System90 Model 45/85
 Site Preparation
 Manaual

Title:	System 90, Model 45/85 Site Preparation Manual
Part Number:	MA-99387-00 \quad Revision A
Date:	January 24, 1990
Written by:	H. K. Bronowicki
Illustrated by:	Robert Rogers and Alan R. Whitehorn
Production by:	Robert Rogers

Copyright (c) 1990 by ARIX Corporation. 821 Fox Lane San Jose, CA 95131
All rights reserved. No part of this publication may be reproduced without the express written permission of ARIX Corporation. The information in this publication is subject to change without notice.

The information in this publication is considered to be current at the time of preparation. The information is provided as a convenience to the user, and by acceptance thereof the user specifically releases ARIX Corporation from any liability for material or consequential damages.

Trademarks

ARIX is a registered trademark of ARIX Corporation

UNIX is a registered trademark of AT\&T.

FCC WARNING:

This equipment generates, uses, and can radiate RF (radio frequency) energy, and if not installed and used in accordance with the information provided by ARIX Corporation, may cause interference to radio communications. It has been tested and found to comply with the limits for a Class A computing device pursuant to Subpart J of Part 15 of FCC rules, which are designed to provide reasonable protection against such interference when operated in a commercial environment. Operation of this equipment in a residential area is likely to cause interference, in which case the user, at his own expense, will be required to take whatever measures may be required to correct the interference.

This digital apparatus does not exceed the Class A limits for radio noise emissions from digital apparatus as set out in the radio interference regulations of the Canadian Department of Communications.

[^0]
Table of Contents

Preface
Customer Responsibilities vii
Customer Support viii
Document Conventions viii
Chapter 1 Space Requirements
System Configurations 1-1
Equipment Placement 1-1
Flooring 1-3
Cable Layouts 1-4
Chapter 2 Environmental Requirements
Environmental Restrictions 2-1
Temperature and Humidity 2-1
Media Storage 2-3
Heat and Sound Output 2-3
Electromagnetic Interference. 2-3
Electrostatic Discharges 2-4
Chapter 3 Electrical Requirements
Primary Power Characteristics 3-1
Power Transient Tolerance 3-1
Main Panel Circuit Breaker Requirements 3-2
System Power Configuration 3-4
Appendix A Planning and Preparation
Planning and Preparation Checklist. A-1
Environmental Specifications A-4
Appendix B Data and Logic Cables
Port Numbering B-1
Asynchronous Ports B-1
Real World Interface B-2
Asynchronous Communications Device Board B-3
Local Area Network and Wide Area Network Device Board (LAN/WAN) Ports B-4
WAN Port Numbering B-7
LAN Port Numbering B-7
Port Type B-8
Cable Type B-8
Cable Length B-8
Use of Existing On-Site Cables B-9
Device Type B-9
Appendix C Model 45/85 Connector Pinouts
Asynchronous Communications Device Board (ACDB) C-1
LAN/WAN Device Board (LWDB) C-4
Dual SCSI Device Board (DSDB) C-8
Real World Interface C-11

List of Figures

Figure 1-1. System 90 Equipment Cabinet 1-2
Figure 1-2. Unit Service Clearances. 1-3
Figure 3-1. Power Plug Diagram 3-4
Figure B-1. Port Numbering B-2
Figure B-2. LWDB (LAN/WAN Device Board) B-5
Figure B-3. LAN/WAN Device Board Connection. B-6
Figure C-1. Female RJ-45 C-2
Figure C-2. $\quad 25-\mathrm{Pin} \mathrm{D}$ (Female) C-3
Figure C-3. 15-Pin D (Female) C-5
Figure C-4. 25-Pin D (Female) C-6
Figure C-5. 37-Pin D (Female) C-7
Figure C-6. 50-Pin Male Connector C-8
Figure C-7. $\quad 25-\mathrm{Pin} \mathrm{D}$ (Female) C-11
Figure C-8. 9-Pin D (Male) C-13

List of Tables

Table 2-1. Environmental Operating Limits 2-2
Table 2-2. Storage and Shipping Environmental Limits 2-2
Table 3-1. Primary Power Characteristics 3-1
Table 3-2. Voltage Transients 3-2
Table 3-3. Operating Frequency Range 3-2
Table 3-4. Unit Power Requirements 3-3
Table 3-5a. Power Configuration Chart for System 90, Model 45/85 Main Cabinet 3-5
Table 3-5b. Power Configuration Chart for System 90 Model 85 I/O Expansion Cabinet 3-6
Table A-1a. Environmental Specifications A-4
Table A-1b. Environmental Specifications Continued. A-5
Table B-1. Port Numbering B-3
Table B-2. Serial Connectors B-12
Table B-2a. Serial Connectors (Cont.) B-13
Table B-2b. Serial Connectors (Cont.) B-14
Table B-2c. Serial Connectors (Cont.) B-15
Table B-2d. Serial Connectors (Cont.) B-16
Table B-2e. Serial Connectors (Cont.) B-17
Table B-2f Serial Connectors (Cont.) B-18
Table B-3. Parallel Ports B-19
Table B-4. LAN and WAN Connectors B-20
Table B-5. Miscellaneous Connector Types. B-21
Table C-1. ACDB Female RJ-45 Asynchronous Port Connector Pinout C-2
Table C-2. ACDB Female DB-25 Parallel Printer Port Connector Pinout C-3
Table C-3. LWDB Female DB-15 IEEE 802.3 Connector Pinout C-5
Țable C-4. LWDB DB-25 Synchronous Port Connector Pinout C-6
Table C-5. LWDB DB-37 V. 35 Connector Pinout C-7
Table C-6. DSDB SCSI Single-Ended 50-Pin Male Connector Pinout. C-9
Table C-7. DSDB SCSI Differential 50-Pin Male Connector Pinout C-10
Table C-8. DB-25 CONSOLE or Printer Ports to DB-25 Connector Pin/Signal Description for DTE Use C-12
Table C-9. DB-25 REMOTE CONSOLE to DB-25 Connector Pin/Signal Description for DCE or MODEM Use C-12
Table C-10. RWI Male DB-9 UPS Port Connector Pinout C-13

Preface

This manual provides information and recommendations to help prepare a site for the installation of an ARIX System90 Model 45 and Model 85 computer. It describes physical and functional characteristics of the host, of terminals, printers, modems, and other devices to be configured with the system. However, except for some minor details about equipment external to the system, it covers only System90 Model 45 and Model 85 equipment. To obtain similar information on peripheral units (terminals, printers, etc.) produced by companies other than ARIX, refer to the publications offered by the device's manufacturer. All recommendations of this site preparation guide should be followed before the system is installed. Once the system is installed, it can be very difficult to make changes or to correct problems.

Customer Responsibilities

You should follow closely the recommendations made in the manual before the system is installed. Failure to meet any of the requirements listed below may invalidate any warranties or guarantees made under the purchase agreement.

- Provide and install all communications cables, wall jacks, special connectors, and associated hardware.
- Provide and install all necessary power outlets, distribution boxes, conduits, grounds, lightning arresters, and associated hardware.
- Make sure any building alterations meet the environmental requirements of the system and are in accordance with local electrical and building codes.
- Provide floor coverings and environmental systems that prevent the buildup and discharge of static electricity. If humidity is below that recommended in this guide, contact ARIX Customer Support for assistance.
- Provide enough space for field service access to the system. Suggested clearance in front and in back is 45 inches (114.3 cm). Suggested floor space clearance per cabinet is 830 square inches.
- Provide appropriate safety measures, such as fire extinguishers and properly-sized circuit breakers. Sprinkler systems are not recommended for fire protection.
- Provide other equipment as required for full operation of the System90 Model 45 and Model 85 (for example, modems) and arrange for installation of that equipment by the responsible vendor.

Customer Support

For Assistance Call:

- 800-237-2783 from outside California
- 800-521-5783 from inside California but outside the 408 area code
- 408-432-1200 from inside the 408 area (ask for Customer Support)

Document Conventions

All WARNINGS, CAUTIONS, and NOTES are defined as follows:

WARNING:
A WARNING box calls attention to a condition or
action that can cause personal injury if allowed to
exist or occur.

CAUTION:

A CAUTION box calls attention to a condition or action that can cause damage to the equipment or the software if allowed to exist or occur.

NOTE:

A NOTE box is used in place of a footnote. It calls attention to or contains amplifying information about or stresses the importance of associated text.

This section contains information on system configurations, cabinet placement, floor requirements, equipment placement, service clearances, and total weight tables.

System Configurations

System90 Model 45 and Model 85 functional units and subassemblies, except for terminals and printers, are housed within metal cabinets measuring $47 \mathrm{in} .(120 \mathrm{~cm})$ by 22 in . $(56 \mathrm{~cm}$) by 37.75 in . $(95.8 \mathrm{~cm}$). Refer to Figure 1-1.
A minimum system configuration consists of a single cabinet. A maximum system configuration consists of up to seven cabinets. Since the system is designed to be expandable, if expansion is in your future allow extra space for the anticipated expansion. A peripheral expansion cabinet may be added to the system to house additional system storage capacity. The peripheral expansion cabinet dimensions are identical to those for the primary cabinet (refer to Figure 1-1).

Equipment Placement

Once you have defined the number of cabinets and peripheral units the system will comprise, you can begin preparing the site. The first step is to prepare a scaled drawing or floor plan of the site showing the position that each unit will occupy. The total floor area needed for the single cabinet system is 830 square inches not including the service clearance values shown in Figure 1-1. Do not forget to add in the dimensions of any peripheral units that will also be in the computer room (usually a console terminal and printer).
Figure 1-2 shows the recommended space to allow air flow around the cabinets along with operator and service personnel access to the cabinets.

Figure 1-1. System 90 Equipment Cabinet

Figure 1-2. Unit Service Clearances.

Flooring

The System 90 Model 45 and Model 85 has no special flooring requirements other than being able to support both the total weight and the weight/unit area of each cabinet. Nominal floor loading by the system is less than 129 poinds (lbs) per square foot. Point loading is a maximum of 200 pounds(lbs) per square inch (psi). The maximum weight per loaded cabinet is 700 pounds (lbs) (340 Kg).
In locations that experience frequent periods of low humidity, electrostatic discharge may be a problem. Antistatic carpeting, antistatic sprays, or the placement of conductive mats in front of the system and under each peripheral may be required.

Cable Layouts

The only cables external to the System 90 Model 45 and Model 85 cabinets, other than power cables, are communications cables to the terminals, printers, modems, and similar devices in the system configuration.
Some of the things you should consider when planning the cabling configuration for these devices include the following:

- Determining cable length and routing.
- Identification and reduction of ambient electrical noise sources.
- Locating usable (existing) on-site cables.
- Determining lead times to make or buy cables.

Refer to Appendix B, which has been included to assist you in planning your total cable configuration.

The System 90 Model 45 and Model 85 can operate effectively in most environments suited to human business activities and living conditions. Some extreme environmental conditions must be avoided.

Environmental Restrictions

Certain environments must not be used for an installation site. These restricted environments are as follows:

- Areas subject to extreme temperature or humidity variation.
- Kitchens, air-conditioner exhaust areas, or similar areas conducive to exceptional humidity.
- Workshops or manufacturing environments producing high levels of airborne particles, such as dust, grit, smoke, or corrosive chemical agents.
- Basements or similar areas susceptible to flooding.
- Areas subject to electromagnetic fields or radio frequency radiation.
- Areas subject to mechanical vibration or intermittent, high-g force excursions.

Temperature and Humidity

The ideal operating temperature and humidity range for System90 Model 45 and Model 85 cabinets is 21° to 27° centigrade (70° to 80° Fahrenheit), with a relative humidity of 40 to 60 percent.
The operating safety margin, however, permits an extended operating period in case of heating or air conditioning systems failure. Tables 2-1 and 2-2 show the maximum and minimum values for these conditions and the altitude range in which the system can operate.

Table 2-1 Environmental Operating Limits

Operating Temp. Range	Relative Humidity	Altitude Range
$5^{\circ} \mathrm{C}$ to $38^{\circ} \mathrm{C}$ $\left(41^{\circ} \mathrm{F}\right.$ to $\left.100^{\circ} \mathrm{F}\right)$	20% to 80% (non-condensing)	Sea Level to 10.000 ft.

Actual altitude restrictions are dependent on the peripheral devices installed.
Table 2-2 Storage and Shipping Environmental Limits

Non-operating Temp. Range	Temp. Change	Relative Humidity	Humidity Change	Altitude Range
$-30^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ $\left(-22^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$$10^{\circ} \mathrm{C}$ per hour (non-condensing)	5% to 95%	10% per hour (non-condensing)	Sea Level to $40,000 \mathrm{ft}$.	

Certain combinations of temperature, humidity, and atmospheric pressure result in moisture condensing on surfaces in the system. This point is normally outside the range of conditions where the system is located, but if there is any doubt, wet-bulb thermometer readings should be taken and an operating curve plotted.

CAUTION:

It is particularly important to avoid operating the system in environmental conditions that can cause condensation. Even a small amount of moisture can result in a catastrophic system failure.

Media Storage

Store all media (backup tapes, flexible diskettes, etc..) under the same environmental conditions recommended for the main unit. If these storage conditions are not possible, place the tapes in the same room as the system for at least one hour before using them to allow the tapes enough time to adjust to the temperature.

Table 2-3 Magnetic Media Storage Limitations

Media Type	Storage Temperature	Storage Humidity
Magnetic Tape	$5^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ $\left(41^{\circ} \mathrm{F}\right.$ to $\left.113^{\circ} \mathrm{F}\right)$	20% to 80% (non-condensing)

Heat and Sound Output

The total heat and sound output from each cabinet is a maximum of: 11,200 BTUs/hr per cabinet, 62 dBA per cabinet.

Electromagnetic Interference

Electromagnetic fields or radiation emanating from radio, television, or radar antennas can interfere with the System 90 Model 45 and Model 85 and peripheral equipment.
Electromagnetic interference can also come from nearby industrial equipment such as arc welders, insulation testers, medical equipment, large high-voltage transformers, power distribution lines and related distribution panels, electric heating units, and electric motors.
Install the equipment as far away from such sources of interference as possible. Shielding can minimize interference if the shielding is properiy located and grounded. In some cases, a separate ground circuit for the system can reduce interference.

Electrostatic Discharges

Electrostatic discharges are common in any environment and can interfere with the operation of the equipment. The power of such discharges is increased under conditions of low humidity, and, before the system is delivered, you should take periodic humidity readings at the site.
The following measures are recommended at any site, and can be of critical importance in a dry environment.

- Antistatic furniture coverings
- Antistatic sprays
- The placement of conductive mats in front of the system and under each peripheral

The ARIX System90 Model 45 and Model 85 can operate effectively using most source combinations of voltage and frequency found throughout the world.

Primary Power Characteristics

Input power characteristics of voltage and frequency for the System90 Model 45 and Model 85 appear in Table 3-1:

Table 3-1 Primary Power Characteristics

	Nominal Value	Limits / Tolerance	Source System	Delivery Method
Voltage	220 Vac	$\pm 10 \%$	Single Phase	2 2-wire + gnd
Frequency	$50 / 60 \mathrm{~Hz}$	$\pm 3 \mathrm{~Hz}$		

Power Transient Tolerance

The System 90 Model 45 and Model 85 can tolerate fluctuations in the voitage and frequency characteristics of the source power within the limits shown in Tables 3-2 and 3-3.

Table 3-2 Voltage Transients

Nominal Voltage	Voltage Limits
220	
Volts	180 to 264 Volts

Table 3-3 Operating Frequency Range

Nominal Frequency	Tolerance
50 Hz 0 r 60 Hz	47 to 63 Hz

If the power source is less than optimum, consider using an isolation transformer or battery-backup system. It is recommended that a power line monitor be used for some period of time before installing the system. Appropriate power cables, specified in the order, are normally shipped with ARIX systems.
If the history of the site shows that voltage or frequency fluctuations are often outside these limits, you should notify the power company of the problem and request remedial action. In extreme cases, a regulated isolation transformer may be required.

Main Panel Circuit Breaker Requirements

To calculate the main panel fuse or circuit breaker values required for your installation, add the maximum normal operating current values of all system units connected to the specific leg. The total power requirement for an installation varies according to the particular configuration. Table $3-4$ shows approximate maximum values for typical units of a system.

Table 3-4 Unit Power Requirements

Unit	Input Power
Fully configured Main Cabinet	2.83 KVA
Fully configured I/O Expansion Cabinet	2.83 KVA
Fully configured Peripheral Expansion Cabinet	2.0 KVA
Typical Dot Matrix Serial Printer	0.10 KVA
Typical Correspondence Quality Printer	0.22 KVA
Typical Laser Printer	1.5 KVA
Typical Personal Computer	0.50 KVA
Typical Video Terminal	0.40 KVA

CAUTION:

DO NOT connect equipment having an intermittent duty cycle (e.g., refrigerators, air conditioners, or heavy-current inductive motors) into a branch circuit being used for computer-related equipment.

Power Receptacles

The power cables supplied with the System90 Model 45 and Model 85 are polarized, 3-wire cables with a standard male connector for 60 Hz units.
For European 220 Vac systems, the power cables are supplied with an IEC-309 plug.

Ensure that the receptacle (Figure 3-1) is compatible with the plugs to be used 4 the equipment. If any questions arise concerning selection of the correct receptacles, contact an ARIX Customer Support Technical Representative. Refer to the Preface for information on contacting ARIX Customer Support.

Some countries use plug and receptacle shapes different from the ones supplied with the system. For those countries, the customer must supply the appropriate plugs and connectors.

IEC 309 (P-Plug)
(R-Receptale)

NEMA L6-30 (P- Plug)
(R-Receptacle)

Figure 3-1. Power Plug Diagram

System Power Configuration

The following chart will help you determine whether or not your planned system configuration falls within the power restrictions of the System 90 Model 45 and Model 85.

Instructions:

1. Fill in the following chart with your desired configuration of boards and other features in the Number Installed column.
2. Multiply the Number Installed column by the Power Required column and write the result in the Total Power column.
3. Add up the total number of boards. It cannot exceed 15.
4. Add up the Total Power column. The resultant Total Power cannot exceed 300.

Table 3-5a. Power Configuration Chart for the System90 Model 45/85 Main Cabinet

Feature	Power Required	X	Number Installed	$=$	Total Power
Basic System (Includes tape, SPM, ARB, RWI(6))	34.4	X	1	$=$	34.4
Boards: MM	7.5	X		$=$	
PM-20	13.5	X		=	
IOPM/ACDB	13.5	X		$=$	
ACE	0.6	X		$=$	
IOPM/DSDB	18.5	X		$=$	
IOPM/LWDB RS232	172	X		$=$	
IOPM/LWDB V. 35	17.5	X		$=$	
IOPM/LWDB RS449	18.1	X		$=$	
IOM	16.4	X		$=$	
Total from Boards: (15 BOARDS MAX.					
Storage Devices: 5.25 inch Disk	25	X		$=$	
3.50 inch Disk	0.75	X		$=$	
CD ROM	0.5	X		$=$	
Optical WORM	1.8	X		$=$	
R/W Optical	20	X		$=$	
Total Power: (300 MAX POWER)					

Table 3-5b. Power Configuration Chart for System 90 Model 85 I/O Expansion Cabinet

Feature	Power Required	X	Number Installed	$=$	Total Power
Basic System (Includes ARB16. backplane)	13.5	x	1	$=$	13.5
Boards:		x		$=$	
IOSBA	11.0	X	1	$=$	11.5
IOPM/ACDB	13.5	X		$=$	
ACE	0.6	X		=	
IOPM/DSDB	18.5	X		$=$	
IOPM/LWDB RS232	172	X		=	
IOPM/LWDB V. 35	17.5	X		=	
IOPM/LWDB RS449	18.1	X		=	
Total from Boards: (15 BOARDS MAX.)					
Storage Devices: 5.25 inch Disk	25	X		$=$	
3.50 inch Disk	0.75	X		=	
CD ROM	0.5	X		$=$	
Optical WORM	1.8	X		$=$	
R/W Optical	20	X		=	
Total Power: (300 MAX POWER)					

Planning and Preparation Checklist

The checklist given in this appendix is a useful reminder of the progress of the System 90 Model 45 and Model 85 installation. It can help you plan and prepare the site for the installation. The time periods are suggestions, which, of course, you can change to meet your specific needs. When you have the information given in each box, fill in the "Planned Date" column. Then, as you complete each item in the checkiist, record the date in the "Completion Date" column.

Initial Planning				Planned Date	Completion Date
Planning and Preparation Steps					
Review description of system to be installed to become familiar with options and peripherals, and uses of the equipment in the system.					
Review content of this site preparation guide.					
Prepare an initial layout showing locations of all equipment.					

90 Days Before Delivery		
Plaming and Preparation Steps	$\begin{aligned} & \hline \text { Planned } \\ & \text { Date } \end{aligned}$	Complation Date
Determine space requirements.		
Check site dimensions and building access dimensions and prepare a layout showing each peripheral located at its selected site. Include any structural changes or relocation of other equipment which could affect the installation of peripherals or cables.		
Select the location of power receptacles for peripherals to provide maximum flexibility for positioning the equipment and for ease of maintenance.		
Determine the method of installation and suitable routing of signal cables, which include cables between the host processor (direct connection), terminals, and printers.		
If any cables are to be installed during site preparation, request delivery early enough to meet site preparation schedule.		
If necessary, revise planning schedules to meet equipment delivery schedules.		

60 Days Before Delivery

Planning and Preparation Steps	Planned Date	Compietion Date
Check environment at selected site for compiiance with requirements. Arrange necessary rework of lighting and air conditioning, if necessary.		
Compare electrical facilities with power requirements of the ordered equipment to ensure compatibility. If not compat- ible, call your ARIX Customer Support representative.		
Make final adjustments to planned layout of data commun- ications devices, peripherals, and cables.		

30 Days Before Delivery		
Planning and Preparation Steps	Planned Date	Completion Date
Start installation or improvement of air conditioning, if required.		
Start any structural modifications required for cable routing or for preparing the work area.		
Install wiring, circuit breakers and required electrical receptacles.		

7 Days Before Delivery

Planning and Preparation Steps	Planned Date	Completion Date
Check electrical, structural, and air conditioning installation. This work should be finished by this time.		
Before the arrival of equipment, make sure that the appro- priate cables have been properly installed.		
Make sure preparations have been completed for intercon- necting cables to be installed when the equipment is installed.		
Complete painting, draping, and carpeting of the site, if necessary.		
Make sure desks, tables, chairs, storage cabinets, and other furnishings needed at the site are available for the instal- lation.		
Apply static-discharge treatment to the carpeting, if required.		
Clean the site location.		

Environmental Specifications

Table A-1a. Environmental Specifications

Power			
		220 Volt Supply	220 Volt Supply
Nominal Line Voltage		220 VAC	$50 / 60 \mathrm{~Hz}$
Maximum Line Current		24 Amps	
Nominal Line Frequency			
Maximum Power Consumption			2.83 KVA
Heat Dissipation			11,200 BTU/hr
Temperature			
Operating	5° to $38^{\circ} \mathrm{C}\left(41^{\circ}\right.$ to $\left.100^{\circ} \mathrm{F}\right)$		
Non-operating	$10^{\circ} \mathrm{C}$ per hour		
Maximum Gradient	-30° to $60^{\circ} \mathrm{C}\left(-22^{\circ}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$		
Humidity			
Operating	20\% to 80\% RH non-condensing		
Non-operating	5\% to 95\% RH non-condensing		
Altitude			
Operating	Sea level to 10,000 feet (3.05 kilometers)		
Non-operating	Sea level to 40,000 feet (12.2 kilometers)		
Vibration			
Operating	5 to 25 Hz 0.04 G maximum 26 to 95 Hz 0.12 G maximum 96 to 300 Hz 0.20 G maximum		
Non-operating	5 to 25 Hz 0.10 G maximum 26 to 95 Hz 0.74 G maximum 96 to 300 Hz 2.00 G maximum		
Shock			
Operating	Less than 1.0 G @ 10 msec . duration		
Non-operating	Less than 8.0 G @ 10 msec . duration		

Table A-1b. Environmental Specifications Continued

Physical Size		
Height	45 inches (114.3 cm)	
Width	22 inches $(55.9 \mathrm{~cm})$	
Depth	37.75 inches $(95.8 \mathrm{~cm})$	
	Weight	
Weight	750 pounds (340 kilograms - maximum configuration)	
Floor Loading	129 pounds/square foot (629 kilograms/square meter)	
Point Loading	200 pounds/square inch (14 kilograms/square centimeter)	
Acoustic Noise		
Sound Pressure Level	62 dBA	

This appendix can help you define your data and logic cable needs for the installation. The cable planning charts, Tables B-2 through B-3, are useful as ordering forms. Check, circle, or fill in each of the applicable blocks on the chart as required.
The local and remote system console ports on the RWI connect to the terminal and modem through DB-25 connector. The other asynchronous ports (ACDB/ACE) use RJ-45.

The LWDB (Local area/Wide area Device Board) has four female WAN ports and one female LAN port. The WAN ports use DB-25 connectors, the LAN AUI (attachment unit interface), or port, uses a female 15 -Pin D-style connector with female threaded nuts. A strain relief bracket is included and must be used to ensure the strength of the connection. The LAN interface complies with the IEEE 802.3 CSMA/CD standard at the Attachment Unit Interface (AUT); however, an external Media Attachment Unit (MAU), better known as a transceiver, that fully complies with the IEEE 802.3 standard is required to interface to one of several LAN mediums. With the appropriate transceiver, the LAN interface supports the following LAN mediums:

- 10 Base $510 \mathrm{Mbit} / \mathrm{sec}$, baseband, thick coaxial cable
- 10 Base $210 \mathrm{Mbit} / \mathrm{sec}$, baseband, thin coax cable
- 10 Base T $\quad 10 \mathrm{Mbit} / \mathrm{sec}$, twisted pair wiring
- $10 \mathrm{Broad} 36 \quad 10 \mathrm{Mbit} / \mathrm{sec}$, broadband, CATV-type cable
- Fiber Optic $10 \mathrm{Mbit} / \mathrm{sec}$, IEEE 802.3 compatible, fiber optic

Follow the cable length requirements as shown in the following subsections.

Port Numbering

Referring to Tables B-1 through B-3, the Port Number block asks for the system logical identification number of the port.

Asynchronous Ports
All asynchronous ports are assigned system logical identification port numbers in groups of 16 . Figure $\mathrm{B}-1$ shows an example of the port numbering scheme used. The figure shows the ACDB board using their maximum number of $A C E$ boards.

Figure B-1. Port Numbering

Real World Interface

The Real World Interface(RWI) board provides the following ports:

- A system CONSOLE port
- A REMOTE CONSOLE/diagnostic port
- Printer port
- UPS Alarm Interface (refer to Uninterruptible Power Supply Guidelines for the ARIX System 90 documentation for further information on the Alarm Interface).

Asynchronous Communications Device Board

The Asynchronous Communications Device Board(ACDB) provides the asynchronous communications interface for the IOPM. The basic configuration of the ACDB is sixteen (16) asynchronous ports and one Centronics compatible parallel port (25 -Pin DB connector). The parallel port is IBM PC compatible. All ports are shielded, and the use of shielded RJ-45 plugs and cable is highly recommended.

The ACDB supports up to three (3) Asynchronous Communications Extender (ACE) boards(Figure B-1). The maximum port expansion capacity of one IOPM/ACDB/ACE combination is sixty-four (64) asynchronous ports.
Table B-1 shows the numbering scheme for the possible configuration of ACDB boards installed.

Table B-1. Port Numbering

Port Numbers		
Board	Physical Number of Async Ports	System Logical Identification Number
ACDB	16	0 through 15, or 16 through 31, or32 through 47
ACDB/ACE Board No. 1	16	16 through 31 , or 32 through 47 , or 48 through 63 (dependent upon the initial ACDB System Logical ID)
ACDB/ACE Board No. 2	16	32 through 47 , or 48 through 63 , or 64 through 79 (dependent upon the initial ACDB System Logical ID)
ACDB/ACE Board No. 3	16	48 through 63 , or 64 through 79 , or 80 through 95 (dependent upon the initial ACDB System Logical ID)

Asynchronous Communications Extender

The Asynchronous Communications Extender (ACE) board provides an additional sixteen (16) asynchronous ports per board (see Figure B-1). The ACE board(s) are daughter boards to the ACDB. That is, they are stacked/connected directiy onto the ACDB. System logical identification port numbering begins with the next port number in sequence above the last port number taken by the ACDB. Therefore, if the ACE board is connected to an ACDB whose last port address is 47, the port addresses for the first ACE board attached to that ACDB are 48 through 63.

Local Area Network and Wide Area Network Device Board (LAN/WAN) Ports

Local Area Network and Wide Area Network connections are located on the LWDB (LAN/WAN Device Board).
Each Local Area Network/Wide Area Network (LAN/WAN) Device Board provides a single LAN and four (4) WAN ports.
The communications interfaces available for the WAN ports are:

- EIA RS-232-C
- EIA RS-449
- CCITT V. 35

The single LAN port is standard with each board and complies with the IEEE 802.3 CSMA/CD standard (Ethernet software compatible). The WAN ports are not configurable in the field, the various configurations can be set only at the factory.

The data transfer rate for the LAN interface is as follows:

- Up to $10 \mathrm{Mbit} /$ second

The data transfer rates for the WAN interfaces are as follows:

- Up to $252 \mathrm{Kbit} /$ second full duplex on one port
- Up to $128 \mathrm{Kbit} /$ second full duplex on two ports
- Up to $64 \mathrm{Kbit} /$ second full duplex on four ports

The LAN/WAN has five connectors on its retaining bracket as shown in Figure B-2.. Ports 0 through 3 are WAN ports. The fifth and uppermost port is the LAN port. Due to the variability of the WAN connectors, they are shown only as blocks.

The LAN interface(Figure B-3) complies with the IEEE 802.3 CSMA/CD standard at the Attachment Unit Interface (AUI); however, an external Media Attachment Unit (MAU) , better known as a transceiver, that fully complies with the IEEE 802.3 standard is required to interface to one of several LAN mediums. With the appropriate transceiver, the LAN interface supports the following LAN mediums:

-	10 Base 5	$10 \mathrm{Mbit} / \mathrm{sec}$, baseband, thick coaxial cable
-	10 Base 2	$10 \mathrm{Mbit} / \mathrm{sec}$, baseband, thin coax cable
-	10 Base T	$10 \mathrm{Mbit} / \mathrm{sec}$, twisted pair wiring
-	10 Broad 36	$10 \mathrm{Mbit} / \mathrm{sec}$, broadband, CATV-type cable
-	Fiber Optic	$10 \mathrm{Mbit} / \mathrm{sec}$, IEEE 802.3 compatible, fiber optic

Figure B-2. LWDB (LAN/WAN Device Board)
The AUI external cable and transceiver(s) must comply with the IEEE 802.3 standard.

The LAN AUI is a female 15 -Pin D-style connector with female threaded nuts. A strain relief bracket is included and must be used to ensure the strength of the connection.

Figure B-3. LAN/WAN Device Board Connection.

The system logical identification port numbers for the LWDB are defined as follows:

WAN Port Numbering

WAN system logical identification port numbers are defined as /dev/macdrvr/sxpy.

- s stands for slot
- $\quad \mathbf{x}$ equals the number of the slot the LWDB occupies
- $\quad \mathbf{P}$ stands for port
- $\quad y$ equals the number of the WAN port on the LWDB

When looking at the front of the system, slots are numbered from right to left. Slot zero (0) is on the far right and slot seven (7) is on the far left.
WAN ports are numbered zero (0) through three (3). WAN port zero is on the bottom and port three is closest to the top (directly below the LAN port).

LAN Port Numbering

LAN system logical identification port numbers are defined as / dev/lnx.

- In stands for $L A N$
- $\quad \mathbf{x}$ equals the number of the slot the LWDB occupies

Port Type

All ports on the RWI, ACE, and ACDB are asynchronous. Synchronous ports exist on the LWDB only.

Cable Type

Enter details of the physical description of the cable to be used in either the Ribbon or Shielded row for the port number specified.

For example, if you are specifying an asynchronous terminal port, you might enter "8-conductor" for an RJ-45 connector, or "15-conductor" for a DB 15 connector.

NOTE:

When deciding whether to use shielded or unshielded cable for a given application, study the environmental conditions of your installation site. If the site is subject to a great deal of electrical noise from motor generators, radiation equipment, or existing wiring and cabling, it is best to use shielded cables and special grounding methods.

Cable Length

Fill in the calculated lengths in the space provided in Table B-2 for each cable being specified. Cable length is defined as the total length of the cable from the attachment point on the Device Board to the device. The horizontal run can be estimated from the floor plan for the site. The vertical run is the distance from the floor to the attachment point, which does not show on the two-dimensional floor plan. Add the vertical and horizontal lengths together for the total cable length. Allow sufficient cable length at the device end in case the device is moved.

NOTE:

If the cable length is greater than 50 feet, consider the use of shorthaul modems or other types of line repeaters.

Fill in the standard designation (nomenclature) of the connector for both the system end and the device end of the cable. Possible entries for the system end of the connector are: DB-25 for the Console port, RJ-45 (asynchronous), DB-25 or 37 (synchronous), and DB-25 for the parallel port.
When calculating the lengths of cables between units of your system, you must measure the exact route over which the cables are to pass, over conduit, around corners, rises, drops, etc. In addition, you must allow for extra length to accommodate equipment positioning. Excess lengths of cable should be folded carefully into protected areas such as cable runs or overhead hangers. Do not coil unshielded cables and place them adjacent to one another or in such a way that inductive coupling can occur.
In most cases system cables will lie inside a single building. If you must route cables outside the building, consult the common carrier or local utility for applicable regulations.

Use of Existing On-Site Cables

To use existing on-site cables for a System90 Model 45 and Model 85 installation, first verify that the connectors and internal conductors are compatible.

NOTE:

Ownership of existing on-site cabling (i.e., whether the user owns or leases it) must be determined before any use can be made. The use of leased cables on other than the original equipment may be contrary to the policy of the particular original equipment manufacturer.

Device Type

Enter either DTE (Data Terminal Equipment) or DCE (Data Communication Equipment) in the block corresponding to the port being specified. By convention, terminals and serial printers are usually designated DTE and modems DCE. All asynchronous ports (ACDB, ACE) except the CONSOLE Printer ports on the RWI are configured as DTE to include the REMOTE CONSOLE port. The RWI CONSOLE port is configured as DCE(Table B-5) along with PRINTER port .

Table B-2. Serial Connectors

Port Number \ggg		0	1	2	3	4	5	6	7
$\begin{aligned} & \text { Port } \\ & \text { Type } \end{aligned}$	Asynchronous								
Cable Type	Ribbon								
	Shielded								
	8-Conductor								
Cable Length	Horizontal								
	Vertical								
	Total								
Cable Connector	System-End								
	Device-End								
Device Type	DTE or DCE								
Port Number \ggg		8	9	10	11	12	13	14	15
$\begin{aligned} & \hline \hline \text { Port } \\ & \text { Type } \end{aligned}$	Asynchronous								
Cable Type	Ribbon								
	Shielded								
	8-Conductor								
Cable Length	Horizontal								
	Vertical								
	Total								
Cable Connector	System-End								
	Device-End								
Device Type	DTE or DCE								

Table B-2a. Serial Connectors (Cont.)

Port Number \ggg		16	17	18	19	20	21	22	23
Port Type	Asynchronous								
Cable Type	Ribbon								
	Shielded								
	8-Conductor								
Cable Length	Horizontal								
	Vertical								
	Total								
Cable Connector	System-End								
	Device-End								
Device Type	DTE or DCE								
Port Number \ggg		24	25	26	27	28	29	30	31
Port Type	Asynchronous								
Cable Type	Bibbon								
	Shielded								
	8-Conductor								
Cable Length	Horizontal								
	Vertical								
	Total								
Cable Connector	System-End								
	Device-End								
Device Type	DTE or DCE								

Table B-2b. Serial Connectors (Cont.)

Port Number \ggg		32	33	34	35	36	37	38	39
Port Type	Asynchronous								
Cable Type	Ribbon								
	Shielded								
	8-Conductor								
Cable Length	Horizontal								
	Vertical								
	Total								
Cable Connector	System-End								
	Device-End								
Device Type	DTE or DCE								
Port Number \ggg		40	41	42	43	44	45	46	47
Port Type	Asynchronous								
Cable Type	Bibhon								
	Shielded								
	8-Conductor								
Cable Length	Horizontal								
	Vertical								
	Total								
Cable Connector	System-End								
	Device-End								
Device Type	DTE or DCE								

Table B-2c. Serial Connectors (Cont.)

Port Number $\ggg>$		48	49	50	51	52	53	54	55
Port Type	Asynchronous								
Cable Type	Ribbon								
	Shielded								
	8-Conductor								
Cable Length	Horizontal								
	Vertical								
	Total								
Cable Connector	System-End								
	Device-End								
Device Type	DTE or DCE								
Port Number \ggg		56	57	58	59	60	61	62	63
Port Type	Asynchronous								
Cable Type	Ribbon								
	Shielded								
	8-Conductor								
Cable Length	Horizontal								
	Vertical								
	Total								
Cable Connector	System-End								
	Device-End								
Device Type	DTE or DCE								

Table B-2d. Serial Connectors (Cont.)

Port Number \ggg		64	65	66	67	68	69	70	71
Port Type	Asynchronous								
Cable Type	Bibbon								
	Shielded								
	8-Conductor								
Cable Length	Horizontal								
	Vertical								
	Total								
Cable Connector	System-End								
	Device-End								
Device Type	DTE or DCE								
Port Number \ggg		72	73	74	75	76	77	78	79
$\begin{aligned} & \hline \hline \text { Port } \\ & \text { Type } \end{aligned}$	Asynchronous								
Cable Type	Ribbon								
	Shielded								
	8-Conductor								
Cable Length	Horizontal								
	Vertical								
	Total								
Cable Connector	System-End								
	Device-End								
Device Type	DTE or DCE								

Table B-2e. Serial Connectors (Cont.)

Port Number \ggg		80	81	82	83	84	85	86	87
Port Type	Asynchronous								
Cable Type	Ribbon								
	Shielded								
	8-Conductor								
Cable Length	Horizontal								
	Vertical								
	Total								
Cable Connector	System-End								
	Device-End								
Device Type	DTE or DCE								
Port Number \ggg		88	89	90	91	92	93	94	95
$\begin{aligned} & \hline \hline \text { Port } \\ & \text { Type } \end{aligned}$	Asynchronous								
Cable Type	Bibbon								
	Shielded								
	8-Conductor								
Cable Length	Horizontal								
	Vertical								
	Totai								
Cable Connector	System-End								
	Device-End								
Device Type	DTE or DCE								

Table B-2f Serial Connectors (Cont.)

Port Number \ggg		96	97	98	99	100	101	102	103
Port Type	Asynchronous								
Cable Type	Ribbon								
	Shielded								
	8-Conductor								
Cable Length	Horizontal								
	Vertical								
	Total								
Cable Connector	System-End								
	Device-End								
Device Type	DTE or DCE								
Port Number \ggg		104	105	106	107	108	109	110	111
Port Type	Asynchronous								
Cable Type	Ribbon								
	Shielded								
	8-Conductor								
Cable Length	Horizontal								
	Vertical								
	Total								
Cable Connector	System-End								
	Device-End								
Device Type	DTE or DCE								

Table B-3. Parallel Ports

Port Number >>>		1	2	3	4
Port Type	Parallel				
Cable Type	Ribbon				
	Shielded				
	Horizontal				
Cable Connector	Vertical				
Device Type	System-End	Device-End			

Table B-4 LAN and WAN Connectors

LAN Port(s)					
Port Number \ggg		0	1	2	3
Data Type	Connector Type				
Ethernet	DB-15				
Cable Length	Horizontal				
	Vertical				
	Total				
WAN Port(s)					
Port Number \ggg		0	1	2	3
Data Type	Connector Type				
RS-232	DB-25				
Cable Length	Horizontal				
	Vertical				
	Total				
Data Type	Connector Type				
V. 35	DB-37				
RS-449					
Cable Length	Horizontal				
	Vertical				
	Total				

Table B-5. Miscellaneous Connector Types.

Port Name \gg		Console	Printer	Remote Console
Port Type	Asynchronous			
Cable Type	Bibbon			
	Shielded			
	25-Conductor			
	Horizontal			
Cable Connector	Total			DB-25
	Device-End		DB-25	

The ARIX System90 Model 45 and Model 85 provides interfaces to a wide variety of peripherals and communication devices. The following interface definitions are being supplied to ensure system compatibility. All models of the multiuser system provide the same interfaces except for the system console.

Asynchronous Communications Device Board (ACDB)

There are two types of external interfaces on the ACDB. The first is a female RJ-45 connector (of which there are 16) used for asynchronous communications (see Figure C-1). The second is a female DB-25 connector used for a parallel printer port (see Figure C-2). The pinouts for both of these connectors are described in Tables C-1 and C-2.

Figure C-1. Femaie RJ-45
Table C-1. ACDB Female RJ-45 Asynchronous Port Connector Pinout

$\begin{gathered} \text { RJ-45 } \\ \text { ARIX (DTE) } \end{gathered}$		Direction	DB-25Terminal (DTE)	
Pin \#	Signal Name		Pin \#	Signal Name
1	No Connection			
2	DSR		20	DTR
3	TX	\longrightarrow	3	RX
4	PX	4	2	TX
5	GND	-	7	GND
6	DTR	\rightarrow	$\begin{aligned} & 8 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DCD } \\ & \text { DSR } \end{aligned}$
7	DCD	\bigcirc	20	DTR
8	No Connection			

NOTE: Pin 20 on the DB-25 connector is connected to two pins on the RJ-45 connector. Pin 6 on the RJ-45 connector is connected to two pins on the DB-25 connector.

Figure C-2. 25-Pin D (Female)

Table C-2. ACDB Female DB-25 Parallel Printer Port Connector Pinout

Pin Numbers	Descriptions
1	Data Strobe
$2-9$	Data Lines 1 through 8
10	Acknowiedge
11	Busy
12	Paper Empty
13	Select
$14-25$	Signal Ground

LAN/WAN Device Board (LWDB)

There are three types of external interfaces on the LWDB. The first is a female DB15 connector (see Figure C-3) to connect to an IEEE 802.3 network. The second is a female DB-25 connector (Figure C-4) used for synchronous communications. The third is a female DB- 37 connector (Figure C-5) to provide V. 35 connection to an X. 25 network. The pinouts of these connectors are described in Tables C-3, C4 , and 5.

Figure C-3. 15-Pin D (Female)

Table C-3. LWDB Female DB-15 IEEE 802.3 Connector Pinout

Pin Numbers	Descriptions
1	Control IN Signals Shield
2	Collision Presence (+)
3	Transmit (+)
4	Data in Signais Shield
5	Receive (+)
6	Power Return (Ground)
7	Reserved
8	Control OUT Signals Shield
9	Collision Presence (-)
10	Transmit (-)
11	Data OUT Signais Shield
12	Receive (-)
13	Power (+12 VDC fused)
14	Power Shield
15	Reserved

Figure C-4. 25-Pin D (Female)

Table C-4. LWDB DB-25 Synchronous Port Connector Pinout

Pin Number(s)	
1	Chassis Ground
2	Transmit Data
3	Receive Data
4	Request to Send
5	Clear to Send
6	Data Set Ready
7	Signal Ground
8	Data Carrier Detected
$9-14$	No Connection
15	Transmitter Clock
16	No Connection
17	Receiver Clock
1819	No Connection
20	Data Terminal Ready
21	No Connection
22	Ring Detector
23	No Connection
24	Tx Sig Element Timing
25	No Connection

Figure C-5 37-Pin D (Female)
Table C-5. LWDB DB- 37 V. 35 Connector Pinout

Pin Number(s)	Description
1	Chassis Ground
2-3	No Connection
4	Transmit Data BA(A)
5	Transmit Clock DB(A)
6	Receive Data BB(A)
7	Request to Send
8	Receive Clock DD(A)
9	Clear to Send
10	Local Loopback
11	Data Set Ready
12	Terminal Ready
13	Remote Loopback
14	Data Carrier Detected
15-16	No Connection
17	External Transmit Clock
18	Test Mode
19	Signal Ground
20	Receive Common
21	No Connection
22	Transmit Data BA(B)
23	Transmit Clock DB(B)
24	Receive Data BB(B)
25	Request to Send
26	Receive Clock DD(B)
27	Clear to Send
28	No Connection
29	Data Mode
30	Terminal Ready
31	Receive Ready
32-34	No Connection
35	Terminal Timing
36	No Connection
37	Send Common

Dual SCSI Device Board (DSDB)

The DSDB provides two independent SCSI channels, referred to here as 1 and 2, in two different formats: single-ended and differential. Since these two formats require different pinouts, the DSDB was designed with four 50 -pin male connectors (Figure C-6). The first and third connectors from the top of the board, P1 and P3, are the single-ended SCSI channels A and B, respectively. The second and fourth connectors, P2 and P4, are the differential SCSI channels A and B, respectively. Since P1 and P2 are different pinouts for SCSI channel A, only one of these two connectors may be used at a time. The same is true for connectors P3 and P4. The pinouts for both types of SCSI connections are described in Tables C-6 and C-7.

Figure C-6. 50-Pin Male Connector

Table C-6. DSDB SCSI Single-Ended 50-Pin Male Connector Pinout

Pin Number	Function	Pin Number	Function
1	Ground	26	TERM + 5 V DC
2	SD(0)	27	Ground
3	Ground	28	Ground
4	SD(1)	29	Ground
5	Ground	30	Ground
6	SD(2)	31	Ground
7	Ground	32	ATN
8	SD(3)	33	Ground
9	Ground	34	Ground
10	SD(4)	35	Ground
11	Ground	36	BSY
12	SD(5)	37	Ground
13	Ground	38	ACK
14	SD(6)	39	Ground
15	Ground	40	RST
16	SD(7)	41	Ground
17	Ground	42	MSG
18	SD(P)	43	Ground
19	Ground	44	SEL
20	Ground	45	Ground
21	Ground	46	C/D
22	Ground	47	Ground
23	Ground	48	REQ
24	Ground	49	Ground
25	Not Used	50	I/O

Table C-7. DSDB SCSI Differential 50-Pin Male Connector Pinout

Pin Number	Function	Pin Number	Function
1	Not Used	26	TERM + 5V DC
2	Ground	27	Ground
3	SD(0)	28	Ground
4	SD*(0)	29	ATN
5	SD(1)	30	ATN*
6	SD*(1)	31	Ground
7	SD(2)	32	Ground
8	SD*(2)	33	BSY
9	SD(3)	34	BSY*
10	SD*(3)	35	ACK
11	SD(4)	36	ACK*
12	SD*(4)	37	RST
13	SD(5)	38	RST*
14	SD*(5)	39	MSG
15	SD(6)	40	MSG*
16	SD*(6)	41	SEL
17	SD(7)	42	SEL*
18	SD*(7)	43	C/D
19	SD(P)	44	C/D*
20	SD*(P)	45	REQ
21	DIFFSENSE	46	REQ*
22	Ground	47	I/O
23	Ground	48	I/O*
24	Ground	49	Ground
25	TERM + 5V DC	50	Ground

Real World Interface

The Real World Interface (RWI) board provides two types of connectors: the female DB-25 connector and the male DB-9 UPS port connector. The DB-25 connectors (see Figure C-7, Tables C-8 and C-9) are used to interface to the system console, printer, and remote diagnostics ports. The DB-9 connector (see Figure C- 8, Table 10) is used to connect to the Uninterruptible Power Supply (UPS) port (refer to the Uninterruptible Power Supply Guidelines for the ARIX System 90 Manual for further information).

Figure C-7. 25-Pin D (Female)

Table C-8. DB-25 CONSOLE or Printer Ports to DB-25 Connector Pin/Signal Description for DTE Use

$\begin{gathered} \text { DB-25 } \\ \text { CONSOLE (DCE) } \end{gathered}$		Direction	$\begin{gathered} \text { DB-25 } \\ \text { Terminal (DTE) } \end{gathered}$	
Pin \#	Signal Name		Pin \#	Signal Name
1	Chassis Ground	-		
2	TX	4	2	TX
3	RX	\longrightarrow	3	RX
4	RTS	4	4	RTS
5	CTS	\longrightarrow	5	CTS
6	DSR	7	6	DSR
7	GND	-	7	GND
8	DCD	\longrightarrow	8	DCD
20	DTR		20	DTR

Table C-9. DB-25 REMOTE CONSOLE to DB-25 Connector Pin/Signal Description for DCE or MODEM Use

DB-25REMOTE CONSOLE(DTE)		Direction	DB-25 MODEM (DCE)	
Pin \#	Signal Name		Pin \#	Signal Name
1	Chassis Ground	- - -		
2	TX	\longrightarrow	2	TX
3	RX	\square	3	RX
4	RTS	\longrightarrow	4	RTS
5	CTS	4	5	CTS
6	DSR	4	6	DSR
7	GND	- - -	7	GND
8	DCD	4	8	DCD
20	DTR	\longrightarrow	20	DTR

Figure C-8. 9-Pin D (Male)

Table C-10. RWI Male DB-9 UPS Port Connector Pinout

Pin Number	Description
1	AC Fail (active low)
2	No Connection
3	UPS Off (active low)
4	No Connection
5	Low Batury (active low)
6	No Connection
7	Signal Ground
8	No Connection
9	No Connection

[^0]: Le present appareil numerique n'emet pas de bruits radioelectriques depassant les limites applicables aux appareils numeriques de Classe A prescrites dans le règlement sur le brouillage radioelectriques èdicté par le ministère des communications du Canada.

