BDS C User's Guide Adderda
vl.44 Edition — April, 1981

ILeor Zolman

BD Software

33 Lothop St.
Brighton, Massachussetts 02135

(617) 782-0836

_ Please note my NEW new address and phone number...scme earlier versions of the new
documentation have said that my new city and zip code were Allston, 02134, which is where
I THOUGHT I was. Actually, I'm in Brighton, 02135, and any mail sent me addressed to
Allston may have been returned to the sender stamped with scmet}u.ng llke "No such address
]mown " Sorry about that.

' Here are the bug fixes/extensions for version 1.44:

1. (Applies to vl.43a only): the character sequence \\ appearing at the END of a quoted
string caused the preprocessor in CCl to screw up and stop stripping camments for the
rest of the source file. For example, the statement:

printf("This backslash would causé big trouble: \\"):

would havé done it.

2. The "gsort" library function didn't work when the total size of the data array being
sorted exceeded 32K bytes 'I‘ha.s has been f:.xed by changed the declaratlons of certain
variables in gsort from * ' to "unsign

3. C1, @2, and CLINK may now be aborted in the middle of execution by -typing a
control-C.

4. A new CLINK option has been added (as if there weren't enough of them already...) The
"~f" option, when specified immediately before the name of an extra CRL file to be
searched, FORCES all functions in that CRL to be loaded into the cwrent
linkage—even if they haven't been previously referenced. This provides a simple
solution to the backwards-reference problem; a typical case when this would be used
canes up when you want to use a special version of a low-level £function such as
"putchar."” If you have a camplete program such as:

main()

{
}

and would 1like your OWN version of putchar to be loaded fram a library called, say,
SPECIAL.CRL (which you have previously campiled), then simply saying:

printf(“"this is a test\n");

BDS C v1.44 Doc. Update, May 1981

clink test special <cr>

would.NOT work, because the "putchar" function doesn't became "needed" until AFTER
the library file DEFF.CRL, which ocontains "printf", is searched...which doesn't
happen until AFTER special is searched! So the "putchar" finally loaded would came
fram DEFF2.CRL, which is the 1library file autamatically searched after DEFF.CRL. To
make this do what you want, all you'd have to do now is:

clink test -f special <cr»

which would force everything in SPECIAL.CRL to be loaded right away, before the DEFF
files are scamned. Then, when "printf" gets loaded fram DEFF.CRL, the ocorrect
"putchar" function -will already have been loaded and the one’in DEFF2.CRL will be
ignored.

The "rename" library function had a rather serious problem: whenever executed, it
would zero out the three bytes of code immediately after the end of the function
(i.e., the first Jjump instruction of the next function in memory would get
clobbered.) This problem was fixed by increasing the amount of storage declared in
‘the "ds" at the end of "rename" fram 49 bytes to 53 bytes.

The "setfcb" function requires that the buffer allocated to hold the resulting fcb is
AT LEAST 36 BYTES LONG! "Setfcb" zeroes out the randamrecord field bytes of the fcb
just in case the CP/M 2.x randamrecord file I/0 mechanism is later used. But whether
you use the randam stuff or not, the fcb you allocate still has to be 36 bytes long.

This bug applies to v1.43 only: A character constant consisting of the double-quote
character enclosed in single quotes ('"'), when encountered by ccl, caused ccl to
stop stripping comments while reading in the rest of the source file fram disk. This
was a bug in the vl1.43 code added to allow camment delimiters within quoted strings.

Whenever the type information for a function definition was placed on a line separate.
fram the actual mname of the function, then the compiler would "lose" a line of code
and all errors found past that point in the source file would be reported with an
incorrect 1line muber. For example, the following kind of function definition
would've caused this problem:

char *
foo()

A new library function, "execv", has been added to the package (source is in
DEFF2.ASM). This function allows chaining to ancther CM file with a variable number

. of camand line parameters (note that "execl" requires all of the arguments to be
explicitly passed as string pointer parameters to the function, so that one
particular call can only have the rnmber of arguments that it was written with.) The
format of the "execv" function is:

S Cvl.44 Doc. Undate, May 1981

execl (prog,argvp)
char *prog, **argvp;

where ‘prog' points to the name of the QM file to be chained to, and ‘argvp' is an
‘argv'-like pointer to an array of pointers to text parameters. The final pointer in
the list must be followed by a null pointer. As an example, note that the "execl"
call

execl("stat", "badspots", "Sr/o",0);
can be written in terms of "execv" as follows:

char *args[3]:
args[0] = "badspots":
args[1] = "Sr/o";
args[2] = NULL;
execv("stat",args);

10. Directed I/0 and pipes, of sorts, are now available to BDS C programmers. The files
DIO.C and DIO.H make up a cute little directed I/O package, allowing for directed
input, directed output and pipes (a la Unix) on the command lines to programs
campiled with this special I/0 package. See the camments in DIO.C for camlete
details. Note that the presence of this package does NOT contradict certain camments
made in the User's Guide about kludglng advanced Unix features under CP/M; those
camments were directed toward systems in which the I/0 redirection/generalization is
forced uyon the user, along with all the entailing overhead, when the redirection
isn't needed or wanted for many applications. The DIO package, being written in C and
separately campiled, lets YOU the USER decide when you want it and when you do not. -
If you don't want it, it takes up zero space; if you do, it takes up a bit of room
and yanks in all the buffered 1/0, but it DOES give you redirection and pipes!

1l. A “standard error" buffered I/0 stream number has been added to the list of special
devices recogm.zed by the "putc" buffered output function. An iobuf value of 4 causes
the character given to be written to the CP/M console output, always, while an iobuf
value of 1 causes the character to be written to the standard output (which might be
a file if the DIO package is being used.) Note that 4 was used instead of the Unix
Standard-error value of 2 because 2 had already been taken (by the CP/M LST: device.)

12. String constants may now contain 2zero bytes within them. Prev:.ous versions have
flagged lines such as
foo = "Jan\OFeb\OMar\OApr\OMay\OJun\0Jul \OAug\0Sep\00ct \Nov\0Dec\0" ;
with the error message:
iero bytes are not allowed within strings; to print nulls, use \200
Note that allowing the above kind of string constant mekes it easier to initialize a

table of hamogenously-sized strings; the example with the months could be part of a
function that returns a pointer to the name of same month n, where n is a passed

BDS C v1.44 Doc. Update, May 1981

value .ranging fraom O to 11 (or fram 1 to 12, or whatever...)

S C vl.44 Doc. Update, May 1981

