


--- ATlaT 

UN/~ SYSTEM V 
RELEASE 4 
Migration Guide 

UNIX Software Operation 



Copyright 1990,1989,1988,1987,1986,1985,1984,1983 AT&T 
All Rights Reserved 
Printed In USA 

Published by Prentice-Hall, Inc. 
A Division of Simon & Schuster 
Englewood Cliffs, New Jersey 07632 

No part of this publication may be reproduced or transmitted in any form or by any means-graphic, 
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap­
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in 
writing from AT&T. 

IMPORTANT NOTE TO USERS 

While every effort has been made to ensure the accuracy of all information in this document, AT&T 
assumes no liability to any party for any loss or damage caused by errors or omissions or by state­
ments of any kind in this document, its updates, supplements, or special editions, whether such er­
rors are omissions or statements resulting from negligence, accident, or any other cause. AT&T furth­
er assumes no liability arising out of the application or use of any product or system described 
herein; nor any liability for incidental or consequential damages arising from the use of this docu­
ment. AT&T disclaims all warranties regarding the information contained herein, whether expressed, 
implied or statutory, including implied warranties of merchantability or fitness for a particular purpose. 
AT&T makes no representation that the interconnection of products in the manner described herein 
will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the 
granting or license to make, use or sell equipment constructed in accordance with this description. 

AT&T reserves the right to make changes without further notice to any products herein to improve 
reliability, function, or design. 

TRADEMARKS 

NeWS and SunOS are registered trademarks of Sun Microsystems, Inc. 
OPEN LOOK is a trademark of AT&T. 
PostScript is a registered trademark of Adobe Systems, Inc. 
UNIX is a registered trademark of AT&T. 
VAX is a trademark of Digital Equipment Corporation. 
XEN IX is a registered trademark of Microsoft Corporation. 

10 9 8 7 6 5 4 3 2 1 

ISBN 0-13-933821-7 

UNIX 
PRESS 

A Prentice Hall Title 



PRE N T C E HAL L 

ORDERING INFORMATION 

UNIX@ SYSTEM V, RELEASE 4 DOCUMENTATION 

To order single copies of UNIX@ SYSTEM V, Release 4 documentation, 
please call (201) 767-5937. 

ATTENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS: 
For bulk purchases in excess of 30 copies please write to: 
Corporate Sales 
Prentice Hall 
Englewood Cliffs, N.J. 07632. 
Or call: (201) 592-2498. 

ATTENTION GOVERNMENT CUSTO~ERS: For GSA and other pricing 
information please call (201) 767-5994. 

Prentice-Hall International (UK) Limited, London 
Prentice-Hall of Australia Pty. Limited, Sydney 
Prentice-Hall Canada Inc., Toronto 
Prentice-Hall Hispanoamericana, SA, Mexico 
Prentice-Hall of India Private Limited, New Delhi 
Prentice-Hall of Japan, Inc., Tokyo 
Sfmon & Schuster Asia Pte. Ltd., Singapore 
Editora Prentice-Hall do BraSil, Ltda., Rio de Janeiro 



® 
AT&T UNIX System V Release 4 

General Use and System Administration 

UNIX® System V Release 4 Network User's and Administrator's Guide 
UNIX® System V Release 4 Product Overview and Master Index 
UNIX® System V Release 4 System Administrator's Guide 

lit 
UNIX System V Release 4 System Administrator's Reference Manual 
UNIX® System V Release 4 User's Guide 
UNIX® System V Release 4 User's Reference Manual 

General Programmer's Series 

UNIX® System V Release 4 Programmer's Guide: ANSI C 
and Programming Support Tools 

UNIX® System V Release 4 Programmer's Guide: Character User Interface 
(FMLI and ETI) 

UNIX® System V Release 4 Programmer's Guide: Networking Interfaces 
UNIX® System V Release 4 Programmer's Guide: POSIX Conformance 
UNIX® System V Release 4 Programmer's Guide: System Services 

and Application Packaging Tools 
UNIX® System V Release 4 Programmer's Reference Manual 

System Programmer's Series 

UNIX® System V Release 4 ANSI C Transition Guide 
UNIX® System V Release 4 BSD / XENIX® Compatibility Guide 
UNIX® System V Release 4 Device Driver Interface / Driver-Kernel 

Interface (DOl/OK!) Reference Manual 
UNIX® System V Release 4 Migration Guide 
UNIX® System V Release 4 Programmer's Guide: STREAMS 

Available from Prentice Hall Ii 



1 

2 

3 

4 

5 

Contents 

About This Guide 
Introduction 

The Evolution of UNIX System V 
Introduction 

Migrating from Release 2 
Introduction 
Release 2.0 Features 
Release 2.1 Features 

Migrating from Release 3 
Introduction 
Release 3.0 Features 
Release 3.1 Features 
Release 3.2 Features 

UNIX System V Release 4 
Introduction 
The Command Set 
The Command Interface 
File Operations 
The File System 
The Directory Tree 

Table of Contents 

1-1 

2-1 

3-1 
3-2 
3-4 

4-1 
4-2 
4-7 
4-11 

5-1 
5-3 
5-6 
5-7 
5-9 
5-14 



Table of Contents ______________________ _ 

II 

InpuVOutput 
Memory Management 
System Access 
Process Management 
System Administration and Maintenance 
Networking 
Character-Based User Interfaces 
Graphical User Interface 
Internationalization 
C Language 

5-21 
5-23 
5-25 
5-27 
5-30 
5-32 
5-38 
5-39 
5-41 
5-44 

Migration Guide 







Introduction 

Many of the features introduced in earlier UNIX® System V releases exist 
unchanged in Release 4.0. Other features have been enhanced, sometimes gra­
dually over a number of releases, to the point where a user may need to become 
reacquainted with a feature and to explore its capabilities as they exist in 
Release 4.0. Some features introduced in earlier releases have been replaced 
altogether by new technology. 

This guide describes UNIX System V Release 4.0 to the user who is upgrading 
from an earlier release of UNIX System V. It describes changes that have been 
made to the system as it has evolved to meet the growing needs of the UNIX 
system marketplace. 

Chapter 1, "About this Guide" describes the audience and scope of the Migra­
tion Guide. 

Chapter 2, "The Evolution of UNIX System V," briefly describes the history of 
the UNIX system so that the goals of Release 4.0 can be understood in context. 

Chapter 3, "Migrating from Release 2," describes UNIX System V Release 2 and 
explains how the features introduced in Releases 2.0 and 2.1 have evolved 
through Release 3 to their present state in Release 4.0. Users upgrading from a 
Release 3 system can ignore Chapter 3. 

Chapter 4, "Migrating from Release 3," describes features introduced in Release 
3.0,3.1, and 3.2. Users upgrading from a Release 2 system should read Chapter 
4, as many of the features introduced in Release 3 are important features in 
Release 4.0. 

Chapter 5, "UNIX System V Release 4.0," describes Release 4.0. The scope of 
Release 4.0 exceeds the scope of earlier releases and constitutes a redesign of 
some aspects of the system. Therefore, the description of Release 4.0 in Chapter 
5 is not presented as a list of new features. Instead, it examines functional areas 
of the system, describes these functional areas as they existed in earlier UNIX 
System V releases, then describes the changes made in each functional area in 
Release 4.0. Discussion of new features is integrated into the discussion of func­
tional areas. For example, a section entitled "System Access" describes the 
method for accessing a UNIX system running an earlier release of UNIX System 
V, then describes the architectural changes made in Release 4.0 to provide a con­
sistent access mechanism for both local and network users. For a listing of 
Release 4.0 features, followed by a description of each new feature, see the "Pro­
duct Overview" at the beginning of the Product Overview and Master Index. 

About This Guide 1-1 









Introduction 

The UNIX system is an evolving system. Developed at Bell Laboratories in the 
1960s, the UNIX system was strictly an internal system until AT&T began licens­
ing it in the early 1970s. As a non-proprietary system, the UNIX system was 
distributed freely-primarily to universities, but also to equipment vendors who 
enhanced the system to meet the needs of their hardware. Many versions of the 
system began to appear, all with the same basic design, but with differences 
resulting from the different implementations. 

In the mid-1970s, the first commercial implementation of the UNIX system 
appeared. Soon afterward, Microsoft Corporation introduced the XENIX® Sys­
tern. 

In the academic and military worlds, an implementation of the system 
developed at the University of California at Berkeley became standard on the 
DEC VAX line of computers. From Berkeley's implementations (4.1,4.2, and 4.3 
BSD), other versions evolved, including Sun Microsystems' SunOS and many of 
the microprocessor-based versions available today. 

Following a court-ordered divestiture in 1983, AT&T was allowed to enter the 
computer industry and market the operating system originally developed in its 
own laboratories. AT&T's first commercial implementation of the UNIX system 
was called UNIX System III. By 1984, UNIX System III had evolved into UNIX 
System V. 

To date, there have been three major releases of UNIX System V: Release 2, 
Release 3, and, now, Release 4. Each release provides features that extend the 
power, the usefulness, and the usability of the UNIX system. 

The Evolution of UNIX System V 2-1 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 







3 Migrating from Release 2 

Introduction 

Release 2.0 Features 
SeH-Configuration 
Dynamic Disk Partitioning 
File System Hardening 
Advisory File and Record Locking 
Shell Enhancements (Job Control) 
System Administration/ Menus (sysadm) 

Release 2.1 Features 
Demand Paging 
Mandatory File and Record Locking 

Table of Contents 

3-1 

3-2 
3-2 
3-2 
3-2 
3-3 
3-3 
3-3 

3-4 
3-4 
3-4 





Introduction 

UNIX System V Release 2 comprised two major releases, which introduced new 
features, and several maintenance releases. The major releases were Release 2.0 
and Release 2.1. 

The features introduced in the major Release 2 releases are described in this sec­
tion. Users upgrading from Release 2 should read this section to learn what has 
happened to each feature as the system has evolved through the major Release 2 
and Release 3 releases; the descriptions explain the extent to which a Release 2 
feature has been changed or enhanced in Release 4.0, or whether or not it has 
been replaced or deleted altogether. 

Migrating from Release 2 3·1 



Release 2.0 Features 

Release 2.0 introduced the following features to UNIX System V: 

• self-configuration 

• dynamic disk partitioning 

• file system hardening 

• advisory file and record locking 

• shell enhancements 

• system administration menus 

Of the features introduced in Release 2, self-configuration and dynamic disk 
partitioning are unchanged in Release 4.0. 

Self-Configu ration 

Release 2.0 introduced self-configuration, a feature that enables peripheral 
drivers to be kept on the hard disk instead of permanently in the UNIX System 
V kernel. When the system is booted, the feature can automatically detect new 
hardware and retrieve the corresponding drivers. 

Dynamic Disk Partitioning 

Dynamic disk partitioning allows disk partitioning information to be kept on the 
disk (hard or floppy) instead of in the kernel. This feature gives the user more 
flexibility in partitioning the disk to suit current needs. 

File System Hardening 

File system hardening gives the UNIX system's file system additional protection 
if there is a power outage, system crash, or removal of a floppy diskette during 
update. File system hardening is done through ordered writes to the disk, fre­
quent disk buffer flushings, detection of corrupt file systems when mounting, 
and automatic sanity flag checking on all file systems to ensure integrity. 

3-2 Migration Guide 



Release 2.0 Features 

Advisory File and Record Locking 

File and record locking allows a process to lock a file (or one or more contigu­
ous bytes of a file) for exclusive use by that process. If a file or record is locked, 
then access to it by another process is restricted according to the type of lock on 
it (either read or write). 

Advisory file and record locking was introduced in Release 2.0 and supple­
mented in Release 2.1 with mandatory locking. Whereas advisory file and 
record locking relies on cooperating processes to enforce the record locking pro­
tocol, mandatory file and record locking is enforced by the system calls used to 
access files. Both record locking modes continue to be supported in Release 4.0. 
In addition, Release 4.0 supports XENIX-style file and record locking, via the 
locking function, for compatibility with existing XENIX source code. 

Shell Enhancements (Job Control) 

The primary enhancement to the shell in Release 2.0 was the shell layer 
manager, which is an implementation of job control that works with standard 
terminals without special hardware. Release 4.0 offers an optional shell (jsh) 
that features a new implementation of job control that conforms to the POSIX 
standard. The job control shell allows a user to stop and later resume jobs exe­
cuting in either the foreground or the background, and to move jobs back and 
forth between the background and the foreground. 

The shell layer manager continues to be supported in Release 4.0. 

System Administration Menus (sysadm) 

The System Administration Menu command (sysaclm) and associated subcom­
mands are menu-driven commands that simplify the job of system administra­
tion. The system administration menus introduced in 2.0 are available in 
Release 4.0, but the menu interface has been significantly enhanced to improve 
usability and expand the coverage of the interface. 

Migrating from Release 2 3-3 



Release 2.1 Features 

Release 2.1 introduced two important features to UNIX System V: 

• Demand paging 

• Mandatory file and record locking 

In addition to introducing new features, Release 2 introduced general perfor­
mance improvements. For example, the operating system and many commands 
were recompiled in Release 2.1 with a new issue of the C Programming 
Language Utilities (CPLU) Issue 3 to increase the speed of floating point opera­
tions. 

For the first time in Release 2.1, CPLU was removed from the UNIX System V 
base and made available as a separate product. 

Demand Paging 

REGIONS demand paging, introduced in Release 2.1, is a virtual memory 
management architecture that replaced the original UNIX system swapping 
architecture. Demand paging allows the UNIX system to execute processes that 
exceed the address space of main memory. 

In Release 4.0, a third-generation memory management architecture replaces 
both the original swapping architecture and the REGIONS virtual-memory 
architecture. The new Virtual Memory (VM) architecture memory-management 
provides the benefits of demand paging, plus a number of new, distinctive 
advantages, such as greater portability of kernel code. System programs that 
reference REGIONS data structures will not work in Release 4.0. For more 
information about the VM architecture, see Chapter 5 of this guide. 

Mandatory File and Record Locking 

Mandatory File and Record Locking was introduced in Release 2.1 to supple­
ment Advisory File and Record Locking, a Release 2.0 feature. Both modes of 
record locking are supported in Release 4.0, as well as XENIX-style file and 
record locking (provided for compatibility with XENIX source code). 

3-4 Migration Guide 



Release 2.1 Features 

For an explanation of the differences in the two modes of record locking, see the 
description of File and Record Locking in ''Release 2.0 Features." 

Migrating from Release 2 3-5 









4 Migrating from Release 3 

Introduction 4-1 

Release 3.0 Features 4-2 
Remote File Sharing 4-2 
STREAMS 4-3 
Transport Level Interface 4-4 
Listener 4-4 
Shared Libraries 4-5 
getopts 4-5 
Signal Mechanism Enhancements 4-6 
Improved Facilities for Supporting Terminals 4-6 

Release 3.1 Features 4-7 
Support for Eight-Bit Code Sets 4-7 
Support for Alternate Date and Time Formats 4-8 
Support for Alternate Character Classification and 

Conversion Rules 4-8 
New awk (nawk) 4-8 
Improved Recovery of Files from epio Archives 4-9 
Incremental Backup of Nested Files 4-9 
Swapping the User Area 4-9 
Smaller and Faster curses 4-10 

Release 3.2 Features 4-11 
Enhanced System Security 4-11 
2K File System Utilities 4-13 

Table of Contents 



Table of Contents 

Ii 

Framed Access Command Environment 
Form and Menu Language Interpreter 
Enhanced curses 

4-14 
4-14 
4-14 

Migration Guide 



Introduction 

This section is directed to Release 2 and Release 3 users who are upgrading to 
Release 4.0. The section describes the features that were introduced to System V 
in the Release 3 releases and alerts users to Release 3 features that have been 
replaced or significantly enhanced in Release 4.0. 

UNIX System V Release 3 consisted of three releases-Release 3.0, Release 3.1, 
and Release 3.2. Although each release introduced a range of new features, 
Release 3.0 enhancements were mainly in the area of networking, Release 3.1 
focused on internationalizing the UNIX system, and Release 3.2 added security 
enhancements. 

Migrating from Release 3 4-1 



Release 3.0 Features 

Release 3.0 introduced features that are important to extending the UNIX 
system's capabilities as a networked operating system. These features, packaged 
together in the Network Support Utilities package, consisted of 

• STREAMS 

• the Transport Level Interface (TLI) 

• the Listener. 

These features continue to be an important part of the UNIX system. 

Release 3.0 also introduced Remote File Sharing (RFS), an add-on package that 
allows users to share files and directories across a network. 

Performance improvements introduced in Release 3.0 included 

• Shared Libraries and Shared Library Generation 

• Signal Mechanism Enhancements 

• Improved Terminal Support. 

Remote File Sharing 

Remote File Sharing is a file-sharing package that allows users to share files, 
directories, devices, and named pipes transparently among computers that are 
linked by a network. The administrator of each computer on the network con­
trols which local resources are available to other computers and which remote 
resources local users can access. Sharing is done at the directory level. When a 
user shares a directory, its entire contents are shared. 

In Release 3.0 Remote File Sharing was tied to the Universal Receiver Protocol 
(URP) on 3B2 Computers that were connected via the AT&T STARLAN NET­
WORK; however, in later Release 3 releases, Remote File Sharing is media- and 
protocol-independent. 

In Release 3.1, a loop-back feature was provided that enables an administrator 
to simulate Remote File Sharing processing within one computer. Application 
programs designed to use RFS can be tested partially without actually commun­
icating with a remote computer. This feature can also be used to demonstrate 
RFS when only one computer is available. 

4-2 Migration Guide 



Release 3.0 Features 

Release 3.1 also introduced RFS client caching. This feature enables a client sys­
tem (one that is accessing data from another system) in a Remote File Sharing 
arrangement to maintain a local copy of the data it needs. When a block of data 
is read from or written to a remote system, it is placed in a local buffer where it 
can be accessed by subsequent requests for data by local processes. This can 
reduce significantly the amount of data that needs to be sent across the network, 
resulting in significant performance improvements for many patterns of remote 
file use. 

In Release 4.0, Remote File Sharing has been implemented as a file system type 
(rfs) and is one of two distributed file system types supported by a new Virtual 
File System architecture. The second distributed file system type is an imple­
mentation of Network File System, a SunOS file-sharing package that allows a 
computer to share one or more of its file systems with other computers in a 
heterogeneous operating system environment. Both RFS and NFS can run 
simultaneously on the same machine, and both packages are administered 
through a common command interface. 

For more information about RFS, see the Network User's and Administrator's 
Guide. For more information about the Virtual File System and the Network 
File System, see Chapter 5 of this guide. 

STREAMS 

STREAMS was introduced in Release 3.0 as a mechanism and a set of tools for 
the development of communication and networking services within the UNIX 
system kernel. 

STREAMS defines standard interfaces for character input/output within the ker­
nel, and between the kernel and the rest of the UNIX system. The STREAMS 
mechanism enables modular, portable program development and seamless 
integration of network services. 

The interfaces defined in STREAMS allow networking architectures and higher­
level protocols to be independent of underlying protocols, drivers, and media. 
Higher-level services are created by selecting and connecting lower-level ser­
vices and protocols. 

Migrating from Release 3 4-3 



Release 3.0 Features 

In Release 3.0, the STREAMS mechanism was provided as an interface for 
implementing character I/O devices and networking protocols in the kernel. In 
Release 4.0, the UNIX System V terminal subsystem and pipes have been imple­
mented to take advantage of the STREAMS mechanism. 

For information about STREAMS-based ttys and pipes, see the Programmer's 
Guide: STREAMS. 

Transport Level Interface 

The Transport Level Interface (TL!) defines an interface between programs and 
protocols at the transport layer of the Open Systems Interconnection (OS!) 
Reference Model. TLI relieves user programs of the need to know special 
characteristics of underlying networking protocols. The TLI definition is imple­
mented through the Networking Services Library (libnsl). User programs that 
are written using TLI work properly with any network transport provider that 
also conforms to TLI. 

TLI supports two modes of transfer--connection-oriented, which transports data 
over an established connection in a reliable, sequenced manner, and connection­
less, which supports data transfer in self-contained units (datagrams) with no 
logical relationship required among units. 

TLI remains unchanged in Release 4.0; however, a number of network protocols 
are supported for the first time in Release 4.0, and all have been implemented to 
understand TLI. 

For more information about the Networking Services Library (libnsl) and TLI, 
see the Programmer's Guide: Networking Interfaces. 

Listener 

For each transport provider on a system, UNIX System V Release 3.0 provides 
an active user-level program called a Listener. The purpose of the Listener is to 
receive requests for network services from another system, interpret which net­
work service is needed, and initiate a process that has been designated to pro­
vide the requested network service. The Listener then drops out of the com­
munications path and continues to listen for new service requests. 

4-4 Migration Guide 



Release 3.0 Features 

Although the Listener remains virtually unchanged in Release 4.0, it has been 
implemented under the Service Access Facility (SAF}-a new facility that 
manages all external access to the system and provides consistent handling of 
connection requests from different access points. 

For more information about the SAF, see Chapter 5 of this guide and the System 
Administrator's Guide. 

Shared Libraries 

Shared libraries were introduced in Release 3.0. 

A shared library is a set of routines that is attached to a program at run-time, 
rather than having routines combined with an application program when it is 
compiled. The end user of an application that was built in this way benefits in 
several ways: 

• The application program may occupy less storage space. 

• When it is running, the application program occupies less space in 
memory. 

• When routines in a shared library are changed, the new, improved ver­
sions are accessible without recompilation of the programs that access 
them. For example, by improving the performance of one routine, the 
performance of every application that uses that routine will be improved 
immediately. 

For information about shared libraries, see the Programmer's Guide: System Ser­
vices and Application Packaging Tools. 

getopts 

A new shell function, getopts, was offered in Release 3.0 as a replacement for 
the getopt command. To ease migration, both Commands were supported in 

Migrating from Release 3 4-5 



Release 3.0 Features 

Release 3.0, and, to assist in the conversion of affected shell scripts, both a 
conversion command (qetoptcvt) and hand conversion procedures were pro­
vided with Release 3.0. 

Beginning with Release 3.1, only getopts is supported. 

Signal Mechanism Enhancements 

A new signal interface (siqset) was provided in Release 3.0 as an improved 
mechanism to manage signals. New system calls allowed a programmer to 
establish critical sections of code that would not be interrupted by a set of sig­
nals. These signal-handling system calls were compatible in name and calling 
sequences with 4.1 BSD. 

In Release 4.0, UNIX System V supports the signal interface defined by POSIX 
P1003.1, as well as the pre-3.0 interface (signal) and the Release 3.0 interface 
(siqset). 

Improved Facilities for Supporting Terminals 

To extend terminal support in UNIX System V, Release 3.0 introduced the Win­
dowing Utilities package, as well as enhancements to the Terminal Information 
Utilities package. 

The Windowing Utilities package consists of software required by AT&T win­
dowing terminals. The Terminal Information Utilities package contains a data­
base (tenninfo) that allows programmers to write programs to manipulate the 
screen displays of various terminals. 

Updated versions of the Terminal Information Utilities and the Windowing Util­
ities are provided with Release 4.0. For a description of these and other utilities 
packages provided as part of Release 4.0, see the "Product Overview" in the 
Product Overview and Master Index. 

4-6 Migration Guide 



Release 3.1 Features 

The focus of Release 3.1 was on making UNIX System V more adaptable to dif­
ferent languages and national conventions. To promote the use of the UNIX 
system internationally, Release 3.1 offered support for 8-bit characters, alternate 
date and time formats, and alternate character classifications and conversion 
rules. (For a full discussion of the features in Release 4.0 that support interna­
tional applications, see "Internationalization" in Chapter 5 of this guide.) 

In addition, Release 3.1 provided a new version of awk (called nawk) that sup­
ports 8-bit characters. 

Performance improvements in Release 3.1 consisted of improved recovery of 
files from cpio archives, incremental backup of nested files, the ability to page 
the user area, and a smaller and faster curses library. 

Release 3.1 also introduced enhancements to RFS. For a description of the 
enhancements, see the description of RFS in ''Release 3.0 Features" earlier in 
this guide. 

Support for Eight-Bit Code Sets 

Because the ASCII character code only uses seven of the available eight bits in a 
byte, some commands in the pre-3.1 command set made special use of this 
eighth biti other commands assumed that if the bit was set, the byte was invalid. 
In Release 3.1, the cat, ed, egrep, expr, find, grep, Is, pg, sed, sort, and vi 
commands and the curses library were changed so that they no longer use the 
eighth bit of each byte. This change enables these commands to handle code 
sets where all eight bits are used in character encoding (to handle such things as 
accented vowels). 

Support for eight-bit code sets in Release 3.1 paved the way for support for 
multiple code sets and multi-byte character representation in Release 4.0. 

Migrating from Release 3 4-7 



Release 3.1 Features 

Support for Alternate Date and Time Formats 

The epio, date, 1s, rount, pr, and sort commands were changed in Release 
3.1 to provide the date and time in the language and national conventions given 
by the value of the LANGUAGE environment variable. While the United States 
conventions remained the default, other languages and national conventions 
could be supported by creating and installing a file for the language desired in 
the /usr/lib/eftime directory. 

In Release 4.0, foreign languages and national conventions are supported by a 
new set of environment variables, which take precedence over old ones. The 
/usr/1ib/eftime directory has been changed to /usr/1ib/1oca1e, and the 
structure of the directory has changed. 

Support for Alternate Character Classification and 
Conversion Rules 

cat, ed, eqrep, qrep, 1s, pq, sed, sort, and vi (commands that convert charac­
ters from upper- to lowercase or classify characters as alphabetic, printable, 
upper- or lowercase, and so on) were changed in Release 3.1 to support code 
sets or classification rules according to the value of the CHRCLASS environment 
variable. While ASCII remains the default for these operations, other conver­
sion and classification rules are supported by creating and installing a file 
describing these rules. 

In Release 4.0, the environment variable LC _ CTYPE takes precedence over 
CHRCLASS. 

New awk (nawk) 

awk is a programming language for information retrieval and data manipulation 
that can be used by people with very little programming background. Because 
awk does not provide support for 8-bit characters, a new version, called nawk, 
was introduced in Release 3.1 as part of the effort to internationalize UNIX Sys­
tem V. nawk provides other enhancements in addition to 8-bit support, such as 
the ability to define functions. 

4-8 Migration Guide 



Release 3.1 Features 

In Release 4.0, awk is provided as oawk (old awk) and nawk. By default, awk is 
linked to oawk. 

For more information about nawk, see the nawk(1) manual page. 

Improved Recovery of Files from cpio Archives 

Release 3.1 provided a procedure for skipping over bad blocks in a cpio archive 
file, in the event that errors are encountered while restoring a file from floppy 
disk using sysadm or epio. The procedure allows users to continue the restore 
with the next file, and greatly reduces the amount of data that will be lost. 

For more information, see the epio (1) manual page. 

Incremental Backup of Nested Files 

A procedure was implemented for the first time in Release 3.1 to pennit incre­
mental backup of a nested file system to floppy disk (a nested file system is a 
file system that is not mounted directly under root). 

In Release 4.0, a number of sophisticated options have been added to the 
backup and restore facilities. For information, see Chapter 5 of this guide or the 
System Administrator's Guide. 

Swapping the User Area 

The UNIX system maintains an internal data structure for each process called 
the user area (or u-block). Older UNIX systems keep this data locked in main 
memory. In Release 3.1, UNIX System V was modified so that the u-block for 
users whose processes are not running can be swapped out of main memory, 
thus freeing more system memory for the use of user programs. 

Migrating from Release 3 4-9 



Release 3.1 Features 

Smaller and Faster curses 

Release 3.1 provided changes in the curses library that increase efficiency of 
applications. Recompiling and relinking an application package with the 
Release 3.1 curses library results in an application that uses significantly less 
memory than it did in earlier releases, with faster execution. 

In Release 4.0, curses is packaged with the C Software Development System, 
Issue 5. 

4·10 Migration Guide 



Release 3.2 Features 

One of the great benefits of the UNIX system when it was first developed was 
the ease with which the researchers working on a project could share data. This 
benefit was achieved, to some extent, by minimizing security barriers in the sys­
tem. The UNIX system's multi-user capability is no less valuable today, but the 
system has now proliferated to environments in which protecting data is as 
important as sharing it. In response to this realization, features were added to 
UNIX System V in Release 3.2 to improve system security. 

In addition to security features, Release 3.2 added enhancements to UNIX Sys­
tem V in the form of new utilities packages: the 2K File System Utilities, FACE, 
and FMLI. 

Enhanced System Security 

The following features were added to UNIX System V in Release 3.2 to improve 
system security. These security enhancements remain unchanged in Release 4.0. 

• last login Time 

To enhance security, the time that a user last logged in is displayed each 
time that user logs in. 

• loginlog File Capability 

In Release 3.2, the system was modified to record unsuccessful login 
attempts in a file. If the file /var/aclm/loginlog exists, any five consecu­
tive unsuccessful login attempts will be logged there. If, however, a user 
has fewer than five unsuccessful attempts, the unsuccessful attempts are 
not logged in the file. (If, for example, the user logs in successfully on the 
fifth attempt, the four unsuccessful attempts are not recorded.) 

In Release 4.0, the loginlog file resides in /var/adm. 

• Sticky Bit 

Because public directories such as /tmp and /var/tmp are writable by 
everyone, anyone could remove files from them. This situation posed a 
serious problem to the integrity of files contained in those directories, as 

Migrating from Release 3 4-11 



Release 3.2 Features 

well as to the overall security of the system. Beginning with Release 3.2, 
the sticky bit on a directory is used to restrict the removal of files within 
that directory so that only the owner can remove the files. Without the 
sticky bit, the standard UNIX system semantics for object removal are fol­
lowed. The Release 3.2 and Release 4.0 installation media set the sticky 
bit for the public directories /tmp and /var/tmp. 

• Shadow Password File 

Previously, encrypted user passwords were stored in the password file 
(fete/passwd), which was readable by all users. Beginning with Release 
3.2, encrypted passwords and their attributes (such as aging information) 
have been moved to an access-restricted file called the shadow password 
file (fete/shadow). The shadow password file is readable only by its 
owner (root, by default). 

In Release 3.2, migration to the shadow password scheme was optional, 
and both single- and dual-password file schemes were supported. In 
Release 4.0, use of the shadow password file is mandatory. When you 
install Release 4.0 on your system, your /ete/passwd file is converted 
automatically, and an fete/shadow file is added to the system. (The 
/ete/passwd file still exists, but it doesn't hold the encrypted password.) 

• Enhanced Shell 

4-12 

In UNIX System V there are programs that change a user's effective access 
privileges. For security purposes, an enhanced shell was provided in 
Release 3.2 that resets the effective user or group ID (and possibly both) to 
the real ID. This occurs when the effective user ID is less than 100 (and 
the effective group ID is not equal to 1). Any application whose effective 
user and group IDs are greater than 99 is not affected by this enhance­
ment. 

In Release 3.2, two versions of the shell were provided, with the older ver­
sion provided for compatibility with applications that might not work 
correctly with the enhanced version. The default version for Release 3.2 
was the enhanced /usr/bin/sh. 

Migration Guide 



Release 3.2 Features 

Release 4.0 supports four shells. The default is still the enhanced 
/usr/bin/sh. Alternative shells are the C shell, the Korn shell, and the 
job control shell, none of which supports the security features described 
above; however, all support some security features. (The older version of 
/usr/bin/sh, supported in Release 3.2 for compatibility with earlier 
releases, is not supported in Release 4.0.) 

For information about the shells supported in Release 4.0, see ''UNIX Sys­
tem V Release 4.0 Features" later in this guide. 

2K File System Utilities 

Prior to Release 4.0, the root and /usr file systems were delivered as lK file 
systems, as a logical block size of lK provides a good balance between perfor­
mance and disk space usage. In Release 3.2, an administrator could choose to 
make a user file system a 2K file system; if the file system contains large files, 
2048 byte blocks provide improved performance for applications using the file 
system. 

In Release 4.0, the 2K file system is in the UNIX System V base product as one 
of several supported UNIX System V file system types. When Release 4.0 is 
installed, the system prompts the administrator to designate each of the stan­
dard file systems as a particular type--either as a traditional UNIX System V 
file system type of O.SK, lK, or 2K), or as a UFS file system (a new file system 
type that stores data in blocks as large as 8K). The default is the UNIX System 
V 2Kfile system. 

For more information about file system types and Virtual File System (the archi­
tecture that makes it possible for different file system types to coexist in UNIX 
System V), see Chapter S of this guide. 

Migrating from Release 3 4-13 



Release 3.2 Features 

Framed Access Command Environment 

Release 3.2 introduced a character-based user interface for ASCII tenninals 
called Framed Access Command Environment (FACE). Designed to present the 
UNIX system environment in a user-friendly manner, FACE allows a user to see 
the UNIX system through a world of windows, or "frames," containing menus 
and forms. 

In Release 4.0, FACE has been enhanced to be more consistent with the version 
of FACE developed for UNIX System V /386 Release 3.2, and new tools have 
been added that make it easier to use FACE in application programs. 

Form and Menu Language Interpreter 

Release 3.2 introduced the Form and Menu Language Interpreter (FMU)-a 
high-level language interpreter that allows developers to write user-friendly 
interfaces to applications that run on ASCII tenninals. 

In Release 4.0, FMU includes many extensions to the Form and Menu 
Language, including a way to interrupt executables, a conditional statement (if­
then-else), new built-in functions test and expr, and other improvements that 
give FMLI programmers more control over the appearance and behavior of their 
application interface. 

Enhanced curses 

The UNIX System curses screen management library was improved in Release 
3.2 to support color text on tenninals capable of displaying it. A default table of 
eight colors can be modified or expanded. 

In Release 4.0, curses is packaged with the C Software Development System, 
Issue 5. 

4-14 Migration Guide 







5 UNIX System V Release 4 

Introduction 5-1 

The Command Set 5-3 

The Command Interface 5-6 

File Operations 5-7 
Dynamic Adjustment of the Number of Open Files 5-7 
Memory-Mapped Files 5-7 
POSIX, BSD, and XENIX File Operations 5-8 

The File System 5-9 
Virtual File System 5-9 
File System Types 5-10 
File-System-Independent Booting and Autoconfiguration 5-11 
File and File System Status System Calls 5-12 
File Linking 5-12 

The Directory Tree 5-14 
The Directory Layout 5-14 

• The Root File System 5-15 
• The /usr File System 5-16 
• The Ivar File System 5-18 

Table of Contents 



Table of Contents _____________________ _ 

/dev Restructuring 5-19 

Input/Output 5-21 
STREAMS 5-21 
Device-Kernel Interface/Device Driver Interface 5-22 

Memory Management 5-23 

System Access 5-25 
Port Monitors 5-25 
Service Access Controller 5-26 

Process Management 5-27 
Job Control 5-27 
Expanded Fundamental Types 5-27 
Enhanced Signals 5-28 
Real-Time Support 5-28 

• User-Controlled Process Scheduler 5-28 
• High-Resolution Timers 5-29 

System Administration and Maintenance 5-30 
Backup and Restore Operations 5-30 
Software Installation 5-30 
System Administration Menus 5-31 

ii Migration Guide 



Networking 
Sockets 
TCP/IP Protocols and Commands 
inetd 
Network File System 
Remote Procedure Call 
External Data Representation 
Network Selection 
Name-to-Address Mapping 
Service Access Facility 

Character-Based User Interfaces 

Graphical User Interface 
XWIN 
X11/NeWS 
OPEN LOOK 

Internationalization 
International Character Manipulation 
Message Management 
National Conventions 

C Language 
ANSIC 
Dynamic Linking of C Programs 
COFF to ELF 

Table of Contents 

Table of Contents 

5-32 
5-33 
5-34 
5-34 
5-35 
5-35 
5-36 
5-36 
5-37 
5-37 

5-38 

5-39 
5-39 
5-39 
5-40 

5-41 
5-42 
5-42 
5-43 

5-44 
5-44 
5-45 
5-45 

iii 





Introduction 

The goal of UNIX System V Release 4.0 is to unify important UNIX system vari­
ants into one, full-featured product that conforms to industry-defined standards 
for the UNIX system. 

Where standards have been defined by industry-wide standards bodies, such as 
the IEEE PlOO3 POSIX Committee, UNIX System V conforms. Where standards 
have yet to be defined, UNIX System V incorporates de facto standards intro­
duced by a number of different UNIX systems. These de facto standards 
represent the most popular features of 4.2 and 4.3 BSD, SunOS, and XENIX, as 
well as UNIX System V. In addition, the System V Interface Definition (SVID), 
AT&T's published standard for UNIX System V, has been revised and extended, 
submitted for industry-review, and reissued in concert with Release 4.0. 

To meet the goal of unification and standardization, an extensive redesign of 
some aspects of the UNIX system was necessary; for example, the traditional 
UNIX file system becomes one of many supported file system types. Despite 
the scope of its changes, however, Release 4.0 provides a high degree of compa­
tibility with previous UNIX System V releases and applications. 

Incorporating features introduced in other UNIX systems extends the capabili­
ties of UNIX System V in many areas, especially in the area of networking. For 
the first time in Release 4.0, UNIX System V offers full support for networking 
via a STREAMS-based implementation of the DARPA Internet protocol suite 
(TCP /IP}-a family of network protocols that has been included in BSD releases 
in the past. 

Unifying UNIX system variants and conforming to standards does not preclude 
introducing new technologies and enhanced capabilities. For example, Release 
4.0 introduces features that allow the UNIX system to be more useful in real­
time processing environments. 

The discussion of Release 4.0 that follows is not simply a list of new features. 
Instead, it describes various functional areas of UNIX System V as they existed 
prior to Release 4.0 and as they exist in Release 4.0. The discussion covers the 
following topics: 

• The Command Set 

• The Command Interface (the Shell) 

UNIX System V Release 4 5-1 



Introduction 

• File Operations 

• The File System 

• The Directory Tree 

• Input/Output 

• Memory Management 

• System Access 

• Process Management 

• System Administration and Maintenance 

• Networking 

• Character-Based User Interfaces 

• Graphical User Interface 

• Internationalization 

Descriptions of new features are integrated into the discussion of each func­
tional area. For a description of Release 4.0 organized by feature, see the "Pro­
duct Overview" in the Product Overview and Master Index. 

5-2 Migration Guide 



The Command Set 

One of the goals of Release 4.0 is to incorporate the most popular BSD and 
XENIX commands into the UNIX System V command set. By merging the com­
mands of the major UNIX operating system variants, Release 4.0 takes a 
significant step toward providing the UNIX system user with a single, consistent 
command set. 

Merging the command sets of different systems posed a number of problems, 
however. In some cases, two different commands had the same name. In other 
cases, option or argument usage conflicted with existing standards, such as the 
SVID. In general, the decision was made in Release 4.0 to change command 
names and options when necessary, rather than sacrifice functionality or risk 
introducing confusion. Commands that offered the same or similar functionality 
have been merged into a single command. 

Some commands from the UNIX system variants were not merged into the 
Release 4.0 command set. Many of these commands have been placed in a com­
patibility package. Users can access them if they wish by including the compati­
bility "bin" in their paths; however, users who do not need the commands are 
not required to install them. 

The following tables list the commands from BSD, SunOS, and XENIX that have 
been added to or merged with the UNIX System V command set. For informa­
tion about specific commands, see the manual pages in the Release 4.0 reference 
manuals. 

UNIX System V Release 4 5-3 



The Command Set 

BSD Commands Added to UNIX System V 
arp(1M) 
atq(l) 
atrm(l) 
automount(1M) 
biod(1M) 
bootparand(1M) 
chkey(1) 
clear(1) 
coopress(1) 
csh(l) 
ctags(l) 
dunp(1) 
dunpfs(lM) 
edquota(1M) 
exportfs(1M) 
finger(l) 
fingerd(1M) 
fmt(1) 
fold(l) 
ftp(1) 
ftpd(1M) 
gcore(1) 
gettable(1M) 
head(1) 
htable(1M) 
ifconfig(lM) 
inetd(1M) 
keyenvoy(lM) 
keylogin(1) 
keyserv(lM) 
ksh(1) 

5-4 

last(1) 
roore(1) 
roountd(1M) 
named(1M) 
netstat(1M) 
nfsd(1M) 
nslookup(1M) 
page(1) 
ping(lM) 
quot(1M) 
quota(1M) 
quotacheck(1M) 
quotaoff [quotaon(1M)] 
quotaon(1M) 
rarpd(1M) 
rcp(1) 
rcpbind(1M) 
rdate(1M) 
rdunp [ufsdunp(1M)] 
repquota(1M) 
restore(1M) 
rexecd(1M) 
rksh [ksh(1)] 
rlogin(1) 
rlogind(1M) 
route(1M) 
routed(1M) 
rpcgen(1) 
rpcinfo(1M) 
rquotad(1M) 
rrestore [ufsrestore(1M)] 

rsh(1) 
rshd(1M) 
ruptime(1) 
rusers(1) 
rusersd(1M) 
rwall(1) 
rwalld(1M) 
rwho(1) 
rwhod(1M) 
script(1) 
ShoWIOOunt(1M) 
spray(l) 
sprayd(lM) 
statd(1M) 
strings(1) 
telnet(1) 
telnetd(1M) 
tftp(l) 
tftpd(1M) 
timed(1M) 
trpt(1M) 
tunefs(1M) 
uncompress [coopress(1)] 
uudecode [uuencode(1 C)] 
uuencode(lC) 
whois(1) 
zcat(l) [coopress(1)] 
zdunp(1M) 
zic(1M) 

Migration Guide 



The Command Set 

BSD Commands Merged with UNIX System V Commands 
aclmin(1) 
at(1) 
bc(1) 
chgrp(1) 
chrnod(l} 
chown(1) 
cp(1) 
cpio(l) 
crontab(1) 
date(1) 
dc(1) 
de1ta(1) 
devnm(1M) 
df(1M) 
diff(1) 
diff3(1) 
echo(1) 
ed(1) 
find(l) 

fsck(1M) 
get(1) 
id(1M) 
init(1M) 
join(1) 
kill(1) 
1n(1) 
login(1) 
ls(1) 
mach [uname(1)] 
mkfs(1M) 
rrount(1M) 
mv(l) 
ncheck(1M) 
ad(1) 
pr(1) 
prs(1) 
pstat [swap(1M)] 
rm(l) 

rnrle1(1) 
sccsdiff(1) 
sed(l) 
sh(1) 
sort(1) 
spline(1G) 
split(1) 
stty(l) 
tail(1) 
tar(1) 
test(1) 
touch(1) 
urrount (1 M) 
va1(1) 
vi(1) 
vmstat [sar(1)] 
w [whodo(lM)] 
wall(1M) 
write(1) 

XENIX Commands Merged with UNIX System V /BSD Commands 
crash(1M) grep(1) passwd(1) 
cron(1M) init(1M) su(1M) 
echo(1) ipcs(1) su1ogin(1) 
file(1) login(l) tar(1) 
fsck(1M) ls(1) 
fsdb(1M) mknod(1M) 

UNIX System V Release 4 5-5 



The Command Interface 

For the first time in Release 4.0, UNIX System V supports four command line 
interfaces, or shells. These are 

• The UNIX System V shell (sh) 

• The C shell (csh) 

• The Korn shell (ksh) 

• The job control shell (jsh) 

The UNIX System V shell (also known as the Bourne shell) is the default shell in 
Release 4.0. The UNIX System V shell is documented in the svm and provides 
the greatest portability for shell programmers. 

The C shell (developed at the University of California at Berkeley) is a popular 
command interface and programming language. Its popularity stems from its 
command re-execution and editing facilities. 

The Korn shell is supported in Release 4.0 because it provides the basic func­
tionality of the Bourne shell, but with expanded capabilities as an interactive 
interface. It maintains a command history file and supports editor interfaces for 
searching, modifying, and re-executing commands. 

The job control shell (jsh) provides an implementation of job control that con­
forms to the POSIX standard as defined in POSIX PlOO3.1. It allows users to 
stop and restart jobs in the background and foreground, and to move jobs back 
and forth between the foreground and the background. 

For more information, see the User's Guide and the sh(1), csh(1), and ksh(1) 
manual pages. 

5-6 Migration Guide 



File Operations 

File operations have been improved in Release 4.0 for robustness and ease of 
use and to unify BSD, XENIX, and UNIX System V file manipulation interfaces. 
Release 4.0 incorporates POSIX PlOO3.1 as well as popular BSD and XENIX file 
manipulation system calls. 

For detailed information about the features described in this section, see the 
Programmer's Guide: System Services and Application Packaging Tools. 

Dynamic Adjustment of the Number of Open Files 

As the applications that UNIX System V runs grow in complexity and size, cer­
tain traditional limits become obstacles for programmers. One such limit is the 
number of file descriptors that a process may have active at any given time. 
Previous to Release 3, UNIX System V had a hard-coded limit of 20 open file 
descriptors per process. Although sufficient for most programs, this limit com­
plicates the writing of some programs, such as database managers and network 
daemons. 

In Release 3, the number of files that a single process could have open simul­
taneously was adjustable on a system-wide basis with the NOFILE parameter. 
However, NOFILE set a fixed upper bound that could not be exceeded by any 
process. 

In Release 4.0, NOFILE has been removed; the number of files that may be 
opened is dynamically tunable for each process and has no inherent upper limit. 
This feature makes it possible for a program to monitor many files, devices, or 
network ports simultaneously. 

Memory-Mapped Files 

The traditional method of manipulating files and devices makes resources acces­
sible to user processes only by means of explicit system calls. Accessing a 
memory location in a process and accessing a file or device are completely dif­
ferent operations. 

This complicates the operation of some programs and makes others impossible 
to write without writing kernel code. To address the problem, a file mapping 
mechanism has been introduced that allows programs to access files and devices 

UNIX System V Release 4 5·7 



File Operations 

as ranges of bytes within a process's virtual address space. Once a file is 
mapped into the process's address space, its contents can be accessed as 
memory locations in the process. 

Memory-mapped files are a by-product of the new UNIX System V Virtual 
Memory (VM) architecture. For more information about VM and memory­
mapped files, see the discussion of memory management later in this section. 

POSIX, BSD, and XENIX File Operations 

Release 4.0 supports system calls that control such file operations as file renam­
ing and file truncation as defined by the IEEE P1003 (POSIX) Standard Commit­
tee. Some of these system calls, such as truncate an4 ftruncate, were origi­
nally defined by BSD, then adopted by POSIX. 

Release 4.0 also supports the BSD system call fsync for synchronizing in­
memory file contents and the contents on the disk. This file synchronization 
mechanism is provided in addition to the UNIX System V 0_ SYNC mode. The 
fsync system call is provided as an alternative mechanism that avoids the per­
formance penalty incurred by processes using the 0 _SYNC mode. 

In addition to the Advisory and Mandatory Record Locking modes introduced 
in Release 2.0 and 2.1 respectively, Release 4.0 supports XENIX locking. With 
XENIX locking, a process can lock a file or a portion of a file with the manda­
tory locking semantics supported by the XENIX operating system. 

For more information about POSIX conformance and BSD compatibility, see the 
Standards and Conformance Guide and Reference Manual. 

5-8 Migration Guide 



The File System 

In earlier UNIX systems, the file system was a static entity of fixed size and for­
mat. As the UNIX system was extended to solve new problems, the traditional 
file system was no longer adequate. Release 2 introduced a "convertible" file 
system switch that allowed a system to support both O.5K and lK file systems. 
Beginning in Release 3.2, a 2K file system was supported. In Release 4.0, Virtual 
File System (VFS) has been implemented as a means of generalizing further the 
concept of a file system, so that file systems of different types can be supported 
simultaneously on the system. 

Virtual File System 

Virtual File System (VFS) is a file system switch architecture that replaces the 
"convertible" O.5K or lK UNIX System V File System introduced in Release 2. 
The implementation of VFS in Release 4.0 is based on the VFS architecture first 
implemented in BSD UNIX systems. 

The architecture provides a clearly-defined, modular interface between the file 
system and the rest of the UNIX system kernel and allows several different 
types of file systems to exist simultaneously on the system. These file systems 
may have widely different characteristics and internal formats; for example, the 
VFS architecture allows a set of remote files and a set of traditional UNIX Sys­
tem V files to exist on the same system. The system mandates access to the dif­
ferent classes of files so that user programs do not need to know what type of 
file is being accessed or modified. 

VFS provides a file-system-type-independent interface to programs and users 
while allowing each particular file system to interpret these operations in its 
own manner. File-system-type-dependent kernel routines do the work specific 
to the type. 

A key strength of the VFS architecture is that it allows new file system types to 
be defined and implemented easily. The modular nature of the architecture 
allows programmers to design and install new types of file systems in a dean, 
straight-forward manner. Configuring a new file type into the system requires 
approximately the same level of effort as installing a new device driver. 

For more information about VFS, see the Programmer's Guide: System Services and 
Application Packaging Tools. 

UNIX System V Release 4 5-9 



The File System 

File System Types 

The new UNIX System V file system architecture allows a wide variety of file 
system types to exist on the same system. UNIX System V Release 4.0 provides 
the following file system types: 

s5 The traditional UNIX System V file system, supporting data storage 
in disk blocks of O.SK, lK, or 2K bytes. 

ufs An implementation of the BSD "fast file system," a file system type 
that stores data in disk blocks as large as 8K bytes. UPS supports all 
SVID-defined file operations. 

rfs Remote File Sharing (RFS), a file sharing utility re-implemented 
under the Virtual File System architecture as a distributed file system 
type. RFS supports sharing files across a network of UNIX systems. 

nfs Network File System (NFS), a new implementation of a distributed 
file system type originally developed by Sun Microsystems. NFS 
makes it possible for systems of different architectures running dif­
ferent operating systems to share text and data files across a net­
work. 

/proc The process file system type, which is a mechanism for accessing the 
address space of running processes. /proc is particularly useful for 
debuggers and similar utilities. 

fifofs A file system type that provides common access to pipe files. 

specfs A file system type that provides a common-code interface to all dev­
ice or "special" files. 

bfs A file system type that provides support for file-system-independent 
booting; a bfs file system contains all the programs necessary for the 
boot process. 

For more information about file system types, see the System Administrator's 
Guide. 

5-10 Migration Guide 



The File System 

File-System-Independent Booting and 
Autoconfiguration 

File-system-independent booting allows an administrator to boot the system 
from any device that is readable by firmware. 

In earlier releases of UNIX System V, the boot-strap program assumed that the 
root file system was of a particular file system type. This assumption was 
necessary since all the bootable programs (such as the UNIX system kernel 
itself) resided in the root file system; the boot program needed to know the 
structure of the root file system so it could locate programs. 

In Release 4.0, it is possible to make the root file system any of the supported 
file system types. Rather than coding knowledge of all possible file systems into 
the boot program, a new file system has been created to hold all the bootable 
programs necessary for the boot procedure. In this way, the boot program no 
longer depends on the file system type of the root file system. 

When Release 4.0 is installed, a new partition called I stand is created to hold a 
file system of type bfs (Boot File System). This file system contains all the pro­
grams necessary for the computer's boot-strap process, including unix, the boot­
able operating system, and the system file (/ standi system in previous 
releases). 

Autoconfiguration-the process of detecting hardware and software changes on 
powerup or reboot and generating a new bootable operating system-has been 
made faster for Release 4.0, and operates in the same file-system-independent 
manner as the boot program. 

In addition, a user-level interface to system configuration, cunix, has been 
added in Release 4.0. This allows experienced administrators to create a new 
operating system image without powering down or restarting the system. 

For more information, see the System Administrator's Guide. 

UNIX System V Release 4 5-11 



The File System 

File and File System Status System Calls 

UNIX system programs use the stat system call to obtain detailed information 
about a file. The BSD stat structure contains two fields not in the Release 3 
structure-st _blocks and st _ blksize. To allow binary compatibility with 
Release 3 programs, the Release 4.0 stat structure is identical to the Release 3.2 
stat structure. BSD programs requiring the two additional fields need to be 
relinked with a compatibility library. 

To obtain information about a file system, Release 3 introduced the statfs sys­
tem call and structure. With the advent of the Virtual File System, the statfs 
call is obsolete. Programs should be modified to use the Release 4.0 statvfs 
system call. 

The statfs call is provided for compatibility with existing Release 3 programs. 

For more information about stat, see the stat(2) manual page. 

File Linking 

Early UNIX systems allowed a single file to be assigned more than one name 
through a "linking" mechanism; however, this mechanism was limited. Direc­
tory files could not have more than one name, and all names associated with a 
file had to reside within a single physical file system. 

Symbolic links overcome these limitations. A symbolic link is a file that con­
tains the pathname of another file. References to the symbolic link are con­
verted by the UNIX system kernel into references to the target file. 

Because symbolic links allow directory files to be linked, the logical structure of 
a system's file tree can be rearranged without changing the physical locations of 
files. Because symbolic links allow links to a physical file to reside in a different 
physical file system, names can be linked across file systems that reside on dif­
ferent computers on a network-allowing a computer to create a logical direc­
tory tree that includes directories and files that physically reside on many dif­
ferent computers. 

Release 4.0 supports both traditional and symbolic links. The In command 
interprets the -s option as a request to make a symbolic link. In addition, 
Release 4.0 supports the system calls symlink, readlink, lstat, and lchown for 
manipulating symbolic links. 

5-12 Migration Guide 



The File System 

For more information about symbolic links, see the Programmer's Guide: System 
Services and Application Packaging Tools. 

UNIX System V Release 4 5-13 



The Directory Tree 

In Release 4.0, the layout of the directory tree has been rearranged to make it 
easier to share resources across a network. Within the directory layout, the 
/dev directory has been restructured so that its size is more manageable. 

The Directory Layout 

The UNIX system directory tree was created in the days of stand-alone, disk­
based minicomputers. In Release 4.0, the physical organization of files and 
directories in the UNIX system has been changed to facilitate sharing files in a 
network environment. Files of different types have been separated into different 
subtrees of the UNIX system directory. 

Release 4.0 divides the system into the following file systems: 

root which contains all the files necessary for booting the system. 

/usr which has been reorganized in Release 4.0 to contain shareable files 
that are static over the life of the system; system-modified files previ­
ously located in /usr have been moved to /var. 

/home which contains the home directories and files of the system's users. 

/var which contains files and directories whose contents change over the life 
of the local system, such as system log files. 

In addition to these standard file systems, Release 4.0 creates a/stand partition, 
where it stores all the files needed for file-system-independent booting. 

The file types defined in Release 4.0 are 

• Machine-private files 

• Architecture-dependent files 

• Architecture-independent files 

Machine-private files are those files that cannot or should not be shared with 
other machines, regardless of CPU type. Examples of machine-private files 
include /sbin/init.d scripts for machine-specific boot procedures, or account­
ing logs. The root file system in Release 4.0 contains the machine-private files 
for the system. 

5-14 Migration Guide 



________________________ The Directory Tree 

Architecture-dependent files are files that are shareable across a network 
between machines of the same CPU type. Examples of architecture-dependent 
files are binary executables. The /usr file system in Release 4.0 contains the 
architecture-dependent files. 

Architecture-independent files are files that can be shared across a network 
regardless of CPU type. Examples of architecture-independent files include 
ASCII databases and on-line manual pages. The /usr/share directory in 
Release 4.0 contains architecture-independent files. 

To make it easier for pre-4.0 users to adapt to the new layout, Release 4 
preserves the Release 3 name space and provides symbolic links so that system 
directories and files can be accessed using pre-4.0 path names. For information 
about symbolic links, see "File Linking" earlier in this chapter. 

The Root File System 

In Release 4.0, the root file system is structured as follows: 

/sbin /dev /opt /proc /tmp 

/ sbin Essential executables for administration and operations 

/ dey Character and block special files 

jete Machine-specific administration configuration files and system 
administration databases (Iete does not contain executables> 

UNIX System V Release 4 5-15 



The Directory Tree 

/export 

/home 

/ront 

/opt 

/proc 

/tmp 

/usr 

/var 

The default root of the exported file system tree 

Root of a standard file system for user directories 

The default temporary mount point for file systems 

The root of a subtree for add-on applications packages 

The root of the process file system 

System generated temporary files 

Root of a standard file system containing static, shareable files 

Root of a standard file system for varying files 

The /usr File System 

Release 4.0 restructures the /usr file system as follows: 

/usr 

/bin Ices /sbin /garres /inelude /lib /share /sre /ucb 

I /\ 
/ees/bin /ucb/inelude /ucb/lib 

/share ./rnan /share/lib 

5-16 Migration Guide 



/usr/bin 

/usr/ccs 

/usr/ccs/bin 

/usr/sbin 

/usr/games 

/usr/include 

/usr/lib 

/usr/share 

/usr/share/man 

/usr/share/lib 

/usr/src 

/usr/ucb 

/usr/ucb/include 

/usr/ucb/lib 

The Directory Tree 

A directory containing the majority of system utilities 

The C Compilation System 

The C Compilation System utilities 

Executables for system administration 

Game binaries and data (if installed) 

Program header files 

Program libraries and architecture-dependent databases 

Architecture-independent shareable files 

On-line manual pages (if installed) 

Architecture-independent databases (e.g., ASCII files) 

Source code for utilities and libraries (source-code licen­
sees only) 

BSD compatibility package binaries 

BSD compatibility header files 

BSD compatibility libraries 

UNIX System V Release 4 5-17 



The Directory Tree 

The Ivar File System 

The /var file system is structured as follows: 

/var 

/adrn /oren /mail /news /opt /preserve /saf /spool /trrp /uucp 

/SPOOl/{i:SPOOl/UUcppubliC 
/spool/uucp 

/var/adm 

/var/cron 

/var/mail 

/var/news 

/var/options 

/var/preserve 

/var/saf 

/var/spool 

/var/spool/lp 

/var/spool/uucp 

5-18 

System logging and accounting files 

Directory containing a log for the cron command 

User mail files 

Common interest messages 

Directory containing a file that identifies each utility 
installed on the system 

Backup files for vi and ex 

Service Access Facility logging and accounting files 

Directories for spool temporary files 

A line printer spooler temporary directory 

Queued uucp jobs 

Migration Guide 



The Directory Tree 

/var/spool/uucppublic Files deposited by uucp 

/var/tmp 

/var/uucp 

/dev Restructuring 

A directory for temporary files 

uucp log and status files 

The /dev directory, the directory that holds device-specific files, has been res­
tructured in Release 4.0. As computers are able to support larger numbers of 
terminals and pseudo-terminals, the number of terminal-related devices in the 
/dev directory quickly becomes unmanageable. To alleviate this problem, sub­
directories have been created under /dev, and the ttyname library routine has 
been enhanced to search subdirectories. Terminal-related devices are now 
located in /dev/te:rm. Pseudo-terminals reside in a subdirectory called 
/dev/pts. xt device files used by layers now reside in the /dev/xt directory, 
and shell layers device files used by shl reside in the /dev/sxt directory. 

With the enhanced ttyname, new subdirectories may be created under /dev, 
and other peripheral ports devices need not be located in /dev/te:rm. 

ttyname has been enhanced to read a configuration file called /etc/ttysrch. 
/etc/ttysrch is a file that the system administrator creates if he or she wishes. 
It specifies the names of the directories that should be searched and the order in 
which they should be searched. Each line of the file is a directory name, includ­
ing the full path. ttyname searches the directories in the order in which they 
are listed in the file. If ttysrch is not created, ttyname uses a default search 
list that consists of /dev/term, /dev/pts, and /dev/xt. If a match is not 
found, it then searches through the rest of the /dev directory and its other sub­
directories. 

Pre-4.0 add-on packages that are dependent on the pre-4.0 /dev structure con­
tinue to work in 4.0, provided an administrator runs a script to create links from 
the new structure to the pre-4.0 structure. The script /usr/sbin/lnttys is pro­
vided to create the necessary links. When an administrator invokes the script, 
links are created from /dev/term/X to /dev/ttyX. 

To preserve compatibility with add-on packages, it may also be necessary to 
create or edit the ttysrch file so that it searches the /dev directory first before 
looking in the subdirectories. This will ensure that ttyname returns the old­
style name rather than the new style. 

UNIX System V Release 4 5-19 



The Directory Tree 

For more information, see the System Administrator's Guide and the ttyname(3C) 
and ttysrch(4) manual pages. 

5-20 Migration Guide 



Input/Output 

In the UNIX system I/O subsystem, new kernel software is required to interface 
with each new device that is added to the system. In many cases, there may be 
a great deal of overlap between existing device drivers and new drivers, but 
there is no convenient way for driver writers to share common code. 

In Release 3.0, UNIX System V introduced STREAMS, an I/O mechanism that 
overcomes some limitations of traditional UNIX system I/O by providing 
greater modularity and flexibility of device drivers and protocols. Release 4.0 
extends the use of the STREAMS mechanism in UNIX System V and introduces 
the Device Driver Interface (001) and the Driver-Kernel Interface (DKI), inter­
faces between a device driver and the kernel that make it easier to port driver 
source code. 

STREAMS 

Release 3.0 introduced the STREAMS mechanism as a framework for UNIX sys­
tem character I/O. The STREAMS mechanism allows the structuring of kernel 
software in a modular manner. 

STREAMS was introduced initially as a framework for implementing network 
protocols. By defining a high-level set of network interfaces, the actual device 
driver (and therefore the network protocol and media) are not directly visible to 
applications programmers. This allows the creation of networking applications 
that do not depend on a particular network or protocol to operate. 

In Release 4.0, the entire terminal (tty) subsystem in the kernel has been rewrit­
ten to use the STREAMS mechanism. The move to a STREAMS implementation 
increases the modularity of the tty subsystem and provides a more flexible 
framework for future enchancements. Pseudo-ttys (ptys) have been imple­
mented under STREAMS as well. 

To unify the interfaces that programs use to communicate with character devices 
and processes, Release 4.0 re-implements pipes using the STREAMS mechan­
isms. Release 4.0 provides compatibility with programs written prior to the 
introduction of STREAMS-based pipes; existing programs that use pipes con­
tinue to operate as they did previously. 

For more information about the STREAMS mEfhanisms in Release 4.0, see the 
Programmer's Guide: STREAMS. 

UNIX System V Release 4 5-21 



Input/Output 

Device-Kernel Interface/Device Driver Interface 

In Release 4.0, UNIX System V supports the Device-Kernel Interface (OKI), an 
interface between the UNIX kernel and device driver software. OKI makes it 
easier to port driver code across implementations of Release 4.0 for different 
hardware; if the driver writer conforms to the OK! where possible, the portabil­
ity of the driver to other UNIX System V Release 4.0 implementations is greatly 
enhanced. 

Release 4.0 also supports the Device Driver Interface (DOD, a superset of the 
OK! that is specific to the implementation of UNIX System V for the AT&T 3B2 
line of computers. The 001 enhances driver binary compatibility across releases 
of UNIX System V for the 3B2 computers. 

See the Deuice Driver Interface/Driver-Kernel Interface (DDI/DKI) Reference Manual 
for more information. 

5-22 Migration Guide 



Memory Management 

Release 4.0 incorporates a third-generation memory management architecture 
based on the Virtual Memory (VM) architecture previously implemented in 
SunOS. VM replaces both the original UNIX system swapping architecture and 
the REGIONS demand-paged virtual memory architecture introduced in Release 
2.1. 

The benefits of a demand-paged virtual memory implementation are efficient 
use of the system's main memory and the capability to execute programs much 
larger than the physical memory provided by the system. The Release 4.0 VM 
architecture provides these same benefits, plus the benefits listed below. 

• Mapped files (application programmers) 

A by-product of the VM architecture is an entirely new style of file I/O 
for user programs called "mapped files." This new set of capabilities, 
provided by the mmap family of routines, allows a file to be mapped 
explicitly into the address space of a user program, where the file can be 
manipulated as if it were an array in primary memory. These new capa­
bilities make user programs easier to write and more efficient to run. 

• Shared memory (application programmers) 

The mapped files provided by VM can be considered a form of shared 
memory in Release 4.0. If several processes map a file simultaneously, the 
system maps the same copy of a file into the memory space of all 
processes. 

The traditional UNIX System V shared memory facility, provided by the 
shmat family of routines, continues to be available in Release 4.0. New in 
Release 4.0 is support for XENIX shared memory semantics, including full 
source-code compatibility with older XENIX systems. 

• Flexible use of disk space for swapping (administrators) 

Older systems normally swap memory pages to a formatted physical dev­
ice partition of a fixed size. In Release 4.0, UNIX System V can also swap 
pages of data from main memory to an ordinary file on one of the 
system's disks. Swapping to a file accommodates the needs of diskless 
systems and allows for the more efficient use of disk space. 

UNIX System V Release 4 5-23 



Memory Management 

• Portable implementation (system providers) 

The Release 4.0 implementation of VM isolates all hardware-dependent 
portions of the memory management subsystem in one block of C 
language source code. The remainder of the code is portable across dif­
ferent hardware and system architectures. Most of the hardware­
dependent code comprises a well-defined Memory Management Unit 
(MMU) interface. This interface allows the architecture to be implemented 
on top of different MMU hardware. 

Release 4.0 provides a "multi-Ievel store" implementation of VM that 
allows a system to address extremely large ranges of virtual address space 
using only a 32-bit hardware address space-the industry standard for 
central processors and hardware memory management units. 

For more information about VM, see the Programmer's Guide: System Services and 
Application Packaging Tools. 

5-24 Migration Guide 



System Access 

The programs involved in allowing users to log in to a UNIX system depend in 
part on the physical aspects of the specific connection. Pre-4.0 UNIX systems 
provide two types of external access points. If the user is at a terminal with a 
connection to the computer via a tty line, the getty program provides access to 
the system. If the user is attempting to log in from another machine across a 
local area network, a network connection agent-such as listen-monitors a 
set of network addresses to which the remote user's eu or r login programs 
transmit. A problem with this approach to system access is that there are three 
facilities, all with different interfaces. Another problem is that there is no easy 
way to disable all external access to the system on demand. 

To address these problems, Release 4.0 introduces the Service Access Facility 
(SAF}-a facility that acts as an umbrella over the system's external access 
points and provides a consistent access mechanism. The SAF allows services to 
be administered through a consistent framework of commands and files, 
whether the service request comes via a tty line or across a network. 

Port Monitors 

In Release 4.0, a port monitor is a process under the control of the Service 
Access Facility that detects activity on a port, or on more than one port of the 
same type (tty lines or network addresses). Release 4.0 provides three port 
monitors under the SAF umbrella-two network port monitors, listen and 
inetd, and a serial port monitor called ttymon. listen, introduced as the 
Listener in Release 3.2, is a general purpose network listener that provides 
connection-oriented service in a protocol-independent manner. inetd is the 
DARPA port monitor. It provides connection and connectionless service on a 
TCP lIP network. 

In Release 4.0, the ttymon port monitor replaces the getty program. A single 
ttymon process can monitor many serial ports and eliminate the need for a 
getty process for each port. ttymon makes use of two important Release 4.0 
features: the ability to poll STREAMS-based ttys, and the virtually unlimited 
number of file descriptors that a privileged process may have open. 

UNIX System V Release 4 5-25 



System Access 

lii:"""1 The getty P"'9,"m no longer exists in Release 4.0. A symbolic link from 
ijQl~ getty to ttym:>n is provided to maintain compatibility with applications that 

) ~~P~~~~i~J~~eu~~ ~~f~:~~nfs~:~~~'inT:;:~e:P:~~if!~~S~~~;~~:r's~h~~I~ 
Access Facility. 

In addition to the standard port monitors provided by Release 4.0, the SAP 
architecture allows new port monitors to be installed by users and applications. 

For more information about port monitors, see the System Administrator's Guide 
and the ttymon(lM) and listen(1M) manual pages. 

Service Access Controller 

The Service Access Controller (SAC) manages port monitors. It provides the 
system administrator with the sacadm command, which allows the administra­
tor to add and remove, start and stop, and enable and disable a port monitor. 

For more information, see the System Administrator's Guide and the sacadm(lM) 
manual page. 

5-26 Migration Guide 



Process Management 

Release 4.0 introduces a number of new features and enhancements to UNIX 
System V in the area of process management. These features include BSO job 
control, Expanded Fundamental Types (EFT), an enhanced signal interface, and 
features that provide some support of real-time applications. 

Job Control 

Job control is a popular feature of the BSO operating system and an optional 
part of the IEEE P1OO3.l POSIX standard. Job control allows a user to stop and 
later resume a job, whether it is executing in the foreground or the background. 
Job control also allows a user to move jobs back and forth between the back­
ground and the foreground. 

With job control a user can 

• stop a foreground job in order to perform a more pressing task 

• put a foreground job in the background 

• stop a job to satisfy a need of the job, such as looking up data for input or 
changing the name of an input file to match what was misspelled on the 
command line. 

Job control capabilities are available through an optional shell called the job con­
trol shell (jsh). For more information about job control, see the User's Guide. 
Processes in the UNIX system receive asynchronous notification via the signal 
mechanism. The notification is asynchronous because a signal can arrive at any 
time during the execution of a process. 

For information about the job control shell, see the sh(l) manual page. 

Expanded Fundamental Types 

UNIX System V Release 4.0 supports the expansion in size of certain data types, 
such as user 10 (uid), process 10 (pid), and device 10. This feature, known as 
Expanded Fundamental Types (EFT), makes it possible to remove the artificial 
constraints imposed on these data types by the UNIX operating system's origi­
nal hardware implementation. 

UNIX System V Release 4 5-27 



Process Management 

Enhanced Signals 

Over the years, many variations of the original UNIX system signal mechanism 
have been created to extend the usefulness of signals and to increase their 
robustness. Recently, POSIX PlOO3.1 has consolidated these signal interfaces 
into a single standard. 

The POSIX signal interface features: 

• the ability to manipulate a set of signals 

• the ability to block and unblock signals 

• the ability to examine pending signals 

• job control support 

In addition to the POSIX signal interface, Release 4.0 supports the the complete 
pre-3.0 interface (signal) and the Release 3.0 interface (sigset). All three sig­
nal interfaces may be mixed in a single program. 

" 

For more information about the POSIX signal interface, see the signal(S) 
manual page. 

Real-Time Support 

Historically, the UNIX system has been a general purpose timesharing system. 
Today, however, there is growing demand for real-time applications support. 
To address that demand, Release 4.0 introduces a new process-scheduler archi­
tecture and high-resolution timing services. 

For more information about real-time support, see the Programmer's Guide: Sys­
tem Services and Application Packaging Tools. 

User-Controlled Process Scheduler 

A process scheduler is part of the system kernel that determines what processes 
will run, when, and for how long. The Release 4.0 architecture supports several 
different schedulers simultaneously. The release supplies both the traditional 
timesharing scheduling policy and the new real-time scheduling policy. Each 
process can have its own scheduler properties, and they can be changed by the 
process while it is running. 

5-28 Migration Guide 



Process Management 

The traditional UNIX System V scheduler policy manages processes in a tradi­
tional manner: it dynamically adjusts time-sharing process priorities in an 
attempt to give good response to all interactive processes. 

The real-time scheduler policy never changes a process's priority except as a 
result of an explicit user request. Moreover, all real-time processes run before 
any other processes. An application can perform its time-critical tasks and be 
assured that it will always get priority over all other processes. 

Also to support real-time processing, Release 4.0 provides new pre-emption 
points in the kernel-points at which the scheduler may switch control of the 
CPU from one process to another. The additional pre-emption points improve 
system response time for high-priority processes. 

Using the new scheduling facilities, an application can guarantee fast, deter­
ministic response to its critical processes, with a resolution of milliseconds rather 
than seconds. 

High-Resolution Timers 

For applications that deal with very short intervals, Release 4.0 provides BSD 
timing services that give microsecond resolution. These services include alarms, 
interval timers, and a time-of-day clock. 

UNIX System V Release 4 5-29 



System Administration and Maintenance 

Release 4.0 introduces a number of improvements and enhancements to UNIX 
System V operations, administration, and maintenance with the goal both to 
simplify administration and maintenance operations and to provide new capa­
bilities. 

For detailed information about the features described in this section, see the Sys­
tem Administrator's Guide. 

Backup and Restore Operations 

Backup and restore procedures have been made hardware-independent in 
Release 4.0. They now support multiple bus architectures and multiple destina­
tion types, such as tapes, floppy diskettes, and hard disks. Multiple commands 
used in the backup procedure have been integrated into a single backup service. 
The key features of the backup and restore service include 

• a backup history log 

• on-line backups 

• automated backup initiation 

• mechanized restore requests 

Software Installation 

In Release 4.0, installation routines have been made consistent across software 
packages, releases, and machines. Also provided in Release 4.0 are tools and 
guidelines for developing add-on packages that take advantage of the standard 
software installation script, as well as the menu interface. 

5·30 Migration Guide 



System Administration and Maintenance 

System Administration Menus 

Release 4.0 introduces enhancements to the System Administration Menus 
(accessed through the sysadm command) that make the interface simpler in 
design and easier to use. 

UNIX System V Release 4 5-31 



Networking 

Early networking capabilities in the UNIX system consisted of the uucp net­
working package, included in the Basic Networking Utilities (BNU) package in 
UNIX System V. uucp networks provide queued point-to-point communication 
between computers over standard telephone lines. A uucp client process 
queries a database for address and routing information, in this case, a telephone 
number, and calls a remote system. 

In the 1970s, the Advanced Research Project Agency (now the Defense 
Advanced Research Project Agency, DARPA) developed TCP lIP, sometimes 
called the DARPA Internet protocol suite. TCP lIP was designed to be a set of 
mid-level communications protocols for use with the ARPANET wide-area 
packet-switching data communications network (a network that grew to include 
hundreds of nodes throughout the United States). In the late 1970s, the Univer­
sity of California at Berkeley included an implementation of TCP lIP in its UNIX 
Software Distribution. 

Building on the BSD innovations in UNIX system networking, SunOS intro­
duced an implementation of a Remote Procedure Call (RPC) facility, along with 
a file distribution service called Network File System (NFS). RPC is a mechan­
ism that allows a local process to invoke a procedure residing on a remote sys­
tem. NFS is an application that provides transparent file sharing among com­
puters of different architectures. 

The thrust in recent years has been to develop interfaces that allow network 
applications to be independent of network media and protocols. In 1982, BSD 
introduced a networking interface called Sockets. In Release 3, UNIX System V 
introduced STREAMS-another solution to the same problems Sockets sought to 
address. STREAMS is a mechanism that supports modular development of net­
work protocols and device drivers. 

Release 3 also introduced the Transport Level Interface (TLI), a protocol­
independent programming interface to networking protocols, and the listener, a 
program that listens for requests for service from remote machines. Also 
appearing for the first time in Release 3 was Remote File Sharing (RFS), a net­
work application that allows systems to share files transparently across a net­
work connection. 

Release 4.0 extends AT&T's commitment to networking, as well as to the 
unification of the various commercial implementations of the UNIX system, by 
incorporating many of the networking features of BSD and SunOS into UNIX 
System V. These features are: 

5-32 Migration Guide 



Networking 

• Sockets compatibility library 

• inetd 

• Network File System (NFS) 

• Remote Procedure Call (RPC) 

• External Data Representation (XDR) 

• TCP lIP (networking protocols) 

In addition to supporting BSD and SunOS features, Release 4.0 introduces the 
following new features: 

• Network Selection 

• Name-to-Address Mapping 

• Service Access Facility 

All of the Release 4.0 networking features are described in the remainder of this 
section. 

Sockets 

Sockets is a network interface used widely in BSD systems and in derivative 
operating systems such as SunOS. It is functionally similar to the Transport 
Level Interface (TLI) provided in UNIX System V. . 

Sockets is provided as a compatibility library in Release 4.0 so that existing 
Sockets applications can migrate easily to UNIX System V. To run on UNIX Sys­
tem V, Sockets applications must be recompiled and relinked to the sockets 
library in Release 4.0. 

TLI remains the SVID-defined networking interface. Programmers are 
encouraged to write new applications using the TLI rather than Sockets. 

For more information about the Sockets procedure calls supported in Release 
4.0, see the Programmer's Guide: Networking Interfaces. 

UNIX System V Release 4 5·33 



Networking 

TCP/IP Protocols and Commands 

The development of TCP lIP networking began in 1969 and has grown to 
become the de facto non-proprietary standard for interconnecting computers of 
different types. It has been widely implemented on many classes of machines 
from PCs to mainframes and on both wide and local area network media. 

The TCP lIP Internet package in UNIX System V Release 4.0 is a comprehensive 
implementation of the DARPA protocols, supporting the DARPA commands 
and popular BSD networking commands. It is compatible with the DARPA 
package implemented on BSD systems, as well as any implementation conform­
ing to DARPA standards. 

UNIX System V implements the protocol suite under the STREAMS networking 
architecture. This means that all user programs written to TLI run over TCP lIP 
without modification. It also means that system-provided networking services, 
such as the RFS and NFS file sharing utilities, run on the TCP lIP protocols. 

For more information about the TCP/IP Internet package, see the Network User's 
and Administrator's Guide. 

inetd 

inetd is a BSD network port monitor that originated in BSD UNIX systems. A 
port monitor is a program that performs server-side connection management. 
When a connection request arrives over the network, the port monitor spawns 
the server and passes the network connection to it. 

inetd handles both connection and connectionless requests from remote sys­
tems on a network using TCP or UDP protocols. 

For more information about inetd, see the Network User's and Administrator's 
Guide and the inetd(1M) manual page. 

5-34 Migration Guide 



Networking 

Network File System 

The Network File System (NFS) is a facility for sharing files in a heterogeneous 
environment of machines and operating systems. Sharing is accomplished by 
mounting a remote file system, then reading or writing files in place. Users are 
able to access the files they want without knowing the network address of the 
data. To the user, all NFS-mounted file systems look like private disks; there 
are no apparent differences between reading or writing a file on a local disk, 
and reading or writing a file on a disk in the next building. 

NFS was designed as a network service, and not as a distributed operating sys­
tem. It is able to support distributed applications without restricting the net­
work to a single operating system. 

For more information about Network File System, see the Network User's and 
Administrator's Guide. 

Remote Procedure Call 

The RPC library implements a published, industry standard protocol that can be 
used on many different types of computers running different operating systems. 
It provides a mechanism that makes it possible for the syntax and semantics of 
the local procedure call model to be used to invoke a process on another com­
puter. 

The RPC library uses External Data Representation (XDR) to encode data passed 
from one computer to another so that a computer can call a procedure on 
another computer running a different operating system. (The XDR library is 
described later in this section.) 

The RPC library allows server programs to become building blocks that can be 
used to create more complex applications. A server might provide a service to 
clients by calling other servers, each of which would perform a single operation 
toward the accomplishment of a multi-step task. The process is much like using 
program modules to create larger programs, but with the added flexibility that 
the modules are bound dynamically at run time and can be shared and distri­
buted. 

UNIX System V Release 4 5-35 



Networking 

RPC service is implemented over the Transport Level Interface (TLI), which 
gives it transport protocol independence and allows it to run unchanged over 
different networks conforming to the Transport Provider Interface. 

For more information about RPC, see the Programmer's Guide: Networking Inter­
faces. 

External Data Representation 

Data is represented in different ways on different computers and in different 
programming languages. When data needs to be exchanged between two com­
puters, these differences must be reconciled. 

External Data representation (XDR) is one specification of a standard representa­
tion for data types. It is defined independently of any specific hardware, 
operating system, or programming language. 

XDR takes care of problems with data byte ordering, data type size, and data 
representation by specifying what they should be. A program needs to translate 
between its internal representations and the XDR standards when it communi­
cates with other computers. 

Network Selection 

Network Selection is a feature that helps applications select a network to use for 
communication. Users can specify their preference in an environment variable, 
NETPATH. The system administrator can set a default NETPATH for login, 
which users can override or append to as necessary. Applications have the 
option of using the network specified by the user in NETP A TH, or selecting a 
network based on other application-specific criteria. 

The benefit of Network Selection is that a network selection no longer needs to 
be embedded in the application code. This allows the application to run without 
change on different systems connected to different networks. 

Network Selection allows a system to have a different list of networks for dif­
ferent applications. It also allows applications to connect to a number of dif­
ferent networks until it finds one that meets its service requirements and per­
mits the connection. 

5-36 Migration Guide 



Networking 

For more information about Network Selection, see the System Administrator's 
Guide and the Programmer's Guide: Networking Interfaces. 

Name-to-Address Mapping 

UNIX System V Release 4.0 networking includes a name-to-address mapping 
mechanism that network clients can use to determine the addresses of servers in 
a network-independent manner. It allows clients to reach servers, even if the 
address on which the server is listening changes. It makes it possible for clients 
to be independent of networking protocols, as long as the network provides a 
transport-level interface. It also allows a client to reach a server through the 
most convenient network. 

A client can identify a server by 

• a service name 
• the name of the host computer on which the service resides 
• the name of the network to be used to reach the host. 

The name-to-address mapping mechanism supports many different look-up 
schemes. The name-to-address daemon receives translation requests from a 
client and uses the /etc/netconfig file to obtain the name of a routine to per­
form the actual translations. 

For more information about name-to-address mapping, see the System 
Administrator's Guide. 

Service Access Facility 

The Service Access Facility (SAF), described earlier in this guide, provides a uni­
form framework for managing external access to the system. The daemon 
processes (port monitors) monitor all access points to the system, including net­
work ports, for connection requests. When a port monitor gets a connection 
request, it invokes the desired service. The SAF makes service access easier to 
manage and enhance. 

For more information, see the System Administrator's Guide. 

UNIX System V Release 4 5-37 



Character-Based User Interfaces 

An earlier release of UNIX System V introduced a high-level language inter­
preter called Form and Menu Language Interpreter (FMLI). FMLI allows 
developers to write user-friendly interfaces to their applications. Release 4.0 
provides extensions to the Form and Menu Language, including a way to inter­
rupt executables, a conditional statement (if-then-else), new built-in functions 
test and expr, and other improvements that give FMLI programmers more 
control over the appearance and behavior of their application interface. 

In addition, Release 4.0 provides enhancements to Framed Access Command 
Environment (FACE), a menu-based interface to UNIX System V. FACE has 
been enhanced to be more consistent with a version developed for UNIX System 
V 386, Release 3.2, and the ease with which applications can be added to FACE 
has been improved. 

For more information about FMLI, see the Programmer's Guide: Character User 
Interfaces (FMU and ETI). For information about FACE, see the User's Guide. 

5-38 Migration Guide 



Graphical User Interface 

As part of the effort to encourage a standardization of the UNIX system, Release 
4.0 offers a device-independent, portable graphical windowing system, called 
Graphical User Interface (GUI). GUI is a versatile, user-friendly software inter­
face, composed of several subsystems, called XWIN, Xll/NeWS@, and OPEN 
LOOJ(TM. Each subsystem has a particular function that extends the capabilities 
of the UNIX operating system. 

XWIN 

The XWIN Graphical Windowing system is a portable window system that 
creates a multi-layered server system on top of the UNIX system. XWIN gives 
the user the ability to create multiple windows on a single display and to run 
different applications in each window. 

XWIN software uses the X protocol for exchanging information between client 
applications and the graphics server, and Xlib (the C language interface) to built 
system functions. The X protocol gives application programs running on dif­
ferent systems the ability to communicate with and use or display results from 
other application windows. 

For information about XWIN, see the Programmer's Guide: XWIN Graphical Win­
dowing System. 

X11/NeWS 

XlI/NeWS is a second windowing system that runs applications written to the 
XII and NeWS protocols. Although the protocols are different, XlI/NeWS pro­
vides an integrated environment in which both are supported, with both work­
ing off a single window manager. 

For information about Xll/NeWS, see the Programmer's Guide: Xll/NeWS Graph­
ical Windowing System. 

UNIX System V Release 4 5·39 



Graphical User Interface 

OPEN LOOK 

OPEN LooKTM defines a standard for the appearance and function of the 
graphical user interface and provides developers with application programmer 
interface (API) toolkits. API toolkits allow developers to manipulate windows 
and window-supported graphics to achieve the standard '1ook and feel" of 
OPEN LOOK GUI applications. Two toolkits are provided as part of OPEN 
LooK-one for writing applications that operate on the XWIN server, and one 
for writing XlI/NeWS applications. 

For information about OPEN LOOK, see the Programmer's Guide: OPEN LOO[(TM 
Graphical User Interface. 

Migration Guide 



Internationalization 

The goal of internationalization is to make it possible for a single program to 
interact with a variety of users, regardless of the language they speak and the 
country in which they reside. 

Features required for internationalization are 

• support for multiple character sets and multi-byte characters 

• a message handling facility 

• support for different national conventions. 

Both ANSI X3.159-1989 and IEEE Std 1003.1 (POSIX) have defined standards for 
international programs. The ANSI C committee has adopted the term '1ocale" 
to refer to a grouping of information that provides behavior dependent on con­
ventions of nationality, culture, and language. 

Release 4.0 implements the ANSI and POSIX standards. It provides the hooks 
necessary for localizing applications, supports multiple locales simultaneously 
on the same system, and allows multiple instances of the same program to 
operate each with different locales. 

The ANSI C draft standard defines the setlocale function, which allows a pro­
gram to specify the locale to be used for all subsequent locale-specific opera­
tions. The set locale function accepts two parameters, an integer indicating 
the locale-dependent operation that is to be affected (category), and the name 
of the locale (locale). Once setlocale returns, any of the operations specified 
in category operate according to the designated locale. The variables that can 
be specified with the category parameter are LC _ALL, LC _COLLATE, LC _ CTYPE, 
LC_MONETARy,LC_NUMERIC,LC_TIME,andLC_MESSAGES. 

(For detailed information about the features described in this section, see the 
Programmer's Guide: System Services and Application Packaging Tools.) 

UNIX System V Release 4 5-41 



Internationalization 

International Character Manipulation 

Internationalization corrects some erroneous assumptions held by many users of 
the ASOI character set-specifically, that a character fits into 7 bits, and that 
"character" and ''byte'' are synonymous. In actuality, a single language charac­
ter may occupy a 7-bit byte (ASCII), an 8-bit byte (European code sets), or a 2-
or 3-byte string (Kanji). In Release 3.1, steps were take to remove assumptions 
from various programs that characters are encoded in 7-bit ASCII. In Release 
4.0, UNIX System V offers full support of multiple code sets. 

Release 4.0 also supports multi-byte characters-the representation used for 
international character sets for performing I/O on characters or strings of char­
acters. The multi-byte representation of a single object may (as its name sug­
gests) occupy multiple bytes and include shift state encodings. Multi-byte char­
acters are represented in C language programs as character arrays. 

In conformance with the ANSI C standard, Release 4.0 includes support for 
wide characters---a new data type that can represent every character in any 
given character set. Wide characters are used in programs to manipulate the 
characters in a file, rather than just the bytes. 

Message Management 

A difficult problem to address when building international applications is the 
problem of conversing with the user in his or her native language. To allow the 
user to input a file name in his or her native language requires the programmer 
to create new routines that prompt the user with the proper native language 
phrase and accept the native language as input. Adding support for a language 
requires finding every locale-dependent area in the code and modifying it to 
invoke native language statements where appropriate. The time required to 
build and maintain such programs is enormous, since each supported language 
requires extensive modifications to the program. 

In order to address the problem of locale-dependent messages, programs need 
to replace references to embedded ASCII strings in program with a call to a 
general purpose text string look-up service. Release 4.0 provides such a look-up 
service in two forms: as a C language function and as an executable command, 
both named gettxt. 

5-42 Migration Guide 



Internationalization 

Given a message identifier, gettxt retrieves the text string associated with that 
identifier. The message database searched by gettxt is determined by the 
current program locale; that is, if the current locale is French, gettxt will 
retrieve the appropriate entry in the French version of the message database. 

Once a program has been converted to use gettxt, providing support for a new 
locale is simply a matter of translating the message database for the program 
into the new language/character set and building the message database with the 
mkmsgs command. 

In Release 4.0, the directory /usr/lib/locale contains directories for each 
locale that is supported on a particular system. Each directory for a particular 
locale contains a subdirectory for messages, named LC _MESSAGES. 

Release 4.0 provides two tools, mkmsgs and srchtxt, to create and search mes­
sage databases. In addition, Release 4.0 provides the exstr tool for converting 
existing programs to use the message management facilities. 

National Conventions 

National conventions are the rules and formats we observe when we communi­
cate. Different countries and cultures observe different rules; for example, dif­
ferent countries use different calendars and different formats for communicating 
the month, day, year, and time of day. For a program to be "international," it 
must support different calendars and time-of-day calculations, via date/time cal­
culation routines. 

In Release 4.0, existing utilities and interfaces have been modified to support 
both implicit and explicit invocation of different national conventions. 
Specifically, release 4.0 provides 

• a new utility that supports the definition and creation of new collating 
tables, and two new library routines that use the collating table 

• a facility to provide user-definable character classification tables 

• generalized date/time editing functions and separate format specifications 

• an external variable that can be used by various number conversion rou­
tines to edit data in different number formats. 

UNIX System V Release 4 5-43 



C Language 

Most enhancements to the C programming language for this release fall into 
three categories: confonnance with the American National Standards Institute 
(ANSI) X3.159-1989 C language standard; transition to dynamic shared libraries 
from static shared libraries; and transition to ELF (Executable and Linking For­
mat) from COFF (Common Object File Format). 

Other C language enhancements, resulting from internationalization require­
ments, are described under the heading "Internationalization" in this chapter. 

ANSle 

Three options have been added to the C compiler [see cc(1)] to help make the 
transition to ANSI C confonnance [-Xt (transition), -Xa, (ANSI), and -Xc (con­
fonnance)]. These options specify the degree of confonnance ranging from 
older compilation systems to the ANSI C standard. 

The following topics for migrating from non-ANSI to ANSI C code are covered 
in the ANSI C Transition Guide 

• mixing old and new style functions 

• functions with varying arguments 

• promotions: unsigned vs. value 

• tokenization and preprocessing 

• using const and volatile 

• multibyte characters and wide characters 

• standard headers and reserved names 

• internationalization 

• grouping and evaluation in expressions 

• incomplete types 

• compatible and composite types 

5-44 Migration Guide 



C Language 

Dynamic Linking of C Programs 

The C compilation system supports dynamic linking whereby the contents of a 
shared library are mapped into the virtual address space of processes at run 
time. External references in the programs are connected with their definitions 
when the programs are executed. The compilation system provides dynamic 
linking by default. 

As did static shared libraries, dynamic shared libraries save disk storage and 
system process memory by sharing library code at run time. Unlike static 
shared libraries, dynamic shared libraries can be fixed or enhanced without hav­
ing to relink applications that depend on them. Moreover, dynamic shared 
library code is completely compatible with archive library code. Library build­
ers can use the same source files to create archive and shared object versions of 
a library. See chapter 2, "C Compilation System" of the Programmer's Guide: 
ANSI C and Programming Support Tools for a discussion of dynamic linking. 

In this release, C programs can still be linked with existing static shared 
libraries, though you should not rely on this feature being in future releases. 
The mkshlib command (used to create a shared library) is no longer supported. 

COFF to ELF 

A new transparent object file format called ELF (Executable and Linking For­
mat), replaces the old format COFF (Common Object File Format). 

COFF files should be converted to ELF files with the cof2elf command or by 
recompiling the source. Recompilation is preferable because it guarantees that 
executable programs will be compatible with new features in this release. 
(Note, too, that cof2elf discards debugging information.) ELF is described in 
detail in chapter 13, "Object Files," of the Programmer's Guide: ANSI C and Pro­
gramming Support Tools. 

UNIX System V Release 4 5-45 





ISBN 0-13-933821-7 


