
· --

TURBO C®
Addendum

Version 1.5
Additions and

Enhancements

Borland International
4585 Scotts Valley Drive
Scotts Valley, CA 95066

This manual was produced in its entirety with
Sprint: 8 The Professional VVord Processor,

available from Borland.

Borland International, Inc.
4585 Scotts Valley Drive

Scotts Valley, California 95066

Copyright © 198 7
All Rights Reserved. First Printing, 1987

Printed in U.S.A.

10 9 8 7 6 5 4

Table of Contents

Introduction 1
What You Will Find in this Addendum. .. 1

Chapter 1 Turbo C's Video Functions 5
Some Words About Video Modes. .. 5
Some Words About Windows and Viewports 6

What is a Window? .. 6
What is a Viewport? .. 6
Coordina tes ... 7

Programming in Text Modes 7
The Console I/O Functions .. 7

Text Output and Manipulation 8
Window and Mode Control. .. 9
Attribute Control. .. 9
State Query. .. 10

Text Windows .. 11
The text_modes Type ... 12
Text Colors 13
High-Performance Output: the directvideo Variable 14

Programming in Graphics Mode 15
The Graphics Library Functions 16

Graphics System Control 16
A More Detailed Discussion 17

Drawing and Filling ... 19
Manipulating the Screen and Viewport 20
Text Output in Graphics Mode 22
Color Control .. 24

Pixels and Palettes .. 24
Background and Drawing Color 25
Color Control on a CGA .. 25
Color Control on the EGA and VGA 27

Error Handling in Graphics Mode 28
Sta te Query .. 29

Chapter 2 Additions to TC.EXE 31
The (New) Options/Directories Menu 31
The (Modified) Options/Environment Menu. .. 32
New Hot Key. 34

How Long Will Turbo C Save the Screen? 35
Changes to the Turbo C Editor 35

Setting Tab Sizes .. 36
Autoindent and Optimal Fill .. 36
Pair Ma tching .. 38

A Few Details About Pair Matching. .. 38
Two Commands for Directional Matching 39
The Search for Comment Delimiters 40

Editor Hot Key Assignment 42

Chapter 3 Changes to Command-Line Turbo C 45
Extended Syntax for These Options .. 46

Implicit vs. User-specified Library Files 47
The Enhanced Library File-Search Algorithms. .. 47

Using -L and -I in Configuration Files 48
An Example With Notes ... 48

Chapter 4 New and Modified Functions and Variables 51
New and Modified Global Variables 52
_argc, _argv .. 52
directvideo .. 52
_heaplen, _stklen ... 53
_8087 .. 54
New and Modified Functions 55
arc .. 55
assert .. 58
bar .. 59
bar3d ... 60
bsearch .. 61
calloc .. 62
chsize .. 62

< \lcircle .. 63
cleardevice ... 63
clearviewport .. 63
closegraph ... 64
clreol .. 64
clrscr .. 65
country .. 65
cprintf ... 66
cputs .. 66
delay .. 66
delline .. 67
detectgraph .. 67
div .. 68
drawpoly .. 69

II

ellipse ... 70
exec .. 70
fgetpos .. 71
fillpoly .. 71
flo 0 dfill ... 72
fsetpos .. 73
getarccoords ... 73
getaspectra tio .. 73
getbkcolor ... 73
getche ... 75
getcolor ... 75
getfillpattern ... 76
getfillsettings ... 77
getgraphmode ... 79
getimage .. 80
getlinesettings .. 82
getmaxcolor 84
getmaxx ... 84
getmaxy :............... 85
getmoderange .. 85
getpalette .. 86
getpixel ... 88
gettext .. 89
gettextinfo ... 90
gettextsettings .. 91
getviewsettings ... 95
getx ... 96
gety ... 97
gotoxy .. 97
graphdefaults .. 97
grapherrormsg ... :·".98
-$faphfreemem .. 98
-$faphgetmem ... 99
graphresult ... 100
high video 102
imagesize ... 102
initgraph ... 103
insline .. 107
Idiv .. 107
Ifind .. 108
line .. 108
line reI .. 109
line to .. 109
lowvideo ... 109

iii

_Irotl ... 109
_Irotr ... 110
lsearch .. 110
malloc .. 110
moverel .. 111
movetext ... 111
move to ... 112
normvideo .. 112
nosound .. 112
outtext ... 113
outtextxy ... 113
pies lice ... 114
putch .. 114
putimage ... 114
putpixel .. 115
puttext ... 115
random .. 115
randomize .. 116
read .. 116
realloc .. 117
rectangle ... 117
registerbgidriver ... 118
registerbgifont .. 119
res torecrtmode .. 119
_rotl .. 119
_rotr .. 120
setactivepage .. 120
setallpalette ... 121
setbkcolor .. 122
setcolor ... 122
setfillpattem .. 122
setfillstyle .. 122
setgraphbufsize ... 123
setgraphmode ... 124
setlinestyle .. 124
setpalette ... 124
settextjustify .. 124
settextstyle .. 125
setusercharsize .. 125
setviewport ... 126
setvisualpage ... 126
sound .. 126
spawn ... 127
strerror ... 128

Iv

_strerror 0 129
strtoul 0 129
tmpnam 00 0 0 129
tmpfile 0 130
textattr 0 130
textbackground 00 132
textcolor 000000 000 0 0 0 0 0 0 0 0 0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 134
textheight 00 0 0 0000000 0 0 000 0 00 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 00 0 0 0 000 0 0 0 0 134
textmode 0 135
textwidth 00 0 136
wherex 00 0 0 0 136
wherey 00 0 0 0 137
window 00 0 0 137
write 00 0 0 0 0 0 138

Chapter 5 Revised Function Prototypes 139

Chapter 6 Miscellaneous Information 145
The TCCONFIGoEXE Conversion Utility for Configuration Files 0 0 0 0 0 0 145
How MAKE Searches for BUlL TINSoMAK 0 146
What Are Streams? 0 146

Text vSo Binary Streams 000000000000000000000000000000000000000 147
Buffering Streams 00 147
Predefined Streams 000 148

What is a Configuration File? 0 149
The TURBOCoCFG Configuration File 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 149
The TC Configuration Files 000000000000000000000000000000000000 149

What is Stored in TC Configuration Files? 000000000000000000000 150
Creating a TC Configuration File 0 0 0 0 0 0 000 0 0 000 0 0 0 0 00 0 0 00 0 0 0 0 0 151
Changing Configuration Files Mid-stream 0 151
Where Does TCoEXE Look for TCCONFIGoTC? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 151
TCINST vSo the Configuration File: Who's the Boss? 0000000000000 ·151
What Does "Config auto save" Do? 0 152

What are Pick Lists and Pick Files? 0 152
The Pick List 0 152
The Pick File 0 153

When and How Do You Get a Pick File? 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 153
When Does Turbo C Save Pick Files? .. 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 .. 0 0 0" 154

Corrections to the Original Manuals 0 154

Appendix A The New TCINST 157
What Is TCINST? 0 0 0 0 0 0 0 0 000000000000000000000000000000000000000 157
Running TCINST 0 158

The Turbo C Directories Option 0 159
The Editor Commands Option 0 160

v

Allowed Keystrokes .. 163
The Setup Environment Option 164
The Display Mode Option 166
The Color Customization Option 167
The Resize Windows Option 168

Quitting the Program ... 168

Appendix B TLIB: The Turbo Librarian 169
What Is TLIB? ... 169
The Advantages of Using Object Module Libraries 170
The Components of a TLIB Command Line 170

The Operation List ... 171
File and Module Names 172
TLIB Operations ... 172

Creating a Library .. 173
Using Response Files ... 173
Advanced Operation: The IC Option 174
Examples ... 175

Appendix C GREP: A File-Search Utility 177
Wha t Is GREP? .. 177
The GREP Options ... 177

Order of Precedence 179
The Search String .. 179

Operators in Regular Expressions 180
The File Specification ... 180
Examples with Notes ... 181

Appendix D BGIOBJ: Conversion Utility for Graphics Drivers and
Fonts 185

What Is BGIOBJ? 185
Adding the New .OBJ Files to GRAPHICS.LIB 186
Registering the Drivers and Fonts 186

The IF option. .. 188
Advanced BGIOBJ Features 189

vi

N T R o D u c T o N

Welcome to Turbo C version 1.5! This enhancement package includes a
number of new Turbo C features. The major ones are

11 more than 100 new functions, including powerful text and gra phics video
functions

1:1 an object code librarian, so you can create and manage .LIB files
1:1 new "creature comforts," such as 43- and 50-line support in the

Integrated Environment and multiple library directories

In this addendum to the Turbo C manuals, we document the version 1.5
additions and enhancements. This addendum supplements your Turbo C
User's Guide and Turbo C Reference Guide; refer to this addendum for
information about new program features and any significant changes to the
original manuals.

What You Will Find in this Addendum

This addendum has six chapters and four appendixes, covering the major
differences between versions 1.0 and 1.5. Here's a summary of those
differences, and the addendum chapters in which you will find information
about them.

Turbo C's Video FU1lctio1ls (Chapter 1)

Turbo C's extended console I/O package (cprintf, cputs, etc.) provides
powerful text-mode screen- and window-management capabilities, along
with text-attribute control. The new BGI (Borland Graphics Interface)
graphics library supplies versatile drawing/painting and graphics text
output functions. These graphics functions support CGA, EGA, Hercules,
VGA, and other graphics adapters. If you are not familiar with video
functions, windows, or graphics in general, read Chapter 1 in the
addendum for a basic overview of these features and functions. Refer to
Chapter 4 in the addendum for individual function descriptions.

Introduction

New and revised menus, and new hot key (Chapter 2)

The original Options/Environment menu in Turbo C's integrated
environment has been split into two menus (Environments and Directories)
with some added options, and a new hot key provides additional
functionality. The most notable feature on the new Options/Environments
menu is the Screen size menu item-which lets you change the integrated
environment display from 25-line mode to 43-line mode on your EGA
equipped system (or 50-line mode on your VGA-equipped system)-while
the major feature on the new Options/Directories menu is the modified
Library directories menu item.

The new capabilities on these menus include

.25-,43-, or 50-line display modes

• multiple library directories
• user-named pick files
• user-set tab sizes in the editor
• auto save of configuration file

The new hot key is AIt-F5 (flip to/from saved output screen).

Multiple library directories (Chapters 2 and 3)

You can now give TCC multiple -L<dirname> options, just as you always
could with the - I option. You can also list multiple library directories in the
integrated environment, under the (new) Options/Directories menu.

Expanded command-line syntax (Chapter 3)

The syntax for the -I and -L command-line options has been expanded.
These options now accept multiple directories, just as the integrated
environment's equivalent menu items do.

New and modified functions and variables (Chapter 4)

Version 1.5 has over 100 new functions, including several powerful
additions to the console (text) I/O functions, a whole library of video
graphics functions, a handful of miscellaneous new functions for ANSI
compatibility, a few modifications to existing functions, plus some new
(and some modified) global variables. These are all presented with
complete descriptions that supplement chapters 1 and 2 of the Turbo C
Reference Guide.

2 Addendum: Turbo C 7.5 Additions and Enhancements

Revised function prototypes (Chapter 5)

To provide enhanced compatibility with the Proposed Draft ANSI C
Standard, some of Turbo C's function prototypes have been revised in
version 1.5. These prototypes are listed in an alphabetical table in this
chapter.

Miscellaneous Information (Chapter 6)

This chapter documents miscellaneous changes and additions to the
product and the manuals that don't fall under any of the preceding
categories.

III The former CNVTCFG.EXE utility has been renamed TCCONFIG.EXE;
you use it to convert back and forth between the configuration file for
TCC (TURBOC.CFG) and those for TC (* .TC files).

a The search rules for MAKE's default file BUILTINS.MAK have changed;
the new search algorithm is covered in this chapter.

a Version 1.5 supports two more predefined streams: stdaux and stdprn. All
five predefined streams are explained in a section in this chapter.

IJ If you are not familiar with pick files and pick lists, refer to this chapter
for a discussion.

a If you want to know more about configuration files, check out this
cha pter for an overview.

EI Minor corrections to the original Turbo C User's Guide and Turbo C
Reference Guide are listed here by page number.

New and revised utilities (Appendixes A, B, C, and D)

Version 1.5 includes one modified utility and three new ones, explained in
these four appendixes.

iii Appendix A covers TCINST.EXE, the optional custom installation
program. One nice feature in the new TCINST is the ability to rebind
editor command keystrokes (both secondary and primary) to your
preferred key sequences.

13 Appendix B describes TLIB.EXE, an object code librarian.
III Appendix C covers GREP.COM, a very fast version of the well-known

Unix file-search utility.

11 Appendix D explains how to use BGIOBJ.EXE, a graphics utility, when
registering graphics drivers and character fonts in your programs.

Introduction 3

4 Addendum: Turbo C 7.5 Additions and Enhancements

c H A p T E R

1

Turbo C's Video Functions

In this chapter, we first briefly discuss video modes and windows. After those
overviews, we describe programming in text mode, then in graphics mode.

Turbo C's new video functions are based on corresponding routines in
Turbo Pascal 4.0. If you are not already familiar with controlling your PC's
screen modes or creating and managing windows and viewports, take a
few minutes to read the following words on those topics.

Some Words About Video Modes

Your PC has some kind of video adapter. This can be a Monochrome
Display Adapter (MDA) for your basic text-only display, or it can be
capable of displaying graphics, such as a Color Graphics Adapter (CGA),
an Enhanced Graphics Adapter (EGA), or a Hercules Monochrome
Graphics Adapter. Each adapter can operate in a variety of modes; the
mode specifies whether the screen displays 80 or 40 columns (text mode
only), the display resolution (graphics mode only), and the display type'"
(color, monochrome, or black & white).

The screen's operating mode is defined when your program calls one of the
mode-defining functions (textmode, initgraph, or setgraphmode).

II In text mode, your PC's screen is divided into cells (80 or 40 columns wide
by 25 lines high). Each cell consists of an attribute and a character. The
character is the displayed ASCII character, while the attribute specifies
how the character is displayed (its color, intensity, etc.). Turbo C version

Chapter 1 I Turbo C's Video Functions 5

1.5 provides a full range of routines to manipulate the text screen: for
writing text directly to the screen, and for controlling the cell attributes .

• In graphics mode, your PC's screen is divided into pixels; each pixel
displays a single dot on the screen. The number of pixels (the resolution)
depends on the type of video adapter connected to your system and the
mode that adapter is in. You can use functions from Turbo C's new
graphics library to create graphic displays on the screen: you can draw
lines and shapes, fill enclosed areas with patterns, and control the color
of each pixel.

In text modes, the upper-left hand corner of the screen is position (1,1),
with x-coordinates increasing from left-to-,righ t, and y-coordinates
increasing from screen-top to screen-bottom. In graphics modes, the
upper-left hand corner is position (0,0), with the x- and y-coordinate values
increasing in the same manner.

Some Words About Windows and Viewports

Version 1.5 of Turbo C provides functions for creating and managing
windows on your screen in text mode (and viewports in graphics mode). If
you are not familiar with windows and viewports, you should read this
brief overview. Turbo C's new window- and viewport-management
functions are explained in "Programming in Text Mode" and
"Programming in Graphics Mode" later in this chapter.

What is a Window?

A window is a rectangular area defined on your PC's video screen when
it's in a text mode. When your program writes to the screen, its output is
restricted to the active window. The rest of the screen (outside the window)
remains untouched.

The default window is a full-screen text window. Your program can change
this default full-screen text window to a text window smaller than the full
screen (with a call to the window function). This function specifies the
window's position in terms of screen coordinates.

Wh.at is a Viewport?

In graphics mode, you can also define a rectangular area on your PC's
video screen; this is a viewport. When your graphics program outputs

6 Addendum: Turbo C 7.5 Additions and Enhancements

drawings, etc., the viewport acts as the virtual screen. The rest of the screen
(outside the viewport) remains untouched. You define a viewport in terms
of screen coordinates with a call to the setviewport function.

Coordinates

Except for these window- and viewport-defining functions, all coordinates
for text-mode and graphics-mode functions are given in window- or
viewport-relative terms, not in absolute screen coordinates. The upper left
corner of the text-mode window is the coordinate origin, referred to as
(1,1); in graphics modes, the viewport coordinate origin is position (0,0).

Programming in Text Modes

In this section we give a brief summary of the functions you use in text mode: For
more detailed information about these functions, refer to the function lookup
section of this addendum.

In version 1.5 of Turbo C, the direct console I/O package (cprintf, cputs,
etc.) has been enhanced to provide higher-performance text output, and
extended to provide window management, cursor positioning, and
attribute control functions. These functions are all part of the standard
Turbo C libraries; they are prototyped in the header file CONIO.H.

The Console I/O Functions

Turbo C's text-mode functions work in any of the five possible video text
modes: Which modes are available on your system depends on the type of
video adapter and monitor you have. You specify the current text mode
with a call to textmode. How to use this function is described later in this
chapter, and under the textmode entry in Chapter 4 of this addendum.

These text-mode functions are divided into four separate groups:

.. text output and manipulation
a window and mode control
II attribute control
II state query

We cover these four text-mode function groups in the following sections.

Chapter 7 I Turbo CIS Video Functions 7

Text Output and Manipulation

Here's a quick summary of the text output and manipulation functions:

==

Writing and reading text:

cprintf sends formatted output to the screen
cputs sends a string to the screen
putch sends a single character to the screen
getche reads a character and echoes it to the screen

Manipulating text (and the cursor) on-screen:

drscr clears the text window
dreol clears from the cursor to the end of the line
delline deletes the line where the cursor rests
gotoxy positions the cursor
insline inserts a blank line below the line where the cursor rests
movetext copies text from one area on screen to another

Moving blocks of text into and out of memory:

gettext
puttext

copies text from an area on screen to memory
copies text from memory to an area on screen

==

Your screen-output programs will come up in a full-screen text window by
default, so you can immediately write, read, and manipulate text without
any preliminary mode-setting. You write text to the screen with the direct
console output functions cprintf, cputs, and putch, and echo input with the
function getche. Text wraps within the window just as expected; if a word
would extend beyond the window's right border, it is moved down to the
beginning of the next line.

Once your text is on the screen, you can erase the active window with
clrscr, erase part of a line with clreol, delete a whole line with delline, and
insert a blank line with insline. The latter three functions operate relative to
the cursor position; you move the cursor to a specified location with
gotoxy. You can also copy a whole block of text from one rectangular
location in the window to another with movetext.

You can capture a rectangle of on-screen text to memory with gettext, and
put that text back on the screen (anywhere you want) with puttext.

8 Addendum: Turbo C 7.5 Additions and Enhancements

Window and Mode Control

There are two window- and mode-control functions:

==

textmode sets the screen to a text mode
window defines a text-mode window

You can set your screen to any of several video text modes with textmode
(limited only by your system's type of monitor and adapter). This initializes
the screen as a full-screen text window, in the particular mode specified,
and clears any residual images or text.

When your screen is in a text mode, you can output to the full screen, or
you can set aside a portion of the screen-a window-to which your
program's output is confined. To create a text window, you call window,
specifying what area on the screen it will occupy.

Attribute Control

Here's a quick summary of the text-mode attribute control functions:

==

Setting foreground and background:

textcolor sets the foreground color (attribute)
textbackground sets the background color (attribute)
textaUr sets the foreground and background colors (attributes) at

the same time

Converting intensity:

highvideo
lowvideo
nonnvideo

sets text to high intensity
sets text to low intensity
sets text to original intensity

==

The attribute-control functions set the current attribute), which is
represented by an 8-bit value: the four lowest bits represent the foreground
color, the next three bits give the background color, and the high bit is the
"blink enable" bit.

Chapter 7 I Turbo C's Video Functions 9

Subsequent text is displayed in the current attribute. With the attribute
control functions, you can set the background and foreground (character)
colors separately (with textbackground and textcolor) or combine the color
specifications in a single call to textattr. You can also specify that the
character-the foreground-will blink. Most color monitors in color modes
will display the true colors. Non-color monitors may convert some or all of
the attributes to various monochromatic shades or other visual effects, such
as bold, underscore, reverse video, etc.

You can direct your system to map the high-intensity foreground colors to
low intensity colors with lowvideo (which turns off the high intensity bit
for the characters). Or you can map the low-intensity colors to high
intensity with highvideo (which turns on the character high-intensity bit).
When you're through playing around with the character intensities, you
can restore the settings to their original values with normvideo.

State Query

Here's a quick summary of the state-query functions:

==

gettextinfo

wherex
wherey

fills in a text_info structure with information about the
current text window
gives the x-coordinate of the cell containing the cursor
gives the y-coordinate of the cell containing the cursor

Turbo C's console I/O functions include some designed for "state query".
With these functions, you can retrieve information about your text-mode
window and the current cursor position within the window.

The gettextinfo function fills a text_info structure (defined in CONIO.H)
with several details about the text window, including:

• the current video mode
• the window's position in absolute screen coordinates

• the window's dimensions
• the current foreground and background colors

• the cursor's current position

10 Addendum: Turbo C 1.5 Additions and Enhancements

Sometimes you might need only a few of these details. Rather than
retrieving all the text window information, you can find out just the
cursor's (window-relative) position with wherex and wherey.

Text Windows

The default text window is full screen; you can change this to a less-than
full-screen text window with a call to the window function. Text windows
can contain up to 25 lines (the maximum number of lines on-screen in any
text mode) and up to 40 or 80 columns (depending on your text mode).

The coordinate origin of a Turbo C text window is the upper left-hand corner
of the window. The coordinates of the window's upper left corner are (1,1);
the coordinates of the bottom right corner of a full-screen 80-column text
window are (80,25).

An Example

Suppose your 100% PC-compatible system is in 80-column text mode, and
you want to create a window. The upper left comer of the window will be
at screen coordinates (10,8), and the lower right corner of the window will
be at screen coordinates (50, 21). To do this, you call the window function,
like this:

window (10, 8, 50, 21);

Now that you've created the text-mode window, you want to move the
cursor to the window position (5, 8) and write some text in it, so you decide
to use gotoxy and cputs.

gotoxy (5, 8);
cputs("Happy Birthday, Frank Borland");

Figure 1.1 illustrates these ideas.

Chapter 7, Turbo C's Video Functions 11

Screen
Line

1

Window
Line 1

Window
Line 14

Screen
Column 1

111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111

111111111111111111111111111111111111111
III ~ i;; ~ I; ~ I:~: i ~ i I ~ I i I~ I; i I ~ i I: 1111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111

11

Window
Column 1

Window
Column 41

Figure 1.1: A Window in 80x25 Text Mode

Screen
Line
25

I-

Screen
Column 80

The text_modes Type

You can put your monitor into one of five PC text modes with a call to the
texhnode function. The enumeration type text_modes, defined in CONIO.H,
enables you to use symbolic names for the mode argument to the texhnode
function, instead of "raw" mode numbers. However, if you use the
symbolic constants, you must #include <conio. h> in your source code.

12 Addendum: Turbo C 7.5 Additions and Enhancements

The numeric and symbolic values defined by text_modes are as follows:

Symbolic Numeric Video
Constant Value Text Mode

LAST -1 Previous text mode enabled
BW40 0 Black & White, 40 columns
C40 1 16-Color, 40 columns
BW80 2 Black & White, 80 columns
C80 3 16-Color, 80 columns
MONO 7 Monochrome, 80 columns

For example, the following calls to textmode will put your color monitor in
the indicated operating mode:

Call

textmode(O)
textmode(BW80)
textmode(C40)
textmode(3)

Text Colors

Operating Mode

Black&White, 40 column
Black&White, 80 column
16-Color, 40 column
16-Color, 80 column

For a detailed description of how cell attributes are laid out, refer to the textattr
entry in Chapter 4 of this addendum.

When a character occupies a cell, the color of the character is the foreground;
the color of the cell's remaining area is the background. Color monitors with
color video adapters can display up to 16 different colors; monochrome
monitors substitute different visual attributes (highlighted, underscored,
reverse video, etc.) for the colors.

The include file CONIO.H defines symbolic names for the different colors.
If you use the symbolic constants, you must # incl ude <conio. h> in your
source code.

The following table lists these symbolic constants and their corresponding
numeric values. Note that only the first eight colors are available for the

Chapter 7, Turbo C's Video Functions 13

background, while all sixteen colors are available for the foreground (the
characters themselves).

Symbolic Numeric Foreground or
Constant Value Background?

BLACK 0 both
BLUE 1 both
GREEN 2 both
CYAN 3 both
RED 4 both
MAGENTA 5 both
BROWN 6 both
LIGHTGRAY 7 both
DARKGRAY 8 foreground only
LIGHTBLUE 9 foreground only
LIGHTGREEN 10 foreground only
LIGHTCYAN 11 foreground only
LIGHTRED 12 foreground only
LIGHTMAGENTA 13 foreground only
YELLOW 14 foreground only
WHITE 15 foreground only
BLINK 128 foreground only

. You can add the symbolic constant BLINK (numeric value 128) to a
foreground argument if you want the character to blink.

High-Performance Output: the directvideo Variable

Turbo C's console I/O package includes a variable called directvideo. This
variable controls whether your program's console output goes directly to
the video RAM (directvideo = 1) or goes via BIOS calls (directvideo = 0).

The default value is directvideo = 1 (console output goes directly to the
video RAM). In general, going directly to video RAM gives very high
performance (spelled f-a-s-t-e-r o-u-t-p-u-t), but doing so requires your
computer to be 100% IBM PC compatible: your video hardware must be
identical to IBM display adapters. Setting directvideo = 0 will work on any
machine that is IBM BIOS-compatible, but the console output will be
slower.

14 Addendum: Turbo C 7.5 Additions and Enhancements

Programming in Graphics Mode

In this section we give a brief summary of the functions you use in graphics mode:
For more detailed information about these functions, refer to Chapter 4 of this
addendum.

Turbo C version 1.5 provides a separate library of over 70 graphics
functions, ranging from high-level calls (like setviewport, bar3d, and
drawpoly) to bit-oriented functions (like getimage and putimage). The
graphics library supports numerous fill and line styles, and provides
several text fonts that you can magnify, justify, and orient horizontally or
vertically.

These functions are in the new library GRAPHICS.LIB, and they are
prototyped in the header file GRAPHICS.H. In addition to these two files,
the graphics package includes graphics device drivers (*.BGI files) and
stroked character fonts (*.CHR files); we discuss these additional files in
following sections.

To use any of the graphics functions, you need to name GRAPHICS.LIB in
your project file if you're using TC.EXE; if you're using TCC.EXE, you need
to list GRAPHICS. LIB on the command line. For example, if your program,
MYPROG.C, uses graphics, the TCC command line would be:

tcc myprog graphics.lib

For TC.EXE, your project file, MYPROG.PRJ, would contain the line

myprog graphics.lib

Important Note: There is only one graphics library, not separate versions
for each memory model (in contrast to the standard libraries CS.LIB,
CC.LIB, CM.LIB, etc., which are memory-model specific). Each function in
GRAPHICS.LIB is a far function, and those graphics functions that take
pointers take far pointers. For these functions to work properly, it is
important that you # include <graphics. h> in every module that uses
graphics.

Chapter 1, Turbo C's Video Functions 15

The Graphics Library Functions

Turbo C's graphics functions comprise seven categories:

• graphics system control

• drawing and filling
• manipulating screens and viewports

• text output
• color control
• error handling

• state query

Graphics System Control

Here's a quick summary of the graphics system control functions:

==

16

closegraph
detectgraph

graphdefaults

_graphfreemem

_graphgetmem

getgraphmode
getmoderange

. initgraph

registerbgidriver

restorecrtmode
setgraphbufsize
setgraphmode

shuts down the graphics system
checks the hardware and determines which graphics
driver and mode to use
resets all graphics system variables to their default
settings
deallocates graphics memory; hook for defining your
own routine
allocates graphics memory; hook for defining your own
routine
returns the current graphics mode
returns lowest and highest valid modes for specified
driver
initializes the graphics system and puts the hardware
into graphics mode
registers a linked-in or user-loaded driver file for
inclusion at link time
restores the original (pre-initgraph) screen mode
specifies size of the internal graphics buffer
selects the specified graphics mode, clears the screen,
and restores all defaults

Addendum: Turbo C 1.5 Additions and Enhancements

Turbo C's graphics package provides graphics drivers for the following
graphics adapters (and true compatibles):

EI Color Graphics Adapter (CGA)
• Multi Color Graphics Array (MCGA)
II Enhanced Graphics Adapter (EGA)
II Video Graphics Array (YGA)
.. Hercules Graphics Adapter
II AT&T 400-line Graphics Adapter
E! 3270 PC Graphics Adapter

To start the graphics system, you first call the initgraph function. initgraph
loads the graphics driver and puts the system into graphics mode. You can
tell initgraph to use a particular graphics driver and mode, or to auto
detect the attached video adapter at run time and pick the corresponding
driver. If you tell initgraph to auto detect, it calls detectgraph to select a
graphics driver and mode.

A graphics driver can support several different graphics modes. You find
out how many modes a given driver supports with getmoderange, and
what the current mode is with getgraphmode. You change graphics modes
with setgraphmode, and can return the video mode to its original state
(before graphics was initialized) with restorecrtmode.

graphdefaults resets the graphics state's settings (viewport size, draw
color, fill color and pattern, etc.) to their default values.

Finally, when you're through using graphics, call closegraph to shut down
the graphics system. closegraph unloads the driver from memory and
restores the original video mode (via restorecrtmode).

A More Detailed Discussion

The previous discussion provided an overview of how initgraph operates. In the
following paragraphs, we describe the behavior of initgraph, _graphgetmem,
and _graphfreemem in some detail.

Normally, the initgraph routine loads a graphics driver by allocating
memory for the driver, then loading the appropriate .BGI file from disk. As
an alternative to this dynamic loading scheme, you can link a graphics
driver file (or several of them) directly into your executable program file.
You do this by first converting the .BGI file to an .OBJ file (using the BGIOBJ
utility), then placing calls to registerbgidriver in your source code (before
the call to initgraph) to register the graphics driver(s}. When you build your
program, you need to link the .OBJ files for the registered drivers.

Chapter 7, Turbo C's Video Functions 17

After determining which graphics driver to use (perhaps via detectgraph),
initgraph checks to see if the desired driver has been registered. If so,
initgraph uses the registered driver directly from memory. Otherwise,
initgraph allocates memory for the driver and loads the .BGI file from disk.

Note: Using registerbgidriver is an advanced programming technique, not
recommended for novice programmers. This function is described in more
detail in Appendix D in this addendum.

During run time, the graphics system might need to allocate memory for
drivers, fonts, and internal buffers. If this is necessary, it calls
_graphgetmem to allocate memory, and calls ~raphfreemem to free it. By
default, these routines simply call malloc and free, respectively.

You can override this default behavior by defining your own
_graphgetmem and ~raphfreemem functions. By doing this, you can
control graphics memory allocation yourself. You must, however, use the
same names for your own versions of these memory-allocation routines:
they will override the default functions with the same names that are in the
standard C libraries.

18 Addendum: Turbo C 7.5 Additions and Enhancements

Drawing and Filling

Here's a quick summary of the drawing and filling functions:

==

Drawing:

arc
circle
drawpoly
ellipse
getarccoords
getaspectratio
getlinesettings
line
linerel

lineto
moveto
moverel
rectangle
setlinestyle

Filling:

bar
bar3d
fillpoly
floodfill
getfillpattern
getfillsettings
pieslice
setfillpattern
setfillstyle

draws a circular arc
draws a circle
draws the outline of a polygon
draws an elliptical arc
returns the coordinates of the last call to arc or ellipse
returns the aspect ratio of the current graphics mode
returns the current line style, line pattern, and line thickness
draws a line from (xO, yO) to (xl, yl)
draws a line to a point some relative distance from the
current position (CP)
draws a line from the current position (CP) to (x,y)
moves the CP to (x,y)
moves the current position (CP) a relative distance
draws a rectangle
sets the current line width and style

draws and fills a bar
draws and fills a 3-D bar
draws and fills a polygon
flood-fills a bounded region
returns the user-defined fill pattern
returns information about the current fill pattern and color
draws and fills a pie slice
selects a user-defined fill pattern
sets the fill pattern and fill color

With Turbo C's drawing and painting functions, you can draw colored
lines, arcs, circles, ellipses, rectangles, pieslices, 2- and 3-dimensional bars,
polygons, and regular or irregular shapes based on combinations of these.
You can fill any bounded shape (or any region surrounding such a shape)
with one of 11 predefined patterns, or your own user-defined pattern. You
can also control the thickness and style of the drawing line, and the location
of the CPo

You draw lines and unfilled shapes with the functions arc, circle, drawpoly,
ellipse, line, linerel, line to, and rectangle. You can fill these shapes with

Chapter 7 I Turbo C's Video Functions 19

floodfill, or combine drawing/filling into one step with bar, bar3d, fillpoly,
and pieslice. You use setlinestyle to specify whether the drawing line (and
border line for filled shapes) is thick or thin, and whether its style is solid,
dotted, etc., or some other line pattern you've defined. You can select a
predefined fill pattern with setfillstyle, and define your own fill pattern
with setfillpattern. You move the current position (CP) to a specified
location with moveto, and move it a specified distance with movere!.

To find out the current line style and thickness, you call getlinesettings. For
information about the current fill pattern and fill color, you call
getfillsettings; you can get the user-defined fill pattern with getfillpattern.

You can get the aspect ratio (the scaling factor used by the graphics system
to make sure circles come out round) with getaspectratio, and get
coordinates of the last drawn arc or ellipse by calling getarccoords.

Manipulating the Screen and Viewport

Here's a quick summary of the image-manipulation functions:

==

Screen Manipulation

cleardevice
setactivepage
setvisualpage

clears the screen
sets the active page for graphics output
sets the visual graphics page number

Viewport Manipulation

clearviewport clears the current viewport
getviewsettings returns information about the current viewport
setviewport sets the current output viewport for graphics output

Image Manipulation
getimage
imagesize

putimage

Pixel Manipulation

getpixel
putpixel

saves a bit image of the specified region to memory
returns the number of bytes required to store a rectangular
region of the screen
puts a previously-saved bit image onto the screen

gets the pixel color at (x,y)
plots a pixel at (x,y)

==

20 Addendum: Turbo C 7.5 Additions and Enhancements

Besides drawing and painting, the graphics library offers several functions
for manipulating the screen, viewports, images, and pixels. You can clear
the whole screen in one fell swoop with a call to cleardevice; this routine
erases the entire screen and homes the current position (CP) in the
viewport, but leaves all other graphics system settings intact (the line, fill,
and text styles, the palette, the viewport settings, etc.).

Depending on your graphics adapter, your system has between one and
eight screen page buffers, which are areas in memory where individual
whole-screen images are stored dot-by-dot. You can specify which screen
page is the active one (where graphics functions place their output) and
which is the visual page (the one displayed on screen) with setactivepage
and setvisualpage, respectively.

Once your screen's in a graphics mode, you can define a viewport (a
rectangular "virtual screen") on your screen with a call to setviewport. You
define the viewport's position in terms of absolute screen coordinates, and
specify whether clipping is on (active) or off. You clear the viewport with
clearviewport. To find out the current viewport's absolute screen
coordinates and clipping status, call getviewsettings.

You can capture a portion of the on-screen image with getimage, call
image size to calculate the number of bytes required to store that captured
image in memory, then put the stored image back on the screen (anywhere
you want) with putimage.

The coordinates for all output functions (drawing, filling, text, etc.) are
viewport-relative.

You can also manipulate the color of individual pixels with the functions
getpixel (which returns the color of a given pixel) and putpixel (which
plots a specified pixel in a given color).

Chapter 7, Turbo C's Video Functions 21

Text Output in Graphics Mode

Here's a quick summary of the graphics-mode text output functions:

==

gettextsettings

auttext
outtextxy
registerbgifant

settextjustify

settextstyle

setusercharsize
textheight
textwidth

returns the current text font, direction, size, and
justification
sends a string to the screen at the current position (CP)
sends a string to the screen at the specified position
registers a linked-in or user-loaded font for inclusion at
link time
sets text justification values used by outtext and
outtextxy
sets the current text font, style, and character
magnification factor
sets width and height ratios for stroked fonts
returns the height of a string in pixels
returns the width of a string in pixels

==

The graphics library includes an 8x8 bit-mapped font and several stroked
fonts for text output while in graphics mode .

• In a bit-mapped font, each character is defined by a matrix of pixels .
• In a stroked font, each character is defined by a series of vectors that tell

the graphics system how to draw that character.

The advantage of using a stroked font is apparent when you start to draw
large characters. Since a stroked font is defined by vectors, it will still retain
good resolution and quality when the font is enlarged. On the other hand,
when you enlarge a bit-mapped font, the matrix is multiplied by a scaling
factor; as the scaling factor becomes larger, the characters' resolution
becomes coarser. For small characters, the bit-mapped font should be
sufficient, but for larger text you should select a stroked font.

You output graphics text by calling either outtext or outtextxy, and control
the justification of the output text (with respect to the CP) with
settextjustify. You select the character font, direction (horizontal or
vertical), and size (scale) with settextstyle. You can find out the current text
settings by calling gettextsettings, which returns the current text font,
justification, magnification, and direction in a textsettings structure.
setusercharsize allows you to modify the character width and height of
stroked fonts.

22 Addendum: Turbo C 7.5 Additions and Enhancements

If clipping is on, all text strings output by outtext and outtextxy will be
clipped at the viewport borders. If clipping is off, these functions will throw
away bit-mapped font output if any part of the text string would go off the
screen edge; stroked font output is truncated at the screen edges.

The default 8x8 bit-mapped font is built in to the graphics package, so it is
always available at run time. The stroked fonts are each kept in a separate
.CHR file; they can be loaded at run time or converted to .OBI files (with
the BGIOBI utility) and linked into your .EXE file.

To determine the on-screen size of a given text string, call textheight (which
measures the string's height in pixels) and textwidth (which measures its
wid th in pixels).

Normally, the settextstyle routine loads a font file by allocating memory for
the font, then loading the appropriate .CHR file from disk. As an
alternative to this dynamic loading scheme, you can link a character font
file (or several of them) directly into your executable program file. You do
this by first converting the .CHR file to an .OBI file (using the BGIOBI
utility), then placing calls to registerbgifont in your source code (before the
call to settextstyle) to register the character font(s). When you build your
program, you need to link in the .OBI files for the stroked fonts you
register.

Note: Using registerbgifont is an advanced programming technique, not
recommended for novice programmers. This function is described in more
detail in Appendix D in this addendum.

Chapter 7, Turbo C's Video Functions 23

Color Control

Here's a quick summary of the color control functions:

==

Get color information

getbkcolor
getcolor
getmaxcolor

getpalette

returns the current background color
returns the current drawing color
returns the maximum color value available in the current
graphics mode
returns the current palette and its size

Set one or more colors

setallpalette
setbkcolor
setcolor
setpalette

changes all palette colors as specified
sets the current background color
sets the current drawing color
changes one palette color as specified by its arguments

==

Before summarizing how these color control functions work on eGA and EGA
systems, we first present a basic description of how colors are actually produced on
your graphics screen.

Pixei~ and Palettes

The graphics screen consists of an array of pixels; each pixel produces a
single (colored) dot on the screen. The pixel's value does not specify the
precise color directly; it is an index into a color table called a palette. The
palette entry corresponding to a given pixel value contains the exact color
in fo rma tion for tha t pixel.

This indirection scheme has a number of implications. Though the
hardware might be capable of displaying many colors, only a subset of
those colors can be displayed at any given time. The number of colors that
can be displayed at anyone time is equal to the number of entries in the
palette (the palette's size). For example, on an EGA, the hardware can
display 64 different colors, but only 16 of them at a time; the EGA palette's
size = 16.

The size of the palette determines the range of values a pixel can assume,
from 0 to (size -1). The gebnaxcolor function returns the highest valid pixel
value (size -1) for the current graphics driver and mode.

24 Addendum: Turbo C 7.5 Additions and Enhancements

In this addendum, we often use the term color, such as the current drawing
color, fill color and pixel color. In fact, this color is like a pixel value: it's an
index into the palette. Only the palette determines the true color on the
screen. By manipulating the palette, you can change the actual color
displayed on the screen even though the pixel values (drawing color, fill
color, etc.) have not changed.

Background and Drawing Color

The background color always corresponds to pixel value O. When an area is
cleared to the background color, that area's pixels are simply set to O.

The drawing color is the value to which pixels are set when lines are drawn.
You select a drawing color with setcolor (n), where n is a valid pixel value
for the current palette.

Color Control on a CGA

Due to graphics hardware differences, how you actually control color
differs quite a bit between the CGA and the EGA, so we'll present them
separately. Color control on the AT&T driver and the lower resolutions of
the MCGA driver is similar to CGA color control.

On the CGA, you can choose to display your graphics in low resolution
(320x200), which allows you to use four colors, or high resolution (640x200),
in which you can use two colors.

eGA Low Resolution

In the low resolution modes, you can choose from four predefined four
color palettes. In any of these palettes, you can only set the first palette
entry; entries I, 2, and 3 are fixed. The first palette entry (color 0) is the
background color. This background color can be anyone of the 16 available
colors (see following table).

You choose which palette you want by the mode you select (CGACO,
CGACl, CGAC2, CGAC3): these modes use color palette 0 through color
palette 3, as detailed in the following table.

Chapter 1, Turbo C's Video Functions 25

Palette Color assigned to pixel value
Number 1 2 3

0 light green light red yellow
1 lightcyan light magenta white
2 green red brown
3 cyan magenta lightgray

The available CGA background colors, defined in GRAPHICS.H, are listed
in the following table.

Numeric
Value Symbolic Name

o BLACK
1 BLUE
2 GREEN
3 CYAN
4 RED
5 MAGENTA
6 BROWN
7 LIGHTGRAY
8 DARKGRAY
9 LIGHTBLUE
10 LIGHTGREEN
11 LIGHTCYAN
12 LIGHTRED
13 LIGHTMAGENTA
14 YELLOW
15 WHITE

To assign one of these colors to the eGA background color, use
setbkcolor (color) , where color is one of the entries in the preceding
table. Note that for CGA, this color is not a pixel value (palette index); it
directly specifies the actual color to be put in the first palette entry.

26 Addendum: Turbo C 7.5 Additions and Enhancements

eGA High Resolution

In high resolution mode (640x200), the CGA displays two colors: a black
background and a colored foreground. Pixels can take on values of either 0
or 1. Because of a quirk in the CGA itself, the foreground color is actually
what the hardware thinks of as its background color: you set it with the
setbkcolor routine. (Strange but true.)

The colors available for the colored foreground are those listed in the
preceding table. The CGA uses this color to display all pixels whose value
equals 1.

The modes that behave in this way are CGAHI, MCGAMED, MCGAHI,
ATT400MED, and ATT400HI.

eGA Palette Routines

Because the CGA palette is predetermined, you should not use the
setallpalette routine on a CGA. Also, you should not use
setpalette (index, actual_color), except for index = O. (This is an
alternate way to set the CGA background color to actuaCcolor.)

Color Control on the EGA and VGA

On the EGA, the palette contains 16 entries from a total of 64 possible
colors, and each entry is user-settable.

You can retrieve the current palette with getpalette, which fills in a
structure with the palette's size (16) and an array of the actual palette
entries (the uhardware color numbers" stored in the palette). You can
change the palette entries individually with setpalette, or all at once with
setall palette.

The default EGA palette corresponds to the 16 CGA colors, as given in the
previous color table: black is in entry 0, blue in entry 1, ... , white in entry
15. There are constants defined in GRAPHICS.H that contain the
corresponding hardware color values: these are EGA_BLACK,
EGA_WHITE, etc. You can also get these values with getpalette.

The setbkcolor (color) routine behaves differently on an EGA than on a
CGA. On an EGA, setbkcolor copies the actual color value that's stored in
entry #color into entry #0.

As far as colors are concerned, the VGA driver behaves like the EGA
driver; it just has higher resolution (and smaller pixels).

Chapter 7 I Turbo CIS Video Functions 27

Error Handling in Graphics Mode

Here's a quick summary of the graphics-mode error-handling functions:

==

grapherronnsg
graphresult

returns an error message string for the specified errorcode
returns an error code for the last graphics operation that
encountered a problem

==

If an error occurs when a graphics library function is called (such as a font
requested with settextstyle not being found), an internal error code is set.
You retrieve the error code for the last graphics operation that reported an
error by calling graphresult. The following error return codes are defined:

error graphics_errors
code constant

o grOk
-1 grNoInitGraph
-2 grN otDetected
-3 grFileNotFound
-4 grInvalidDriver
-5 grNoLoadMem
-6 grN oScanMem
-7 grN oFloodMem
-8 grFontNotFound
-9 grNoFontMem
-10 grInvalidMode
-11 grError
-12 grIOerror
-13 grI nvalid Font
-14 grInvalidFontNum
-15 grInvalidDeviceNum

corresponding
error message string

No error
(BGI) graphics not installed (use initgraph)
Graphics hardware not detected
Device driver file not found
Invalid device driver file
Not enough memory to load driver
Out of memory in scan fill
Out of memory in flood fill
Font file not found
Not enough memory to load font
Invalid graphics mode for selected driver
Graphics error
Graphics I/O error
Invalid font file
Invalid font number
Invalid device number

A call to grapherrormsg (graphresult) will return the error strings listed
in the previous table.

The error return code accumulates, changing only when a graphics
function reports an error. The error return code is reset to 0 only when
initgraph executes successfully, or when you call graphresult. Therefore, if

28 Addendum: Turbo C 7.5 Additions and Enhancements

you want to know which graphics function returned which error, you
should store the value of graphresult into a temporary variable and then
test it.

State Query

Here's a quick summary of the graphics mode state-query functions:

==

getarccoords

getaspectratio
getbkcolor
getcolor
getfillpattern
getfillsettings
getgraphmode
getlinesettings
getmaxcolor
getmaxx
getmaxy
getmoderange
getpalette
getpixel
gettextsettings
getviewsettings
getx
gety

returns information about the coordinates of the last call to
arc or ellipse
returns the aspect ratio of the graphics screen
returns the current background color
returns the current drawing color
returns the user-defined fill pattern
returns information about the current fill pattern and color
returns the current graphics mode
returns the current line style, line pattern, and line thickness
returns the current highest valid pixel value
returns the current x resolution
returns the current y resolution
returns the mode range for a given driver
returns the current palette and its size
returns the color of the pixel at x,y
returns the current text font, direction, size, and justification
returns information about the current viewport
returns the x coordinate of the current position (CP)
returns the y coordinate of the current position (CP)

==

In each of Turbo C's graphics functions categories there is at least one
state-query function. These functions are mentioned under their respective
categories and also covered here. Each of the Turbo C graphics state-query
functions is named get<something> (except in the error-handling category).
Some of them take no argument and return a single value representing the
requested information; others take a pointer to a structure defined in
GRAPHICS.H, fill that structure with the appropriate information, and
return no value.

The state-query functions for the graphics system control category are
getgraphmode and getmoderange: the former returns an integer
representing the current graphics driver and mode, and the latter returns
the range of modes supported by a given graphics driver. getmaxx and

Chapter 7 I Turbo CiS Video Functions 29

getmaxy return the maximum x and y screen coordinates for the current
graphics mode.

The drawing and filling state-query functions are getarccoords,
getaspectratio, getfillpattern, getfillsettings, and getlinesettings.
getarccoords fills a structure with coordinates from the last call to arc or
ellipse; getaspectratio tells the current mode's aspect ratio, which the
graphics system uses to make circles come out round. getfillpattem returns
the current user-defined fill pattern. getfillsettings fills a structure with the
current fill pattern and fill color. getlinesettings fills a structure with the
current line style (solid, dashed, etc.), line width (normal or thick), and line
pattern.

In the screen- and viewport-manipulation category, the state-query
functions are getviewsettings, getx, gety, and getpixel. When you have
defined a viewport, you can find out its absolute screen coordinates and
whether clipping is active by calling getviewsettings, which fills a structure
with the information. getx and gety return the (viewport-relative) x- and y
coordinates of the CP (current position). getpixel returns the color of a
specified pixel.

The graphics mode text-output function category contains one all-inclusive
state-query function: gettextsettings. This function fills a structure with
information about the current character font, the direction in which text
will be displayed (horizontal or bottom-to-top vertical), the character
magnification factor, and the text-string justification (both horizontal and
vertical). '

Turbo C's color-control function category includes three state-query
functions. getbkcolor returns the current background color, and getcolor
returns the current drawing color. getpalette fills a structure with the size
of the current drawing palette and the palette's contents. getmaxcolor
returns the highest valid pixel value for the current graphics driver and
mode (palette size -1).

30 Addendum: Turbo C 7.5 Additions and Enhancements

c H A p T E R

2

Additions to TC.EXE

This chapter explains the additions to Turbo C's menus, hot keys, and
editor. The original Options/Environment menu in Turbo C's Integrated
Environment has been split into two menus (Environments and
Directories) with some added options. The new hot key lets you switch
back and forth between the Turbo C screen and the saved output screen.
Finally, the editor changes affect tab settings, optimal fill, matching
delimiter pairs, and editor command keys.

The (New) Options/Directories Menu

This new menu contains some items that were on the
Options/Environment menu of Turbo C version 1.0 and two new menu
items. The menu items from version 1.0 are Include directories, Library
directories (which has been modified; it was singular in version 1.0),
Output directory, and Turbo C directory. The two new menu items are Pick
file name and Current pick file.

Refer to Chapter 2 in the Turbo C User's Guide for descriptions of Include
directories, Output directory, and Turbo C directory. Descriptions of
Library directories, Pick file name, and Current pick file follow.

Library directories

In Turbo C version 1.0, you could specify one library directory with the
Library directory menu item. Now you can list multiple library
directories, up to a maximum of 127 characters (including whitespace).

Chapter 2, Additions to TC.EXE 31

Use the following guidelines when entering library directories:

You must separate multiple directory pathnames with a semicolon (;).

Whitespace before and after the semicolon is allowed, but not
required.

Relative and absolute pathnames are allowed, including pathnames
relative to the logged position in drives other than the current one.

An Example:

c:\turboc\libi c:\turboc\mylibsi a:newturbo\mathlibsi a: .. \vidlibs

See Chapter 3 in this addendum for details on multiple library
directories.

Pick file name

This item defines the name of a pick file to load. Entering a name here
loads that pick file (if it exists) and defines where Turbo C will save the
pick file when you exit. When you change the pick file name, Turbo C
saves the current pick file before loading the new one.

If no pick file name is listed here, then Turbo C only writes a pick file if
the Current pick file menu item contains a file name.

See Chapter 6 in this addendum for a discussion of pick files.

Current pick file

This menu item shows the file name and location of the current pick file,
if there is one. This item is always disabled; it is for information only.
Current pick file shows a file name when a default pick file is loaded or
when you type one in with the Pick file name menu item. If you change
the pick file name or exit the integrated environment, Turbo C stores the
current pick list information in this listed pick file.

The (Modified) Options/Environment Menu

This menu, containing six items, is quite different from the version 1.0
Options/Environment menu. Three of the items on this menu (Backup
source files, Edit auto save, and Zoomed windows) exist in version 1.0;
only the second has been changed. The other three items on this menu are
new in version 1.5: Config auto save, Tab size, and Screen size.

32 Addendum: Turbo C 7.5 Additions and Enhancements

Backup source files

(Same as version 1.0) By default, Turbo C,automatically creates a backup
of the file in the editor when you do a File/Save; the backup file is
FILENAME.BAK (where FILENAME is the name of the file in the
editor). You can turn this backup feature on and off with this toggle.

Edit auto save

(Was Auto save edit in version 1.0) With this toggled to on, Turbo C
automatically saves your file in the editor whenever you use Run or
File/ OS shell (if the file has been modified since the last time you saved
it).

Config auto save

This is a new menu item. Normally, Turbo C saves the current
configuration (writes it out to disk) only when you select Options/Store
options. With Con fig auto save on, Turbo C also saves the file whenever
you select Run or File/OS shell, or when you exit the integrated
environment (if the configuration file has never been saved or has been
at all modified since it was last saved).

With Config auto save on, if the configuration file has not yet been saved,
Turbo C chooses a file name for the auto saved file. This is the name of
the last configuration file you stored or retrieved, or TCCONFIG.TC (in
the current directory) if you haven't loaded, retrieved, or saved a
configura tion file yet.

Zoomed windows

(Same as version 1.0) !fyour Turbo C integrated environment screen is set
up with the Edit window and Message window both showing, selecting
Zoomed windows ... on zooms both windows to full screen, with the
active window visible.

Use F6 to switch from one window to the other, just as you do when both
windows are showing.

To "unzoom" the windows (return to the setup where both windows are
showing) just select Zoomed windows ... off·

Chapter 2, Additions to TC.EXE 33

Tab size

This is a new menu item. When the editor Tab mode is on and you press
the Tab key, the editor inserts a tab character in the file and the cursor
jumps to the next tab stop. This menu item allows you to dictate how far
apart the tab stops are; any number in the range 2 through 16 is allowed
(the default is 8).

To change the tab size, select Tab size, type in the size you prefer, and
press Enter. Voila! The editor redisplays all tabs in the size you selected.
You can save this new tab size in your configuration file (select Store
options from the Options menu).

Screen size

This is a new menu item. When you select Screen size, another menu
appears; the items on this Screen size menu allow you to specify
whether your integrated environment screen displays text in 25,43, or 50
lines. One or two of these items is enabled, depending on the type of
video adapter in your PC.

25 line standard display

This is the standard PC display: 25 lines by 80 columns. This menu
item is always enabled; it's the only screen size available to systems
with a Monochrome Display Adapter (MDA) or Color Graphics
Adapter (CGA).

43 line EGA display

If your PC is equipped with an EGA, this menu item is enabled, as is
25 line standard display (but 50 line VGA display is disabled). Select
43 line EGA display to transform your text to 43 lines by 80 columns.

50 line VGA display

If your system includes a VGA, this menu item is enabled, along with
25 line standard display (but 43 line EGA display is disabled). Select
50 line VGA display to transform your text to 50 lines by 80 columns.

New Hot Key

Turbo C version 1.5 has a new hot key: A/t-FS ("flip tal from saved screen").

When you are using TC, you see one of two screens-the integrated
environment screen itself or the output screen. The integrated environment
screen is what you see when you edit, compile, link, and debug your

34 Addendum: Turbo C 1.5 Additions and Enhancements

programs. The output screen is what you see when you run a Turbo C
executable program or temporarily exit to DOS through the File/OS shell
menu command. With some exceptions, Turbo C is able to continuously
preserve the contents of this screen in a "saved output screen" buffer,
updating it each time you select Run or File/OS shell. To view this saved
screen, press Alt-FS (the "saved screen" hot key).

How Long Will Turbo C Save the Screen?

Under certain conditions, Turbo C preserves the saved screen's contents so
that-when you select File/OS shell or run a program-the screen picks up
where you left off. Whenever you run a program from the integrated
environment or select File/ as shell, TC resets the video screen mode back
to the mode that was in effect when you started TC from the DOS prompt
(the "start-up mode"). There are two general cases that cause Turbo C to
discard the contents of the buffer containing the saved output screen:

1. You do a compile or a link; the compiler and linker both use the area in
memory where the saved screen is preserved.

2. The video mode of the screen when you started TC is incompatible with
the mode of the saved output screen.

Changes to the Turbo C Editor

Turbo C's built-in interactive editor (in TC.EXE) contains a few new
features.

CI Setting Tab Sizes: You can now set tab sizes, from 2 to 16 columns per
tab stop.

a Optimal fill: In Autoindent mode, the editor now optimally fills leading
blank space with a combination of tab characters and spaces, to make
smaller files.

EI Pair matching: The editor will find matching pairs of various delimiters
in your source code for you.

a Editor key reassignment: With TCINST, you can customize your own
editor command keys.

This section of the addendum covers these new editor features. For a
comprehensive explanation of the interactive editor, refer to Appendix A in
the Turbo C Reference Guide.

Chapter 2, Additions to TC,EXE 35

Setting Tab Sizes

The new menu item Tab size on the Options/Environment menu allows
you to dictate how far apart the editor tab stops are; any number in the
range 2 through 16 is allowed (the default is 8).

To change the way tabs are displayed in a file, just change Tab size to the
size you prefer, and the editor redisplays all tabs in that file in the size you
selected. The new tab size setting is stored in your configuration file when
you save it (select Store options from the Options menu).

Note: When the editor Tab mode is off, pressing the tab key inserts enough
space characters to move the cursor to the next "soft" tab stop. Soft tab
stops align with the first letter of each word in the line of text immediately
above the current line.

Another Note: When you send a marked block of text from the editor to a
file (or to PRN) with the Ctrl-K W command, the editor treats all tab
characters as hardware tabs and writes (or prints) them "as is". This
generally yields tab stops at every eighth column. However, when you
send text from the editor to the printer with the Ctrl-K P command, the
editor treats tab characters as software tabs and prints them as the
appropriate number of space characters (equal to the tab size you selected
with Tab size).

Autoindent and Optimal Fill

Autoindent is an editor feature you toggle on or off in one of two ways:

• When in the Edit window, type Ctrl-O I or Cfrl-Q I. (Simultaneously hold
down the Control key and a or Q, then type I.)

iii When in TCINST (the Turbo C Installation program), select Setup
environment, then toggle Autoindent mode to on.

With Autoindent mode and Insert mode both on, the editor automatically
indents a new line to align with the first character in the previous line.

Under certain conditions, the editor fills the leading blank space of the new,
indented line with an optimal combination of tab characters and space
characters. (An optimal combination is one that uses the least number of
characters.) These are the conditions necessary for optimal filling to occur:

1. Autoindent mode, Insert mode, and Tab mode are all on.

36 Addendum: Turbo C 1.5 Additions and Enhancements

2. You have just pressed Enter to move the cursor from the end of an
indented line down to a new, blank line. (The editor inserts enough
leading space characters to align the cursor below the first character of
the line it just left.)

3. You have not moved the cursor off of that new line. (However, you can
use the Left and Right arrow keys, the Tab key, the Backspace key, and the
space bar to move the cursor horizontally on the new line.)

4. You type a character or command, or move to another line.

When this sequence occurs, the editor replaces the leading whitespace (or
space and tab characters) in the new line with a combination of tab
characters and space characters, yielding the same amount of leading space
with fewer characters.

Examples

D Tab size in the Options/Environment menu is set to 8 (tab stops are in
columns 1, 9, 17, 25, ...); Autoindent, Tab, and Insert modes are on; and
the cursor is at the end of a line that begins at column 27.

• You press Enter to insert a new line; the editor positions the cursor at
column 27 in that new line.

• Without moving the cursor, you type a character on the new line.
• The editor fills the beginning of the new line with three tab characters

(to column 25) and two space characters (to column 27) for a total of
five inserted fill characters.

D If, in this same example, Tab size is set to 5 (tab stops in columns 1, 6, 11,
16, 21, 26, ...), the editor fills with five tab characters (to column 26) and
one space character.

1:1 Or if Tab size is set to 6 (tab stops 1, 7, 13, 19, 25, ...), and you move the
cursor to column 18 before typing your first characters, the editor fills
with two tab characters (to column 13) and five space characters (to
column 18).

How to Turn Off Optimal Fill

With Autoindent mode and Insert mode on (but Tab mode ofj), the editor
still indents the new line to align with the beginning of the previous line,
but it does this by filling with space characters only (no tabs).

Chapter 2, Additions to TC.EXE 37

Pair Matching

There you are, debugging your source file that is full of functions,
parenthesized expressions, nested comments, and a whole slew of other
constructs that use delimiter pairs. In fact, your file is teeming with

• braces: { and }
• angle brackets: < and >
• parentheses: (and)

• square brackets: [and]
• comment markers: 1* and *1

• double quotes:" and "

• single quotes:' and '

Finding the match to a particular brace can be tricky. Suppose you have a
complicated expression with a number of nested subexpressions, and you
want to make sure all the parentheses are properly balanced. Or say you're
at the beginning of a function that stretches over several screens, and you
want to jump to the end of that function. With Turbo C's handy pair
matching commands, the solution is at your fingertips. Here's what you do:

1. Place the cursor on the delimiter in question (for example, the opening
brace of some function that stretches for a couple of screens).

2. To locate the mate to this selected delimiter, simply press elrl-Q elrl-[. (In
the example given, the mate should be at the end of the function.)

3. The editor immediately moves the cursor to the delimiter that matches
the one you had selected. If it moves to the one you had intended to be
the mate, you know that the intervening code contains no unmatched
delimiters of that type. If it highlights the wrong delimiter, you know
there's trouble in River City; now all you need to do is track down the
source of the problem.

A Few Details About Pair Matching

We've told you the basics of Turbo C's "Match Pair" commands; now you
need some details about what you can and can't do with these commands,
and notes about a few subtleties to keep in mind. This section covers the
following points:

38 Addendum: Turbo C 7.5 Additions and Enhancements

J:I There are actually two "Match Pair" editor commands: one for forward
matching and the other for backward matching. The two commands are

Clrl-Q Clrl-[Match pair (forward)

Clrl-Q Clrl-J Match pair (backward)

IJ The way the editor searches for comment delimiters (/* and * /) is
slightly different from the other searches.

r!l If there is no mate for the delimiter you've selected, the editor doesn't
move the cursor.

Two Commands for Directional Matching

Two "Match Pair" commands are necessary because some delimiters are
not directional, while others are.

For example, suppose you tell the editor to find the match for an opening
brace ({) or an opening square bracket ([). The editor knows that the
matching delimiter can't be located before the one you've selected, so it
searches forward for a match. Opening braces and opening square brackets
are directional: the editor knows in which direction to search for the mate,
so it doesn't matter which "Match Pair" command you give. Given either
command, the editor still searches in the correct direction.

Similarly, if you tell the editor to find the mate to a closing brace (}) or a
closing parenthesis ()), it knows that the mate can't be located after the
selected delimiter, so it automatically searches backward for a match.
Again, because these delimiters are directional, it doesn't matter which
"Match Pair" command you give: the editor always searches in the correct
direction.

However, if you tell the editor to find the match for a double quote (") or a
single quote (,), it doesn't automatically know which way to go. You must
specify the search direction by giving the correct "Match Pair" command. If
you give the command Clrl-Q Clrl-[, the editor searches forward for the
match; if you give the command Clrl-Q Clrl-j, it searches backward for the
match.

The following table summarizes the delimiter pairs, whether they imply
search direction, and whether they are nestable. (Nestable delimiters are
explained after this table.)

Chapter 2, Additions to TC.EXE 39

Delimiter Direction Are They
Pair Implied? Nestable?

Yes Yes

Yes Yes

Yes Yes

< > Yes Yes

1* *1 Yes Yes and No

No No

No No

Nestable Delimiters

What does nestable mean? Simply that, when searching for the mate to a
directional delimiter, the editor keeps track of how many "delimiter levels"
it enters and exits during the search.

This is best illustrated with some examples:

Search for match to square bracket or parenthesis:

Matched pair Matched pair

array [arr2 [x]] (x>O) && (y>O)

Matched pair Matched pair

Matched pair

The Search for Comment Delimiters

Because comment delimiters are two-character delimiters, you must take
care when highlighting one for a "Match Pair" search. In either case, the
editor only recognizes the first of the two characters: the I part of a 1*
comment delimiter, or the * part of a * I delimiter. If you place the cursor on

40 Addendum: Turbo C 7.5 Additions and Enhancements

the second character in either of these delimiters, the editor won't know
what you're looking for, so it won't do any searching at all.

Also, as shown in the preceding table, comment delimiters are sometimes
nestable, sometimes not (''Yes and No"). This is not a vagary or an inability
to decide: It is a test dependent on multiple conditions. ANSI-compatible C
programs cannot contain nested comments, but Turbo C provides an
optional ''Nested comments" feature (the menu item Nested comments in
the Options/Compiler/Source menu) that you can toggle ON and OFF.
This feature affects the nestability of comment delimiters when it comes to
pair matching.

lJ If Nested comments is toggled on, the editor treats comment delimiters as
nestable and keeps track of the delimiter levels it enters and exits in the
search for a match.

lJ If Nested comments is toggled all, the editor does not treat comment
delimiters as nestable; when a /* pair is selected, the first * / pair the
editor finds is the match (and vice versa).

Note: If unmatched delimiters of the same type in comments, quotes, or
conditional compilation sections fall between the matched pair, this affects
the search.

Here are some examples to illustrate these differences:

Nested comments toggled ON--forward search with AQ A[:

/* /* /* /* here are some nested comments */ */ */ */

: .•••. Match Level Selected

Match Level Found ••... :

Note: Backward search from the "Found" */ will yield the "Selected" /* when Nested
comments is toggled ON.

Nested comments toggled OFF--forward search with AQ A[:

/* /* /* /* here are some nested comments */ */ */ */

: .•••. Match Level Selected

Match Level Found ...•. :

Chapter 2, Additions to TC.EXE 41

Nested comments toggled OFF--backward search with AQ A]:

/* /* /* /* here are some nested comments */ */ */ */

: .••.. Match Level Found

Match Level Selected ..•.• :

Editor Hot Key Assignment

Note: This feature is covered in detail in "The New TCINST" in this addendum,
so we'll cover just the basics here.

Turbo C's interactive editor provides many editing functions, which are
assigned to certain hot keys (or hot key combinations); these are explained
in detail in Appendix A of the Turbo C Reference Guide.

TCINST is Turbo C's optional customization (or Uinstallation") program:
one of its menus allows you to assign the Turbo C editing functions to
other hot keys, if you prefer. (This is known as urebinding the keys".)

To change Turbo C's editor commands, follow this general procedure:

1. Load TCINST.EXE (at the DOS prompt, type tcinst and press Enter),
then select the Editor commands menu. The Install Editor screen
comes up, displaying three columns of text.

• The first column (on the left) describes the editing functions available.
EI The second column lists the Primary keystrokes; what you press to

invoke a particular editing function .

• The third column lists the Secondary keystrokes; these are optional
alterna te keystrokes you can also press to invoke the same editing
function.

2. The bottom lines of text in the Install Editor screen summarize the
keys you use to change entries in the Primary and Secondary columns.
Press Enter to enter the keystroke-editing mode, then use the Left and
Right arrow keys to move the highlight bar to either the Primary or
Secondary column.

3. Use the Up and Down arrow keys to highlight the editing command you
intend to rekey.

4. Press Enter to select the highlighted editing command; the defined
keystroke(s) for that command appears in a pop-up window.

42 Addendum: Turbo C 7.5 Additions and Enhancements

5. Press Backspace to delete individual keystrokes from right to left in the
pop-up window, or press F3 to clear all defined keystrokes from the
window.

6. Keystroke combinations come in three flavors: WordStar-like, Ignore

case, and Verbatim. Press F4 to cycle through these until the one you
want is highlighted on the bottom line of the screen. Refer to "The New
TCINST" in this addendum for more information about these three
variations.

7. Type in the new defined keystrokes for that editing function (up to a
maximum of six keystrokes). If you want to erase the last keystroke you
assigned, press Backspace. If you want to abandon the new key
assignments to that function, press F2 to restore the originally-assigned
keys, or Esc to restore them and leave the keystroke-editing mode.

8. Once you're satisfied with the new (or restored) key assignment(s) to a
given function, press Enter to accept them.

9. When you've finished assigning keys (you've accepted the last
modification), press Esc to leave the Install Editor screen and return
to TCINST's main menu.

Note: If you override a standard Turbo C hot key, you will not be able to
use that Turbo C shortcut while in the editor.

Chapter 2, Additions to TC.EXE 43

44 Addendum: Turbo C 7.5 Additions and Enhancements

c H A p T E R

3

Changes to Command-Line Turbo C

To provide you with more power and choices in organizing your files and
directories, Turbo C version 1.5 has extended and enhanced certain
features. The compiler now

[] supports multiple library directories

c provides extended syntax for the -L, -I, and -D command-line options

With the ability to specify multiple library directories, you can now put
your custom and third-party library files in a separate directory that the
compiler will search (instead of just in the current directory). With the
extended command-line syntax, you have greater flexibility in naming
directory paths and defining symbols.

In this chapter we cover the enhancements to command-line Turbo C
(TCC.EXE): refer to Chapter 2 in this addendum for information about
changes to Turbo C's integrated environment.

A Recap: In the original version (1.0) of TCC.EXE, you could do the
following on the command line:

c specify multiple include directories by listing multiple - I dirn ame
options (one per directory)

IJ specify the standard library directory with a single -Ldirname option

[] define multiple symbolic constants by listing multiple -oxxx options (one
per define)

The New Turbo C: You can now direct Turbo C to search multiple
directories for libraries. In hand with this, the syntax for the library
directories (-L), include directories (- r), and define symbols (-0) command-line

Chapter 3, Changes to Command-Une Turbo C 45

options has been extended to allow multiple listings with a single option
(this is known as "ganging" options).

Extended Syntax for These Options

The library directory option (Options /Directories /Library directory in TC
and -L in TCC) has been enhanced to allow multiple directories.
Additionally, TCC's syntax for the -I and -D command-line options has
been extended to allow ganged entries (a feature previously available only
in the Turbo C integrated environment).

In a nutshell, here's the revised syntax for these three TCC options:

Library directories: -Ldirname[;dirname; .. .)

Include directories: -ldirname[;dirname; . ..)

Defines: -Dsymbol[=string) [;symbol[=string); ...)

The parameter dirname used with -L and -I can be any directory path
name.

The parameter symbol used with -D is an identifier. You can optionally give
it a value (like this: -Dtime=year or -Dfill=no or -Dmcopr=O). If you don't
assign a value to symbol (like this: -Dxxx), Turbo C will #define it to a
single space character.

You can enter these multiple directories and defines on the command line
in the following ways:

• You can "gang" multiple entries with a single -L, -I, or -D option,
separating ganged entries with a semicolon, like this:

-Ldirnamel;dirname2;dirname3 -linel;ine2;ine3 -Dxxx;yyy=l;zzz=NO

• You can place more than one of each option on the command line, like
this:

-Ldirnamel -Ldirname2 -Ldirname3 -linel -line2 -line3 -Dxxx -Dyyy=l -Dzzz=NO

• You can mix ganged and multiple listings, like this:

-Ldirnamel;dirname2 -Ldirname3 -linel;ine2 -line3 -Dxxx -Dyyy=l;zzz=NO

If you list multiple -L, -I, or -D options on the command line, the result is
cumulative: the compiler will search all the directories listed, or define the
specified constants, in order from left to right.

Note: The integrated environment (TC.EXE) now also supports multiple
library directories (under the Options/Directories/Library directories

46 Addendum: Turbo C 7.5 Additions and Enhancements

menu item}, using the same "ganged entry" syntax as the Include
directories and Defines menu items. Refer to the chapter "Additions to
TC.EXE" in this addendum for more information.

Implicit vs. User-specified Library Files

Turbo C recognizes two types of library files: implicit and user-specified (also
known as explicit library files).

• Implicit library files are the ones Turbo C automatically links in. These
are the Cx.LIB files, EMU.LIB or FP87.LIB, MATHx.LIB, and the start-up
object files (COx.OBJ).

• User-specified library files are the ones you explicitly list on the
command line or in a project file; these are file names with a .LIB
extension.

The Enhanced Library File-Search Algorithms

Turbo C version 1.0 searched for user-specified libraries only as they were
specified (nowhere else), and it only searched for implicit libraries in a
single library directory.

In version 1.5, the way Turbo C searches for library files has been extended;
the new search algorithm is very similar to the way it searches for the
#include files listed in your source code. To wit: If you put an #include
<somefile. h> statement in your source code, Turbo C will search for
SOMEFILE.H only in the specified include directories. If, on the other hand,
you put an #include "somefile. h" statement in your code, Turbo C will
search for SOMEFILE.H first in the current directory; if it does not find the
header file there, it will then search in the specified include directories.

These are the new library file-search algorithms:

• Implicit libraries: Turbo C searches for implicit libraries only in the
specified library directories; this is similar to #include <somefile .h>.

• Explicit libraries: Where Turbo C searches for explicit (user-specified)
libraries depends in part on how you list the library file name .

• If you list an explicit library file name with no drive or directory (like
this: mylib . lib), Turbo C will search for that library in the current
directory first. Then (if the first search was unsuccessful), it will look in
the specified library directories; this is similar to # incl ude
"somefile .h".

Chapter 3, Changes to Command-Une Turbo C 47

• If you list a user-specified library with drive and/or directory
information (like this: c: rnystuff\rnylib1.1ib), Turbo C will search
only in the location you explicitly listed as part of the library path
name, and not in the specified library directories.

The new version 1.5 library-search algorithm is upwardly compatible with
the version 1.0 library search, which means that your code written under
version 1.0 will work without problems in the new version.

Using -L and -I in Configuration Files

If you do not understand how to use TURBOC.CFG (the command-line
configuration file) with TCC.EXE, refer to these sections in the Turbo C
User's Guide: "The TURBOC.CFG File" in Chapter 3, and "Writing the
Configuration File" in Chapter 1.

The -Land - I options you list on the command line take priority over
those in the configuration file. How this works is described in "The
TURBOC.CFG File" (see reference): the explanation of - I option priority
given there now also applies to -L options.

An Example With Notes

Here is an example of using a TCC command line that incorporates
multiple library directories (-L) and include directories (-I) options.

1. You are logged into C:\ TURBOC, where TCC.EXE resides. Your A
drive's current logged position is A:\ASTROLIB.

2. Your include files (.H or "header" files) are 10 ca ted in
C:\ TURBOC\INCLUDE.

3. Your startup files (COT. OBI, COS.OBJ, ... , COH.OBJ) are in
C: \ TURBOC\STARTUPS.

4. Your standard Turbo C library files (CS.LIB, CM.LIB, ... , MATHS.LIB,
MATHM.LIB, ... ,EMU.LIB, FP87.LIB, etc.) are in C:\ TURBOC\LIB.

5. Your custom library files for star systems (which you created and
manage with TLIB) are in C: \ TURBOC\STARLIB. One of these libraries
is P ARX.LIB.

6. Your third-party-generated library files for quasars are in the A drive, in
A:\ASTROLIB; one of these libraries is WARP.LIB.

48 Addendum: Turbo C 7.5 Additions and Enhancements

Under this configuration you enter the following TCC command line:
tee -rom -Lstartups;lib;starlib -linelude orion umaj parx.lib a:\astrolib\warp.lib

TCC will compile ORION.C and UMAJ.C to .OBJ files, then link them with
the medium model start-up code (COM.OBJ), the medium model libraries
(CM.LIB, MATHM.LIB), the standard floating-point emulation library
(EMU.LIB), and the user-specified libraries (PARX.LIB and WARP.LIB),
producing an executable file named ORION.EXE.

The compiler will search C:\ TURBOC\INCLUDE for the include files in
your source code.

It will search for the startup code in C:\TURBOC\STARTUPS (then stop
because they're there); it will search for the standard libraries in
C:\TURBOC\STARTUPS (not there) then in C:\TURBOC\LIB (search ends
because they're there).

When searching for the user-specified library P ARX.LIB, the compiler first
looks in the current directory, C: \ TURBOC. Not finding the library there,
the compiler then searches the library directories in order: first
C:\TURBOC\STARTUPS, then C:\TURBOC\LIB, then
C:\ TURBOC\STARLIB (where it locates PARX.LIB).

For the library WARP.LIB, an explicit path is given
(A: \ ASTROLIB \ WARP.LIB), so the compiler only looks there.

Chapter 3, Changes to Command-Une Turbo C 49

50 Addendum: Turbo C 7.5 Additions and Enhancements

c H A p T E

New and Modified Functions and
Variables

R

4

The information in this chapter is meant to supplement the global variable and
function lookup sections (Chapters 1 and 2) of your Turbo C Reference Guide.

Chapter 4, New and Modified Functions and Variables 51

New and Modified Global Variables

These descriptions of global variables supplement Chapter 1 in your Turbo C
Reference Guide.

Names

Usage

Declared in

Description

_argc - count of command-line arguments
_argv - array of command-line arguments

extern int _argc;
extern char ** _argv;

dos.h

new

_argc has the value of argc passed to mainO when the
program started.

_argv points to an array containing the original
command-line arguments (the elements of argv[])
passed to mainO when the program started.

directvideo new

Name directvideo - direct output to video RAM flag

Usage extern int directvideo;

Declared in conio.h

Description directvideo controls whether your program's console
output goes directly to the video RAM (directvideo = 1)
or goes via ROM BIOS calls (directvideo = 0).

52

The default value is directvideo = 1 (console output goes
directly to video RAM). In order to use directvideo = I,
your system's video hardware must be identical to IBM
display adapters. Setting directvideo = 0 allows your

Addendum: Turbo C 1.5 Additions and Enhancements

console output to work on any system that is IBM
BIOS-compatible.

_heap len, _stklen modified

Names

Usage

Declared in

Description

_heaplen - heap length variable
_stklen - stack length variable

extern unsigned _heaplen;
extern unsigned _stklen;

dos.h

_heap len specifies the size of the near heap in the small
data models (tiny, small, and medium). _heap len does
not exist in the large data models (compact, large, and
huge) as they do not have a near heap.

_stklen specifies the size of the stack for all six memory
models. The minimum stack size allowed is 128 words;
if you give a smaller value, _stklen is automatically
adjusted to the minimum. The default stack size is 4K.

In the small and medium models, the data segment size
is computed as follows:

data segment [small, medium] = global data + heap + stack

If _heaplen is set to 0, the program allocates 64K bytes for
the data segment and the effective heap size is

64K - (global data + stack) bytes.

By default, _heaplen = 0, so you'll get a 64K data segment
unless you specify a particular _heap len value.

In the tiny model, everything (including code) is in the
same segment, so the data segment computations are
adjusted to include the code plus 256 bytes for the
Program Segment Prefix.

data segment[tiny] = 256 + code + global data + heap + stack

If _heaplen = 0 in the tiny model, the effective heap size is
obtained by subtracting the PSP, code, global data and
stack from 64K.

Chapter 4, New and Modified Functions and Variables 53

Name

Usage

Declared in

Description

54

In the compact and large models, there is no near heap,
so the data segment is simply:

data segment [compact, large] = global data + stack

In the huge model, the stack is a separate segment, and
each module has its own data segment.

_8087 - coprocessor chip flag

extern int _8087;

dos.h

modified

The _8087 variable is set to 1 if the start-up code auto
detection logic detects a floating-point coprocessor (an
8087, 80287, or 80387), or if the 87 environment variable
is set to Y (SET 87=Y). The _8087 variable is set to 0
otherwise.

(Refer to Chapter 9 in the Turbo C User's Guide for more
information about the 87 environment variable.)

You must have floating-point code in your program for
the _8087 variable to be set to 1.

Addendum: Turbo C 7.5 Additions and Enhancements

New and Modified Functions

These descriptions of functions supplement Chapter 2 in your Turbo C Reference
Guide. Most of the functions described here are new, though a few of these entries
give updated information about functions described in the reference guide.

arc

Name

Usage

Related

graphics

arc - draws a circular arc

#include <graphics.h>
void far arc(int x, int y, int stangle, int endangle,

int radius);

functions usage void far circle(int x, int y, int radius);

Prototype in

Description

void far ellipse(int x, int y, int stangle, int endangle,
int xradius, int yradius);

void far getarccoords(struct arccoordstype
far *arccoords);

void far getaspectratio(int far *xasp, int far *yasp);
void far pieslice(int x, int y, int stangle, int endangle,

int radius);

graphics.h

Each of the four draw functions described here (arc,
circle, ellipse, and pies lice) draws the outline of its
shape in the current drawing color.

arc draws a circular arc centered at (x,y) with a radius
given by radius. The arc travels from stangle to endangle.
If stangle = 0 and endangle = 360, the call to arc will draw
a complete circle.

circle draws a circle, with its center at (x,y) and a radius
given by radius.

Chapter 4, New and Modified Functions and Variables ss

56

ellipse draws an elliptical arc, with its center at (x,y) and
the horizontal and vertical axes given by xradius and
yradius, respectively. The ellipse travels from stangle to
endangle. If stangle = ° and endangle = 360, the call to
ellipse will draw a complete ellipse.

pieslice draws and fills a pie slice centered at (x,y) with
a radius given by radius. The slice travels from stangle to
endangle. The slice is outlined in the current drawing
color and then filled using the current fill pattern and fill
color.

The angles for arc, ellipse, and pieslice are
counterclockwise, with ° degrees at 3 o'clock, 90 degrees
at 12 o'clock, etc.

Each graphics driver and graphics mode has an aspect
ratio associated with it. The aspect ratio is used by the
arc, circle, and pieslice routines as a scaling factor to
make circles round on the screen. This ratio can
computed by calling getaspectratio, then manipulating
*xasp and *yasp.

The y aspect factor, *yasp, is normalized to 10,000; on all
graphics adapters except the VGA, *xasp (the x aspect
factor) is less than *yasp because the pixels are taller than
they're wide. On the VGA, which has "square" pixels,
*xasp = *yasp. In general, the relationship between *yasp
and *xasp can be stated as:

*yasp = 10,000
*xasp < = 10,000

getarccoords fills in the arccoordstype structure pointed
to by arccoords with information about the last call to arc.
The arccoordstype structure is defined in GRAPHICS.H
as follows:

struct arccoordstype {
int x, y;
int xstart, ystart, xend, yendi

} ;

The members of this structure are used to specify the
center point (x,y), the starting position (xstart, ystart),
and the ending position (xend, yend) of the arc. These
values are useful if you need to make a line meet at the
end of an arc.

Addendum: Turbo C 1.5 Additions and Enhancements

Return value If an error occurs while filling the pie slice, graphresult
will return a value of -6.

Portability

See also

Example

Similar routines exist in Turbo Pascal 4.0.

getfillsettings

iinclude <graphics.h>

main ()
{

int graphdriver = DETECT, graphmode;

struct arccoordstype arcinfo;
int xasp, yasp;
long xlong;

/* will request autodetection */

initgraph (&graphdri ver, &graphrnode, 1111); /*initialize graphics * /

/* Draw a 90 degree arc with radius of 50 */
arc (150, 150, 0, 89, 50);

/* Get the coordinates of the arc and connect ends */
getarccoords(&arcinfo);
line(arcinfo.xstart, arcinfo.ystart, arcinfo.xend, arcinfo.yend);

/* Draw a circle */
circle(150, 150, 100);

/* Draw an ellipse inside the circle */
ellipse(150, 150, 0, 359, 100, 50);

/* Draw and fill a pieslice */
setcolor(WHITE);
setfillstyle(SOLID_FILL, LIGHTRED);
pieslice(100, 100, 0, 134, 49);
setfillstyle(SOLID_FILL, LIGHTBLUE);
pieslice(100, 100, 135, 225, 49);
setfillstyle(SOLID_FILL, WHITE);
pieslice(100, 100, 225, 360, 49);

/* Draw a "square" rectangle */
getaspectratio(&xasp, &yasp);
xlong = (100L * (long)yasp) / (long)xasp;
rectangle(O, 0, (int)xlong, 100);

c1osegraph();

Chapter 4, New and Modified Functions and Variables

/* white outline */

57

assert

Name

Usage

Prototype in

Description

Return value

Portability

See also

Example

modified

assert - tests a condition and possibly aborts

#inc1ude <assert.h>
#inc1ude <stdio.h>
void assert(int test);

assert.h

assert is a macro that expands to an if statement; if test
in the expanded macro fails, assert prints a message and
aborts the program (via a call to abort).

The message assert prints is:
Assertion failed: <test>, file <filename>, line <linenum>

The filename and linenum listed in the message are the
source file name and line number where the assert
macro appears.

If you place the #define NDEBUG directive ("no
debugging") in the source code before the #include
<assert. h> directive, the effect is to comment out the
assert statement.

None

This macro is available on some UNIX systems,
including Systems III and V.

abort

/* ASSERTST.C: add an item to a list, verify that the item is not NULL */

#include <assert.h>

58

#include <stdio.h>

struct ITEM {
int key;
int value;

} ;

void additem(struct ITEM *itemptr)
(

assert(itemptr != NULL);
/* .•• add the item ••• */

main ()

/* this is line 13 */

Addendum: Turbo C 7.5 Additions and Enhancements

additem(NULL)i

Program Output

Assertion failed: itemptr != NULL, file C:\TURBOC\ASSERTST.C, line 13

bar

Name

Usage

Related

bar - draws a bar

#inc1ude <graphics.h>

graphics

void far bar(int left, int top, int right, int bottom);

functions usage void far bar3d(int left, int top, int right, int bottom,
int depth, int top flag);

Prototype in graphics.h

Description bar draws a filled-in rectangular bar. The bar is filled
using the current fill pattern and fill color. bar does not
outline the bar; to outline a two-dimensional bar, use
bar3d with depth = o.

Return value

Portability

bar3d draws a three-dimensional rectangular bar, then
fills it in using the current fill pattern and fill color. The
3-D outline of the bar is drawn in the current line style
and color. The bar's depth, in pixels, is given by depth.
The top flag parameter governs whether or not a 3-D top
is put on the bar. If top flag is non-zero, a top is put on;
otherwise, no top is put on the bar (making it possible to
stack several bars on top of one another).

In both functions, the upper-left and lower-right corners
of the rectangle are given by (left/top) and (right/bottom),
respectively.

To calculate a typical depth for bar3d, take 25% of the
width of the bar, like this:

bar3d(left, top, right, bottom, (right - left)/4, l)i

None

Similar routines exist in Turbo Pascal 4.0

Chapter 4, New and Modified Functions and Variables 59

See also getbkcolor, getfillsettings, getlinestyle, graphresult,
rectangle

Example

finclude <graphics.h>

main ()
{

} ;

int graphdriver = DETECT, graphmode;

initgraph(&graphdriver, &graphmode, "H);

setfillstyle(SOLID_FILL, MAGENTA);
bar3d(100, 10, 200, 100, 5, 1);
setfillstyle(HATCH_FILL, RED);
bar (30, 30, 80, 80);

closegraph();

bar3d

Name

Usage

bar3d - draws a 3-D bar

#inc1ude <graphics.h>

/* will request autodetection */

/* initialize graphics */

graphics

void far bar3d(int left, int top, int right, int bottom,
int depth, int top flag};

Prototype in

Description

60

graphics.h

see bar

Addendum: Turbo C 7.5 Additions and Enhancements

bsearch

Name

Usage

Related

bsearch - binary search

#inc1ude <stdlib.h>

modified

void *bsearch(const void *key, const void *base,
size_t nelem, size_t width,
int (*fcmp)(const void *, const void *»;

functions usage void *lfind(const void *key, const void *base,
size_t *pnelem, size_t width,

Prototype in

Description

Return value

int (*fcmp)(const void *, const void *»;

void *lsearch(const void *key, void *base,
size_t *pnelem, size_t width,
int (*fcmp)(const void *, const void *»;

stdlib.h

These functions have the same description as given in
the Turbo C Reference Guide, with the following
exceptions:

Revised arguments in prototypes:

The type size_t is defined with typada£ to be an
unsigned integer.

c nelem gives the number of elements in the table
(bsearch only)

c pnelem points to the number of elements in the table
(Hind and lsearch only)

c width specifies the number of bytes in each table entry

New description of the comparison routine:

*fcmp, the comparison routine, is called with two
arguments, eleml and elem2. Each argument points to an
item to be compared. The comparison function
compares each of the pointed-to items (*eleml and
*elem2), and returns an integer based on the results of
the comparison. Typically, eleml is the argument key,
and elem2 is a pointer to an element in the table being
searched.

These functions return the same values as given in the
Turbo C Reference Guide.

Chapter 4, New and Modified Functions and Variables 61

calloc

Name

Usage

Declared in

Description

chsize

Name

Usage

Prototype in

Description

62

New description for return from comparison routine:

For bsearch, the *fcmp return value is

< 0 if *eleml < *elem2
== 0 if *eleml == *elem2
> 0 if *eleml > *elem2

For lsearch and Hind, only equality matters, so the *fcmp
return value is

-- 0 if *eleml == *elem2
!= 0 if *eleml is different from *elem2

calloc - allocates main memory

#inc1ude <stdlib.h>
void *calloc(size_t nelem, size_t elsize);

stdlib.h, alloc.h

modified

see malloc (in this addendum and in the Turbo C
Reference Guide)

chsize - changes file size

int chsize(int handle, long size);

io.h

mise

chsize changes the size of the file associated with handle.
It can truncate or extend the file, depending on the value
of size compared to the file's original size.

The mode in which you open the file must allow
writing.

If chsize extends the file, it will append null characters
(\0). If it truncates the file, all data beyond the new end
of-file indicator is lost.

Addendum: Turbo C 7.5 Additions and Enhancements

Return value On success, chsize returns O. On failure, it returns -1
and errno is set to one of the following:

EACCESS
EBADF

Permission denied
Bad file number

Portability Unique to MS-DOS.

See also creat, fopen

circle graphics

Name circle - draws a circle

Usage #include <graphics.h>
void far circle(int x, int y, int radius);

Prototype in graphics.h

Description see arc

cleardevice graphics

Name c1eardevice - clears the graphics screen

Usage #include <graphics.h>
void far cleardevice(void);

Prototype in graphics.h

Description c1eardevice erases the entire graphics screen and moves
the CP (current position) to home (0,0).

Return value None

Portability A similar routine exists in Turbo Pascal 4.0

See also c1earviewport

clearviewport graphics

Name

Usage

Prototype in

c1earviewport - clears the current viewport

#include <graphics.h>
void far clearviewport(void);

graphics.h

Chapter 4, New and Modified Functions and Variables 63

Description clearviewport erases the viewport and moves the CP
(current position) to home (0,0).

None Return value

Portability

See also

Example

A similar routine exists in Turbo Pascal 4.0

getviewsettings, cleardevice

setviewport(30, 30, 130, 130, 0);
outtextxy (10, 10, "Hit any key to clear viewport ... ") i
getch()i
clearviewport()i

/* get a key */
/* clear viewport when key is hit */

closegraph graphics

Name closegraph - shuts down the graphics system

Usage #include <graphics.h>
void far closegraph(void);

Prototype in graphics.h

Description see initgraph

clreol text

Name clreol - clears to end of line in text window

Usage void clreol(void);

Prototype in conio.h

Description clreol clears all characters from the cursor position to the
end of the line within the current text window without
moving the cursor.

Return value None

Portability This function works with IBM PCs and compatibles,
only; a corresponding function exists in Turbo Pascal.

See also clrscr, delline, window

64 Addendum: Turbo C 7.5 Additions and Enhancements

clrscr

Name

Usage

Prototype in

Description

Return value

Portability

See also

country

Name

Usage

Prototype in

Description

text

clrscr - clears text mode window

void clrscr(void);

conio.h

elrscr clears the current text window and places the
cursor in the upper left-hand comer (at position 1,1).

None

This function works with IBM pes and compatibles,
only; a corresponding function exists in Turbo Pascal.

clreol, delline, window

modified

country - returns country-dependent information

#inc1ude <dos.h>
struct country *country (int countrycode,

struct country *countryp);

dos.h

The description of country in the Turbo C Reference Guide
is correct except for the definition of the structure
country; this is the updated definition of that structure:

struct country {

I;

int co_date;
char co_curr[5];
char co_thsep[2];
char co_desep[2];
char co_dtsep[2];
char co_tmsep[2];
char co_currstyle;
char co_digits;
char co_time;
long co_case;
char co_dasep[2];
char co_fill[lO];

/* date format */
/* currency symbol */

/* thousands separator */
/* decimal separator */

/* date separator */
/* time separator */
/* currency style */

/* t of signif. digits in currency */
/* time format */

/* case map */
/* data separator */

/* filler * /

Chapter 4, New and Modified Functions and Variables 65

cprintf

Name

Usage

Prototype in

Description

Return value

Portability

cputs

Name

Usage

Prototype in

Description

Return value

Portability

delay

Name

Usage

Prototype in

Description

Return value

66

modified

cprintf - sends formatted output to the screen

int cprintf(const char * /ormat[, argument, ... J);

conio.h

cprintf has been modified so output is written to the
current text window. (See the Turbo C Reference Guide for
further description.)

cprintf returns the number of bytes output.

This function works with IBM PCs and compatibles
only.

cputs - sends a string to the screen

int cputs(const char * string);

conio.h

modified

cputs has been modified so output is written to the
current text window. (See the Turbo C Reference Guide for
further description.)

cputs returns the last character printed.

This function works with IBM PCs and compatibles
only.

mise

delay - suspends execution for interval (milliseconds)

void delay(unsigned milliseconds);

dos.h

With a call to delay, the current program is suspended
from execution for the number of milliseconds specified
by the argument milliseconds. The exact time may vary
somewhat in different operating environments.

None

Addendum: Turbo C 7.5 Additions and Enhancements

Portability

See also

Example

This function works with IBM PCs and compatibles
only; a corresponding function exists in Turbo Pascal.

sleep, sound

/* emits a 440 Hz tone for 500 milliseconds */

main ()
{

sound(440)i
delay(500);
nosound();

delline

Name

Usage

Prototype in

Description

Return value

Portability

See also

delline - deletes line in text window

void delline(void);

conio.h

text

delline deletes the line containing the cursor and moves
alI lines below it one line up. delline operates within the
currently active text window.

None

This function works with IBM PCs and compatibles,
only; a corresponding function exists in Turbo Pascal.

dreol, ins line, window

detectgraph graphics

Name

Usage

Prototype in

Description

detectgraph - determines graphics driver and mode to
use by checking the hardware

#inc1ude <gra phics.h>
void far detectgraph(int far *graphdriver,

int far *graphmode);

graphics.h

see initgraph

Chapter 4, New and Modified Functions and Variables 67

div

Name

Usage

Related
functions usage

Prototype in

Description

Return value

Portability

Example

mise

div - divide two integers, returning quotient and
remainder

#include <stdlib.h>
div _t div(int numer, int denom};

ldiv _t ldiv(long Inumer, long Idenom};

stdlib.h

div divides two integers and returns both the quotient
and the remainder as a div _t type. numer and denom are
the numerator and denominator, respectively. The div_t
type is a structure of integers defined (with typedef) in
STDLIB.H as follows:

typedef struct {
int quot;
int rem;

div_ti

1* quotient *1
1* remainder *1

ldiv divides two longs and returns both the quotient
and the remainder as an Idiv _t type. Inumer and Idenom
are the numerator and denominator, respectively. The
Idiv_t type is a structure of longs defined (with typedef)
in STDLIB.H as follows:

typedef struct
long quoti
long rem;

ldiv_ti

1* quotient *1
1* remainder *1

Each function returns a structure whose elements are
quot (the quotient) and rem (the remainder).

ANSIC

finclude <stdlib.h>
div_t x;
ldiv_t Ix;

main()
(

X ::: div(10,3);

68 Addendum: Turbo C 7.5 Additions and Enhancements

printf(1/10 div 3 = %d remainder %d\nl/, x.quot, x.rem);

Ix = Idiv(1000001, 300001);
printf(1/100000 div 30000 = Ud remainder %ld\nl/, Ix.quot, lx.rem);

drawpoly graphics

Name drawpoly - draws the outline of a polygon

Usage #include <graphics.h>
void far drawpoly(int numpoints, int far *polypoints);

Related
functions usage void far fillpoly(int numpoints, int far *'polypoints);

Prototype in graphics.h

Description drawpoly draws a polygon with numpoints points, using
the current line style and color.

Return value

Portability

See also

Example

fillpoly draws the outline of a polygon in the current
line style and color (just as drawpoly does), then fills the
polygon using the current fill style and fill color.

polypoints points to a sequence of (numpoints *' 2)
integers. Each pair of integers gives the x and y
coordinates of a point on the polygon.

Note: In order to draw a closed figure with n vertices,
you must pass n + 1 coordinates to drawpoly where the
nth coordinate is equal to the Oth.

If an error occurs while filling the polygon, graphresult
will return a value of-6.

Similar routines exist in Turbo Pascal 4.0

getfillsettings, getlinesettings, getbkcolor, graphresult

tinclude <graphics.h>

main ()
{

int graphdriver = DETECT, graphmode; /* will request autodetection */

int triangle[] = {50,100, 100,100, 150,150, 50 , 100};
int rhombus[] = {50,10, 90,50, 50,90, 10,50};

initgraph(&graphdriver, &graphmode, 1/1/); /* initialize graphics */

Chapter 4, New and Modified Functions and Variables 69

/* draw a triangle */
drawpoly(sizeof(triangle)/(2*sizeof(int)), triangle);

/* draw and fill a rhombus */
fillpoly(sizeof(rhornbus)/(2*sizeof(int)), rhombus);

closegraph () ;
} ;

ellipse

Name

Usage

Prototype in

Description

exec ...

Name

Usage

Prototypes in

Description

70

ellipse - draws an elliptical arc

#inc1ude <graphics.h>

graphics

void far ellipse(int x, int y, int stangle, int endangle,
int xradius, int yradius);

graphics.h

see arc

modified

exec ... - functions that load and run other programs

Refer to Turbo C Reference Guide

process.h

These functions have the same description as given in
the Turbo C Reference Guide, with the following
exception:

The description (given in the Turbo C Reference Guide) of
how exec ... functions search for files is not complete; the
exec ... functions search for pathname as follows .

.. If no explicit extension is given (for example, pathname
= MYPROG), the functions will search for the file as
given. If that one is not found, they will add .COM
and search again. If that's not found, they'll add .EXE
and search one last time .

• If an explicit extension or period is given (for example,
pathname = MYPROG. EXE), the functions will search for
the file as given .

• For the exec ... functions with a p suffix, if pathname
does not contain an explicit directory, the functions

Addendum: Turbo C 7.5 Additions and Enhancements

fgetpos

Name

Usage

Related

will search first the current directory, then the
directories set with the DOS PATH environment
variable.

fgetpos - gets the current file pointer

#include <stdio.h>
int fgetpos(FILE *stream, fpos_t *pos);

misc

functions usage int fsetpos(FILE *stream, const fpos_t *pos);

Prototype in stdio.h

Description fgetpos stores the position of the file pointer associated
with stream in the location pointed to by pos.

Return value

See also

fillpoly

Name

Usage

Prototype in

Description

fsetpos sets the file pointer associated with stream to a
new position. The new position is the value obtained by
a previous call to fgetpos on that stream. fsetpos clears
the end-of-file indicator on the file that stream points to,
plus undoes any effects of ungetc on that file. After a call
to fsetpos, the next operation on the file can be input or
output.

The type fpos_t is defined in STDIO.H as
typedef long fpos_t;

On success, fgetpos and fsetpos return O. On failure,
both functions return a non-zero value.

fseek

fillpoly - draws and fills a polygon

#inc1ude <graphics.h>

graphics

void far fillpoly(int numpoints, int far *polypoints);

graphics.h

see drawpoly

Chapter 4, New and Modified Functions and Variables 71

£loodfill graphics

Name floodfill-flood-fills a bounded region

#include <graphics.h> Usage
void far floodfill(int x, int y, int border);

Prototype in

Description

graphics.h

floodfill fills an enclosed area on bitmap devices. (x,y) is
a "seed point" within the enclosed area to be filled. The
area bounded by the color border is flooded with the
current fill pattern and fill color. If the seed point is
within an enclosed area, then the inside will be filled. If
the seed is outside the enclosed area, then the exterior
will be filled.

Use fillpoly instead of floodfill whenever possible so
that you can maintain code compatibility with future
versions.

Return value If an error occurs while flooding a region, graphresult
will return a value of -7.

Portability

See also

A similar routine exists in Turbo Pascal 4.0

drawpoly,getbkcolor, getfillsettings, getlinesettings,
graphresult

Example

72

finclude <graphics.h>

main()
{

int graphdriver = DETECT, graphmode;

initgraph (&graphdriver, &graphmode, 1111);

/* will request autodetection */

/* initialize graphics */

/* Draw a bar, then flood-fill the side and top */
setcolor(WHITE);

} ;

setfillstyle(HATCH_FILL, LIGHTMAGENTA);
bar3d(10, 10, 100, 100, 10, 1);
setfillstyle(SOLID_FILL, LIGHTGREEN);
floodfill(102, 50, WHITE);
floodfill(50, 8, WHITE);

closegraph();

/* fill the side */
/* fill the top */

Addendum: Turbo C 7.5 Additions and Enhancements

. fsetpos mtsc

Name

Usage

Prototype in

Description

fsetpos - positions the file pointer on a stream

#inc1ude <stdio.h>
int fsetpos(FILE *stream, const fpos_t *pos);

stdio.h

see fgetpos

getarccoords graphics

Name

Usage

Prototype in

Description

getarccoords - gets coordinates of the last call to arc

#inc1ude <gra phics.h>
void far getarccoords(struct arccoordstype

far *arccoords);

graphics.h

see arc

getaspectratio graphics

Name getaspectratio - returns the current graphics mode's
aspect ra tio

Usage #inc1ude <graphics.h>
void far getaspectratio(int far *xasp, int far *yasp);

Prototype in graphics.h

Description see arc

getbkcolor graphics

Name getbkcolor - returns the current background color

Usage #inc1ude <graphics.h>
int far getbkcolor(void);

Related
functions usage void far setbkcolor(int color);

Prototype in graphics.h

Chapter 4, New and Modified Functions and Variables 73

Description

Return value

Portability

See also

Example

getbkcolor returns the current background color. (See
following table for details.)

setbkcolor sets the background to the color specified by
color. The argument color can be a name or a number, as
listed in the following table:

Number Name Number Name

0 BLACK 8 DARKGRAY
1 BLUE 9 LIGHTBLUE
2 GREEN 10 LIGHTGREEN
3 CYAN 11 LIGHTCYAN
4 RED 12 LIGHTRED
5 MAGENTA 13 LIGHTMAGENTA
6 BROWN 14 YELLOW
7 LIGHTGRAY 15 WHITE

Note: These symbolic names are defined in GRAPHICS.H.

For example, if you want to set the background color to
blue, you can call

setbkcolor(BLUE)
/* or */

setbkcolor (1)

On eGA and EGA systems, setbkcolor changes the
background color by changing the first entry in the
palette.

Note: If you use an EGA or a VGA and you change the
palette colors with setpalette or setallpalette, the
defined symbolic constants might not give you the
correct color.

getbkcolor returns the current background color.

setbkcolor returns nothing.

Similar routines exist in Turbo Pascal 4.0

getpalette, initgraph

linclude <graphics.h>

main ()
{

74 Addendum: Turbo C 7.5 Additions and Enhancements

int graphdriver = DETECT, graphrnode;
int svcolor;

/* will request autodetection */

initgraph(&graphdriver, &graphrnode, 1111);

svcolor = getbkcolor();
setbkcolor(svcolor A 1);

/* initialize graphics */

/* save current bk color */
/* change bk color */
/* wait 5 seconds */

/* restore old bk color */
delay(5000);
setbkcolor(svcolor);

closegraph();
} ;

getche

Name

Usage

Prototype in

Description

getcolor

Name

Usage

Related

modified

getche - gets character from keyboard, echoes to screen

int getche(void);

conio.h

getche has been modified so input is echoed to the
current text window. (See the Turbo C Reference Guide for
further description.)

graphics

getcolor - returns the current drawing color

#include <graphics.h>
int far getcolor(void);

functions usage void far setcolor(int color);

Prototype in graphics.h

Description getcolor returns the current drawing color.

setcolor sets the current drawing color to color, which
can range from 0 to getmaxcolor () .

The drawing color is the value to which pixels are set
when lines, etc., are drawn. For example, in CGACO
mode, the palette contains four colors: the background
color, light green, light red, and yellow. In this mode, if
getcolor () returns I, the current drawing color is light
green; similarly, setcolor (3) selects a drawing color of
yellow.

Chapter 4, New and Modified Functions and Variables 75

Return value getcolor returns the current drawing color. setcolor
returns nothing.

Portability

See also

Example

Similar routines exist in Turbo Pascal 4.0

getpalette, getmaxcolor

~include <graphics.h>

main ()
(

} ;

int graphdriver = DETECT, graphmode;
int svcolor;

initgraph(&graphdriver, &graphmode, "H);

1* will request autodetection *1

1* initialize graphics *1

svcolor = getcolor(); 1* save current drawing color *1
setcolor(3); 1* set drawing color to color stored in palette entry ~3 *1
circle(100, 100, 5); 1* small colored circle *1
setcolor(svcolor); 1* restore old drawing color *1

closegraph () ;

getfillpattern graphics

Name

Usage

Related

getfillpattern - copies a user-defined fill pattern into
memory

#include <graphics.h>
void far getfillpattern(char far *upattern};

functions usage void far setfillpattern(char far *upattern, int color};

Prototype in graphics.h

Description getfillpattem copies the user-defined fill pattern, as set
by setfillpattern, into the 8-byte area pointed to by
upattern.

76

setfillpattem is like setfillstyle, except that you use it to
set a user-defined 8x8 pattern rather than a predefined
pattern.

upattern is a pointer to a sequence of 8 bytes, with each
byte corresponding to 8 pixels in the pattern. Whenever
a bit in a pattern byte is set to 1, the corresponding pixel

Addendum: Turbo C 7.5 Additions and Enhancements

Return value

Portability

See also

will be plotted. For example, the following user-defined
fill pattern represents a checkerboard:

char checkboard[8] = (
OxAA, Ox55, OxAA, Ox55, OxAA, Ox55, OxAA, Ox55

) ;

None

Similar routines exist in Turbo Pascal 4.0.

getfillsettings

getfillsettings graphics

Name

Usage

Related
functions usage

Prototype in

Description

getfillsettings - gets information about current fill
pattern and color

#inc1ude <graphics.h>
void far getfillsettings(struct fillsettingstype

far *fillinfo);

void far setfillstyle(int pattern, int color);

graphics.h

The functions bar, bar3d, fillpoly, fioodfill, and pieslice
all fill an area with the current fill pattern in the current
fill color. There are 11 predefined fill pattern styles (such
as solid, cross-hatch, dotted, etc.). Symbolic names for
the predefined pa tterns are provided by the
enumera tion filCpatterns in GRAPHICS.H (see the
following table). In addition, you can define your own
fill pattern.

getfillsettings fills in the fillsettingstype structure
pointed to by fillinfo with information about the current
fill pattern and fill color. The fillsettingstype structure is
defined in GRAPHICS.H as follows:

struct fillsettingstype (
int pattern;
int color;

) ;

1* current fill pattern *1
1* current fill color *1

If pattern = 12 (USER_FILL), then a user-defined fill
pattern is being used; otherwise, pattern gives the
number of a predefined pattern.

Chapter 4, New and Modified Functions and Variables 77

Return value

setfillstyle sets the current fill pattern and fill color. To
set a user-defined fill pattern,you should not give a
pattern of 12 (USER_FILL) to setfillstyle; instead, call
setfillpattern.

The enumeration fill...JJatterns, defined in GRAPHICS.H,
gives names for the predefined fill patterns, plus an
indicator for a user-defined pattern:

Name Value Description

EMPTY_FILL 0 Fill with background color
SOLID_FILL 1 Solid fill
LINE_FILL 2 Fill with--
LTSLASH_FILL 3 Fill with / / /
SLASH_FILL 4 Fill with / / /, thick lines
BKSLASH_FILL 5 Fill with \ \ \, thick lines
LTBKSLASH_FILL 6 Fill with \ \ \
HATCH_FILL 7 Light hatch fill
XHATCH_FILL 8 Heavy cross hatch fill
INTERLEA VE_FILL 9 Interleaving line fill
WIDEDOT_FILL 10 Widely spaced dot fill
CLOSEOOT _FILL 11 Closely spaced dot fill
USER_FILL 12 User-defined fill pattern

All but EMPTY_FILL fill with the current fill color;
EMP'IY _FILL uses the current background color.

None

If invalid input is passed to setfillstyle, graphresult will
return -11 and the current fill pattern and fill color will
remain unchanged.

Portability

See also

Example

Similar routines exist in Turbo Pascal 4.0

arc, bar, fillpoly, floodfill, getfillpattern

78

finclude <graphics.h>

main()
{

int graphdriver = DETECT, graphmode;

struct fillsettingstype save;
char savepattern[8];

/* will request autodetection */

char gray50[] = { Oxaa, Ox55, Oxaa, Ox55, Oxaa, Ox55, Oxaa, Ox55 I;

Addendum: Turbo C 1.5 Additions and Enhancements

} ;

initgraph(&graphdriver, &graphmode, ""I;

getfillsettings(&save);
if (save.pattern == USER_FILL)

getfillpattern(savepattern);

setfillstyle(SLASH_FILL, BLUE);
bar(0, 0, 100, 100);

setfillpattern(gray50, YELLOW);
bar(100, 100, 200, 200);

if (save.pattern == USER_FILL)
setfillpattern(savepattern, save.color);

else
setfillstyle(save.pattern, save.color);

c1osegraph();

/* initialize graphics */

/* retrieve current settings */
/* if user-defined pattern */

/* then save user fill pattern */

/* change fill style */
/* draw slash-filled blue bar */

/* custom fill pattern */
/* draw customized yellow bar */

/* if user-defined pattern */
/* then restore user fill

pattern */

/* restore old style */

getgraphmode graphics

Name

Usage

Related

getgraphmode - returns the current graphics mode.

#include <graphics.h>
int far getgraphmode(void)i

functions usage void far setgraphmode(int mode);

Prototype in graphics.h

Description getgraphmode returns the current graphics mode set by
initgraph or setgraphmode.

setgraphmode selects a graphics mode different than the
default one set by initgraph. mode must be a valid mode
for the current device driver. setgraphmode clears the
screen and resets all graphics settings to their defaults
(CP, palette, color, viewport, and so on). You can use
setgraphmode in conjunction with restorecrtmode to
switch back and forth between text and graphics modes.

Your program must make a successful call to initgraph
before calling either of these functions.

The enumeration graphics_mode, defined in
GRAPHICS.H, gives names for the predefined graphics
modes. For a table listing these enumeration values,
refer to the description for initgraph.

Chapter 4, New and Modified Functions and Variables 79

Return value

Portability

See also

Example

int cmode;

None

If you give setgraphmode an invalid mode for the
current device driver, graphresult will return a value of
-10.

Similar routines exist in Turbo Pascal 4.0

getmoderange, initgraph, restorecrtmode

cmode = getgraphmode();
restorecrtmode();

1* save current mode *1
1* switch to text *1

printf("Now in text mode - press any key to go back to graphics ••• ");
getch();
setgraphmode(cmode); 1* back to graphics *1

getimage

Name

Usage

Related

graphics

getimage - saves a bit image of the specified region into
memory.

#inc1ude <graphics.h>
void far getimage(int left, int top, int right, int bottom,

void far *bitmap);

functions usage unsigned far imagesize(int left, int top,
int right, int bottom);

void far putimage(int left, int top,
void far *bitmap, int op);

Prototype in graphics.h

Description These three functions are used for copying an image
from the screen to memory, then putting it back on the
screen.

80

getimage saves a bit image of a rectangular region on
the screen to memory. left, top, right, and bottom define
the on-screen rectangle. bitmap points to the area in
memory where the bit image will be stored. The first
two words of this area are used for the width and height
of the rectangle; the remainder holds the image itself.

Addendum: Turbo C 7.5 Additions and Enhancements

Return value

Portability

See also

Example

imagesize determines the number of bytes necessary for
getimage to save the specified rectangle. The image size
returned includes space for the width and height of the
rectangle.

putimage puts the bit image previously saved with
getimage back onto the screen, with the upper-left
corner of the image placed at (left,top). bitmap points to
the area in memory where the source image is stored.

The op parameter to putimage specifies a combination
operator that controls how the color for each destination
pixel on screen is computed, based on the pixel already
on screen and the corresponding source pixel in
memory.

The enumera tion putimage_ops, defined in
GRAPHICS.H, gives names to these operators:

Name Value Description

COPY_PUT 0 copy
XOR_PUT 1 exclusive-or
OR_PUT 2 inclusive-or
AND_PUT 3 and
NOT_PUT 4 copy the inverse of the source

In words, COPY_PUT will copy the source bitmap
image onto the screen, XOR_PUT will XOR the source
image with that already on screen, OR_PUT will OR the
source image with that on screen, etc.

imagesize returns the size of the required memory area.
If the size required for the selected image is greater than
or equal to 64K bytes, imagesize returns OxFFFF (-1).

getimage and putimage return nothing.

Similar routines exist in Turbo Pascal 4.0

tinclude <graphics.h>

main ()
{

Chapter 4, New and Modified Functions and Variables 81

int graphdriver = DETECT, graphmode;

void * buffer;
unsigned size;

initgraph(&graphdriver, &graphmode, 1111);

size=imagesize(O,O,20,lO);
buffer=malloc (size);
getimage(O,O,20,lO,buffer);

/* */

putimage(O,O,buffer,COPY_PUT);
free (buffer) ;

closegraph();

/* will request autodetection */

/* initialize graphics */

/*get memory for image */
/*save bits */

/*restore bits */
/*free buffer*/

getlinesettings graphics

Name

Usage

Related

getIinesettings - gets the current line style, pattern, and
thickness

#include <gra phics.h>
void far getlinesettings(struct linesettingstype

far *lineinfo);

functions usage void far setlinestyle(int linestyle,
unsigned upattern, int thickness);

Prototype in graphics.h

Description getIinesettings fills a linesettingstype structure pointed
to by lineinfo with information about the current line
style, pattern, and thickness.

82

You can change these values by calling setlinestyle; this
function sets the style for all lines drawn by line, line to,
rectangle, drawpoly, arc, circle, ellipse, pieslice, etc.

The lineseUingstype structure is defined in
GRAPHICS.H as follows:

struct linesettingstype {
int linestyle;
unsigned upattern;
int thickness;

} ;

linestyle specifies in which of several styles subsequent
lines will be drawn (such as solid, dotted, centered,

Addendum: Turbo C 7.5 Additions and Enhancements

Return value

dashed}. The enumeration line_styles, defined in
GRAPHICS.H, gives names to these operators:

Name Value Description

SOLID_LINE 0 Solid line
DOTTED_LINE 1 Dotted line
CENTER_LINE 2 Centered line
DASHED_LINE 3 Dashed line
USERBIT_LINE 4 User-defmed line style

thickness specifies whether the width of subsequent lines
drawn will be normal or thick.

Name Value Description

NORM_WIDTH 1
THICK_WIDTH 3

1 pixel wide
3 pixels wide

upattern is a 16-bit pattern that applies only if linestyle is
USERBIT_LINE (4). In that case, whenever a bit in the
pattern word is 1, the corresponding pixel in the line is
drawn in the current drawing color. For example, a solid
line corresponds to a upattern of OxFFFF (all pixels
drawn), while a dashed line can correspond to a upattern
of Ox3333 or OxOFOF. If the linestyle parameter to
setlinestyle is not USERBIT_LINE (!= 4), the upattern
parameter must still be supplied but it is ignored.

None

If invalid input is passed to setlinestyle, graphresult
will return -11 and the current line style remains
unchanged.

Portability Similar routines exist in Turbo Pascal 4.0
Example

finclude <graphics.h>

main ()
(

int graphdriver = DETECT, graphmode;
struct linesettingstype saveline;

initgraph(&graphdriver, &graphmode, 1111);

1* will request autodetection *1

1* initialize graphics *1

Chapter 4, New and Modified Functions and Variables 83

getlinesettings(&saveline);
setlinestyle(SOLID_LINE, 0, THICK_WIDTH);
rectangle (10, 10, 17, 15);
setlinestyle(saveline.linestyle,

/* save current line style */

/* draw a little thick box */
/* restore old line settings */

closegraph () ;
} ;

saveline.pattern,
saveline.thickness);

getmaxcolor graphics

Name

Usage

Prototype in

Description

Return value

Portability

See also

getmaxx

Name

Usage

Related

getmaxcolor - returns maximum color value

#inc1ude <graphics.h>
int far getmaxcolor(void);

graphics.h

getmaxcolor returns the highest valid pixel value
(palette size - 1) for the current graphics driver and
mode.

getmaxcolor returns the highest available color.

A similar routine exists in Turbo Pascal 4.0

getbkcolor, getpalette

graphics

getmaxx - returns maximum x screen coordinate

#inc1ude <gra phics.h>
int far getmaxx(void);

functions usage int far getmaxy(void);

Prototype in graphics.h

Description getmaxx returns the maximum (screen-relative) x value
for the current graphics driver and mode.

84

getmaxy returns the maximum (screen-relative) y value
for the current graphics driver and mode.

For example, on a eGA in 320x200 mode, getmaxx
returns 319, and getmaxy returns 199. getmaxx and

Addendum: Turbo C 1.5 Additions and Enhancements

Return value

Portability

See also

Example

getmaxy are invaluable for centering, determining the
boundaries of a region on the screen, and so on.

getmaxx returns the maximum x screen coordinate;
getmaxy returns the maximum y screen coordinate.

Similar routines exist in Turbo Pascal 4.0

getx

printf("The screen resolution is %d pixels by %d pixels.\n",
getmaxx()+l, getmaxy()+l);

getmaxy

Name

Usage

Prototype in

Description

graphics

getmaxy - returns maximum y screen coordinate

#inc1ude <graphics.h>
int far getmaxy(void);

graphics.h

see getmaxx

getmoderange graphics

Name

Usage

Description

Return value

See also

getmoderange - gets the range of modes for a given
graphics driver

#inc1ude <gra phics.h>
void far getmoderange(int graphdriver, int far *lomode,

int far *himode);
Prototype in
graphics.h

getmoderange gets the range of valid graphics modes
for the given graphics driver, graphdriver. The lowest
permissible mode value is returned in *lomode and the
highest value is returned in *himode. If graphdriver
specifies an invalid graphics driver, both *lomode and
*himode are set to -1.

None

initgraph, getgraphmode

Chapter 4, New and Modified Functions and Variables 85

Example

int 10, hi;

getmoderange(CGA, &10, &hi);
printf("CGA supports modes %d through %d\n", 10, hi);

getpalette graphics

Name getpalette - returns information about the current
palette

Usage #include <graphics.h>
void far getpalette(struct palettetype far *palette);

Related
functions usage void far setallpalette(struct palettetype far *palette);

void far setpalette(int index, int actuaCcolor);

Prototype in graphics.h

Description getpalette fills the palettetype structure pointed to by
palette with information about the current palette's size
and colors.

86

You can partially (or completely) change the colors in
the EGA/VGA palette with setpalette (or setallpalette).
On a CGA, you can only change the first entry in the
palette (index = 0, the background color) with a call to
setpalette.

setallpalette sets the current palette to the values given
in the palettetype structure pointed to by palette.

setpalette changes the index entry in the palette to
actuaCcolor. For example, setpalette (0, 5) changes
the first color in the current palette (the background
color) to actual color number 5. If size is the number of
entries in the current palette, index can range between 0
and (size-l).

The palettetype structure (used by getpalette and
setallpalette) and the MAXCOLORS constant are
defined in GRAPHICS.H as follows:

fdefine MAXCOLORS 15

struct palettetype {
unsigned char size;
signed char colors[MAXCOLORS + 1];

} ;

Addendum: Turbo C 7.5 Additions and Enhancements

Return value

size gives the number of colors in the palette for the
current graphics driver in the current mode.

colors is an array of size bytes containing the actual raw
color numbers for each entry in the palette. In the
setallpalette routine, if an element of colors is -1, the
palette color for that entry is not changed.

The actuaCcolor parameter passed to setpalette, as well
as the elements in the colors array used by setallpalette,
can be represented by symbolic constants defined in
GRAPHICS.H.

ACTUAL COLOR TABLE

eGA EGAlVGA
Name............... Value Name Value

BLACK 0 EGA_BLACK 0
BLUE 1 EGA_BLUE 1
GREEN 2 EGA_GREEN 2
CYAN 3 EGA_CYAN 3
RED 4 EGA_RED 4
MAGENTA 5 EGA_MAGENTA 5
BROWN 6 EGA_BROWN 20
LIG HTG RAY 7 EGA_LIGHTGRAY 7
DARKGRAY 8 EGA_DARKGRAY 56
LIGHTBLUE 9 EGA_LIGHTBLUE 57
LIGHTGREEN 10 EGA_LIGHTGREEN 58
LIGHTCYAN 11 EGA_LIGHTCYAN 59
LIGHTRED 12 EGA_LIGHTRED 60
LIGHTMAGENTA ... 13 EGA_LIGHTMAGENTA ... 61
YELLOW 14 EGA_YELLOW 62
WHITE 15 EGA_WHITE 63

Note that valid colors depend on the current graphics
driver and current graphics mode.

Changes made to the palette are seen immediately on
the screen. Each time a palette color is changed, all
occurrences of that color on the screen will change to the
new color value.

None

If invalid input is passed to setpalette, graphresult will
return -11 and the current palette remains unchanged.

Chapter 4, New and Modified Functions and Variables 87

Portability

See also

Example

A similar routine exists in Turbo Pascal 4.0

getbkcolor, getcolor

finclude <graphics.h>

main ()
{

} ;

int graphdriver = DETECT, graphmode;
struct palettetype palette;
int color;

initgraph (&graphdriver, &graphmode, '"');

getpalette(&palette);
for(color=O; color<palette.size; color++)
{

} ;

setfillstyle(SOLID_FILL, color);
bar(20*(color-l), 0, 20*color, 20);

if (palette.size > 1)
{

/* will request autodetection */

/* initialize graphics */

/* get current palette */

/* draw some colorful bars */

/* only if more than 1 color */

do /* switch colors randomly */
setpalette(random(palette.size), random(palette.size));

while(!kbhit()); /* until a key is hit */
getch(); /* discard keystroke */

} ;

setallpalette(&palette);

closegraph();

/* restore original palette */

getpixel graphics

Name

Usage

Related

getpixel- gets the color of a specified pixel

#include <graphics.h>
int far getpixel(int x, int y);

functions usage void far putpixel(int x, int y, int pixelcolor);

Prototype in graphics.h

Description getpixel gets the color of the pixel located at (x,y).

putpixel plots a point in the color defined by pixelcolor at
(x,y).

88 Addendum: Turbo C 1.5 Additions and Enhancements

Return value getpixel returns the color of the given pixel; putpixel
returns nothing.

Portability

See also

Example

Similar routines exist in Turbo Pascal 4.0

getimage

iinclude <graphics.h>

main ()
{

int graphdriver = DETECT, graphmode; 1* will request autodetection *1
int i, color, max;

initgraph(&graphdriver, &graphmode, 1111);

max = getmaxcolor() t 1;
1* initialize graphics *1

1* change color of pixels in a diagonal line *1
"for (i=l; i<200; itt) {

color = getpixel(i,i);
putpixel (i, i, (color 1\ i) % max);

closegraph () ;

gettext text

Name

Usage

Related

gettext - copies text from text-mode screen to memory

int gettext(int left, int top, int right, int bottom,
void *destin);

functions usage int puttext(int left, int top, int right, int bottom,
void *source,);

Prototype in conio.h

Description gettext stores the contents of an on-screen rectangle
defined by left, top, right, and bottom, into the area of
memory pOinted to by destin.

puttext writes the contents of the memory area pointed
to by source out to the on-screen rectangle defined by left,
top, right, and bottom.

All coordinates are absolute screen coordinates, not
window-relative.

Chapter 4, New and Modified Functions and Variables 89

Return value

Portability

See also

Example

gettext reads the contents of the rectangle into memory
sequentially from left to right and top to bottom. puttext
places the contents of a memory into the defined
rectangle in the same manner.

Each position on screen takes 2 bytes of memory: The
first byte is the character in the cell, and the second is the
cell's video attribute. The space required for a rectangle
w columns wide by h rows high is defined as:

bytes = (h rows) x (w columns) x 2

These functions return 1 if the operation succeeded; they
return 0 if it failed (for example, if you gave coordinates
outside the range of the current screen mode).

These text mode functions work on IBM PCs and BIOS
compatible systems, only.

move text

char buf[20*lO*2];

gettext(O,O,20,lO,buf);

/* ... */

/* save rectangle */

puttext(O,O,buf); /* restore screen */

gettextinfo text

Name gettextinfo - gets text mode video information

Usage #inc1ude <conio.h>
void gettextinfo(struct text_info *inforec);

Prototype in conio.h

Description gettextinfo fills in the texCinfo structure pointed to by
inforec with the current text video information.

90

The text_info structure is defined in CONIO.H as
follows:

struct text_info {
unsigned char winleft;
unsigned char wintopi
unsigned char winright;
unsigned char winbottom;

/* left window coordinate */
/* top window coordinate */

/* right window coordinate */
/* bottom window coordinate */

Addendum: Turbo C 7.5 Additions and Enhancements

Return value

Portability

See also

Example

unsigned char attribute; /* text attribute */
unsigned char normattr; /* normal attribute */
unsigned char currmode; /* BW40, BW80, C40, or C80 */
unsigned char screenheight; /* bottom - top */
unsigned char screenwidth; /* right - left */
unsigned char curx; /* x coordinate in current window*/
unsigned char cury; /* y coordinate in current window*/

} ;

None. The results are returned in the structure pointed
to by inforec.

This function works with IBM pes and compatibles,
only.

textattr, textbackground, textcolor, textmode, where x,
wherey, window

tinclude <conio.h>
struct text_info initial_info;
main ()
{

gettextinfo(&initial_info);
/* ... */
/* restore text mode to original value */
textmode(initial_info.currmode);

gettextsettings graphics

Name gettextsettings - returns information about the current
text settings

Usage

Related

#inc1ude <graphics.h>
void far gettextsettings(struct textsettingstype

far *textinfo);

functions usage void far settex~ustify(int horiz, int vert);
void far settextstyle(int font, int direction, int charsize);

Prototype in graphics.h

Description gettextsettings fills the textsettingstype structure
pointed to by textinfo with information about the current

Chapter 4, New and Modified Functions and Variables 91

92

text font, direction, size, and justification (as set by
settextstyle and settextjustify).

The textsettingstype structure used by gettextsettings is
defined in GRAPHICS.H as follows:

struct textsettingstype {
int font;

} ;

int direction;
int charsize;
int horiz;
int vert;

Text output after a call to settextjustify will be justified
around the CP horizontally and vertically as specified.
The default justification settings are LEFf_TEXT (for
horizontal) and TOP_TEXT (for vertical). The
enumeration text just in GRAPHICS.H provides names
for the horiz and vert settings passed to settextjustify:

Name Value Description

LEFT_TEXT 0
CENTER_TEXT 1
RIGHT_TEXT 2
BOTTOM_TEXT 0
TOP_TEXT 2

horiz
horiz and vert
horiz
vert
vert

If horiz is equal to LEFT _TE XT and direction =
HORIZ_DIR, the CP's x component (CPX) is advanced
after a call to Quttext (string) by textwidth (string).

settextstyle sets the text font, the direction in which text
is displayed, and the size of the characters. A call to
settextstyle affects all text output by outtext and
outtextxy.

The parameters font, direction, and charsize passed to
settextstyle are described in the following:

font: one 8x8 bit-mapped font and several "stroked"
fonts are available. The 8x8 bit-mapped font is the
default. The enumeration font_names, defined in
GRAPHICS.H, provides names for these different font
settings (see following table).

Addendum: Turbo C 1.5 Additions and Enhancements

Name Value Description

DEFAULT_FONT 0 8x8 bit-mapped font
TRIPLEX_FONT 1 Stroked triplex font
SMALL_FONT 2 Stroked small font
SANSSERIF _FONT 3 Stroked sans-serif font
GOTHIC_FONT 4 Stroked gothic font

The default bit-mapped font is built into the graphics
system. Stroked fonts are stored in *.CHR disk files, and
only one at a time is kept in memory. Therefore, when
you select a stroked font (different from the last selected
stroked font), the corresponding *.CHR file must be
loaded from disk. To avoid this loading when several
stroked fonts are used, you can link font files into your
program. You do this by converting them into object files
with the BGIOBJ utility, then registering them through
registerbgifont, as described in Appendix D of this
addendum.

direction: font directions supported are horizontal text
(left to right) and vertical text (rotated 90 degrees
counterclockwise). The default direction is HORIZ_DIR.

Name Value Description

HORIZ_DIR
VERT_DIR

o
1

left to right
bottom to top

charsize: the size of each character can be magnified
using the charsize factor. If charsize is non-zero, it can
affect bit-mapped or stroked characters. If charsize = 0,
only stroked characters are affected.

[J If charsize = 1, outtext and outtextxy will display
characters from the 8x8 bit-mapped font in an 8x8
pixel rectangle on the screen.

[] If charsize = 2, these output functions will display
characters from the 8x8 bit-mapped font in a 16x16
pixel rectangle; and so on (up to a limit of 10 times the
normal size).

Chapter 4, New and Modified Functions and Variables 93

• When charsize = 0, the output functions ouHext and
outtextxy magnify the stroked font text using either
the default character magnification factor (4), or the
user-defined character size given by setusercharsize.

Always use textheight and textwidth to determine the
actual dimensions of the text.

Return value None

Since stroked fonts can be stored on disk, errors can
occur when trying to load them. If an error occurs,
graphresult will return one of the following values:

-8 Font file not found.
-9 Not enough memory to load the font selected.

-11 (general error)
-12 Graphics I/O error
-13 Invalid font file
-14 Invalid font number

If invalid input is passed to seHextjustify, graphresult
will return -11 and the current text justification remains
unchanged.

Portability

See also

Example

Similar routines exist in Turbo Pascal 4.0

graphresult, ouHext, registerbgifont, textheight

94

finclude <graphics.h>

main()
(

int graphdriver = DETECT, graphmode;
struct textsettingstype oldtext;

initgraph(&graphdriver, &graphmode, 1111);

gettextsettings(&oldtext);

1* will request autodetection *1

1* initialize graphics *1

1* get current settings *1

1* switch to horizontal, upper-left-justified, *1
1* gothic font, scaled by a factor of 5 *1

settextjustify(LEFT_TEXT, TOP_TEXT);
settextstyle(GOTHIC_FONT, HORIZ_DIR, 5);
outtext(IIGothic Text");

1* restore previous settings *1
settextjustify(oldtext.horiz, oldtext.vert);
settextstyle(oldtext.font, oldtext.direction, oldtext.charsize)i

Addendum: Turbo C 7.5 Additions and Enhancements

closegraph();

getviewsettings graphics

Name

Usage

Related

getviewsettings - returns information about the current
viewport

#include <graphics.h>
void far getviewsettings(struct viewporttype

far *viewport);

functions usage void far setviewport(int left, int top, int right, int bottom,
int clipflag);

Prototype in graphics.h

Description getviewsettings fills the viewporttype structure pointed
to by viewport with information about the current
viewport.

Return value

setviewport establishes a new viewport for graphics
output.

The viewport's corners are given in absolute screen
coordinates by (left,top) and (right,bottom). The current
position (CP) is moved to viewport (0,0).

The parameter clipflag determines whether drawings are
clipped (truncated) at the current viewport boundaries.
If clipflag is non-zero when your program calls
setviewport, all drawings will be clipped to the current
viewport.

The viewporttype structure used by getviewport is
defined in GRAPHICS.H as follows:

struct viewpcrttype {

I;

int left, top, right, bottom;
int clipflag;

Note: initgraph and setgraphmode reset the viewport to
the entire graphics screen.

None

Chapter 4, New and Modified Functions and Variables 95

If invalid in put is passed to setviewport, graphresult
will return -11 and the current view settings remain
unchanged.

Portability

See also

Example

A similar routine exists in Turbo Pascal 4.0

clearviewport

struct viewporttype view;

getviewsettings(&view);
if (!view.clip)

1* get current setting *1
1* if clipping not on *1

setviewport(view.left, view.top,
view. right, view.bottom, 1); 1* turn it on *1

getx graphics

Name

Usage

getx - returns the current position's x coordinate

#inc1ude <graphics.h>
int far getx(void}j

Related
functions usage int far gety(void};

Prototype in graphics.h

Description getx returns the current position's x coordinate.

gety returns the current position's y coordinate.

Return value getx returns the CP's x coordinate; gety returns the CP's
y coordinate. (The values are viewport-relative.)

Portability Similar routines exist in Turbo Pascal 4.0

See also getviewsettings, initgraph, moveto

Example

int oldx, oldy;

1* save current position *1
oldx = getx();
oldy = gety () ;

circle(100, 100, 2); 1* draw a blob at [100,100] *1
moveto(99,100);
linerel (2,0) ;
moveto(oldx, oldy); 1* back to the old position *1

96 Addendum: Turbo C 7.5 Additions and Enhancements

gety

Name

Usage

Prototype in

Description

gotoxy

Name

Usage

Prototype in

Description

Return value

Portability

See also

Example

gotoxy(10,20);

graphics

gety - returns the current position's y coordinate

#inc1ude <graphics.h>
int far gety(void);

graphics.h

see getx

gotoxy - positions cursor in text window

void gotoxy(int X, int y);

conio.h

text

gotoxy moves the cursor to the given position in the
current text window. If the coordinates are in any way
invalid, the call to gotoxy is ignored. An example of this
is a call to gotoxy (40 , 30) when (35,25) is the bottom
right position in the window.

The two functions wherex and wherey will return the
current X and y positions of the cursor, respectively.

None

This function works with IBM pes and compatibles,
only; a corresponding function exists in Turbo Pascal.

wherex, wherey, window

/* position cursor at column 10, row 20 */

graphdefaults graphics

Name

Usage

Prototype in

graphdefaults - resets all graphics settings to their
defaults

#inc1ude <graphics.h>
void far graphdefaults(void);

graphics.h

Chapter 4, New and Modified Functions and Variables 97

Description

Return value

Portability

See also

graphdefaults resets all graphics settings to their
defaults. It:

• sets the viewport to the entire screen
II moves the current position to (0,0)
D sets the default palette colors, background color, and

drawing color
m sets the default fill style and pattern
c sets the default text font and justification

None

A similar routine exists in Turbo Pascal 4.0

initgraph, getgraphmode

grapherrormsg graphics

Name

Usage

Prototype in

Description

grapherrormsg - returns an error message string

#inc1ude <graphics.h>
char far *far grapherrormsg(int errorcode);

graphics.h

see graphresult

_graphfreemem graphics

Name

Usage

Prototype in

Description

98

_graphfreemem - user-modifiable graph memory
deallocation

#inc1ude <graphics.h>
void far -waphfreemem(void far *ptr, unsigned size);

graphics.h

see ~raphgetmem

Addendum: Turbo C 7.5 Additions and Enhancements

_graphgetmem graphics

Name ~raphgetmem - user-modifiable graphics memory
allocation

Usage #include <graphics.h>
void far * fargraphgetmem(unsigned size);

Related
functions usage void fargraphfreemem(void far *ptr, unsigned size);

Prototype in graphics.h

Description The graphics library calls ~raphgetmem to allocate
memory for internal buffers, graphics drivers, and
character sets. You can choose to control the memory
management of the graphics library by defining your
own version of _graphgetmem (you must declare it
exactly as shown in the Usage). The default version of
this routine merely calls malloc.

The graphics library calls ~raphfreemem to release
memory previously allocated through ~raphgetmem.
You can choose to control the graphics library memory
managemen t by defining your own version of
~raphfreemem (you must declare it exactly as shown
in the Usage). The default version of this routine merely
calls free.

Return value None

Portability Similar routines exist in Turbo Pascal 4.0.

Example

/* example of user-defined graph management routines */

'include <graphics.h>
'include <stdio.h>
'include <conio.h>
'include <process.h>
'include <alloc.h>

main ()
{

int errorcode;
int graphdriver;
int graphmode;

graphdriver = DETECT;

Chapter 4, New and Modified Functions and Variables 99

initgraph(&graphdriver, &graphmode, "c:\\");
errorcode = graphresult();
if (errorcode != grOk)
{

} ;

printf{lIgraphics error: %s\n",grapherrormsg(errorcode));
exit(l);

settextstyle(GOTHIC_FONT, HORIZ_DIR, 4);
outtextxy(100, 100, "BGI TEST");

c1osegraph();

void far * far _graphgetmem(unsigned size)
{

printf("_graphgetmem called [size=%d] -- hit any key",size);
getch(); printf("\n");
return(farmalloc(size)); 1* use "far" heap *1

void far _graphfreemem(void far *ptr, unsigned size)
{

printf("_graphfreemem called [size=%d] -- hit any key",size);
getch(); printf("\n");
farfree(ptr); 1* "size" not used *1

graphresult graphics

Name

Usage

Related
functions usage

Prototype in

Description

100

graphresult - returns an error code for the last
unsuccessful graphics operation

#include <graphics.h>
int far graphresult(void);

char far *far grapherrormsg(int errorcode);

graphics.h

graphresult returns the error code for the last graphics
operation that reported an error.

grapherrormsg returns a pointer to a string associated
with errorcode, the error code returned by graphresult.
This makes it easy for your program to display a
descriptive error message, such as "Device driver not
found (eGA.BGD" instead of "error code -3", which
makes your programs easier for other humans to follow.

Addendum: Turbo C 7.5 Additions and Enhancements

Return value

Portability

See also

The following table lists the error codes returned by
graphresult, the graphics_errors type constant associated
with the error codes, and the corresponding error
messages:

error graphics_errors corresponding
code constant error message string

0 grOk No error
-1 grNoInitGraph (BGI) graphics not installed

(use initgraph)
-2 grNotDetected Graphics hard ware not

detected
-3 grFileNotFound Device driver file not found
-4 grInvalidDriver Invalid device driver file
-5 grNoLoadMem Not enough memory to load

driver
-6 grNoScanMem Out of memory in scan fill
-7 grNoFloodMem Out of ·memory in flood fill
-8 grFontNotFound Font file not found
-9 grNoFontMem Not enough memory to load

font
-10 grInvalidMode Invalid graphics mode for

selected driver
-11 grError Graphics error
-12 grIOerror Graphics I/O error
-13 grInvalidFont Invalid font file
-14 grInvalidFontNum Invalid font number
-15 grInvalidDeviceNum Invalid device number

Note that graphresult is reset to 0 after it has been
called. Therefore, you should store the value of
graphresult into a temporary variable and then test it.

graphresult will return the current graphics error
number, an integer in the range -15 to 0; grapherrormsg
returns a pointer to a string associated with the value
returned by graphresult.

A similar routine exists in Turbo Pascal 4.0

initgraph

Chapter 4. New and Modified Functions and Variables 101

highvideo

Name

Usage

Related
functions usage

Prototype in

Description

high vide 0 - selects high intensity text characters

void highvideo(void);

void lowvideo(void);
void normvideo(void);

conio.h

text

highvideo selects high intensity characters by setting the
high intensity bit of the currently selected foreground
color.

normvideo selects normal characters by returning the
text attribute (foreground and background) to the value
it had when the program started.

lowvideo selects low intensity characters by clearing the
high intensity bit of the currently selected foreground
color.

These functions do not affect any characters currently on
the screen; they only affect those displayed using direct
console output functions (such as cprintf) after these
functions are called.

Return value None

Portability These functions work with IBM pes and compatibles,
only; corresponding functions exist in Turbo Pascal.

See also cprintf, cputs, gettextinfo, putch, textattr

imagesize graphics

Name image size - returns the number of bytes required to
store a bit image

Usage #include <graphics.h>
unsigned far imagesize(int left, int top,

int right, int bottom);

Prototype in graphics.h

Description see getimage

102 Addendum: Turbo C 7.5 Additions and Enhancements

initgraph graphics

Name initgraph - initializes the graphics system

Usage #include <graphics.h>

Related

void far initgraph(int far *graphdriver,
int far *graphmode,
char far *pathtodriver);

functions usage void far detectgraph(int far *graphdriver,
int far *graphmode);

void far closegraph(void);

Prototype in graphics.h

Description initgraph initializes the graphics system by loading a
graphics driver from disk (or validating a registered
driver), and putting the system into graphics mode.

detectgraph detects your system's graphics adapter and
chooses the mode that provides the highest resolution
for that adapter. If no graphics hardware was detected,
the *graphdriver parameter is set to -2 and graphresult
will also return -2.

Note: The main reason to call detectgraph directly is to
override the gra phics mode tha t detectgraph
recommends to initgraph.

closegraph deallocates all memory allocated by the
graphics system, then restores the screen to the mode it
was in before you called initgraph. (The graphics system
deallocates memory, such as the drivers, fonts, and an
internal buffer, through a call to ~raphfreemem.)

To start the graphics system, you first call the initgraph
function. initgraph loads the graphics driver and puts
the system into graphics mode. You can tell initgraph to
use a particular graphics driver and mode, or to auto
detect the attached video adapter at run time and pick
the corresponding driver. If you tell initgraph to auto
detect, it calls detectgraph to select a graphics driver
and mode. initgraph also resets all graphics settings to
their defaults (current position, palette, COIOf, viewport,
etc.) and resets graphresult to O.

Chapter 4, New and Modified Functions and Variables 103

104

Normally, initgraph loads a graphics driver by
allocating memory for the driver (through
~raphgetmem), then loading the appropriate .BGI file
from disk. As an alternative to this dynamic loading
scheme, you can link a graphics driver file (or several of
them) directly into your executable program file. See
Appendix D in this addendum for more information.

pathtodriver specifies the directory path where initgraph
will look for the graphics drivers. initgraph first looks in
the path specified in pathtodriver, then (if they're not
there) in the current directory. Accordingly, if
pathtodriver is NULL, the driver files (*.BGI) must be in
the current directory. This is also the path settextstyle
will search for the stroked character font (*.CHR) files.

*graphdriver is an integer that specifies the graphics
driver to be used. You can give it a value using a
constant of the graphics_drivers enumeration type,
defined in GRAPHICS.H and listed in the following
table.

graphics_drivers
constant

DETECT
CGA
MCGA
EGA
EGA64
EGAMONO
RESERVED
HERCMONO
ATT400
VGA
PC3270

Numeric
Value

o (requests autodetection)
1
2
3
4
5
6
7
8
9

10

*graphmode is an integer that specifies the initial graphics
mode (unless *graphdriver = DETECT, in which case
*graphmode is set to the highest resolution available for
the detected driver). You can give *graphmode a value
using a constant of the graphics_modes enumeration type,
defined in GRAPHICS.H and listed in the following
table.

Addendum: Turbo C 7.5 Additions and Enhancements

graphics Column
driver graphics_modes Value x Row Palette Pages

CGA CGACO 0 320x200 CO 1
CGACl 1 320x200 Cl 1
CGAC2 2 320x200 C2 1
CGAC3 3 320x200 C3 1
CGAHI 4 640x200 2 color 1

MCGA MCGACO 0 320x200 CO 1
MCGACl 1 320x200 Cl 1
MCGAC2 2 320x200 C2 1
MCGAC3 3 320x200 C3 1
MCGAMED 4 640x200 2 color 1
MCGAHI 5 640x480 2 color 1

EGA EGALO 0 64Ox200 16 color 4
EGAHI 1 640x350 16 color 2

EGA64 EGA64LO 0 640x200 16 color 1
EGA64HI 1 640x350 4 color 1

EGA- EGAMONOHI 3 640x350 2 color 1*
MONO 1/ 1/ 3 1/ 1/ 2 color 2**

HERC HERCMONOHI 0 720x348 2 color 2

ATI400 ATI400CO 0 32Ox200 CO 1
ATI400Cl 1 320x200 Cl 1
ATI400C2 2 320x200 C2 1
ATI400C3 3 320x200 C3 1
ATI400MED 4 640x200 2 color 1
ATI400HI 5 640x400 2 color 1

VGA VGALO 0 640x200 16 color 2
VGAMED 1 640x350 16 color 2
VGAHI 2 640x480 16 color 1

PC3270 PC3270HI 0 720x350 2 color 1

* 64K on EGAMONO card
iloilo 256K on EGAMONO card

In the previous table, the Palette listings CO, Cl, C2, and
C3 refer to the four predefined four-color palettes
available on CGA (and compatible) systems. You can
select the background color (entry #0) in each of these
palettes, but the other colors are fixed. These palettes are
described in greater detail in Chapter 1 of this

Chapter 4, New and Modified Functions and Variables 105

Return value

Portability

See also

Example

addendum (under "Color Control") and summarized in
the following table.

Palette Color assigned to pixel value
Number 1 2 3

o
1
2
3

lightgreen
lightcyan
green
cyan

lightred yellow
lightmagenta white
red brown
magenta lightgray

After a call to initgraph, *graphdriver is set to the current
graphics driver, and *graphmode is set to the current
graphics mode.

None

initgraph always sets the internal error code; on success,
it sets the code to O. If an error occurred, *graphdriver is
set to -2, -3, -4, or -5, and graphresult returns the same
value, as listed here:

-2 Cannot detect a graphics card
-3 Cannot find driver file
-4 Invalid driver
-5 Insufficient memory to load driver

Similar routines exist in Turbo Pascal 4.0

getgraphmode, -sraphgetmem, initgraph,
registerbgidriver, restorecrtmode, setgraphbufsize

finclude <graphics.h>
finclude <stdio.h>
finclude <conio.h>
finclude <process.h>

main ()
(

106

int g_driver, g_ffiode, g_error;

detectgraph(&g_driver, &g_mode, 1111);

if (g_driver < 0)
(

printf(IINo graphics hardware detected !\n");
exit(l);

Addendum: Turbo C 7.5 Additions and Enhancements

printf("Detected graphics driver Ud, mode Ud\n",g_driver,g_mode);
getch();

if (g_mode == EGAHI) g_mode = EGALO
initgraph(&g_driver, &g_mode);
g_error = graphresult();

/* override mode if EGA detected */

if (L error < 0)
{

printf(lIinitgraph error: %s.\n", grapherrormsg(g_error))i
exit (1) ;

bar(O, 0, getmaxx()/2, getmaxy());
getch()i
closegraph () ;

insline

Name

Usage

Prototype in

Description

Return value

Portability

See also

ldiv

Name

Usage

Prototype in

Description

ins line - inserts blank line in text window

void insline(void)i

conio.h

text

ins line inserts an empty line in the text window at the
cursor position using the current text background color.
All lines below the empty one move down one line and
the bottom line scrolls off the bottom of the window.

None

This function works with IBM pes and compatibles,
onlYi a corresponding function exists in Turbo Pascal.

dreol, delline, window

.
mtSC

ldiv - divides two longs, returns quotient and
remainder

#inc1ude <stdlib.h>
ldiv _t Idiv(1ong lnumer, long ldenom):

stdlib.h

see div in this addendum

Chapter 4, New and Modified Functions and Variables 107

lfind

Name

Usage

Prototype in

Description

line

Name

Usage

Related

lfind - linear search

#inc1ude <stdlib.h>

modified

void *lfind(const void *key, const void *base,
size_t *pnelem, size_t width,
int (*/cmp)(const void *, const void *»i

stdlib.h

see bsearch (in this addendum and in the Turbo C
Reference Guide)

graphics

line - draws a line between two specified points

#inc1ude <gra phics.h>
void far line(int xO, int yO, int xl, int y1)i

functions usage void far lineto(int x, int y);

void far linerel(int dx, int dy);

Prototype in graphics.h

Description Each of these line-drawing functions draws a line in the
current color, using the current line style and thickness.

Return value

Portability

See also

108

line draws a line between the two points specified,
(xO,yO) and (xl,y1), without updating the current
position (CP).

lineto draws a line from the CP to (x,y), then moves the
CP to (x,y).

linerel draws a line from the CP to a point that is a
relative distance (dx,dy) from the CPo The CP is
advanced by (dx,dy).

None

Similar routines exist in Turbo Pascal 4.0

getcolor, getlinesettings

Addendum: Turbo C 7.5 Additions and Enhancements

Iinerel graphics

Name linerel - draws a line a relative distance from the
current position (CP)

Usage #include <graphics.h>
void far linerel(int dx, int dy);

Prototype in graphics.h

Description see line

Iineto graphics

Name line to - draws a line from the CP to (x,y)

Usage #include <graphics.h>
void far lineto(int x, int y);

Prototype in graphics.h

Description see line

Iovvvideo text

Name lowvideo - selects low intensity characters

Usage void lowvideo(void);

Prototype in conio.h

Description see highvideo.

_Irotl misc

Name _lrotI- rotates an unsigned long value to the left

Usage unsigned long _lrot1(unsigned long lvalue, int count);

Prototype in stdlib.h

Description see _rotI

Chapter 4, New and Modified Functions and Variables 109

Name

Usage

Prototype in

Description

lsearch

Name

Usage

Prototype in

Description

malloc

Name

Usage

Related

· mtse

_lrotr- rotates an unsigned long value to the right

unsigned long _lrotr(unsigned long lvalue, int count);

stdlib.h

lsearch - linear search

#inc1ude <stdlib.h>
void *lsearch{const void *key, void *base,

size_t *pnelem, size_t width,

modified

int (*fcmp){const void *, const void *»;

stdlib.h

see bsearch (in this addendum and in the Turbo C
Reference Guide)

malloc - allocates main memory

#inc1ude <stdlib.h>
void *mallodsize_t size);

modified

functions usage void *calloc{size_t nelem, size_t elsize);
void *realloc{void *ptr, size_t newsize);

Prototypes in stdlib.h and alloc.h

Description These functions have the same description as given in
the Turbo C Reference Guide.

Return value These functions return the same values as given in the
Turbo C Reference Guide, with the following additions:

110

If the argument size (for malIoc), elsize (for calIoc), or
newsize (for realIoc) == 0, these three functions return
NULL.

Addendum: Turbo C 7.5 Additions and Enhancements

moverel graphics

Name movere I - moves the current position (CP) a relative
distance

Usage #include <graphics.h>
void far moverel(int dx, int dy);

Prototype in graphics.h

Description see moveto

move text text

Name move text - copies text on-screen from one rectangle to
another

Usage int movetext(int left, int top, int right, int bottom,
int newleft, int new top);

Prototype in conio.h

Description move text copies the contents of the on screen rectangle
defined by left, top, right, and bottom to a new rectangle
of the same dimensions. The new rectangle's upper left
corner is position (newleft, newtop).

Return value

Portability

See also

Example

/*

All coordinates are absolute screen coordinates.

movetext returns 1 if the operation succeeded; if the
operation failed (for example, if you gave coordinates
outside the range of the current screen mode), move text
returns O.

These text mode functions can be used on IBM PCs and
BIOS-compatible systems.

gettext

copy the contents of the old rectangle, whose upper left corner
is (5, 15) and whose lower right corner is (20, 25), to a new
rectangle whose upper left corner is (10, 20).

*/

movetext(5, 15, 20, 25, 10, 20);

Chapter 4, New and Modified Functions and Variables 111

moveto

Name

Usage

Related
functions usage

moveto - moves the CP to (x,y)

#inc1ude <graphics.h>
void far moveto(int x, int y);

void far moverel(int dx, int dy);

graphics.h

graphics

Prototype in

Description Each of these "move current position" functions moves
the CP to another position on screen.

move to moves the current position (CP) to viewport
position (x,y).

moverel moves the current position (CP) dx pixels in the
x direction and dy pixels in the y direction.

Return value None

Portability Similar routines exist in Turbo Pascal 4.0

normvideo text

Name normvideo - selects normal in tensity characters

Usage void normvideo(void);

Prototype in conio.h

Description see highvideo

nosound text

Name nosound - turns PC speaker off

Usage void nosound(void)i

Prototype in dos.h

Description see sound

112 Addendum: Turbo C 7.5 Additions and Enhancements

outtext

Name

Usage

Related
functions usage

Prototype in

Description

outtext - displays a string in the viewport

#include <graphics.h>
void far outtext{char far *textstring);

graphics

void far outtextxy(int x, int y, char far *textstring);

graphics.h

Each of these functions displays a text string in the
viewport, using the current justification settings and the
current font, direction, and size.

outtext outputs textstring at the CP.1f the horizontal text
justification is LEFT_TEXT and the text direction is
HORIZ_DIR, the CP's x coordinate is advanced by
textwidth (textstring) Otherwise, the CP remains
unchanged.

outtextxy outputs textstring at the given position (x,y).

In order to maintain code compatibility when using
several fonts, use the textwidth and textheight functions
to determine the dimensions of the string.

Return value None

Portability Similar routines exist in Turbo Pascal 4.0

See also gettextsettings, textheight

outtextxy graphics

Name outtextxy- sends a string to the specified location

Usage #include <graphics.h>
void far outtextxy(int x, int y, char far *textstring);

Prototype in graphics.h

Description see outtext

Chapter 4, New and Modified Functions and Variables 113

pieslice graphics

Name pieslice - draws and fills in pie slice

Usage #include <graphics.h>
void far pieslice(int x, int y, int stangle, int endangle,

int radius);

Prototype in graphics.h

Description see arc

putch modified

Name putch - puts character on screen

Usage int putch(int ch);

Prototype in conio.h

Description putch has been modified so output is written to the
current text window. (See the Turbo C Reference Guide for
further description.)

Return value putch returns ch, the character displayed.

Portability This function works with IBM pes and compatibles
only.

putimage graphics

Name putimage - puts a bit image onto the screen

Usage #include <graphics.h>
void far putimage(int x, int y, void far *bitmap, int op);

Prototype in graphics.h

Description see getimage

114 Addendum: Turbo C 7.5 Additions and Enhancements

putpixel

Name

Usage

Prototype in

Description

puttext

Name

Usage

Description

random

Name

Usage

Related

graphics

putpixel- plots a pixel at a specified point

#include <graphics.h>
void far putpixel(int X, int y, int pixelcolor);

graphics.h

see getpixel

puttext - copies text from memory to screen

int puttext(int left, int top, int right, int bottom,
void *source);

Prototype in
conio.h

see gettext

random - random number generator

#include <stdlib.h>
int random(int num);

text

misc

functions usage void randomize(void);

Prototype in stdlib.h

Description random returns a random number between 0 and

Return value

(num-l). random (num) is a macro defined as rand () %

(num). Both num and the random number returned are
integers.

randomize initializes the random number generator
with a random value. Because randomize is imple
mented as a macro that calls the time function
prototyped in TIME.H, we recommend that you also
#include <time. h> when using this routine.

random returns a number between 0 and (num-1).
randomize does not return any value.

Chapter 4, New and Modified Functions and Variables 115

Portability

See also

Example

Corresponding functions exist in Turbo Pascal.

rand, seed

'include <stdlib.h>
'include <time.h>

main() /* prints a random number of random numbers in the range 0-99 */
{

int n;
randomize();
n = random(20) + 1;
while (n-- >0)

printf ("%d ", random (100));
printf ("\n");

/* a random number between 1 and 20 */

randomize mise

Name randomize - initializes random number generator

Usage #inc1ude <stdlib.h>
void randomize(void);

Prototype in stdlib.h

Description see random

read modified

Name read - reads from a file

Usage int read(int handle, void *buf, unsigned nbyte);

Related
functions usage int _read(int handle, void *buf, unsigned nbyte);

Prototype in io.h

Description These functions have the same description as given in
the Turbo C Reference Guide, with the following
additions:

116

The maximum number of bytes that either of these
functions can read is 65534, since 65535 (OxFFFF) is the
same as -1, which is the error return indicator for these
functions.

Addendum: Turbo C 7.5 Additions and Enhancements

realloc

Name

Usage

realloc - reallocates main memory

#inc1ude <stdlib.h>
void *realloc{void *ptr, size_t newsize);

Prototype in stdlib.h, alloc.h

modified

Description see malloc (in this addendum and in the Turbo C
Reference Guide)

rectangle graphics

Name rectangle - draws a rectangle

Usage #inc1ude <graphics.h>
void far rectangle(int left, int top, int right, int bottom);

Prototype in graphics.h

Description rectangle draws a rectangle in the current line style,
thickness, and drawing color.

(left,top) is the upper left corner of the rectangle, and
(right, bottom) is its lower right corner.

Return value None

Portability A similar routine exists in Turbo Pascal 4.0

See also bar, getlinesettings, getcolor

Example

int i;

for (i=Oi i<lO; iff)
rectangle (20-2*i, 20-2*i, lO*(i+2), lO*(i+2));

Chapter 4, New and Modified Functions and Variables 117

registerbgidriver graphics

Name

Usage

Related
functions usage

Prototype in

Description

Return value

Portability

See also

Example

registerbgidriver - registers linked-in graphics driver
code

#inc1ude <graphics.h>
int registerbgidriver(void (*driver)(void»;

int registerbgifon t(void (*/ont)(void»;

graphics.h

Calling registerbgidriver informs the graphics system
about the presence of a linked-in driver; similarly,
calling registerbgifont signifies a linked-in stroked
character font file. These routines check the linked-in
code for the specified driver or font; if the code is valid,
they register it in internal tables. Linked-in drivers and
fon ts are discussed in detail in Appendix D of this
addendum.

By using the name of a linked-in file in a call to
registerbgidriver or registerbgifont, you also tell the
compiler (and linker) to link in the object file with that
public name.

Both routines return a negative graphics error code if the
specified driver or font is invalid.

Otherwise, registerbgidriver returns an internal driver
number, and registerbgifont returns the font number of
the registered font.

Similar routines exist in Turbo Pascal 4.0

initgraph, gettextsettings

/* register the EGA/VGA driver */
if (registerbgidriver(EGAVGA_driver) < 0) exit(l);

/* register the gothic font */
if (registerbgifont(gothic_font) != GOTHIC_FONT) exit(l);

118 Addendum: Turbo C 7.5 Additions and Enhancements

registerbgifont graphics

Name

Usage

registerbgifont - - registers linked-in stroked font code

#inc1ude <graphics.h>

Prototype in

Description

int registerbgifont(void (*/ont)(void»;

graphics.h

see registerbgidriver

restorecrtmode graphics

Name restorecrtmode -restores the screen mode to its
pre-initgraph setting

Usage #inc1ude <graphics.h>
void far restorecrtmode(void);

Prototype in graphics.h

Description restorecrtmode restores the original video mode
detected by initgra p h. This function can be used in
conjunction with setgraphmode to switch back and
forth between text and graphics modes.

Return value None

Portability A similar routine exists in Turbo Pascal 4.0

See also initgraph, setgraphmode

_rotl misc

Name _rotI- rotates a value to the left

Usage unsigned _rot1(unsigned value, int count);

Related
functions usage unsigned _rotr(unsigned value, int count);

unsigned long _lrot1(unsigned long lvalue, int count);
unsigned long _lrotr(unsigned long lvalue, int count);

Prototype in stdlib.h

Description Each of these functions rotates the given value to the left
or right count bits. For _IrotI and _Irotr, lvalue is an

Chapter 4, New and Modified Functions and Variables 119

unsigned long; for _rotI and _rotr, the value rotated is
an unsigned.

_rotI rotates value by count bits to the left
_rotr rotates value by count bits to the right
_IrotI rotates lvalue by count bits to the left
_lrotr rotates lvalue by count bits to the right

Return value Each of these functions returns the rotated value.

Example

#include <stdlib.h>

main ()
{

printf("rotate OxABCD 4 bits left = %04X\n", _rotl(OxABCD, 4));
printf("rotate OxABCD 4 bits right = %04X\n", _rotr(OxABCD, 4));
printf("rotate Ox55555555 1 bit left = %08lX\n", _lrotl(Ox555555551, 1));

printf("rotate OxAAAAAAAA 1 bit right = %08lX\n", _lrotr(OxAAAAAAAAL,l));

Output

rotate OxABCD 4 bits left = BCDA
rotate OxABCD 4 bits right = DABC
rotate Ox55555555 1 bit left = AAAAAAAA
rotate OxAAAAAAAA 1 bit right = 55555555

Name

Usage

Prototype in

Description

_rotr - rotates a value to the right

unsigned _rotr(unsigned value, int count);

stdlib.h

see _IrotI

mise

120 Addendum: Turbo C 7.5 Additions and Enhancements

setactivepage graphics

Name

Usage

Related

setactivepage - sets active page for graphics output

#include <graphics.h>
void far setactivepage(int pagenum);

functions usage void far setvisualpage(int pagenum)i

Prototype in graphics.h

Description setactivepage makes pagenum the active graphics page.

Return value

Portability

Example

All subsequent graphics output will be directed to
graphics page pagenum.

setvisualpage makes pagenum the visual graphics page.

The active graphics page mayor may not be the one you
see on screen, depending on how many graphics pages
are available on your system. Only the EGA, VGA, and
Hercules graphics cards support multiple pages.

With multiple graphics pages, your program can direct
gra phics output to an off-screen page, then quickly
display the off-screen image by changing the visual page
with a call to setvisualpage. This technique is especially
useful for animation.

None

Similar routines exist in Turbo Pascal 4.0

cleardevice();
setvisualpage(O);
setactivepage(l);
bar(50, 50, 150, 150);
setvisualpage(l);

/* make page 0 (;blank) visible */
/* will use page 1 for output */

/* draw a bar in page 1 */
/* show page 1 (with bar) */

Chapter 4, New and Modified Functions and Variables 121

setall palette graphics

Name setallpalette - changes all palette colors as specified.

Usage #include <graphics.h>
void far setallpalette(struct palettetype far *palette);

Prototype in graphics.h

Description see getpalette

setbkcolor graphics

Name setbkcolor - sets the current background color using the
palette

Usage #inc1ude <graphics.h>
void far setbkcolor(int color);

Prototype in graphics.h

Description see getbkcolor

setcolor graphics

Name setcolor - sets the current drawing color using the
palette

Usage #inc1ude <graphics.h>
void far setcolor(int color);

Prototype in graphics.h

Description see getbkcolor

setfillpattern graphics

Name

Usage

setfillpattem - selects a user-defined fill pattern

#inc1ude <graphics.h>

Prototype in

Description

122

void far setfillpattern(char far *upattern, int color);

graphics.h

see getfillpattem

Addendum: Turbo C 7.5 Additions and Enhancements

setfillstyle graphics

Name setfillstyle - sets the fill pattern and color

Usage #include <graphics.h>
void far setfillstyle(int pattern, int color);

Prototype in graphics.h

Description see getfillsettings

setgraphbufsize graphics

Name

Usage

Prototype in

Description

Return value

Portability

See also

Example

int cbsize;

setgraphbufsize - changes the size of the internal
graphics buffer

#include <gra phics.h>
unsigned far setgraphbufsize(unsigned bufsize);

graphics.h

Some of the graphics routines (such as floodfill) use a
memory buffer that is allocated when initgraph is
called, and released when closegraph is called. The
default size of this buffer, which is allocated by
~raphgetmem, is 4096 bytes.

You might want to make this buffer smaller (to save
memory space), or make it bigger (if, for example, a call
to floodfill produces error -7: Out of flood memory).
setgraphbufsize tells initgraph how much memory to
allocate for this internal graphics buffer when it calls
~raphgetmem.

You must call setgraphbufsize before calling initgraph.

setgraphbufsize returns the previous size of the internal
buffer.

A similar routine exists in Turbo Pascal 4.0.

closegraph, initgraph

cbsize = setgraphbufsize(lOOO); 1* get current size *1
setgraphbufsize(cbsize); 1* restore size *1
printf("The graphics buffer is currently %d bytes.", cbsize)i

Chapter 4, New and Modified Functions and Variables 123

setgraphmode graphics

Name setgraphmode - sets the system to graphics mode, clears
the screen

Usage #include <graphics.h>
void far setgraphmode(int mode);

Prototype in graphics.h

Description see getgraphmode

setlinestyle graphics

Name setlinestyle - sets the current line width and style

Usage #include <graphics.h>
void far setlinestyle(int linestyle, unsigned upattern,

int thickness);

Prototype in graphics.h

Description see getlinesettings

setpalette graphics

Name setpalette - changes one palette color

Usage #include <graphics.h>
void far setpalette(int index, int actuaCcolor);

Prototype in graphics.h

Description see getpalette

settextjustify

Name

Usage

Prototype in

Description

settextjustify - sets text justification

#include <graphics.h>
void far settextjustify(int horiz, int vert);

graphics.h

see gettextsettings

graphics

124 Addendum: Turbo C 7.5 Additions and Enhancements

settextstyle graphics

Name settextstyle - sets the current text characteristics

Usage #include <graphics.h>
void far settextstyle(int font, int direction, int charsize);

Prototype in graphics.h

Description see gettextsettings

setusercharsize graphics

Name

Usage

Prototype in

Description

Return value

Portability

See also

Example

setusercharsize - user-defined character magnification
factor for stroked fonts

#include <graphics.h>
void far setusercharsize(int multx, int divx,

int multy, int divy);

graphics.h

setusercharsize gives you finer control over the size of
text from stroked fonts. The values set by
setusercharsize are active only if charsize = 0, as set by a
previous call to settextstyle.

With setusercharsize, you specify factors by which the
width and height are scaled. The default width is scaled
by multx : divx and the default height is scaled by multy :
divy. For example, to make text twice as wide and 50%
taller than the default, set

multx = 2; divx = 1i
multy = 3; divy = 2;

None

A similar routine exists in Turbo Pascal 4.0.

gettextsettings

finclude <graphics.h>

main ()
{

int graphdriver = DETECT, graphmode;
char *title = "TEXT in a BOX";

/* will request autodetection */

Chapter 4, New and Modified Functions and Variables 125

initgraph(&graphdriver, &graphrnode, 1111); /* initialize graphics */

/* draw a rectangle and fit a text string inside */
settextjustify(CENTER_TEXT, CENTER_TEXT);
setusercharsize(l,l,l,l);
settextstyle(TRIPLEX_FONT, HORIZ_DIR, USER_CHAR_SIZE);
setusercharsize(200, textwidth(title), 100, textheight(title))i
settextstyle(TRIPLEX_FONT, HORIZ_DIR, USER_CHAR_SIZE);
rectangle(O, 0, 200, 100);
outtextxy(lOO, 50, title);

closegraph();

setviewport graphics

Name

Usage

Prototype in

Description

setviewport - sets the current viewport for graphics
output

#inc1ude <gra phics.h>
void far setviewport(int left, int top, int right, int bottom,

int clipflag)i

graphics.h

see getviewsettings

setvisualpage graphics

Name

Usage

Prototype in

Description

sound

Name

Usage

Related
functions usage

Prototype in

126

setvisualpage - sets the visual graphics page number

#inc1ude <graphics.h>
void far setvisualpage(int pagenum)i

graphics.h

see setactivepage

misc

sound - turns PC speaker on at specified frequency

void sound(unsigned frequenCY)i

void nosound(void);

dos.h

Addendum: Turbo C 7.5 Additions and Enhancements

Description

Return value

Portability

See also

Example

With a call to sound, you can tum the PC's speaker on at
a given frequency. frequency specifies the frequency of
the sound in Hertz. To tum the speaker off after a call to
sound, call the function nosound.

None

These functions work with IBM PCs and compatibles,
only; corresponding functions exist in Turbo Pascal.

delay, sleep

/* emits a 7-Hz tone for 10 seconds */
/* True story: 7 Hertz is the resonant frequency of a chicken's skull cavity.

This was determined empirically in Australia, where a new factory generating
7-Hz tones was located too close to a chicken ranch: when the factory
started up, all the chickens died.

Your PC may not be able to emit a 7-Hz tone. */

main()
(

sound(7);
delay (10000) ;
nosound();

spawn ...

Name

Usage

Prototypes in

Description

modified

spawn ... - functions that create and run other programs

Refer to Turbo C Reference Guide

process.h

These functions have the same description as given in
the Turbo C Reference Guide, with the following
exception:

The description (given in the Turbo C Reference Guide) of
how spawn ... functions search for files is not complete;
the spawn ... functions search for pathname as follows.

c If no explicit extension is given (for example, pathname
= MYPROG), the functions will search for the file as
given. If that one is not found, they will add .COM
and search again. If that's not found, they'll add .EXE
and search one last time.

Chapter 4, New and Modified Functions and Variables 127

• If an explicit extension or period is given (for example,
pathname = MYPROG. EXE), the functions will search for
the file as given .

• For the spawn ... functions with a p suffix, if pathname
does not contain an explicit directory, the functions
will search first the current directory, then the
directories set with the DOS PATH en vironmen t
variable.

strerror modified

Name strerror - returns pointer to error message string

Usage char *strerror(int errnum);

Related
functions usage char *_strerror(const char *str);

Prototype in string.h

Description strerror in version 1.5 differs from the same-named
function in version 1.0. The new strerror has been
modified for ANSI compatibility: it now takes an int
errnum parameter, which is an error number, not a
string. strerror returns a pointer to the error message
string associated with error errnum.

Return value

128

_strerror allows you to generate customized error
messages; it returns a pointer to a null-terminated string
containing an error message .

• If str is NULL, the return value points to the most
recently generated error message .

• If str is not NULL, the return value contains str (your
customized error message), a colon, a space, the
most-recently generated system error message, and a
newline. str should be 94 characters or less.

_strerror is the same as the old strerror, except that str is
now a const char *, instead of a char *.
Both functions return a pointer to the string for an error
message.

Addendum: Turbo C 7.5 Additions and Enhancements

_strerror

Name

Usage

Prototype in

Description

strtoul

Name

Usage

Prototype in

Description

Return value

tmpnam

Name

Usage

Prototype in

Description

mise

_strerror - returns pointer to error message string

char *_strerror(const char *string);

string.h

see strerror in this addendum.

mise

strtoul- converts a string to an unsigned long

unsigned long strtoul(const char *str, char **endptr,
int radix);

stdlib.h

strtoul operates the same as strtol, except that it
converts a string, str, to an unsigned long value
(whereas strtol converts to a long). Refer to the entry for
strtol (under st1: ..) in your Turbo C Reference Guide for
more information.

strtoul returns the converted value, an unsigned long.

tmpnam - creates a unique file name

char *tmpnam(char *sptr);

stdio.h

mise

tmpnam creates a unique file name, which can safely be
used as the name of a temporary file. tmpnam generates
a different string each time you call it, up to TMP _MAX
times. TMP _MAX is defined in STDIO.H as 65535.

The parameter to tmpnam, sptr, is either NULL or a
pointer to an array of at least L_tmpnam characters:
L_tmpnam is defined in STDIO.H. If sptr is NULL,
tmpnam leaves the generated temporary file name in an
internal static object and returns a pointer to that object.

Chapter 4, New and Modified Functions and Variables 129

Return value

Portability

See also

tmpfile

Name

Usage

Prototype in

Description

Return value

Portability

See also

textattr

Name

Usage

Prototype in

Description

130

If sptr is not NULL, tmpnam places its result in that
pointed-to array and returns sptr.

Note: If you do create such a temporary file with
tmpnam, it is your responsibility to delete the file name
(for example, with a call to remove). It is not deleted
automatically.

If sptr is NULL, tmpnam returns a pointer to an internal
static object. Otherwise, tmpnam returns sptr.

ANSIC, UNIX

creat, fopen, mktemp, open, tmpfile

tmpfile - opens a binary "scratch" file

#include <stdio.h>
FILE *tmpfile(void);

stdio.h

mise

tmpfile creates a temporary binary file and opens it for
update ("w+b"). The file is automatically removed when
it's closed or when your program terminates.

tmpfile returns a pointer to the stream of the temporary
file created. If the file can't be created, tmpfile returns
NULL.

ANSIC, UNIX

mktemp, tmpnam

textattr - sets text attributes

void textattr(int attribute);

conio.h

text

texta ttr lets you set both the foreground and
background colors in a single call. (Normally, you set
the attributes with textcolor and textbackground.)

Addendum: Turbo C 7.5 Additions and Enhancements

Return value

Portability

See also

This function does not affect any characters currently on
the screen; it only affects those displayed using direct
console output functions (such as cprintf) after this
function is called.

The color information is encoded in the attribute
parameter as follows:

1

765413210
__________ 1 ________ __

1 1 1 1 1 1 1
Bib 1 bib 1 f 1 f 1 f 1 f 1

--1--1--1--1--1--1--1--1
1

In this 8-bit attribute parameter,

ffff is the 4-bit foreground color (0 to 15)
bbb is the 3-bit background color (0 to 7)
B is the blink-enable bit

If the blink-enable bit is on, the character will blink. This
can be accomplished by adding the constant BLINK to
the attribute.

If you use the symbolic color constants defined in
CONIO.H for creating text attributes with textattr, note
the following limitations on the color you select for the
background:

You can only select one of the first eight colors for the
background.

You must shift the selected background color left by 4
bits to shift it into the correct bit positions.

(These symbolic constants are listed in a table under the
lookup entry for textbackground.)

None

This text mode function works on IBM PCs and BIOS
compatible systems, only.

textbackground, textcolor

Chapter 4. New and Modified Functions and Variables 131

Example

/* select blinking yellow characters on a blue background */

textattr(YELLOW + (BLUE«4) + BLINK);
cputs("Hello, world");

textb ackground text

Name textbackground - selects new text background color

Usage void textbackground(int color);

Related
functions usage void textcolor(int color);

Prototype in conio.h

Description

132

These functions select new colors for the text characters
and text background.

textcolor selects the foreground character color.

textbackground selects the background text color.

The foreground (background color) of all characters
subsequently written by the console output functions
will be the color given by color. These functions do not
affect any characters currently on the screen, but only
affect those displayed using direct console output (such
as cprintf) after the functions are called.

color is an integer from 0 to 7 for textbackground, or
from 0 to 15 for textcolor. You can give the color using a
symbolic constant defined in CONIO.H; if you use these
constants, you must #include <conio. h>.

The following table lists the allowable colors (as
symbolic constants), their numeric values, and whether
they are available as foreground and background colors,
or just foreground.

Addendum: Turbo C 7.5 Additions and Enhancements

Return value

Portability

See also

Example

Symbolic Numeric Foreground or
constant value background?

BLACK 0 Both
BLUE 1 Both
GREEN 2 Both
CYAN 3 Both
RED 4 Both
MAGENTA 5 Both
BROWN 6 Both
LIGHTGRAY 7 Both
DARKGRAY 8 Foreground only
LIGHTBLUE 9 Foreground only
LIGHTGREEN 10 Foreground only
LIGHTCYAN 11 Foreground only
LIGHTRED 12 Foreground only
LIGHTMAGENTA 13 Foreground only
YELLOW 14 Foreground only
WHITE 15 Foreground only
BLINK 128 Foreground only

You can make the characters blink by adding 128 to the
foreground color. The pre-defined constant BLINK exists
for this purpose. For example,

textcolor(CYAN + BLINK);

Note: Some monitors do not recognize the in tensity
signal used to create the eight "light" colors (8-15). On
such monitors, the light colors will be displayed as their
"dark" equivalents (0-7). Also, systems which do not
display in color may treat these numbers as shades of
one color, special patterns, or special attributes (such as
underlined, bold, italics, etc.). Exactly what you'll see on
such systems depends upon your own hardware.

None

These functions work with IBM pes and compatibles,
only; corresponding functions exist in Turbo Pascal.

textattr

textcolor(GREEN);
textbackground(MAGENTA);

/* selects green characters */
/* on a magenta background */

Chapter 4, New and Modified Functions and Variables 133

textcolor text

N arne textcolor - selects new character color in text mode

Usage #inc1ude <conio.h>
void textcolor(int color);

Prototype in conio.h

Description see textbackground

textheight graphics

N arne textheight - returns the height of a string, in pixels

Usage #inc1ude <graphics.h>

Related
functions usage

Prototype in

Description

Return value

Portability

134

int far textheight(char far *textstring);

int far textwidth(char far *textstring);

graphics.h

textheight takes the current font size and multiplication
factor, and determines the height of textstring in pixels.

textwidth takes the string length, current font size, and
multiplication factor, and determines the width of
textstring in pixels.

These functions are useful for for adjusting the spacing
between lines, computing viewport heights and widths,
sizing a title to make it fit on a graph or in a box, and so
on.

For example, with the 8x8 bit-mapped font and a
multiplication factor of 1 (set by settextstyle), the string
TurboC is 8 pixels high and 48 pixels wide.

It is important to use textheight and textwidth to
compute the height and width of strings, instead of
doing the computations manually. By using these
functions, no source code modifications have to be made
when different fonts are selected.

textheight returns the text height in pixels; textwidth
returns the text width in pixels.

Similar routines exist in Turbo Pascal 4.0

Addendum: Turbo C 1.5 Additions and Enhancements

See also gettextsettings,outtext

textmode text

Name textmode - puts screen in text mode

Usage void textmode(int mode);

Prototype in conio.h

Description textmode selects a specific text mode.

Return value

Portability

See also

You can give the text mode (the argument mode) by
using a symbolic constant from the enumeration type
text_modes (defined in CONIO.H); if you use these
constants, you must # include <conio. h>.

The texCmodes type constants, their numeric values, and
the modes they specify are given in the following table.

Symbolic Numeric
constant value

LAST -1
BW40 0
C40 1
BW80 2
C80 3
MONO 7

Text mode

Previous text mode
Black & white, 40 columns
Color, 40 columns
Black & white, 80 columns
Color, 80 columns
Monochrome, 80 columns

When textmode is called, the current window is reset to
the entire screen, and the current text attributes are reset
to normal, corresponding to a call to normvideo.

Specifying LAST to textmode causes the most-recently
selected text mode to be reselected. This feature is really
only useful when you want to return to text mode after
using a graphics mode.

None

This function works with IBM PCs and compatibles,
only; a corresponding function exists in Turbo Pascal.

gettextinfo

Chapter 4, New and Modified Functions and Variables 135

textwidth graphics

Name textwidth - returns the width of a string, in pixels

Usage #inc1ude <graphics.h>
int far textwidth(char far *textstring);

Prototype in graphics.h

Description see textheight

wherex text

Name wherex - gives horizontal cursor position within
window

Usage int wherex(void);

Related
funtions usage int wherey(void);

Prototype in conio.h

Description wherex returns the x-coordinate of the current cursor
position (within the current text window). wherey
returns the y-coordinate of the current cursor position
(within the current text window).

Return value wherex returns an integer in the range 1 to 80.
wherey returns an integer in the range 1 to 25.

Portability These functions work with IBM pes and compatibles,
only; corresponding functions exist in Turbo Pascal.

See also gotoxy

Example

printf(II The cursor is at (%d,%d)\n", wherex(),wherey());

136 Addendum: Turbo C 7.5 Additions and Enhancements

wherey

Name

Usage

Prototype in

Description

window

Name

Usage

Prototype in

Description

Return value

Portability

See also

text

wherey - gives vertical cursor position within window

int wherey(void);

conio.h

seewherex.

window - defines active text mode window

void window(int left, int top, int right, int bottom);

conio.h

text

window defines a text window on the screen. If the
coordinates are in any way invalid, the call to windowO
is ignored.

left and top are the screen coordinates of the upper left
corner of the window.

right and bottom are the screen coordinates of the lower
right corner.

The minimum size of the text window is 1 column by 1
line. The default window is full screen, with these
coordinates:

SO-column mode:
40-column mode:

None

1, I, SO, 25
1, 1,40,25

This function works with IBM pes and compatibles,
only; a corresponding function exists in Turbo Pascal.

gettextinfo, textmode

Chapter 4, New and Modified Functions and Variables 137

write modified

N arne write - writes to a file

Usage int write(int handle, void *buf, unsigned nbyte);

Related
functions usage int _write(int handle, void *buf, unsigned nbyte);

Prototype in io.h

Description These functions have the same description as given in
the Turbo C Reference Guide, with the following
additions:

138

The maximum number of bytes that either of these
functions can write is 65534, since 65535 (OxFFFF) is the
same as -1, which is the error return indicator for these
functions.

Addendum: Turbo C 7.5 Additions and Enhancements

c H A p T E R

5

Revised Function Prototypes

This chapter updates some of the function prototypes listed in Chapter 2 of
the Turbo C Reference Manual. In some cases, we revised the prototypes to
keep up with the Draft Proposed ANSI C Standard. Others needed
corrections. Refer to Chapter 4 in this addendum for information about
new functions and about old functions whose descriptions have been
modified.

Function Header Revised
Name File Usage

access IO.H int access(const char *filename, int amode);

asctime TIME.H char *asctime(const struct tm *tm);

ataf MATH.H double atof(const char *nptr);
STDLIB.H

atai STDLIB.H int atoi(const char *nptr);

alaI STDLIB.H long atol(const char *nptr);

brk ALLOC.H int brk(void *endds);

chdir DIR.H int chdir(const char *path);

_chmad IO.H int _chmod(const char *filename, int func[, int attrib));

chmad IO.H int chmod(const char *filename, int permiss);

_creat IO.H int _creat(const char *filename, int attrib);

creat IO.H int creat(const char *filename, int permiss);

crealnew IO.H int creatnew(const char *filename, int attrib);

Chapter 5, Revised Function Prototypes 139

Function Header Revised
Name File Usage

cscanf CONIO.H int cscanf(const char *format[, argument,,, .]);

clime TIME.H char *ctime(const time_t *clock)i·

eof IO.H int eof(int handle);

farcoreleft ALLOC.H unsigned long farcoreleft(void);

findfirst DIRH int findfirst(const char *pathname, struct ffblk *ffblk,
int attrib);

fnmerge DIRH void fnmerge(char *path, const char *drive,
const char *dir, const char name,
const char *ext);

fnsplit DIRH int fnsplit(const char *path, char *drive, char *dir,
char *name, char *ext);

fopen STDIO.H FILE *fopen(const char *filename, const char *type);

_£preset FLOAT.H void _fpreset(void);

fprintf STDIO.H int fprintf(FILE *stream,
const char *format[, argument,,, .]);

fputchar STDIO.H int fputchar(int ch);

fputs STDIO.H int fputs(const char *string, FILE *stream);

fread STDIO.H size_t fread(void *ptr, size_t size,
size_t nitems, FILE *stream)

freopen STDIO.H FILE *freopen(const char *filename,
const char *type, FILE *stream);

fscanf STDIO.H int fscanf(FILE *stream,
const char *format[, argument, ...]);

fstat STAT.H int fstat(int handle, struct stat *buff>;

fwrite STDIO.H size_t fwrite(const void *ptr, size_t size,
size_t nitems, FILE *stream);

getcwd DIRH char *getcwd(char *buf, int n);

getdfree DOS.H void getdfree(unsigned char drive,
struct dfree *dfreep);

getenv STDLIB.H char *getenv(const char *envvar)i

getfat DOS.H void getfat(unsigned char drive,
struct fatinfo *fatblkp);

140 Addendum: Turbo C 7.5 Additions and Enhancements

Function Header Revised
Name File Usage

getpass CONIO.H char *getpass(const char *prompt);

gmtime TIME.H struct tm *gmtime(const time_t *clock);

inportb DOS.H unsigned char inportb(int port);

ioctl IO.H int ioctlCint handle, int cmd[, void * argdx, int argcx]);

keep DOS.H void keep(unsigned char status, unsigned size);

localtime TIME.H struct tm *localtime(const time_t *clock);

memccpy MEM.H void *memccpy(void *destin, const void *source,
STRINGH int ch, size_t n);

memchr MEM.H void *memchr(const void *s, int ch, size_t n);
STRING.H

memcmp MEM.H int memcmp(const void *sl, const void *52, size_t n);
STRING.H

memcpy MEM.H void * memcpy(void *destin, const void *source,
STRING.H size_t n);

memicmp MEM.H int memicmp(const void *sl, const void *s2,
STRING.H size_t n);

memmove MEM.H void * memmove(void *destin, const void *source,
STRING.H size_t n);

memset MEM.H void *memset(void *s, int ch, size_t n);
STRING.H

mkdir DIR.H int mkdir(const char *pathname);

mktemp DIR.H char *mktemp(char *template);

movedata MEM.H void movedata(unsigned segsrc, unsigned offsrc,
STRING.H unsigned segdest, unsigned offdest,

size_t numbytes);

_open IO.H int _open(const char *pathname, int access);

open IO.H int open(const char *pathname,
int access[, unsigned permiss]);

outportb DOS.H void outportb(int port, unsigned char byte);

parsfnm DOS.H char *parsfnm(const char *cmdline, struct feb *fcbptr,
int option);

Chapter 5, Revised Function Prototypes 141

Function
Name

peek

peekb

perror

poke

pokeb

printf

putenv

puts

qsort

rename

rewind

nndir

sbrk

scanf

Header
File

DOS.H

DOS.H

STDIO.H

DOS.H

DOS.H

STDIO.H

STDLIB.H

STDIO.H

STDLIB.H

STDIO.H

STDIO.H

DIRH

ALLOC.H

STDIO.H

searchpath DIRM

setblock DOS.M

setmode

setvbuf

sleep

sprintf

sscanf

_status87

stime

142

IO.H

STDIO.H

DOS.H

STDIO.H

STDIO.H

FLOAT.H

TIME.H

Revised
Usage

int peek(unsigned segment, unsigned offset);

char peekb(unsigned segment, unsigned offset);

void perror(const char *s);

void poke(unsigned segment, unsigned offset,
int value);

void pokeb(unsigned segment, unsigned offset,
char value);

int printf(const char *format[, argument, ... J);

int putenv(const char *envvar);

int puts(const char *string);

void qsort(void *base, size_t nelem,
size_t width, int (*fcmp) (const void *, const
void *»;

int rename(const char *oldname,
const char *newname);

void rewind(FILE *stream);

int rmdir(const char *pathname);

void *sbrk(int incr);

int scanf(const char *format[, argument, ... J);

char *searchpath(const char *filename);

int setblock(unsigned seg, unsigned newsize);

int setmode(int handle, int mode);

int setvbuf(FILE *stream, char *buf, int type,
size_t size);

void sleep(unsigned seconds);

int sprintf(char *string, const char *format
[, argument, ...]);

int sscanf(char *string, const char *format
[, argument, ...]);

unsigned int _status87(void);

int stime(time_t *tp);

Addendum: Turbo C 7.5 Additions and Enhancements

Function Header Revised
Name File Usage

stpcpy STRING.H char *stpcpy(char *destin, const char *source);

strcat STRING.H char *strcat(char *destin, const char *source);

strchr STRING.H char *strchr(const char *5tr, int c);

strcmp STRING.H int strcmp(const char *5tr1, const char *5tr2);

strcpy STRING.H char *strcpy (char *destin, const char *source);

strcspn STRING.H size_t strcspn(const char *str1, const char *5tr2);

strdup STRING.H char *strdup(const char *5tr);

stricrnp STRING.H int stricrnp(const char *str1, const char *str2);

stden STRING.H size_t strlen(const char *5tr);

strncat STRING.H char *strncat(char *destin, const char *source,
size_t maxlen);

strncrnp STRING.H int strncmp(const char *5tr1, const char *str2,
size_t maxlen);

strncpy STRING.H char *strncpy(char *destin, const char *50urce,
size_t maxlen);

strnicmp STRING.H int strnicmp(const char *str1, const char *str2,
size_t maxlen);

strnset STRING.H char *strnset(int *str, int ch, size_t n);

strpbrk STRING.H char *strpbrk(const char *str1, const char *str2);

strrchr STRING.H char *strrchr(const char *5tr, int c);

strset STRING.H char *strset(char *5tr, int ch);

strspn STRING.H size_t strspn(const char *5tr1, const char *str2);

strstr STRING.H char *strstr(const char *5tr1, const char *str2);

slrtod STDLIB.H double strtod(const char *5tr, char **endptr);

strtok STRING.H char *strtok(char *5tr1, const char *5tr2);

strtol STDLIB.H long strtol(const char *5tr, char **endptr, int base);

system PROCESS.H int system(const char *command);
STDLIB.H

Chapter 5, Revised Function Prototypes 143

Function Header Revised
Name File Usage

time TIME.H time_t time(time_t *tloc);

ungete STDIO.H int ungetc(int c, FILE *stream);

unlink DOS.H int unlink(const char *filename);
IO.H

vfprintf STDIO.H int vfprintf(FILE *stream, const char *format,
va_list param);

vfseanf STDIO.H int vfscanf(FILE *stream, const char *format,
va_list param);

vprintf STDIO.H int vprintf(const char *format, va_list param);

vseanf STDIO.H int vscanf(const char *format, vaJist param);

vsprintf STDIO.H int vsprintf(char *string, const char *format,
va_list param);

vsseanf STDIO.H int vsscanf(char *string, const char *format,
va_list param);

144 Addendum: Turbo C 7.5 Additions and Enhancements

c H A p T E R

6

Miscellaneous Information

In this chapter we document miscellaneous changes to the software, along
with changes and additions to the Turbo C User's Guide and the Turbo C
Reference Guide. This information doesn't fall under any of the categories
covered in the other chapters and appendixes in this addendum. The
information presented in this chapter covers:

. II TCCONFIG.EXE (formerly called CNVTCFG.EXE)

II BUILTINS.MAK

II streams
&I configuration files
11 pick lists and pick files
B corrections to the original manuals

The TCCONFIG.EXE Conversion Utility for
Configuration Files

The integrated environment and command-line compiler have a number of
common options, listed in Table 2.2 of Appendix C in the Turbo C Reference
Guide. TCCONFIG.EXE takes a configuration file created by one
environment and converts it for use by the other.

The conversion command is

TCCONFIG SourceFile [DestinationFile]

Chapter 6, Miscellaneous Information 145

TCCONFIG automatically determines the direction of the conversion: It
examines the source file to see whether it is an integrated environment (TC)
configura tion file or a command -line compiler (TCC) configuration file.

The destination file name is optional. If you don't specify a file name,
TCCONFIG uses the default name TURBOC.TC or TURBOC.CFG,
depending on the conversion direction. You can give any file name;
however, the command-line compiler only looks for a file named
TURBOC.CFG when running. It won't run on any other name.

The TURBOC.TC file uses default values for any items not specified by the
command-line compiler configuration file (TURBOC.CFG). In addition,
only the options in TURBOC.TC that differ from the default values are
included in TURBOC.CFG.

TCCONFIG returns you to the DOS prompt when the conversion is done.

How MAKE Searches for BUlL TINS.MAK

BUILTINS.MAK is an optional file in which you can store MAKE macros
and rules that you use again and again, so you don't have to keep typing
them into your makefiles.

The first place MAKE searches for BUlL TINS.MAK is the current directory.
If it's not there, and if you're running under DOS 3.x, MAKE will then
search the start directory (where MAKE.EXE resides).

What Are Streams?

Streams are the most portable means for reading or writing data using
Turbo C. They are designed to allow flexible and efficient input and output
that are not affected by the underlying file or device hardware.

A stream is a file or physical device that you manipulate with a pointer to a
FILE object (defined in STDIO.H). The FILE object contains various
information about the stream, including the current position of the stream,
pointers to any associated buffers, and error or end-of-file indicators.

Your program should never create or copy FILE objects themselves; instead,
it should use the pointers returned from functions like fopen. Be sure that
you do not confuse FILE pointers with DOS file handles (which are used in
low-level DOS or UNIX-compatible I/O).

146

You must first "open" a stream before you can perform I/O on the stream.
Opening the stream connects it to the named DOS file or device. The
routines that open streams are fopen, fdopen, and freopen. When you
open a stream, you indicate whether you want to read or write to the
stream, or do both. You also indicate whether you will treat the data of that
stream as text or binary data. This last distinction is important because of a
minor incompatibility between C stream I/O and DOS text files.

Text vs. Binary Streams

Text streams are used for normal DOS text files, such as a file created with
the Turbo C editor. C stream I/O assumes that text files are divided into
lines separated by a single newline character (which is the ASCII line-feed).
DOS text files, however, are stored on disk with two characters between
each line, an ASCII carriage-return and a line-feed. In text mode, Turbo C
translates carriage-return line-feed (CR/LF) pairs into a single line-feed on
input; line-feeds are translated to CR/LF pairs on output.

Binary streams are much simpler than text streams. No such translations
are performed. Any character is read or written without change.

A file can be accessed in either text or binary mode without any problems
as long as you are aware of and understand the translations taking place in
text streams. Turbo C doesn't "remember" how a file was created or last
accessed.

If no translation mode is specified when a stream is opened, it is opened in
the default translation mode given by the global variable _fmode. By
default, Jmode is set to text mode.

Buffering Streams

Streams are typically buffered when associated with files. This allows I/O
at the individual character level-such as with getc and putc-to be very
fast. You can supply your own buffer, change the size of the buffer used, or
force the stream to use no buffer at all by calling setvbuf or setbuf.

Buffers are automatically flushed when the buffer is full, the stream is
closed, or the program terminates normally. You can use fflush and flushall
to force the buffers to be flushed manually.

Normally, you use streams to sequentially read or write data. I/O takes
place at the current file position. Whenever you read or write data, the
program moves the file position to immediately after the just-accessed data.

Chapter 6, Miscellaneous Information 147

A stream that is connected to a disk file can also be randomly accessed. You
can use fseek to position a file, then issue several read or write operations
to access the data after that point.

When you are both reading and writing data to a stream, you should not
freely mix reading and writing operations. You must flush the stream's
buffer between reading and writing data. A call to fflush, flushall, or fseek
clears the buffer and allows you to switch operations. For maximum
portability, you should flush even when no buffer is present, since other
systems may have additional restrictions on mixing input and output
opera tions even without a buffer.

Predefined Streams

In addition to streams created by calling fopen, five predefined streams are
available whenever your program begins execution. The following names
correspond to these streams:

Name 110 Mode Stream

stdin Input Text Standard Input
stdout Output Text Standard Output
stderr Output Text Standard Error
stdaux Both Binary Auxiliary 1/ 0
stdprn Output Binary Printer Output

The stdaux and stdprn streams are specific to DOS and are not portable to
other systems.

The stdin and stdout streams can be redirected by DOS, while the others are
connected to specific devices: stderr to the console (CON:), stdprn to the
printer (PRN:), and stdaux to the auxiliary port.

The auxiliary port depends on your machine's configuration; it is typically
COM1:. Consult your DOS documentation for information about
redirecting input or output on a DOS command line. If not redirected, stdin
and stdout are connected to the console (CON: device). Furthermore, if not
redirected, stdin is line buffered, while stdout is unbuffered. The other
predefined streams are unbuffered.

To process a predefined stream in a mode other than its default (for
example, to process stdprn in text mode), use setmode. The predefined

148

stream names are constants; you cannot assign values to them. If you want
to reassociate one of them to a file or device, use freopen.

What is a Configuration File?

Basically, a configuration file is a file that contains information pertinent to
Turbo C. In it, you store such information as your selected compiler
options, your linker options, various directories that Turbo C will need to
search when compiling and linking your programs, and so on.

There are two types of Turbo C configuration files: one you use with
TCC.EXE (command-line Turbo C), and the other you use with TC.EXE (the
Turbo C integrated environment). There is only one command-line
configuration file; it's named TURBOC.CFG. The integrated environment
configuration file can have any file name. The file TCCONFIG.TC is the
default (assumed) integrated environment configuration file.

In this section we briefly summarize the command-line configuration file
(TURBOC.CFG), then refer you to other documentation in the Turbo C
User's Guide. After that, we cover the integrated environment configuration
files in detail.

The TURBOC.CFG Configuration File

When you invoke command-line Turbo C, it looks for a file named
TURBOC.CFG. Such a command-line configuration file, if it exists, can
contain any of the Turbo C compiler command-line options.

If you've listed your commonly-used options in TURBOC.CFG, you won't
need to enter them on the command line when you use TCC.EXE. If you
don't want to use certain options that are listed in TURBOC.CFG, you can
override them with switches on the command line.

For more information about TURBOC.CFG, refer to "The TURBOC.CFG
File" in Chapter 3 of the Turbo C User's Guide.

The TC Configuration Files

When you start using the Turbo C integrated environment for the first time,
there is no configuration file. TC.EXE will start up with all the menu items
set to their internal defaults (Memory model will be set to Small, Calling

Chapter 6, Miscellaneous Information 149

convention set to C, Keep messages set to No, etc.). In the course of using
the integrated environment, you will probably want to change some of the
menu items' settings.

If you exit Turbo C without saving the new settings in a configuration file,
then the next time you invoke the integrated environment, it will again
start up with all the menu items set to their previous defaults. But if,
instead, you save the new settings to a configuration file, then the next time
the integrated environment starts up, the menu items will be set to the
values you chose, and you won't have to go through the process of
resetting them.

TCCONFIG.TC

When you start up TC.EXE, it looks for a configuration file named
TCCONFIG.TC. It looks for that file in certain locations (we'll explain
exactly where it looks later); if TC.EXE can't find a TCCONFIG.TC file, the
integrated environment starts up using the default settings that are built
into TC.EXE.

Other TC Configuration Files

You can also start up TC.EXE at the DOS prompt with a request for a
specific configuration file, using the Ie option. For example, if you type

tc /crnyconfig

at the DOS prompt, Turbo C will look for a configuration file named
MYCONFIG.TC in the current directory (if you give no extension, Turbo C
assumes the extension .TC).

If Turbo C can't find the configuration file you named, it will issue a
warning message to that effect. It won't look for any other configuration
file, but it will still start up, using the built-in default settings.

What is Stored in TC Configuration Files?

The information stored in the TC configuration files can be broken down
into two categories: compiler-linker options and TC.EXE-specific values.

The compiler-linker options govern the compiler and linker, and they all
have corresponding options in the command-line version of Turbo C, while
the TC.EXE-specific values are related to the integrated environment itself.
Some examples of these values specific to the integrated environment are
Project name, Pick file name, and the Environment options.

150

Creating a TC Configuration File

So how do you create a TC configuration file? Unlike the command-line
configuration file (TURBOC.CFG), the integrated environment
configuration file is not one you can create or modify with an editor. You
must select the Store options item from the Options menu, and then the
integrated environment will create the configuration file for you.

Changing Configuration Files Mid-stream

It's easy to change to a different .TC configuration file from within the
integrated environment. To do this:

Il Select Restore options from the Options menu. A pop-up box will
appear, displaying the last configuration file name you typed (it defaults
to * . tc the first time).

Il You can type in a mask (like * .tc or ??config. *) then press Enter to
bring up a directory listing of .TC files. You then select a file from the
directory list.

Il Or you can type in a specific configuration file name (then press Enter to
load that file).

Where Does TC.EXE Look for TCCONFIG.TC?

There are two places TC.EXE will look for the default configuration file
TCCONFIG.TC. First, it will search the default (current working) directory.
If it does not find TCCONFIG.TC there, it will then search the Turbo C
directory, if you have previously set the Turbo C directory using TCINST.

To find out more about the Turbo C directory and TCINST, read Appendix
A, "The New TCINST," in this addendum.

TCINST vs. the Configuration File: Who's the Boss?

You can use TCINST to set any the items found on Turbo C's
Options/Directories or Options/Environment menu, and then store those
settings directly in TC.EXE. If there is no TC configuration file to be found
when you start up that customized TC.EXE, those settings you customized
will be the defaults.

Chapter 6, Miscellaneous Information 151

However, if TC.EXE starts up and finds a TCCONFIG.TC file in the default
directory (or in the Turbo C directory), that configuration file's settings will
take precedence over any default settings you installed with TCINST.

Also, if you invoke TC.EXE with a / c option, and Turbo C finds the
configuration file you specified, that file's settings will take precedence over
the TCINST-installed defaults.

What Does "Config auto save" Do?

Normally, Turbo C will save the current configuration file (write it out to
disk) only when you give the Options/Store options command. However,
you can direct Turbo C to automatically save the configuration file under
additional circumstances.

Just toggle the Options/Environment/Config auto save menu item to on.
With Config auto save on, Turbo C will also save the file whenever you
select Run or File/OS shell, or when you exit the integrated environment
(by selecting File/Quit)-if the configuration file has never been saved, or
if it has been at all modified since it was last saved.

With Config auto save on, if the configuration file has not yet been saved,
Turbo C will choose a file name for the auto saved file. The chosen name is
the last configuration file you stored or retrieved, or TCCONFIG.TC (in the
current directory) if you haven't loaded, retrieved or saved a configuration
file yet.

What are Pick Lists and Pick Files?

The pick list and pick file are two features of the Turbo C integrated
environment that work together to save the state of your editing sessions.
The pick list remembers what files you are editing while you are in the
integrated environment. The pick file remembers what files you were
editing after you leave the integrated environment or after you change contexts
within the integrated environment. (Changing contexts encompasses
loading a new configuration file or defining a new pick file name.)

The Pick List

The pick list is a menu located in the File menu; you call it up by selecting
File/Pick or by pressing the Alt-F3 hot key. The pick list provides a list of the

152

eight files most recently loaded into the editor. The top file listed is the file
currently in the editor. If there is more than one file name in the pick list,
the second file name listed is highlighted; this is the file just previously
loaded into the editor.

To load a file from the pick list into the editor, scroll the selection bar to
highlight the appropriate file name, then press Enter. When you do this,
Turbo C will load the selected file into the editor, then the editor will
position the cursor in that newly-loaded file at the location you last left it.
In addition, any marked block and markers in that file will be exactly as
you left them.

The pick list is a handy tool for moving back and forth between your files
as you develop your program. By pressing AIt-F3 Enter in succession, you
can alternate between two files.

If the file you want is not on the pick list, you can select --load filo-
(the last entry on the pick list menu). This will bring up a Load File Name

input box, and you can type in the name of the file you want (using DOS
style wildcards if necessary). You can also press the F3 hot key to
automatically select File/Load.

The Pick File

The pick file stores editor-related information, including the contents of the
pick list. For each entry (file) in the pick list, Turbo C stores the file name,
cursor position, marked block, and markers.

In addition to information about each file, the pick file contains data on the
state of the editor when you last exited. This includes the most recent
search-and-replace strings and search options.

To create a pick file, you must define a pick file name. You can do this by
entering a file name in the Pick file name menu item on the
Options/Directories menu. If you have defined a pick file name, then
whenever you exit the integrated environment, Turbo C updates that pick
file on disk.

When and How Do You Get a Pick File?

There are two items on the Options/Directories menu that you can look to
for information about the pick file: Pick file name and Current pick file.

Q: How do you know if you already have a pick file?

Chapter 6, Miscellaneous Information 153

A: You have a pick file if the Current pick file menu item is not blank.

Q: How did that file name appear in Current pick file?
A: In one of two ways: Either a file name is explicitly listed in Pick file

name, or (if Pick file name is blank) you loaded a default pick file.

Q: Suppose the Pick file name item explicitly lists a file name. How did
that file name get there?

A: You get a file name in Pick file name by:

1. entering it yourself in the current session, or

2. entering it in a previous session, saving the configuration file, then
using that configuration file in the current session, or

3. installing it with TCINST

Q: Suppose Pick file name is blank, but Current pick file is not blank. How
did that default pick file get loaded?

A: There was a default pick file, TCPICK.TCP, in the current directory or
(if not there) in the Turbo C directory, and Turbo C loaded it
automatically on start-up.

Once a pick file is loaded, the integrated environment remembers the full
path name. This information is displayed in the Current pick file menu
item.

When Does Turbo C Save Pick Files?

Turbo C saves the file named in Current pick file whenever you exit the
integrated environment. In addition, any time the pick file name is changed
(either directly by entering a new name from the menu item, or indirectly
by loading a configuration file that contains a different pick file name)
Turbo C first saves the existing pick file.

Turbo C will not save a pick file to disk when you exit if the Current pick
file menu item is blank.

Corrections to the Original Manuals

The following list shows minor corrections to the Turbo C User's Guide and
Turbo C Reference Guide. Before going on, check the row of numbers at the
bottom of the copyright page in those manuals (the page behind the title
page at the front of the manuals). If the numbers are 10 9 8 7 6 5 4 3 2 1,

154

refer to the page numbers listed here in the first column; if the numbers are
10 9 8 7 6 (and possibly 5), refer to the page numbers listed here in the
second column.

Turbo C User's Guide

9 9

30 34

62 70

164 175

165 175

174 183

187 195

235 244

Delete the phrase" As we explained in the
"Introduction," ."

Change "Appendix A describes the editor commands "
to "Appendix A of the Turbo C Reference Guide decribes the
editor commands "

In the example code for MYMAIN.C, insert
char *GetString(void);
between the #include statement and the beginning of
main ()

The line of code that says
strcpy (current .last = "Smith"); should say
strcpy(current.last,"Smith");

Replace pstudent -> last = "Jones"; with
strcpy(pstudent -> last,"Jones");

Delete the curly bracket (}) after f c los e (f) ;

In the zwf () statement, change parml=%d and parm2=%d to
parml=%f and parm2=%f, respectively.

In the description of Compact, the phrase "The inverse of
medium" does not imply that 1 Mb of static data is
possible.

Turbo C Reference Guide

18

41

60

66

19 In line five, the phrase "the with double quotes" should
read "them with double quotes".

24

50

70

76

Jrnode Usage: Replace "int" with "unsigned".

bioskey Description: Replace "BIOS interrupt Ox14" with
"Bios interrupt OxI6".

_creat Description: First line, change "_create" to "_creat"
(no ending e).

dosexterr Usage and Description: IIDOSERR" should be
"DOSERROR" .

Chapter 6, Miscellaneous Information 155

68 78

70 80

118 127

190 200

dup Description: Change "dup2 returns the next file
handle available" to I/dup returns the next file handle
available" .

eof Usage: Delete 1/ * 1/ in " *handle".

getftime Usage and Prototype in: Replace I/<dos.h>" with
"<io .h>" .

rename Return value: Replace
"ENOTSAME Not same device" with
"EXDEV Cross-link device".

209 ... scanf %[search_setI conversion: Last two examples on
page; replace "A through Z" with" A through F" (twice) .

210

256 268

318 331

156

... scanf %[search_setl conversion: Example at top of page:
replace 1/ A through Z" with 1/ A through F".

Description of Delete character under cursor: Change
"This command does not work ... " to "This command
works ... ".

Under "Full File name Macro ($<)," change both
occurrences of . ob j . c: to.c. ob j :

A p p E N D x

A

The New TCINST

In this appendix, we cover the new version of the Turbo C Installation (or
customization) program, TCINST.EXE, which is included in your Turbo C 1.5
package.

The first thing you should do after copying the Turbo C 1.5 files to your
system is either delete or rename the old TCINST.COM. This is necessary
because TCINST for version 1.5 is now an .EXE file. If both the .COM and
.EXE TCINST files are on disk and you type tcinst Enter, DOS will find
TCINST.COM (from version 1.0) instead of TCINST.EXE (from version 1.5).

Appendix F in the Turbo C Reference Guide covers the original
TCINST.COM, shipped with Turbo C version 1.0. The original
TCINST.COM cannot be used with Turbo C version 1.5, and the new
TCINST.EXE cannot be used with Turbo C version 1.0. Don't worry,
though: TCINST will reject a mismatched version of TC.EXE with an error
message. For information about the new TCINST, read this appendix, not
AppendixF.

What Is TCINST?

TCINST is the Turbo C Installation program; you use it to customize
TC.EXE, the integrated development environment version of Turbo C.
Through TCINST, you can change various default settings in the TC
operating environment, such as the screen size, editing modes, menu
colors, and default directories. TCINST lets you change the environment in
which you operate Turbo C: It directly modifies certain default values
within your copy of TC.EXE.

Appendix A, The New TelNST 157

With TCINST, you can do any of the following:

• set up paths to the directories where your include, library, configuration,
Help, pick, and output files are located

• customize the editor command keys
• set up Turbo C's editor defaults and on-screen appearance
• set up the default video display mode
• change screen colors
• resize Turbo C's Edit and Message windows

Turbo C comes ready to run: There is no installation per se. You can copy
the files from the distribution disks to your working floppies (or hard disk),
as described in Chapter 1 of the Turbo C User's Guide, then run Turbo C.
However, you will need to run TCINST if you want to change the defaults
directly in TC.EXE.

If you want to store path names (to all the different directories you use
when running TC) directly in TC.EXE, you'll need to use the Turbo C
directories option.

You can use the Editor commands option to reconfigure (customize) the
interactive editor's keystrokes to your liking.

The Setup environment option is for setting various values that have to do
with the default editing modes and the appearance of the TC integrated
environment.

With Display mode, you can specify the video display mode that TC will
operate in, and whether yours is a "snowy" video adapter.

You can customize the colors of almost every part of TC's integrated
environment through the Colors option.

The Resize windows option allows you to change the sizes of the Edit and
Message windows.

Running TCINST

1) The syntax for TCINST is

tcinst [/c] [pathname]

Both pathname and I c are optional. If pathname is not supplied, TCINST
looks for TC.EXE in the current directory. Otherwise, it uses the given
path name. Normally, TCINST comes up in black and white, even on a
color monitor. If you want to run TCINST in color, give the I c option.

158

Note: You can use one version of TCINST to customize several different
copies of Turbo C on your system. These various copies of TC.EXE can
have different executable program names; all you need to do is invoke
TCINST and give a path name to the copy of TC.EXE you're
customizing; for example,

tcinst tc. exe

teinst .. \ .. \bwtc.exe

teinst Ie e:\borland\eolorte.exe

In this way, you can customize the different copies of Turbo C on your
system to use different editor command keys, different menu colors, and
soon.

2) From the main TCINST installation menu, you can select Turbo C
directories, Editor commands, Setup environment, Display mode,
Colors, Resize windows, or Quit/ save.

You can either press the highlighted capital letter of a given option, or
use the Up and Down arrow keys to move to your selection and then press
Enter. For instance, press C to modify the Colors of the TC integrated
environment.

3) In general, pressing Esc (more than once if necessary) returns you from a
submenu to the main installation menu.

The Turbo C Directories Option

With Turbo C directories, you can specify a path to each of the TC.EXE
default directories. These are the directories Turbo C searches when
looking for an alternate configuration file, the Help file, the include and
library files, and the directory where it will place your program output.

When you select Turbo C directories, TCINST brings up a submenu. The
items on this submenu are

lJ Include directories
C Library directories
tI Output directory
lJ Turbo C directory
lJ Pick file name

You enter names for each of these just as you do for the corresponding
menu items in TC.EXE. If you are not certain of each item's syntax, refer
first to Chapter 2 in this addendum and then Chapter 2 in the Turbo C
User's Guide.

Appendix A, The New TelNST 159

Include directories and Library directories:

You can enter multiple directories in Include directories and Library
directories: You must separate the directory path names with a
semicolon (;), and you can enter a maximum of 127 characters with
either menu item. You can enter absolute or relative path names.

Output directory and Turbo C directory:

The Output directory and Turbo C directory menu items each take one
directory path name; each item accepts a maximum of 64 characters.

The Turbo C directory is where TC looks for the Help file and
TCCONFIG.TC (the default configuration file) if they aren't in the
curren t directory.

Pick file name:

When you select this menu item, an input window pops up. In it, you
type the path name of the Pick file you want Turbo C to load or create.
There is no default installed Pick file name.

After typing a path name (or names) for any of the Setup environment
menu items, press Enter to accept, then press Esc to return to the main
TCINST installation menu. When you exit the program, TCINST prompts
you on whether you want to save the changes. Once you save the Turbo C
directories paths, the locations are written to disk and become part of
TC.EXE's default settings.

The Editor Commands Option

Turbo C's interactive editor provides many editing functions, including
commands for

• cursor movement
• text insertion and deletion

• block and file manipulation

• string search (plus search-and-replace)

These editing commands are assigned to certain keys (or key
combinations): They are explained in detail in Appendix A of the Turbo C
Reference Guide.

160

When you select Editor commands from TCINST's main installation menu,
the Install Editor screen comes up, displaying three columns of text.

EI The first column (on the left) describes all the functions available in TC's
interactive editor.

m The second column lists the Primary keystrokes: what keys or special key
combinations you press to invoke a particular editor command.

Il The third column lists the Secondary keystrokes: These are optional
alternate keystrokes you can also press to invoke the same editor
command.

Note: Secondary keystrokes always take precedence over primary
keystrokes.

The bottom lines of text in the Inatall Editor screen summarize the keys
you use to select entries in the Primary and Secondary columns.

Key Legend What It Does

Left, Right select Selects the editor command you
Up and Down want to re-key.
arrow keys

Page Up and page Scrolls up or down one full
Page Down screen page
arrow keys

Enter modify Enters the keystroke-modifying
mode.

R restore factory defaults Resets all editor commands to the
factory default keystrokes.

Esc exit Leaves the Install Editor

screen and returns to the main
TCINST installation menu.

F4 Key Modes Toggles between the three flavors
of keystroke combinations.

After you press Enter to enter the modify mode, a pop-up window lists the
current defined keystrokes for the selected command, and the bottom lines
of text in the Install Editor screen summarize the keys you use to
change those keystrokes.

Appendix A, The New TCINST 161

Key Legend What It Does

Backspace backspace Deletes keystroke to left of cursor

Enter accept Accepts newly defined key-
strokes for selected editor
command.

Esc abandon changes Abandons changes to the current
selection, restoring the com-
mand's original keystrokes, and
returns to the Install Editor
screen (ready to select another
editor command).

F2 restore Abandons changes to current
selection, restoring the com-
mand's original keystrokes, but
keeps the current command
selected for re-definition.

F3 clear Clears current selection's
keystroke definition, but keeps
the current command selected for
re-definition.

F4 Key Modes Toggles between the three flavors
of keystroke combina tions:
WordStar-like, Ignore case,
and Verbatim.

Note: To enter the keys F2 , F3 , or F4 as part of an editor command key
sequence, first press the backquote (') key, then the appropriate function
key.

Keystroke combinations come in three flavors: WordStar-li.ke, Ignore
case, and Verbatim. These are listed on the bottom line of the screen; the
highlighted one is the flavor of the current selection. In all cases, the first
character of the combination must be a special key or a control character.
The combination flavor governs how the subsequent characters are
handled.

162

C Wordstar-like: In this mode, if you type a letter or the character [, 1, \,
" , or -), it is automatically entered as a Control-Character combination.
For example,

typing a or A or etr! A

typing yor Yor etr! y

typing [

yields

yields

yields

< etr! A>

< etr! Y>

< etr! [>

For example, if you customize an editor command to be < etr! A> < etr! B >
in WordS tar-like mode, you can type any of the following in the TC
editor to activate that command:

< Ctr! A > < Ctr! B >
< etr! A> B
< etr! A> b

C Ignore case: In this mode, all alpha (letter) keys you enter are
converted to their uppercase equivalents. When you type a letter in this
mode, it is not automatically entered as a Control-Character combination;
if a keystroke is to be a Control-Letter combination, you must hold down
the etr! key while typing the letter. For example, in this mode, < etr! A> B
and < etr! A > b are the same, but differ from < etr! A > < etr! B >.

C Verbatim: If you type a letter in this mode, it is entered exactly as you
type it. So, for example, < etr! A> < etr! B >, < etr! A> B, and < etr! A > bare
all distinct.

Allowed Keystrokes

Although TCINST provides you with almost boundless flexibility in
customizing the Turbo C editor commands to your own tastes, there are a
few rules governing the keystroke sequences you can define. Some of the
rules apply to any keystroke definition, while others come into effect only
in certain keystroke modes.

1. You can enter a maximum of six keystrokes for any given editor
command. Certain key combinations are equivalent to two keystrokes:
These include Aft (any valid key); the cursor-movement keys (Up, Page Down,
Del, etc.); and all function keys or function key combinations (F4, Shift-F7,
Aft-FB, etc.).

2. The first keystroke must be a character that is non-alphanumeric and
non-punctuation: i.e., it must be a Control key or a special key.

3. To enter the Esc key as a command keystroke, type etrl [

4. To enter the Backspace key as a command keystroke, type etr! H

Appendix A, The New TCINST 163

5. To enter the Enferkey as a command keystroke, type Cfrl M

6. The Turbo C predefined Help function keys (F1 and Aft F1) can't be
reassigned as Turbo C editor command keys. Any other function key
can, however. If you enter a Turbo C hot key as part of an editor
command key sequence, TCINST will issue a warning that you are
overriding a hot key in the editor and verify that you want to override
that key. Chapter 2 of the Turbo C User's Guide contains a complete list of
Turbo C's predefined hot keys.

The Setup Environment Option

You can install several editor default modes of operation with this option:
eight of the items on this menu are toggles, and the ninth one brings up a
submenu. If you are not familiar with these items, refer first to Chapter 2 in
this addendum and then Chapter 2 in the Turbo C User's Guide.

The items on the Setup environment menu and their significance are
described here.

Backup source files

(on by default) With Backup source files on, Turbo C automatically
creates a backup of your source file when you do a File/Save. It uses the
same file name, and adds a .BAK extension: the backup file for filename.C
would be filename.BAK. With Backup source files off, no .BAK file is
created.

Edit auto save

(on by default) With Edit auto save on, Turbo C automatically saves the
file in the editor (if it's been modified since last saved) whenever you use
Run or File/ as shell. This helps prevent loss of your source files in the
event of some calamity. With Edit auto save off, no such automatic
saving occurs.

Config auto save

(on by default) With Config auto save on, Turbo C automatically saves
the configuration file (if it's been modified since last saved) whenever
you use Run, File/ as shell, or File/ Quit.

Zoom state

With Zoom state on, Turbo C starts up with the Edit window occupying
the full screen; when you switch to the Message window, it will also be
full-screen. With Zoom state off, the Edit window occupies the top
portion of the screen, above the Message window. (You can resize the

164

windows with the Resize windows option from the main TCINST
installation menu.}

Insert mode

(on by default.) With Insert mode on, the editor inserts anything you
enter from the keyboard at the cursor position, and pushes existing text
to the right of the cursor even further right. Toggling Insert mode off
allows you to overwrite text at the cursor.

Autoindent mode

(on by default.) With Autoindent mode on, the cursor returns to the
starting column of the previous line when you press Enter. When
Autoindent mode is toggled off, the cursor always returns to column one.

Use tabs

(on by default.) With Use tabs on, when you press the Tab key, the editor
places a tab character (" I) in the text using the tab size specified with
Tab size. With Use tabs off, when you press the Tab key, the editor
inserts enough space characters to align the cursor with the first letter of
each word in the previous line.

Screen size

When you select Screen size, a three-item submenu pops up. With the
items in this menu, you can set the Turbo C integrated environment
display to one of three sizes (25-, 43-, or 50-line). The available sizes
depend on your hardware: 25-line mode is always available; 43-line
mode is for systems with an EGA, while 50-line mode is for VGA
equipped systems.

Look at the Quick-Ref line for directions on how to select these options. You
can change the operating environment defaults to suit your preferences
(and your monitor) then save them as part of Turbo C. Of course, you'll still
be able to change these settings from inside Turbo C's editor (or from the
Options/Environment menu).

Note: Any option that you install with TCINST that also appears as a
menu-settable option in TC.EXE will be overridden whenever you load a
configuration file that contains a different setting for that option.

Appendix A, The New TCINST 165

The Display Mode Option

Normally, Turbo C correctly detects your system's video mode. You should
only change the Display mode option if one of the following holds true:

• You want to select a mode other than the current video mode.
• You have a Color Graphics Adapter that doesn't "snow".
• You think Turbo C is incorrectly detecting your hardware.
• You have a laptop or a system with a composite screen (which acts like a

CGA with only one color). For this situation, select Black and white.

Press D to select Display mode from the installation menu. A pop-up menu
appears; from this menu, you can select the screen mode Turbo C will use
during operation. Your options include Default, Color, Black and white, or
Monochrome. These are fairly intuitive.

Default

By default, Turbo C always operates in the mode that is active when you
load it.

Color

Turbo C uses 80-column color mode, no matter what mode is active
when you load TC.EXE, and switches back to the previously active mode
when you exit.

Black and white

Turbo C uses 80-column black and white mode characters, no matter
what mode is active, and switches back to the previously active mode
when you exit. Use this with laptops and composite monitors.

Monochrome

Turbo C uses monochrome mode, no matter what mode is active, and
switches back to the previously active mode when you exit.

When you select one of the first three options, the program conducts a
video test on your screen; refer to the Quick-Ref line for instructions on
what to do. When you press any key, a window comes up with the query

Was there Snow on the screen?

You can choose

• Yes, the screen was "snowy"
• No, always turn off snow checking
• Maybe, always check the hardware

166

Look at the Quick-Ref line for more about Maybe. Press Esc to return to the
main installation menu.

The Color Customization Option

Pressing C from the main installation menu allows you to make extensive
changes to the Colors of your version of Turbo C. After you press C, a
menu with these options appears:

IJ Customize colors
IJ Default color set
IJ Turquoise color set
IJ Magenta color set

Because there are nearly 50 different screen items that you can color
customize, you will probably find it easier to choose a preset set of colors to
your liking.

There are three preset color sets to choose from. Press 0, T, or M, and scroll
through the colors for the Turbo C screen items using the PgUp and pgOn
keys. If none of the preset color sets is to your liking, you can design your
own.

To make custom colors, press C to Customize colors. Now you have a
choice of 12 types of items that can be color-customized in Turbo C; some
of these are text items, some are screen lines and boxes. Choose one of these
items by pressing a letter A through L.

Once you choose a screen item to color-customize, you will see a pop-up
menu and a view port. The view port is an example of the screen item you
chose, while the pop-up menu displays the components of that selection.
The view port also reflects the change in colors as you scroll through the
color palette.

For example, if you choose H to customize the colors of Turbo C's error
boxes, you'll see a new pop-up menu with the four different parts of an
error box: its Title, Border, Normal text, and Highlighted text.

You can now select one of the components from the pop-up menu. Type the
appropriate highlighted letter, and you're treated to a color palette for the
item you chose. Using the arrow keys, select a color to your liking from the
palette. Watch the view port to see how the item looks in that color. Press
Enter to record your selection.

Appendix A, The New TelNST 167

Repeat this procedure for every screen item you want to color-customize.
When you are finished, press Esc until you are back at the main installation
menu.

Note: Turbo C maintains three internal color tables: one each for color,
black and white, and monochrome. TCINST allows you to change only one
of these three sets of colors at a time, based upon your current video mode.
For example, if you want to change to the black and white color table, you
must set your video mode to BW80 at the DOS prompt and then run
TCINST.

The Resize Windows Option

This option allows you to change the respective sizes of Turbo C's Edit and
Message windows. Press R to choose Resize windows from the main
installation menu.

Using the Up and Down arrow keys, you can move the bar dividing the Edit
window from the Message window. Neither window can be smaller than
three lines. When you have resized the windows to your liking, press Enter.
You can discard your changes and return to the Installation menu by
pressing Esc.

Quitting the Program

Once you have made all desired changes, select Quit/save at the main
installation menu. The message

Save changes to TC.EXE? (YIN)

appears at the bottom of the screen.

II If you press Y (for Yes), all the changes you have made are permanently
installed into Turbo C. (You can always run TCINST again if you want to
change them.)

• If you press N (for No), your changes are ignored and you are returned to
the operating system prompt without Turbo C's defaults or startup
appearance being changed.

If you decide you want to restore the original Turbo C factory defaults,
simply copy TC.EXE from your master disk onto your work disk. You can
also restore the Editor commands by selecting the E option at the main
menu, then press R (for Restore factory defaults) and Esc.

168

A p p E N D x

B

TLIB: The Turbo Librarian

In this appendix, we describe TLIB, the Turbo Librarian included with Turbo C
version 1.5.

What Is TLIB?

TLIB is Borland's Turbo Librarian: It is a utility that manages libraries of
individual .OBI (object module) files. A library is a very convenient way of
dealing with a collection of object modules as a single unit.

The libraries included with Turbo C were built with TLIB. Using TLIB, you
can build your own libraries, or you can modify the Turbo C libraries, your
own libraries, libraries furnished by other programmers, or commercial
libraries you have purchased. You can use TLIB to

IJ create a new library from a group of object modules

[] add object modules or other libraries to an existing library
[] remove object modules from an existing library
[] replace object modules from an existing library
c extract object modules from an existing library

clist the contents of a new or existing library

When modifying an existing library, TLIB always creates a copy of the
original library with a .BAK extension.

Although TLIB is not essential to creating executable programs with Turbo
C, it is a useful programmer productivity tool. You will find TLIB
indispensable for large development projects. If you work with object

Appendix B, TUB: The Turbo Librarian 169

module libraries developed by others, you can use TLIB to maintain those
libraries when necessary.

The Advantages of Using Object Module
Libraries

When you program in C, you often create a collection of useful C functions,
like the functions in the C runtime library. Because of C's modularity, you
are likely to split those functions into many separately compiled source
files. You use only a subset of functions from the entire collection in any
particular program. It can become quite tedious, however, to figure out
exactly which files you are using. If you always include all the source files,
on the other hand, your program becomes extremely large and unwieldy.

An object module library solves the problem of managing a collection of C
functions. When you link your program with a library, the linker scans the
library and automatically selects only those modules needed for the current
program. In addition, a library consumes less disk space than a collection of
object module files, especially if each of the object files is small. A library
also speeds up the action of the linker, because it only opens a single file,
instead of one file for each object module.

The Components of a TLIB Command Line

You run TLIB by typing a TLIB command line at the DOS prompt. To get a
summary ofTLIB's usage, just type TLIB Enter.

The TLIB command line takes the following general form, where items
listed in square brackets ([like this]) are optional:

tlib libname [/C] [operations] [, listfile]

This section summarizes each of these command-line components; the
following sections provide details about using TLIB. For examples of how
to use TLIB, refer to the "Examples" section at the end of this appendix.

170

Component Description

tUb The command name that invokes TLIB.

libname The DOS path name of the library you want to create or
manage. Every TLIB command must be given a libname.
Wildcards are not allowed. TLIB assumes an extension of
.LIB if none is given. We recommend that you do not use
an extension other than .LIB, since both TCC and TC's
project-make facility require the .LIB extension in order to
recognize library files.

Note that if the named library does not exist and there are
add operations, TLIB creates the library.

Ie The 'Case sensitive' flag. This option is not normally used;
see II Advanced Operation: The IC Option II for a detailed
explanation.

operations The list of operations TLIB performs. Operations may
appear in any order. If you only want to examine the
contents of the library, you don't have to give any
operations at all.

listfile The name of the file listing library contents. The listfile
name (if given) must be preceded by a comma. If you do
not give a file name, no listing is produced. The listing is an
alphabetical list of each module, followed by an
alphabetical list of each public symbol defined in that
module.

You may direct the listing to the screen by using the listfile
name CON, or to the printer by using the name PRN.

The Operation List

The operation list describes what actions you want TLIB to do. It consists of
a sequence of operations given one after the other. Each operation consists
of a one- or two-character action symbol followed by a file or module name.
White space may be used around either the action symbol or the file or
module name, but it cannot appear in the middle of a two-character action
orin a name.

Appendix B, TUB: The Turbo Ubrarian 171

You can put as many operations as you like on the command line, up to the
DOS-imposed line-length limit of 127 characters. The order of the
operations is not important. TLIB always applies the operations in a specific
order:

1. All extract operations are done first.
2. All remove operations are done next.
3. All add operations are done last.

Replacing a module is treated as first removing it, then adding the
replacement module.

File and Module Names

When TLIB adds an object module file to a library, the file is simply called a
module. TLIB finds the name of a module by taking the given file name and
stripping any drive, path, and extension information from it. (Typically,
drive, path, and extension are not given.)

Note that TLIB always assumes reasonable defaults. For example, to add a
module that has an .OBJ extension from the current directory, you only
need to supply the module name, not the path and .OBJ extension.

Wildcards are never allowed in file or module names.

TLIB Operations

TLIB recognizes three action symbols (-, +, *), which you can use singly
or combined in pairs for a total of five distinct operations. For operations
that use a pair of characters, the order of the characters in not important.
The action symbols and what they do are listed here:

Action
Symbol Name

+ Add

172

Description

TLIB adds the named file to the library. If the file has
no extension given, TLIB assumes an extension of .OBJ.
If the file is itself a library (with a .LIB extension), then
the operation adds all of the modules in the named
library to the target library.

If a module being added already exists, TLIB displays a
message and does not add the new module.

Remove TLIB removes the named module from the library. If
the module does not exist in the library, TLIB displays
a message.

* Extract TLIB creates the named file by copying the corre
sponding module from the library to the file. If the
module does not exist, TLIB displays a message and
does not create a file. If the named file already exists, it
is overwritten.

-+ Replace TLIB replaces the named module with the corre-
+- sponding file. This is just a shorthand for a remove

followed by an add operation.

-* Extract & TLIB copies the named module to the corresponding
*- Remove file name and then removes it from the library. This is

just a shorthand for an extract followed by a remove
operation.

A remove operation only needs a module name, but TLIB allows you to
enter a full path name with drive and extension included. However,
everything but the module name is ignored.

It is not possible to rename modules in a library. To rename a module, you
first must extract and remove it, rename the file just created, and, finally,
add it back into the library.

Creating a Library

To create a library, you simply add modules to a library that does not yet
exist.

Using Response Files

When you are dealing with a large number of operations, or if you find
yourself repeating certain sets of operations over and over, you will
probably want to start using response files. A response file is simply an
ASCII text file (easily created with Turbo C editor) that contains all or part
of a TLIB command. Using response files, you can build TLIB commands
larger than would fit on one DOS command line.

Appendix B, TUB: The Turbo Ubrarian 173

To use a response file pathname, specify @<pathname> at any position on the
TLIB command line.

• More than one line of text can make up a response file; you use the "and"
character (&) at the end of a line to indicate that another line follows.

• You don't need to put the entire TLIB command in the response file; the
file can provide a portion of the TLIB command line, and you can type in
the rest.

• You can use more than one response file in a single TLIB command line.

See "Examples" for a sample response file and a TLIB command line
incorpora ting it.

Advanced Operation: The Ie Option

When you add a module to a library, TLIB maintains a dictionary of all
public symbols defined in the modules of the library. All symbols in the
library must be distinct. If you try to add a module to the library that
would cause a duplicate symbol, TLIB will display a message and not add
the module.

Normally, when TLIB checks for duplicate symbols in the library,
uppercase and lowercase letters are not considered as distinct. For example,
the symbols lookup and LOOKUP are treated as duplicates. Since C does
treat uppercase and lowercase letters as distinct, you need to use the Ie
option to add a module to a library that includes a symbol that differs only
in case from one already in the library. The Ie option forces TLIB to accept a
module with symbols in it that differ only in case from symbols already in
the library.

It may seem odd that, without the Ie option, TLIB rejects symbols that
differ only in case, especially since C is a case-sensitive language. The
reason is that some linkers fail to distinguish between symbols in a library
that differ only in case.

TLINK has no problem distinguishing uppercase and lowercase symbols,
and it will properly accept a library containing symbols that differ only in
case. As long as you only use the library with TLINK, you can use the TLIB
Ie option without any problems.

However, if you want to use the library with other linkers (or allow other
people to use the library with other linkers), for your own protection you
should not use the I e option.

174

Examples

Here are some simple examples demonstrating the different things you can
do with TLIB.

1) To create a library named MYLIB.LIB with modules X.OBJ, Y.OBJ, and
Z.OBJ, type

tlib rnylib +x +y +z

2) To create a library as in #1 and get a listing, too, type

tlib rnylib +x +y +z, rnylib.lst

3) To get a listing of an existing library CS.LIB, type

tlib cs, cs.lst

4) To replace module X.OBJ with a new copy, add A.OBJ and delete Z.OBJ
from MYLIB.LIB, type

tlib rnylib -+x +a -z

5) To extract module Y.OBJ from MYLIB.LIB and get a listing, type

tlib rnylib *y, rnylib.lst

6) To create a new library with modules A.OBJ, B.OBJ, ... , G.OEJ using a
response file:

First create a text file, ALPHA.RSP, with

+a.obj +b.obj +c.obj &
+d.obj +e.obj +f.obj &
+g.obj

Then use the TLIB command:

tlib alpha @alpha.rsp, alpha. 1st

Appendix B, TUB: The Turbo Ubrarian 175

176

A p p E N D x

c

GREP: A File-Search Utility

In this appendix, we describe GREP.COM, Turbo C's very fast version of the
well-known UNIX file-search utility.

What Is GREP?

GREP is a powerful search utility that can search for text in several files at
once.

The general command-line syntax for GREP is:

grep [options] searchstring filespec [filespec filespec ..• filespec]

For example, if you want to see in which source files you call the
setupmodem function, you could use GREP to search the contents of all the
.C files in your directory to look for the string setupmymodem, like this:

grep setupmodem *.c

The GREP Options

In the command line, options are one or more single characters preceded by
a dash symbol (-). Each individual character is a switch that you can turn
on or off. type the plus symbol (+) after a character to turn the option on, or
type a dash (-) after the character to turn the option off.

The default is on (the + is implied): for example, -r means the same thing as
-r+. You can list multiple options individually (like this: - i -d -1) or you

Appendix C, GREP: A File-Search Utility 177

can combine them (like this: -ild or -il -d, etc.): they're all the same to
GREP.

Here is a list of the option characters used with GREP and their meanings:

-c Count only: Only a count of matching lines is printed. For each file
that contains at least one matching line, GREP prints the file name
and a count of the number of matching lines. Matching lines are
not printed.

-d Directories: For each filespec specified on the command line, GREP
searches for all files that match the file specification, both in the
directory specified and in all subdirectories below the specified
directory. If you give a filespec without a path, GREP assumes the
files are in the current directory.

-i Ignore case: GREP ignores upper/lowercase differences (case
folding). GREP treats all letters a-z as being identical to the
corresponding letters A-Z in all situations.

-1 List match files: Only the name of each file containing a match is
printed. After GREP finds a match, it prints the file name and
processing immediately moves on to the next file.

-n Numbers: Each matching line that GREP prints is preceded by its
line number.

-r Regular expression search: The text defined by searchstring is treated
as a regular expression instead of as a literal string.

-v Non-match: Only non-matching lines are printed. Only lines that do
not contain the search string are considered to be non-matching
lines.

-w Write options: GREP will combine the options given on the
command line with its default options and write these to the
GREP .COM file as the new defaults. (In other words, GREP is self
configuring.) This option allows you to tailor the default option
settings to your own taste.

-z Verbose: GREP prints the file name of every file searched. Each
matching line is preceded by its line number. A count of matching
lines in each file is given, even if the count is zero.

178

Order of Precedence

A few of GREP's options override certain others; the following order of
precedence applies:
-z overrides -1 -c -n
-1 overrides -c -n
-c overrides -n

For example, suppose you type in the following GREP command line:

grep -c -z main(my*.c

GREP will search all files matching the MY*.C file specification for the
search string maine and print the file name of every file searched, number
each matching line, and give a count of matching lines for each file
searched.

Remember that each option is a switch: its state reflects the way you last
IIflipped" it. At any given time, each option can only be on or off. Each
occurrence of a given option on the command line overrides its previous
definition. For example, you might type in the following command line:

grep -r -i- -d -i -r- main(my*.c

Given this command line, GREP will run with the -d option on, the -i
option on, and the -r option off.

You can install your preferred default setting for each option in GREP.COM
with the -w option. For example, if you want GREP to always do a verbose
search (-z on), you can install it with the following command:

grep -w -z

The Search String

The value of searchstring defines the pattern GREP will search for. A search
string can be either a regular expression or a literal string. In a regular
expression, certain characters have special meanings: they are operators
that govern the search. In a literal string, there are no operators: each
character is treated literally.

You can enclose the search string in quotation marks to prevent spaces and
tabs from being treated as delimiters. Matches will not cross line
boundaries (a match must be contained in a single line).

An expression is either a single character or a set of characters enclosed in
brackets. A concatenation of regular expressions is a regular expression.

Appendix C, GREP: A File-Search Utility 179

Operators in Regular Expressions

When you use the -r option, the search string is treated as a regular
expression (not a literal expression) and the following characters take on
special meanings:

I\. A circumflex at the start of the expression matches the start of a
line.

$ A dollar sign at the end of the expression matches the end of a line.

*

+

[]

\

A period matches any character.

An expression followed by an asterisk wildcard matches zero or
more occurrences of that expression. For example: in fo*, the *
operates on the expression 0; it matches f, fa, faa, etc. <t followed by
zero or more as), but doesn't match fa.

An expression followed by a plus sign matches one or more
occurrences of that expression: fo+ matches fa, faa, etc., but not f.

A string enclosed in brackets matches any character in that string,
but no others. If the first character in the string is a circumflex ("),
the expression matches any character except the characters in the
string. For example, [xyz] matches x, y, or z, while ["xyz] matches
a and b, but not x, y, or z. You can specify a range of characters with
two characters separated by a dash (-). These can be combined to
form expressions (like [a-bd-z?] to match? and any lowercase
letter except c).

The backs lash escape character tells GREP to seach for the literal
character that follows it. For example, \. matches a period instead
of "any character".

Note: Four of the previously-described characters ($. * and +) do not
have any special meaning when used within a bracketed set. In addition,
the character" is only treated specially if it immediately follows the
beginning of the set definition (that is, immediately after the [).

Any ordinary character not mentioned in the preceding list matches that
character. (> matches >, # matches #, etc.)

The File Specification

The third item in the GREP command line is filespec, the file specification; it
tells GREP which files (or groups of files) to search. filespec can be an

180

explicit file name, or a "generic" file name incorporating the DOS? and *
wildcards. In addition, you can enter a path (drive and directory
information) as part of filespec. If you give filespec without a path, GREP
only searches the current directory.

Examples with Notes

The following examples assume that all of GREP's options default to off:

Example 1

Command line: grep main (*. c

Matches: main ()
mymain(

Does not match: myrnainfunc ()
MAIN(i: integer);

Files Searched: *.C in current directory.

Note: By default, the search is case-sensitive.

Example 2

Command line: grep -r [ha-z]rnain\ * (*.c

Matches: main (i: integer)
main(i,j:integer)
if (main ()) halt;

Does not match: myrnain ()
MAIN(i:integer);

Files Searched: *.C in current directory.

Note: The search string here tells GREP to search for the word main with
no preceding lowercase letters ([A a - z]), followed by zero or more
occurrences of blank spaces (\ *), then a left parenthesis.

Since spaces and tabs are normally considered to be command-line
delimiters, you must quote them if you want to include them as part of a
regular expression. In this case, the space after main is quoted with the
backslash escape character. You could also accomplish this by placing the
space in double quotes ([A a - z] main" "*).

Appendix C, GREP: A File-Search Utility 181

Example 3

Command line: grep -ri [a-c]:\\data\.fil *.c *.inc

Matches: A: \data. fil
c:\Data.Fil
B: \DATA. FIL

Does not match: d:\data.fil
a:data.fil

Files Searched: *.C and *.INC in current directory.

Note: Because the backslash and period characters (\ and .) usually
have special meaning, if you want to search for them, you must quote
them by placing the backslash escape character immediately in front of
them.

Example 4

Command line: grep -ri ["a-z]word["a-z] * .doc

Matches: every new word must be on a new line.
MY WORD!
word--smallest unit of speech.
In the beginning there was the WORD, and the WORD

Does not match: Each file has at least 2000 words.
He misspells toward as toword.

Files Searched: *.DOC in the current directory.

Note: This format basically defines how to search for a given word.

Example 5

Command line: grep II search string with spaces II *. doc *. asm
a:\work\myfile.*

Matches: This is a search string with spaces in it.

Does not match: THIS IS A SEARCH STRING WITH SPACES IN IT.

Files Searched:

This is a search string with many spaces in it.

*.DOC and *.ASM in the current directory, and
MYFILE.* in a directory called \ WORK on drive A:.

Note: This is an example of how to search for a string with embedded
spaces.

182

Example 6

Command line: grep -rd "[,.:?'\"]"$ *.doc

Matches: He said hi to me.
Where are you going?
Happening in anticipation of a unique situation,
Examples include the following:
"Many men smoke, but fu man chu."

Does not match: He said "Hi" to me
Where are you going? I'm headed to the beach this

Files Searched: *.DOC in the root directory and all its subdirectories
on the current drive.

Note: This example searches for the characters, . :?' and" at the end of
a line. Notice that the double quote within the range is preceded by an
escape character so it is treated as a normal character instead of as the
ending quote for the string. Also, notice how the $ character appears
outside of the quoted string. This demonstrates how regular expressions
can be concatenated to form a longer expression.

Example 7

Command line: grep -ild " the" \ * .doc
or grep -i -1 -d " the" * .doc
or grep -il -d " the" * .doc

Matches: Anyway, this is the time we have
do you think? The main reason we are

Does not match: He said "Hi" to me just when I
Where are you going? I'll bet you're headed to

Files Searched: *.DOC in the root directory and all its subdirectories
on the current drive.

Note: This example ignores case and just prints the names of any files
that contain at least one match. The three examples show different ways
of specifying multiple options.

Appendix C, GREP: A File-Search Utility 183

184

A p p E N D

BGIOBJ: Conversion Utility for
Graphics Drivers and Fonts

x

D

In this appendix, we explain how to use BGIOBJ, a utility that allows you to use a
non-dynamic scheme for loading graphics drivers and character fonts into your
graphics programs.

What Is BGIOBJ?

BGIOBJ is a utility you can use to convert graphics driver files and
character sets (stroked font files) to object files. Once they're converted, you
can link them into your program, making them part of the executable file.
This is offered in addition to the graphics package's dynamic loading
scheme, in which your program loads graphics drivers and character sets
(stroked fonts) from disk at execution time.

Linking drivers and fonts directly into your program is advantageous
because the executable file contains all (or most) of the drivers and/or fonts
it might need, and doesn't need to access the driver and font files on disk
when running. However, linking the drivers and fonts into your executable
increases its size.

To convert a driver or font file to a linkable object file, use the BGIOBJ.EXE
utility. This is the simplified syntax:

BGIOBJ <source file>

where <source file> is the driver or font file to be converted to an object file.
The object file created has the same file name as the source file, with the

Appendix D, BGIOBJ: Conversion Utility for Graphics Drivers and Fonts 185

extension .OBI; for example, EGAVGA.BGI yields EGAVGA.OBJ,
SANS.CHR gives SANS. OBI, etc.

Adding the New .OBI Files to GRAPHICS.LIB

You should add the driver and font object modules to GRAPHICS. LIB, so
the linker can locate them when it links in the graphics routines. If you
don't add these new object modules to GRAPHICS.LIB, you'll have to add
them to the list of files in the TC project (.PRJ) file, on the TCC command
line, or on the TLINK command line. To add these object modules to
GRAPHICS.LIB, invoke the Turbo Librarian (TLIB) with the following
command line:

tlib graphics +<object file name> [+<object file name> •••]

where <object file name> is the name of the object file created by
BGIOBI.EXE (such as CGA, EGAVGA, GOTH, etc.); the .OBI extension is
implied, so you don't need to include it. You can add several files with one
command line to save time; see the example following.

(For more information about TLIB, refer to Appendix B in this addendum.)

Registering the Drivers and Fonts

After adding the driver and font object modules to GRAPHICS.LIB, you
have to register all the drivers and fonts that you want linked in; you do this
by calling registerbgidriver and registerbgifont in your program (before
calling initgraph). This informs the graphics system of the presence of
those files, and ensures that they will be linked in when the executable file
is created by the linker.

The registering routines each take one parameter; a symbolic name defined
in GRAPHICS.H. Each registering routine returns a non-negative value if
the driver or font is successfully registered.

The following table is a complete list of drivers and fonts included with
Turbo C. It shows the names to be used with registerbgidriver and
registerbgifont.

186 Addendum: Turbo C 1.5 Additions and Enhancements

Driver file
(*.BGI)

CGA
EGAVGA
HERC
ATT
PC3270

An Example

registerbgidriver
Symbolic name

CGA_driver
EGA VGA_driver
Here_driver
ATT_driver
PC3270_driver

Fontfile
(*.CHR)

TRIP
LITT
SANS
GOTH

registerbgifont
Symbolic name

triplex_font
small_font
sansserifjont
gothic_font

Here's a complete example. Suppose you want to convert the files for the
CGA graphics driver, the gothic font, and the triplex font to object modules,
then link them into your program.

1. Convert the binary files to object files using BGIOBI.EXE, as shown in
the following separate command lines:

bgiobj cga
bgiobj trip
bgiobj goth

This creates 3 files: CGA.OBI, TRIP.OBI, and GOTH.OBI.

2. You can add these object files to GRAPHICS.LIB with this TLIB
command line:

tlib graphics +cga +trip +goth

If you don't add the object files to GRAPHICS.LIB, you need to add the
object file names CGA.OBI, TRIP.OBI, and GOTH.OBI to your project list
(if you are using Turbo C's integrated environment), or to the TCC
command line. For example, the TCC command line would look like
this:

tcc niftgraf graphics.lib cga.obj trip.obj goth.obj

3. You register these files in your graphics program like this:

/* header file declares CGA_driver, triplex_font, and gothic_font */
tinclude <graphics.h>

/* register and check for errors (one never knows ...•) */

if (registerbgidriver(CGA_driver) < 0) exit(l)i
if (registerbgifont(triplex_font) < 0) exit(l)i
if (registerbgifont(gothic_font) < 0) exit(l)i

Appendix 0, BG/OBJ: Conversion Utility for Graphics Drivers and Fonts 187

1* ... *1

initgraph(••.•)i

1* ••. *1

1* initgraph should be called after registering *1

If you ever get a linker error Segment exceeds 64k after linking in some
drivers and/or fonts, refer to the following section.

The IF option

This section explains what steps to take if you get the linker error Segment
exceeds 64 k (or a similar error) after linking in several driver and/or font
files (especially with tiny, small, and compact model programs).

By default, the files created by BGIOBJ.EXE all use the same segment
(called _TEXT). This can cause problems if your program links in many
drivers and/or fonts, or when you're using the tiny, small, or compact
memory model.

There is NO cure if this happens in tiny model programs. You will have to
unlink some or all of the drivers and fonts, and use the dynamic
driver/font loading scheme.

With other model programs, you can convert one or more of the drivers or
fonts with the BGIOBJ IF option. This option directs BGIOBJ to use a
segment name of the form <filename> _TEXT, so that the default segment is
not overburdened by all the linked-in drivers and fonts (and, in small and
compact model programs, all the program code). For example, the
following two BGIOBJ command lines direct BGIOBJ to use segment names
of the form EGAVGA_TEXT and SANS_TEXT.

bgiobj IF egavga
bgiobj IF sans

When you select the IF option, BGIOBJ also appends F to the target object
file (EGA VGAF.OBJ, SANSF.OBJ, etc.), and appends Jar to the name that
will be used with registerfarbgidriver and registerfarbgifont. (For
example, EGAVGA_driver becomes EGAVGA_driver Jar.) For files created
with IF, you must use these far registering routines instead of the regular
registerbgidriver and registerbgifont. For example:

if (registerfarbgidriver(EGAVGA_driver_far) < 0) exit(l)i
if (registerfarbgifont(sansserif_font_far) < 0) exit(l)i

188 Addendum: Turbo C 7.5 Additions and Enhancements

Advanced BGIOBJ Features

This section explains some of BGIOBJ's advanced features, and the routines
registerfarbgidriver and registerfarbgifont. Only experienced users should
use these features.

This is the full syntax of the BGIOBJ.EXE utility:

BGIOBJ [IF] <source> <destination> <public name> <seg-name> <seg-class>

Component Description

IF or -F This option instructs BGIOBJ.EXE to use a segment
name other than _TEXT (the default), and to change
the public name and destination file name. (See the
previous section for a detailed discussion of IF.)

<source> This is the driver or font file to be converted. If the file
is not one of the driver/font files shipped with Turbo
C, you should specify a full file name (including
extension).

<destination> This is the name of the object file to be produced. The
default destination file name is <source>.OBJ, or
<source>F.OBJ if you use the IF option.

<public name> This is the name that will be used in the program in a
call to registerbgidriver or registerbgifont (or their
respective far versions) to link in the object module.

The public name is the external name used by the
linker, so it should be the name used in the program,
prefixed with an underbar. If your program uses
Pascal calling conventions, use only uppercase letters,
and do not add an underbar.

<seg-name> This is an optional segment name;, the default is
_TEXT (or <filename> _TEXT if IF is specified)

<seg-class> This is an optional segment class; the default is
CODE.

All parameters except <source> are optional. If you need to specify an
optional parameter, all the parameters preceding it must also be specified.

Appendix D, BG/OBJ: Conversion Utility for Graphics Drivers and Fonts 189

If you choose to use your own public name(s), you have to add
declaration(s) to your program, using one of the following forms:

void public_name(void);

extern int far public_name[];

/* if /F not used, default segment name used */

/* if /F used, or segment name not _TEXT */

In these declarations, public_name matches the <public name> you used
when converting with BGIOBJ. The GRAPHICS.H header file contains
declarations of the default driver and font public names; if you use those
default public names you don't have to declare them as just described.

After these declarations, you have to register all the drivers and fonts in
your program. If you don't use the IF option and don't change the default
segment name, you should register through registerbgidriver and
registerbgifont; otherwise use registerfarbgidriver and registerfarbgifont.

190 Addendum: Turbo C 7.5 Additions and Enhancements

Index

191

A
accessO, 139
Active graphics page, 121
Active screen page, 20
Actual color, in palette, 26, 86
Adapters, supported, 17
Add, object modules (TLlB), 172
Additions to the integrated

environment, 31
Allocating memory, See Memory

allocation
AND_PUT,81
arcO, 19,55
Arc coordinates, 55
arccoordstype structure, 56
_argc, 52
argc, passed to mainO, 52
_argv, 52
argv, passed to mainO, 52
asctimeO, 139
Aspect ratio, arcs, circles, ellipses, pie

slices, 20, 55
assertO, 58
atofO, 139
atoiO, 139
atolO, 139
ATT400, 104
Attribute

cell, text mode, 131
control, 9

Auto-detection, graphics adapter,
103

Autoindent
mode, menu item, (TCINST) 165
optimal fill and, 36

Auxiliary I/O stream, 148

B
Background color

graphics mode, 24,74
text mode, 13, 131, 132

Backup source files
menu item (TC), 33
menu item (TCINST), 164

barO, 19,59
bar3dO, 19,59
Bars, drawing, filling, stacking, 59
.BGI (device driver) files, 15
BGIOB] utility, 23,93, 185-190
Binary

scratch file, 130
search, 61
streams, 147

BIOS, console output via, 14
bioskeyO, 155
Bit images, saving and displaying,

20,80
Bit-mapped fonts, 22, 92
BKSLASH_FILL, 78
BLACK, 14,26,74,87,133
Black and white, menu item

(TCINST), 166
Blank lines, inserting in text window,

107
BLINK, 14
Blink-enable bit, cell attributes, 131
BLUE, 14,26,74,87, 133
BOTTOM_TEXT, 92
Bounded region, flood -filling, 72
Brace matching, 38
brkO, 139
BROWN, 14,26, 74, 87, 133
bsearchO, 61
Buffering streams, 147
BUILTINS.MAK, 146
BW40,135
BW80,l35
Bytes

read from files (maximum), 116
written to files (maximum), 138

c
C40, 135
C80, 135
Calculating size of text strings, 134
callocO, 62, 110
Capturing

image from screen, 80
text, 89

192 Addendum: Turbo C 7.5 Additions and Enhancements

Case-sensitivity option, TLIB, 174
Cell attributes, text mode, 131
CENTER_LINE, 83
CENTER_TEXT, 92
CGA

display, 25-line, integrated
environment, 34

graphics_drivers constant, 104
high resolution, colors and, 27
low resolution, colors and, 25

Changes to command-line Turbo C
45

Changing ,
colors in palettes, 86
file size, 62 .
screen size, 34

Character fonts
adding to GRAPHICS.LIB, 186
conversion utility, 185
discussion of, 22
settextstyleO and, 92
user-defined size factor, 125

Character, output to screen, 114
chdirO, 139
_chmodO, 139
chmodO, 139
.CHR (stroked font) files, 15
chsizeO, 62
cirdeO, 19,55
Clear

graphics screen, 63
graphics viewport, 20
screen, 8,20
text mode window, 65
to end of line, 8, 64

deardeviceO, 20,63
dearviewportO, 20,63
Clipping, viewport, 23,95
Closed figures, drawing/filling, 69
CLOSE DOT_FILL, 78
dosegraphO, 16, 103, 123
dreo1(), 8,64
drscrO, 8, 65
Color

background
graphics mode, 24,74
text mode, 13, 131, 132

changing palettes, 86

Index

constants, 13
control

ATT400, graphics mode, 25
CGA, graphics mode, 25
EGA, graphics mode, 25
graphics mode, 24
MCGA, graphics mode, 25
text mode, 9
VGA, graphics mode. 27

customization, menu item
(TCINST), 167
dark, 133
drawing, graphics mode, 24
foreground, text mode, 13, 131,
132
light, 133
menu item (TCINST), 166
table

CGA and EGA, 87
graphics mode, 24,74
text mode, 14, 133

text mode, 9,13
values, graphics mode, 24

COM1:, 148
Combination operator, putting

images on screen, 81
Command line, TLIB, 170
Command-line Turbo C

changes to, 45
configuration file, 149
graphics library and, 15

Comment delimiter matching, 38, 40
Comparison routine, used in

searches, 61
CON, 148
Config auto save

menu item (TC), 33, 152
menu item (TCINST), 164

Configuration file
automatic saving of, 33
changing from within TC, 151
converting, 145
discussion of, 149
integrated environment, 33
searching for, 151
TC, contents of, 150
TC, creating, 151
TCINST and, 151

193

using -L and -I in, 48
Console

I/O functions, 7
output, to video RAM, 14

Control
attribute, 9
color

text mode, 9
graphics mode, 24

graphics system, 16
mode, 9
PC speaker, 127
window, 9

Converting
.BGI files to .OBJ, 185
.CHR files to .OBJ, 185
configuration files, 145
intensity, 9
string to unsigned long, 129

-c option (GREP), 178
Coordinates

arc and ellipse, 20,55
current position, 96
maximum screen, 84
window and viewport, 7

Coprocessor chip flag, 54
Copying text

from memory to screen, 8, 89
from screen to memory, 8, 89
to another screen location, 111

COPY_PUT, 81
Corrections to original manuals, 154
Count only option (GREP), 178
country(), 65
Country-dependent information, 65
country structure, 65
cprintf(), 7,66
cputsO, 7, 11, 66
Creating

and running other programs, 127
file names, 129

_creatO, 139, 155
creatnewO, 139
cscanfO, 140
ctimeO, 140
Current

file pointer, position of, 71
pick file, menu item, 32, 153

position
coordinating 96
moving, 20,112
text output and, 113

Cursor position, in window, 8, 10,
97, 136

Customize colors, menu item
(TCINSn, 167

Customizing
editor commands, 160-164
TC, with TCINST, 157

CYAN, 14,26,74,87,133

D
DARKGRAY, 14,26,74,87, 133
DASHED_LINE, 83
Data segment size, 53
-D command-line option, 45
Default

color set, menu item (TCINST),
167
display mode, menu item
(TCINST), 166
settings, graphics mode, 98
TC.EXE, installing with TCINST,
157-168

DEFAULT_FONT, 93
Define symbolic constants

command-line option, 45
Defining

viewport, graphics mode 95
window, text mode, 137

delay(), 66
Delete line, text mode window, 8,67
Delimiter matching, 38
dellineO, 8, 67
DETECT, 104
detectgraphO, 16, 103
Detecting graphics adapter, 103
Device drivers, graphics, 15, 103,

118,185
Diagnostic routine, assertO, 58
Dimensions, text strings, 134
Directional pair matching, 38
Directories option (GREP), 178
Directory search

194 Addendum: Turbo C 7.5 Additions and Enhancements

exec ... routines, 70
spawn ... routines, 127

directvideo variable, 14, 52
Display mode, menu item (TCINST),

166
Displaying bit images, 20
divO, 68
Division, integer and long integer 68
-d option (GREP), 178
DOSERROR structure, 155
dosexterr(), 155
DOTTED_LINE, 83
Drawing

arcs, 55
bars, 19,59
circles, 19,55
circular arcs, 19
color, 24,75
ellipses, 19,55
lines, 19, 108
pie slices, 19,55
polygons, 19, 69
rectangles, 19, 117
routines, 19
three-dimensional bars 19

drawpolyO, 19,69
Drivers, linked-in, 118
dupO, 156
Dynamic loading, graphics drivers,

17,104

E
Echoed keyboard input, 75
Edit

auto save
menu item (TC), 33
menu item (TCINST), 164

window, resizing with TCINST,
168

Editor
commands

changing, 42
menu item (TCINST), 160

file, automatic saving, 33
hot keys, rebinding, 160-164
new features, 35

Index

tab size, modifying, 34, 36
EGA, 104
EGA display, 43-line, integrated

environment, 34
EGA64, 104
EGAMONO, 104
EGA_BLACK, 27, 87
EGA_BLUE, 87
EGA_BROWN, 87
EGA_CYAN, 87
EGA_DARKGRAY, 87
EGA_GREEN, 87
EGA_LIGHTBLUE,87
EGA_LIGHTCYAN, 87
EGA_LIGHTGRAY, 87
EGA_LIGHTGREEN, 87
EGA_LIGHTMAGENTA, 87
EGA_LIGHTRED, 87
EGA_MAGENTA, 87
EGA_RED, 87
EGA_WHITE, 27,87
EGA_YELLOW, 87
_8087 variable, 54
ellipseO, 19,55
EMPTY_FILL, 78
Enumeration

fill_patterns, 77
graphics_drivers, 104
graphics_modes, 79, 105
line_styles, 82
putimage_ops, 81
text_modes, 12, 135

eofO, 140, 156
Errata, 154
Error

codes, graphics mode, 28, 101
handling, graphics mode, 28,100
message string, graphics mode,
28, 101, 128
number, 128

exec ... O, 70
Explicit library files, 47
Expression search option (GREP),

178
Extended syntax, command -line

options, 46
Extract

195

object modules (TLIB), 173

F
farcoreleftO, 140
fgetposO, 71
FILE object, 146
File

binary, 130
changing size, 62
creating names, 129
handles, 146
pointer, position of, 71
reading from, 116
response, using with TLIB, 173
scratch, 130
search

exec ... routines, 70
spawn ... routines, 127
library, 47
utility, 177

specification (GREP), 179
temporary, 130
temporary names, 129
writing to, 138

Fill
color, 78
pattern

getting info about 19
predefined, 77
user-defined, 20, 76

Filling
bars, 19,59
bounded regions, 19
pie slices, 56
polygons, 19, 69
routines, 19
three-dimensional bars, 19

fill_patterns enumeration type, 77
fillpolyO, 19,69
findfirstO, 140
Flag, math coprocessor chip, 54
Flip to saved screen, 34
Flood -filling, 72
floodfi110, 19, 72, 123
jmode variable, 155
fnmergeO, 140

fnsplitO, 140
Fonts

bit-mapped, 22
linked-in, 118
modifying size, 125
settextstyleO and, 92
size modification, 125
stroked, 22
user-defined size factor, 125

fopenO, 140
IF option (BGIOBJ), 188
Foreground color, text mode, 13, 131,

132
Formatted output, to screen, 66
_fpresetO, 140
fprintfO, 140
fputcharO, 140
fputsO, 140
freadO, 140
freeO, 99
freopenO, 140, 148
fscanfO, 140
fseekO, 148
fsetposO, 71
fstatO, 140
Functions

new and modified, 51-138
prototypes, revised, 139

fwriteO, 140

G
Ganging

directories (TC), 32
options, command-line, 46

getarccoordsO, 19,29,55
getaspectratioO, 19,29,55
getbkcolorO, 24,29,73
getche(), 8, 75
getcolor(), 24,29, 75
getcwd 0, 140
getdfreeO, 140
getenvO, 140
getfatO, 140
getfillpatternO, 19, 29, 76
getfillsettingsO, 19,29,77
getftimeO, 156

196 Addendum: Turbo C 1.5 Additions and Enhancements

getgraphmodeO, 16,29, 79
getimage(), 20,80
getlinesettingsO, 19,82
getmaxcolorO, 24,29,84
getmaxxO, 29, 84
getmaxyO, 29, 84
getmoderange(), 16,29,85
getpalette(), 24,29,86
getpassO, 141
getpixel(), 20, 29, 88
gettext(), 8, 89
gettextinfoO, 10,90
gettextsettings(), 22,29,91
Getting color information, 24
getviewsettingsO, 20,29,95
getxO, 29, 96
gety(), 29,96
Global variables, new and modified,

51-54
gmtimeO, 141
GOTHIC_FONT, 93
gotoxyO, 8, 11, 97
graphdefaults(), 16, 97
grapherrormsg(), 28, 100
-8raphfreemem(), 16,99
-8raphgetmem(), 16,99, 123
GRAPHICS.H,15
GRAPHICS.LIB

adding to, 186
linking, 15

Graphics
adapters

auto-detection of, 103
supported, 17

buffer, setting, 123
device drivers, 15, 103, 118, 185
drivers

adding to GRAPHICS. LIB, 186
conversion utility, 185
dynamic loading of, 104
range of modes, 85
registering, 17

include file, 15
library, 15

functions, overview of, 16
mode

default settings, 98
discussion of, 6

Index

error handling, 100
inquiry, 79
maximum color, 84
programming in, 15
range, 85
returning to text mode, 135
setting, 79
state query, 28
switching to text mode, 119
text output in, 113

pages, 121
screen, clearing, 63
system

control, 16
initializing, 103
memory

allocation, 18, 99
deallocation, 103

overriding recommended mode,
103
resizing internal buffer, 123
shutting down, 103

using with TC.EXE, 15
graphics_drivers enumeration type,

104
graphics_errors symbolic constant,

28, 101
graphics_mode enumeration type,

79,105
graphresultO, 28, 100
GREEN, 14,26,74,87,133
GREP, 177-184

H
Hardware tabs, 36
HATCH_FILL, 78
Heap, 53
_heaplen, 53
HERCMONO, 104
Hercules graphics adapter, 17,104
High

graphics mode value, 85
intensity bit, text mode characters,
102
performance output, 14
resolution, CGA, colors, 27

197

highvideoO, 9,102
HORIZ_DIR, 93
Hot key

I

pick list, 152
reassigning in editor, 42
saved output screen, 34

-I command-line option, 45
Ignore case

option (GREP), 178
mode (TCINST), 162

Image
bit, 20
capturing, 21
manipulation, 20

imagesizeO, 20,80
Implicit library files, 47
Include

directories
command-line option, 45
menu item (TCINST), 160

file, graphics, 15
initgraphO, 16, 79, 103, 123
Initializing the graphics system, 103
inportbO, 141
Input, echoed from keyboard, 75
Insert

blank lines, in text window, 8, 107
mode, menu item (TCINST), 165

inslineO, 8, 107
Install Editor screen (TCINST), 160
Installation program (optional), 157
Integer division, 68
Integrated environment

additions to, 31
configuration file, 149

Intensity
converting, 9
text mode characters, 102

Internal
color tables (TC), 168
graphics buffer, resizing, 123

INTERLEAVE_AL~ 78
I/O

console, 7

stream, auxiliary, 148
ioctlO, 141
-i option (GREP), 178

J
Justification, text output and, 113

K
keepO, 141

L
LAST, 135
-L command-line option, 45
IdivO, 68
LEFT_TEXT, 92
Length

heap, 53
stack, 53

lfindO, 61
Librarian, object module, 169
Libraries, creating with TLIB, 173
Library

directories
command-line option, 45
menu item (TC), 31
menu item (TCINST), 160

files
explicit, 47
implicit, 47
search algorithm, 47
user-specified, 47

LIGHTBLUE, 14,26, 74, 87, 133
Light colors, 133
LIGHTCYAN, 14,26,74,87,133
LIGHTGRAY, 14,26,74,87, 133
LIGHTGREEN, 14, 26, 74,87,133
LIGHTMAGENTA, 14,26,74,87,133
LIGHTRED, 14,26,74,87,133
lineO, 19, 108
Linear search, 61
LINE_ALL, 78
linerelO, 19, 108

198 Addendum: Turbo C 7.5 Additions and Enhancements

Lines
drawing, 108
pattern, 82
style, 82
thickness, 82

line_styles enumeration type, 82
linetoO, 19, 108
Linkable object file, character fonts

and graphics drivers, 185
Linked-in drivers and fonts, 118
Linker error, Segment exceeds 64k,

188
Linking drivers and fonts into your

programs, 185-190
List match files option (GREP), 178
Literal string (GREP), 179
Loading and running other

programs, 70
localtimeO, 141
Long integer division, 68
-1 option (GREP), 178
Low

graphics mode value, 85
intensity bit, text mode characters,
102
resolution, CGA, colors, 25

lowvideoO, 9,102
_lrotlO, 119
_lrotrO, 119
IsearchO, 61
LTBKSLASH_ALL, 78
LTSLASH_ALL, 78

M
MAGENTA, 14,26, 74, 87, 133
Magenta color set, menu item

(TCINST), 167
mainO, argc and argv passed to, 52
Main memory allocation, 110
MAKE, 146
mallocO, 99, 110
Manipulating

images, 20
pixels, 20
screens, 20
text, 8

Index

viewports, 20
Mapping, colors, in text mode, 10
Match pair command, editor, 38
Matching delimiters, editor

command, 38
Math coprocessor chip flag, 54
Maximum

color value, 84
screen coordinates, 84

MCGA, 17, 104
MDA display, 25-line, integrated

environment, 34
memccpyO, 141
memchr(), 141
memcmpO, 141
memcpyO, 141
memicmpO, 141
memmoveO, 141
Memory allocation

bit images, 20
callocO, 62
graphics system, 18,99
main, 110
user-defined routines, 99

Memory deallocation, graphics
system, 103

memsetO, 141
Menu items

Autoindent mode (TCINST), 165
Backup source files

TC,33
TCINST, 164

Black and white (TCINST), 166
Color (TCINST), 166
Color customization (TCINST),
167
Config auto save

TC,33
TCINST, 164

Current pick file, 32, 153
Customize colors (TCINST), 167
Default color set (TCINST), 167
Default display mode (TCINST),
166
Display mode (TCINST), 166
Edit auto save

TC,33

199

TCINST,164
Editor commands (TCINSTI, 160
Include directories (TCINST), 160
Insert mode (TCINST), 165
Library directories

TC,31
TCINST, 160

Magenta color set (TCINST), 167
Monochrome (TCINSTI, 166
Output directory (TCINST), 160
Pick file name

TC, 32,153
TCINST, 160

Resize windows (TCINST), 168
Screen size

TC,34
TCINST,165

Setup environment (TCINST), 164
Tab size, 34,36
Turbo C directories (TCINST),
159,160
Turquoise color set (TCINST), 167
Use tabs (TCINSTI, 165
Zoom state (TCINST), 164
Zoomed windows, 33

Menus
Options/Directories, 31
Options/Environment, 32

Message window, resizing with
TCINST,168

mkdirO, 141
mktempO, 141
Mode

control, 9
graphics, 6
text, 5
video, 5

Modifying
character font size, 125
editor tab size, 34, 36
font size, 93

MONO, 135
Monochrome, menu item (TCINST),

166
movedata(), 141
moverel(), 19, 112
movetext(), 8, 111
moveto(), 19,112

Moving
current position (CP), 20, 112
cursor, 8, 97
text, 8

Multi Color Graphics Array
(MCGA), 17, 104

Multiple library directories
on command line, 45
on menus, 32

N
Near heap, 53
Nested delimiters, pair matching

and, 38
Non-match option (GREP), 178
-n option (GREP), 178
normvideoO, 9,102
NORM_WIDTH, 83
nosound(), 126
NOT_PUT, 81
Numbers option (GREP), 178

o
Object

files
.BGI conversion, 185
.CHR conversion, 185
in libraries, 169

module
librarian, 169-176
manipulating with TUB, 173

_openO, 141
openO, 141
Operating mode, screen, 5
Operations, TUB, 171
Operators, in regular expressions

(GREP), 179
Optimal fill

autoindent and, 36
turning it off, 37

Options
Directories menu, 31
ganging on command line, 46

200 Addendum: Turbo C 7.5 Additions and Enhancements

Order of precedence, GREP options,
179

OR_PUT, 81
outportbO, 141
Output

active vs. visual graphics page,
121
character to screen, 114
direct to video RAM, 52
directory, menu item (TCINST),
160
high-performance, text mode, 14
screen, 34
stream, printer 148
string to screen, 66
text, in graphics mode, 22

outtextO, 22, 93, 113
outtextxyO, 22, 93, 113
Overriding recommended graphics

mode, 103

p

Page
graphics, 121
screen buffer, 20

Pair matching, editor 38
Palette

changing colors in, 86
graphics mode, 24
predefined, CGA, 26, 105
See also Color

palettetype structure, 86
Parenthesis matching, 38
parsfnmO, 141
Pattern, fill, 76
PC3270, 104
peekO, 142
peekbO, 142
perror(), 142
Pick file, 32, 153
Pick file name, menu item

Te, 32,153
TCINST,160

Pick list, 152
piesliceO, 19,55
Pie slices, 55

Index

Pixel
color inquiry, 20,88
drawing in specified color, 88
height of string, 134
manipulation, 20
plotting, 20
value, color and, graphics mode,
24
width of string, 134

pokeO, 142
pokebO, 142
Position

current file pointer, 71
curso~ 10,97,136

Predefined
CGA palettes, 105
color palettes, 26, 87
streams, 148

Printer output stream, 148
printfO, 142
PRN, 36,148
Program Segment Prefix, See PSP
Programming

in graphics modes, 15
in text modes, 7

Project file, graphics library and, 15
Prototypes, revised, 139
PSP,53
putchO, 8, 114
putenvO, 142
putimageO, 20, 80
putimage_ops enumeration type, 81
putpixelO, 20,88
putsO, 142
puttextO, 8, 89
Putting saved images on screen, 20

Q
Quitting TCINST, 168
qsortO, 142

R
randomO, 115
randomizeO, 115

201

Random number generator, 115
Ratio, aspect, 20,55
_readO, 116
readO, 116
Reading

from files, 116
text, 8

reallocO, 11 0
Rebinding editor key strokes, 42,

160-164
rectangleO, 19, 117
RED, 14,26,74,87, 133
Redirecting streams, 148
registerbgidriverO, 16, 118, 186
registerbgifontO, 22, 118, 186
registerfarbgidriverO, 188
registerfarbgifontO, 188
Registering

character fonts, 23, 118, 186
files, the far option, 188
fonts, 93
graphics drivers, 17, 118, 186

Regular expression search option
(GREP), 178

removeO, 130
Remove, object modules (TLlB), 173
renameO, 142,156
Replace, object modules (TLlB), 173
RESERVED, 104
Resize

character fonts, 125
internal graphics buffer, 123
Turbo C's windows, 168
windows, menu item (TCINST),
168

Response files, using with TLIB, 173
restorecrtmodeO, 16, 119
Restoring screen mode, 119
Returning to text mode from

graphics mode, 135
Revised function prototypes, 139
rewindO, 142
RIGHT_TEXT, 92
rmdirO, 142
ROM BIOS calls, via directvideo, 52
-r option (GREP), 178
Rotating values to left or right, 119
_rotlO, 119

_rotrO, 119

s
SANSSERIF _FONT, 93
Saved output screen hot key, 34
Saving

bit image to memory, 20,80
configuration file, 33
editor file, 33
pick files, 154
text to memory, 89

sbrkO, 142
scanfO, 142, 156
Scratch file, binary, 130
Screen

coordinates
maximum, 84
text mode window, 137

manipulation, 20
page buffer, 20
size, menu item

TC, 34
TCINST, 165

Search
algorithm

library files, 47
makefile, 146

binary, 61
configuration files, 151
directories

exec ... , 70
spawn ... , 127

files
exec ... , 70
spawn ... , 127

for text in files, 177
linear, 61
MAKE, for BllILTINS.MAK, 146
string (GREP), 179
utility, file, 177

searchpathO, 142
Seed point, 72
setactivepageO, 20, 121
setallpaletteO, 74,86
setbkcolorO, 73
setblockO, 142

202 Addendum: Turbo C 1.5 Additions and Enhancements

setbufO, 147
setcolor(), 75
setfillpatternO, 19,76
setfillstyleO, 19, 77
setgraphbufsizeO, 16, 123
setgraphmodeO, 16, 79
setlinestyleO, 19,82
setmodeO, 142, 148
setpaletteO, 74, 86
settextjustifyO, 91,22
settextstyleO, 22, 91
Setting

colors, in text mode, 9
graphics mode, 79

Setup environment, menu item
(TCINST), 164

setusercharsizeO, 22,125
setvbuf(), 142, 147
setviewportO, 7, 20, 95
setvisualpageO, 20, 121
size_t, 61
SLASH_FILL, 78
sleepO, 142
SMALL_FONT, 93
Snow check, TCINST, 166
Software tabs, 36
SOLID_FILL, 78
SOLID_LINE, 83
soundO, 126
Source files, automatic backup, 33
spawn ... O, 127
Speaker control, 127
Specification, file (GREP), 179
sprintfO, 142
sscanfO, 142
Stack length, 53
Standard

error, 128
streams, 148

State query
graphics mode, 28
text mode, 10

_status870, 142
stdaux, 148
stderr, 148
stdin, 148
STDIO.H, 146
stdout, 148

Index

stdpm, 148
stimeO, 142
_stklen, 53
stpcpyO, 143
strcatO, 143
strchrO, 143
strcmpO, 143
strcpyO, 143
strcspnO, 143
strdupO, 143
Streams

auxiliary I/O, 148
binary mode, 147
buffering, 147
discussion of, 146
predefined, 148
printer output, 148
redirection, 148
standard, 148
text mode, 147

_strerrorO, 128
strerrorO, 128
stricm pO, 143
String, converting to unsigned long,

129
strlenO, 143
strncatO, 143
strncmpO, 143
strncpyO, 143
strnicmpO, 143
strnsetO, 143
Stroked fonts, 22, 125
strpbrkO, 143
strrchrO, 143
strsetO, 143
strspnO, 143
strstrO, 143
strtodO, 143
strtokO, 143
strtolO, 143
strtoulO, 129
Structures

arccoordstype, 56
country, 65
DOSERROR, 155
linesettingstype, 82
palettetype, 86
text_info, 10

203

textsettingstype, 91
viewporttype, 95

Supported graphics adapters, 17
Suspend execution, 66
Symbolic constants

colors, graphics modes, 74,87
defining on command line, 45
fill patterns, 77
graphics_errors, 28, 101
graphics_drivers, 104
text_modes, 135

Syntax, extended, command-line
options, 46

systemO, 143

T
Tab size, menu item, 34, 36
Tab~changjng,34,36

TC configuration files, 150
TC.EXE, additions to, 31
TCC.EXE, changes to, 45
TCCONFIG.EXE, 145
TCCONFIG.TC, 149
TCINST, 42, 157

configuration files and, 151
Temporary file

creating 130
names, 129

Text
colors, 13
copying to another location, 111
direction, 22, 92
font, 92
justification, 22, 92
manipulation, 8
mode

cell attributes, 131
defining window, 137
discussion of, 5
programming in, 7
returning to, from graphics, 135
selecting, 135
switching to graphics, 119

output
graphics mode, 22, 113
text mode, 8

to viewport, 113
reading, 8
size, 92
streams, 147
string, width and height, .134
video information, 90
window, 11

inserting blank lines in, 107
writing, 8

textattrO, 9,130
text attributes, 130
textbackgroundO, 9, 132
textcolorO, 9, 132
textheightO, 22, 94, 113, 134
text_info structure, 10,90
textmodeO, 7, 9, 12, 135
text_modes enumeration type, 12,

135
_TEXT segment, BGIOBJ and, 188
textsettingstype structure, 91
textwidthO, 22, 94, 113, 134
THICK_WIDTH,83
Three-dimensional bars, drawing

and filling, 59
timeO, 115, 144
TIME.H,115
TUB

adding to GRAPHICS.LIB, 186
case-sensitivity option, 174
object module librarian, 169-176
operations, 171

TUNK, TUB and, 174
tmpfileO, 130
TMP _MAX, 129
tmpnamO, 129
TOP_TEXT, 92
Translation mode, streams and, 147
TRIPLEX_FONT, 93
TURBOC.CFG, 146,149
TURBOC.TC, 146
Turbo C directories, menu item

(TCINSTI, 159
Turbo C directory, menu item

(TCINSTI,160
Turbo Librarian, 169-176
Turquoise color set, menu item

(TCINSTI, 167

204 Addendum: Turbo C 7.5 Additions and Enhancements

typedef
div_t, 68
ldiv_t, 68
size_t, 61

u
ungetcO, 144
unlinkO, 144
USERBIT_L1NE, 83
USER FILL, 78
Use tabs, menu item (TeINST), 165
User-defined

fill pattern, 76
line pattern, 83
size factor, character fonts, 125

User-specified library files, 47
Using graphics, 15
Utilities

BGIOB], 185-190
GREP, 177-184
TeINST, 157-168
TLlB, 169-176

v
Variables

_argc, 52
_argv, 52
direct output to video RAM, 52
_8087, 54
fmode, 155

global, new and modified, 51-54
heap length, 53
stack length, 53

Vectors, defining character fonts, 22
Verbatim mode (TeINST), 162
Verbose option (GREP), 178
VERT_DIR, 93
VGA, 17,104
VGA display, 50-line, integrated

environment, 34

Index

Video
adapter,S
functions, 5
graphics array, 17, 104
information, text mode, 90
modes,S
RAM, output to, 14,52

Viewport
clearing, 20, 63
clipping in, 23, 93
defining, 95
manipulation, 20
settings, 95
text output to, 113

Visual graphics page, 121
Visual screen page, 20
-v option (GREP), 178
vfprintf(), 144
vfscanfO, 144
viewporttype structure, 95
vprintfO, 144
vscanfO, 144
vsprintfO, 144
vsscanfO, 144

w
wherexO, 10, 136
whereyO, 10, 136
WHITE, 14,26, 74, 87, 133
WIDEDOT_FILL, 78
windowO, 6,9, 11, 137
Windows

control, 9
definition of, 6
integrated environment, resizing,
168
text-mode, 11

-w option (GREP), 178
WordStar-like mode (TeINST), 162
Write option (GREP), 178
Writing

205

text, 8
to files, 138

_ writeO, 138
writeO, 138

x
XHATCH_FILL, 78
XOR_PUT,81

y

z
Zoom state, menu item (TCINST),

164
Zoomed windows, menu item, 33
-z option (GREP), 178

YELLOW, 14,26,74,87,133

206 Addendum: Turbo C 1.5 Additions and Enhancements

