes a similar undertaking [ 15]. Each 
instruction accessing data or program can detect the absence 
from memory of this data, and can directly retrieve it from 
secondary storage after allocating memory for it. The 
detection and handling of interrupts will also be built into 
the system language. However, many modules of the 
operating system will be written in the developed "S" 
language and will be just another process to be run. Included 
in these functions will be scheduling of processes, handling of 
external communications, initializatio'n and termination of 
processes. The following is a description of the "S" language 
features of the system under development. The language is 
called "SMILE" which stands for "S" Machine Interpreter 
Language Emulation. 

WORK AREA 

Every process in the system must have its own unique work 
area (Figure 8). The work area of a process contains: 

1. State Vector. The registers and temporary storage 
used by the "SMILE" firmware which fully 
describes its status. 

2. Program Reference Table (PRT) [ 16]. A list of the 
descriptions of the program segments as well as the 
data and file segments reserved for this process. 

3. User Stack. Provides the process with the facility 
for temporary storage of data and a dynamic history 
of the process. 



The top of the stack is a quick access environment for data 
manipulation. The ability to transfer control to a remote 
subroutine and return is provided by the stack 
mechanism. The bookkeeping required to save the address of 
the calling routine and reserve working area for the 
subroutine is provided by the instruction logic defining 
subroutine transfer. 

ADDRESSING 

The program work area is placed in a contiguous block of 
memory starting anywhere in memory. The starting address 
of any process is its base work area register, or the address of 
the start of its work area. To initiate a process all that is 
needed is to set the base work area register in the 
Interpreter. Since the work space contains the state vector of 
the process all the information necessary for running is 
available. When a process references an object in its work 
area a relative address is used. Thus absolute addresses are 
not needed at run time. 

When an instruction references through the PRT part of the 
work area, it.accesses a description found there. Descriptions 
are the only objects which may contain absolute addresses 
for locating program segments or data. 

DESCRIPTION 

All resources, program or data in the SMILE machine are 
described by one or more descriptions. Descriptions are 
viewed as programs whose evaluation produces the desired 
items [ 16]. They are words used to locate data and program 
and to describe these areas for control purposes. When 
executed, a description causes firmware to fetch, use or 
replace the desired object similar to the way an instruction 
performs a given function. By describing data with 
descriptions, a program becomes data independent and 
information is kept out of the program stream (i.e., an object 
format may be unknown and a program can still perform a 
specific function on a description-defined set of data.) 

There are several fields to be evaluated in a description. The 
format fields define the structure and the format of the 
data. Length and location fields specify the location of the 
objects, the size of the object and any limits imposed. The 
qualification fields control access and govern the data 
usage. Operating system flags are also included in 
descriptions. There are two types of descriptions in the "S" 
machine. The first is an indirect pointer which is used mainly 
to define the format of the object to be accessed. It also may 
contain the qualification fields and always points to another 
description (Figure 9). 

The other is the direct description which is a pointer to the 
desired object space. A direct description alone always refers 
to a machine word sized object. 

Each bit in a description is evaluated and causes the firmware 
to perform a specific function. 
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Figure 9. 
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Operating System Flags 

The presence of operating system flags causes an operating 
system function to be executed. 

P (Presence Bit): When the presence bit is on it means that 
the object to be accessed is not necessarily in -memory and 
must be retrieved using the firmware developed as the 
operating system allocate memory function. In the case of 
an indirect description the next object to be retrieved is 
another description. 

M (Monitor): The object, when finally <1ccessed, should be 
monitored by the operating system, if any one of the M 
bits along the access path is on. The monitor bit is used by 
the operating system for checking the use of special data. 

D (Direct Description): When the direct description bit is on 
the description being processed is treated as a direct 
description or the end of an evaluation chain. Otherwise it is 
assumed that the present description is pointing to another 
description. 

T (Type of indirect description): When the T = I the indirect 
description is an extension description and contains a holder 
field which defines a subfield containing the previously 
defined objects. If T = 0 the description defines the object 
desired, the control imposed and general structure of the 
space and element to be accessed. · 

AB (Alter Bit): This bit is used by the operating sytem 
functions during memory allocation. If on, it indicates that 
the object in memory has been altered during its residence in 
main memory. Thus an object must be copied back to 
secondary storage only if it has been altered. 

Qualification Field 

The qualification field determines how the defined object can 
be used. 

C (Controls): The controls imposed upon the user may 
change according to the access path he is assigned. If both 
the direct and indirect description have different controls 
imposed, the user will abide by the most restrictive of the 
two controls during the access. 

Fore = 00 
01 
10 
11 

Format Field 

Read write allowed 
Read append (write not allowed) 
Read only 
Execute only 

The format fields define the structure of holder elements, the 
nested structure of space and the byte or unit size of the 
smallest element. It may also define the type of element 
being accessed. 

ET (Element Type): The object or objects selected are of 
type integer if ET= 0 or of type floating point if ET= I. 

ST (Structure): The structure of the most global space is 
defined in the initial description. All of the other spaces 
nested within this space are assumed to be vector spaces. If 
no initial description is used, then the space is assumed to be 
a vector space. 

For ST= 00 
01 
10 
11 

Vector space 
Stack structured space 
Queue structured space 
Link list structured space 



U ·o: The unit is defined as the size of the basic measure 
~i~hi~1 a structure. The unit is calculated as: 

For Unit = 0 1 bit 
1 2 bits 
2 4 bits 
3 8 bits 
4 16 bits 
5 32 bits 
6 64 bits 

Id (Nested space container): Contains the number of 
Ho.t eror previously defined holder fields which can fit into 
u~ s xt substructure. If the previous description defined a 
W1\ nef 2 ( 4 bits) then a holder value of 10 will indicate 10 t,1•1 ~nit~ can fit in a holder (or a 40 bit element). If the 
4- 1t holder description indicates 3 of the above holders can 
fi~xinto the next sub-space, then it is defining a 120-bit sub 
structure. 

Location Fiel~ 

The location field indicates where the data may be 
round. This may be an absolute address in "S" m.emory or 
n address relative to the work area. A presence bit set may 

~dicate that the object is not in main memory. Thus a 
different k.ind of address identification will be necessary to 
locate the data. 

CONTROL 

DESCRIPTION 

(Describe$ Data Areal 

DIRECT 

SIZE 
25 

25 Holdar2's in Data Area 

INDIRECT 

STARTING 
ADDRESS 

R (Relative): When this field is set, the address is assumed to 
be an address relative to the work area. 

NR (Name Register): If NR = 0 then no address 
modification is executed when accessing the next description 
in the chain. 

If a name register field is selected, the value in the UP field 
(described later) of the specified name register is used to 
modify the address field. 

If a direct description evaluation is being performed then the 
starting address is formed by using the global name register 
(if G = 1) coupled with all the format information gathered 
during the description evaluation cycle (Figure I 0). 

G (Global): If G = 1 then the global name register will be 
used in the calculation of the address for accessing the 
desired object. If no indirect description has been used the 
unit length is assumed to be word size. If G = 0 no global 
name register is needed and the first or next (depending on 
the structure) object is accessed. 

The length of fields must be located in the description. This 
will bound the operations setting the limiting factors on data 
fields. 

(Size): The number of elements of the most global defined 
holder field which can fit into this defined space. 
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NAME REGISTERS 

The name registers allow for the naming of a particular 
element or group of elements in a structure during 
instruction execution. It may be used as a means of looping 
through a commonly nained group of elements or just using a 
single element. The format of this register is described in 
Figure 11. 

There are eight name registers availabe for use NR I .... NR 7 
and GNR (the global name register). The global name 
register is the one used for developing the final name during 
description evaluation. When XI = I then a nested space 
structure must be evaluated to locate the desired element. If 
XI = 0 then there is a single set of elements within the 
structure to be evaluated. The X2 bit is only checked if XI = 
I. It is used to indicate if more than one level of nesting 
exists within the structure. When M = I then a multi element 
type operation will be performed by the instruction, (i.e., a 
search instead of a compare). If M = 0 then a single element 
operation will occur. 

I~ I ~ I M \ 61 ', I ~ 1-1 NU I UPL I UP I LNS1 
NS1 I LNS2 I NS2 I 

0 1 2 3 4 5 6 8 16 24 32 

Figure 11. Name Register 

IO, I I and I 2, used only if M = I, are the flags which specify 
which of the nested indices change during a multielement 
type operation (Figure I 2(a) through I 2(g)). The NU field 
defines the total number of units to be accessed during 
instruction execution. If NU = 0 or I, one unit is used. The 
unit size of an operation is defined in the indirect 
description. If it is not defined then it is assumed to be word 
size. 

The unit position (UP) is the position of the smallest unit 
within the next larger vector. If UP= 5 then it indicates the 
fifth unit within the containing space. The maximum UP 
allowed is found in Unit Position Limit (UPL). NS! contains 
the position of the smallest vector structure within the next 
largest structure within the containing physical area. The 
maximum NS2 allowed is defined in LNS2. To address a bit 
position in memory within a structure the following formula 
is used: 

BP= (((NS2-1 X Holder2) + NSl-1) Holder I+ 
UP-1) UNIT 

Address= Starting Address+ BP 

DAT A STRUCTURES 

There are four built-in basic regular data structures defined 
for information written in the SMILE language: vector. stack, 
queue, and link list. All objects within a regular structure are 
of equal length. To access different field lengths the NU field 
of the name register is used to define the number of units in a 
given access. 

INSTRUCTION SET 

The length of a "SMILE" instruction will be mostly 8 bits or 
one byte size. However, there will be an escape bit for 
allowing 16 or 24 bit (2 and 3 byte) instructions. The one 
byte instructions use the stack top and/ or the accumulator 
for accessing descriptions and/or variables. The. longer 
instructions assume a relative address for accessing data. 
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The power behind each instruction is due to the description 
mechanism. When accessing a vector a simple compare 
becomes a search or an add may become a summation. Field 
isolation is done automatically so that data may be packed in 
the most efficient way conceived without being hampered by 
word boundaries. "SMILE" is not complete and instructions 
may be changed, added or deleted until an ideal set is 
found. The order code is totally soft as is the selected 
register set. Thus the language requirements may be 
modified until the designed system is firmly 
developed. Special functions may require special 
instructions. These instructions may be appended to 
"SMILE" for individual customer needs (i.e., a special 
microprogram for executing a matrix multiply as an 
instruction). 

CONCLUSIONS 

Microprogramming has proven its worth in many 
applications. The above-described data descriptions of the 
SMILE language are an example of this. To implement 
equivalent functions in software (as is done now) consumes 
considerable amounts of processing time. To implement 
equivalent functions in hardware would provide much faster 
execution times, but would result in hardware so complex as 
to be impractical. However, when implemented in firmware 
on a microprogrammable Interpreter, most of the advantages 
of hardware implementation are provided without the 
accompanying hardware complexity. 

Up to this time, microprogrammed systems have suffered 
from one major limitation: because they were so simple (in 
which lies their chief virtue) they were rather limited in their 
processing throughput and were thus suitable only for 
relatively small, dedicated tasks. 

What has been needed is a technique to interconnect many 
small micro-programmed computers into one system, and a 
capability to control this array of processors so that they can 
function efficiently while dynamically sharing the load. 

The Interpreter-based system represents such a 
technique. The Interpreter itself is a modern, fourth 
generation microprogrammable computer suitable for LSI 
implementation. The Switch Interlock is the means for 
interconnecting virtually any desired number of Interpreters 
in to a unified system with memories and peripheral 
devices. The SMILE language represents the firmware 
necessary to control and efficiently utilize these 
interconnected Interpreters. Not only does this technique 
allow the flexibility of micro-programming to be applied to 
large-scale systems, but it also allows systems of virtually anY 
size to be constructed and provides for smooth evolution 
from a very small system to a very large one. Furthermore, it 
provides a degree of simplicity in logistics and maintenance 
not previously possible in medium or large scale systems, 
because the en tire system is constructed using relatively few 
different types of simple modules. Thus, the 
Interpreter-based system appears ideally suited for Avionics 
processing of the 1970s, and for many other applications as 
well. 
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