
r----t----,
I BUG S I
L---t---J

The Brown University Graphics System 1

The BrOWii Onive~sity Gca~hlc~ ~Loj ~cL

Division of Appli~d Mathematics

Box F

Brown University

Provide~ce , Rhode Island 02912

Jun e 1975

Printed: November 28, 1975

_

l~hi s Researc h is being suppo rte d by the National science
Foundation Grant GJ-41539, th e Office of Naval Research , Contract
N000 14-75-C- 0427, and the Brown Univ er sity Division of Applied
Math ematics ; Pr incipal I nve stigator Andri e s van Dam.

--

1 Overview

The SH1ALE is a processing element of the BUGS system
capable of performing a vari ed and complex repetoire of graphics
opera tions for the us er . Its high speed gives BUGS the
performance typical of graphics systems employing special purpose
hacdware but none of the inherent infle xibility. Although anyone
could program the SINALE to meet the n eeds of his application, it
is presumed most us e r s will use a standard set of SIMALE graphics
operation s embedded within a highe r level language . The
discussion that follows, therefore, is intended for the more
serious user.2 SINALE Components

The SI~lLE's architecture departs radically from the more
traditional ones of the Meta 4A and Meta 4B in several respects.
These departures were dictated by the special nature of the
graphics operations it performs. Speed, flexibility, simplicity,
reliability, and cost were all important design considerations
aff e cting its architecture.

The most noticable features of the SIMALE are its abundances
of processors, stores, and data buses (s ee figure 1). The SIMlILE
has four parallel processors, quadrupling its effective speed,
and unfor tunatel y makinq it difficult to ulld~~stan~ a~J ~~0qram.
2.1 SINALE Stores

Tile SItHLE has four general types of stores; two in the
control and two in the process ing units.

~Q~!RQ1 ~1Qg~: This is a fully r e ajable/~riteabl e store
in the control unit and is used pri ma rily to hold
instruct ion s . It consists of 256, 16-bit words
orqanized into two, 128-word pages which are
lo aded hy the Meta 4B during execution of the ETC
instruct iofl. Control storage locations may be read
or wri tten under SIMAL E program control, although
the addressing mechanism makes doing so difficult.

£QI:RQ1 H~Ql~IKg~: The SIMALE makes heavy use of
r esid ua l control; a t e chnigue where the loading of
special control registers determines the nature of
subseguent op~ra tions. The control unit has five
such r eqister:s; the CounT Register (CTR) I the
Mem ory Address Register (MAR) I the Enable and Bus
Control P.egister (EBC R), the Request Code Register
(RCR), and the ALU Function Reg ister (~UI'R). These
r eg iste rs control such things as program looping,
the sources and destinations during data
transfers , and · the operands and operations
perfor med by th~ four processors. Their exis~ence
qr eat ly increa~R~ +hA powpr of the SIMALE's small

-1-

•

FIG I S /MALE ARC HITECTURE

OA TA BUS
-.

- ,_ PROC. I r-J PROC. 2 - PRO'" 3 __ v . -~ PROC. 4

-
<:. .

.... MEMORY <l_ NfMORY-
,I. . IG x Ii?
" ~

-L
<>-- .MEMORY I*

CONTROL address

fNTfR FACEi

DEBUG
UNI;

conddfons»

STORAGE
;;(3(,<16

(2 f"'le<)

DECODE.
AND

.' S £QC:::N(E
cornroI11f"lCs<",,_ t OG Ie

.,
41

instruction set whil~ avoiding a more expensive
and inefficient · "horizontal" architecture.

£RQ~~2~2R ~~tlQRI: Each processo~ po~sesses sixteen,
18-bit words of me mory used as a "scratch-pad" to
hold less frequently used operands. The memories
ar e addres ~e d by the MAR control registe r. All
opera nd st.ores in the SHIALE are 18 bits to
provid e the precision necessary tc avoid ove rflow
proble ms arisinq during certain graphics
ope r a tions. The eiqhtee n bits of these stor es are
label e d (X O), (X1), (0), (1), ••• , (15) to emphasize
the ir positional relationship with the sixteen
bits of control storage and the Meta 4B.

£RQ~g~~QR BgGI~lliB2: In addition to the sixteen memory
locations, each processor has three 18-bit
reqi s t e rs; the A, Q, and B re ~iste rs. Two of thes e
r eq ist er s ar e shiftable and all are used for
intermediate r e sults and fr e que ntly used data
durinq computations. 2.2 SIMILE procesciors

Th e SIMALE has five loqical processinq units: one processes
iu5tL~~~ i v n 3 , au G fvu~ p~ocaS3 cpc ~a nd data .

lli~lRY~lIQli RRQ~~~~QB: All instructions in th e SIMALE
are proce s s ed by the control unit. The ex e cu t ion
of an instruction can cause activity on all of the
four ope rand proc e ssors simultaneously. This
parall el e xecution of instructions make s the
SI MI LE an efficie nt machine for graphical
operations.

Q~gRaliQ £RQ~g~~QB~: Each of the proce ssing units has an
18-bi t ALIT (Arithm e tic/Loqic Unit) which selects
ope r a nd s , from among the va rious stores and
per f orms an arithm e tical or logi cal operation upon
th e m. The AUF R control regis te r determin es the
ope rations p erform e d by the ALU'S. The r e sults are
ma de av a ilable on th e F-buse s where th e y can be
co pi ed in t o a s tore or t ested by subseque nt
in s truc tions.2 . 3 Th e Data Bus

Th e SINALE tr ans f ers data amonq its various processing units
and the ~l e ta 4B vi a a bidirectional 18-bit data bus; the Z-bus.
Durin q a data transfe r, one of e iqht sources and on e of s ev en
de s t ina ti ons ar e sel ect e d by th e EBCR control r eqiste r. Among
th em are t he Me t a 413 , control s tora qe , the 10>1 ord e r by te of th e
curr e n t in s truct ion , a nd the proc es sor F-buses . 16-bit s ources
'(s uc h as th e Me ta 4B and control s toraqe) . have the ir s ig ns
ext e nded onto th e bus . IIh e n the in s truction r e qister i.s s ource ,

-2-

bits(S-1S) of the current i nst ruction are copied onto the
corresponding bits of the Z-bus and th e rest are forced to zero.
An additional data path serves to pass command, status. and
de bugqing information between the Meta 4B and the S!M~LE's
control unit.3 THE SIMALE INSTRUCTION SET

The SIMALE has sixteen instructions, all of which are
16-bits long. Almost all in structions are divided into three
fields; an operation code in bits(O-3). a modifier or data field
in bits (1. -7), and an address field in bi ts (8 -1 5). While most
SINALE instruction s are simple register loads. they can be
difficult to understand because severa l things modify their
behavior.

First. the loa ding of residual control registers determines
the operation of subsequent instructions. E'or example . the
s e tting of the AUPR register might instruct the ALU's to perform
addition on the Band Q registers. If an instruction then loaded
the A r eg ist e rs, they wo uld contain the result of this addition.
But for other settings of control registers, this same
instruction could zero the A register, perform a logical OR 'ing
of two registers, or complete a data transfer with the Meta 4B.
In addition, many of the control registers are cn top of stacks
and can assume d i fferel,t values on differe nt leveis of program
execution!

Besid es being affected by residual control registers, the
execution itself of many instructions is conditional. Condition
codes referenced by these instructions test one of sixteen
conditions throuqhout the SIMALE and modify execution behavior
according to the r es ult. See Section 3.4 for a further
explanation of the condition codes.

In the instruction descriptions that follow, upper case
symbols are predefin ed by the SIMALE as semb l e r to the hexad ec imal
v alues annotated (#h e x value) and optional symbols are enclosed
in braces. All symbols are delimited by either blanks or commas.
To produce obiect cod e . the assemb l e r simply OB's togeth er the
values of the symbols appearing on a line of code. Por more
detail, see the SHIALE A ssamb l er Manual. 3. 1 Proce ssor
Instruction s

Instructions with operation codes 8 through 15 affect the
operand stores of th e four processors. All interpret bits (4-7) as
a condition code and bits (8- 15) as a branch address unless the
condition code specified pre-empts taking this branch. Th e EBCR
control r eg ister enables the processors. and no action is ever
tak e n by a disabled processor or by a processor wh ich is not a
bu s destination duri ng a data transfer (see the Y.FER condition
code) •

-3-

Erite Memorv from F-bus on condition
WM <condition code>[,<label>]
r-----T----~----------,

I 8 I CC I ADDRESS 1 L--___ ~ ____ _L ________ ~

o "8 15

&oad Q register from F-bus on condition
LQ <condition code>[,<label>]
r-----T-----r----------,
I B I CC I A DD FE SS I L _____ ~ ____ _L _________ ~

o 4 8 15

Load A register from F-bus on condition
LA <condition code>[,<label>]
r-----T-----T----------,
lei CC I ADDRESS I L ____ -L ___ --l-_________ J

o ~ 8 15

Load B register from F-bus on condition
LB <condition code>[,<label>]
r-----.----~----------,

I Flee I ADDRESS I
L __ ---k ____ -L-_______ --J

o 4 B 15

For these instructions, each enabled prpcessor takes the
local value of the condition code specified and if true, copies
the current lILD output from the F-bus into the specified 18-bit
store. In the case of a Write Memory instruction, the exact
memory location writtffn is specified by the Memory Address
Regist e r (MAR).

Unless modified by the condition code, execution resumes at
the address specified by <label>.

1eft ~llift Q register, entering condition value
LSHQ <condition code>[,~label>]
r-----T-----T----------,
I 9 I cc I ADDRESS I L-____ ~ _____ ~ __________ ~

o 4 8 15

-4-

Bight 2llift Q register, entering condition value
RSHQ <condition code>[,<label>]
r-.----r-----r----------,
I A I cc I ADDRESS I L _____ i ____ -i __________ ~

o 4 8 15

18ft 2llift ~ register, entering condition value
LSHB <condition code>[,<label>]
r-----T-----r----------,
I D I cc I ADDRESS I L _____ i _____ ~ __________ J

o 8 15

Bight 2llift B register, entering condition value
aSHB <condition code>[,<label>]
r-----T-----r----------,
I E I cc I ADD RESS I L _____ ~ ____ _L __________ J

o 4 B 15

;Ocr th e se ir.St!:'!lCti.O~S, '2'ach '?nabled prot:~ss(lr shi f ts the
specified register ona position in the specified direct ion,
ente ring the local value of the condition code into the emptied
end bit position.

Unless modified by the condition code, execution resumes at
the address Specified by <label>. 3.2 Control Register
Instructions

The following instructions, with operation codes 2 through
6, load and modify the residual control regist e rs.

boad nemory hddress Begister with imm e diate
LMAR <data>r,<label>j
T-----T----~---------_,

I 4 I DATIII ADDRESS I
L _____ i _____ L __________ J

o 4 6 15

This instruction takes the data specified in bits (4-7) and
loads it into the 4-bit. Memory Address Register (11~. R).

Execution resumes at the addr e ss specified by <labe l>.

, Tho MAR is a control r e gister who se cont e nts select s one of
th e sixtee n locations in the processor me mori es . It sits atop a
16-ie ve l stdck in which tile cur r 8nt valu e of th e HAn may he sa¥ed

-5-

by a CALL instruction and from which the MAR may be restored by a
RETURN ins truction.

The M1\R can be increm e nte d by a MOOR instruction (s e e
section 3.3).

Load ~ognT Beqister with immediate
LCTR <dat3.>[,<label>]
r-----T----~----------,

I 5 I DATAl ADD RESS I L _____ ~ ____ -L __________ J

o .. 8 15

This instruction takes the data
loads it into the 4-bit ~ounI Eegiste r

specified in bits (4-7) and
(CT R) •

Exec ution r esumes at the addrass specified by <label>.

The CTH is a control r egister used to control program
loopinq. It sits atop a 16-le vel stack in which the current value
of the CTR may be saved by a CALL instruction or from which the
CTR may be restor~d by a RETURN in str uction .

The CTR can be decremented
liot ~oun~ (NCT) condition codas

and tested by the ~OUl\1 (C T) and
(se e Section 3.4) •

This
bits(4-15)

Load ALl! Eunction Eeqister with im med iate
LAUFR <function>[, INV][, HND][, + 1]
r----T--r--T-~-T-r-----~

I 2 IS11 S2 1II RIC IFUllC I
L-___ ~ __ ~ __ L-~_i _____ J

o • 6 8 9 10 15

instruction takes the immediate data specified in
and load s it into the 12-bit ILU function ragister.

Execution resumes at the n ext s e guential instruction .

The ILU function regist e r is a control r agister selecting
the operand stor e s and the operation performed by the ALU's of
the processors. There. are several fields within the regi ster. The
5-bit fi e ld in bits(11-15) selects one of thirty-two arithmetic
or boolean operations performe d upon th e two source stor es
sel.ected by the fields in bi':s (4-7). A d e scription of all
th irty- two functions can ba found in th e SIMALE hardwar e
Princiles of Operation manual; thos e curre ntly defin e d for th e
assem hI a r are :

-6-

<function>:

F=<s1> (# 0:>00): This copies s1 onto the F-bus.

F=<s1> OR <s2> (#000 1): This logically OR's the
two so urces .

F=<s1> OR_NOT < s2> (1 0002): This OR's s1 with the
co mp l ement of s2.

F= ONES (#0003): This sets the F- bus to all ones.

F=<s1> AND <s2> (#000 4):
sour.c es .

This AND's the two

F=<s1> XNOR <s2> (#0006): This is the compl emen t
of th e exclusive OR of the two s ources.

F= <s 1 > A ND _ N OT < s 2 > (# 0 0 08): Th i sAN D's s 1 with
the co~plement of 52.

F=<s 1> XOR <s2> (#000 9): This XOR' 5 s1 with 5 2.

F= NOT <52> (~ OOI)A): This comolements s2.

F=<s1> NAND <s2> (# OOOB): This NAND's s1 and s2.

F= ZEROS (#OOOC): This sets the F-bus to all
zer as.

F=<s 1> NOR <s2> (# OOOE): This NORS s1 with s2.

F=<s1> +0 (#00 10): This ad ds zero plus the carry
in to s1.

F= NEG_ONE (~ 00 13): This sets the F- bus to all
on es plus the carry in.

F=<s1> MIN US <s2> (# 00 16): This sets t h e F-bus to
s1 minus s2 minus on e plus the carry in.

F=<s1> PLUS <s2> (# 0019): This sets the F-bus to
51 plus s2 plus the carry in.

F=<s1> THI ES_2 (#00 1C): Th is sets the F-bus to s1
l e ft s hifted one place.

F=<s1> -1 (I00 1 F): This sets the F-bus to 51 minus
on e plus tb~ carry in.

-7-

,
\

<31> : The first operand source for the above functions
is selected by bits (4,5). the possible sources
are:

F= t1E /I (#0000) : The memory

F=A (#0400) : The A register

P=Q (#0800) : The Q register

F=B (# OCOO) : The B register

<s2»: The second operand source for the above
functions is selected by bits(Q,7). The possible
sources are:

!'I EM (~ OOOO) : The memory

A (110100): The A register

Q (#0200) : The Q reg iste r

B (#03 00) : The B register

INV (#0080): Bit (8) is the invert bit (I) and inverts
the carry in and function bits(12-15) See!l by
processors 2 and 3. This has the effect of ~aking
the ALU's of processors 2 and 3 perform thi
complpment of the function performed on processors
o and 1. Thu5 it is possible, for example, to GO
addition on processors 0 and 1 and at the same
time do subtraction on processors 2 and 3.

RND (#0 ')40) : 13 it (9) is the round bit (R) and if set,
th e carry in to any processor that has right
shifted ct one bit out of its B ' t-reg~s.er is
inve rted. This preve nts roundoff errors during
certain .. ' opera . ~ons.

+1 (#0020): Bit(1,) is the carry bit (C) into the ALU's
durinq arithmetic operations. It may be inverted
either by the round or the invert bits and has the
effect of adding one to the results of arithmetic
operations.

-8-

This
bits(4-1 5)
(EBCR) .

boad Jnable,]us £ontrol ~eg ister
with immediate

LEBCR <ena bl e or r equest><b us src><bus dst>
r--~-----T~---~----'

I 3 I E~/P.C I E I SRC lO ST I
L ___ -L ____ _ L_L-___ ~ __ _J

o ~ 9 10 13 15

instruction
and loails it

takes the i mmediate data speci f i ed in
into the Enable and Bus con trol Reg i ster

Execu t ion r esumes at the next seg uen tial a,ddre ss.

Th e EBCR i s a control reqiste r whic h deals with eeabli ng
processors and with data transfers on the Z-bus. The LEBCR
instruction does not actually perfo r m a data transfer but r ath€r
determines what transfer will be performed bi the XFER condition
code.

,
\

<enable>: IIhen a LEBCR in s truc tio n i s executed with
bit (9) (E) set , bits (4-7) ar e loaded into a 4- bit
enable reqis~ er each bit of which e nables one of
th e processors. Us ually a ll proc essors are l e ft
enabl ed , but wh en not , disab l ed proc esso rs a r e
unaffected by in s truc t ions and cannot be tested by
condition codes. The MOOR instr uc t ion can rotat~
r igh t the ena b l e bi ts on e place . The en able
r egister bits are:

pO (;/0840) : enab l es Processor 0

P1 (110 440) : enables Processo r 1

P2 (#0240) : enables Processor 2

P3 (#0 1 40) : enables Processor 3

ALL (#0 FO 0) : enables Processors 0- 3.

<req uest> : When a LEBCR instruction is execu t e d and
bit (9) (E) i s off , bits (4-8) are loaded i nto the
5-bit Reg u es t Code Reqiste r. Th i s r eg ister is used
by the S IMAL E to r eq u es t an operation of th e !eta
4B. Wh e n an IFER cond i tion code causes the SIMALE
to pa use fo:: I/O with th e Meta 4, the
Q-int e rpreter exam ines t he r equest cod e register
and the CTR . It t hen perfor m. s the r equested
op e ration , so met imes us i ng, the CTR as a modifier .
Only s ixt een of the thi rty-t wo poss i ble request

-9-

,
\

codes are currently implemented in the Meta 4B
firmware, and requestinq illegal codes causes a
SIMALE inte rrupt • The possible request codes are:

QUIT (# 0000): causes termination of the current
ETC instruction.

INTERRUPT (#0 0 80): causes a SH!ALE interrupt, then
quits.

NE XT_BLOCK (#')0 10): causes the termination of the
current ETC block and resumes execution at
the next block.

NE XT_SUB_BL OCK (' 0180): causes 'termination of the
current ETC sub-block and resumes execution
at the next sub-block.

GOTO PAGE (#0 200): The SIMALE qi ves the Meta 4B a
SIMALE initialization half word via the Z-bus.
The Meta 4B then loads the requested control
store paq e if ne cessary and starts SI l1ALE
execution at the requested lecation. This is
an int e r- vin:ual paq e iumfJ (see Sectio n i 6 .3
of the Meta 4B manual).

GET_DATA (*0 28 0): caus es the Meta 4B to get the
CTR nu mb e r of halfwords from the curr e nt
sub-blo ck and qive them one at a time to the
SIMALE via the Z-bus. If the CTR is zero, an
interrupt is caused and execution is halted.

SET_VG_MODE (10300): cau ses the Meta 4B to issue a
mode orde r to the VG which it reads from the
SHI"!.E Z-bus.

SE ND_ VG_Dl,TA (#0 380): c auses the tleta 4B to send
th e VG t he CTR num be r of halfwords from the
SHIALE Z-bus. If the CTR is zero, an
interru pt is caused and execution is halted.

GET_ RE G (#04 1)0) , PUT_R EG (10 4 80), GET_LS (1I0500),
PUT.:.I.S (~ 0 580), GET_MS (#0 60'), PUT_MS
(#0 68 0) , GET_VG_ REG (#0 7 0 0) , PUT_ VG_ RE G
(10 78J): All of th e s e request cod e s c a use the
Meta 4 3 to read an address from the SI MALE 's
Z-bus. It then transfe I:s th e eTR number of
halfw ords to or from th e sp e cifi ed stores
(i e . us er REG i ster s , Local S.tcce , Main Store,
0[' VG REG iste rs). If the er R is zero, an

-10-

interrupt is caused and execution is halted .

of
atop
by a

be

<bus src>: Bits (10 -12)
source. They sit
they may be saved
which they may
instruction . The
incre men ted by the

the BECR select the Z-bus
a 16 -level stack in which

CALL ins truction and from
restored by a RETURN
source nits may be
instruction. possible

bus
MODR

sources ar e:

FROM_ M4 (10000) : Me ta 4 is source

FROM_CS (#0008): control Store is source

FROM_IR (#0010) : The low
instruction is source

order byt e of the

FROM ALL (tc(,018): The F- buses of all processors
are OR-ed toqe th e r and are the source

FROM - PO (110020) : The F-bu s of Processor 0 is
source

FF. OM - P1 (110028) : The F - bus of P,OC8ssor 1 is
source

FROM - P2 (#0030) : The F-bus of Processor 2 i s
source

PROM - P3 (110038) : The F-bus of Processor 3 is
source

<bus dst>: Bi ts (13-15) of t.he, EBCR s e lect the Z-bus
destina t ion. As with the bus source field, the bus
destination bits are at.op a 1 6- lev e l stack ann may
be incremented by the rODR instruction. possible
destin ations are:

TO_~14 (#0000): Meta 4B is t.he dest ination

TO_CS (#00 01): control store is th e destinat.ion.
Bits(8-15) of the instruction invoking the
dat a transfer (i e . specifyinq xfer) i s t.he
address of the location leaded from the
Z-bus.

TO_ALL (ff ·)003): The Z- bus contents i s copied ont.o
t~e F-buS AS of all processors, which ar e not.
bus source, reqardless of the AurR set.ting.

- 11-

I

Ii
I

TO_PO (#,)004): The Z-bus is copied onto processor
O's F-bus, if not bus source.

TO_P1 (#0')05): the Z-bus is copied onto processor
1's F-bus, if not bus source.

TO_P2 (#0006): the Z-bus is copied onto p~ocessor
2's F-bus, if not bus source.

TO_P3 (#0 007): the Z-bus i s copied onto processor
3's F-bus, if not bus source .

tlQQify Be g isters
MOOR [:1AR][,ENABLE][,SRC][,DST][<,label>]
r-----r-----r----------,
I 6 I ~lAS K I ADD RE SS I L _____ ~ __ ~ __________ J

o 4 8 15

The Modify Registers instruction uses bits (4-7) as a mask to
determine which of four control registe rs to modify as fo llow s :

The
control
address .

MAR (#() 80 0): If bit (til is set, the Memory Adcl.ress
Register is incremented.

ENi\DLE (~0 400): If bit(S) is set, the Enable fi e ld of
the EBCR bits (4-7), i s roca ted right or.e position.
EBCR bit (7) is entered into EBCR bit (4) when this
is don"!.

SRC (#02 00): If bit (6) is se t, the so urc e field of the
EBCR is incremented if the source specified is one
of the proce ssors . Processor 3 wrap s around to
Processo r O.

DST (# 0101) : If bit (7) is set , the Destination field of
the EBCR is incre me nted if the destination
sp ecified is one of the processors. Processor 3
wraps around to processor O. 3.3 Flow of control
In str uction s

SIMALE has three
in programs. All
These instructions

instructions which
of them interpret

are:

-12-

alter the flow of
bi ts (8 -15) as an

The
condi tion
execution
execution

Ilanch on condit ion true
BR <condi tion code>[<,label>]
r-----T----~----------,

I 1 I cc I ADDRESS I
L ____ -i ____ -L ________ --J

o ~ 8 15

Branch instruction tests the global va lu e of the
code specified (se e Section 3.4). If it is true,

resumes at the address spec ified by <label>, otherwise
resumes at the next seguential instruction.

CALL subroutine
CALL [MAR1[,CT R]r ,SRCl[,DST][<,hb el>]
r-----T----~----------,

I 7 I MASKI ADDRESS I L _____ l _____ L _________ -J

o • 8 15

The call instruction saves the next sequential address in a
16-level stack in ternal to the control unit. This serves as link
informfttion used by the RETURN instruction.

Execution is resu med at the address specified by <label>.

The CALL instruction also affects those centrol registers
that are on stacks . The va lues of these control r e gisters are
constantly being copied into the present level of their stacks .
When a CALL is executed, the stack frame pointer is incremented ,
accessing the next level of the stacks , then bits(4-7) determine
the s~bse guent settinq of these control registers as follows:

,
\

~lAR (#0800): If bit (4) is set, the Memory Address
Register I s curren t val ue remains unchanged. If
bit (4) is not set, the MAR is loaded from the new
stack level and thus assum es the value it had
previous to th e last RET URN •

CTR (#04 00): If bit (5) is set, the count P.egister
r emains unchanged. If not set, the cra assumes its
previous v alue.

sac (#02 0 0) ~ If bit (6) i s set, the sourc e fie ld of the
EBCR r e mains u nchang e d. If not set , it assum e s its
pr e vious value.

DST (#0 10 0): If bit (7) is set , the destination field of
th e EBep r e mains unchang e d. If llot set , it assumes
its previous v alue .

-13-

RETURN from subroutine on condition true.
RETURN <condition code>[<,label>]
r-----T----~----------~
I 0 I CC I A DD HE 55 I
L--___ ~ ____ ~ _________ ~

o ~ 8 15

The RETURN instruction tests th8 global value of the
condition code specified. If it is true, the stack frame pointer
is decremented and the control registers are restored to their
values previous to the last CALL instruction. Execution is
resumed at the saved address. If the condition code is not true,
execution is resumed at the address specified by <label>. 3.4
Condition Codes

The SIMALE conditional instructions specify a condition code
in bits(4-7). All cod"s select one of sixteen conditions t9sted
in five pl~ces; in the control unit, and in each of the four
processors. The valu9 tested in the control unit is called the
global value, and the values tested in the processors are called
the J.ocal values. In many cases, the global value is simply the
logic al OR 'ing of the four local values. Disabled processors make
no contribution to the global values so obtained.

Four of the condition codes can modify the operation of
proc0ssor-type instructions. This modification usually involve s
invoking special cycle seguences or altering where execution is
resumed upon completion. The condition codes are:

FALSE (#0000) : This doesn't modi::y instruction
sequencing

local value: always false

global value: always false

TRUE (110100) : This doesn't modify instruction
sequencing

local value: always true

qlobal value: always true

TREJ (#0200) : This is a windowing re jection test for a
line whose end point window coordinates are in the
A an ,j Q registers. If both of these registers are
neqative on anyone processor, then the line is
absolute ly outsid8 the window. TREJ doesn't modify
instruction sequencing .

-14-

local value : (t. (XO) AND Q (Z O» from all e nabled
processors OR 'd tog e th e r

global v a lue: same as local valu e .

REJ (1 0300): This is a win do'.ling r e j ect ion test for a
line who se window coord ina t e end points are in the
A r eqister and on the F-hus. If both ar e ne gati ve
on anyone proces so r , th e line is ab s o lut e ly
outs ide t he wi n dow . R EJ does n I t modify i nst r uction
s equencinq .

local v a lu e: (A (XO) AND F (XO» from all enabl ed
processors OR ' d togeth e r

globa l va lue : same as local valu e

DELAY (#0 4 00): '!Chis
th e exec ution
fixinq possible

inserts a one cycle delay
of a processor i nstr ucti on
proqram t iminq problems .

local va lu e : alway s true

qla bal value : 31 ~3V s tr~e

be fore
to aid

XFER ('0500): When referenced by a processor
in s truction, ZFER trig g e r s a several cycle
sequ enc e causinq a data transfe r a l o ng the Z-bus .
Th e transfer is from th e source to the destination
as sp e c if ied in the EBCH . If the t'l e ta 413 is
i nvblv e d , the SIMA LE pause s un til the Meta 4 can
siqn a l th e tr ansfe r is comp l e t e . Only those
proc e s s ors which ar e destination s ca ll be affe cted
by an in s tr uction specify i ng XrES , and only those
which are sources pay attent ion to the s e tting o f
th e AUPR ~ur inq the transfer.

Ex ecut i on i s always r e sumed at the n ex t sequ e nt ial
i nstructio n .

local value: always true

qlobal v alue : alw a ys true

CT (#0600): The CounT condition code a lw ay s causes the
eT R to b e decreme nte d. If it i s spec i fi e d by a
proc e s so r instruct ion , and the CT R wa s on e be fo r e
beinq d ecre me nted , e xe c ution is forced to r es um e
at th O! n e xt s e q·u e ntial instructi c n ; . othe r wise it
r esu mes at th e a ddress spe cifi ed . Thi s gives
proc e s s or illst~u~tiull~ ' d aCT d~iliLy .

-15-

,
\

local value: always true

global value: CTR not = 1 (i.e. goes fa~se when
the count is exhausted)

NCT (#0700): The Not Count condition code always causes
the CTR to be decremented. If it is specified by a
processor instruction, and the CTa was one before
bein 9 deer ement ed, execut ion is forced to resume
at the r.ext seguential instruction; otherwise it
resumes at the address specified. This gives
processor type instructions a 8CT ability.

local value: always false

global value: CTa = 1 (i. e.,
count is exhausted)

COUT (# 0800):
sequencing.

This doesn't

gOES true when the

modify instr uction

local valrio: £arry QQ! from ALU bit(XO)

q10bal value: carry nut
processors OR'd together.

NP(XO) (#0900):
seguencing.

This doesn't

from all enabled

modify instructions

local value: the complement of the s ign bit of the
F-bus

global value : NF (XO.) 's of all enabled processors
OR'd toget her

LSIG (#n00): ' This doesn't modify instruction
seguencing . LSIG i s a test for left significance
of a proces sor's S reqister (i. e. , e!. ther i1:s left
most two bits are different or it is all ones or
zeros)

local value: (B(XO) xoa S(Xl» OR (8 NOT MIXED)

global valu e : LSIG's of all enabled processors
OR'd toge ther.

BM (IOB 00): This doesn ' t modify instruction s e quencing.
D mi xed is a t e.s t f::>r a processor's 8 H'!gister not
baing all ones or all zeros .

local valu e : a reqi5t er wixed

-16-

global valu e : BM of all enabled processors OR ' d
together.

Q(XO) (~OCOO), Q(15) (#0000),
B (1 5) (#OP OO): These ·don't
sequencing they a r e used to
the Band Q r eg ister .

local value: the bit specified

B (X O) (#OECO),
modify i nst ruction

test the end bits of

global valu e : the bit specified of all enabled
processors are OR'd together.

-17-

