
STRUCTURE OF A MULTIPROCESSOR

USING

MICROPROGRAMMABLE BUILDING BLOCKS

BY

R. L. DAVIS

S. ZUCKER

BURROUGHS CORPORATION

DEFENSE, SPACE AND SPECIAL SYSTEMS GROUP

PRESENTED
AT THE

NATIONAL AEROSPACE ELECTRON I CS CONFERENCE 1971

27

STRUCTURE OF A MULTIPROCESSOR
USING MICROPROGRAMMABLE BUILDING BLOCKS

R. L. DAVIS and S. ZUCKER

Advanced Development, Burroughs Corporation, Paoli, Penna.

ABSTRACT

This P,aper describes a general purpose, microprogrammable,
hardware building block called an Interpreter, an
LSI-multiprocessing system in which the Interpreter is used,
and a machine structure, implemented via firmware on the
Interpreter.

The Interpreter consists of five types of functional modules,
each partitioned for eventual implementation with LSI arrays
of 450-750 gates and less than 126 signal pins. One of these
functional units is the writable microprogram memory,
whose contents define the function of the Interpreter. The
flexibility of the Interpreter is typified by its present use as a
device controller, a stand-alone emulator of other machines,
and as a multiprocessor.

The Interpreter's main design concept allows functions
formerly performed by software alone to be now performed
by the emulating hardware. In this presentation an
instruction set, which includes .those software functions
frequently and consistently used in operating systems, is
emulated. The order code will allow for easy table and list
manipulation or handling since much of scheduling and
resource handling is confined to such operations.

The ability to write code independent of the data to be
processed is provided by accessing information through
descriptions. These descriptions can locate the requested
information, describe its structure, impose controls on the
use of the information and provide signals to the operating
system for special functions.

INTRODUCTION

Presently, the trend in computer science is toward
mu 1 ti processing systems which can increase processing
efficiency, reliability and throughput. The control of
multiprocessing is more complex than that of conventional
systems. Methods of development of these systems have in
the past been limited by the hardware upon which they are
implemented. With the advent of microprogrammed
computers, firmware can now be developed to emulate a
machine structure which can handle control structures more
efficie'n ti y.

The concepts of microprogramming [1, 2, 3, 4],
multiprocessing [5, 6, 7, 8] and avionics computers [9, 10]
have been well covered. The purpose of this paper is to
present, in Part I, a brief description of the Interpreter (a
microprogrammable, hardware building block) and the
Switch Interlock (a building block used to interconnect a
configuration of Interpreters as a multiprocessor), and, in
Part II, the description of an approach to writing an
opera ting system for such a multiprocessor.

PART I. INTERPRETER BASED SYSTEMS

Interpreter-based systems emphasize two basic
concepts: building block structure and soft machine
architecture through microprouamminl!:. The
microprogrammable builiding block structure was developed
primarily due to the constraint of a design predicated upon
eventual implementation of each functional unit with
LSI. This constraint forced simplicity, modularity and
versatility into the system. This gives a design usable in a
wide range of applications, which is the only way to achieve a
sufficient volume of parts to make LSI economically
feasible. This resulted in a machine that is: ·

1 . microprogrammable, to avoid irregular control logic
and to provide the versatility required,

2. modular in 8-bits in the functional unit that
performs the logic, arithmetic, and shifting in order
to match the word length to the problem (important
for emulation), and

3. mod u 1 a r in the interconnection scheme for
multi-Interpreter systems as the number of
Interpreters, memories or devices or path width
changes.

These three characteristics provide the added benefit of
decreasing design time by eliminating the need for new
hardware developments for each new product.

THE INTERPRETER

Figure 1 is a summary diagram of an Interpreter. The five
functional parts are tabulated below.

MCU Memory Control Unit

cu Control Unit

LU Logic Unit

MPM MicroProgram Memory

NM Nano Memory

Registers for mem­
ory addressing;
expandable.

Registers for con­
ditional control am'
logic commands.

Width 1 to 8 bytes;
data registers, adder,
shifter.

Microprogram
sequences: some
words have literals,
others have nano
addresses.

Specific controls for
the first three units.

This paper describes the results of effort supported, in part, by the Avionics Laboratory, Wright-Patterson AFB. Ohio, under Contract
No. F33615-69-C-l 200 and Contract No. F33615-70-C-l 773.

28

MPM
Addr

r-

L-

ess

(161 Nano

Address
MICRO .---PROGRAM

MEMORY
(MPM)

Type I
Instr.

Type II
Instr.

LIT
AMP CR

SAR

(541

NANO MEMORY

Controls l

External

Conditions

CONTROL UNIT (CU)

1. Provide Commands

to LU

(Control Regl

2. Specify shift

amount to

barrel switch

(SARI MEMORY CONTROL ~ UNIT(MCU)
3. Control condition

1. MPM Addressing

MPCR/AMPCR
testing and setting

2. Memory/Device SAR
Addressing

BR1/BR2/MAR AMPCR/CTR

3. Special Functions BR1/BR2/MAR

LIT/CTR r-

1 1 CTR/AMPCR/LIT
to LU

Global Conditions

s Memory to Other Interpreters

and

Peripheral Addressing

Controls

Dynamic

Conditions

,- Data Input
from
S Mernories
and
Peripheral

Z Inputs - Devices

CTR/AMPCR/LIT via SWI

LOGIC -r
UNIT (LU)

l

I

I
_r

[

1 [l)_r;-A1 I
A2

I I
[i B SELECT U A3

J J J
ADDER h

~

BARREL SWITCH J
=i
t

r MIR l

Data Output
to S Memories and

Peripheral Devices via
SWI

u
L

p to 8

ogic Unit

sections,

ea ch 8

bi ts wide

Figure 1. Interpreter Block Diagram

During the operation of the Interpreter, microprogram
instructions and literals (data, jump addresses, shift amounts)
are read out of the MPM. Data and jump addresses from the
MPM are sent to the MCU, shift amounts, to the CU, and
instructions are used as addresses for the NM. The output of
the NM is a set of 56 controls which are transmitted to the
C'U, MCU and LU. The addressing of the proper locations in
the MPM is handled by the selection of one of two
microprogram count registers in the MCU and sendmg the
contents of the selected register plus zero, one or two as an
address to the MPM.

The LU performs the shifting and the arithmetic and logic
functions required, as well as providing a set of scratch pad
registers and the data interfaces to and from the Switch
Interlock (SWI). Of primary importance 1s the modul_anty of
the LU, providing expansion of the word kngth 111 8-b1t
increments from 8 bits through 64 bits usmg the same
functional unit. The CU contains a condition register, logic
for testing the conditions, a shift amount register for
controlling shift operations in the LU, and part of the control
register used for storage of some of the control signals to be
sent to the LU. The MCU provides addressing logic to the
Switch Interlock for data accesses, controls for the selection
of micro instructions, literal storage, and counter
operation. This unit is also expandable when larger
addressing capability is required.

29

Logic Unit (LU).

A functional block diagram of the LU is shown in Figure
I. The design of the LU is predicated upon implementation
with one LSI silicon slice per 8 bits.

All A registers are functionally identical. They temporarily
store data within the Interpreter and serve as a primary input
to the adder. Any of the A registers can be loaded with the
output of the barrel switch in one clock time. Selection gates
permit the contents of any A register to be used as one of the
inputs to the adder.

The B register is a primary external interface (from the
Switch Interlock). It also serves as the second input to the
adder, and can collect certain side effects of arithmetic
operations. The B register may be loaded with any of the
following (one per instruction):

1. The barrel switch output

' The adder output

3. The data from the Switch Interlock

4. The MIR output

5. The carry complements of 4- or 8-bit groups with
selected zeros (for use in decimal arithmetic or
character processing)

6. The barrel-switch output ORed with 2, 3, or 4
above.

The output of the B register has true/complement selection
gates which are controlled in three separate sections: the
most significant bit, the least significant bit, and all the
remaining central bits. Each of these parts is controlled
independently, and may be either all ZEROs, all ONEs, the
true contents or the complement (ONEs complement) of the
contents of the respective bits of the B register.

The MIR buffers information being written to S memory or
sent to a device. It is loaded from the barrel switch output
and its output is sent to the Switch Interlock, or to the B
register.

The adder in the LU is a modified version of a
straightforward carry lookahead adder such as that discussed
by MacSorley [I I l and others. Therefore the details of its
operation will not be included.

Inputs to the adder are from selection gates which allow
various combinations of the A, B, and Z inputs. The A input
is from the A register output selection gates and the B input
is from the B register true and complement selection
gates. The Z input is an external input to the LU and can be:

1. The output of the counter in the MCU into the most
significant 8 bits with all other bits being ZEROs.

2. The output of the literal register in the MCU into
the least significant 8 bits with all other bits being
ZEROs.

3. An optional input (depending upon the word
length) into the middle bytes (which only exists in
Interpreters that have word lengths:;:,, 24 bits) with
the most and least significant bytes being
ZEROs. Usually this input will be the AMPCR.

4. All ZEROs.

MICRO
PROGRAM
MEMORY

MPM

(16 BITS)

I
M1crolnstruC1ions
Type I Nano Addrl!Ss

lnpul Cloer Control• fl>J':
AMPCR/BR 1 IBR2/MARfCTR/SAR

Using various combinations of inputs to the selection gates,
any two of the three inputs can be added together, or can be
added together with an additional ONE added to the least
significant bit. Also, all binary Boolean operations between
any two adder inputs can be done.

The barrel switch is a matrix of gates that shifts a parallel
input data word any number of places to the left or right,
either end-off or end-around, in one clock time.

The output of the barrel switch is sent to:

I. A register

2. B register

3. Memory Information Register (MIR)

4. Least significant 16 bits to MCU

5. Least significant 3 to 6 bits to CU (depending on
word length)

Control Unit (CU).

One CU is required for each Interpreter. The design of the
CU is predicated upon implementation with one LSI silicon
slice. This unit has five major sections: the shift amount
register (SAR), the condition register (COND), part of the
control register (CR), the MPM content decoding, and the
clock control (Figure 2).

The functions of the SAR and its associated logic are:

I. To load shift amounts into the SAR to be used in
the shifting operations.

N MEMORY

19 33

CONTROL
REG

17,18.34-41

CONTROL
REG

I Type II Value 10

l_
{

<AR
LIT
AMPCR

I
-·--·--···-·--1

ADV. MST.
LST. ABT
lrom Adder

I

MCU

'c?:'J MPCR .
12

MPM A.ddress

To LU

Figure 2.

True/Comp

--0--
LU OPER
and EXT
{}per. Cood1t1on

A~ut11tSitna11.
forSM-.norvD"

"""""'
From
S-re4Switch
in LU

Interpreter Data and Control Flow

30

Cantrall 10:

Lope UnitCkld"
ControlR ... Ckldt
Car.I. R91.Adju1t
S M.moty~ COl'ltroh
WADContrh

2. To generate the required controls for the barrel
switch to perform the shift operation indicated by
the controls from the Nanomemory.

3. To generate the "complement" of the SAR
contents, where the "complement" is defined as the
amount that will restore the bits of a word to their
original position after an end-around shift of N
followed by an end-around of the "complement" of
N.

The condition register section of the CU performs four major
functions:

I. Stores 12 resettable condition bits in the condition
register.

2. Selects 1 of 16 condition bits (12 from the register
and 4 generated during the present clock time in the
Logic Unit) for use in performing conditional
operations.

3. Decodes bits from the memory for resetting, setting
or requesting the setting of certain bits in the
condition register.

4. Resolves priority between Interpreters in the setting
of global condition (GC) bits.

The 12 bits of the condition register are used as error
indicators, interrupts, status indicators, and lockout
indicators.

The control register is a 36-bit register that stores all control
signals from the Nanomemory that are used in the LU, CU,
and MCU for controlling the execution phase of a
microinstruction.

The MPM content decoding determines the use of the MPM
output (literal or address) based upon the first four bits of
the MPM. Several decoding options are available.

Memory Control Unit (MCU).

One MCU is required for an Interpreter, but a second MCU
may be added to provide additional memory addressing
capability. The design of the MCU is predicated upon
implementation with one LSI silicon slice. This unit has
three major sections (shown in Figure 2):

I. The microprogram address section contains the
micoprogram count register, the alternate
microprogram count register, the incrementer, the
microprogram address controls register, and their
associated control logic. This section is used to
address the MPM for the sequencing of the
microinstructions.

2. The memor'y/device address section contains the
memory address register, base registers one and two,
the output selection gates, and the associated
control logic.

3. The Z register section contains registers which are
the Z inputs to the LU adder: a loadable counter,
the literal register, selection gates for the input to
the memory address register and the loadable
counter and their associated control logic.

Nanomemory (NM).

The Interpreter is controlled by the output of the 56-bit wide
Nanomemory which may be implemented with a read/write
memory, a read-only memory, wired logic or a combination
of the three. In any case, it has a typical form factor of 64
words by 56 bits, expandable in 64-word increments.

31

Each of the 56 bits represents a unique enable line to control
the gates and flip-flops within the LU, CU, and MCU. Each
Nanomemory word represents a specific microinstruction
that is executed by the simultaneous presentation of a
specific enable pattern for the 56 outputs represented by
corresponding ONEs and ZEROs in its word.

Theoretically, a Nanomemory could provide 256 (!Ol 7)
different word or output combinations. This number of
words in a Nanomemory is obviously impractical. Somewhat
fewer instructions would be considered reasonable. In fact, a
set of 5 I 2 words has been found to be more than adequate
for most Interpreter characterizations.

A unique feature of the Interpreter-Based System with its
separate Nanomemory and Microprogram Memory is that the
explicit enable lines for each microinstruction need be stored
in the N memory only once, regardless of the number of
times that a specific microinstruction is needed in a
program. To accomplish this saving in memory, the
Microprogram Memory contains not the full microinstruction
needed, but rather the address in the Nanomemory where the
explicit ONEs and ZEROs are stored that are needed to
execute that instruction type. Thus, several microprogram
sequences, each using the same microinstruction (e.g.,
transfer A to B) need only store in the Microprogram
Memory the address of the Nanomemory word containing
that operation.

Microprogram Memory (MPM)

Each I nte4'preter requires a source of microprogram
instructions to define the operation of the Interpreter. To
maintain the clock period of the Interpreter, this source must
have a fast read access time and a cycle time less than the
clock period just as for the N memory. Slower read access
time memories may be used, b.ut this will add directly to the
clock period.

Two possible solutions for providing this source of
microprogram instructions are listed below:

I. A semiconductor MPM. This memory can be a
read-only memory (ROM) if the Interpreter is to be
dedicated to the function defined by the ROM. A
read-write memory can be 'used for experimental
purposes or when the function of the Interpreter
might be changed, such as reconfiguration in a
multiple Interpreter system.

2. A buffer into a slower speed, wider word memory.

The advantage of splitting what is normally considered to be
the microprogram memory into two parts is more graphically
illustrated by comparing the total memory requirements of
the two approaches shown in Figure 3. The total number of
bits (TJ) in Figure 3(a) is TJ = 56M. The total number of
bits (T2) in Figure 3(b) is T2 =Mk+ 56N. Figure 4 shows a
plot of the total number of bits vs. M and N for both
approaches. From this figure it is obvious that in some cases
one memory is the proper approach. It should be
remembered that the approach with two memories will
require that the total access time through both memories be
equal to the one memory approach resulting in memories
that are more expensive per bit. Also of importance is that .r:-o J __ _

k-tSloi;2 N<t

N MEMORY I ~ROS
~ -· 56 BITS -----1 f-- 568115 --l

tot '"
Figure 3. Two Methods for Implementing Microprogram Source

many applications require a writeable MPM. If the N Table I. Nanocodes
memory is read only or decoding, a savings in cost results in
the split memory approach due to fewer total bits that must
be writeable.

T 1 = total no. of bits for single memory

~
10

._ T 2 = total no. of bits in MPM and nanomemory

iii ...
0 1,0f,.-

a:
w m -,oh
:;
~
z 401-.­

..J
<
0 rni--
1-

T,

NUMBER OF MICROINSTRUCTIONS (Ml

Figure 4. Plot of Total Size Versus Implementation Technique

MICRO PROGRAM TIMING AND SEQUENCING

A commercial user of an Interpreter Based System would
write a program in an H-language (e.g., ALGOL) which would
then be compiled into an S-language program, which would
then be stored in an S-memory for execu lion. Each
S-instruction is executed through the use of an M-program.

The M-program provides basically two functions:

I. Fetching and interpretation of the S-instruction. The
interpretation depends primarily on the format(s) of
th~ S-instruction.

2 Execution of the indicated S-instruction operation
as defined by a set of M-instructions for that
operation.

The N-instructions are in turn addressed by M-instructions.

A microinstruction may contain either a constant (Type II
microinstruction) or the address of a nanoinstruction (Type I
microinstruction). The function of the 56 enables in a
nanoinstruction are summarized in Table I. A Type II
microinstruction may load the literal register, the shift
amount register, or the alternate microprogram count
register.

The execution of a microinstruction requires one or more
sequential time periods, called phase I, phase 2 and phase
3. The constant interval of time from the end of one clock
pulse to the end of the next is a phase. Phases of successive
microinstructions usually overlap, so that phase I of a
current microinstruction is being executed while phase 2 or 3
of a prior microinstruction is also being executed.

For a type II microinstruction, phase 1 provides sufficient
time to execute the instruction and no additional phases are
required. For a type I microinstruction, the events taking
place in each of the three phases are identified below. The
timing relationship between Type I and Type II
microinstructions is shown in Figure 5.

32

Nano-Bits Function

1-4 Select conditions
5 Selects true or complement of condition.
6 Specifies conditional or unconditional LU

7

8-10
11-16

17-26
27

28-31
32-33
34-36
37-40

41
42

43-48

49-50
51-54

55-56

operation.
Specifies conditional or unconditional
external operation (memory or DDP).
Specify set/reset of condition.
Microprogram address controls (wait, skip,
step, etc.).
Selects A, B, and Z.
Carry control
Select Boolean and basic arithmetic operations.
Select shift operation.
Select inputs to A registers.
Select inputs to B register.
Enables input to MIR.
Enables input to AMPCR.
Enable and select input to address registers
and counter (MAR, BR 1, BR2, CTR).
Select SAR preset.
Select external operations (read, write, lock,
etc.).
Not assigned.

1. Phase 1 always overlaps phase 2 or 3 of a prior Type
I instruction. Phase 1 includes condition testing and
adjusting, selection of the controls for next
instruction address computation and initiation of S
memory and device operations (conditionally) and
Logic Unit operations (conditionally).

2. Phase 2 may require a variable number of clock
times. It is used to delay phase 3 for conditions as
shown in Figure 5.

When fetching of the next instruction from the
Microprogram Memory is delayed, the Type I
instruction currently being executed (there always is
one) remains in phase 2 until the fetch can be
made. The duration of phase 2 is determined
dynamically by the microprogram.

When the next instruction is Type II, the current
Type I instruction is held in phase 2 for one clock
time, while the Type II instruction is executed.

3. Phase 3 requires one clock time. It always overlaps
phase 1 of the next Type I instruction (there may be
intervening Type II instructions). Phase 3 is used to
perform the logic unit operations including the
destination selection.

The actual sequencing of instruction fetches may best be
understood by reference to Figure 2.

Words in the N memory are addressed by the output of the M
memory. The M memory is addressed from the combination
of the microprogram count register (MPCR), the alternate
microprogram count register (AMPCR), and the 0/1 /2
inc re menter (!NCR). The selection of the appropriate
combination of data paths among these three is controlled by
the microprogram address (MPAD) controls. These controls
were selected as one of two alternative sets of controls from
the N memory during the previous clock time, based upon
the value of a condition selected during the same previous
clock time. In the case of a Type II instruction, a fixed

A.

B.

C.

Figure 5.

Type I followed by Type I for which a logic
operation is required.

'TYPE!
TYPE!

r/> I rt> 3
r/> I

Type I followed by Type II, followed by
Type I for which a logic operation is required.

TYPE I
TYPE II
TYPE!

r/> I rt> 2
I I

rt> 3

r/> I

Type I followed by Type I for which no logic
operation is required, followed by Type I for
which a logic operation is required.

TYPE I
TYPE!
TXPE I

r/> 1 rt> 2
r/> I

l/J 3

r/> I

Phasing of Type I and Type II Instructions

combination of controls (a STEP) will be forced into the
MPAD control register independently of conditions, and the
instruction currently being executed by the Logic Unit will
be held in suspension (i.e., no results will be loaded into the
destination registers) and the same operation will be repeated
the next clock time as shown in Figure 5. This allows the
next Type I instruction to make decisions based upon
conditions being generated during the previous Logic Unit
operation. It should be noted that the Type II instruction
can affect the Type I instruction being held in
suspension. For example, if the Type II loads the SAR, the
Barrel Switch (BSW) will shift by the new contents of the
SAR.

The successor microprogram address choices available are
listed in Table II. The MPCR usually contains the address of
the instruction currently being executed and the AMPCR
usually contains the address of an alternative instruction
minus one.

MICROPROGRAMMING EXAMPLES

A sample M-instruction is given by

Al+ B-Al, LMAR, CSAR;

This statement is one nanoinstruction that performs the
following functions. The contents of register Al are added
to the contents of register B and the result is stored in
register A I. The contents of the LIT (Literal register) are
placed in the MAR (memory address register). The value of
the ~AR (shift amount register) is complemented. The
capability is also provided for conditional branching to a
subroutine or other instruction string with one of the eight
successors listed above. In the above example, where no
successor word is specified, the STEP instruction is implied,
~h1ch means that the Interpreter will step to the next M
Instruction in sequence in the MPM. The above example
could be made conditional as follows:

If LCI then Al + B - Al, LMAR, CSAR; jump else
step;

This '!1e~ns if the local condition bit is equal to one, then do
the md1cated operations that follow after the THEN
statement and JUMP to the instruction address "that is
~~i;ent~y in the AMPCR plus one. If LC I is false then the
si~p~ indicated after the ELSE statement takes place, i.e.,

33

An example of a microprogram using M-instructions is given
below for a fixed-point, binary multiply. The resulting
average execution time is (6.5 + 2.5N) clocks where N is the
number of bits in the magnitude of the operands.

Assumptions

(I) Sign-magnitude number representation

(2) Multiplier in A3; multiplicand in B

(3) Double length product required with resulting
most significant part, with sign, in Band least
significant part in A3

I. A3 XOR B-;ifLCI

2. BOTT-A2; if MST then Set LC!

Comment: Step I resets LC I. Steps I and conditional
part of 2 check signs; if different, LCI is set.

3. Booo- B, LCTR

Comment: Steps 2 and 3 transfer multiplicand (0 sign) to
A2 and clear B.

4. "N"-LIT; I-SAR

Comment: Steps 3 and 4 load the counter with the
number (N = magnitude length) to be used in terminating
the multiply loop and load the shift amount register
with I.

5. A3 R-A3 ;Save

Comment: Begins test of least bit of multiplier and sets
up loop

6. LOOP: If not LST then BOTT C-R skip else step

7. A2 +BOTT C-B

8. A3 OR BTQO R-A3, INC; If not COY then jump else
step

Comment: 6 thru 8 - inner loop of multiply (average 2.5
clocks/bit)

9. If not LC I then BOTT B: skip else step

10. BJTT-B

Comment: If LCI = 0, the signs were the same, hence
force sign bit of result in B to be a 0.

Table II. Successor Microprogram Addresses

MPM Address Next Next
Successor (MPAD) MPCR Value AMPCR Value

WAIT MPCR MPAD *
STEP MPCR +I MPAD *
SAVE MPCR +I MPAD MPCR
SKIP MPCR +2 MPAD *
JUMP AMPCR + 1 MPAD *
EXEC AMPCR +I * *
CALL AMPCR +I MPAD MPCR
RETN AMPCR +2 ,MPAD *

* no change

MICROPROGRAMMING DESIGN TOOLS

There are two primary design tools for the
microprogrammer. One is a microprogram translator
(TRANSLANG) which is a computer program used to
convert English language type statements defining the action
of the Interpreter on each micro-instruction, into binary
patterns for the M and N memories. TRANSLANG features
include:

Error checking of TRANSLANG and hardware syntax

Collection of statistics on the static multiple use of N
instructions

Lists program and contents of MPM and N-memory

Merging of TRANSLANG programs.

The second tool is an interactive clock by clock execution
model that is driven by microprograms prepared using
TRANSLANG. The model is written in APL. Model features
include:

Variable byte width logic units, S-memory and devices

Event-time oriented interaction with S-memory or
devices

Optional execution traces

Traps for state monitoring at execution of selected M or
N words

Execution timing and dynamic event counts.

SWITCH INTERLOCK

The Switch I11terlock (SW!) connects Interpreters with
devices and S-memories. Connection with a device is by
reservation for exclusive use by an Interpreter and is
maintained until released. Connection with an S-memory
module is for the duration of a single data word exchange,
but is maintained until some other module is requested or
some other Interpreter requests that memory module.

The SWI is intended to connect many Interpreters to many
devices and to many memory modules. It is important to
keep the number of wires in the crosspoints to a
minimum. Consequently, a variety of combinations of serial
and parallel data transmission paths are allowable. The
amount of parallelism depends on the bandwidth necessary
to complete the transmission in the number of clocks
(usually one) required by the system. The serial transmission
rate is significantly higher than the Interpreter's clock, and
hence many bits can be transferred in one clock time.

Consistent with the building block philosophy of the
Interpreter-Based System, the Switch Interlock is partitioned
to permit modular expansion for increments of data and
address path widths. Each incremental module is predicated
upon implementation with LSI, as are the functional units of
the Interpreter.

The six basic modules of the switch interlock are described
below:

l. Memory/Device Controls (MDC) - This unit is useci
as an interface between the Interpreter and the
control in (2) and (3) below, and as the control for
the high frequency clock used for the serial
transmission of data. There is one MDC per
Interpreter.

Memory Controls (MC) - This unit is for resolving
conflicts between Interpreters requesting the use of
the same S-memory module and for maintaining an
established connection after completion of the
operation until some other module is requested or

34

some other Interpreter requests that memo
module. This unit handles two to four Interpret:~
and up to 8 S-memory modules. System expansio
using this module may be in number of Interpretern
or in number of memory module ports. s

3. Device Controls (DC) - This unit resolves conflicts
between Interpreters trying to lock to a device and
check~ the lock status of_ any Interpreter attemptin
a device operat10n. This umt handles up to l
Interpreters and up to 8 ports. System expansio
using this module may be in number of Interpreter~
or m number of device ports.

4. Output Switch Network (OSN) - This unit sends
data from an Interpreter to an addressed device or
data and address from an Interpreter to an addressed
memory module, (i.e., the OSN is a
"demultiplexer"). This unit handles two bits for up
to 4 Interpreters and 8 device ports or memory
modules.

5. Input Switch Network (ISN) - This unit returns data
from an addressed device or memory module to the
Interpreter (i.e., the !SN is a "multiplexer"). This
unit also handles two bits for up to 4 Interpreters
and up to 8 device ports or memory modules.

6. Shift Register (SR) - These units are optional and
are parallel-to-serial shift registers or serial-to-parallel
shift registers using a high frequency clock. These
are used for serial transmission of data through the
ISN's and OSN's.

Figure 6 is a block diagram of a Switch Interlock connecting
up to 4 Interpreters to 8 device ports and 8 memory
ports. The shift registers shown are optional and may be
eli_minated with the resulting increase in the width of the !SN
and OSN transfer paths. Although it is not indicated by this
figure, the switch interlock is expandable in terms of number
of Interpreters, devices, memory modules, and path widths.

Overall Switch Interlock Control

The Interpreter has control over the SWI. Specifically, in an
Interpreter based system utilizing one or more Interpreters,
only Interpreters can issue control signals to access memories
or devices.

A memory or device cannot initiate a path through the
SWI. They may, however, provide a signal to the Interpreter
via a display register or other similar external request device
and may send control signals to the MDC. Transfers between
devices and memories must be via and under the control of
an Interpreter.

Controls are routed from the Interpreters via the MDC to the
MC and the DC which, in turn, check availability, determine
priority and perform the other functions that are
characteristic of the switch interlock.

Switch Interlock Timing

There are no hardware timeouts in the SWI. Events. are
initiated by the Interpreter for access to memories or
devices. The Interpreter awaits return signals from the
MDC. Upon reception of these signals, it proceeds with its
program. Lacking such positive return signals, it will either
wait, or retry continuously, depending upon the Interpreter
program (and not the SWI). Any timeout waiting for a
response may be performed by either the programmer or a
device that will force a STEP in the microprogram after a
preset length of time.

DC

ENABLE

OATA
OSN

TO
OE\llCES

OATA
!SN

FROM ,, OE\llCES I 1

MOC

MOOUL[
AOOIUSS

NOTE Tll• wldthl of tll• lSN/OSN'1 ar• d•,•nlltnt u'°"
IM nu111Mr of blh b•lng lron1n11f!M Mrl•ll r.

Figure 6.

Among the significant signals which are meaningful responses
to an Interpreter and testable as conditions are the following:

Switch Interlock has
Accepted Information

Read Complete

EXT Request

The MAR and MIR may be
reloaded and a memory or
device has been connected.

Data is available to be gated
into the B register.

lnspect for interrupt from
device or memory.

The rationale for this approach is consistent with the overall
Interpreter-based system design which permits the maximum
latitude in the selection of memory, devices and their
speeds. Thus the microprogrammer has the ability (as well as
the responsibility) to provide the timing constraints for any
system configuration.

Device Operations

The philosophy of device operations is based upon an
Interpreter using a device for a "long" period of time without
interruption. This is accomplished by "locking" an
Interpreter to a device. The ground-rules for device
operations are listed below:

I. An Interpreter must be locked to a device port to
which a read or a write is issued.

2. An Interpreter may be locked to several device
ports at the same time.

3. A device port can only be locked to one Interpreter
at a time.

4. Since only the Interpreter that is locked to a device
port can unlock it, when an Interpreter is finished
using a device port it should be unlocked so other
Interpreters can use it. The exception is the case
where devices locked to a failed Interpreter may be
unlocked with "privileged" instruction by another
operative Interpreter.

1
MOC D

ADDRESS
ENAllLE

4 INTERPRETERS

8 MEMORY MODULES

ADORUi 8 DEVICES
OiN
TO

MEMORIES

OATA
OIN

TO
MEMORIES

OATA
!SN

FROM
MEMORIES

.,

Switch Interlock

Memory Operations

Memory-like modules normally cannot be locked and arc
assumed to require minimum access time and a short "hold"
time of a memory module by any single
Interpreter. Conflicts in access to the same module are
resolved in favor of the Interpreter that last accessed the
module, otherwise the highest priority requesting
Interpreter. Once access is granted, it continues until that
memory operation is complete. When one access is complete,
the highest priority request is honored from those
Interpreters then in contention. The Interpreter completing
access is not able to compete again for one clock. Thus the
two highest priority Interpreters are assured of access. Lower
priority Interpreters may have their access rate significantly
curtailed.

CIRCUITS AND PACKAGING

The circuit form chosen for the Interpreter is
TTL. Tradeoffs for various logic forms are covered elsewhere
[12].

TTL was chosen for the following reasons:

1. TTL has been used in military applications because
it can be operated over large temperature excursions
and has proven reliable.

2. Most bipolar LSI manufacturers are using TTL for
their most complex array, which increases the
confidence that LSI can be manufactured at a low
cost.

3 The power dissipation of this circuit is such that the
LSI wafer can be used without any significant
cooling problems.

Implementations using two different manufacturing
techniques are being pursued. One is using 14, 16 and 24 pin
packages that are commercially available. The other is using
discretionary wired LSI for the Air Force where volume is a
primary concern. 50 - 80 gate MS! is being pursued as
possible back-ups for both methods.

35

Figure 7.

The LSI avionics multiprocessing system being built for the
Air Force is scheduled for delivery in late 1971. It will
consist of five, 32-bit Interpreters which are connected to
each other, to four memory modules, and to up to eight
device ports by a Switch Interlock. The LU, CU, and MCU
functional modules of the Interpreters are each implemented
with two discretionary wired LSI arrays mounted on
opposite sides of a finned 5" X 5" X 1/2" (Figure 7). The
MPM and N-memory are implemented with standard available
flat packs and are mounted on the same castings. These are
then sandwiched together for each Interpreter as shown .in
Figure 7. The Switch Interlock is i!flplemented with a
combination of custom MSI and standard complex function
TTL, also partitioned to fit onto the same castings.

Each of the four main memory modules will initially be 4K X
36 bit core memories, being replaced by l 6K X 34 bit plated
wire memory modules for latter versions where power,
weight, and volume require it. The entire multiprocessor
with five Interpreters, the switch interlock and four l 6K X
34 bit plated wire memory modules will occupy 1.8 cubic
feet, weight 140 pounds and consume 570 watts.

INTERPRETER APPLICATIONS

Device controller design is an important microprogramming
task. The objective is to provide as many logic functions as
possible for device control through microprogramming. The
only justifications for any logic other than level converters in
the device interface is either the microprogram is simplified
(saving MPM locations) or the Interpreter must be free to do
other tasks in order to meet its requirements for device
handling. By this means design flexibility is maintained,
optiQnal features are easily incorporated, and many special
hardware controllers (typically one or more per device) are
replaced by common hardware specialized through

36

Interpreter

microprograms. The opportunity for shared use of one
Interpreter among several devices. dynamically being
interleaved as needed, represents a significant potential for
system simplification. Use of the Interpreter as a device
controller is presently being pursued.

A second application area being pursued for the Interpreter is
for implementing stand-alone processors for small accounting
machine applications where a microprogrammable processor
provides the flexibility of using several different mixes of
low-cost peripheral devices.

Emulation of an existing processor and/or its 1/0 channels is
another microprogramming task. The objective is to run
programs prepared fot the emulated machine. To do this, the
emulated machine registers are mapped into S-memory
and/or the actual registers of an Interpreter with n;iore
frequently used registers such as the program count reg1Ster
or base address register usually being resident in the
Interpreter. The operation codes accessible to programJ
become S-instructions. Other S-instructions may be add/eO
for I/O commands, depending on how much of the I
processing is absorbed by the Interpreter.

Aside from the obvious advantage of microprogramming to
emulation speed, other factors which aid emulation are the
variable width of the logic unit to match the wor~ lengthhof
the emulated machine, the one-clock time shifting ?~ t e
barrel switch for breaking apart instructions, cond1t10nal
testing, and true/complement selection of sections of the B
register. Emulations of the Burroughs D 825 and B 300, as
well as other machines, are currently being done.

A fourth application area is the emulation of higher~leve~
language processors. One task presently being pursuedd1s/\
direct implementation of an APL processor. A secon as

being undertaken is the more global problem of designing ~nd
implementing a meta-compiler m the format of an extensible
S-language which in turn will be used to build compilers for
other problem oriented and higher level languages (such as
FORTRAN and COBOL). The extensible language is
implemented on . a virtual network of processors with a
distributed operating system.

A fifth microprogramming task is the development of an "S"
language to aid in the construct.ion of muHiprocessing
operating systems. Embedded m this language will be those
operating system structures and functions used commonly
and frequently by most control processes. This task is
explored in Part II of this paper.

PART II. S MACHINE INTERPRETER LANGUAGE
EMULATION

Multiprocessing is accomplished in our system by a
combination of multiprogramming (interleaved execution)
and paraflel processing (simultaneously running multiple
processors or interpreters}. Microprogramming allows us the
opportunity to develop a particular set of system
characteristics using a very basic but general collection of
hardware tools. Burroughs has been involved in the concept
of integrating hardware and software as a design principle for
many years [13]. A microprogrammed interpreter now
allows for a "soft" or "virtual" computer which enables a
system designer to develop a unique instruction set (''S"
language) for his particular system.

Multiprogramming requires the ability to interleave the
execution of processes. Thus an Interpreter is not exclusively
allocated to a process for its entire execution time but may
be shared by many processes. The system accomplishes
multiprogramming by the technique of queueing and
dynamic resource allocation. Each process is a set of
resources which must contain all of the information
necessary to describe its own status during execution as well
as during the waiting periods for an Interpreter. This concept
is implemented by creating for each process its own unique
work area containing a stack. Thus two resources always
necessary to every process in order to function are a unique
work area and an Interpreter.

Parallel Processing occurs when more than one Interpreter is
available on a system. Processes may then be executed
simultaneously. Since the system structure is such that an
Interpreter is treated as another resource, Interpreters may be
easily added or deleted from the system. One additional
mechanism needed for parallel processing is the, "Lock"
instruction. This will prevent simultaneous accessing of data
or execution of code by independent Interpreters (e.g., two
Interpreters simultaneously allocating the same tree memory
space). An Interpreter entering system tables must lock out
all other Interpreters until it becomes safe for them to
proceed again without the danger of conflicts.

The primary objective of an operating system is to optimize
and synchronize the process to be run and to allocate to
them the available system resources [14]. Operating systems
are organized about tables, lists, queues of stacks, used for
the purpose of storing of information concerning the
resources available as well as the processes needed to
run. Communication between modules of the system are
accomplished through queues. Thus this system contains
J\llltructions which allow for the easy handling of tables and

.her data structures. The flexibility afforded an operating
system in performing its tasks of resource allocation is related
to the time at which the binding of programs and data takes
place. In a multiprocessing system binding of resources must
occur close to execution time since a single process must not

37

BASE OF
WORK __..
AREA STATE VECTOR

(REG !STER SETTINGS)

PRT
PROGRAM REFERENCE TABLE
(DESCRIPTIONS)

GLOBAL VARIABLES

v----~-~~__,-~~~

SUBROUTINE WORK AREAS ~..I
STACK

v-----~ ~---~

STACK TOP

Figure 8. Work Area

be permitted to affect the binding poiicy of the
system. Resources must also be released as soon as possible
to permit reallocation to others. In our system we include
base registers, and description driven resource allocat~n
which aid in the deferment of binding. ·

The "S" language developed for the multiprocessing system
will include part of the operating system in its control
structure. Venus describes a similar undertaking [15]. Each
instruction accessing data or program can detect the absence
from memory of this data, and can directly retrieve it from
secondary storage after allocating memory for it. The
detection and handling of interrupts will also be built into
the system language. However, many modules of the
operating system will be written in the developed "S"
language and will be just another process to be run. Included
in these functions will be scheduling of processes, handling of
external communications, initializatio'n and termination of
processes. The following is a description of the "S" language
features of the system under development. The language is
called "SMILE" which stands for "S" Machine Interpreter
Language Emulation.

WORK AREA

Every process in the system must have its own unique work
area (Figure 8). The work area of a process contains:

1. State Vector. The registers and temporary storage
used by the "SMILE" firmware which fully
describes its status.

2. Program Reference Table (PRT) [16]. A list of the
descriptions of the program segments as well as the
data and file segments reserved for this process.

3. User Stack. Provides the process with the facility
for temporary storage of data and a dynamic history
of the process.

The top of the stack is a quick access environment for data
manipulation. The ability to transfer control to a remote
subroutine and return is provided by the stack
mechanism. The bookkeeping required to save the address of
the calling routine and reserve working area for the
subroutine is provided by the instruction logic defining
subroutine transfer.

ADDRESSING

The program work area is placed in a contiguous block of
memory starting anywhere in memory. The starting address
of any process is its base work area register, or the address of
the start of its work area. To initiate a process all that is
needed is to set the base work area register in the
Interpreter. Since the work space contains the state vector of
the process all the information necessary for running is
available. When a process references an object in its work
area a relative address is used. Thus absolute addresses are
not needed at run time.

When an instruction references through the PRT part of the
work area, it.accesses a description found there. Descriptions
are the only objects which may contain absolute addresses
for locating program segments or data.

DESCRIPTION

All resources, program or data in the SMILE machine are
described by one or more descriptions. Descriptions are
viewed as programs whose evaluation produces the desired
items [16]. They are words used to locate data and program
and to describe these areas for control purposes. When
executed, a description causes firmware to fetch, use or
replace the desired object similar to the way an instruction
performs a given function. By describing data with
descriptions, a program becomes data independent and
information is kept out of the program stream (i.e., an object
format may be unknown and a program can still perform a
specific function on a description-defined set of data.)

There are several fields to be evaluated in a description. The
format fields define the structure and the format of the
data. Length and location fields specify the location of the
objects, the size of the object and any limits imposed. The
qualification fields control access and govern the data
usage. Operating system flags are also included in
descriptions. There are two types of descriptions in the "S"
machine. The first is an indirect pointer which is used mainly
to define the format of the object to be accessed. It also may
contain the qualification fields and always points to another
description (Figure 9).

The other is the direct description which is a pointer to the
desired object space. A direct description alone always refers
to a machine word sized object.

Each bit in a description is evaluated and causes the firmware
to perform a specific function.

[0 S FLAGS QUALIFICATION FORMAT LDC FIELD I
Initial
Indirect [Pl MIDlr c m1UNIT R INRI ADDRESS I
Holder
Indirect

Direct

I Pl M[Dlr

I P[M[DJAIB

-

c

Figure 9.

HoldM R INRI ADDRESS I
Size I R[G[ADDRESS I

Descriptions

38

Operating System Flags

The presence of operating system flags causes an operating
system function to be executed.

P (Presence Bit): When the presence bit is on it means that
the object to be accessed is not necessarily in -memory and
must be retrieved using the firmware developed as the
operating system allocate memory function. In the case of
an indirect description the next object to be retrieved is
another description.

M (Monitor): The object, when finally <1ccessed, should be
monitored by the operating system, if any one of the M
bits along the access path is on. The monitor bit is used by
the operating system for checking the use of special data.

D (Direct Description): When the direct description bit is on
the description being processed is treated as a direct
description or the end of an evaluation chain. Otherwise it is
assumed that the present description is pointing to another
description.

T (Type of indirect description): When the T = I the indirect
description is an extension description and contains a holder
field which defines a subfield containing the previously
defined objects. If T = 0 the description defines the object
desired, the control imposed and general structure of the
space and element to be accessed. ·

AB (Alter Bit): This bit is used by the operating sytem
functions during memory allocation. If on, it indicates that
the object in memory has been altered during its residence in
main memory. Thus an object must be copied back to
secondary storage only if it has been altered.

Qualification Field

The qualification field determines how the defined object can
be used.

C (Controls): The controls imposed upon the user may
change according to the access path he is assigned. If both
the direct and indirect description have different controls
imposed, the user will abide by the most restrictive of the
two controls during the access.

Fore = 00
01
10
11

Format Field

Read write allowed
Read append (write not allowed)
Read only
Execute only

The format fields define the structure of holder elements, the
nested structure of space and the byte or unit size of the
smallest element. It may also define the type of element
being accessed.

ET (Element Type): The object or objects selected are of
type integer if ET= 0 or of type floating point if ET= I.

ST (Structure): The structure of the most global space is
defined in the initial description. All of the other spaces
nested within this space are assumed to be vector spaces. If
no initial description is used, then the space is assumed to be
a vector space.

For ST= 00
01
10
11

Vector space
Stack structured space
Queue structured space
Link list structured space

U ·o: The unit is defined as the size of the basic measure
~i~hi~1 a structure. The unit is calculated as:

For Unit = 0 1 bit
1 2 bits
2 4 bits
3 8 bits
4 16 bits
5 32 bits
6 64 bits

Id (Nested space container): Contains the number of
Ho.t eror previously defined holder fields which can fit into
u~ s xt substructure. If the previous description defined a
W1\ nef 2 (4 bits) then a holder value of 10 will indicate 10 t,1•1 ~nit~ can fit in a holder (or a 40 bit element). If the
4- 1t holder description indicates 3 of the above holders can
fi~xinto the next sub-space, then it is defining a 120-bit sub
structure.

Location Fiel~

The location field indicates where the data may be
round. This may be an absolute address in "S" m.emory or
n address relative to the work area. A presence bit set may

~dicate that the object is not in main memory. Thus a
different k.ind of address identification will be necessary to
locate the data.

CONTROL

DESCRIPTION

(Describe$ Data Areal

DIRECT

SIZE
25

25 Holdar2's in Data Area

INDIRECT

STARTING
ADDRESS

R (Relative): When this field is set, the address is assumed to
be an address relative to the work area.

NR (Name Register): If NR = 0 then no address
modification is executed when accessing the next description
in the chain.

If a name register field is selected, the value in the UP field
(described later) of the specified name register is used to
modify the address field.

If a direct description evaluation is being performed then the
starting address is formed by using the global name register
(if G = 1) coupled with all the format information gathered
during the description evaluation cycle (Figure I 0).

G (Global): If G = 1 then the global name register will be
used in the calculation of the address for accessing the
desired object. If no indirect description has been used the
unit length is assumed to be word size. If G = 0 no global
name register is needed and the first or next (depending on
the structure) object is accessed.

The length of fields must be located in the description. This
will bound the operations setting the limiting factors on data
fields.

(Size): The number of elements of the most global defined
holder field which can fit into this defined space.

A HoJder2 Col)tains 5 Holder l's

CONTROL
HOLDER2

5
POINTER TO
DIRECT DESCRIPTION r--~~~~~.;.-~~~~~..L..LJL..J..-"..d.L.L..l.....L~~~~~_J_~~~~~--110
~ 12345678 11

5 Holder1 's per Holder2

COliTROL

INDIRECT

HOLDER1
8

8 Units per Holderl

CONTROL

INITIAL INDIRECT

UNIT
3

A Unit of 3 Indicates 8 Bits

INSTRUCTION

POINTER TO NEXT
DESCRIPTION

POINTER TO NEXT
DESCRIPTION

{Specifies Operation, Name, and Data Description)

Ol'ERATION NAME
REGISTER

DESCRIPTION
ADDRESS

A Holder1
One Unit= 8 Bits Contains 8 Units

NAME
(Defines the Particular Element ls) Within the Data Area)

LNS2 LNS1 UPL NS2 NS1
CONTROLS 10 3

25

Limits Holder2 Holder1
Position Position
in Area m Holder2

Figure 10. Data Accessing

.39

UP
5

Unit
Position
in Holder1

NU
2

Number
Of Unit5
Acces~

12

13

NAME REGISTERS

The name registers allow for the naming of a particular
element or group of elements in a structure during
instruction execution. It may be used as a means of looping
through a commonly nained group of elements or just using a
single element. The format of this register is described in
Figure 11.

There are eight name registers availabe for use NR I NR 7
and GNR (the global name register). The global name
register is the one used for developing the final name during
description evaluation. When XI = I then a nested space
structure must be evaluated to locate the desired element. If
XI = 0 then there is a single set of elements within the
structure to be evaluated. The X2 bit is only checked if XI =
I. It is used to indicate if more than one level of nesting
exists within the structure. When M = I then a multi element
type operation will be performed by the instruction, (i.e., a
search instead of a compare). If M = 0 then a single element
operation will occur.

I~ I ~ I M \ 61 ', I ~ 1-1 NU I UPL I UP I LNS1
NS1 I LNS2 I NS2 I

0 1 2 3 4 5 6 8 16 24 32

Figure 11. Name Register

IO, I I and I 2, used only if M = I, are the flags which specify
which of the nested indices change during a multielement
type operation (Figure I 2(a) through I 2(g)). The NU field
defines the total number of units to be accessed during
instruction execution. If NU = 0 or I, one unit is used. The
unit size of an operation is defined in the indirect
description. If it is not defined then it is assumed to be word
size.

The unit position (UP) is the position of the smallest unit
within the next larger vector. If UP= 5 then it indicates the
fifth unit within the containing space. The maximum UP
allowed is found in Unit Position Limit (UPL). NS! contains
the position of the smallest vector structure within the next
largest structure within the containing physical area. The
maximum NS2 allowed is defined in LNS2. To address a bit
position in memory within a structure the following formula
is used:

BP= (((NS2-1 X Holder2) + NSl-1) Holder I+
UP-1) UNIT

Address= Starting Address+ BP

DAT A STRUCTURES

There are four built-in basic regular data structures defined
for information written in the SMILE language: vector. stack,
queue, and link list. All objects within a regular structure are
of equal length. To access different field lengths the NU field
of the name register is used to define the number of units in a
given access.

INSTRUCTION SET

The length of a "SMILE" instruction will be mostly 8 bits or
one byte size. However, there will be an escape bit for
allowing 16 or 24 bit (2 and 3 byte) instructions. The one
byte instructions use the stack top and/ or the accumulator
for accessing descriptions and/or variables. The. longer
instructions assume a relative address for accessing data.

40

The power behind each instruction is due to the description
mechanism. When accessing a vector a simple compare
becomes a search or an add may become a summation. Field
isolation is done automatically so that data may be packed in
the most efficient way conceived without being hampered by
word boundaries. "SMILE" is not complete and instructions
may be changed, added or deleted until an ideal set is
found. The order code is totally soft as is the selected
register set. Thus the language requirements may be
modified until the designed system is firmly
developed. Special functions may require special
instructions. These instructions may be appended to
"SMILE" for individual customer needs (i.e., a special
microprogram for executing a matrix multiply as an
instruction).

CONCLUSIONS

Microprogramming has proven its worth in many
applications. The above-described data descriptions of the
SMILE language are an example of this. To implement
equivalent functions in software (as is done now) consumes
considerable amounts of processing time. To implement
equivalent functions in hardware would provide much faster
execution times, but would result in hardware so complex as
to be impractical. However, when implemented in firmware
on a microprogrammable Interpreter, most of the advantages
of hardware implementation are provided without the
accompanying hardware complexity.

Up to this time, microprogrammed systems have suffered
from one major limitation: because they were so simple (in
which lies their chief virtue) they were rather limited in their
processing throughput and were thus suitable only for
relatively small, dedicated tasks.

What has been needed is a technique to interconnect many
small micro-programmed computers into one system, and a
capability to control this array of processors so that they can
function efficiently while dynamically sharing the load.

The Interpreter-based system represents such a
technique. The Interpreter itself is a modern, fourth
generation microprogrammable computer suitable for LSI
implementation. The Switch Interlock is the means for
interconnecting virtually any desired number of Interpreters
in to a unified system with memories and peripheral
devices. The SMILE language represents the firmware
necessary to control and efficiently utilize these
interconnected Interpreters. Not only does this technique
allow the flexibility of micro-programming to be applied to
large-scale systems, but it also allows systems of virtually anY
size to be constructed and provides for smooth evolution
from a very small system to a very large one. Furthermore, it
provides a degree of simplicity in logistics and maintenance
not previously possible in medium or large scale systems,
because the en tire system is constructed using relatively few
different types of simple modules. Thus, the
Interpreter-based system appears ideally suited for Avionics
processing of the 1970s, and for many other applications as
well.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the work of their
collegues in Advanced Development at Burroughs on the
development and use of the Interpreter, and the work of
U. Faber on the development of the Switch Inter­
lock. Special mention -should go to J. T. Lynch, Director
of Advanced Development and also to R. Conklin and D.
Brewer of Wright-Patterson AFB for their support and
encouragement.

NAME

OTHER UIPL
CONTROLS LIMITS 8

NS2
10

Acc9ll one unit • • time

NAME

OTHER LNS1 NS2
CONTROLS LIMITS 5 10

A~ two units It a time

NAME
10•0 11 •0 12 •I

OTHER LNS2 NS2
CONTROLS LIMITS 25 1

ACC9IS two units at I tima

NAME

NS1
3

NS1
1

NS1
3

10•1 11•1 12•0

UP
1

UP
5

UP
5

CONTROL OTHER LNS1 UPL NS2 NS1 UP
LIMITS 5 8 10 1 1

Access one unit at a time

NU
1

NU
2

NU
2

NU
1

(The entire 10th Holder2 element wffl bt sequmced through one unit at I time)

NAME
10·• I 11•0 12 •I

CONTROL
OTHER LNS2 UPL NS2 NS1 UP NU
LIMITS 12 8 9 3 1 1

Access one unit at a time

(Each W'lit of the third Holder1 element in the 9th through 12th Holder2
element will be used)

DATAAREA
~~---=-=i

'

12346&78 --
·-

~
(1) M~iont 10 • 1

10

11

12

13

l-~~...t'..LLl---.+-~~-.l<""'-LL~+..-L.J-L...t'..4.L.L.Ji_+~~~~Ll.~4--~~....!'.4.L.l_...:.j10

!bl Mui•~ n • 1

DATA AREA

Et-11~11 I~
AllHoldor2elomonblN......i

(c) Mu.........,.. 12 • 1

DATA AREA

(d) Mu~iont 10 ond 11 • 1

(e) Multioperations 10 end 12 = 1

DATA AREA

11

12

13

CONTROL

NAME
10=0 11=1 12 = 1

OTHER
LIMITS

LNS2 LNS1 NS2
12 5 8

Acceu two units at a tim1

NS1
1

UP
5

NU
2 [] 1 11 I I 11 l:l

(Two units will be accessed each time the operation sequences through al 5 hokler1 's in
the B!h through 12th holder2 element)

(f) Multioperations 11 end 12 • 1

Nore: When IO, 11, and 12 an all ONE's, the operation sequences through all unit elements.

Figure 12. Multi Operation

41

REFERENCES

I. M.V. Wilkes, "The Growth of Interest in Micro­
programming: A Literature Survey," Computing
Surveys vol. I, no. 3, pp. 139-145, September,
1969.

2. R.F. Rosin, "Contemporary Concepts of Micro­
programming and Emulation," Computing Surveys,
vol. I, no. 4, pp. 197-212, December, 1969.

3. C.V. Ramamoorthy and M. Tsuchiya, "A Study of
User-microprogrammable Computers," AFIPS
Con[. Proc. (SJCC), vol. 36. Montvale,
NJ.: AFIPSPress,pp.165-181, 1970.

4. S.S. Husson, Microprogramming: Principles and
Practices. Englewood Cliffs, NJ.: Prentice Hall,
1970.

5. A.1. Critchlow, "Generalized Multiprocessing and
Multiprogramming Systems," AFIPS Conf Proc.
(FJCC), vol. 24, New York, N.Y.: Spartan Books,
pp. I 07-126, 1963.

6. B. Wald, 'Throughput and Cost Effectiveness of
Monoprogrammed, Multiprogrammed, and Multi­
processing Digital Computers," NRL Report 6549.
Project No. RF-001-08041, April, 1967.

7. G.R. Blakeney, et. al., "An Application-oriented
Multiprocessing System: Design Characteristics of
the.9020 System," IBM Systems Journal vol. 6, no.
2, pp. 80-94, 1967.

8. B. W. Lampson, "A Scheduling Philosophy for
Multiprocessing Systems," Comm. ACM, vol. 11,
no. 5, pp. 347-360, May, 1968.

42

9. A. S. Buchman, "Aerospace Computers," Adl'ances
in Computers, vol. 9, F. L. Alt and M. Rubinoff,
Eds. New York: Academic Press, 1968.

I 0. D.O. Baechler, "Aerospace Computer Character­
istics and Design Trends," Computer, vol. 4. no. I,
pp. 46-57, January/February, 1971.

11. 0. L. MacSorely, "High Speed Arithmetic in
Binary Computers" Proc. I RE. pp. 67-91, January
1961.

I 2. L. .S. Garret, "Integrated-Circuit Digital Logic
Families, IEEE Spectrum, vol. 7, no. I 0, pp. 46-58,
October 1970; no. 11, pp. 63-92, November, 1970;
no. 12, pp. 30-42, December 1970.

13. "The Descriptor - A definition of the B 5500 Infor­
mation Processing System," Burroughs Corp.,
February, 1961.

14. R.F. Rosin, "Supervisory and Monitor Svstems,"
Computing Surveys, vol. I, no. I, pp. 37-54,
March, 1969.

15. BJ. Huberman, "Principles of Operation of the
Venus Microprogram," Mitre Technical Report
1843, May I, 1970.

I 6. " A Narrative Description of the Burroughs
B 5500," Burroughs Corp., May, 1965.

I 7. R. Barton, Private conversations, 1967-1969.

