OPERATIO
TECHNICA
SUMMARY

BTi 8000

THEORY OF
OPERATIONS AND
TECHNICAL
SUMMARY

Ssptember 1978
PRELIMINARY DOCUMENT

CONTENTS

INTRODUCTION 6.
1.1 Overview

1.2 System Philosophy

1.3 Integrated System Design

1.4 Process Services

1.5 Programmer Services

1.6 Management Services

1.7 Failure Control

SYSTEM HARDWARE: VARIABLE RESOURCE

ARCHITECTURE 2.
2.1 Engineering Design Principles
2.2 Bus Structure
2.3 SSU (System Services Unit)
2.4 CPU (Computational Processing
Unit)

2.5 MCU (Memory Control Unit)
2.6 PPU (Peripheral Processing Unit)

.7 Peripheral Controllers and Subsystems
2.8 Configurations 8.

THE OPERATING SYSTEM: VIRTUAL MACHINE

MULTIPROCESSING

3.1 Orientation

3.2 Resource Management

3.3 Process Management

USING THE SYSTEM

4.1 Account Structure 9.

4.2 Account Usage

4.3 Terminal Access

4.4 Batch Processing and Operator
Functions

PROGRAM OPERATION

5.1 The virtual Machine Environment

5.2 Concurrent Processes

5.3 Process Structuring and Run 10.
Control

5.4 Program Interrupts

PROCESS INPUT/OUTPUT
6.1 Design Principles

6.2
6.3
6.4
6.5 Device Access
6.6
6.7
6.8

Record Types
Virtual Channels
Logical Devices

Device Types
1/0 Operations
Saved Files

CONTROL MODE, ASSEMBLER, AND
UTILITIES

7.1 Control Mode
7.2 Assembler

7.3 Linking Loader

7.4 Editor

7.5 Sort and Merge

7.6 COPY

STANDARD PROGRAMMING LANGUAGES

8.1 Introduction
8.2 PASCAL-X

8.3 COBOL

8.4 FORTRAN

8.5 BASIC-X

8.6 RPG 11

DATA BASE MANAGEMENT SYSTEM

9.1 Introduction to Data Base
Management

9.2 DBMS-X
9.3 Data Definition Language

9.4 pata Manipulation Language
9.5 Data Base Control System
9.6 Data Base Utility Functions

SECURITY

10.1 General
10.2 Account and File Privacy
10.3 Foreign Program Execution

10.4 Manager and Operator Privileges

APPENDIX A:

APPENDIX B:
APPENDIX C:

SUMMARY OF USER-MODE
CPU INSTRUCTIONS
MAINTENANCE AND SUPPORT
ABOUT BTI

The information contained in this document
is subject to change without notice.

BTI Computer Systems specifically disclaims
warranties of any kind with regard to this
material, including, but not limited to, the
implied warranties of merchantability and
fitness for a particular purpose.

PREFACE

This manual presents general ‘information about the BT! 8000 computer
system, The introductory material may be read as a management summary;
the manual as a whole should serve the technical reader as a complete
source of information for system evaluation and familiarization.

Although some detailed specifications are included, the primary
orientation of this manual is to present a conceptual overview,
with emphasis on design principles of the system.

THIS IS A PRELIMINARY DOCUMENT, FOR LIMITED DISTRIBUTION ONLY.

The final version of this document should be released later this
year. The manual will be rewritten, possibly reorganized, and
typeset to improve its readability, with graphic material included.
Further information may also be added.

September 1978

Sam Cohen
Shirley Henry

Copyright GD 1978 BT! Computer Systems

1. INTRODUCTION

1.1 DOverview

/\"

1

The BTI 8000 is a 32-bit high-performance multi-processor, multi-
user, multi-language, and multi-function computing system. Its
unique architecture can be scaled to serve in a range of applications
petween those of a large minicomputer and a mid-to-large size
mainframe computer. '

The BTI 8000 is the result of over four years of research and
development in the application of rapidly evolving hardware and

software technology to business information processing.

Advantages of the BTI 8000 computer system include:

MULTI-PROCESSOR:

MULTI-USER:

MULTI-LANGUAGE:

MULTI-FUNCTION:

UP TO EIGHT 32-BIT PROCESSORS
OPERATING IN PARALLEL

UP TO 512 SIMULTANEOUS INTERACTIVE
TERMINAL USERS (BLOCK MODE, TO 19,200 BAUD),
PLUS BATCH

PASCAL-X
COBOL
FORTRAN
RPG II
BASIC-X
DBMS-X

INTERACTIVE TURNKEY

INTERACTIVE DEVELOPMENT
FAIL-SOFT TRANSACTION PROCESSING
MULTI-STREAM BATCH

SECURE TIMESHARING

MULTI-FUNCTION PROCESSING

The system is designed for the cost-effective support of a number
of distinct simultaneous activities. Larger configurations can
concurrently run hundreds of interactive terminals and batch jobs.
Activities that are particularly well supported include:

o Interactive turn-key applications, including data entry,
data retrieval, and fail-soft transaction processing

o Multi-user database applications

o Interactive program development of both batch and on-line
programs, for all languages

o Multi-stream spooled batch prbcessing

o High security on-line applications

o General timesharing, with full accounting and management control
o Multiple-language programming for commercial applications

(COBOL, RPG II, FORTRAN); scientific/engineering applications
(FORTRAN, PASCAL-X); structured programming (PASCAL-X, COBOL) ;
and educational use (BASIC-X, PASCAL-X)

APPLICATIONS ORIENTATION

The BTI 8000 is the first computer system whose software was designed
before its hardware, so that user applications and management needs
are serviced efficiently and intelligently at moderate cost.

The machine instruction set was specifically designed for

maximum efficiency in the execution of compiler-generated code,

as opposed to hand-generated assembly code. By sharing both code
and data areas in memory among multiple users, the operating system
minimizes disk access, and hence maximizes throughput.

Programmers are jsolated from machine details and the complexities
of system internals, and are free to concentrate on the design and
development of their applications.

o Programs written in all languages address terminals as ordinary
I/0 devices. There is no need to deal with special
communications software.

‘o ‘A universal interactive editor minimizes program preparation
"and modification time. ‘

o] A single, easy-to-use command and control language allows
convenient testing of any program, including batch jobs,
from interactive terminals. A1l development may be interactive.

o Interactive symbolic debuggers totally eliminate the need for tedious
core-dump analysis. Symbolic information is permanently linked with
object code to allow first-stage debugging of any program without
recompilation.

o Device-independent I/O eliminates reprogramming when the application
requires different files or even different peripheral devices.

o Dynamically expandable files and automatic disk organization
eliminate the need to manage physical vextents”.

o Programming languages are extensions of the most comprehensive and
recent industry standards. Programmers adapt easily to the system,
and outside software packages are easily converted. lLanguages
provided are: COBOL, FORTRAN, PASCAL-X, RPG II, and BASIC-X.

) The PASCAL-X application language (extended PASCAL) is designed
specifically for productive structured programming, and generates
extremely efficient object code.

o A CODASYL data base management system, DBMS-X, provides unigquely
error-protected transaction processing through COBOL, FORTRAN, PASCAL-X,
and its own interactive data base language. DBMS-X relieves the data
base administrator of all physical data management chores.

UNIQUELY MODULAR ARCHITECTURE

The unigue system architecture minimizes risk of purchase and
totally eliminates upgrade conversions.

The BTI 8000's Variable Resource Architecture is based upon
significant BTI engineering patents. The computer is composed of
four types of resource modules, each of which serves an independent
architectural function: CPU, memory, I/O, and coordination. The
key to this design is a central bus that operates at 60 megabytes
per second.

Variable Resource Architecture, in conjunction with its integrated
operating system, provides several unique economic benefits:

o By varying the total number of resource modules (up to 16),
a configuration may be selected to match the scale of the
application exactly. Neither too much nor too little computer
power need. be purchased. Configurations can be chosen from
under $100,000 to over $§1,000,000.

o By varying the mix of the different resource modules, a
configuration may be selected to match the nature of the
application exactly. The customer need not pay for excess
system capacity merely to support a special architectural
requirement (such as a large number of terminals).

o A given configuration is instantly expandable with no
change in software. Additional resource modules, including
CPU's, are merely plugged into the bus. After plug-in,
sysgen/restart is an automatic one-pushbutton procedure
that the system accomplishes in seconds.

The operating system software is tightly integrated with

the architectural design to provide a consistent environment
for all user software, across all configurations. This
"virtual machine"” technology means that no reprogramming,
recompilation, or DP staff effort of any kind is required

to accommodate a change in configuration. (In fact, programs
are deliberately kept unaware of hardware configuration.)

Application software investment is fully protected as the
workload requirements grow: the largest BTI 8000 can use the
same programs developed on the smallest. Capacity upgrades
are painless and risk-free.

MANAGEMENT CONTROL AND SYSTEM SECURITY

Control and security structures are organic elements of the BTI 8000.

The system 1is fundamentally and positively secure. Interactive users
cannot damage the operating system, oOr interfere with either system
operations or each other. Data files and programs are totally private
unless explicitly declared otherwise. Production work may safely

be run concurrently with general timesharing.

o System management is automated, so that the system manager
need not be a systems programmer. His responsibilities are
in applications control rather than technical maintenance.

o System operation is segregated from system management, SO that
operators cannot access user data -without explicit authorization.

1] Management can be delegated through & four-level hierarchy
of control and data access privilege. Unique positions in
this structure can be created for all individuals using the
system, with password-controlled access.

o Individual uéers, or groups of users, can have their interactive
environments tailored to separate turn-key applications,
whether rote data entry or on-line management information inguiry.

o Applications are controlled and coordinated by the organization
of all programs and data files into various separate libraries;
these are normally private to an individual user, but may be
made public to different groups of users or to the whole system.
User privacy is the default state, with specific action required
to make data accessible to other users, 80 that security is
not breached through oversight.

o Management avthority includes the ability to authorize user
access, grant specific allocations of system resources -(time
and file space) to subordinates within the hierarchy, get full
reports on user activities, and limit the ability of subordinates
to share data outside their groups.

o The BTI 8000 also specifically deals with the "Trojan Horse",
»false front"”, and other security problems in multi-user
on-line computing.

/0

HIGH SYSTEM AVAILABILITY

In fault detection, tolerance, and recovery, the first priority of
the system is to preserve data integrity; the second is to preserve
operational continuity.

o Variable Resource Architecture is fail-soft. If one of
several CPU's or memory modules fails, and no replacement
is available on-site, the system can be restarted in its
reduced configuration. The same job mix is still serviced
at the reduced performance level.

o The hardware detects errors through integrated multiple self-
checking mechanisms. Inconsistent operation immediately
removes a resource module from service, with the operator
notified.

o Further diagnosis is immediately available through on-line
remote communications with the BTI service computer at the
BTI national service center. This facility is also used
for on-line factory software maintenance. The link can
be disabled at the front panel, if desired.

o Recovery from power outages is automatic and does not
require operator assistance; all operations resume where
they were interrupted. A self-contained battery pack
ensures that system date and time are correct, even after
a full week.

o If the communication link with a remote terminal is lost
during an interactive session, the system closes out the
session in an orderly manner. Explicit line disconnect
routines can also be programmed to back out partial
transactions, write checkpoints to files, etc.

o A disk data reconstruction facility automatically rebuilds
most data blocks whose contents are partially destroyed by
bit or burst errors, including physical disk problems. This
mechanism is unique to the BTI 8000, and is patented by BTI.
The system is thus protected against the most common cause
of data loss and system crashes.

(] The data base management system uses unigue software technology
to preserve the consistency of data bases at all times, even
in the event of a system crash during an update transaction.
DBMS-X also provides for incremental data base backup, audit~-
trail and journal logging, and the creation of test data bases
to allow for fail-safe program development.

1.2 System Philosophy

DP equipment costs

Use of computers

DP salary budgets

1958 1968 1978

The deslgn philosophies of the BTI 8000 are based on several
observations about business information processing economics:

1. Data is an ever more valuable organizational yresource.
2. Data processing is an ever more critical organizational function.
3. DP equipment costs are decreasing while people costs increase.

The BTI 8000 is an on-line system, designed for large-scale interactive
multi-user capability. Larger configurations can simultaneously run
hundreds of terminal users, plus multi-stream batch jobs.

Traditional data entry and data retrieval procedures (keypunch
and lengthy print-outs) are substantially less cost-effective
for an organization than on-line, interactive terminal access.
While some detailed paper reports are always necessary, the
indirect costs of not having timely information immediately
and easily available to the end-user are even more significant
than the direct costs of keypunch and support operations.

The BTi BOOO protects data against damage through fail-soft data
handling and storage. Mechanisms include:

internal validity checking

1/0 transfer validity checking

Disk error correction/ data reconstruction
Crash-proof DBMS update transactions

000O

The BTl 8000 provides for full data security, privacy, and protection
in @a multi-user environment, through:

Non-interference among user activities

Protection of each user's private data from other users
Safeguard controls in sharing of data access among users
Password-protected system access, with audit trails

c0o0O0O

Data loss, damage, or theft may have financial conseguences
at least as severe as those caused by the loss, damage, or
theft of any other organizational asset. Even if certain data

is not considered critical, replacing it if destroyed requires
the application of people, time, and other resources. Security

problems with sensitive data can seriously damage an organization
as a whole.

n

The BT! 8000 is designed to be a fail-soft, redundant system
through the use of multiple, pooled hardware resources.

- The system uses a multi-level approach to hardware diagnosis
and correction, through automatic self-diagnosis plus a remote,
on-line link to factory service.

System operations are protected: the operating system is insulated
from user activities.

Unavailability of the data processing resource can immobilize

if one of their major components fails; then, fault diagnosis
and correction are dependent on the availability of vendor
service personnel. Computers are also traditionally vulnerable
to certain types of programming €rrors, where the operating
system is accessible to users.

many organizations. Most computer systems are totally inoperable

The BT! 8000 provides an automated environment for application
development and execution. The system allows DP management to
focus attention on applications, by relieving them of the burden
of managing system internals.

The expenses of recruiting and compensating high-guality,
talented data processing technical personnel comprise an
enormous portion of the DP budget. A surprisingly large
percentage of this resource, however, is traditionally
employed in the servicing, enhancement, and operation of
the computer system itself, rather than in the application
of the computer to the purposes of the organization. It
is not uncommon to have thirty percent of a programming staff
engaged in the so-called systems programming function. It
is a costly irony of technology that the very source of
automation is itself so little automated.

The BTI B000 is a cost-effective vehicle for applications programming;
its facilities include:

(]
(o]
(o]

(=]

End-user interactive turn-key programming tools

Full interactive program development and test facilities
Standard forms of major programming languages:

COBOL, FORTRAN, PASCAL-X, RPG 1!, and BASIC-X

A full-scale CODASYL-type data base management system

(a)

(db)

(c)

(d)

Application software costs are synonymous with the people
costs of programming. Minimizing the need for programming,
and the effort required to achieve stated programming goals,
by definition minimizes this ever more expensive cost. There
are several areas of concern in developing (or acquiring),
validating, and maintaining application software:

Distance of users from data. If users do not have
direct access through on-line terminals for data
inquiry, programmer time is constantly required to
translate their reguests to the computer.

Efficiency of programming procedures. On-line
interactive program development and testing, time-
shared with production operation of the computer,
is enormously more effective than the traditional
batch-processing approach.

Standardization of programming languages. Use of
industry-standard versions of the major programming
languages minimizes the costs of programmer recruiting
and training, and reduces or eliminates the cost of
converting purchased software packages. Use of
non-standard languages may preclude the possibility
of make/buy decisions.

Use of data base technology. Multiple, uncoordinated

uses of the organizational data resource lead to large
program maintenance costs as the complexity of applications
increases and as new forms of data are added. Data base
technology provides a single, centrally controlled organi-
zation for data, and a maintenance-free interface to it
for existing and future application programs.

M

The BT! 8000 is characterized by its unique hardware and software
technology: Variable Resource Architecture and Virtual Machine
Multiprocessing. Together, they provide incrementally expandable
system capacity to meet growth in wotkload without DP staff effort.
The VRA/VMM philosophy includes:

o Plug-in hardware resource expansion
o Pushbutton automatic SYSGEN
o Hardware configuration totally transparent to all

software: no reprogramming, recompilation, or
tuning is necessary when the system configuration
is changed

As the general economy expands, the growth of DP activity
inevitably leads to the exhaustion of of computer capacity
and the need to upgrade the equipment to acconmodate the
growing workload. Because of constant advances in technology.,
resale value of used DP equipment tends to fall off rapidly
with time, while the economic risk of the new capital
investment decision increases. Furthermore, the upgrade
traditionally results in a major cost in time, effort, and
parallel operation for converting the existing application
software to run on the new system, with secondary costs

in the risk of erroneous operation of improperly converted
programs. .-

7¢

/7

1.3 Integrated System Design

The BTI 8000 is a high-performance 32-bit multiprocessor computing
system that couples a virtual machine multiprocessing monitor to a
uniquely modular hardware architecture. (The term '‘virtual machine"
refers to the environment in which programs run. The characteristics
of this environment need not match those of the physical machine on

which it is implemented.)

The central design principle is separation of function. At the
conceptual level, application program logic and application
programming effort are separated from both the size of the
workload -- i.e., the amount of program use -= and the physical
System'configurétion'selected to support that workload. At the
architectural level, performance/cost ratio of the system is
maximized by balancing and distributing architectural functions
among a mix of specialized hardware modules. The distribution
of functions -- i.e., the relative mix of the different types
of modules -- may be selected to match the nature of the workload;
the amount of system capacity == i.e., the total number of
modules that comprise the computer == may be selected to match
the size of the workload. The design is therefore known as

Variable Resource Architecture.

The design assigns separate but cooperative responsibility to

one or more resource modules for each of three basic functions:

o Execution of program instructions;
o Access to main memory;
Movement of data through input/output channels.

A fourth module type is responsible for internal system services

and coordination.

BTI has applied for several major hardware patents on a central
interconnection mechanism that makes this unique architecture
possible: The internal VRA bus is a 32-bit-wide path through which
data passes between resource modules at the rate of 60 megabytes
per second. Its ultra-high transport rate, four times faster than
possible with previously available technology, enables the

separate components to function in parallel as an integrated
system, since inter-module communication is seldom delayed by

bus contention. For example, a burst data transfer from a

storage module disk drive occupies only four percent of available

bus capacity.

The integrated virtual machine monitor pools the available
hardware resources into a single physical machine, which it
then uses to implement and support separate virtual machine
‘environments for each ‘process', or user activity, on the

system.

The result is that all software operations oﬁ the system use

the same, well-defined virtual machine specification, independent
of the hardware mix or size. Application programs are written
without concern for configuration, and will execute unchanged

on any BTI B000 system, from smallest to largest. Differences

in the size of a system affect only overall work/time ratio, not

the user environment or system services available to user processes.

Since the system software was designed before the system
hardware, the latter provides direct and specific support of
Monitor functions to maximize virtual machine efficiency and

hence overall performance/cost ratio.

S3v

cpv Mcv MeMORY
‘\oé ’&
cPL | ¥ < Mcu MemoryY
° ' "‘03 o‘,.A Q.P .
.' 43) > T o.
cPV | 0 BuS Mco MEMORY
b .
INPUT/oorPur
X X J
ppv pro pPL
) AL TTT
ISk . nasvETe (orven
conTtelult “ﬂ.;“ ‘v rb::“ - ascion]
(s wivVES) (64 por™Y) (4 oR1989)

SEPAPATION OF FUNCTION:

VARIABLE RESOURCE ARCHITECTURE

CPU:
MCU:
PPU:
SSu:

Computational Processing Unit
Memory Control Unit
Peripheral Processing Unit
System Services Unit

O
XY

1.4 Process Services

A ‘'process'' is the distinct execution of a program. Several processes

may arise from the same program, if that program is invoked by multiple
users concurrently. The BT!1 8000 Monitor allows multiple concurrent

users to share the same COpPY of a common program in memory. The

system can support thundreds of processes simultaneously, using any

number of shared or individual programs. The environment in which

each process runs is its "“wirtual machine''. Virtual machine specifications
are independent of physical machine specifications. A ''processor'' is

the hardware module that executes program instructions. Processors

run processes.

The system provides the following services to user processes:

Comgutation:

Processors own neither memory nor processes: assuming that there are
at least as many processes to be run as processors to run them, the
system assigns each processor to some runnable process until either

a roadblock condition arises (such that the processor would be idle
until some external event ends the roadblock), or the assigned time
quantum expires. At this point the process is switched out of that
processor, and the processor is reassigned to the most eligible

waiting process.

There are no master-slave relationships among processors, and they
operate independently of one another; a processor is a computational
resource in the service of processes. Monitor functions, including
process scheduling, 'float' among processors in the same manner as

user processes.

The machine language instruction set is specifically designed to
~efficiently execute compiler-generated code, as opposed to the
hand-generated assembly code which matches the instruction set

of traditional machines. There is direct processor support of

the data structures used in compiled code: stacks, Queues, arrays,
and linked lists, with arbitrary-size data elements. Thirty-two
address modes provide for efficient manipulation of these structures,
whose data elements may be character strings, arithmetic or logical
operands, pointers, bit fields, etc. Subroutine linkage, with
parameters passed by address or by value, is facilitated by a special
portion of the instruction set.

Arithmetic operations use single-word (32 bits) or double-word (64 bits)
integer operands, 64-bit floating-point operands, plus (with system

- software support), 128-bit double-precision floating-point operands.
Processor logic also includes facilities for operand exchanges and
simultaneous storage of results in both memory and registers.

Memorx:

Each process owns one-half megabyte (512 kb) of program address space,
independent of the amount or configuration of physical memory, or of
the number of processes on the system. Memory is managed in fixed

size pages of 1024 32-bit words (thus the virtual memory space of

each process is 128 pages). Process pages float between physical

main memory and mass storage (disk) transparently to the user processes;
the system uses a modified demand-paging technique that precludes
thrashing.

BT] 8000 design essentially eliminates the overhead time of virtual-
to-physical page address translation, which is the traditional '

limiting factor in virtual memory design. When the system assigns
a processor to a process, the current translation table fbr that
process is loaded into a special fast-access memory built into

the processor hardware; subsequent translation requires only

67 nanoseconds, a small fraction of instruction execution time.

The system optimizes the use of physicai memory by sharing data
pages as well as code pages among processes, whenever possible.

if several interactive terminals are using the same program, only
one copy of each program page need be in memory; if one of the
processes modifies a writable program page (an “impure' page),

the Monitor creates a private copy for modification, and the other

processes continue sharing the original page.

Files and 1/0:

The mass storage resource (disk) supports internal system operation,
virtual memory, and the file system, which includes logical devices.
All program 1/0 is performed through virtual 1/0 channels; each process
can use up to 202 virtual channels. At run time, virtual channels
are associated with logical devices, which may be various types of
mass storage files (sequential access files, random access files,
executable code files); physical device analogs (magnetic tape, line
prfntgrs, the interactive terminal, etc.); or other logical devices,
inctuding inter-process communication mechanisms. All physical
devices, with the exception of terminals and magnetic tapes, are
sutomatically spooled. Batch processing is facilitated through
spooled input (virtual card reader) and output (line printer) queues.

Since users may perform virtual channel assignment externally to

programs, even physical peripheral configuration need not affect

program independence. For example, a program which generates an
output stream of character records may be variously used to output

to a line printer, magnetic tape, disk file, or terminal.

At the hardware level, peripheral 1/0 is controlled by intelligent
high-speed channels whose operation and access to memory is inde-
pendent of program computation, The Monitor intercepts program |
1/0 requests and issues the appropriate privileged instructions

to the channels.

Privacy/security:

Each process operates under the auspices of an account, the locus
of resource use and data ownership. - There may be thousands of
accounts on a system. Accounts are allocated system resources
(processor time, wall-clock time, mass storage) in a four-level
control hierarchy, and are charged for their use. Each account may

own a private mass storage library of programs and files.

The system is basically closed and passively secure; that is, a user
must have permission to use the system in the first place, and then
to access private resources outside his ownership. The activities
of all users, including system operators, are confined to their
private environments, unless other accounts have granted access
permission either explicitly or through a supervisor-subordinate

relationship or public library.

Access to programs, files, and inter-process communication facilities
can be restricted in several dimensions, and can include an access-
time password requirement. A process can even restrict the execution
of certain eritical program operations prior to running a suspect
borrowed program, or during debugging.

e
\

1)

The virtual machine process environment allows direct execution
of only those processor instructions which deal with the virtual
memory address space. All other operations, including 1/0, are
performed through execut ive request' pseudo-instructions which
the processors trap out, so the Monitor can service the request
safely. Each process is protected from interference from other
processes, and the system itself is protected from harm from any

process.

1.5 Programmer Services

BTl-supplied software provides program development services based

on the following assumptions:

o The users are not system programmers, but are competent
in the use of one of the major programming languages
(coBOL, FORTRAN, etc.) and in knowledge of the application.

o Many of the applications being programmed are commercial
systems, characterized by database use, sensitive data,
and an interactive terminal interface to a turnkey end-user

unfamiliar with computers.
o The DP organization should be able to take advantage of
existing application packages written in a standard form

of one of the major programming Tanguages.

Hence the following services are provided for the programmer:

Control Mode:

The interactive command language is familiar, easy to learn, and
neither complex nor introverted in design. The user is not involved
in internal system operations. The same Control Mode language is
also used for job stream control and batch processing. {f desired,
special-purpose control languages may be programmed for application

to one or more accounts.

Data security:

The file system includes carefully designed mechanisms to prevent
unauthorized access to data. Unless specificélly created for inter-
machine transportability, data is recorded in an encrypted form on
all portable magnetic media. The system manager can prevent even
system operators from accessing sensitive data, such as payroll files.
Project and division managers can prevent their subordinates from

allowing data to be accessed by users outside the project or division.

Crash resistance:

The system is designed with a commitment not to lose data because

-of system failure. Data structures are crash-resistant, in the sense
that operations can be interrupted at any point and the structures
are still validly accessible. At a higher level, the DBMS-X software
facility provides crash-proof transaction processing of databases: in
case of failure or interruption, the most recent update transaction

is posted either completely or not at all, so that the entire

database remains coherent at all times.

Interactive development:

Programs are normally developed on interactive terminals, which can
oOperate at rates up to 19,200 baud. Program preparation and
modification is done with a BTI-supplied interactive editor, or
(for BASIC-X) an incremental compiler. Interactive symbolic
debuggers are provided for all languages, and can be used for
symbolic variable examination of programs that have not been

compiled specifically for debugging.

Turnkey facilities:

All programming languages allow the programmer to assume full
control over end-user terminal lnterfaces. Programs can control
formatting, error recovery, and terminal interrupts, so that a

data entry clerk, for example (or a financial manager) is not
confronted with any messages except those planned by the programmer.
The end-user of any account can be placed under this kind of

fully controlled turnkey environment from session sign-on to exit.

Full-scale CODASYL-type DBMS:

.Applncatnon des:gners may choose to store data under the control

of a BTI- supplled database management system (DBMS). DBMS-X extends
the CODASYL specifications for multi-level network databases, and

is accessible through COBOL, FORTRAN, and PASCAL-X.

DBMS-X provides unique facilities to specifically protect the structural
and logical integrity of databases in a multi-language, multi-user,
on-line system. Access Control Lists secure information at the database,
dataset, and data item (field) levels. DBMS-X also includes a compre-
hensive set of utility functions to aid in the creation, backup,

restructuring, auditing, journalizing, and recovery of databases.

A separate offering, the Interactive Database Language (1DBL), uses
DBMS-X to provide general-purpbse interactive database query, update,
and data entry without the need to write a user program in one of

the application languages for these purposes.

1)
o

Standard programming languages:

The BTI 8000 language compilers and subsystems are designed to
offer a comprehensive implementation of accepted industry standards.
This approach allows programmers to become productive on the system
quickly, and allows existing application software to run on the

BTI 8000 with little or no conversion.

All compilers (and the assembler) generate object code in a standard,
reentrant format so that the link-loader can combine routines written
in various source languages into a coherent executable program.
Symbolic information is carried with executable code to provide an
interface with source-level interactive debuggers. Finally, all
languages interface to a common file system and support terminals

. as standard 1/0 devices, so that interactive programs can be written

in éll languages with minimum programmer training required.

PASCAL-X is an extended version of standard PASCAL, a language
which allows and promotes structuring of both programs and data.

It is remarkably efficient both in terms of programmer productivity
and machine execution; PASCAL-X programs generate code that
executes as well as good assembly code, at a small fraction of

the cost in programmer time. BT! 8000 compilers and utilities
'are themselves implemented in PASCAL-X.

FORTRAN is an extended version of 1977 ANSI-standard FORTRAN,
as accepted by the U.S. Navy and Air Force.

COBOL is an extended version of 1974 ANS!-standard COBOL, at
the "high-intermediate' level. It incorporates a facility
similar to IBM VSAM, as well as interfacing to DBMS-X.

RPG Il is based on IBM System/3 RPG 11, together with features
offered In other versions of RPG.

BASIC-X is a highly extended version of BASIC developed for
business applications, providing an incremental compiler
approach to program development and execution. The BTI 8000
BASIC-X facility accepts, wi thout change, programs developed
in BASIC-X on the BTI 4000 series systems.

Utilities and assembler:

The utilities package includes a versatile linking loader; an

editor with a screen-oriented mode, for interactive development

of programs, as well as for general document preparation; a general
and powerful sort/merge which can be run conversationally, as

part of a job stream, or as a sub-program; and a copy/format program
for‘generél-pdrpose data movement and conversion. Although BTI
offers an extremely efficient single-pass assembler, PASCAL-X is
strongly recommended as the preferred alternative in situations

where assembly code might be used.

ow)

i)
™

1.6 Management Services

The manager of a powerful multi-user computing system must have
full control over the system and its use, but should not be burdened
with duties which can safely be delegated to subordinates or

automatically handled by the system itself.

{n the BT!1 8000, all system users are identified by accounts which
reside in a management-def ined hierarchy of up to four levels of
control. All access to the system, including that of managers and
operators, is via password-controlled entry to an account. The system
manager can delegate supervisory authority to a series of division
managers, who are allocated resources for distribution among thelir
subordinate projects. Each division manager can in turn delegate
authority to a series of project managers, who are allocated resources
for distribution among their subordinate individual users. A manager
(system, division, or project) can obtain comprehensive reports on

the activities of his subordinates.

A powerful backup/recovery facility also contributes to control and
convenience. Backup may be performed to any removeable medium, and

is selective in several dimensions. Any account family (division,
project, or individual account) may be backed up individually. Within
each library, the backup procedure can automatically select files
which have not been accessed (or modified, or backed up) since a

given date, and will in all cases skip over files marked ''no backup"'
by their owners. A variant of this procedure will back up and then
purge from disk storage those files which have not been accessed for

a specified time.

Accounts can be tailored for several specific purposes:

Management:

With proper authorization, an account can allocate and limit
subordinate account access to system resources, and can obtain
reports on subordinate account activity. The ability of an
account to perform certain managerial functions does not always

include the ability to pass these privileges on to other accounts.

System operations:

System operators need not and should not have the same privileges

as management. The ability to adjust batch streams, operate tape
drives and line printers, and perform system backup (without operator
access to data) can be delegated to specific password-controlled
accounts, and/or to execute-only programs within these accounts.

All backup media are encrypted, for further security control.

The system does not require a special operator's console.

Public libraries:

If not restricted by management, any account can declare any of the
programs and files in its library to be public to another account
or family of accounts. Accounts with certain predefined names have
libraries which are implicitly public to their portions of the
account hierarchy. Programs and files can be shared for common
program access, common database access, or application team

development.

(XY}

Application development:

Programmers can be given individual private—library accounts for
on-line applicationvdevelopment and testing, plus convenient access
to team development accounts. Program errors during development
and testing can be confined to one account library. Archival

library accounts can also be constructed for programmer convenience.

End-user turnkey operations:

With suitable applications design and the assignment of a startup
program to the account, turnkey end users can remain under the
full control of application packages for the entire duration of
every interactive session. End users, whether data entry clerks
or top management, need not be burdened with computer protocol

or jargon, and the application software need not be exposed to

misuse or harm.

General timesharing:

The default status of all ordinary user accounts is @ two-way
isolation of activity and data from all other users on the system,
subject to the control of the account's manager. Three levels of
public libraries are available for the convenient dissemination

of programs and data, and system language facilities are available
for program development and use. The account's>own library for

the storage of programs and files is private. Since all activity

oy
o~

can be monitored and controlled by supervisory accounts, the

general user-account facility is ideally suited for training
purposes, isolated development, and general timesharing. Because

of system security provisions, the system manager even has the option
of allocating a portion of in-house system resources for outside
commercial timesharing; this can be done on a sublease basis, with
some individual responsible for the management and control of the

outside commercial division or project.

1.7 Failure Recovery

The BTI 8000 uses fail-soft design throughout. The operational
aspect of this philosophy is that the consequences of a system
failure should be minimized. The system should be immediately
restartable, with minimum loss of operational continuity or data,
and with as little staff effort as possible.

Power failure:

Recovery from power outages is automatic and does not require
operator assistance; all processes resume where they left off.
A built-in battery pack holds up the system real-time clock

for power outages up to one week, so that system date and time
are correct upon automatic restart. [f power failure at the
computer site disconnect telephone lines on dial-up modems,
provisions can be made for safely and cleanly handling the

remote processes affected, as discussed below.

Disk errors:

Historically, one of the most common causes for both data loss and
system crashes Is disk read error. Most systems, including the
BTI 8000, can detect data errors: there may have been a "hit' on
some random data bit, or there may be a series of erroneous bits,

perhaps due to an electrical malfunction that occurred during
their recording, or due to the deterioration of magnetic properties

an a portion of disk surface. Two design facilities on the BTI 8000
essentially eliminate the problems caused by such errors. First,

a unique disk data reconstruction mechanism, on which BTl has applied
for patent, automatically regenerates the original data page from
information present in a calculation segment added to the data
segments that represent a page, even if one of those segments is
totally unreadable. The page is then automatically rewritten in an
alternate location, with the original location excliuded from future
access. Second, the Monitor records critical internal code and tables

on the disk redundantly, providing a second level of safety.

Processor failure: ‘

Since erroneous processor operation can destroy data, the system
includes a large number of consistency-checking mechanisms to detect

a failing processor. When the error is detected, the system halts,
with the failure identified on the operator's display. In a multi-
processor configuration, the system may be restarted as soon as

the offending module is removed; no adjustments in user software

are required to accommodate the temporarily reduced configuration,

and the same job mix can be processed transparently to all applications
at the temporarily decreased level of throughput.

Memory failure:

The system is tolerant of memory failures which are confined to a
small portion of memory: the system strikes out the page containing

the failure (notifying the operator), and continues without
assistance. Gross failures of memory, however, have consequences
similar to those of processor failure, and are handled in the

same manner as processor failures.

Disk drive failure:

Since each account, its library, and the mass storage space that
supports its use reside on some given "home' volume (rather than
being split across volumes), loss of service on a disk drive (other
than the one containing the system volume) affects only those
processes which require use of the volume in question, and

-merely suspends the processes until the volume is brought

back into service.

Line disconnect:

Normally, the majority of system use will be interactive terminal
operations, often from remote sites on a communications link. If
the system detects loss of the communications link on a terminal
port while that port is active, it will close out the process (es)
associated with that port according to user-programmed instructions.
Line disconnect is an event (1ike keyboard interrupt) which can be
"trapped' in user program code and handled by an interrupt service
routine. Programmers can write service routines to take whatever
actions are appropriate, including backing out partially completed
transactions (although DBMS-X transactions do not require this),
writing checkpoint information to files, etc.

System diagnosis:

SYstem diagnosié is automated, at two levels. First, every

major hardware module contains an independent hicrocode-controlled
diagnostic section which exercises and diagnoses its module

upon command from the operator's panel -- for example, whenever

the restart key is pressed. Second, the BTl national service
center uses a BTI 8000 computer to dial into all BTI 8000 systems
in the field to perform automatic remote diagnosis on both a
preventive maintenance pasis (taking periodic '"health checks'), and
upon customer request. (Remote maintenance access can be disabled
by a switch on the operator's panel, if desired.) Preventive
diagnosis can reveal accumulated ''soft errors' -- i.e., those which
the system had been able to correct without assistance -- and
“indicate that a given component should be replaced, prior to its
" potential total failure. Twenty-four-hour on-call remote service
provides computer-thorough fault diagnosis on an immediate basis,
faster than a service engineer could arrive on the site. The
factory service link is also the vehicle for timely and automatic

installation of fixes and upgrades to BTi-supplied software.

2. SYSTEM HARDWARE: VARIABLE RESOURCE ARCHITECTURE

2.1 Engineering Design Principles

The concept of separation of function, introduced in Section 1, is
specifically applied to engineering design in the BTI 8000. By
analyzing functional requirements and then constructing function-
specific hardware, BTI has been able to reduce hardware costs while

increasing system performance.

Lower costs result from:maximum utilization of components. By contrast,
assemblies designed to provide multiple services through the same
interface are always partially idle; the designer must ultimately
compensate by introducing more assemblies. This is true both at

the digital logic level and at the system architecture level, which
separates the functions of program instruction execution (computation),
memory access and control, and the management of data movement between

memory and peripherals (channel 1/0).

Higher performance results not only from the freedom to design the
most efficient implementation of a specific function, but also
from parallelism. |If a multi-service assembly is faced with
simultaneous requests for more than one of its functions, it must
handle the requests one at a time. At the architectural level, a
familiar example is the delaying of instruction execution by a

traditional CPU while it processes {/0 requests.

g1

¢

The BTI 8000 design takes advantage of current digital logic
technology throughout its architecture. Intelligence is distributed:
the major resource modules, and all peripheral controllers, are

each special-purpose microprogrammed processors, which in turn make
abundant use of microcomputer-based submodules for many of their
service functions. Although the architectural approach is highly
innovative, high-reliability proven technology is the only approach

accepted for component selection and manufacturing-level design.

A further basic design principle is the commitment to automatic

self- and cross-diagnosis and operational validity checking, throughout
the architecture. Data parity is checked with every internal transfer,
and, since horizontal microcode can take advantage of parallel
operation capability, hardware that is not directly involved in an
operation is put to use for self-consistency checking at every
opportunity. At the highest level, every major module contains
independent microcode diagnostics to exercise and check that module

at system start time and upon operator request.

2.2 Bus Structure

The foundation of the architecture is the VRA bus, a distributed-
logic, passive, synchronous bus with a 32-bit-wide data path (plus
address, control, and four parity lines) and 16 slots for the
attachment of major modules in priority order. All data transfers
between major modules occur through the VRA bus at the rate of 66 2/3
nanoseconds per 32-bit word (60 megabytes per second), synchronized
by a master clock residing in one of the modules, the System Services
Unit (SSU), and by the bus driver and receiver circuitry that

interfaces each module to the bus.
The four types of major modules are:

sSU System Services Unit
CPU : Computational Processing Unit
MCU : Memory Control Unit
PPU : Peripheral Processing Unit

At least one of each type of major module must be present on the
system. As discussed below, extra modules can be added up to the
16-slot capacity of the VRA bus. Only one SSU is required for any
configuration; other units can be present in any combination, although
functional tradeoffs in most applications will probably result in

no more than eight of any one module type being used on a fully

occupied bus backplane.

Physically, each module is a very large single printed-circuit
board, mounted vertically, accessible from the front of the system
cabinet behind a door under the operator's panel. The boards are

metal-stiffened and furnished with oversized retractor clamps to

99

facilitate easy insertion and removal by customer personnel, with

no tools required. To reduce the risk of a single part failure
incapacitating the system, the bus backplane itself consists of

only passive conductors and connectors; bus intelligence is physically

distributed to the interfaces carried on each module board.

2.3 SSU (System Services Unit)

Only one SSU is required for any configuration. Extra SSU's can

in fact be plugged into the bus, however, as ''hot spares', ready for

immediate activation if the primary SSU fails.
The System Services Unit is a standard device with no optional

characteristics or sub-units. It is a microprogrammed processor in

its own right, and provides the following system services:

Master clock:

The master clock drives the VRA bus at 15 megahertz (one bus cycle
every 66 2/3 nanoseconds). The clock pulse carried on the bus is
also the source of synchronization for all units connected to the

bus, and hence for the entire system.

Universal date/time clock:

This clock is the system's reference for wall-clock time and date,
with a resolution of one millisecond. Following astronomers'
conventions for universal time, it reports number of milliseconds
since 0000 hours, 17 November, 1858, Greenwich time. (System
software interprets this pure time into conventional date and time,
allowing for time zone changes, etc.) A rechargeable battery unit,
physically mounted on the SSU board, maintains the clock through

5}

power outages as long as one week. The clock is set at the factory,
but can be adjusted through the Monitor; in this case (to minimize
interference with software that references the clock) adjustments

are applied gradually, at a rate no faster than one count in 10,000.

System ID number:

The SSU contains a special system identification number which is

set at the factory and cannot be altered; this number is accessible
to any program through a Monitor request., BT! systems are unique

in allowing for the inviolate presence of third-party application
software (‘'proprietary software feature'); by mutual arrangements
between a system owner-and a proprietary software vendor, third-party
programs can be made inaccessible to even the system manager for
purposes of listing or alteration. The system ID number provides

a method for such proprietary software to ensure that it has not

been improperly migrated to installations other than the ones

its owner has authorized.

Operator's panel:

The SSU is internally cabled to the operator's panel, which is mounted
at the top of the left-most system cabinet. The panel contains a
plasma-display readout of ten alphanumeric characters (in blue) for
reporting system status and exception conditions; a large, rectangular
alarm light which flashes red to attract operator attention; and two
rows of four rocker switches each, with a small green l1ight to indicate
the status of each switch. The lower row consists of the main power
switch; a switch to disable BTI remote maintenance access; a switch

to select between normal startup and dedicated diagnostic startup;
and the run/halt ("start button') switch, The switches on the
upper row, numbered one through four, are used to select from among
sixteen possible variations of startup (normal warm start, normal

cold start, etc.) or diagnostic operation.

Remote front panel:

The remote front panel facility in the SSU allows BT! remote
maintenance access to the system to be capable of all diagnostic

and control functions that could alternatively be performed from the
operator's panel, including startup of a halted system. A cable
connection between the SSU and the lowest-numbered Asynchronous
Communications Controller provides. the physical linkage for this
_access, and also identifies the active SSU if more than one SSU

is present on the VRA bus. The lowest-numbered port on the

system should be connected to a dial-in modem for remote maintenance

purposes.

Intelligent bootstrap facility:

When the system is started, through either the operator's start
switch or the remote front panel facility, the SSU first sends a
signal through the VRA bus that instructs all system modules to
run their built-in diagnostics. The results are reported back to
the SSU, which in turn reports any abnormal conditions on the
operator's display. The startup sequence also takes the roll of
all system components: as the SSU initiates bootstrap of the
ﬂonitor into memory from mass storage, it adjusts the Monitor's

!

internal system configuration table. Since the Monitor then
adjusts its resource management operations according to this table,
the end result is an automatic, one-pushbutton sYsgen. The
operator can reconfigure the system merely by adding or removing

modules and then pushing the start button.

o

2.4 cPU (Computational Processing Unit)

in the BTI 8000, ''CPU" means "Computational Processing Unit", as
opposed to Central Processing Unit': in a BT! 8000 multiprocessor
(multi-CPU) configuration, there are no master-slave relationships
among the processors, and hence no ''center'. A Computational
Processing Unit also has functional responsibilities different

from those of a conventional central processing unit.

Each CPU is a standard device with no sub-units cabled to it. The
CPU is a 32-bit, general-purpose microprogrammed processor used for
execution of program instructions. At any given time, each CPU on

a system is running either a user process or a Monitor process.

Each CPU includes eight 32-bit program-accessible registers, all

usable for general-purpose operation; a Program Counter register;

a Process Status Register, containing condition bits and instruction
trap controls; and 2 Monitor Status Register, containing internal
interrupt control bits, a user/Monitor mode switch, and other operational

information about the process and CPU.

Another important part of each CPU is the ''page file", which is used
to process every memory reference. Each element of the page file
corresponds to one of the 128 pages of virtual memory that comprise
the address space of the current process. The page file element
contains the location of the physical memory page that the Monitor
has assigned to represent that virtual page, if the virtual page is
resident. Each element also contains access control bits, whereby
a page can be marked as read-only or totally excluded, and access
status bits, which inform the Monitor's scheduling routines whether

a resident page has been altered (or referenced at all), The page

o

file reference time is only one bus cycle (66 2/3 nanoseconds).

Machine instructions are all one word long, and reside on

memory word boundaries. Operands, either in memory or in the
registers, may be single 32-bit words, double words, or bit fields

of one to 32 bits, including 8-bit characters, whose addressing is
optimized by special portions of the CPU architecture and instruction
set. There are 175 machine instructions available in user mode

(as opposed to Monitor mode). The lower 22 bits of most instructions
specifies an operand, with the three next higher bits sometimes used
to specify a register. Many different ways of referencing operands
are provided by the "address mode" field; indirect addressing further
involves special one-word structures called 'pointers', which

themselves contain address modes and parameters for operand specification.

Most programs executed on the system are normally either Monitor code,

or code generated by a language compiler (as opposed to assemblér-generated
code), so the data structures that are facilitated by these address

modes are those most often used by compilers and operating system
designers. The instructions and address modes hence facilitate
manipulation of stacks and queues; arrays, with traps for bounds

violation; and linked lists, all with arbitrary-size data elements.
Character-string and bit-field manipulation is also performed by the
machine, and there is a special set of instructions for subroutine

linkage, with parameters passed by address or by value; traps are

generated in the case of parameter mis-match.

A brief summary of CPU instructions and address modes is given

in Appendix A.

r

2.5 McU (Memory Control Unit)

Each MCU is a special-purpose microprogrammed processor which
manages up to 16 megabytes of main memory. The memory on a given
MCU must be consistent in type, although different MCU's can
control different types of memory; thus future memory offerings

can coexist on the same BTI 8000 with currently offered memory.

Core memory modules, cabled to the MCU, are available in 32

Kword (128 Kb) increments, with a minimum of 64 Kwords (256 Kb)
present on a system. The 22-bit word address within the MCU allows
a single MCU to control up to L million words (16 Mb) of memory.
Each MCU-controlled core memory subsystem requires private power
supplies; -there are two sizes available, one to power up to

64 Kwords (256 Kb), the other to power up to 128 Kwords (512 Kb).

Core memory is non-volatile, and hence does not require battery
holdup power. Full cycle time is 670 nanoseconds per 32-bit
word, measured at the VRA bus interface of the MCU. Parity
checking, by byte, is standard.

The system treats all physical memory, across MCU's, as a single
resource with a continuous physical address space, managing this
resource on a page basis; a page is 1 Kword (4Kb). The lowest

5+n pages on the system, where "n'"' is the number of CPU's, are
reserved for resident Monitor use; the rest of memory is available
for demand-paged placement of virtual pages belonging to user
processes or the Monitor. |If an MCU detects an error anywhere except
in these low pages, the system can ngtrike out" (ignore) the page
containing the bad area, and essentially reconfigure itself.

2.6 PPU (Peripheral Processing Unit)

Each PPU is a special-purpose microprogrammed.processor'which

contains and controls four independent high-speed 1/0 data channels.
Each channel supplies an B-bit (plus parity) data path between the

VRA bus and the device/communications controller to which it is
cabled. Channels perform 8-to-32 and 32-to-8 bit blocking and
deblocking of data, and engage in control dialogs with the subordinate
controllers. Each channel interfaces to one controller, and includes
internal buffer control intelligence to keep the data flow-moving

at full speed.

The PPU's are microprogrammed to perform channel management, including
exception condition handling and data validation, with minimum CPU
support. Once a CPU has supplied a PPU with the necessary parameters
for a transfer, the PPU assumes full responsibility for performing

the transfer between the controller and main memory, through the VRA bus.

Two of the four channels on each PPU are standard-bandwidth 5 megahertz
data paths, capable of supporting all devices except mass storage. The
other two are double-bandwith 10 megahertz data paths capable of
supporting all devices including the storage module drive disk

subsystems.

2.7 Peripheral Controllers and Subsystems

Mass Storage:

Each mass storage controller interfaces to the system through a
double-bandwidth (10 megahertz) PPU channel, and can control as

many as eight storage module disk drives.

The mass storage controller is an intelligent, microprogrammed
device. It overlaps seeks on its subordinate drives, so that
some stage of the disk access process can be in progress on all

drives simultaneously.

The controller is also responsible for a unique formatting and

error recovery facility. All disk transfers to and from memory
occur one full page (1 Kword) at a time. When a page (along with
its structural linking tag) is written to disk, the controlier
partitions the data into a number of segments, each of which

is written out with synchronization, error-detection, and
date-stamping information added by the controller. As this occurs,
the controller dynamically constructs a block check segment calculated
on the basis of the original data, and appends this segment to the
others to complete the disk "block', If any segment is found to be
erroneous when a block is later read, the original page of data
(plus structural tag) can be dynamically and transparently recon-
structed from the remaining segments. The block is then rewritten
elsewhere on the disk volume, with appropriate substitution tables
updated. This capability is totally unique to the BTI 8000, and BTI

has applied for patents on its mechanisms.

Storage module disk drives are free-standing, removeable-pack
units which are available in several capacities, Different sizes
of drives may be mixed under the same controller. Access times are

identical for all sizes, as follows:

Average seek time: 30 milliseconds
Average rotational latency: 8 1/3 milliseconds (3600 RPM)
Data transfer rate: 10 megahertz bit rate

(1.25 Mbytes/second)

Storage module drive sizes are customarily given in "raw' byte
capacities, which do not allow for formatting; standard unformatted
sizes are 40 Mb, 80 Mb, 150 Mb, and 300 Mb. BTI prefers to describe
these units in terms of usable data capacities, and thus offers drives
as follows: 33 Mb, 66 Mb, 126 Mb, and 252 Mb.

Interactive terminals and asynchronous communications:

Each ACC (Asynchronous Communications Controller) provides up to

64 ''ports' for the connection of bit-serial, RS-232-C, asynchronous
devices, including interactive terminals and data communications
modems. Ports are available in banks of eight ports each, with up
to eight banks per ACC.

The ACC is an intelligent microprogrammed device which includes
enough internal buffer memory to support simultaneous operation of
all 64 ports at their maximum rate of 19,200 baud, with full-screen
(1920-character) block-mode input from buffered terminals.

Through Monitor requests, programs can specify these operating

characteristics, among others, at individual ports:

o Adjust data rates to any standard rate from 110 baud
to 19,200 baud;

o Specify terminal interface protocol or (full-duplex)
modem protocol;

(o} Control request-to-send signals to interface with half-
duplex asynchronous modems;

(o] Enable or disable automatic echoing of received characters;

o) Specify any set of line terminating characters, so that,
for example, 'character-grabbing' word-processing programs
can process individual characters as they arrive, or so
that special end-of-message protocols can be‘honored;

o Con;rol separate input and output buffers, so that

typeahead can be programmed if desired.
A ‘wirtual terminal' software system is also provided, so that

scréen—formatting programs may be made independent of the precise

characteristics of a given model of interactive terminal.

Other peripherals:

Controllers are available for two types of line printers; all
printing is automatically spooled from disk under operator control.,
The medium-duty line printer runs at 300 lines per minute, with

132 columns of print. The heavy-duty line printers are available

in 300, 600, and 900 lpm versions, all with 136 columns of print and
vertical format control.

Nine-track magnetic tape controllers can control up to four tape
drives each. Nine-track tape is industry standard (1BM/ANSI) half-

inch, switch-selectable 800 bpi (NRZI) or 1600 bpi (PE), at

L5 ips, with 2400 foot reels. These are real-time devices; that
is, they are not spooled by the Monitor., They may be used for
mass storage backup, in which case backup data is automatically

encrypted, or for industry-standard inter-;ystem communication

with character data.

A 3M-type high-density cartridge tape capability is also offered
for mass storage backup. The cartridge tape controller can support

up to four cartridge tape drives; each cartridge can record up to

ten megabytes of data.

‘~
.
W

2.8 Configurations

The unique flexibility of the BTI 8000's Variable Resource
Architecture permits configuration plans.to involve the three
considerations of capacity, performance, and redundancy.
Configuration plans should be'analyzed and approved by BTI

technical personnel.

The VRA bus resolves any occasional contention situations on a
positional priority basis; bus priority (high to low) runs from

left to right on the bus backplane, Memory access should be

given highest priority, followed by channel 1/0, then computation,

and finally system services. Therefore the major resource modules
should be installed in left-to-right order as: MCU's, PPU's, CPU's, SSu.
There is no requirement to install the boards beginning with the
leftmost of the 16 slots, and bus slots may be unoccupied between

boards.

Configuration plans normally begin with the number of simultaneous
users (counting a batch stream as the equivalent of several interactive
ports, since there are no 'ponder delays''); a description of the

kind of work done by these users, which offers a rough guide to
average program size and disk access frequency; and the amount of

on-line file storage required.

A single CPU provides processing power in the ''supermini'' range.
With suitable memory and disk configurations, a single-CPU system
can effectively support between 16 and 64 users, depending upon the
type of job mix and what kind of response time is acceptable. Total
computational power on a multi-CPU system should be figured as a
multiple of that provided by one CPU, less approximately ten percent
for each additional CPU due to bus contention.

There should normally be at least as many MCU's as CPU's on the

VRA bus; access to memory is a critical factor in a demand-paging
system. Whenever possible, memory should be split across multiple

MCU's , and the split should attempt to equalize memory capacity

per MCU. Even in a single-CPU system, dividing memory across two

MCU's allows contention-free PPU access to one memory bank while the
other is used for program processing by the CPU; furthermore, character-
move instructions can operate at essentially twice their speed if

source and destination areas reside in different memory banks.

Physical memory requirements can vary quite widely depending on
load/performance considerations. For configuration purposes, memory

is measured in pages (1 page = 1 Kword = 1024 words = 4 Kb). A

rough rule of thumb is to allow five pages for Monitor overhead, plus
one page per CPU on the system, plus four to five pages per simultaneous
user, assuming '‘average'' kinds of transaction processing and develop-
ment loads. Thus a system with one CPU and two MCU's, each with

64 pages of memory, should provide excellent response time for

24 simultaneous users.

In small systems (where there are empty bus slots), recommended
practice is to plan on enough MCU's to limit memory per MCU to
64 or 96 pages (256 Kb or 384 Kb).

Access to mass storage (disk) is the other critical performance
factor in a demand-paging system. In most situations, contention

for a disk controller among its subordinate drives does not become
significant with three or fewer drives per controller; if system load
is relatively light, and/or the drives are used primarily for semi-
archival storage of large databases, having more drives per controller
should not seriously affect performance.

Contention among users for access to a disk drive deserves serious

attention, since memory paging support of a user's process uses the
disk volume on which his account resides, Limits on the number of
users that can reasonably be supported on one drive vary from

8 to 32, depending on job mix, program size, and the amount of main
memory on the system. In general, system performance will be
improved by apportioning mass storage across as many disk drives

as possible.

In planning the total amount of mass storage required on a system,
one should allow for a generous amount of "free storage'' as well as
dedicated file space. Blocks of free storage are used for process
support, including up to one-half megabyte of virtual memory per
process; Monitor operations and tables; user scratch files; and
spool files. In addition, four megabytes should be allowed for

BTI software, Monitor, and maintenance areas.

Contention is not a significant factor in configuring the Asynchronous
Communications Controller or other peripheral subsystems. If a
redundant system is desired, however, then there should be enough

unconnected PPU channels and controller ports to accommodate recabling

of all equipment into a new configuration if a PPU or controller fails.

Fail-soft redundancy is available at the VRA bus level with the
installation of multiple major resource modules (CPU, MCU, PPU).

A second SSU may be installed to serve as a "hot spare''; it has no
system function until recabled, but will be kept electrically powered

to assure correct operation if it is ever required.

¢/

3. THE OPERATING SYSTEM: VIRTUAL MACHINE MULTIPROCESSING

3.1 Orientation

The BT! 8000 operating system, or “Monitor'', pools and coordinates
physical machine resources, including processors, to provide a
secure, efficient, and convenient environment for multiple users
of the system. The Monitor shields all user operations from actual
hardware configurations, creating a standard, well-defined virtual
machine for each user process, Since Monitor functions are so
closely integrated with system architecture, the Monitor itself

is protected from violation by user processes.

Since the Monitor is also responsible for automating as much of
system operation as possible, the following discussion is presented
for information only; internal functions need not concern the system

owner, operator, or user.

3.2 Resource Management

Processors:

When the system is started, either from the operator's panel or
through the remote maintenance facility, the SSU sends a start
signal through the VRA bus, causing all units to run their self-
contained diagnostics. Upon successful completion of this stage of
system start, the first CPU to become ready temporarily takes over
the system, locking out other CPU's so that it can control system
initialization, reading in "resident Monitor' code from a known
location on the system disk volume into the low pages of physical
memory, and then executing tﬁat code. This is the only circumstance

in which any CPU assumes dominance within the system.

When the other CPU's are unlocked, the system immediately enters

its normal run mode. To begin with, there aré no users on the system
(assuming a cold start), and so all CPU's run that portion of Monitor
code (from a fixed physical memory location) which investigates a

task assignment table elsewhere in core; at this point there will

be no tasks, so all CPU's will go idle. When a device (in particular,

an ACC) signals the}beginning of what might be a user Iog-bn activity,
the associated PPU places an interrupt signal on the VRA bus. The
first CPU to respond will handle the interrupt, posting to the
appropriate Monitor tables. |

In the steady state of system operation, when there are more
processes than processors, eqch CPU requests an interrupt from

the SSU one hundred milliseconds after it "switches in' to any

task. |f there is no other reason why that CPU should not continue
working on its current assignment (such as a wait-for-1/0 roadblock),

L5

the interrupt will cause it to "switch out' after that much processing,
and to again run the Monitor code that reassigns it to the next most

eligible process.

The core tables used to direct and coordinate the activities of
multiple CPU's are read and updated using software lockout. The
lockout algorithms, and the CPU instructions used to implement them,
are the same as those used in non-Monitor software to coordinate any
set of cooperating simultaneous processes. A given (public) memory
location is chosen, by mutual agreement, to contain a '‘lock'' word.
Before proceeding through a critical region of code (to be entered
and executed completely by only one process at a time), the process
executes a noninterruptible instruction which sets some special
"locked'" value into the public lock word, while simultaneously
bringing the previous value of that word into private storage for
examination. (The Set-and-Tést, or Exchange instructions can be

" used for this purpose.) |If the retrieved value is other than ''locked",
the process continues through the critical region, unlocking it

when done. [If, on the other hand, the retrieved value is ''locked",
then the process waits, since this indicates that some other process

has entered the critical region.

Memorx:

Even though memory modules may be physically interfaced through
separate MCU's, the system treats all of memory a8s a single continuous
resource. The low 5+n pages, where '"n'' is the number of resident
CPU's, are unavailable for paging, since they contain resident Monitor
code and tables. The rest of memory is used on a page basis for
temporary location of code and data transferred in from mass storage,

with no pre-assigned boundaries or regions.

e

£7

When a Monitor routine executing in a CPU instructs a PPU to
transfer a page into memory from mass storage, the PPU is given
two memory addresses. One is the location of the page itself;

the other is the address of a Monitor table element for storage

of the structural information included in every mass storage block.
in this way, programs can make use of the full 1024 words in every
page, since pointers, flags, and other maintenance information

are kept externally to the page contents. An analogous procedure

is used on a write to disk.

The Monitor keeps track of the logical status of all pages in memory,
|ncludung their ""home'' addresses on mass storage. Thus if a user
requests execution of a program, the Monitor will search its lists
before posting a disk read request, and will take advantage of the
prior residency of any of the program pages to avoid disk access;

any number of users may share any number of pages. This list searching
§ takes place with every page—read request, including those for file
data blocks; thus even file data pages are shared, to minimize overall
system disk access. Access control flags associated with each page
indicate whether the page is read-only or writable, and, if writable,
whether it has been altered during its residency. This information
allows pages of writable program data or file data to be shared among
multiple users: they will share the same physical memory page initially,
but the Monitor will create a private copy of a shared writable page
for any process that issues an instruction that would alter the page

contents, at execution time. .

The access control and status flags, including a 'page referenced"
flag, are carried into the page files of the CPU's, so that the system
need not make an extra memory reference merely to update or examine
them. The "page referenced" flag Is used to identify the working set

of a process as it executes, for scheduling purposes.

Mass storage:

The system is disk-based, in the sense that structural information
and operating parameters are ultimately entrusted to mass storage.
Main memory is treated as a temporary area for process operation,
with any structural or parameter changes written to disk; system
restart presumes no information in memory. Thus the system's main
concern in méss storage management is maintaining the integrity

of its structures.

Disk drives, disk packs (which are removeable), and disk volumes

(the logical contents of packs) are all identified separately, so
that, for example, volumes can be copied from pack to pack (pack-
private ‘information includes 'bad tracks' tables, which are associated
with»physicél packs onlY). Files and libraries of files reside on
individual‘mass Storage volumes, so that volumes may be dismounted
either logically or physically without halting system operation or
destroying the integrity of structures. (The ''system volume',
containing the Monitor's operational tables and routines, as well

as other data, cannot be dismounted.)

Internal system tables which are critical to operation, or to the
use of an entire volume, are recorded redundantly in the interests
of protecting operations and data. A general principle used by
the Monitor is that during a structural update, the more junior
table is created first and removed last. Even relatively complex
structures are handled in a crash-resistant manner by using the
(worst-case) technique of creating an entirely new structure
(containing the new information and a copy of any previous infor-
mation to be retained), updating the block that points to it, and
finally freeing the old structure.

(&)

3.3 Process Management

A “'process' is the distinct invocation, or separate execution, of

a program. Each process on the system is usually, but not always,
associated one-for-one with an on-line interactive user. (An interactive
user process may generate other, '‘concurrent'' processes; programs
executed from batch queues are processes; and invocations of Monitor
routines are processes.) Since the purpose of the BTI 8000 is to

support many simultaneous processes (in fact, hundreds), it is

properly described asa multiprocessing system, as well as a

multiprocessor system.

_ The environment in which a process runs, and therefore the one for
-which programs are written, iS its virtual machine. The monitor
creates a basically privaté (but identical) virtual machine for each
process; one of its aspects is the process address space, Or virtual
memory. Any and every program on the BTl 8000 may be written to
address a continuous virtual memory of 128 pages (512 Kb), as if it
were the only program executing on a private computer with that much
physical memory. When a process addresses word zero, for example,

it refers to address zero of its own virtual memory, not address zero
of physical memory. The Monitor creates and maintains the correspondence
between each page of every process' virtual memory, and some page in
physical memory; this is whét is loaded into a CPU's page file when

a CPU runs a process. (0f a 17-bit direct address, the high seven bits
select one of the 128 virtual pages and hence one of the 128 page-file
elements; the lower ten bits then select one of the 1024 words within
that page.)

Processes on the BT| 8000 may be running, in some CPU; runnable, but

7¢c

waiting for a CPU to become available; or waiting for some other
resource, including a page of their virtual memory which is not yet
resident in physical memory. Every process has all of its required
virtual pages represented on blocks of a8 mass storage volume, but
normally not all of them will be represented in physical main memory,
When a running process references a virtual page that is not resident
(as indicated by the page file), the process becomes suspended and
the Monitor assumes the responsibility of loading the page from mass
storage into some page of physical main memory. Since process pages
are not brought into memory unless and until ''demanded' by a process

instruction reference, this is known as demand paging.

There are three characteristics of this technique that should be
noted. First, the pages of a given process may be placed anywhere
in paged memory. Second, a memory page that the Monitor chooses to
overlay”With a new page need not first be written back to disk, if
it has not been altered since it was originally loaded in from disk
(since a perfect disk copy already exists). Third, frequently
referenced pages, including pages referenced by more ihan one
process, tend to remain resident, since the Monitor's replacement

algorithm tries to minimize disk access.

Demand-paging systems normally operate with a Least-Recently-Used
(LRU) replacement algorithm; that is, the page chosen for overlaying
is that which has ''aged'" the longest since being referenced by any
process. This algorithm is entirely reasonable with a moderate load
on a system, but invites a phenomenon known as ‘'thrashing'' when the

load grows too large, as follows:

The pages used by a given process during @ specified period of time
are its "working set' for that period. In a demand-paging system,
the relationship between the total pages required to hold all active
working sets, and the total number of memory pages available,

71

determines the amount of disk activity on the system. As the relative
page load grows, disk transfers become more frequent, since executing
processes more frequently require pages which have been overlaid by
pages demanded earlier by other processes. At a certain point, all
processes are reduced to their minimum working sets, below which they
are incapable of executing any instructions without demanding a new
page. Thereafter, any increase in load causes the system to spend
almost all of its time in disk transfers, since every process is
roadblocked by lack of a usable working set. In this "'thrashing''

state, essentially no work is performed.

The BT! 8000 modifies the conventional demand-paging algorithm

to prevent thrashing. When a demand occurs, the Monitor selects

the ""least valuable process', based on a number of criteria (including
the distinction between interactive and batch processes), and then
strips this process of the least recently used page of its working
‘set, overlaying that memory page with the one demanded. As the
overall load grows, this procedure is repeated until all processes
are reduced to working sets close to minimum. At this stage, prior
to the thrash point, the Monitor identifies that process which is

the most critical “troublemaker' -- normally, the one with the
largest current working set. The Monitor then suspends this process
_ for a certain period of time, rolling out its entire working set

to free up memory for the rest of the load. The BT1 8000 process
management algorithm avoids thrashing, therefore, by makiné a dynamic

transition from demand paging to a modified multiprogramming technique.

There are no pre-set, conventional priorities in this scheduling
technique. The Honftor automatically favors processes which are
(currently) interactive, on the grounds tHat a user at a terminal
requires service as soon as possible after entering a message. Processes
which are not currently interactive can relinquish their demands for
system resources (including CPU's) in favor of the former type of
process, although a fairness algorithm ensures that batch processes

are not totally locked out of execution. Process scheduling operates

72

with dynamic priorities, according to the recent behavior and
current characteristics of the processes, (One observation,
however, is that on a heavily loaded system, with all other
considerations equal, the most efficiently written programs =- those
with compact working sets -- will be favored for execution over

potential '"'troublemakers''.)

L4, USING THE SYSTEM

4.1 Account Structure

The system includes a four-level hierarchy, or tree structure, of
accounts. This structure has two purposes: It organizes work done
on the system, enabling managers to control the work of their
subordinates; and it provides a framework for the system to ensure

legal usage of system resources, while accounting for that usage.

An account is aAlogical grouping of all information concerned with

an individual's use of the system, including programs and files

that "belong" to that individual. An account should normally be
provided for each authorized user of the system. An individual

may have access to more than one account, and more than one individual
may use the same account, even at the same time. The system, however,
treats each separate account as if it belonged to a different

individual.
Each account is identified by a name in the following format:

username.dddppp , where:

nysername'' can be up to 12 characters
nddd" is a three-character division name

o ‘ppp'’ is a project name of up to three characters.

The highest level of organization after the system itself is the

ndivision''. Certain predefined divisions exist:

~1

&)

for system owner and operator control
for BTl-supplied software, and maintenance access

for proprietary accounts (defined by BTI)

The next level of organization (within division) is the 'project'’;

individual user accounts then reside within projects.

Two usernames have special meanings: "MASTER' and null (no

characters). The following illustration of account names

shows how these are used:

MASTER.SYS

.SYS

.-
o -

MASTER.ddd

.ddd

MASTER.dddppp

is used by the system manager, who creates and

controls divisions, allocating resources to them.

is an account whose library is public to (implicitly
shared with) the entire account hierarchy; it
contains programs and files supplied by the

system owner for use by all users.

is an account whose library is also public to
the entire account hierarchy; it contains

BTi-supplied compilers, utilities, etc.

represents the accounts used by division managers,
who create and control projects, allocating

division resources to them.

represents the accounts whose libraries are public

to all accounts within their specified divisions.

represents the accounts used by project managers
within their specified divisions, who create and

control user accounts, allocating project resources.

.dddppp represents the accounts whose libraries are
public to all accounts within their specified

projects.

anyname.dddppp represents an ordinary user account, subject
to the control of its project manager, its division

manager, and finally the system manager.

Every account has certain properties, privileges, and restrictions

associated with it. These include:

Passwords:

~ Access to each account, and hence to the system, is controlled by a
password, which is a string of characters. Access is denied if the
user fails to provide the proper password. An account may have a

“future'' password as well as a current password; the former replaces

the latter automatically at a specified date.

Account library:

Every account may possess 2 private library of files, including
program files. As discussed later, individual files in a library
may be made accessible to other accounts, with various kinds of
access restrictions. Files in public library accounts are implicitly
accessible to other accounts within their family group in the

account hierarchy. A "directory" is the internal file whose elements
describe library entries; a ''catalog" is & display of directory

information. Each account library resides on some given volume

of disk storage, each of which can accomodate up to 1024 distinct

account libraries.

Hello programs and bye program:

When a user successfully gains access to an account, the system
may automatically run a program known as the ''Hello Program'' for
that account; this program is specified by the account owner or
by an appropriate supervisory account. Hello Programs may be any

user programs.

Two Hello Programs may be specified, in which case they are run

one after the other. This allows the first to change frequently

to provide system schedules or messages, while the second can remain

unchanged to provide other services specific to that account.

Hello Programs may be designed to place the interactive user in
a turnkey environment which controls and limits his interaction

with the system, for specially designed end-user operation.

A “Bye Program' may also be specified to run when a user leaves
an account environment, to properly close out his session by

performing specialized accounting and posting functions.

Each account has a set of limits for its use of various system
resources. These limits are set by the appropriate supervisory

accounts:

7é

CPU time: This limit controls the total CPU time that an
account may use; it is cumulative over all sessions, In addition
to this cumulative limit, each account may have a sfngle

session limit, which may be expanded as needed by the user.

Wall clock time: This limit controls the cumulative amount

of time that an interactive user may occupy a port.

Saved file block guarantee: This is the number of mass

storage blocks reserved for this account. The user is
guaranteed at least this many blocks for storage of files

in his account library.

Saved file blocks limit: The account may not own more than

this number of blocks of file storage under any circumstances.

Saved file blocks warning limit: |If a user owns more than

this many blocks in his account library, he will receive warnings
from any system utility that increases the size of his library.

(This is to help prevent surprise program terminations.).

Scratch file block limit: This is the total number of '‘unsaved''

(temporary) mass storage blocks that an account may intantaneously
own. |f more than one user process is simultaneously running

under the account, this limit applies to total use.

77

N

(A

4.2 Account Usage

System control:

The system distinguishes between management control and operator
functions. System operator accounts may be created within division
.SYS to control batch streams and coordinate use of devices such

as tape drives and line printers; the authority to manage other
activities is held by the system manager, his division managers,

and their project managers.

For example, if a manufacturing company purchases a BTI 8000, the
person in charge of tﬁe system might decide that there are basically
three divisions that will be using the computer: accounting, given

the division name '"ACC''; shipping, given the division name H"SHP'!';

and production, given the division name "PRD'"'. The system manager,
using the account MASTER.SYS, then creates the account MASTER.ACC

with sufficient resources to do its job, and gives the account password
to the person in the accounting department designated as manager of

its computer usage. Similar accounts are distributed to shipping
(MASTER.SHP) and production (MASTER.PRD) . '

The manager of the accounting division might then decide that there
are several projects within his division: development of new
accounting programs (ACCDEV), the auditing project (ACCAUD), and
accounting report generation (ACCREP). For the development project,
for example, the accounting division manager, using the account
MASTER.ACC, creates the account MASTER.ACCDEV and gives its password
to the person selected to be manager of that project. He in turn

will create accounts to be used by individual programmers (JONES.ACCDEV,

79

L 44

SMITH,ACCDEV, etc.) and/or accounts to work on certain tasks
within the project (FORECAST,ACCDEV, etc.).

Managers at all levels can obtain comprehensive reports of
computer usage broken down by individual subsidiary accounts or
tabulated by project (for division managers) or by division (for

the system manager).

Program development:

Individual programmer accounts may be created for application
program development, These accounts should have non-restrictive
Hello Programs, such that the user will find himself in the system's
Y"Control Mode'', an interactive environment that allows him to

run editors, compilers, debuggers, and other program development
tools, to test his programs, and to exercise control over his
account library. The programmer also automatically has access to
files and software in the project, division, and system public

libraries.

The system also allows the possibility of creating ''project accounts"
as well as ''programmer accounts'. Normally, if a running program

or interactive user specifies the name of a file but does not specify
which account library it resides in, the system assumes the file is
to be found in the user's own library. A special system feature
allows an alternate default library to be specified, so that this
other library is searched if "owning account' is not named. Hence
accounts can be created not only for individual programmers, but
also for the major jobs they are working on; the latter accounts

can be set up so that they are not accessible for normal interactive

€/

log-on, but serve instead as repositories of files related to

some given job.

Thus in the above example, the programmer Jones could log onto
his '""home account” (JONES.ACCDEV) and, if he were working on

the new forecastlng system, could set his default directory to
the account holding the work for that job (FORECAST.ACCDEV) .

This structure keeps programmers separate from projects; access
can be given to or restricted from individual programmers through

project manager control.

Turnkey user environments:

A typncal use of the account structure is for turnkey end-user
appllcatlon. Any user account can be assigned a Hello Program

which does not release its interactive user to Control Mode, but
instead retains conversational control or passes control to

another program directly. Programs can be made non-interruptible,
and can assume charge of all aspects of interactive use. Programmers
can set "'traps' in such turnkey programs, sO that data errors or

program errors can be handled without end-user involvement.

An interactive turnkey end-user can thus begin a session knowing
only how to log on with a specified account name and password.
From that point until the end of the session, he need not be
burdened with any protocols beyond those constructed by the
application program designer. The application programs, in turn,

are insulated from damage by any user action,

Turnkey transaction processing can be used for any purposes from

Jow-level data entry to management report displays.

Proprietary software:

Third-party vendors of value-added software packages traditionally
are faced with the problem of protecting their investments. |If
source code is released to the purchasef. the software is subject

to local modification (which can severely affect the difficulty

and cost of maintenance), and what should be proprietary and valuable
invention is protected only by licensing or rental contracts. |If
only object code is released, maintenance becomes awkward, and the

software is still vulnerable to unauthorized migration.

The BTI 8000 is unique in providing for an arrangement to solve

these problems. A series of account names (division names beginning
with "-"") is reserved for creation and control by BT! only; accounts
so named are called Proprietary Accounts. The system manager of

a BT! 8000 (MASTER.SYS) can limit the amount of resources used by

a Proprietary Account, and can remove the account entirely; he cannot,
however, control the library of such an account, nor can he log

into the account without knowing its password.

The vendor of a proprietary software package can arrange to have
his software transported to his customer's system in the form
of a Proprietary Account, whose password is known only to the
software vendor. The latter can declare his programs executable
but not readable by the users on his customer's system. Then,
he can still access source code on the remote system (by logging
in as an Interactive user over a telephone line), to perform

software maintenance conveniently.

As further protection for the software vendor, each BTl 8000 system
contains a unique and fixed, but program-accessible, system ID number,
so that programs can check to insure that they have not been improperly
migrated to other systems.

T
3

w
Oy

General timesharing:

The security and controllability inherent in the account structure
make the BTl 8000 an excellent system for commercial timesharing
use, even as an adjunct to in-house use.. A division or project
can be "spjit of f'' for this purpose (or equivalently, for in-house
casual or training use), without concern for the privacy or

integrity of other activities on the system.

it is even possible to enforce fiduciary relationships in a
timesharing situation: a supervisory account (project, division,

or system manager) can formally relinquish its authority to

control the account library of a subordinate account, and/or

to control its account passwords (and hence to log into the
account). Once relinquished, these authorities can be reestablished

only by the actioh of the subordinéte account.

x4

N
|

4.3 iInteractive Access

Each asynchronous communication port on the system can be used for
an independent, interactive conversation with a process running

under some account.

Local terminals (within 1,000 feet of the computer) can be connected
directly by cable. Terminals at remote sites may use either public
("'switched network") or private ("leased line') data communications
facilities to reach the computer. Although groups of remote
terminals can be multiplexed to reduce communication line costs,

the individual data paths must be demultiplexed at the computer
site, since each terminal must be logically connected to a separate

port.

After establishing the connection between his terminal and an
asynchronous communications port, the interactive user informs

the system of the account name he wishes to use, and the password.
The system compares the entered password against the currently
valid stored password; if it is accepted, the user is considered
logged on to that account, and the system runs the Hello Program(s),

if any, for that account.

In high-security applications, the Hello Program(s) can be made
non-interruptible and used to validate a vigecondary password'’, which
can involve an arbitrarily complex (and even randomly changing)

dialog between the user and the program.

EL

L.4 Batch Processing and Operator Functions

Batch processing in the BTI 8000 operates through spooled, virtual
card readers called ''task queues'. Text records, representing
(variable-length) card images, are placed in the task queues by
processes which treat the task queues as system-owned sequential
disk files. Any process may write records onto the task queues.
Interactive processes may generate task queue records directly from
keyboard data (in the manner of a direct keypunch replacement),
from disk files, or from magnetic tape. The system operator may
also start a process to build these records from data coming from

a unit-record device or communications link.

A batch '"job'" is a sequenceuof task queue records that begins

with an account log-on ("HELLO" to some valid account, plus
password) and ends with a log-off, in the same fashion as an
interactive session. The records in a batch job are logically
equivalent to lines entered at a keyboard during an interactive
session; the same nControl Mode'' commands are used. (One difference
is that the Control Mode ''DO file" commands are valid in a batch

job; see Section 7.1.)

A sequence of records submitted to a task queue as one unit is known

as a "deck'. A deck may consist of one or more jobs.

The system manager can configure the task queues. Separate task queues
can be established according to several criteria: the amount of

- service each queue will receive (by arrangement between the system
manager and the system operator); the time of day each queue will

be serviced (as above); the number of non-spooled peripheral devices,

Ef

especially magnetic tape, required by each job and deck in each
individual queue (e.g., there may be‘é oﬁe-magtape queue, a two-magtape
queue, etc.); or some combination of all of these criteria. Different
accounting charges can be specified for the various task queues, each

of which is identified by a unique name.

The system operator logs onto an account within division .SYS which
contains an ''operator's program''; this is a program to which the
system manager has granted the privilege of running the special

operations required to perform the system operator functions.

The system operator can balance system load by manipulation of the
task queues. He can obtain a list of the various task queues and

their defined attributes, and for each one, can:

o inspect the sequence of decks, and the identities of

the jobs within decks;
o rearrange the sequence of decks within the queue;

o instruct the Monitor to process the first ''n' decks at
the head of the queue; the operator can set ''n'' to any
number, including zero (thereby shutting down that particular

task queue).

The operator's program also displays a list of all processes active
on the system, identifying each by a process ID number. For each
process ID, the following information is available to the operator:

interactive port number, or task queue name
account ID
.. account resource limits

resources used In this session (including time on)

o 0 0 ©O

£9

o number of non-spooled devices (e.g., magtape) in use

o name of currently executing program

The operator can ABORT, EVICT, or STOP (and later GO) any active process.
An ABORTed process is destroyed, but its l.'lim'e disconnect'' interrupt
rdutine, if any, is processed first; the effect is as if the process
were an interactive process which detected telephone line disconnect.

An EVICTed process is destroyed immediately. A STOPped process is

suspended from execution, but may be reawakened later (with GO).

Besides controlling batch execution, the operator can also.set a limit
on the total number of log-on sessions to be simultaneously serviced by

the system.

.~ Another important operator function is the granting of requests for
non-spooled peripheral devices, especially magnetic tapes. Such
requests can arise from interactive as well as batch processes, and

are handled as described in Section 6.

The operator is also responsible for setting default characteristics
‘on interactive ports (baud rate, etc.), and for mounting and dismounting

disk volumes (logically as well as physically).

The operator can start up processes on remote ports (ports other than
the one he is using) to accommodate receive-only devices and other
arrangements where no explicit log-on command is expected at a given

port.

Finally, the operator can run the BTI-supplied BACKUP and PURGE utility
programs, which select portions of the system to back up, and the
backup medium. Backup can be selective in several dimensions, including
portions of the account structure and various characteristics of

files, as discussed later in this manual.

‘5. PROGRAM OPERATION

5.1 The Virtual Machine Environment

All running programs (processes) function in a standard virtual
machine environment created and maintained by the Monitor. The
name ''virtual machine' is applied because the description of the
process environment is conceptually equivalent to the description
of a machine on which each process runs; processes are insulated

from the ''real'' (hardware) machine.

The instruction set of the virtual machine is the "user-mode'
instruction set of the Computational Processing Units, extended
by a list of several hundred psuedo-instructions known as XREQ's
(pronounced ex-reks', meaning ''executive request''). An XREQ
pseudo-instruction looks like an ordinary CPU instruction, but
its execution within a CPU results in that CPU '"trapping out'' to
a Monitor routine to service the request. (When a CPU switches
from user code to XREQ-service Monitor code, it does not store
the entire process state, thereby saving switching time.) XREQ's
are provided to handle all potentially sensitive operations, soO
that process and system integrity can be maintained; XREQ definitions
also tend to be quite simple, so that the burden of executing
fairly complex operations is passed from the user program to the
Monitor, extending the power of the virtual machine.

The user process does nhot directly see the operation of the Monitor
or the presence of other users. The only signs of the existence of

9/

52

the Monitor are the operation of the XREQ's and, since processes
are scheduled "in' and 'out'" of processors, the inevitable differ-

ence between virtual time and real time.

The system's management of virtual memory is also invisible to
the user process, which sees its 128-page (512 Kbyte) address
space as continuous and always available. The Monitor moves

the pages of this address space to and from the disk on demand
(""demand" meaning actual reference to a page); a process is
unaware of its suspension while a demanded page is moved in from
the disk, as it is unaware of suspension for any other resource-

roadblock reason.

The 128 pages of process address space form the directly usable
memory of the virtual machine. When the system performs oper-
ations on behalf of a user process, it executes in another virtual
address space (one separate from the user's). |In this case,
however, CPU time and other resources involved in XREQ execution
are charged against the user making the request. The Monitor
code that performs the XREQ's is swapped in the same manner as
user pages, and thus is resident only when there is a demand

for the particular system function. Pages moved in on this basis
enter into the scheduling algorithms which ''rate' processes on
their need for memory, but tend to be shared by multiple users.

A process need not take a merely passive view of its address space;
XREQ's are provided to "map in' pages of random access files and
executable code files into virtual memory pages. When a page of a
random access file, for example, is mapped into one of the 128 pages
of process memory, the pages become equivalent: an instruction
which reads or writes data from or to that page of the process
address space actually accesses the specified page of the file.

The mapping facility can be used to manage program overlays; to
perform direct 1/0 with random access files, as an alternative to

using READ and WRITE XREQ's; and to facilitate inter-process
communication (as an alternative to other techniques), by having
several processes map in the same page of a multiple-write file.
The overlay technique effectively expands program size to any
limit desired, while the file-mapping technique allows a program
to deal with arrays, for example, much larger than the one-half-

megabyte limit of process address space.

In summary, the virtual machine in which each user process executes

includes the following elements:

o CPU instruction set
XREQ'pseudo-instcuction set
Account identification (Every process runs under the
auspices of some account, with its account library,
privileges, and restrictions.)

o Machine registers (8 general-purpose, Program Counter,
Process Status Register, Monitor Status Register)

o 128-page address space (512 Kbytes), with overlay and
file-mapping capabilities

o 1/0, file system, and inter-process communications
facilities, controlled by XREQ's (discussed later)

o " Process structure status, process authority status, and

interrupt facilities (discussed later)

The instantaneous states of the last 5 of the above elements form

a complete description of process state.

932

29

95

5.2 Concurrent Processes

The simplest view of user program execution is that of each
interactive user (or batch job) running one program in the virtual
machine associated with his communications port (or batch stream).
Just as program execution capabilities can be expanded in physical
machines by techniques such as multiprogramming and overlays,
virtual machine capabilities can be expanded by similar technigues:

concurrent processing and process structuring.

Wwhen an interactive user logs on at a port (or a batch job is

started), a “primary process'' begins. This process runs in the

virtuai machine process environment described earlier, and is

associated with the user's port (or batch stream). Any process,

however, can issue an XREQ to generate another process, which runs
concurrently and asynchronously with the process which generated

it. ("Spawning" is a term often used to refer to “generating'’ a
process.) A process may generate a series‘of concurrent processes,

which in turn may each generate a series of processes. Each process runs
in its distinct virtual machine, but a family of concurrent processes

may include only one (the primary, original process) which is in

direct communication with the original port or batch stream. Concurrent
processes communicate with one another through inter-process communication
links known as .PATHs, described later in this manual; In particular, the
‘spawning XREQ sutomatically creates 3 pair of these links between

the senior and junior processes.

Concurrent processes find their uttlity in two ways. First,
a time-consuming task which i{s amenable to division Into

g¢

asynchronous processes may be processed ''in parallel' using
multiple concurrent processes. Given a suitable number of CPU's
on a system and a light enough external load, this kind of multi-
tasking is true parallel processing; the pieces of the job will

be processed in parallel, in the real-time sense.

Second, mutually 'suspicious'’ programs can cooperate, with each
knowing that the other cannot access its memory or files. A
primary process can spawn a concurrent process and then, given
permission to do so, load that virtual machine with a program
belonging to another account to perform some sensitive function,

such as extracting limited information from a protected database.

97

5.3 Process Stfucturing and Run Control

The other virtual machine expansion technique is the "structuring'

of a single process to establish a program control order.

A program running in a process environment (virtual machine) can

set up and then start an underprogram''. The underprogram takes
over the virtual machine from the program that started it (its
"overprogram"), but the system saves the latter's status information;
when the underprogram stops, the system brings the overprogram

back into the virtual machine and resumes its execution at the
instruction immediately after the XREQ that originally started

the underprogram.

0f the process environment (virtual machine) elements described
earlier, the following are collectively known as ‘''program console'

items, and are kept local and distinct for each over/under program:

o Machine register contents (8 general-purpose,
Program Counter, Process Status Register, Monitor Status
Register)
Address space (i.e., contents of the page file)

Program interrupt mechanisms (discussed later)

The other elements of process status (in particular, linkages with
the file system) remain unchanged as different over/under programs

assume control.

Since an underprogram can in turn set up and start its own under-
program, processes can be structured into 'layers' of over/under

programs. Only one of these at a time, of course, will occupy the

€

' process registers, address space, and interrupt mechanisms, and
be executing; a process status element, however, keeps track of
the structure, and of all 'program consoles' that are not

currently in use.

When a process begins, the system establishes its ''overmost"

(and only) program automatically, and begins its execution:

this is the BTl-supplied '"Control Mode' program, which serves

as the system's command language/job control language interpreter
for both interactive and batch processes. When a user requests
execution of an application program (including a system language
compiler or utility), or if a Hello Program is indicated, the
Control Mode program runs that program as its underprogram within

the process environment.

The following XREQ's control over/under program structuring of a

process:
o SETUP: After a program has been identified through
file system linkage, this XREQ establishes
that program as the underprogram; it can be
issued only by the (currently) "undermost'
program.
o GO: This causes the system to save the program

console information of the current program,
substitute that of the next underprogram,

and then begin execution of the latter. Prior
to issuing the GO the current program can
manipulate the console régisters of the under-
program, including its program counter (to

specify a starting address).

o STOP: When a program executes 2 STOP XREQ, possession
of the process environment reverts back to
the immediate overprogram, with executidn
resumed just after the G0 XREQ which started
the underprogram. One of the overprogram's
registers is loaded with a code which indicates
the reason for the sTOP (normal end, error

condition, etc.).

o INSERT: As opposed to SETUP, this XREQ can be issued
by a program which already has a program below
it in the process structure. The effect is
to “'pry apart'' the layers and insert the
selected program between the current pro-
gram and what had been its immed iate under=
program. It is used chiefly by debuggers,

as described later.

o STEP: As opposed to GO, this XREQ brings in and
_ executes the underprogram for the execution
of a single instruction only, after which
control reverts to the overprogram. (An XREQ
is treated as a single instruction.) It

is also used chiefly by debuggers.

) DESTROY: This removes the immediate underprogram from

the process structure.

o DESTROYALL: This removes all underprograms from the
process structure, leaving the current program

as the iyndermost'' one.

/et

o MAPIN, FREEPAGE: These XREQ's can be used to map

| (and then "unmap'') a page of an underprogram's
address space into the éurrent address space;
this allows the current program to examine
and/or manipulate the underprogram's data areas
before or after running that underprogram. Of
course, the security status of the underprogram

must be such that these actions are permitted.

Note that in all cases, it is the overprogram that manipulates the
underprogram and its execution. Control authority applies downward,
not upward, in the structure, and so one can say that overprograms

control underprograms.
There are three main uses for the process structuring capabilities.

First, Control Mode itself, upon user request, runs a requested
program as an underprogram. When the underprogram stops, the
system returns control to the Control Mode program in a manner
that allows Control Mode to conveniently ascertain why the program

stopped, and to deal with errors, if appropriate.

Second, BTl-supplied language debuggers can be invoked after

a compiled program has halted with an error. The program which
ran the halted program (normally, Control Mode) merely uses the
INSERT XREQ, placing the debugger between itself and the halted
program, and then runs that debugger; the debugger program can
examine and modify the compiled program (its underprogram)

and then run it, perhaps even in single-step mode.

Third, the generality of process structuring allows programmers to
construct their own ‘‘control mode' program, either to create a
special-purpose interactive environment or merely to have a conver-

ro!

sational design different from that of BTl Control Mode. The
special-purpose vicontrol mode'' program is simply assngned on an
account- by-account basis, as the Hello Program. When a user logs
on, Control Mode runs this program |mmed|ately, and the user then
sees the interactive protocols designed for him. Such a specia\-
purpose vcontrol mode'' program can run other programs in exactly
the same way that BTI Control Mode can; furthermore, such a pro-
gram can be “rescued'' by BTI Control Mode in case of error, or
merely if its designer decides to leave certain capabilities to
_BTI Control Mode.

re 2

5.4 Program Interrupts

User program interrupt facilities are bound to programs as
opposed to virtual machines; they are part of the (local) pro-

gram “console'’, not the (global) process status.

Interrupts begin as events which fall into one of several classes,

including:

arithmetic fault (divide by zero, etc.)
misuse of CPU instruction set

o timer notification (an XREQ had requested interruption
after a specified number of milliseconds)
terminal BREAK key sensed (keyboard interrupt)

o port disconnect (the Asynchronous Communication Controller
sensed a voltage drop that normally indicates telephone
line disconnect or terminal power-of f)

(o} non- empty .PATH (a message has arrived on an inter-

process communication facility)

‘When such an event occurs, the system first examines the on/off
status of a bit selected from the Interrupt Arm Word: each
class of event is represented by a different bit position and

the user program can manipulate and examine this word with XREQ's.

If the bit is off, that class of interrupts is said to be ''dis-
armed", and the event is ignored. If the bit is on, the interrupt
class is said to be “armed'', and the system then examines the
corresponding bit position in the Interrupt Enable Word, which

is also under user program control.

If this bit is off, that class of interrupts is said to be
"disabled", and information about the event is placed on a first-
in-first-out Pending Interrupt Queue with no further action; this
queue can be examined by the user program. if this bit is on,
that class of interrupts is said to be ''enabled', and the system
proceeds to examine the (single) Master Interrupt Enable Flag. (If
an event is queued and the appropriate Enable Word bit is later
turned on, the system takes action as if this event had just

occurred.)

If the flag is "off", the effect is the same as if the interrupt
had been disabled at the Interrupt Enable Word. |If the flag is
Yion'', the system diverts program execution to the address given
by the Interrupt Address Word, where the program presumably will

begin its interrupt service routine.

These facilities provide for totally shutting out interrupts by
disarming them (although CPU instruction errors can never be
disarmed); queueing them for later service (armed but disabled);

and conveniently postponing all servicing through the Master
Interrupt Enable Flag (for example, when entering an interrupt
service routine). Furthermore, the interrupt service routine can
choose to allow the controlling overprogram to service the interrupt,
merely by executing a STOP XREQ; most programs allow Control

Mode to handle "unexpected' interrupt events.

| -

Py m TOALS
oMN (7IAETEE
s UABLE FLlb

Pom TORLS
on IMT. CLAS
EPLPABPLE

‘3 /4 (€.6., UEYEBOARD BREAK)
‘ EverT

TEST P17 FORTMS cLAss
0 /.UT‘Z/ZJ?-U?"ARM w P

No cor TN
(pcspumsv) e677

(evéwr (e»qaz/,z)

Es RErx0d € TOP ~

Df——Q O EV €
EVERT

TEST BT For TS el S5
THIS

/" W W TERRVET ELABLE 400
ccAs?

NO .
2
"”‘“’/(mun-?ﬂf\ 2

Iz gecoxp
YeS 2VEPT (¥
peryIn &

(uurttr.zurr’
\ oEVE

REMoVE conrenvE
EzouTmosT ~ A P67

o FRom P
QeEVE

VO
(PISABLED)

YEéS (cvrscér)

Tomp V/A
INT. APPREES

® oxP

'PROGRAM INTERRUPT HANDLING

/e -

0%

6. PROCESS INPUT/OUTPUT

6.1 Design Principles

1/0 design in the BTI 8000 uses the following principles:

o Provide a basis for building applications-oriented data

structures on storage media.
o Give application programs complete control of the user
interface, thus allowing error recovery and human

engineering of applications.

o Ensure the integrity of data held by the system on data

storage media.
o Enforce protection of data stored on various media (disk and tape).

o Provide as much device independence as possible.

ICE

79

6.2 Record Types

The system uses record-oriented (equivalently, line-oriented) 1/0,
as opposed to the ''virtual terminal'' approach, in which every 1/0
device would be modeled as an ASCII terminal. Most higher-level

languages are record oriented, and it is more efficient to examine
record headers for special treatment (such as positioning for new
lines on output to a printing device) than it is to examine every
character. On output devices, end of record is interpreted as end

of line; on input, one input “"line'" is one record.

Records are strings of characters of a specified length which, to
extend their utility, have a 'type" associated with them to suggest

an interpretation for using their contents. Record types are:

o Text: The contents of a text record are considered ASCII
text characters with the end of record denoting the end
of the line.

o Text with formatting: As above, except that the first

character is considered as @ special output device formatting
control. When output to a printing device, the character

is interpreted as a print format command.

Traditionally, a line printer is a pre-print device (e.g., 2
space character causes the paper to advance before the line
is printed), while terminals are usually post-print devices
(a line is terminated by a carriage return - line feed pair,
which repositions the carriage after the line is printed).
The only real difference Is in how overprinting is to be

handled: for the line printer, each overprinting line

save the first is marked, while for the terminal, each line

is special save the last. This pre- and post-print difference
is resolved by having the system remember how the last line
was printed, and interpreting the format control character

to mean how the line should appear on the page (as opposed

to what specific actions should be taken before or after
printing). Thus, a space causes that text line to be printed

on the line after the last line printed.

Binary: A "binary' record contains 8-bit bytes of coded

information, with no interpretation imposed by the system.

Comment: A plain text record embedded in text but not part of
the information stream. Compilers that read them place them
on the output listing (if one is being made), but do not

process them as input.

Forms: A plain text record that has meaning when output to
some printing device. For example, when output to a line

printer, a forms record causes the printer to stop, and the
text in the record is printed out to the operator to request

change of paper, etc.

Label: A plain text record interpreted as a label to be
placed on the printing output device (expanded to large
letters on the line printer, etc.).

Filemark: A special record that simulates the filemarks
found on magnetic tapes. It can be written to sequential
disk files or output devices (with interpretation depending

i€

fif

on the device). It can be read from sequential disk
files, magnetic tapes, and other sequential input devices.

(A filemark cannot appear on a random access disk file.)

End of Data: A pseudo-record type that signifies the
physical end of the sequential input medium. It is most
often found on sequential disk files when all the data in

the file has been read.

Abnormal End of Data: A pseudo-record type that signifies

that there is no more data on this input device, but the
reason is that the data on the file has been lost due to

system (or disk) failure.

”"a

Iz

6.3 Virtual Channels

Each process owns two hundred two virtual 1/0 channels, through
which all information into and out of the process passes. Each
virtual channel may be attached (assigned) to some 1/0 medium,

or logical device, including files. Virtual channels are numbered
1 to 202, and the term '"lun' (pronounced ""lunn'', meaning Logical
Unit Number) is often used synonymously with ''virtual channel''.
Since all 1/0 and file operations are performed through the
virtual channels, the term "lun' is also often used to refer to
the device or file to which a virtual channel is attached, so

that one can speak of rewinding a lun, reading a lun, etc.
The term used to describe the attachment of a virtual channel to
some logical device or file (and the XREQ that performs the assign-

ment) is ''equip". Thus luns are ‘''equipped’ and "unequipped''.

Some virtual channels have fixed or at least pre-specified

assignments:
lun 1: “Standard'' process input.
lun 2: tiIstandard'' process output.

lun 200: Equipped to the file containing the executable code
image from which the current program was taken.

lun 201: Fixed process input.

lun 202: Fixed process output.

Luns 201 and 202 may not be unequipped; in an interactive process,

201 and 202 are the terminal, while in a batch process, lun 201 is the
(spooled, virtual) card reader and lun 202 is the (spooled) line
printer. When a process begins, luns 1 and 2 have the same assign-
ments as luns 201 and 202, but they may be unequipped and re-

equipped to other devices. Thus if a program outputs tables, for
example, on lun 2 so that they will appear on the line printer
from batch, a terminal user who is debugging that program could
equip lun 2 to a file and save the output instead of just letting
it appear on the terminal; program data output would go to lun 2
while error messages and checkpoint notices would go to lun 202

(and appear on the terminal, in this case).

wy

as

6.4 Logical Devices

Equipping a lun attaches that virtual channel to a logical device
of one of several ''device types''. Each device type has well-
defined attributes and access behavior. There are two classes of

logical devices, grouped according to their type:

First, there are those which by their nature cannot be '‘owned"

as an entity in any account library. In general, a process sees
only one of each type of logical device in this class, and that
logical device is usually a close analog to some physical device
(so that each may be regarded as a virtual peripheral device
connected to the user's virtual machine through a virtual channel).
The following abbreviations are the formal device type names

for devices in this class:

.TERM the user terminal connected to an interactive process

.LP spooled line printer (a process may equip to several
line printer spool files -- i.e., several .LPs)

MT magnetic tape drive (several visible to a process)

NULL the system ''bit bucket', or write-only memory

.TASK the card-image writer's view of the virtual (spooled)
card-reader input hopper for batch (several)

.CDR the (batch process) card-image reader's view of .TASK

.DIR the directory of an account library (a process may

be allowed to see directories other than that of

its own account)

Second, there are those logical devices which can be owned by an
account, as entities In an account library. For each device type
in this class, a process sees an infinity of available devices

7eé

(instances of the device type). Some of them may have names (and
other attributes more specific than those implied by type alone);
these will also be owned by some account (especially the account

to which the process belongs), and, if the device type is appropriate,
may contain data. Others (conceptually, an infinity of them) have

no names and no owners, and are empty. Roughly speaking, each

device type in this class may be regarded as a type of file.

These logical device types are:

.SAF Sequential Access File

-RAF Random Access File

.CODE executable program memory image file

.PATH inter-process communication link

.LOCK inter-process event coordination semaphore

A logical device that has a name and an owner is one that has(been
Ysaved'' in some account library. A process equips a virtual channel
to such a device by specifying (with the EQUIP XREQ) the name of
the account and the name given to the logical device; the device
type need not be specified, since it is known as soon as the equip
finds that device. Saved logical devices are commonly referred to

as ''saved files', although .PATHs and .LOCKs are not truly files.

Alternatively, if a process executes an EQUIP XREQ that specifies
device type only, the system essentially creates a logical device

of that type out of the pool of ''free storage' disk blocks allowed
to the account, and then attaches the virtual channel to it. Such

a logical device need not (and does not) have a specific name,

since the process accesses it through the lun that was equipped

to it originally. It is known as an 'unsaved device', and (if a
.SAF, .RAF, or .CODE) may be used as a scratch file by the executing
process; .for example, a sort program may equip several .SAFs for
temporary work files, writing and later reading records to and

2’7

from them. When a process unequips an unsaved device, that

device is lost, and its blocks revert back to free storage.

To create an element of an account library (i.e., to save a
logical device), a process first equips to an unsaved device of
the proper type as above and then, either before or after using
it for 1/0 as an unsaved device, executes a SAVE XREQ which
specifies the lun, the account name (normally one's own), the
name to be given to the device, and possibly other attributes

to be assigned to that specific device.

Conversely, a saved device is destroyed by first equipping to
it, executing the UNSAVE XREQ, and finally unequipping.

6.5 Device Access

A logical device may possess one of several access modes. The mode
on a specific device depends on its device type and, for a saved
device, the access mode set on that device by an account that had
the authority to do so. |In addition, a logical device also has

a "current' access mode as viewed by a process which has equipped

a lun to it; this depends on the above factors plus what was
requested by the EQUIP, and applies to unsaved devices as well.

Possible modes are:

o Read/Write (may be equipped for write by only one
process at a time)
Read 0nly~k(data protected from modification and destruction)
Append Only (read disallowed)
Execute Only (for .CODEs only)

0O o o ©°

Multiple Write (read or write; may be equipped for write
by several processes simultaneously)

o Destructive Read (read only; the .SAF is being destroyed

as it is being read -- read once only)

o No Data Access (usually a temporary mode for special purposes)

The legality of an EQUIP, and the subsequent actual access allowed
over an equipped lun, depend on the device access mode and the
type of equip executed; the four types of EQUIP are:

equip for read only
equip for read/write

equip for multiple write
equip for no data access

o 0 0 ©°

19

Both static and dynamic (operation-to-operation) statuses of

an equipped lun\may be sampled at any time by the equipping

process.

O 0 0 0 o0 o

The following information is available:

Device Type
Current Access Mode

Privilege Code (the highest privilege the process has

over the device and its data, as follows:

(o}
o]

o

Load Point (flag)
Saved Device (flag)

Read Only

Read/Write

Modify -- the process can modify
device attributes, and has complete

control over the device)

File Writing When System Crashed (flag)

Record Type (of last record read)

Error Flag and Error Code

(the current position pointer on a .RAF or .CODE is also

available)

(2D

12)

6.6 Device Types

.TERM:

.TERM is the terminal associated with an interactive (primary)
process. Records of various types may be written onto a .TERM,
and records (terminated by selectable input characters) may be
read from a .TERM. .TERM has the following attributes associated
with it:

Lines Per Page

Carriage width

Rate (standard baud rates between 110 and 19,200)

Carriage Return Delay

Line Feed Delay

Form Feed Delay

Delete Character (default is backspace = Control-H = BS = ASCI!I 8)

OOOOO'OOO

Line Kill Character (default is line cancel = Control-X
= CAN = ASCII 24)

Echo (on, off)

Terminating Character Group (carriage return only, or

o

refer to table)
User Defined Terminating Character (table -- if not CR only)
Terminal Type (includes pointer into 2 public library file
with more information; for use by Virtual
Terminal software package, which provides

terminal type independence)

-~
\
I\

A .LP (meaning line printer) is a record (line) oriented output
device. All outputs to a .LP (as well as to other record oriented
output devices) are written onto a disk file and when the file is
unequipped, the output is queued to be printed on some physical
line printer. The creation of this 'virtual line printer" on the
disk allows many processes to be writing onto .LPs at the same time.
Unlike a regular sequential disk file, a .LP may not be backspaced,
rewound, etc. The only control operations allowed are RELEASE
(which destroys all information so far written onto the .LP, so
that when it is unequipped nothing will be printed), Write File
Mark (a filemark is printed as a page eject), and, of course,
STATUS and CLEAR.

.MT stands for (nine-track) magnetic tape. An EQUIP to .MT

causes the system to look for the presence of an interactive

user logged on as the system operator. The Read Only or
Read/Write parameter Included with the EQUIP allows the system to
inform the operator whether to make the tape read-only or writable;

/22

a tape reel identifier (or "“scratch reel' code) is also included
with the EQUIP, and the system passes this information to the

operator.

The user process is suspended while waiting for the EQUIP to be
completed, since operator attention is fequired. The system operator
informs the system of which tape drive he has set up in response

to the request; the system checks tape labels if appropriate to
verify the reel identification, and then completes the EQUIP.

A process may request the use of several .MTs; it distinguishes

among them by lun.

- JNULL:

.NULL is a special output device that requires no storage, and
absorbs anything written to it. Any record written to .NULL is
accepted and forgotten; it cannot be retrieved. (A read from
.NULL always returns end-of-data.) The utility of .NULL is in
program debugging and testing, where a program produces an output
stream on some lun, and that output is not of interest during

debugging.

.TASK:

The system performs batch processing through virtual, spooled

card readers. .TASK is the view of these devices' '"input hoppers"
provided to processes that wish to submit a ''deck' for batch
processing. A process equips one of several, named .TASKs and

124

then writes records to it in sequential fashion; each record written
is analogous to a card added to the deck. When the deck Is complete,
the process unequips the .TASK to submit it. At unequip time, the
deck is automatically queued for batch processing. Prior to

the unequip, the writing process may perform the RELEASE XREQ, and
of course STATUS and CLEAR.

The pseudo-file created on this logical device, between equip and
unequip, should be logically equivalent to a2 series of lines

typed at an interactive terminal during a complete interactive
session; that is, the first record should be the Control Mode

HELLO command, and each subsequent record should be the equivalent
of a line that could have been typed at a terminal, with the session
properly closed out with a log-off. (Actually, Control Mode

DO-file techniques can also be used in batch, and a deck may

consist of more than one ''session''; see Section k.)

.CDR:

.CDR is a logical device seen only by a batch job, as its standard
(lun 1) and fixed (lun 201) input device. It is the ''other view'
of a .TASK; the running batch program's view of the virtual card
reader. (Note that standard =-- lun 2 -- and fixed -- lun 202 --

output devices for batch processes are .LP.)

.DIR Is a pseudo-device that is used for accessing the directory
of an account library. A program equips to .DIR of a specified

account (normally Its own) and then reads from it. (writes

give errors, since only the Monitor can change a directory.)
Wwhat one reads are the directory entries for that directory.

The number of entries one gets depends on the size of the buffer
associated with the READ XREQ; an integral number of entries
will be placed into the buffer and the last entry fetched will
be remembered, so that the next read can continue from where

the last left off. Thus, a program can pick up directory
entries one at a time or perhaps hundreds at a time (the latter

case involves tremendously lower overhead per entry fetched).

The first read of the equipped .DIR gives a "header'' that

describes the account.

.SAF:

A .SAF (Sequential Access Ffle) looks like a simulated magnetic
tape. A process may write records of variable length (zero to
512 Kcharacters) or write filemarks, read records or filemarks,
and perform assorted operations such as space forward one record,
space backward one record, rewind (set to load point), skip forward
past filemark, etc. A .SAF thus has 2 beginning (called a "1oad
point'), followed by any number of variable-length records and
file marks, and an end (called the end of data''). When working
with a .SAF there is a pointer into it that gives the current
position, much like a magnetic tape that has the read head
positioned between two records somewhere on the tape. If a .SAF

is rewound (set so that the position is just before the first

record) and three records are read, then the current position is

between the third and fourth records. A filemark is like a record
in the sense that after reading one, the current position is just
beyond the filemark, and after a backspace of one record (over a
filemark), the position is just before the filemark.

Records on a .SAF are between zero and 2**19-1 (524,287) characters
long. To each record is added 6 characters by the system to hold
the length and type of the record. These length fields are not
seen by user processes using the normal read and write XREQs, but
they do occupy space in the .SAF. A filemark is three characters
long. A .SAF is allocated on mass storage by blocks, so the file
grows and shrinks by whole blocks. A block holds 4096 characters
(one page), and the maximum number of blocks a .SAF may contain
is the lesser of 2%*20 and the size of the volume that contains
the .SAF.

.SAFs are record-oriented devices, and the record types of the
records written onto them are retained. The system does not
interpret the type of record written on a .SAF, but it does

make the type available to a program which reads the record.

A .RAF (Random Access File) looks to the user process like a
continuous string of 2%*32 characters (exactly) within which the
user process can position and read and write a variable number

of characters. The system implements this structure by up to

two levels of index blocks pointing to the data blocks, but the
user process sees only the data blocks. A data block is allocated
only when data is placed in It; thus a .RAF may have "holes' which
contain all zero bits (apparently) if a process reads from them,

°~

27

but do not use any disk space until something is written into

them. A process which writes a single character at character position
one hundred, and another single character at character position

one hundred thousand, will cause only two data blocks to be

allocated.

The normal operation of a .RAF consists of ''seeking' (positioning)

to some character position within the .RAF and then using the normal
READ and WRITE XREQs to read or write a string of characters.

When either a read or write is done, the current position is advanced
over the data transferred, so that continuous reads or writes (in

any combination) will progress sequentially through the .RAF.

A .RAF is not a record-oriented structure, SO the type of a
record written onto a .RAF is ignored (no type field is actually
written); a group of characters read from a .RAF always returns

a '"binary'' record type indicator.

The MAPIN XREQ maps in a block of a .RAF onto a page of process
address space. A change to that page in memory changes the data
on the .RAF. This is an extremely fast and efficient way of
modifying a .RAF, and is also one way to effect communication
between processes. (Note: as networks of BTI BOOO systems are
implemented, separate processes on different systems within the

network will not be able to communicate in this manner.)

A saved .RAF can have the access modes of read only, read/write,
or multiple write == in the latter case, many processes may

reference the .RAF with update capability simultaneously.

The .RAF structure, with its addressing capability, Is provided
by the system as a building block for complex file structures; in
particular, the .RAF addressing operation (positioning to a

character address) is designed as the most general possible base
mode (or "primitive operation“) for storage access. It Is the
function of the language run-time environments, and of course
the Data Base Management System, to provide more sophisticated
file access techniques (relative record, indexed, etc.) ‘‘on

top of'' .RAF addressing.

.CODE:

A .CODE is a special form of a .RAF that can contain only 2%%22
characters. The first 2%*19 characters are considered to be an
image of the executable code space of a program, to be run in
the virtual address space of a process. The remainder of the
.CODE may be used for'symbolic»informétion about the program,
thus cérrying debugging information with the program itself.

An XREQ causes a .CODE to be run as a program; .CODEs are
normally created by the loader, and normally contain only

a program image and associated information.

A .CODE can be made "execute only', which allows access only for

the purpose of running the program it represents. No read or write

operations, nor any other operation that would allow one to see

the program or its data, are allowed in this case.

A .CODE is accessed in exactly the same fashion as a .RAF (except

for the smaller upper bound on .CODE addresses). Also like .RAFs,

.CODEs may have their pages mapped directly into process address
space for direct reference (unless, of course, the .CODE is

execute-only).

/12¢€

2%

.PATH:

A .PATH is a special inter-process communication device. A .PATH
is saved in the account library under some name, and then is
shared with whatever other accounts whose processes one wishes

to communicate with. Once the .PATH is saved, only one process
may equip it to read it, but more than one process may equip it
for writing. The writing processes then write messages onto the
.PATH (in the form of records), and the system queues these
messages to be read by the (single) reading process. If too many
messages are in the .PATH queue, the next writer will be suspended
until some of the messages are read (a2 process may time itself out
of such a suspension). |If a reading process reads from an empty

~ .PATH, it is suspended until a message appears in the queue (with

timeout allowed in this case also).

If no messages have passed through a .PATH and one end of the

.PATH has not been equipped, then, when a process at the equipped

end performs some operation on the .PATH, that process is suspended
until the other end of the .PATH is equipped, at which time processing
continues normally. If, on the other hand, messages have been

passed through the .PATH and one end of it becomes unequipped,

then if a process at the other end performs some operation (other

than UNEQUIP) on the .PATH, an "abnormal-end-of-data'' status is

returned, signifying that the communications path has been broken.

{f a .PATH is given the access mode of Read/Write, then there may
be only one writing process. If it is given the access mode of
Multiple Write, there may be more than one writer; in this case,
the users must agree on protocol (e.g., how to identify the author

of a message).

In the status indications for a .PATH, the load point flag for
the writer and the end-of-data flag for the reader indicate an
empty .PATH. A user interrupt may be armed and enabled to cause

a trap whenever a .PATH being read from becomes non-empty.
.LOCK:

A .LOCK is a device used for the coordination of cooperating
processes, as a convenient and efficient alternative to mapping
in a common page of a multiple-write .RAF, .LOCKs should be
shared with multiple-write access. They are two-state devices:

a .LOCK may be either ''locked' or ‘''unlocked'.

When a process performs a READ on a .LOCK, and the device is
Yunlocked'', the system changes its state to ''locked" and allows
the process to continue (nothing is returned by the READ). If,
however, the state is ''locked'', then the system suspends execution
of the reading (locking) process and puts it on a queue along with
any other processes which attempted the same operation. When the
.LOCK becomes unlocked, the process at the head of the queue is
reawakened, with the .LOCK again locked. A suspended process
which wakes up ahead of time because of a timer interrupt will

be taken off the queue.

The WRITE operation changes the state of a .LOCK to "unlocked'.
(Note: the termination of a process '*holding the lock' causes
an implied WRITE on the .LOCK.)

The state of a .LOCK can be tested with a STATUS operation: ‘'‘load
point' indicates that the .LOCK is unlocked.

6.7 1/0 Operations

The following XREQs, many of which include several parameters,

operate on logical devices through a virtual channel (an equipped lun):

o EQUIP, UNEQUIP: Make/break association of the process with
a logical device through a virtual channel.
A device must be equipped to perform any
of the following operations on it.
STATUS: Get status of device/lun.
CLEAR: Clear error conditions on an equipped device.
REWIND: Rewind device to load point.
FWSP, BKSP: Forward space/backspace one record.
- SEFF, SEFB: Space to end of file (filemark) forward/backward.
' SEOD: Space forward to end of data.
WFM: Write filemark.
RELEASE: Release (throw away) all data on the device.
WRITEx (x=T,TF,B,L,C): Write a record of the specified type
from a buffer of specified location and

o o 0o 6 0 0o 0O O O

length; types are text, text with formatting,
binary, label, comment.
READ: Read a record into the specified buffer location.
ACCESSx (x=w,R,A0,X0,MN,DR): Change access mode of device
to that specified (W=Read/Write, etc.).
POSITION: Set current position pointer in a .RAF/.CODE.
MAPIN, MAPINR: Map in a page of a .RAF/.CODE into process
memory (with or without Read-Only protection).
RAFLAST: Get last data address in a .RAF/.CODE.
RAFPROT: Protect a page of a .RAF/.CODE from modification.
SAVE, UNSAVE: Install/remove 2 device in/from an account library.
- SHARE, UNSHARE: Grant/revoke saved device access to other account
MODIFY: Modify certain attributes of a saved device.

o 0 0o 0 o

13/

(s).

tay

1,

6.8 Saved Files

The term “'saved file" refers to a logical device of type .SAF,
.RAF, .CODE, .PATH, or .LOCK which has been made an element of

an account library with a SAVE XREQ. A saved file remains intact

when a process unequips it, and also when a user logs off the

account; given proper access privileges, it can be accessed by

processes running under other accounts.

A saved file identifier (“'file ID") consists of a filename of

from one to twelve characters optionally followed by an extension.

The extension is added by following the filename with a period (*'.")

~ and then up to six characters. The extensions, which are not to

be confused with names of logical device types (.SAF, .RAF, etc.),

are provided for the benefit of user software (including BTI-supplied

language translators and utilities), to give programs an indication

of the purpose or content of the saved files. For example, BTi-

supplied software recognizes the following extensions, among others:

+ASSEM
.FIN
.COBOL
.BASIC
.PAS
-RPG
LIST
.0BJ
.LIB
.CODE
. TEMP

assembly language source

FORTRAN language source

COBOL language source

BASIC-X language source

PASCAL-X language source

RPG 11 language source

a source listing of a program (produced by a compiler, etc.)
one or more object modules acceptable to the loader

like .OBJ, but treated as an object module library

loader output; executable form of a program

a temporary file to be destroyed soon

W

For example, if a programmer were working with a COBOL program
named BILL, the BTl-supplied COBOL compilér and associated software
would automatically recognize BILL.COBOL, BILL.OBJ,

BILL.LIST and BILL.CODE. The user would not normally be concerned

with any name except "BILL" itself.

Every saved file possesses the following attributes, many of which
may be changed by various XREQs. Complete information about

a saved file's attributes is available in the directory (.DIR) of
the owning account's library; a subset is available through an

equip to the saved file.

File ID (filename and extension)
Type (logical device type: .SAF, .RAF. .CODE, .PATH, or .LOCK)
Creation Date
- Last Accessed Date
Last Modified Date
Last Backup Date

OOOOQOO

Purge Interval: This is a number from O to 255 giving
the number of days from the file's last
access until it may be purged (removed
from disk storage and written onto some
archival medium). Zero specifies no
purge allowed. The default is a system
manager parameter, with 90 days considered
reasonable. A purge interval of a week or
less (1 to 7) specifies a temporary saved
file which is to be removed from storage
without backup after the specified interval.

o Purged Flag: When a file is purged, its directory entry

remains, with this flag set. Processes

attempting to equip to a purged file are
notified where the file may be found.

Access Mode

No Backup Flag (for non-critical files)

Recovered From Backup Flag (to warn that data might not be

- current)

Shared List: This is the repository ofAinformation'that
allows other accounts to access this saved
file in some way. Each entry in the list
consists of an account ID, a ''shared access
code' which defines what kind of access is

granted, and an optional password.

If the account 1D is that of the o@ning
account's project public library (.dddppp),
then access is granted to any account in
the project. If the account ID is that of
the owning account's division public library
- (.ddd), then.acéess is granted to any
account in the division. |If the account
ID is that of the system public library (.SYS),

then access is granted to any account on the system.

There are three Shared Access Codes:

Read Only: No matter what is allowed
by the file's Access Mode, only
reads are allowed to the account(s)
with whom the file is shared.

Read/Write: The account(s) is(are)
allowed whatever access is allowed
by the file's Access Mode.

Modify: The account(s) is(are) allowed
the same privileges over the file
as the owning account, including
authority to modify its attributes.

When an account attempts to equip to a saved
file, the shared list is searched and, if the
account ID is not found in the list or the
account ID is found but the password provided
with the EQUIP does not match, the equipping
process is given no indication that the

file exists.

" There is also a shared list that applies to an entire account library.
Placing an entry in this list is equivalent to placing that entry

in the shared list of every saved file in the account library. This
is most often done when an archival account is created, where some
other account (usually belonging to the same individual) has Modify

privileges over the entire library of the archival account.

7. CONTROL .MODE, ASSEMBLER, AND UTILITIES

7. Control Mode

The BTi-supplied Control Mode program is the fundamental interface
between the system and all its users. It combines the functions

of an interactive command language and @ traditional (batch process-
ing) job control language. The term "Control Mode'' may refer either
to the program or to its use, SO that an interactive user conversing
wi;h.the program-(or a batch stream submitting command records to

it) is said to be "in" Control Mode.

Control Mode is a ''user' program, as opposed to being part of the
Monitor; that is, it runs the same user-mode CPU instruction set
that a user-written program does, and in other ways uses the same
virtual machine process environment as a user-written program.

It accomplishes its design functions through the same XREQ pseudo-

instructions that are available to other programs (with one exception).

The distinction of Control Mode is that it is known to the Monitor

as that program to run in @ user process environment when no other
program is running; it is the "“overmost' program in every process
structure, as presented in Section 5. It is also given the unique
capability of executing the HELLO XREQ, which logs a user on to

the system; this ensures that password-checking is performed properly
for legal entry to the system.

For a turnkey interactive user, Control Mode serves only as the log-

on control vehicle; after this user gains access to his account,

137

the Hello Program takes charge of the interactive interface, as
discussed in Section 4. Other users, including programmers, normally
spend very little time in Control Mode, simply using it to start
programs by which they do their work. If desired, however, Control
Mode commands can be used directly as a convenient way of exercising
the system's XREQ capabilities. Control Mode program logic also

provides many other services to the user.

1po file' processing is a powerful feature of Control Mode. A

po file is a series of Control Mode commands stored as a series

of text records in a file. The Control Mode DO command, given the
name of the file, processes that file as if it were a program written
in the Control Mode quasi-programming-language; DO files can include
branches, tests, and loops, passing values between Control Mode

- variables and the programs their commands may invoke.

Control Mode interpretation of user commands is designed to allow
flexibility and ease of learning. The general appearance of a
Control Mode command is a ''verb' followed by parameters; users
may separate the command elements with spaces, commas, semi-
colons, equal signs, or almost any other special characters that
the user may feel are helpful in making the command ''look right"

on a listing.

1f the user follows a verb with a question mark (or alternatively
uses the HELP verb parameterized by the verb in question), Control

Mode displays an explanation of the verb.

As long as a program name does not conflict with a Control Mode
verb, the user may run a program merely by typing its name (the
name of the .CODE file). Thus to run a program named UPAYROLL",
the user need type only PAYROLL. (The RUN verb may be used in

case of conflict).

t3¢%

Control Mode also provides substitutuion and concatenation operators
which are applied to command strings before their interpretation;

this ''pre-processing" provides both interactive convenience and

flexibility (when, for example, a DO file is generated program-
matically).

The following summary presents only the verbs used in Control Mode

commands, grouped by function:

Log-in and log-off: HELLO, BYE

One or two Hello Programs may be

associated with an account. Programs
may execute the BYE XREQ directly.

Assistance: ~ 7, HELP, COMMANDS
' Some commands have two levels of

explanation available.

Modifying C.M. interaction: BRIEF, DETAIL

C.M. error messages are shortened

when in "brief'' mode.

Do files and C.M. variables: DO, IF, SKiP, TAG, EXIT...
A DO file (started with the DO

command) may test C.M. variables with
IF; SKIP to a TAG; and EXIT before

end-of-file.

%, COMMENT...
D0 files may be annotated with COMMENT

records.

(3%

General Information:

Account and session parameter

140

ABORT, UNABORT...

In ABORT mode, certain C.M. commands
are unavailable, and programs may not
be started. This mode is used for DO
files and batch.

SET, RESET, DISPLAY

Control Mode variables, which can be
used to pass information between
Control Mode and the programs it runs,
may be SET and DISPLAYED; RESET clears
them all,

DATE, TRAFFIC, LIMITS, PORT, BLOCKS, TIME
Traffic displays number of ports in

use, number of active processes, and a
calculated system load factor; LIMITS
displays account limit information:

PORT can get or set port operating
parameters; BLOCKS and TIME refer to
session limits for use of storage and

time.

changes: PASSWORD, BLOCKS, TIME, PORT

Program execution and control:

A "“future" password may be specified,

to take effect at some given date.

RUN, implied RUN...
A program may be started by entering

its name.

Account library:

Virtual channels:

sul

GO, STATE... _
G0 resumes execution of an interrupted
program; STATE displays console information,

for debugging purposes.

PERMIT, RESTRICT

Modes may be entered to trap out the
execution of certain ''dangerous'' XREQ's.
Used when running a borrowed program,

or when debugging.

CATALOG, STATUS...

Parameters allow the CATALOG command

to display directory information in
several ways (different sequences, more
or less detail, etc.). STATUS can
display attributes of a specified saved

file or equipped logical device.

RENAME, MODIFY, UNSAVE...
Saved files may be renamed, and certain
of their attributes may be modified;

they may also be unsaved (destroyed) .

SHARE, UNSHARE
Access to a saved file may be granted
to other accounts, with several restrictions

(including equip-time password) possible.

LUNL1IST, STATUS, RESET
The EQUIP status of all 202 virtual
channels can be examined with one command

(LUNLIST), or each lun can be examined

14>

individually (STATUS). RESET un-

equips all virtual channels.

Logical devices (general): EQUIP, UNEQUIP...
Programs can be written to delay the

selection of logical devices to run time,
when users (interactive or batch) can
equip their virtual channels in Control-

Mode just prior to execution.

STATUS, ACCESS, SAVE
The ACCESS command invokes the ACCESS
XREQ to change access code on an

equipped logical device or saved file.

I/b pdsfiibnihg operations: POSITION, REWIND, BKSP, FWSP, SEFB, SEFF,
SEOD
These commands invoke the corresponding

XREQ's on an equipped logical

1/0 data operations: RELEASE, WFM, DATE, LABEL, FORMS
RELEASE throws away all data on a lun;
WFM writes a file mark; DATE can be

used to write a record containing
current date and time; LABEL and FORMS
write label and forms records on luns,
with the content given by parameters to

the commands.

7.2 Assembler

143

The BT! 8000 assembler (ASSEMBLER) is an extremely fast assembly-

language translator whose features and internal design resemble

those of a compiler rather than a traditional assembler. For

example, an assembly-language program has block structure; BLOCK

and END pseudo-instructions (statements) are used to define nesting,

with EXT and ENTRY statements defining locality of symbol references.

ASSEMBLER relieves the programmer of the burden of selecting

address modes for operands; it provides for definition of data

structures, and then automatically generates the proper address

modes for referencing elements of those structures. Operand-

field entries refer to the operands themselves, not their

addresses.

For example, the following statements provide a formal (template)

definition of a data structure to be pointed to by register 6:

BLOCK
ALPHA
BETA

GAMMA
DELTA

BASE
BSSB
BSSB
BSSC
BSS

DRCT
ORG

R6
6
30

BLOCK

Begin structure definition; R6 is base reg.
A six-bit field.

A thirty-bit field.

An array of five characters.

An array of four words.

End of template definition.

Back up and recover space allocated.

The next instructions establish the third DELTA word as a pointer
into a table of thirteen-bit elements (TABLE):

TABLE
PTRI

VFDB
PTR

13: element value, element value, ...

TABLE

LD R6 e=--- (address of a particular instance of
LD R] PTR1 . BLOCK)
ST R} DELTA(2)

Then, the statement:
LD RO @ (DELTA(2)) (R2)

loads register zero with the contents of the thirteen-bit TABLE
element found as follows: The third (0,1,2) word of the DELTA array,
within the structure pointed to by register 6 is used as a

pointer (@) into the TABLE; the pointer is post-indexed by register 2
(R2) to arrive at the desired operand (pointers refer to structure
elements which need not be one word long). |If register 2 contained
the value 3, for example, the operand would be the fourth (0,1,2,3)
of the thirteen-bit fields in TABLE. ASSEMBLER automatically

_ generates the FPVR2 address mode to handle the operand specification.

Although it is a single-pass translator, ASSEMBLER allows forward
referencing by deferring code generation as appropriate. It includes
a BOX statement to encourage documentation; BOX encloses comments

in a "box'' of asterisks on the listing. The INPUT statement allows
the source of language input to switch among files, with nesting

of sources allowed. ASSEMBLER produces detailed cross-reference
listings, with each cross-reference indication annotated to show

how the symbol was used.

194

195

.7.3 Linking Loader

The BT! 8000 linking loader is named LOAD. Its input is one or
more object modules -- the output of compilers (or the assembler),
stored in .RAFs. Its output is an executable program image, in
the form of a .CODE file. Object modules from various compilers

may'be combined into one program.

In most cases, the LOAD program is invoked automatically by one

of the compilers, as a result of a programmer's request for a
combined compilation and load. If desired, however, LOAD can

be_run as a distinct step, as for example when a programmer has

a compTex'set of object modules to link together. In either case,

‘ the'programmér can choose to have the resulting .CODE file saved
under some name (which can be supplied by the compiler automatically)
or left as an unsaved device which is used for a single (immediate)

program execution and then released.

All BTi-supplied language compilers (using this term to include
ASSEMBLER) produce object modules in a standard format. More than
one module can be stored in a .RAF, so that "libraries' of object
modules can be collected into a .RAF for the convenience of the
loader; a .RAF with the filename extension .0BJ (the output of a
compiler) is internally indistinguishable from a .RAF with the
filename extension .LIB (which indicates a collection of "library
routines"). The loader collects all object modules required for
the construction of a program from as many .RAFs as necessary.
Standard BTl-supplied object module library .RAFs in the A1l system
public library account are accessed automatically; there are object
module library .RAFs supplied for each language, plus a default
library which is always searched if any unresolved symbols remain.

If necessary, the loader searches through library .RAFs repetitively
(until all references are resolved), in case a new module references

a module stored in an earlier position within the library .RAF,

.CODE files not only provide for the 128-page virtual address space
program image, but also can include up to several hundred pages

for storage of symbolic information and overlay segments.

The standard object module format includes symbolic information
about the object code for ultimate use by debugger programs. The
loader incorporates this symbolic information into the high pages
of the .CODE file, so that an interactive debugger can refer to
variables and other parts of a program by the same names used in
the source program. (When a program is executing, the .CODE

file is always equipped, on lun 200.)

The loader collects object module “'sections' of like types into
program sections; it then blaces these sections, in both address
space segments and overlay segments, into the .CODE file in a
specific arrangement. The type of a section is determined by four

characteristics:

PURE/ IMPURE: Pure sections are placed into write-
protected-pages.

PAGE ORIENTED/WORD ORIENTED: This refers to requirements for
boundary alignment.

REUSABLE/ADD-ON: A reusable program section consists
of enough space to contain the largest

of its contributing module sections; an

add-on program section requires space
enough to hold all contributing module

sections in sequence.

74¢

147

GLOBAL/LOCAL: A local section is one which has
meaning only within a given overlay

segment. -

For example, ordinary program instructions are placed into a
section which is PURE, WORD-ORIENTED, ADD-ON, and LOCAL; a
FORTRAN COMMON area is placed into a section which is IMPURE,
WORD-ORIENTED, REUSABLE, and GLOBAL.

The loader is responsible for creating the final overlay schema,
which it places in page zero of the .CODE file. The schema is a
tree-structured set of information which)
references the overlay segments placed in the high pages of

the .CODE file. '

A special feature of the loader is the linking of tishared run-time
ﬁsyétems“.< Rather than link-loadlng language run-time environments
separately for each program that requires them, the loader relocates
sharable code such that the pure sections of each
language's run-time system can be shared by all processes that

require that environment.

Finally, the loader contains a feature known as "the calculator''.
Due to the richness of the CPU address mode set, evaluation of
unresolved externals in link-loading may require calculations
much more complicated than the simple substitution of a relocated
address. The loader's calculator' uses reverse Polish notation,
variable bit precision, and stack orientation to perform the

integer arithmetic necessary.

An auxiliary utility program, named OBJEDIT, is provided to
manipulate object library .RAFs. This program allows users to
interactively examine the contents of an object module library
.RAF; perform deletions, insertions, and replacements of object
modules within such a .RAF; and combine the contents of several
object module library .RAFs into one (or conversely, break apart
one such .RAF and distribute its object modules to other .RAFs).

1+

149

7.4 Editor

The BTI 8000 EDIT program is designed to accommodate a wide spectrum
of users, tasks, and interactive environments by selecting one
of a series of operational modes. Considerations for selection

include:
User task:

(a) programmer work: program development, generation of
test data, documentation

(b) ‘letter writer' work: secretarial; text usually limited
to a few pages

(¢) large documents

Terminal type:

(a) simplest interactive terminals (CRT or hard-copy)
(b) CRT's with cursor control (only)
(c) semi-intelligent terminals (hard-copy: or CRT)

Display speed:

(a) low speed connection (e.g., 30 cps)
(b) high baud rate (usually hard-wired)

User sophistication:

(a) novice user (simple command subset)
(b) occasional user

(c) extensive user (uses sophisticated features)

Among the editor's features are the provision of extensive user-
assistance capabilities; command synonyms (if the user is more
comfortable with alternate command words, he can declare his own
synonyms); user-defined macro commands (a program-like sequence
of editor commands, to be used repetitively, which can be invoked
with a single command =-- the user defines and creates his own
macros); and a choice of English-like (verb-modifiers) commands
("VERB" mode) or minimum-keystroke commands (‘'TERSE' mode). In
TERSE mode, the editor informs the Monitor of those (alphabetic)
characters to accept as "input line terminators', so the system

need not incur the overhead of calling in the program to process

every individual input character. (Hence in TERSE mode, the parameters,

if any, precede the one-or-two-letter command.)

The editor can operate on several files at once; each is normally
"a .RAF (but can be a .SAF), organized into "'text pages'', which
are collections of lines (not limited to one printing page). There

 is also a special "'table of contents' at the front of the file which
can be searched to locate a text page by number or by a content
search based on the first text line of the text page. (The table
of contents is written using record forms which are not normally
seen, except on request, by most user programs.) Lines can be
moved across text-page boundaries, and text pages can be rearranged

within files or even transferred among files.

In "display mode'', as opposed to ''line mode'', the CRT display (or
hard-copy print-out) is always formatted in the way a final print-out
would appear, as far as possible; the results of an editing operation,
in most cases, are displayed immediately. Display mode operates on
text using the concepts of a 'window' into the text (normally set

at the dimensions of the CRT screen), plus a ''‘cursor' which fdentifies
the "current line" within the current window. Intra-line editing can

be done by inserting, deleting, or rewriting text on the current line,

in place, with changes reflected immediately.

For rearranging or inserting lines of text, the user can “attach'

a series of lines to the cursor; as he moves the cursor within the
text, these attached lines follow it, visually as well as logically;
the user can actually see what the text would look like with the
1attached" lines appearing in different positions, since the display
is updated with every cursor or window movement. A "release'"
command deposits the attached lines into the text at the current

cursor position.

Lines (which are logical lines not limited in length) can be
addressed by line number within page; by context (cursor position
plus or minus 'n" lines); or by content (the line or lines containing
the characters ''xxx...'"). " Line ranges are identified either by
startiﬁg and ending line addresses (as above), or by starting address
plus line count. String searches can be ''delimited''; the editor

can distinguish between, for example, ''the'' as a separate word,

and “"'the' as a string that may appear as a piece of a word. Intra-

line modifications, as well as whole line deletions, can be '‘undone''.

The editor can also perform several types of justification and
centering operations (1eft, right, both, center), and can break
apart a 'paragraph' into its component sentences, creating a
separate edit-line for each sentence; the user can then rearrange,
add, or delete sentences, and finally repack (and justify) the
paragraph.

£

/75 Z

753

7.5 Sort and Merge

The BTi-supplied SORT utility program can be run either as a stand-
alone program or as a subroutine whose object module is linked

into a user program by the loader. SORT accepts input from as

many as twelve logical devices -- these are normally record-oriented
devices, but may be .RAFs. There is no limit to the number of

input records; maximum input record size is 99,999 characters. The

sort algorithm used is a sequence-preserving binary tree sort.

SORT instructions (‘'directives') may be entered from the terminal or
stored on a file. If a user types only SORT in Control Mode,

the program prompts the user for directives. If the user instead enters
SORT =i, L=]

then SORT expects to find its directives stored on the device specified
by the "I'" parameter ("i" represents a lun or a filename), and will
list Tts statistics and error messages on the device specified by

the 'L'" parameter. If SORT is called as a linked subroutine instead

of as a standalone program, the | and L parameters are passed with

the subroutine call.

The directives, whether entered from the terminal or read from a
file, are as follows:

BLK= number of records per block for input devices; zero means
variable-length records, unblocked (this is the default
if the BLK directive is omitted).

LEN= record length in characters (if fixed-length records)}
default is "'80", if the LEN directive is omitted.

INP= lun for input source. There may be up to32 INP
directives, specifying up to 32 sources of input. If
the blocking factor for a particular device is other
than that set by the BLK directive (or its default),
the specification is made by adding a modifier: 4
INP=i/BLK=b.

OUT= lun for output. The blocking factor is the same as that
used for input devices, uless specified otherwise:
OUT=0/BLK=b.

SORT may be given two OUT directives, the second specifying the

lun on which to write records whose keys are duplicates of those
of previously encountered records (records with such duplicate keys
are called "dupe records'), if so specified by the DUP

directive:

DUP=PICK Causes dupe records to be written to the second
UT tun.

DUP=DROP Causes dupe records to be “forgotten''.

DUP=0K Causes dupe records to be written on the first OUT
lun, behind their primaries. This is the default
if the DUP directive is omitted.

/((

(in all three cases, adding the modifier JLIST causes the

first 80 characters of dupe records to be written to the listing device.)

The FLD (*field") directive names a field within the record, identified
by starting character position and length in characters; this
directive may be used up to 15 times, naming up to 15 fields:
FLD(fieldname)=start, length.

The KEY directive identifies the fields (named by FLD) that are

to be used as sort keys. Up to 15 KEY directives may be used; the
order of their appearance specifies their relative importance (major
to minor): KEY=fieldname. The following modifiers may be used
after 'fieldname'':

JASC ASCI1 character interpretation (default, if no modifier).
/ASL As above, but lower-case ASCI1 characters are treated
as if they were Qpper-case characters.
/SBN (Signed binary) The high bit of the first character of
the field is treated as a sign bit, and the remainder
of the bits in the field are taken as an unsigned
binary number.
J/UBN (Unsigned binary) Straight binary comparison of all bits
in the field.
/-ASC, /-ASL, /-SBN, /-UBN As above, but sort sequence is descending

instead of ascending.
Finally, the GO directive ends the list of directives and begins the sort:
GO
The merging phase of SORT equips scra&ch .SAFs as necessary, entering

a new merge phase automatically after using 32 merge files. It uses
a tournament merge that dynamically balances its binary tree.

SORT writes the following information to its listing device:

All directives

Number of records read from each input device

Total number of records sorted

Total number of records output (may be less because of DUP)

List of dupe records (first 80 characters of each)

The MERGE program is similar to SORT, using exactly the same
parameters and directives, and treating duplicate keys in the
same manner. Each of its input files, of course, must already

be in sorted sequence.

/56

7.6 COPY

The COPY program is used for general-purpose data movement in the
BT! 8000 1/0 system. It copies files or parts of files, including
data>extracted from .SAFs between filemarks. COPY accommodates
all logical device types, and, given specific\definition of a
record, can move data from byte-oriented devices (.RAF, .CODE) to

record-oriented devices (.SAF, etc.).

A special capability of the COPY program is format conversion
from and to 'foreign'' magnetic tapes, including code conversion
(e.g., EBCDIC/ASCII), record-type conversion, blocking and
deblocking, etc. COPY is designed to convert from and to most

of the commonly used magnetic tape formats.

COPY can be used as an interactive program from Control Mode,

or can be run as an underprogram of a user-written calling program.

17

712

8. STANDARD PROGRAMMING LANGUAGES

8.1 Introduction

The BTI 8000 is designed to increase programmer productivity by
providing an extremely flexible program development environment.
Any number of program development tasks in any combination of .
languages may proceed concurrently, without conflict. Further,
the BT! 8000 offers a wide selection of standard languages to
allow applications to be implemented in a language which suits

the problem at hand.

The BT! 8000 supports six programming languages: COBOL, FORTRAN,
PASCAL-X, BASIC-X, RPG I, and ASSEMBLER. A1l language imple-

mentations have the following philosophical concepts in common:

o Program development may occur in an interactive
mode. The program may be written, compiled, and
linked from the terminal. Test files can be defined,
built, and dumped from the terminal; programs can be
tested with the aid of an interactive, symbolic level

debugging facility at the terminal.

In this environment, any number of program develop-
ment tasks (text editing, compilation, program test,
file build, file dump, etc.) can occur concurrently.
it is estimated that interactive program development
tools can increase programmer productivity by as much
as 50% over traditional methods.

/59

160

All languages support terminal devices as standard
1/0 devices. A terminal (CRT or teleprinter) can

be accessed under control of the BT! Monitor without
special telecommunications software. An application
program need merely execute a high level language
YREAD'' or 'WRITE' command against a file which has
been EQUIPed to a .TERM device type.

A1l language run-time systems, with the exception of
BASIC-X, are based on a common object program format.
As a result, subroutines written in a language may
be linked into an object program written in another

language.

A1l language implementations, except BASIC-X are
built upon the same data management primitives.

- A1l files can be read by all languages except BASIC-X;

- all Input/Output aspects of the virtual machine

environment are common to all languages.

164

8.2 PASCAL-X

PASCAL is a high-level block-structured procedural language which
has gained considerable acceptance in contemporary computing.
It is particularly effective in environments which require the
coordinated development of large, multi-implementor software
projects, including operating systems and compilers. PASCAL
evolved out of an effort by Working Group 2.1 of IFIP to define
a successor language to ALGOL 60; in 1965, this group produced
the language ALGOL W, the direct predecessor to PASCAL. PASCAL
was specified by Niklaus Wirth at the Institut fur Informatik,
Zurich, in 1968; the first compi]er became operational in 1970
and was published in 1971. - A second version of the specifi-
cation was released in 1973, and is now generally referred to
as "'standard PASCAL".

PASCAL was the first major programming language to be developed
subsequent to the formalization of the concept of structured
programming. ‘'Structured programming'" is a formal approach to
program design which attempts to increase the clarity and correct-
ness of programmed solutions through the use of top-down implementa-
tion techniques. PASCAL is block-structured and procedure-oriented,
and provides the programmer with a comprehensive set of single-
entry/single-ekit control structures. The use of these mechanisms

greatly simplifies the implementation of structured programs.

PASCAL is a sparse language with relatively few basic constructs.
The power of the language stems from the manner in which the

basic constructs can be combined. In particular, both algorithms
and data structures can be specified hierarchically. The clarity
inherent In the sparseness of PASCAL is a central design feature

62

which provides the following benefits:

o The simplicity and conciseness of PASCAL constructs
simplifies the design and implementation of compilers
to support the language. Further, PASCAL compilers tend
to generate extremely efficient machine code, since an
underlying design objective of the language limited the
" allowable set of constructs to those which could be efficiently

supported on existing computer hardware.

o Well-written PASCAL programs are easy to read and understand.

The language allows unlimited-length data and procedure
names, and exploitation of this feature allows programmers
to write programs which are virtually self-documenting.
Further, the very nature of the language syntax acts to
limit the number of approaches which the programmer may

' employ to'achiéve a particular processing requirement =< there
are fewer ''correct' ways to code the program, and the clarity

of the solution is improved.

o The block structure of PASCAL encourages top-down
development techniques to be applied in a natural and
simple manner. This type of language organization allows
the experienced programmer to conceptualize a top-down
solution in the actual language to be used to program

that solution.

o Support of single-entry/single-exit control structures
enhances the ability of a programmer to verify the correctness
of a programmed solution. Thoughtful application of
structured programming techniques greatly simplifies program

and procedure assurance testing.

13

In order to discourage future compiler implementors from adding
extraneous features which might compromise the above benefits,

Dr. Wirth originated the idea of strict standardization of the
language known as ''standard PASCAL'. By convention, therefore,
implementations which in any way deviate from the original
language specifications may not be referred to as YPASCAL' -- even
if these deviations are deemed necessary to achieve mandatory

implementation requirements.

There are three commonly recognized weaknesses in standard PASCAL:

o No support of a character-string data type.
o No provision for error-handling procedures.
o No support of random access files of any kind.

The BT1 8000 implementation of PASCAL extends standard PASCAL

to correct these deficiencies. By convention, therefore, this
language cannot be referred to as ''PASCAL'. BTI 8000 PASCAL-X
('x" indicating "'extended'') does, however, include all the
features of standard PASCAL; formally speaking, it is a valid
superset of standard PASCAL -- one can write any standard PASCAL
program in PASCAL-X,

PASCAL-X adds the following features to standard PASCAL to correct

the above weaknesses:

Full support for STRING data type.

o Conditional error recovery through the "ON error-condition
DO'" construct. In keeping with the block-structured
nature of PASCAL, PASCAL-X includes a 'TRY...ELSE"
construct for structured error handling.

o Full access to all aspects of the BTI 8000 1/0 and
file system.

1o

Additional extensions to standard PASCAL include:

Run-time adjustable arrays.

Compile-time expression evaluation for '"CONST" declarations.
Spawning and management of concurrent processes, and
generation and control of underprograms (see Section 5).

o Inter-process communication capability (.PATHs and shared

.RAFs).

PASCAL-X also has full access to the entire BTI 8000 virtual
machine. Efficiency-critical portions of a solution can be
coded in assembly lanauage, but the assembly-language routines
are treated as PASCAL procedures; the block structure of the
language is maintained, and machine-dependent code is isolated
for ease of maintenance and conversion. The capability of using
the host machine to its full capacity provides two significant

benefits to PASCAL-X:

o It becomes an ideal vehicle for systems programming
(all BT! 8000 systems software is written in PASCAL-X); and
o it allows PASCAL to be a feasible production language,
providing excellent structured programming and machine

efficiency capabilities to the data processing community

at large.

8.3 COBOL

coBOL (COmmon Business Oriented Language) is a high level

language designed for use in business data processing environ-

ments. The BTI 8000 implementation conforms to the American
National Standards Institute (ANSI) specifications X3.23-1974

at the high-intermediate level.

The ANS!| standard specifies the level characteristics of the

language through the detailed definition of 12 language modules.
BTI 8000 COBOL conforms to the standard at the following level:

Nucleus:

Table Handling

Nucleus Level 2 provides full facilities
for qualification, punctuation, characters,
data-name formation, connectives and figur-
ative constants. Within the Procedure Div-
ision, the Nucleus Level 2 provides full
capabilities for the ACCEPT, ALTER, DIVIDE,
DISPLAY, IF, INSPECT, MOVE, MULTIPLY, PER-
FORM and SUBTRACT statements.

in addition to the standard, REMARK and
NOTE have been retained from previous
COBOL Implementations.

Table Handling Level 2 provides a capability
for accessing ftems in up to three-dimensional
variable length tables. This level also pro-
vides the additional facilities for specifying

ns

Sequential 1-0

Relative 1-0

Iindexed -0

1bb

ascending or descending keys and permits
searching a dimension of a table for an

item satisfying a specified condition.

Sequential 1-0 Level 2 provides full fac-
ilities for the FILE-CONTROL, 1-0-CONTROL,
and FD entries as specified in the formats
of this module. Within the Procedure Divi--
sion, provides full capabilities for the
CLOSE, OPEN, READ, WRITE, USE, and REWRITE
statements as specified in the formats of
this module. Additional features available
in Level 2 include: OPTIONAL files, the
RESERVE clause, SAME RECORD AREA, MULTIPLE
FILE tapes, REVERSED, and EXTEND.

Relative |-0 Level 2 provides full facili-
ties for the FILE-CONTROL, !-0-CONTROL, and
FD entries as specified in the formats of
this module. Within the Procedure Division,
this level supports CLOSE, DELETE, OPEN,
READ, REWRITE, START, USE, and WRITE state-
ments as specified in the formats of this
module. Additional Level 2 features include:
the RESERVE clause, DYNAMIC accessing, SAME
RECORD.AREA, READ NEXT, and START.

Indexed |-0 Level 2 provides facilities for
the FILE-CONTROL, 1-0-CONTROL, and FD entries
as specified in the formats for this module.
Within the Procedure Division, this level sup-
ports CLOSE, DELETE, OPEN, READ, REWRITE,

Sort-Merge

Report-Writer

Library

Segmentation

/

167

START, USE, and WRITE statements specified
for this module. Additional Level 2 features
include the RESERVE clause, DYNAMIC accessing,
ALTERNATE KEYS, SAME RECORD AREA, READ NEXT,
and the START statement.

Sort-Merge Level 2 provides the facility for
sorting one or more files, combining two or
more files, one or more times within a given

execution of a COBOL program.

The Report Writer module provides the

facility for producing reports by specifying
the physical appearance of the report rather
than the detailed procedures required to pro-

duce the report.

The initial release of COBOL will contain a
NULL implementation of the Report-Writer.

A full implementation of the Report-Writer
is planned for late 1979.

Library Level 2 provides the facility for

copying text from a source library into the

source program. Level 2 Library also supports .
the replacement of a given literal, identifier,
word, or group of words in the library text with
alternate text, during the copy process. Level

2 Library supports the availability of more

than one COBOL library at compile time.

Segmentation is not supported under the initial
release of BT! 8000 COBOL.

168

Debug In place of the standard DEBUG facility,
BTI B000 COBOL provides symbolic interactive
debug support on all compiled COBOL programs.
Interprogam Communications The initial release will not

Communications

support COBOL-standard Inter-Program Comm-
unication constructs. An analogous capability
exists as a standard feature of the BTl 8000
Monitor, which provides the additional capabil-

ity to communicate between concurrently exe-

cuting programs written in any language.

The Communications Module is not implemented
in BTI B0OO COBOL. The standard operating
system provides comprehensive support of
interactive terminal devices as a standard
feaiure of the file system; implementation
of the Communications Module would compro-
mise the device-independence features of

the Monitor.

BTI 8000 COBOL includes the following enhancements to the standard:

o Support of the discontinued 1968 COBOL constructs
NOTE, EXAMINE, and REMARK.

o DBMS-X Data Base Management System verbs are fully supported
by the COBOL compiler -~ no precompiler is necessary, nor is
it necessary to employ the CALL verb for data base access.

o Fully compatible data types between COBOL and FORTRAN

° Symbolic interactive debugging facility

8.4 FORTRAN

" BT! 8000 FORTRAN is a full implementation of FORTRAN-77 (ANSI
standard FORTRAN X3.9-78) for use on BTl 8000 computer systems.
The conpiler also accepts programs written in complience with
ANS! FORTRAN 66 and commonly used extensions.

BT! 8000 FORTRAN is designed for programming convenience, allowing
the programmer to concentrate on the algorithm instead of its im-
plementation. Unlimited statement length and support of upper/
lower case symbolic data names are but two of the features which
support this design goal. The compiler has a three-level error
and warning system for diagnostics which allows compilation to
continued in spite of minor errors.- Debugging statements identi-
~fied by 'D" in column‘chan be included in the compilation or
interpreted as remarks, depending upon a selected compiler option.
Finally, a fully interactive debugging facility aids in program

test and verification.

BT1 8000 FORTRAN places the full power of the operating system
in the hands of the programmer through the use of extended 1/0
facilities. Files may be created, attached, interrogated, and
destroyed under program control using the OPEN, CLOSE, and
INQUIRE statements. Data transfer to and from files may be
formatted, unformatted or list-directed. Files may be direct
access or sequential, and may contain variable length records.
in addition, data may be transferred to and from character
strings by using statements which are similar to regular 1/0

statements.

The data types and data manipulation handling capabilities of
BT! 8000 FORTRAN are extremely versatile. Character strings

19

170

may be concatenated and assigned to variables. Strings may be
compared with other strings. Substrings may be extracted with

a convenient subscript-like notation. Numeric data types (Real,
integer, and Complex) have over 15 digits of significance; Double
‘Precision Real supports 34 digits of significance. Variables of
any type may be subscripted, and an array may have up to seven

dimensions with no restructions on upper and lower bounds.

‘BTI 8000 FORTRAN extends the FORTRAN-77 standard with the follow-

ing features:

o Debugging statements indicated by D' in column 1
included in compile by compiler option

e} Array subscript and computed GO TO expressions of
real, double precision or integer type.
interactive debugger support
Symbolic names (1 to 8 characters in length) in
upper or lower case or combination
Subexpression optimization
Variable length record 1/0 support

8.5 BASIC-X

BASIC (Beginners All-purpose Symbolic Instruction Code) is a
conversational problem-solving language which has met with
considerable success in the computer timesharing environment.

It is characterized by its interactive, “human-engineered'' user
interface. BASIC provides editing facilities to support line-
by-line program syntax checks, line insertion, line deletion,

line resequencing and text modification from the keyboard; the
distinguishing feature of BASIC is that it can immediately execute
a newly entered or modified program, without the delay of a
compilation phase. These features provide rapid program develop-

ment for the novice as well as the experienced programmer.

BASIC-X is BTI's implementation of the BASIC language. BASIC-X

is an enhanced version of BASIC ("'X'" indicating ''extended") which
serves the total application needs of over 700 installed BTI Model
3000, 4000, and 5000 Timeshared Computer Systems.

BT! 8000 BASIC-X is a totally compatible implementation of BASIC-X.
The primary design objective, and in fact the reason for the
development of BT! 8000 BASIC-X, is to provide BTl customers

with a conversion-free growth path from the BTl 3000/4000/5000
systems to the BT! B8000. The existence of BTI 8000 BASIC-X protects
the program investment of existing BTl 3000/4000/5000 owners, while
allowing these customers to substantially increase their total

data processing capacity.

/
Source-level compatibility among the various BTl product families
allows multi-division organizations to use a centrally located BTI
8000 system as a program development and maintenance resource, while

installing smaller BTI! computers in remote locations for use

as independent processing nodes. Remote locations can achieve

the benefits of local computer control while allowing system
support tasks to be carried out by a centrally located computation

support staff.

Organizations which are geographically dispersed can implement
distributed processing networks built entirely around BTl systems;
distributed processing allows the organization to disperse the
functional responsibility for data processing to locations where
local computing power is useful, while maintaining control of the
overall direction of the data processing function at a central
location. Local management can assume responsibility for operation
of the system, while relying on remote technical specialists to

provide programming and system support.

For the most part, BASIC language implementations are interpretive
in nature. At program execution time, a language interpreter
accepts source program statements a line at a time, interprets

the execution implications of the source statement, and performs
the statement by executing appropriate machine code in the
interpreter program. The interpretation of the source statement
occurs each time the source line is encountered. BASIC-X on the
BTI 3000/4000/5000 is implemented with an interpreter.

A second major approach to language processing calls for the use

of a language compiler. Program source, which must be complete,

is accepted and processed by a program (the compiler) which translates
the complete source program into an equivalent 'object'' program

which can be loaded into computer memory and executed. Both compilers
and interpreters are language translators; the differences between

the two Include the fact that the translation process occurs once

for a compiled program, with the resultant machine object code

available for storage and later use without further translation.
By contrast, the translation process inherent in an interpretive
language occurs each time the program is run. All languages on
the BT! 8000 other than BASIC-X are implemented using compilers,
Obviously, compiled programs execute with far less system overhead

than interpreted programs.

BT! 8000 BASIC-X is implemented using a technique which has
characteristics of both a compiler and an interpreter. As
source statements are presented to BASIC-X, during either
keyboard entry or retrieval from a source library, each is
translated on a line-by-line basis, as with an interpreter.
Once the execution requirements of the line have been determined,
however, the incremental compiler generates machine object code
which is stored for later execution. When the program is run,
‘the machine object code is executed in roughly the same manner
“that a compiled program executes (the interpreter-like features
result in certain efficiency trade-offs). Further, the quasi-
compiled object code can be stored and retrieved for later use,

without further translation.

As implemented on the BTI Model 3000/4000/5000, BASIC-X provides

a fully interactive program development cycle. The incremental
compiler implementation of BASIC-X on the BT1 8000 maintains this
same user environment while approaching the execution-time efficiency

of a compiler.
BASIC-X includes the following extended language facilities:
String arithmetic with 252 decimal digit precision

Extensive string and substring manipulation facilities
Complex error handling under control of the user program

o o o o

“File creation/deletion within user program

Up to 64 files open concurrently in each program
Extensive file sharing features in support of update
and inquiry activities

Complete set of matrix operators

COMmon file declaration between CHAINed programs
eliminates redundant file linking

PRINT USING to a string variable as well as to an 1/0 device

8.6 RPG 11

" RPG (Report Program Generator) 11 is a highly flexible, machine
independent, problem-solving language. it is most frequently
used in business and commercial computing environments, although
the language is powerful enough to fill most application needs.
RPG and RPG Il are versions of a standard language available on
many machines. As a result, programs written for another manu-
facturer's RPG can be submitted to the BTI 8000 RPG 11 compiler

with little or no conversion re-coding.

BT! 8000 RPG 11 offers many of the programming capabilities

of machine-oriented programming languages but, in most cases,
is easier and quicker to code. The primary advantage of RPG 11
is the speed with which file-oriented application programs can

be written.
some of the significant advantages of BTI 8000 RPG Il include:

() The full program development cycle is supported from
terminal devices. Programs can be written with the
aid of the BT! Text Editor, compiled, and tested from
any terminal on the system. Program Development can
proceed concurrently with production processing,

without degradation of the production environment.

o Application programs written in RPG Il can use term-
inal devices as input/output devices without additional
control software. The programmer can access terminal
devices through EXCPT (Output) and DSPLY (input/0Output)
calculation operators. It is not necessary to interface

the program to a special run-time control program

to gain access to terminals.

The programmer may also assign standard input and/or
output files to terminal devices. This approach allows
the terminal to be accessed as part of the standard

RPG 11 processing cycle.

o RPG Il operates in a completely secure, multi-user
environment. Program development, production process<
ing and terminal based application programs can proceed
concurrently, without special system scheduling consid-

erations.

BT! 8000 RPG Il provides an excellent vehicle to allow current
batch-oriented users to upgrade to terminal-oriented data process-
ing. Existing RPG batch application programs can be moved to

" the BT! 8000 with a minimum of conversion effort, and experienced ..
RPG programmers can be trained to exploit the terminal capabilities

of the system as part of the general introduction to the system.

9. DATA BASE MANAGEMENT SYSTEM

9.1 Introduction to Data Base Management

Recent advances in information science have resulted in the
development of advanced techniques to aid in the management

of data with the aid of computer systems. One of the most
powerful tools to evolve out of this technology is the concept
of data base management. The data base approach to information
storage and retrieval vfews daté as an organizational asset
which can be controlled and ménaged wjth the aid of high-level

system software.

A Data Base Management System (DBMS) is a library of programs,
data manipulation subroutines and high-level language inter-
faces which allow large volumes of inter-related information

to be stored on large capacity disk units. This mass of
inter-related information is maintained as an entity which
exists somewhat apart from actual programs and systems on the
computer. The DBMS performs data management functions which
control the placement of data into the physical storage domain
and provide mechanisms for mapping high-level requests for

data into physical storage operations. In this manner, DBMS
software eliminates the need for application programs to inter-
face directly with physical storage devices and file management

systems.

17

78

AR
R

DBMS-X FEATURE SUMMARY:

SECURE DATA STORAGE

PROTECTED DATA BASE INTEGRITY

CONSISTENT TRANSACTION PROCESSING
AUTOMATIC SOFT FAILURE RECOVERY

HARD FAILURE RECOVERY

INTEGRITY PROTECTION IN PROGRAM TEST MODE
LARGE CAPACITY DATA BASE STORAGE

AUTOMATIC PHYSICAL ADMINISTRATION

INTERACTIVE LOGICAL ADMINISTRATION

9.2 DBMS-X

DMBS-X is a general purpose data base management system supplied
and supported by BTl for use on the BTl 8000 computer system.

It provides for the definition, creation, maintenance, restructur-
ing and backup of network data bases through the use of standard
system functions and high level language interfaces. DBMS-X is
designed to assure the integrity of information stored under

its control in a multi-lingual, multi-user on-line environment.
Application programs which use DBMS-X may be written in COBOL,
FORTRAN, or PASCAL-X.

DBMS-X complies with and exceeds the 1973 CODASYL Programming
Language Committee specifications for data base management
systems. BTI| has implemented significant extensions to the

standard which provide the following features:

o Privacy and security controls implemented at the
data item (field) level through the use of access
control lists. Specific system users as identified
by their account ID's are granted access to particular

portions of the data base by the Data Base Administrator.

o Logical integrity protection provided through the

BEGIN-TRANSACTION/COMMIT-TRANSACTION language construct.
The systm assures that all operations specified between
the BEGIN-TRANSACTION and COMMIT-TRANSACTION designators
in an application program have been successfully completed
before releasing the data base for modification by

another user and/or transaction. Update sequences which

1¢ .

fail or are aborted prematurely due to system failure,
logical error, or operator intervention are completely
backed out of the data base before the next user or

transaction can gain control.

o A series of meta-commands in the Data Manipulation
Language allows programmers to perform operations which
involve groups of data sets. These commands dramatically
simplify the programming tasks required to implement

inquiry and reporting functions against the data base.

These enhancements to the specifications provide an implementation
which is functionally superior tobthe CODASYL recommendations,
while supplying easy conversion for software written in compliance
. with the standard. Some of the major features of DBMS-X are
discussed below:

Secure data storage:

The benefits to be gained by providing qualified users with
on-line access to sensitive data must be weighed against the
risk of disclosure of that data to unqualified users. DBMS-X
provides a multi-level security system which allows for the

implementation of extremely tight information access controls.

At the highest level, it is impossible for an individual to
gain access to ggx'information unless he is logged on to the
system as a user. As part of the log-on'procedure, the user
must supply the operating system with proper account identifica-
tion and password information.

The log-on procedure identifies the individual to the system

and to the data base management system. As part of the data

base definition process, the Data Base Administrator specifies

a list of users who are allowed to access the data base. The

DBA also specifies the portions of the data base which

can be read or changed by each valid user. In this manner,

the ability to access individual data fields is controlied by the

Data Base Administrator. In the absense of permission to access
a data base, a system user is prohibited from any activity

against the data base.

Protected data base integrity:

As large volumes of information are consolidated into an integrated,
multiple-application data base, it becomes increasingly more
important to assure the integrity of the data. Data base tech-
nology allows many application programs to access and update the
base concurrently, and must provide tools and system features

to protect the base from compromise. A major design objective

of DBMS-X is the creation and maintenance of data bases which

are ''crash-proof'' -- and to maintain consistent, coherent data

bases in spite of system crashes, run-time data base control

program crashes and application program crashes.
o Consistent Transaction Processing

Almost no data base update procedure generates consistent
results during all instantaneous phases of the update.
Consider a financial application which debits and credits
accounts -- the update procedure consists of debiting
one account and crediting another for the same amount

1<,

of money. At the point where the debit operation

has occurred and the credit has not occurred, the
contents of the data base are inconsistent. An
interruption in the update at this point would leave
the data base out of balance (inconsistent), and

some form of remedial action would be necessary. The
same type of inconsistent result would develop if

a concurrently executing program deleted the credit
account or changed its identifier before the debit/

credit transaction was completed.

DBMS-X gives the application programmer a tool to

aid in the protection of logical data base integrity

in the implementation of the data base ""transaction''.
The application.programmer defines the beginning and
end of an update sequence which takes the data base
from one consistent state to another consistent state
with BEGIN-TRANSACTION and COMMIT-TRANSACTION statements
in programs which change the data base. DBMS-X
temporarily blocks all other programs from accessing
those resources which are required to complete a trans-
action, while assuring that the transaction either
processes to completion, or does not process at all.

It specifically prevents the system from processing
part of a logical transaction, and thus protects the
logical integrity of the data base. Upon completion

or abortion of the transaction, control over the

locked portions of the data base returns to the system.

The following sequence of events is a functional model
of the transaction update process. The actual internal
procedures are beyond the scope of this document.

rY)

STEP |

STEP 11

STEP 111

STEP IV

STEP V

STEP VI

The application program specifies
BEG IN-TRANSACTION and a list of the

resources required for update.

The required resources are locked and
the Update Table Transaction Status
Code is set to IN PROCESS (Figure 1).

Data base pages are changed as the
update progresses, and the updated
pages are stored outside the data base.
Update Table entries are made which
identify the locations of paired ''ex-
isting" and ''updated' pages. DBMS-X
continues to build ''shadow pages' of
updated information until the appli-
cation program signals the end of the

logical update sequence with COMMIT~-TRANS-
ACTION (Figure I11).

At CcOMMIT-TRANSACTION, the Transaction
Status Code is set to CLOSE (Figure 111).

The system links the shadow pages into
the data base in place of the existing
pages, releasing the existing pages in
the process (Figure V).

The Update Table is cleared, the Trans-
action Status Code set to COMPLETE, and
all locked resources released (Figure V).

N

1€

a0
Attt

tee ¢ SO"A'?

-
-
s-
-

~lw |

PaceE |
r = - - —-— —a-w
- N e o - - -
‘ 3
LOCKED .
RESOURRES Y
_—-—-3
-__--2-
- 7"
_____ Q
N
OPERRTIONAL
DATA BRST

AN CoDt § I\ PRoeEssS

BExistine Faec

SHApow Pace

st p—

e e e

— — o -

b e e—— e— -

UPRRTE

FIGURE I -- RESOURCES LOCKED, TRANSACTION IN PROCESS

TFE_E

1£-

R 4,
~ATIEYN AL e

PacE | /1A ._‘
't
' SHAdoOW
- 3 upoATE TRAN CODE >IN PROCESY
PR&ES ODE = Tn PRO
;:ggsgzzs T T Existive Phee Sunpncw Pase
_ L _d__/A__
T s, SA _5__1_8A__|
s 7 A -
“““““ 7. WE | UPDATE TRABLE
|
=
""" m
I
OPERATIONAL
DRATA BASE
FIGURE 11 -- RESOURCES LOCKED, TRANSACTION lg PROCESS

SHADOW UPDATE IN PROGRESS

Y -2 "V S

R
rew

~mae

J
< = ~y

FIGURE III -~

fPAaE I /A
___.__, —-—--i-' ‘—“
SHADOW
3] uPoATE TRAN CODE: CLOSE
PREES obE
g&;zs | —-——-‘{- Exisnive Paeg Suancw Pace
L _4__/A__
L -) S8 __1_56A_ |
5 - _g7__1_7n |

...... 5 A UPDATE TARBLE ‘
————— F !

OPERATIONAL

DATA BASE

RESOURCES LOCKED, COMMIT-TRANSACTION HAS BEEN
DETECTED, TRANSACTION CLOSED, PHYSICAL DATA
BASE UPDATE CAN BEGIN

v
mAriIA AL

SHADoW PACE 18
HAS BeeEN RELEASED

€17

SHADOW
' upoATe TRAM CODE: CLOSE
PRGES ObE < o
;:ﬁgass T T T Existie Prcg Suntcw Pase
' L _4__/A__
B - SA 5 _1_5A_ |
ST] -~ 7 A
6 1 F-=-—4 S
T -qp A | UPDATE TRBLE .
‘‘‘‘‘ F !
- OPERATIONAL
bATA BASE
FIGURE IV -- RESOURCES LOCKED, TRANSACTION CLOSED, PHYSICAL

DATA BASE UPDATE IN PROGRESS

nonang
oy

.
ISR RE

PR AR ST N EA

L2 1'l| S0 SHEPTS S SNUAM

A’
S a
g

~ar .

..\r"

Pace (A :
Y
L — — - - .3- .
_____ AN CcDE : COMPLETE]
B Y Bustine Pace | SHatow Pace
R T I
Ty 1 ___
T # UPDATE TABLE
- -~ - &
N
OPERRTIONAL
DATA BRST

FIGURE V -- RESOURCES UNLOCKED, TRANSACTION COMPLETE,
PHYSICAL DATA BASE UPDATE COMPLETE, ALL
SHADOW PAGES RELEASED

189

The shadow update approach insures data base consistency
under a variety of circumstances. If the application
program detects that a transaction can not or should not
be completed prior to executing COMMIT-TRANSACTION, the
program need only execute an ABORT-TRANSACTION statement.
ABORT-TRANSACTION releases all shadow update pages created
by this transaction, clears the Update Table, sets the
Transaction Status Code to COMPLETE, and releases all
locked resources (in that order). Thus, the data base
appears as if the update sequence had never started

processing.

if the run-time control system associated with data base
processing (Data Base Control System =- DBCS) detects

that a pfograh usfng a data base has terminated abnormally,
the DBCS triggers ah ABORT-TRANSACTION against the data
base. This procédure returns the base to its last con-
sistent state. Access to the base is then terminated

as if the program had relinquished control of the base

normally.
Automatic Soft Failure Recovery

Shadow update assures the integrity of the data base

in the event of a ''soft' system crash. Let us assume
a soft failure (no portion of the data base has been
physically damaged by disk failure) which occurs while
several programs are processing transactions against

a data base. The failure has resulted in the abnormal
termination of all running programs, and the system has

been restarted with-a cold start operation.

The first program to access the data base after

system restart detects that several transactions were
being processed at the time of the failure -- this
determination is made from control information similar
to that stored in the Update Tables. Those transactions
which were IN PROCESS are simply ignored, and their
shadow update pages released back to free storage. The
data base is in a consistent state (the state before
the transaction began) and the interrupted transaction
can be re-entered without fear of double update on a

partially completed transaction.

Those transactions which were CLOSED at the time of

the failure are logically complete, but the actual
state of the data base is unknown. It can be assumed
that the system failure occurred during the 1inkage
operation which updates the physical data base. CLOSED
transactions are simply reprocessed through the linkage
procedure. "Existing' pages which have been released
are ignored, since they have already been replaced by
updated pages. Thus, transactions which are logically
complete are processed to physical completion and

locked resources are released.

The first program to access the data base after system
failure assures the consistency of the entire data
base before processing transactions or allowing other

programs to access the data base.
Hard Failure Integrity Protection/Recovery

DBMS-X is designed to allow efficient, rapid recovery
from "hard" system failures. A "hard" system crash is

4N

191

one in which some portion of the physical data base

is destroyed. The usual recovery procedure in the event
of this type of failure involves restoring the data base
from a previous backup and employing a mechanism to

roll the data base forward to a point just prior to the
hard system failure.

At the user's option, DBMS-X uses a mechanism which
applies the shadow update concept to provide a hard
failure recovery capability. The user generates a
full data base backup for use as a snapshot of the
base at a particular point in time. The system then
proceeds to post all updates to the data base twice
-- once to the operational data base, and once to a

~ shadow copy of the data base which contains only changed
data base pages. ‘Over time, the shadow data base
contains the most recent copy of all changed data
base pages since the backup; if a particular page in
the base changes more than once, only the most recent
copy of the page resides in the shadow data base.
(Figure VI).

In the event of a hard system failure, the backup copy
of the data base is restored to the system, and the
shadow data base entries are applied against it. At
the end of the recovery operation, the data base is

as current as the shadow data base.

An intereéting feature of this approach to recovery

is low overhead, both in disk space and recovery

time. This procedure, in conjunction with the Journal-
izing option, offers virtually all of the advantages
of before/after image loéging without the overhead of

l 792 i

ARt
WAt

LERRC AT T B AN
PR

Pree 4 #[iRl lPAcE LA ;
e - - — - - —e—————-, e - ;
2 T2 '
_____ 5] I .
T T T Ty Y
(T s] { 5A Y
_____ 6_- S
[movercAro ey ®| | _______
7) B 18
. 1
e e e e
N
(8) (B) (c)
. SNAPSHOT. . SHADOW CURRENT
- "BACKUP" , DATA BASE OPERATIONAL
- DATA BASE : - DATA BASE :
. This is the data This is the shadow This is the current
base which has been data base which con- data base -- can be
backed up -- can be tains only pages viewed as the 'new!
regarded as 'old' which have changed data base. It is
data base prior to since backup =-- the same physical
update note that page 7A base as A with the
has been overlaid changes reflected
by more recent 7B in B applied.

FIGURE VI -~ SHADOW DATA BASE CONCEPT AS
APPLIED TO HARD FAILURE RE-
COVERY AND BACKUF

copying physical before and after images. Intermediate
data is overlaid (as in pages 7A and 7B in Figure V1) and
does not need to be stored or processed as part of the
recovery cycle. The DBA may also choose to decrease
machine time overhead consumed by data base backup by
simply backing up the shadow data base, instead of the

entire operational data base.

Integrity Protection in Program Test Mode

The final major source of data base integrity compromise
is the application program. It is extremely important
to protect the data base from errors introduced by
inadequately tested applicatfon programs. lronically,
the very fact that a data base is shared by many users
and applications frequently makes it difficult to
provide programmers with enough test time to properly

test new programs.

DBMS-X uses the shadow data base concept to provide a
Program Test Mode facility which allow programmers to
test programs against live data bases, without interfering

with concurrent production processing.

The execution of a BEGIN-TEST-MODE statement in an
application program triggers the establishment of a

shadow data base for the test environment. Any changes
made to the data base by programs running in test mode

are stored in the test shadow data base. The test mode
data base remains in existence until specifically destroyed
by a programmatic command. Thus, it is possible to run
exhaustive test and verification procedures without

special control procedures.

DBMS-X provides an extremely high degree of data integrity, at
a relatively low cost in storage and processing overhead. System
designers can concentrate on application solutions with little

concern for the mechanics of data integrity protection.

Capacity to store large data bases:

DBMS-X is capable of supporting large data bases. The BTI 8000
supports an unlimited number of data bases, each with the following

size limitations:

Maximum Record Size: 3700 bytes (approx.)
Maximum Page Size: : L4096 bytes
Maximum File Size:. 67 million records (226)
2 billion bytes (2°))
Maximum Data Base Size: 64 files (areas)
6L spindles
4 billion records (232)

137 billion bytes (237)

Program/Data independence:

A major design goal of data base technology is the establishment
and maintenance of data independence. ''Logical'' data independence
allows the overall logical structure of the data base to evolve
without forcing changes to application programs which do not use
the changed information. 'Physical' data independence allows the
physical layout and organization of the data to change without
affecting the overall logical structure of the data base and/or
application programs.

re

In support of this design objective, DBMX-X functional components
"can be viewed in terms of the hodel'invFigure VilI. The central
"block represents the overall logical structure of the data base
and provides a global view of the entire base. The description
of this entity is provided by the SCHEMA. The logical structures

depicted on the left of Figure VIl are various partial logical

views of the data base. These structures are described in SUB-

SCHEMAS and are used to provide application programs with specific

views of portions of the data base. The actual physical data base

is represented on the right side of the diagram.

As implied by Figure Vil, the data base managemént system acts
as an interface between physical storage of data and programs.
,:DBMS-X converts the application programmer's view of the data {as
described in a subschema) into the overall logical view of the
data (as described in the schema) and maps the overall logical

view of the data into the physical representation.

An application program which uses the data base involves the

following logical entities:

The object form of the application
The object form of the subschema
The object form of the schema

. The run-time Data Base Control System

0O 0 o o o

The physical representation of the data base

Data independence is based upon the ability of each of these entities to
change without forcing change in the other entities. The process

of linking physical data items with logical data references to

those items is called binding. Binding occurs between the schema

"and subschemas, between application programs and subschemas,

and between the schema and the physical data base. In

SUBSCHEMA 1 AREA 1

AREA 2
SUBSCHEMA 2
SCHEMA AREA 3
|SuBSCHEMA 3
AREA 4
SUBSCHEMA &
PARTIAL LOGICAL GLOBAL LOGICAL PHYSICAL DATA
DATA BASE VIEWS DATA BASE VIEW BASE STRUCTURE

DBMS-X LOGICAL MAPPING PROCESS

| FIGURE VI == DATA INDEPENDENCE SUPPORT

theory, binding can take place at compilation (note that the
schema, subschema and object program are all compiled entities),
link edit, program load, or execution time. The closer the
binding to execution, the higher the level of data independence

between entities.

Subschemas are bound to programs at program compilation. A
change in a subschema will therefore require that the subschema
and all programs which use the subschema be recompiled. Sub-
schemas are bound to the schema, and the schema bound to the
physical . data base at program execution. Therefore, changes

to the schema have no effect on existing programs and subschemas.

‘The extent to which DBMS-X achieves data independence can be
~evaluated byffeviewing the support activities which are forced

to occur by changes in the overall data processing environment.
Figure VI describes typical events which occur in the program
development/ program maintenance environment, and lists the
support tasks which must take place with DBMS-X. Note that it

is implied that the program which requests a change (as in the
changed logical order example) is modified; the first task column

refers to other existing programs which use the data base.
DBMS-X eliminates a large portion of the manual overhead required
to maintain the correctness of the production processing environ-

ment in the face of changing application requirements.

Simple interactive administration:

The data base administration function traditionally has involved

several major areas of concern. The Data Base Administrator (DBA)

: --- REQUIRED DATA BASE SUPPORT TASKS ---
! : ------------------------ - - w - - - - - - ® e o = - -:
: APPLICATION/PROGRANM CHANGE . CHANGE : CHANGE : RECOMPILE : (CMANGE : CHANGE : RESTRUCTURE:
: s EXISTING : SUBSCHEMA : EXISTING :+ CONCEPTUAL : PHYSICAL uTILITY ¢
: : PROGRAMS : t PROGRAMS : SCHEMA H SCHEMA H RUN :
: : : : : : : :
s NEW APPLICATION PROGRAM ADDED == USES EXISTING DATA s | - I d ey s s ee 3 e
; : : YESOR : ¢ z
© NEW APPLICATION PROGRAM ADDED -- USES CHANGED REPRESENTATION OF : == . CREATE NEW : == &+ == & == 1 == g
: EXISTING DATA (e.g. FIXED-POINT INSTEAD OF FLOATING-POINT) : : SUBSCHEMA : : : X
$ H H b H H : ;
: CHANGE DATA TYPE IN SCHEMA ;. = N I : YES : AUTOMATIC : ==
: : : : : : : :
: NEW DATA FIELDS ADDED TO SCHEMA C a4 ee i ==t YES i AUTOMATIC : == :
s WEW RECORD OCCURRENCES ADDED OR OLD RECORD OCCURRENCES DELETED : -- Ll e e i e e
s FROM THE DATA BASE : : : s s : B
: : : YES, NO, OR: YES, IF ° : : :
: NEW SETS ADDED TO THE DATA BASE S o= : AOD NEW : scMEMA t YES : AUTOMATIC : ~=
H H ‘ : SUBSCHEMA : (CHANGES @ : s g
; H : : H H H ;
: CHANGE LOGICAL ORDER IN A SET A T T
H H H H $ H H ;
: CHANGE PHYSICAL ORDER OF RECORDS IN A SET e i ee 4 =4 .=t YES : AUTOMATIC :
H H H H H H $ H
. SPLIT PHYSICAL DATA BASE FILE (AREA) INTO MULTIPLE AREAS s et e=t+e= == i YES @ AUTOMATIC :
; H H H H H H
: DBMS-X SOFTWARE CHANGE (NO INTERNAL FORMAT CHANGE) A T
: DBMS-X SOFTWARE CHANGE (INTERNAL FORMAT CHANGE) o L e et e pumumy
H H : : : : :+ PROVIDED :
: WARDWARE CHANGE (PERMANENT OR TEMPORARY) : - - : - - e 4 e

is typically concerned with the following tasks:

o Logical data base definition and maintenance
o Physical data base definition and maintenance
o Performance monitoring

DBMS-X is designed to automate those portions of DBA function
which may not require human intervention. Administrative tasks
which impact the logical structure of the data base are the primary
concern of the DBA. Once the logical data base structure is de-
signed, the schema compiler can choose an appropriate physical
implementation. It is not necessary for the DBA-to specify

initial data base size, bucket sizes, record populations or to
reorganize or garbage-collect an existing data base -- the DBCS

and the operating system automatically allow for dynamic growth

and contraction of the data base.

As the data base evolves over time, the DBA uses simple commands
to modify the logical structure of the data base. Most
common logical modifications (adding or deleting items, record

types, or set types) will not require a reload of the data base.

DBMS-X is designed to guarantee utilization of allocated disk
space of at least 50% with utilization levels of better than

90% for growing data bases. Further, search structures are auto-
matically maintained to assure rapid retrieval. The DBA is,
however, provided with the ability to monitor performance and

adjust the run time environment to improve data base performance.

In short, DBMS-X allows the Data Base Administrator to concentrate

on managing the data resource, not the data base.

W

9.3 Data Definition Language

 The Data Definition Language (DDL) is that portion of the DBMS
implementation which permits the user to describe and maintain a
central description of the contents of the data base. It is used
by the Data Base Administrator to create a formal description of
the logical data base (Schema), descriptions of various partial
logical views of the data base (Subschemas) and to specify para-
meters which affect physical data base layout and the run-time

environment.

Information in the Schema is grouped according to the portion of
the logical structure under specification. Each entry type
describes a different logical aspect of the data base:

Schema: The schema entry concerns the entire data
base. It specifies the name of the data
base and defines the security parameters
which control the ability to view and
modify the schema itself.

Area: An area is roughly analogous to a file.
The area entry simply names an entity into
which records (as specified in Record en-
tries) are stored physically. The area con-
cept deals with the physical storage aspects
on the data base and has no impact on the
manner In which programs access data; pro-
grams interact with the data base on the

logical record level.

Record: A record entry specifies the format == in

Set:

data items and aggregates -- of a record type.
The entry names the record type, assigns the

area to be used for physical storage of record

"occurrences, specifies the security controls

to be applied against access to record occur-
rences, and defines the format of the record
using COBOL-1ike syntax. The entry also de-
fines integrity constraints to be applied
against data items (fields).

The set entry describes the logical relation-
ships which exist between record types. Sﬁec-
ifically, a set type consists of one ''OWNER"
record type and one or more 'MEMBER' record
types. Each occurrence of a set must contain
an occurrence of its owner record type and
any number of occurrences of its member re-

cord types.

The set entry names the relationship (set),
specifies the record type which owns the set,
and describes the security parameters which
apply to the set. Optionally, the set entry
names a field (or group of fields) which is
used to define a pérticular physical order for
the set. Each order parameter triggers the
creation of a pointer array for the set, main-
tained in order by the specified field(s).
Pointer arrays provide extremely rapid access
to the set in the various specified sequences.
Application programs may request access to a
set in any order -- those requests which match

schema-defined order specifications simply

execute more efficiently.

Information concerning set members is located

in the member clause of the set entry.

Member: The member clause is that portion of the set
entry which names the member record types in
a set. The clause specifies the record type,
the applicable security parameters, and a
set membership parameter which declares the
inclusion of record occurrences in the set to

be permanent or transient.

Group: A group is a reference entity used to build
Access Control Lists which are used in the
" construction of data security sieves. The
grohp entry consists of the group name and
a list of the account IDs which comprise
the group. Group names are used throughout
the schema in the specification of security

parameters.

Set relationships within a data base can be described in Bachman
diagram form. Such a diagram uses rectangular boxes to represent
record types and single direction arrows to represent sets. The
owner of the set is at the tail of the arrow, the member record
types at the head. Figure | represents the set EMPLOYEE-TIMECARDS,
which is composed of one EMPLOYEE record and from zero to many
TIMECARD records. Figure Il illustrates the EMPLOYEE-TIMECARDS

set as it would appear with two member record types.

A sample schema is provided to illustrate the use of the Data
Definition Language. The example is a data base to support

e

EMPLOYEE
(OWUNER)

L 4

EMPLOYEE - TIMECARDS

TIMECARDS
(memBeR)

FIGURE T -- EMPLOYEE ~TIMECARDS SET
WITH ONE MEMBER ReEcoRD TYPE

EMPLOYEE
(OWNER)

EMPLOYEE ~TIMECARDS

Resuth-308S
(Meaber 1)

FieuRE IL -- EMP
WM MULTIPLE

J

meéme-:shs
(MemaeR _a)

LOYEE -TIMECARDS SET
MEMBER ReLoRD TYPES

Order Entry, Accounts Receivable, and Inventory Control functions
for an organization involved in the distribution industry. For
the sake of brevity, the data structures are not as comprehensive

as those normally encountered in an operational environment.

The following record types are proposed to support the target

functions:

o CUSTOMER record type -- One record occurrence per customer
containing statistical and account information relating to

the customer account.

o ORDER HEADER record type -- One record occurrence per
customer order containing static information which applies

to the entire order.

o ORDER LINE ITEM record type =-- One record occurrence per
order line item consisting of information about the item
ordered. A group of ORDER LINE ITEM records will relate

to a single order.

o INVENTORY ITEM record -- One record occurrence per item
maintained in inventory, consisting of statistical and

accounting information related to the item.

The Bachman diagram for this data base (Figure 111) defines the sets
which exist among these record types. The Data Definition Language

has been used to define the schema (schema name -- DISTRIBUTION) for
this data base.

206

CHATY

et

FALUTITY & RO ARE

2y e

A

|
i

.

A

SYSTEM

ALL-CUSTOMERS

CUSTOMER
RECORD

. ! SYSTEM)
CUSTOMER~ORDE.
\ SYSTEM) ALL-INVENTORY

ALL-ORDERS ORDER INVENTORY
HEADER
® RECORD ITEM
RECORD

ORDER-LINE- INVENTORY-OPEN-ITEMS'

ITEMS

ORDER
LINE ITEM
RECORD

FIGURE III =-- BACHMAN DIAGRAM FOR ORDER ENTRY/INVENTORY DATA
BASE FOR DISTRIBUTION COMPANY

SCHEMA NAME IS DISTRIBUTION

COMMENT "THIS IS A DATA BASE T0 SUPPORT ORDER ENTRY, ACCOUNTS RECEIVABLE,
AND INVENTORY CONTROL IN A DISTRIBUTION COMPANY ENVIRONMENT "

RECORD NAME 1S CUSTOMER-RECORD

03 CUSTOMER-ID TYPE IS INTEGER
03 CUSTOMER-NAME TYPE 1S STRING 20 CHECK 1S ALPHANUMERIC
03 CUSTOMER-STREET-ADDRESS TYPE 1S STRING 20 CHECK 1S ALPHANUMERIC
03 CUSTOMER-CITY TYPE 1S STRING 15 CHECK 1S ALPHANUMERIC
03 CUSTOMER-STATE TYPE 1S STRING 2 CHECK 1S ALPHANUMERIC
03 CUSTOMER-2IP-CODE TYPE 1S INTEGER
03 CUST-ACCTS-REC-BAIANCE TYPE 1S INTEGER
03 CREDIT-LIMIT TYPE 1S INTEGER
03 TERRITORY-CODE TYPE 1S INTEGER
03 SALES-TAX-RATE TYPE 1S INTEGER

RECORD NAME 1S ORDER-HEADER-RECORD
03 CUSTOMER-ID

TYPE 1S INTEGER

SOURCE 1S CUSTOMER-ID OF OWNER OF CUSTOMER-ORDERS

03 ORDER-NUMBER TYPE 1S INTEGER
03 PURCHASE-ORDER-NUMBER TYPE 1S INTEGER
03 SALES-TAX-AMOUNT TYPE IS INTEGER
03 ORDER-DATE TYPE 1S DATE

03 INVOICE-DATE TYPE 1S DATE

03 GROSS-INVOICE-AMOUNT TYPE 1S INTEGER
03 NET-INVOICE-AMOUNT TYPE IS INTEGER
03 ORDER-BALANCE-DUE TYPE 1S INTEGER

RECORD NAME IS ORDER-LINE-ITEM-RECORD
03 ORDER-NUMBER

TYPE 1S INTEGER

SOURCE 1S ORDER-NUMBER OF OWNER OF ORDER-LINE-ITEMS

03 ORDER=-LINE-NUMBER
03 ITEM-IDENTIFIER

TYPE IS INTEGER
TYPE 1S INTEGER

SOURCE 1S ITEM-IDENTIFIER OF OWNER OF INVENTORY-OPEN-ITEKS

03 ORDER-QUANTITY'
03 REQUIRED-DELIVERY-DATE
03 SHIPPING-DATE

RECORD NAME 1S INVENTORY-ITEM-RECORD

TYPE 1S DATE

03 ITEM-IDENTIFIER TYPE IS INTEGER
03 WAREHOUSE-LOCATION-CODE TYPE IS STRING 5 CHECK 1S ALPHANUMERIC
03 ITEM-DESCRIPTION TYPE 1S STRING 20 CHECK IS ALPHANUMERIC
03 ITEM-PRICE TYPE 1S INTEGER
03 ITEM-DISCOUNT-CODE TYPE 1S INTEGER
03 QUANTITY-ON-HAND TYPE IS INTEGER
03 QUANTITY~-ON-ORDER TYPE 1S INTEGER
03 QUANTITY-ALLOCATED TYPE IS INTEGER
03 OQUANTITY-AVAILABLE TYPE 1S INTEGER

SET NAME IS ALL-CUSTOMERS
OWNER NAME IS SYSTEM
ORDER IS BY CUSTOMER-ID
MEMBER NAME 1S CUSTOMER-RECORD

SET NAME 1S ALL-INVENTORY
OWNER NAME IS SYSTEM
ORDER IS BY ITEM-IDENTIFIER
MEMBER NAME 1S INVENTORY-ITEM~-RECORD

SET NAME IS ALL~ORDERS
OWNER NAME IS SYSTEM
ORDER IS BY ORDER-NUMBER
MEMBER NAME 1S ORDER-HEADER-RECORD

SET NAME IS CUSTOMER-ORDERS
OWNER NAME 1S CUSTOMER-RECORD
ORDER 1S BY ORDER-NUMBER
MEMBER NAME |S ORDER-HEADER-RECORD

SET NAME 1S ORDER-LINE-ITENS
OWNER NAME 1S ORDER-HEADER-RECORD
ORDER (S BY ORDER-LINE-NUMBER
MEMBER NAME IS ORDER-LINE-ITEN-RECORD

SET NAME IS INVENTORY-OPEN-ITENS
OWNER NAME IS INVENTORY-ITEN-RECORD
ORDER 1S BY CUSTONER-ID, REQUIRED-DELIVERY-DATE
MEMBER NAME |S ORDER~LINE-ITEN-RECORD

TYPE 1S DATE

TYPE 1S INTEGER

DUPLICATES NOT ALLOWED
PERMANENT

DUPLICATES NOT ALLOWED
PERMANENT

DUPLICATES NOT ALLOWED
PERMANENT

DUPLICATES NOT ALLOWED
PERMANENT

DUPLICATES NOT ALLOWED

DUPLICATES ALLOWED
TRANS | ENT

Ve

208

A}

R}

9.4 Data Manipulation Language

The Data Manipulation Language (DML) is that portion of the
DBMS-X implementation which is concerned with the interface
between the data base and various programming languages.
Typically, the DML is a set of extensions to a data base host
language which allows application programmers to access the
data base using extended host language facilities.

Programs which access DBMS-X can be written in COBOL, FORTRAN,
or PASCAL-X. Each host language has been extended to allow
data base functions to be accepted directly by the language
compiler, eliminating the need for DML preprocessors. The
syntax of the data base extension set conforms to the overall

form and style of the host language.

DBMS-X supplies the application programmer with 20 data base

verbs. The logical function of each verb is outlined below:

START-DBCS Requests use of DBCS

INVOKE-DBCS Logical data base OPEN
BEGIN-TEST-MODE Establishes test shadow data base
END-TEST-MODE Releases test shadow data base

BEGIN-TRANSACTION .
ABORT-TRANSACTION . Data base consistency verbs (Section 9.2)
COMMIT-TRANSACTION .

FIND Logical SEEK operation
GET Logical READ operation ‘
OBTAIN Combined logical SEEK and READ operation

MODIFY Logical REWRITE operation

STORE
ERASE
CONNECT
DISCONNECT
INTERSECT

ORDER

SET
RELEASE-SEQUENCE

‘REVOKE-DBCS

Logical WRITE operation

Logical DELETE operation

Adds a record occurrence to a set
Deletes a record occurrence from a set
Various options define and manipulate
groups of records or sets

Logical SORT performed on groups of
records

Manipulates user-controlled record pointers
Releases previously ordered groups of
record occurrences

Logical data base CLOSE

Application prgrams which use the data base are supplied with a

particular view of the data base by a DBA-defined subschema. The

subschema describes the portion of the data base available to the

program. The available data is then accessed and manipulated

through the use of the DML host language extensions.

9.5 Data Base Control System (DBCS)

The Data Base Control System (DBCS) is that portion of the DBMS-X
implementation which controls the run-time environment associated
with data base processing. This system is charged with the actual
translation of logical data requests into physical data access and

manipulation sequences.

When an application program requests the use of DBMS-X, a concurrent
process (DBCS) is spawned which interacts with the data base and

the application program. All program interaction with the data base
takes place through the DBCS. Communication between the DBCS and -

the application process occurs through system-specified .PATH devices.

- The separation of function inherent in this approach protects the
data base from the user, while also protecting non-data base files

from the data base software.

In general, the organization of a running data base process can be
viewed as in Figure |. The Data Base Control Block, object schema,
and data base buffers are shared among all users of a particular
data base, to ensure integrity and low system overhead. The appli-
cation domain and the data base domain communicate through the

.PATH devices, and are effectively isolated from each other.

A multi-user data base environment is described in Figure 1l.
Although the DBCS prcesses are self-contained entities, a large
portion of the DBCS code and data is automatically shared, de-
creasing overall processing overhead.

DBCS controls individual processes which use the data base, provides

automatic run-time conversion between schema and subschema data

items, does structural and logical integrity checking on data

base content, implements logging and journalizing, and provides
It creates a flexible, safe

automatic soft failure recovery.
operating environment for the DBMS-X user.

2/

DATA BASE CONTROL DATA BASE
SySTEN CONTROL
BLOCK
APPLICAT I ON
PROGRAM DATA BASE
[BUFFERS
! ™~ /”ﬂl‘\\\
NON-DATA
BASE OBJECT DATA
FILES SCHEMA BASE
ACCESS DOMAIN OF THE ACCESS DOMAIN OF THE DATA BASE CONTROL
APPLICATION PROGRAM SYSTEM PROCESS (DBCS)

FIGURE | -- DATA BASE PROCESS ORGANIZATION

Ly

APPLICATION
PROGRAM

e o e e — - —

APPLICATION
PROGRAM

DATA BASE
CONTROL
BLOCK

DATA BASE
BUFFERS

OBJECT
SCHEMA

APPLICATION
PROGRAM

| peMs-X

ACCESS
‘ DOMAIN -

I
|
|
|
s

APPLICATION
PROGRAM

FIGURE 11 =-- MULTIPLE USER DBMS-X ENVIRONMENT =-- ALL USERS

ACCESSING .THE SAME DATA BASE

219

2/5

9.6 Data Base Utility Functions

DBMS-X provides the Data Base Administrator with a comprehensive

set of utility functions to create, maintain and support evolving

data bases. The major functions are listed below:

Data Base (Creation:

Schema Listing Utility:

Journal Log Utility:

Compiles schema source; generates
object form schema; creates an empty
data base. (Note: this process does
not require the establishment of
pre-allocated files -- all allocation

is dynamic.)

Provides various schema listings from
the object schema; wide range of options,
including conceptual schemas, physical
schemas, and subschemas.

Provides a logical log of all data
base transactions which change the
data base. Intended to be used as

application program debugging tool.

Data Base Restructuring Utility: An interactive utility

Activity Log Utility:

to aid in the modification of existing
data bases. Allows a wide range of
restructuring options to be invoked

without reorganization of the data base.

Provides Data Dictionary Information
regarding data, schema, and subschema

2/¢&

usage in application systems.
Intended for use as a data administration
tool in the evaluation of proposed

changes to programs and/or data.

These utility functions are designed to support the effective
management of the data resource as a normal byproduct of
DBMS-X use. '

10. SECURITY

10.1 General

The BTI 8000 has been designed with a commitment to security
considerations. The intention of the security mechanisms is
to allow the most flexible application of the system that is
consistent with full protection of user data, user operation,

and system integrity from accident or mischief.

For in-house data processing applications, the system protects
operational continuity by insulating its control facilities

from user actions, and by conducting its own operations in

a crash-resistant manner. Separation of data ''ownership"

through the account structure automatically limits the damage
that can be done by erroneous application program; and, sensitive
data can be protected from modification or even examination

by those who should not have these privileges (including system
operators). The security mechanisms were designed into the
system, including its hardware, from the very beginning, and

are intended to function in a multi-user on-line environment.

The design also makes the BTI 8000 an excellent system for high-
security applications, as well as those in which the system manager
and the system users have a fiduciary relationship,. such as in

a service bureau or a commercial timesharing operation. Managerial
accounts can relinquish their privileges to access subordinate
accounts. (This is done automatically in the case of proprietary

accounts.)

Although physical installation security should not be neglected,
the system attends to external protection by automatically
encrypting all removeable data storage media, including on-line

disk packs and all backup media (packs and tapes).

if desired, the system operator can even disable BTl remote
maintenance access, by means of a switch on the operator's
panel. Disk packs containing highly sensitive data can be

physically removed before re-enabling remote maintenance.

1o
]

10.2 Account and File Privacy

The account structure is the basic framework for security design,
on the grounds that each account normally belongs to one individual;
ultimately, security plans enforce privacy, protection, and privi-
lege among individuals, includfng their actions and the entities
they own. All processes, except Monitor processes, run under

the auspices of some account, and all data (except spooled

data entrusted to the Monitor) belongs to some account.

The account structure is ''basically closed and passively'secure";
that is, all operations and data remain private within account
" boundaries unless explicit action is taken to grant foreign
access. (Two exceptions to this principle are the public librarses
and the managerial hierarchy aspect of the account structure,

although implicit access privileges may be revoked in both cases.)

Passwords:

There are no XREQ's to examine any passwords on the system
(either account passwords or file shared-list passwords),
Internally, all password requirements are stored in encrypted
form only; when a password is submitted for access, it is first
encrypted, and then the two encrypted forms are compared. There
is no way to decrypt the stored passwords, and thus, for
increased security, even the system doesn't ''know' what they are.

1
™
0

File sharing:

An account can share a file with another account or family of
accounts, granting access privileges in one of several ways.

The foreign account(s) may have read-only access, even through
the owner account retains modification privilege; or the foreign
account(s) may have write privilege (possibly limited to '‘append-
only', to establish an inviolate log file); or finally, the
foreign account(s) may even be granted privileges over the

file equivalent to the owner's. A password requirement may

be included, to be satisfied at access time (with the EQUIP).

Since saved logical devices of type .PATH are shared in the

same manner as other ""files'", inter-process communication linkage
may also be password-conditioned. When 1inkage is established
via .PATHs, the only view the communicating processes have of
one another is that of message senders and receivers, so that

mutually suspicious processes may safely communicate.

Managerial privilege:

A managerial account, meaning an account's project master account

or division master account, or the system master account, normally

has two kinds of privilege to access its subordinate accounts.

First, a manager normally has the same control and access authority
over a subordinate account's library that the subordinate account
does. One use of this privilege Is the installation of a file in
the subordinate 1ibrary, with the file declared ''shared" with

its owner In & restricted (e.g., read-only) mode.

Second, managers normally have the authority to log into their
subordinate accounts without satisfying the password requirement.
Of course, the system cannot distinguish among Individuals

who have access to the same account, so the managers essentially
become the account owners when they log in. In particular,

this allows the managers to set and change the account's passwords.

Each of the managerial privileges may be forfeited, in cases

where the subordinate account must remain private from its managers.
Each of these privileges may be disabled only by the manager
(forfeited), and re-enabled only by the subordinate account (which
would occur if the private account needed “"rescuing' by its
manager). Since the managers are always in control of their
subordinates' use of system resources, forfeiture of access does

not imply the possibility of ''runaway'' accounts.

Encapsulation:

Any account can “'encapsulate' itself, and any project or division
manager can encapsulate his project or division. When an account
or family of accounts is encapsulated, the system constructs a
shield around the account(s) that disallows any EQUIP that

would permit data to pass out of the encapsulated region.

Encapsulation ensures data privacy in a high-security situation.

By encapsufating his family of accounts, & manager prevents any
external account from equipping to any file within the encapsulated
libraries (except on an append-only basis), even

if a subordinate account declares & file shared with an external
account. Similarly, an encapsulated account cannot equip for
writing any file outside the barrier, even if an external account
has granted such permission and informed the encapsulated user.

10.3 Foreign Program Execution

Executable programs, in the form of .CODE files, may be shared by
their owning accounts for use by other accounts. Programs may be
shared in read-only or execute-only mode, and each page of a program
can be protected against modification when running, so that "pure

code'' segments may be created.

The execution of a borrowed program introduces the possibility of a
classic problem in computer security known as the '"Trojan Horse''.

A Trojan Horse is a program innocently borrowed from another owner
(who grants access) which, when executed, either steals data (e.qg.,
by piping it .back.to the foreign account) or does some damage to
the environment in which It is running.

The data theft problem is solved by encapsulating the account prior
to running a suspect program, as discussed earlier. Damage to the
account environment is prevented by means of -a series of restriction
flags which are part of every account, and which can be set by the
account prior to running a suspect program. (The Control Mode
RESTRICT and PERMIT commands invoke the XREQ's that set and clear
these flags.) When a restriction flag is set, a certain set of
Executive Requests are "trapped out': the system will stop a pro-
gram that attempts to execute an XREQ within the class. The classes
of restrictable XREQ's are:

(2) Those which allow catalog information to be fetched
(equip to .DIR)

(b) Those which change account limits, such as CPU time, etc.;

(c) Those which set up the program interrupt mechanisms in
such a way as to keep all interrupt processing within

W

18]

|”'

™
1\

the program (in particular, so that the program could
never be interrupted from the keyboard);

(d) Those which change certain account attributes, including
password, Hello and Bye program assignment, and the

restriction flags themselves.

A user may also wish to use the restriction flags prior to running

one of his own programs, if that program is in the debug stage.

To allow managerial accounts to retain control over their subordinates,
.CODE files carry internal restriction override fields to correspond
with each restriction flag. Each override field contains the identity
of which level of authority (project, division, or system manager)
deélared the override;< Thus -2 project manager, for example, could
prevent a subordinate from invalidating keyboard BREAK control on a
given program, if the manager wanted that program to retain control
when run by the subordinate. The appropriate override authority

fields are cleared, incidentally, when a program is borrowed across
project or division boundaries.

10.4 Manager and Operator Privileges

The system recognizes two special classes of Executive Requests:
Manager requests, which perform account creation and control functions,

and operator requests, which perform system operator functions. The
system employs the following safeguards to control the use and propa-

gation of manager and operator XREQ's:

Manager requests:

(a) The XREQ MBLESSP, when executed, grants a ''target'’ program

(.CODE. file) the authority to execute manager requests
(provided certain other conditions hold, as discussed in (c)

below). MBLESSP itself will execute if and only if the

following two conditions are both met:

(1) The program that attempts the MBLESSP has been
granted the authority to execute manager requests;

and

(2) The account running this program has the authority
to execute the MBLESSP. (This authority is im-
plicit in MASTER accounts, and may be explicitly

granted to other accounts.)

Note: BT! supplies an initial '"Manager Program'' in MASTER. SYS

which has the authority to execute manager requests.

(b) The XREQ MBLESSA, when executed, grants a ''target'' account
the authority to execute the MBLESSP XREQ. MBLESSA will
execute if and only if all of the following three conditions

are met:

0

(2)

(3)

(c) Finally,

The account running the program containing the
MBLESSA XREQ is a MASTER account (so that these
authority-granting privileges cannot be propagated

indiscriminately);

The program containing the MBLESSA has been granted

the authority to execute manager requests; and

The target account is a subordinate of the MASTER

account running the program.

a program may execute other manager requests (other

than MBLESSP and MBLESSA) if and only if the following two

‘ conditions are both met:

(1)

(2)

Operator requests:

The program has been granted the authority to
execute manager requests (i.e., it has been the
target of an MBLESSP); and

The account running the program has the authority
to execute manager requests, either because

it is a MASTER account or because it has been

the target of an MBLESSA.

(a) The XREQ OBLESSP, when executed, grants a "'target'' program

the authority to execute operator requests (provided certain

other conditions hold, as discussed in (c) below).
OBLESSP itself will execute if and only if the following
two conditions are both met:

2 2¢

27

I\

(1) The program that attempts the OBLESSP has been
granted the authority to execute operator requests;
and

(2) The account running this program has the authority
to execute the OBLESSP. (This authority is
implicit in the account MASTER. SYS, and may be
explicitly granted by MASTER. SYS to other accounts
within division .SYS.)

Note: BT! supplies an initial "Operator Program' in
MASTER. SYS which has the authority to execute operator re-

quests.

(b) -The XREQ OBLESSA, when executed, grants a 'target'' account
the authority to execute the OBLESSP XREQ. OBLESSA will
execute if and only if all of the following three conditions

are met:

(1) The account running the program containing the
OBLESSA XREQ is MASTER.SYS;

(2) The program containing the OBLESSA has been granted
the authority to execute operator requests; and

(3) The target account is within division .SYS.

(¢) Finally, a program may execute other operator requests (other
than OBLESSP and OBLESSA) if and only If the following two

conditions are met:

(1) The program has been granted the authority to execute
operator requests (i.e., it has been the target of

(2)

A &

an OBLESSP); and

The account running the program has the authority
to execute operator requests, either because it
is MASTER. SYS, or because it is another account
within division .SYS that has been the target of
an OBLESSA.

APPENDIX A: SUMMARY OF USER-MODE CPU INSTRUCTIONS

operand added to contents of specified register, result
(“add to memory') as above, but result replaces operand instead
("add to both'') as in ADDM, but result also stored in register

ADD2M, ADD2B: double-word analogs of above

operand subtracted from contents of specified register,

("'reverse subtract') contents of specified register subtracted

from operand, result stored back in that register

MULM, MUL2, MUL2M: multiply family (see ADD, SUB)

A.1 Fixed Point Arithmetic
ADD:

stored back in that register
ADDM:

of register
ADDB:
ADD2,
SUB:

result stored back in that register
SUBM, SUB2, SUB2M: see ADD family
RSB:
RSBM, RSB2, RSB2M: see SUB family
MUL,
DIV, DIVM, DIV2, DIV2M: divide family
RDV,-

RDVM, RDV2, RDV2M: reverse divide family

LD, LDN (N=''negate"), LD2, LDN2: 1load register family

INCL,

INCL2: increment operand by 1, then load reg. with this new value

ST, ST2: store register (single, double)

STV,
STU,
sTZ,
EXCH,
INC,
INCP,

STW2, STMW, STMW2: store the value one"’ (W) or "minus one" (MW)
STU2: store the value 'undefined" (hexadecimal 80000000)

$TZ2: store the value ‘'zero"

EXCH2: exchange register, operand

INC2, DEC, DEC2: Increment/decrement operand by one

DECP: 1iIncrement/decrement pointer. These instructions assume

the operand Is a pointer. The bit length of the pointed-to
entity (carried in the pointer) is added to/subtracted from
its bit address, thus moving the pointer forward/backward one

entry, no matter what the size of the entry.

A.2 Floating Point Arithmetic

These instructions deal with 6i-bit (double word) floating-point
operands, which have 11-bit biased exponents and 52-bit mantissas.
Double-precision floating-point operands (128 bits) are generated

and manipulated by software.

FAD, FADM, FADB: floating add (‘'to memory', ''to both'')

FSB, FSBM, FMU, FMUM, FDV, FDVM: floating subtract, multiply, divide
FRSB, FRSBM, FRDV, FRDVM: floating reverse subtract, reverse divide
FINC, FDEC: floating increment, decrement memory (by one)

FINCL: increment floating-point operand by 1, then load adjacent

registers with this new value

A.3 Boolean Arithmetic

AND, ANDM, AND2: similar to fixed-point ADD family

BSUB, BSUBM: result = register AND NOT operand (Boolean subtract)
BRSBM: Boolean reverse subtract to memory

IOR, IORM, J1O0R2: inclusive OR family

XOR, XORM, XOR2: exclusive OR family

SETT: ' (set and test) set operand to one after setting condition
bits to comparison of register and operand (used for locking
of critical regions)

AL Jumps

Unconditional: JMP (load Program Counter with operand)

Conditioned on PSR condition bits: JCC,JCS (if carry clear/set),

Joc, JoS (if overflow clear/set), JEQ, JNE, JLT, JGT, JLE, JGE

Conditioned on comparison of register contents to zero (''Z") or
minus one ("MV"): JEQZ, JEQZ2, JNEZ, JUNEZ2, JLTZ, JLTZ2, JGTZ,

© J6TZ2, JLEZ, JLEZ2, JGEZ, JGEZ2, JEQMW, JNEMW

Bit tests: JBT, JBF (if bit in register true/false) .

Address tests: JZA, JNZA (if address field of register zero/non-zero)
Register increment/decrement: [RJ, DRJ (inc/dec register, then jump if
result not equal to zero); JIR, JDR (if register not equal to

zero, inc/dec register and jump)

Linkage jumps, conditioned on zero/non-zero address field fetched
through register: LJZA, LINA (load register with address field
of word it points to, then jump if result zero/non-zero) ;

RLJZA, RLINA (remember, link, and jump -- save register in
adjacent register, then proceed as in LJZA, LJNA)

A.5 Subroutine Linkage

Several instructions are provided for subroutine linkage; they
check entry points and provide parameter type-checking for the
subroutine. The calling sequence and the entry sequence are
executed part by part, passing one parameter at a time with the
PAR (pass parameter) instructions on the calling side and corres-
ponding STP (store parameter) instructions on the subprogram side.
These instructions specify the parameter type (including ''2" for
doubleword), whether the parameter is being passes by location or
value ("W''), and whether this is the last ("L'') parameter in the

protocol.

CALL, CALLNP ('NP':= no parameters): begin linkage from calling side

ENTR, ENTRNP, ENTRS (s = start, for non-standard parameter
passing): begin subroutine

PAR, PAR2, PARL, PAR2L, PARV, PARV2, PARVL, PARV2L: pass parameter

sTP, STP2, STPL, STP2L, STPV, STPV2, STPVL, STPV2L: store parameter

LEAVE: leave subroutine

LDPC, LDPCS: load Program Counter (s = also load status bits)

EXPC, EXPCS: exchange Program Counter (and status) with operand

JSR: jump and save return address in register

A.6 Compare Instructions

CKB, CKB2, FPCKB, 12CKB: bounds checking for array indexing
CPR, CPR2, UCPR, UCPRZ: signed/unsigned compare register with operand

132

MCPR: masked compare register with operand (adjacent register
selects bits)
CMZ, CMZ2: compare operand (''memory') to zero
STLEQ: store logical one ('"1'') iff condition bits = "EQ'", else store zero
STLNE, STLLT, STLGT, STLLE, STLGE: as above for other conditions

A.7 Character Instructions

These instructions are interruptible, and deal with character
strings whose starting address and length are given by register
values. The CMOVE instruction loads and stores whole words and
thus is qu}te efficient no matter what the character alignment
might be.

CSRCH: search for a specified character in a specified string

CMS: compare strings (can be paired with CSRCH to search for substrings)

CMOVE: move string

A.8 Miscellaneous Instructions

LDPSR, STPSR: 1load/store Process Status Register

CLPSR, IORPSR, XORPSR: PSR bit manipulation

HIB, HIB2: find location of leftmost one-bit in operand

LEA, LEA2: 1load effective address (generate a pointer)

XCT: execute operand as if it were an instruction (one level only)

22Y

LSRCH: linked list search. Searches through a linked list of
structures for a match between the value in a specified part
of each structure and a value in a register (or register pair)

PMUT: (permute) Using a 32-word table, this instruction can
permute bits in a register, encrypt data, compute parity, and
form block checksums.

NOP: no operation

A.9 Address Modes

In addition to specifying a register, many instructions also

specify an operand through an address mode field. Address mode
parameters can in turn involve the specification of one or two
registers used to arrive at an operand. Indirect addressing
proceeds through 'pointers', which themselves specify five different
methods of addressing. The following summary is by class, with

the number in parentheses representing the total number of modes

in each major class. The distinction between single-word and
double-word addressing (for word-size operands) is not considered

in this count, since that distinction is made in the instruction

operation-code field.

1) DIRECT
1) INDEXED
3) IMMEDIATE

5) INDIRECT
2) INDIRECT AND INDEXED (first indirect, then indexed)

P B e B R e e

1)
D)
1))
5)
1)
1)
1)
2)
1)
)]
1)
L)

AAAA’-\AAA’\AAA

Totals:

235

REG! (register select, with value biased)

ARWD! (offset from base register)

CACH! (offset to character from base register)

FPVR] (offset from base register, then indirect)

REG2 (as in REG!, but indexed)

ARWD2 (offset from base register, then indexed)

CACH2 (offset from base register, then indexed to character)
FPVR2 (offset from base register, then indirect, then indexed) "
CBM (circular bit-string mode) '

ZBM (zig-zag bit-string mode)

STK (stack mode)

TCONV (type conversions: integer/floating-point, etc.)

32 address modes. through 17 classes

(AN
«

A

227

APPENDIX B: MAINTENANCE AND SUPPORT

B.1 Self-test

The detection of system failure, as discussed earlier, is perhaps
the most critical function in mainfaining the correctness and
usability of a computer system. Malfunctioning components should be
shut down immediately to prevent proliferation of erroneous data
items or invalid system structures. |f self-consistency checking
‘modules in the hardware or operating system cause the system to
halt, the next step is the isolation of the failure.

Hardware checking:

Pressing the start key on the operator's panel causes the SSU to send

a self-test command signal down the VRA bus. Upon receipt of the
signal, every module on the bus, plus the controllers connected to

the PPU channels, runs a self-test diagnostic exercise. All results
are sent back to the SSU, which identifies the failed units on the
operator's display. As a further aid to locating the problem, a module
which fails its test will 1ight a small red light on its board, so

the operator can easily find the proper board to remove.

Software checking:

With different Settings of the front panélvswitches. the system operator
can cause software diagnostics to run. Some of these validate disk
structures, many of which can be rebuilt automatically from redundant
information. A memory dump routine writes the contents of in-core
Monitor tables and code areas to a reserved location on the system

disk volume, for later investigation by BTI remote maintenance.

B.2 On-line System Support

BTl maintains a National Service Center for on-line support of

BT! systems. A BTI 8000 at the service center is equipped with
automatic telephone dialing equipment connected to its ports, and

can automatically dial into the Remote Front Panel facility on

all BTI 8000 systems. (The remote system must have remote mairntenance
enabled on its front panel, and must have an automatic-answer

modem connected to its lowest-numbered asynchronous communications

port.)

The service computer can run remote diagnostics in more

detail than is available through the operator's panel, and can
investigate system structures and memory dump areas. From a terminal
connected to the system, a BTl service engineer can in many cases
patch structures to salvage user files or processes that might
otherwise be lost.

o)
)

8.3 Hardware Support

If diagnosis indicates the need for a replacement hardware module,
one will be shipped from the nearest BTl parts depot, with a

regional service engineer dispatched if necessary. (In a redundant
configuration, the system will be operational while awaiting hardware
replacement.) Most module replacements can be performed by customer

personnel.

A “hot spares' policy reduces the time required for arrival of a
major module (CPU, MCU, PPU, SSU) to literally minutes. If there
are unused slots on the VRA bus, BTl can supply extra major modules
on a '"hot spare'' basis. For a monthly charge as opposed to.an
outright purchase, the modules are installed in spare bus slots -
in a non-operational mode; they are electrically powered (hence
"hot"), but are not functioning parts of the system. Such modules
can be regarded as ready-to-use spare parts in a special parts
depot which is actually on the customer site; the monthly charge
is therefore a premium service charge for the establishment of
this "depot'.

B.4 Software Support

The BT! National Service Center maintains a round-the-clock service
“hotline'' for servicing hardware and Monitor problems. Problems with
BT1-supplied ''user-mode'’ (non-Monitor) software, such as compilers
and utilities, should be referred to the regional systems analyst

A

assigned to the installation. 1f the analyst cannot resoive the
difficulty directly, he will refer the problem to the home office
Software Support Section, available during normal West Coast business
hours. With customer permission, Software Support personnel log on to
tﬁe system in question, to re-create and isolate the problem; in
doing so, they use a non-privileged user account.

B.5 Training and Documentation

BT! currently offers a two-week introductory course on the BTI 8000
system, including a system overview, system management, and system
operations. A one-week course is also offered on DBMS-X. Other

classes are currently held on request.

In addition to this manual, the following technical literature on the
BTI 8000 is available:

Virtual Machine Functional Specifications

Manager Manual

Operator Manual

Control Mode

Editor

Loader (series, including compiler-writers' information)
Assembler

Sort/Merge

Copy

languages: PASCAL-X; COBOL; FORTRAN; RPG |1; BASIC-X

DBMS-X (series of manuals)
Asynchronous Port Interface Guide
Configuration Guide

Security Handbook

Site Preparation Guide

Hardware Service Notes (series)

BT! 8000 Technical Bulletins are also published and distributed
as required.

24/

24

2 Y3

APPENDIX C: ABOUT BTI

Starting as a commercial timesharing service (with the name

Basic Timesharing, Inc.) in 1968, BTl evolved into a developer

and manufacturer of timeshared computer systems. Since its first
deliveries in 1971, BTl has delivered over 700 Model 3000, 4000,

and 5000 series systems, with installations in over 40 states in the U.S.,
in Canada, and in Europe. These systems are used in 2 variety of
applications, including general accounting, inventory control, time-
sharing services, product testing, research and development,

mecical laboratories, health care systems, and school administration.
The new BTI B00DO system is a planned outgrowth of BTI's special
experience in the design, manufacture, and support of multi-user

interactive computer systems.

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	xBack

