
BDS C v1.50a 
User's Guide Addenda 

BD Software C Compiler 
Addenda Information for vl.50a 

, Leor Zolman 
BD Software, Inc. 

P.O. Box 9 
Brighton, Ma. 02135 

July 1983 

This document contains supplementary documentation for BDS C v1.50a. The 
first section explains some potential incompatibilities between the software (as 
configured for distribution) and certain computer systems. The second section lists 
new features of the compiler and libraries. The final section lists bugs found in 
the v1.50 release that have been corrected in this version. 

Potentiat System Incompatibilities 

The following points regarding compiler configuration/operation are not made 
entirely clear in the v1.5 User's Guide: 

The v1.50a run-time package file-I/O mechanism for BDS C presumes that the 
target programs are being run on a standard CP/M system where the· "user 
area" numbers may range from user 0 to user 31. Since only 5-bits are 
allocated for user-number memory within the internal file descriptor routines, 
standard BDS C generated COM files may not run on certain "CP/M-like" 
operating systems which support user numbers larger than 31. In order to fix 
this problem, the symbol USAREA has been added to the configuration area at 
the start of the run-time package source file (CCC.ASM). If you are 
experiencing problems opening files on your non-standard CP/M system, try 
changing this symbol to FALSE, re-assembling CCC.ASM to yield a new 
C.CCC, and re-linking your C program with this new version of C.CCC. Note 
that while this fix will allow your programs to run, you will no longer be able 
to make use of the user-number prefix feature when specifying filenames at 
run-time. All· files will be expected to reside in the currently-logged user 
area. Drive prefixes may still be specified, of course. 

A dangerous conflict was present in v1.50 involving the CDB debugger and the 
C.CCC run-time package: when BDS C programs are intended to be run under 
the debugger, they are compiled with the CC option -k. This causes the 

- 1 -



BDS C v1.50a July 1983 
User's Guide Addenda 

generated code to contain "RST S" instructions (by default) which are inserted 
at various points throughout the program for debugging purposes. The first 
thing CDB does, when invoked, is to write some instructions into restart 
vector area S (at location 30h in the base page of CP/M) in order to trap the 
RST S instructions compiled into the object program about to be debugged. If 
the "RST S" vector is already in use, say for a terminal I/O interrupt handler, 
then CDB overwrites the interrupt handler and crashes the system. Also, the 
BDS C run-time package (C.CCC, source in CCC.ASM) for v1.50 had itself 
written into the "RST S" location in order to allow programs compiled with 
the -k option to run stand-alone (without CDB in memory). This caused any 
program compiled under v1.50 to crash on systems where the "RST 6" vector 
was being used for important system I/O, e.g. the DEC Rainbow 100. 
In v1.50a, the run-time package contains some new options to select whether 
or not a restart location is to be initialized for stand-alone -k programs, and 
if so, to select which restart location shall be used. By default, the package 
comes configured not to write into any restart locations, to prevent any 
programs from coming up destroying vital interrupt handlers and crashing the 
system. 
If you know that the "RST S" vector is safe to use on your system, simply 
change the equated "USERST" symbol in the file CCC.ASM to TRUE, and 
reassemble CCC.ASM to yield a new C.CCC which supports the stand-alone 
execution of programs compiled with -k. 
If "RST S" is already in use on your system, and you know of an alternative 
restart vector that is free for use by the CDB mechanism, then edit both of 
the symbols "USERSTn and "RSTNUM" in CCC.ASM, create a new C.CCC, and 
then go create a new CDB (as described in the CDB documentation) to use 
the new restart location. 
If you have no unused restart locations on your system, you cannot use CDB. 

The bios and bdos library functions make certain assumptions about which 
registers CP /M'SBDOS uses to return values from system -calls. These 
assumptions are valid under all CP/M systems, but do not necessarily hold 
true under certain CP/M "look-alike" systems (such as SDOS or CDOS). If 
you are trying to use one of these system call interface functions and things 
don't seem to be working correctly, check to make sure your operating system 
returns BDOS values in the HL register and BIOS values in the A register ••• if 
this is not the case, you must rewrite the bdos and/or bios functions to obtain 
operating system return values from the proper registers.-

The bios library function as supplied with BDS C makes the assumption that 
location OOOOh of your system (the first instruction of the CP/M base page) 
contains a direct jump to the second entry (wboot) in the BIOS jump vector 
table. If this is not the case, such as on the Xerox 820, the bios function 
will not work correctly on your system and you must rewrite itto compute 
the address of the the BIOS vector table in whichever manner is appropriate 
for your particular system. 

- 2 -



BDS C v1.50a July 1983 
User's Guide Addenda 

New Functions and Features 

This section lists new BDS C functions and features that are either new for 
vl.50a, or were mistakenly omitted from the User's Guide: 

1. The following library function have been added to the standard library: 

int fappend(name,' iobuf) 
char *name; 
FILE *iobuf; 

Just like the fcreat function, except that if the file already exists then 
the next output written to it is appended onto the end of the file. 
This function should only be used on text files. 

lprintf(format, arg1, arg2, ••• ) 
char *format; 

Like printf, except the output is directed to the CP/M "LISTff device 
instead of to the console. 

int index(str, substr) 
char *str, *substr; 

Returns the position of string substr within string str, or -1 if not 
found. 

int memcmp(source, dest, length) 
char *source, *dest; 
unsigned length; 

Does a quick memory comparison of two blocks of memory length bytes 
long. Returns TRUE (1) if identical, or FALSE (0) if not identical. 
This function is coded in assembly language and runs very fast. 

2. The CLOAD.C utility, written by Will Colley, has been added to simplify the 
CASM assembly-to-CRL conversion procedure. CASM.SUB has been modified 
to use CLOAD.COM, and it is no longer necessary to give a "SAVEff 
command to save a newly-created CRL file to disk. CLOAD performs the 
same task as the standard LOAD.COM CP/M utility, except it allows 
out-of-sequence data that would draw an "INVERTED LOAD ADDRESS" 
message from LOAD.COM. 

3. The CP.C file copying utility, supplied as a sample source program, has been 
given a new "verify" option. See CP.C for detailed usage. 

- 3 -



BDS C v1.50a July 1983 
User's Guide Addenda 

4. A new sample program called DI.C has been provided. This is a simple file 
comparator utility for quick verification of the equality of (or minor 
disparity between) two versions of a file. 

5. The TELED.C telecommunications program has been improved. CRC ability 
has now been added, there are some new modes to allow easier user-to-user 
communications, and the file transfer mechanisms have been cleaned up. 

6. The WILDEXP.C wild-card expansion utility has been expanded to allow disk 
drive and user area specifiers on wild card designations. A wild-card user 
area specifiers searches through all user areas between 0 and 15 (you can 
make it search 0-31 by modifying the source), but this takes a little while 
to do. 

Corrected Bugs 

The following is a list of bugs detected in version 1.50. All have been corrected 
for version 1.50a: 

1. Only the first use 
appropriate message. 
diagnosed. 

of an undeclared identifier had been drawing an 
Now, all uses of an undeclared identifier are 

2. The constant-expression evaluation mechanism did not correctly evaluate 
expressons involving negative constants. 

3. The default drive mechanism, for both the CC and CLINK commands, had 
some serious problems that caused the wrong logical drive to be accessed 
under certain compilation and linkage conditions. For example, take the 
situation where you have configured CC.COM to look in drive C for default 
files (as described in the User's Guide, section 1.9.2.1), you are currently 
logged into drive A, and you are compiling a program on drive B with a 
command such as:' 

A>cc b:test.c 

Under these circumstances, any #inelude directives within the file test.c 
which reference the default library area (by delimiting the filename in angle 
brackets) caused drive B: to be searched for the file, not the default drive 
C as directed by the CC.COM configuration block. There were other 
problems of this nature even more confusing to describe, but it seems that 
everything works predictably under version 1.50a. 

4. Some very early v1.50's did not allow the re-use of structure identifiers. 
For example, the sequence: 

- 4 -



BDS C v1.50a 
User's Guide Addenda 

struct foo ~ 
int a; 
int b; 

struct foo foostruct; 

July 1983 

would have drawn an "illegal identifier" error at the attempted declaration 
of f oostruct. 

5. The CLIB program didn't allow filenames of more than six characters if a 
disk designator was used. 

6. A symbolic definition given a null value caused the compiler to crash. For 
example: 

#define BLANK /* this is a null definition */ 

7. One particular arrangement of whitespace in a function definition confused 
the declaration mechanism. Here is an example of a declaration that was 
not processed properly: 

char * 
func(n) 
int n; 
{ 

1 

/* Normally these two lines would */ 
/* be together. This way, el gronko */ 

8. The alloc and free library functions, as presented in the Kernighan and 
Ritchie book, have a misfeature which presented itself in the BDS C library 
versions of these functions by running out of memory, unexpectedly, 
following certain tricky sequences of alloca tion and de-alloca tion. In 
particular, the continuous allocation and subsequent freeing of large blocks, 
with very tiny allocations in between, had caused this problem. The bug has 
been exterminated by improving the allocation algorithm to re-allocate freed 
blocks from their heads instead of their tails (thanks to William C. Colley m 
f or this fix). . 

9. The functions fprintf and sprintf, in some versions, did not handle newlines 
correctly, due to a bug in the undocumented low level library utility function 
"fputc". The symptom was that new lines were converted into single 'r' 
(AsCII ODh) bytes, with no linefeed following. 

10. Repeated use of the the execl library function under MP/M or TURBODOS 
had caused the system to run out of file slots, because execl did not bother 
to close the file before transferring control to new program just loaded. 
This has been corrected, at the expense of seven bytes worth of command 
line text area. Note that this affects the exec and execv functions also, 
since they both use execl themselves. 

- 5 -



BDS C v1.50a July 1983 
User's Guide Addenda 

11. Format strings passed to printf (and all related functions) caused problems if 
they happened to end with a single % character. 

12. Line numbers given in preprocessor error messages while processing #include 
files were completely wrong. 

13. When using CLINK to link overlay segments (via the -Y option), the error 
messages: 

Warning! Externals extend into BDOS! 
Warning! Externals overlap code! 

sometimes appeared even though the described condition may not have been 
true. 

14. The longjmp library function would not work when placed in ROM due to an 
"impure" direct store of temporary data within the body of the function.' 
This was a pretty dumb move on my part; longjmp .has been corrected to 
instead use a temporary scratch word in the run-time package data ar~a. 

15. When the CPM symbol in CCC.ASM was set to FALSE and CCC.ASM 
assembled, an undefined entry point called "clrex" was flagged. This has 
been corrected by removing the "clrex" jump vector from within the 
conditional assembly block dependent on the CPM symbol. 

- 6 -


	01
	02
	03
	04
	05
	06

