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Foreword

Personal, business, and technical computing environments continue to demand
ever-increasing levels of function and performance. The PowerPC™ micropro-
cessor has been jointly developed by IBM®, Motorola®, and Apple® to meet
the computer performance growth requirements of the 90s and enable a new
generation of computer platform and applications with industry-leading capa-
bilities. A prerequisite for these new computer systems to gain wide acceptance
by the application and operating system development communities is a “system
architecture” that provides consistent interfaces between hardware and soft-
ware. The architecture maintains application software compatibility across
platforms manufactured by different system vendors, and enables scalability to
meet future demands. This specification satisfies these prerequisite by docu-
menting a PowerPC-based open system architecture that can be used by system
and software companies for the development of compatible PowerPC computer
systems, subsystems, and software. The architecture is intended to support a
range of PowerPC system implementations including portable, desktop, and
server computer systems.

Our engineering teams, in conjunction with other industry participants, have
endeavored to develop a leading-edge computer architecture that can satisfy
manufacturer and customer needs into the next century. They have also
expended significant effort to accommodate legacy IBM PC and Apple Macin-
tosh® hardware and software issues, while supporting future system evolution.
This focus on the future, with an eye on the past, is a key attribute of this archi-
tecture. Another key attribute is the ability, through a combination of hardware
and software, for system manufacturers to differentiate their systems while
maintaining application compatibility. This attribute creates greater opportu-
nity for value to be added by system manufacturers. 
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We want to thank our teams and those in the computer industry who have
contributed to development of this specification. Each of our companies sup-
ports making this architecture a success, and we invite each of you to join in
the opportunity that this open industry architecture creates. For us, this is the
beginning of an exciting new era in personal computing. 

David Nagel 
Senior Vice President, Apple Computer, Inc.

Robert M. Stephenson
IBM Senior Vice President and Group Executive, Personal Systems Group

Joe Guglielmi
Corporate Vice President and General Manager of Motorola Computer Group
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About this Document

The purpose of this document is to define an open architecture and minimum
system requirements that enable the development and manufacture of industry-
standard computer systems based on PowerPC microprocessors. These require-
ments are intended to be precise enough to assure application software compat-
ibility for several operating system environments, broad enough to cover
portables through server platforms in single or multiprocessor configurations,
and forward-looking enough to allow evolution, including 64-bit addressing.

These requirements were developed by Apple Computer, Inc., International
Business Machines Corporation, and Motorola, Inc. to define a system which is
intended to become the pervasive open industry standard for single-user porta-
ble through multi-user server configurations. Systems built to these require-
ments will have PowerPC microprocessor(s) and will share components with
the Apple Macintosh family and IBM compatible personal computers. These
systems will be capable of running various native operating systems. The set of
operating systems anticipated to be available includes Apple Mac™ OS, IBM
AIX™, and PowerPC™ editions of IBM OS/2™ Warp Connect, Microsoft
Windows NT™ Workstation, Novell NetWare™, and SunSoft Solaris™. Most
applications for these operating environments may be run on these systems
either in native mode or through some emulation capability. With the appropri-
ate operating system and x86 emulation support, these systems will be capable
of running Windows™ and DOS applications.

Within the context of this document, “architecture” is defined as the specifi-
cation of the interface between the hardware platform and the operating sys-
tems and applications. Device drivers also use this architecture, but require
additional definition of the device interfaces to the hardware and operating sys-
tem interfaces within the software.
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To the extent that firmware abstracts the hardware interface, it becomes part
of the hardware. The firmware to operating system interface is defined in this
architecture. Two types of firmware are discussed here. Open Firmware is the
initialization or boot code that controls the platform prior to the transfer of con-
trol to the operating system. Run-Time Abstraction Services (RTAS) is the run-
time firmware which provides abstractions to the executing operating system.
Interfaces within the software or within the hardware are not defined in this
document. Where necessary, reference will be made to documents where those
definitions can be found.

Within the context of this document the term “the architecture” or “the
CHRP architecture” is used to refer to the requirements contained in this docu-
ment, PowerPC Microprocessor Common Hardware Reference Platform: A
System Architecture.

Goals of the Specification
The specific goals of this specification are as follows:

■ To create an open industry standard to be used for the implementation of 
PowerPC based systems. The architecture document is available to the in-
dustry and can be used by any hardware or software vendor to develop com-
pliant products.

■ To allow compatible differentiation through the use of abstracted hardware 
interfaces, defined minimum hardware, and extension mechanisms.

■ To leverage existing and future industry-standard buses and interfaces. Ex-
isting bus architectures have a proven level of performance and functional-
ity. Established industry-standard interfaces—for example SCSI, IDE, 
LocalTalk®, Ethernet™, etc.— and newer bus architectures, interfaces and 
protocols —for example PCI, PC Card, IrDA, etc.— provide higher levels 
of performance or utility not achievable by the older standards. The archi-
tecture allows platform and system designers to determine which buses, in-
terfaces, and protocols best suit their target environment.

■ To provide a flexible address map. Another key attribute of this specifica-
tion is the relocatability of devices and subsystems within the PowerPC ad-
dress space. Subsystem address information, which defines where I/O 
devices reside, is detected by the Open Firmware and passed to the operat-
ing systems in the device tree. The architecture accommodates the use of 
multiple identical buses and adapters in the same platform without address 
conflicts.
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■ To build upon the Open Firmware boot environment defined in IEEE 1275, 
IEEE Standard for Boot (Initialization Configuration) Firmware, Core Re-
quirements and Practices [9]. Currently the abstraction approach for some 
operating systems uses platform description information discovered by a 
legacy boot process and passed to the operating system in data structures. 
With these systems, operating systems and platforms will migrate to the 
Open Firmware boot process and device tree.

■ To architect the control of power management by different operating sys-
tem. It is important that the combination of hardware and software be al-
lowed to minimize power consumption through automatic or programmed 
power-saving methods. Power management of systems will reduce the oper-
ational cost for the user and reduce the impact of the system on the environ-
ment.

■ To provide an architecture which can evolve as technology changes. The 
creators of the architecture invite industry participation in evolving future 
versions of it.

■ To minimize the support cost for multiple operating systems through the 
definition of common platform abstraction techniques. Common and com-
patible approaches to the abstraction of hardware will reduce the burden on 
hardware vendors who produce differentiated machines.

■ To architect a mechanism for error handling, error reporting, and fault isola-
tion. The architecture provides for the implementation of more robust sys-
tems if desired by the system developers.

Audience for this Document
This document defines the Common Hardware Reference Platform (CHRP™)
architecture and system requirements for building standard systems. This docu-
ment is the primary source of information that a hardware platform, operating
system, or hardware component developer would need to create compatible
products. Additional requirements are defined by the industry standards refer-
enced in this document.

This document must be used by those building CHRP hardware platforms.
The document describes the hardware to operating system interface which
must be provided in these platforms. Platform designers must assemble compo-
nents and firmware which match this interface. Also, the document defines
minimum system configuration requirements. Platform designers must meet or
exceed these minimums to build a standard platform. The operating systems
which are expected to support this architecture are listed in Appendix A,
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“Operating System Information,” on page 223. Each operating system has con-
figuration requirements which are described in documents maintained by the
owners of the operating systems. Using these requirements, a hardware plat-
form designer may target a configuration to support multiple operating sys-
tems.

This document must be used by those building compatible software includ-
ing operating systems, boot software, or firmware. If a function is supported,
software developers must provide support for the interfaces described in this
document. This software must provide the mandatory functions and capabili-
ties as described in the requirements in this document. However, this document
does not limit this software from going beyond the specification through soft-
ware tailored to specific hardware. For example, an operating system must
implement the interface to the required abstracted interfaces to hardware, but
the operating system may also implement fast paths to specific hardware that it
recognizes.

Sample implementations of CHRP platforms will be developed and their
specifications will be published by several companies. Platform designers may
use these descriptions as a reference for developing clone designs, or may use
these descriptions in conjunction with this document to develop unique compli-
ant platform designs.

Organization of this Document
The following chapters provide the detailed requirements for system develop-
ers to build compliant systems. The chapters cover all needed topics from min-
imum system requirements to power management. Where appropriate,
references are made to other industry standards or readily available reference
documentation for the required architecture information.

Following is a summary and brief description of the chapters and appendi-
ces of this document:

■ Chapter 1, “Introduction,” on page 1 describes the advantages of the archi-
tecture and shows typical platform topologies. 

■ Chapter 2, “System Requirements,” on page 7 describes the system opera-
tion and 64 Bit Addressing support. Firmware, Bi-Endian, and minimum 
platform requirements are documented. The minimum platform require-
ments are given for three types of platforms. The Bi-Endian capability of 
these platforms is one key feature which allows the multitude of operating 
systems.
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■ Chapter 3, “System Address Map,” on page 23 describes the address map 
and the requirements for the address map. The chapter describes some ad-
dress map extensions to support PC emulation.

■ Chapter 4, “Processor and Memory,” on page 49 defines the required Pow-
erPC microprocessor attributes for processors included in these platforms 
and provides specific requirements for the memory subsystem.

■ Chapter 5, “I/O Bridges,” on page 69 defines the requirements for host 
bridges and I/O bridges. “Host Bridges” are the interface to the processor 
bus and the I/O bus and “I/O bridges” are any additional interfaces to other 
I/O buses.

■ Chapter 6, “Interrupt Controller,” on page 85 defines the required interrupt 
controller for standard platforms.

■ Chapter 7, “Run-Time Abstraction Services,” on page 91 defines the ser-
vices which provide an abstract interface to some hardware components. 
These services provide to the operating systems a platform-independent in-
terface for hardware components.

■ Chapter 8, “Non-Volatile Memory,” on page 141 defines the NVRAM con-
tent and structure to be used on these platforms. NVRAM contains informa-
tion such as the platform configuration and error logs that must persist 
across platform power cycles.

■ Chapter 9, “I/O Devices,” on page 151 defines the requirements for I/O de-
vices and references another document that defines the specific registers 
used to address these devices.

■ Chapter 10, “Error and Event Notification,” on page 157 defines platform 
error reporting requirements and describes the use of RTAS services for ob-
taining error and event information on these platforms.

■ Chapter 11, “Power Management,” on page 185 describes the anticipated 
power management approach. For systems which implement power man-
agement, this chapter defines the requirements that software and hardware 
must meet.

■ Chapter 12, “The Symmetric Multiprocessor Option,” on page 215 gives 
those requirements specifically for symmetric multiprocessor platforms and 
describes the boot process for symmetric multiprocessors.

■ Appendix A, “Operating System Information,” on page 223 lists sources of 
additional information for targeted operating systems.
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■ Appendix B, “Requirements Summary,” on page 225 is a complete list of all 
requirements imbedded in a chapter level table of contents. This appendix is 
a useful summary or check list for those implementing standard platforms.

■ Appendix C, “Bi-Endian Designs,” on page 265 provides some explanation 
of endianess and the design approaches for implementing Bi-Endian plat-
forms.

■ Appendix D, “Architecture Migration Notes,” on page 281 provides infor-
mation describing creation of this architecture from the legacy systems.

Suggested Reading
The “Bibliography” on page 297 provides a full list of references and ordering
information for these references. Within this document, the number of the ref-
erence in the bibliography is placed after the citation in brackets, “[nn]”.

This document assumes the reader has an understanding of computer archi-
tecture, the PowerPC microprocessor architecture, the current PowerPC pro-
cessors, Apple and IBM compatible personal computers, Peripheral
Component Interconnect (PCI) local bus, and Open Firmware. Some under-
standing of the current personal computer and workstation architectures is also
useful. A list of suggested background reading includes:

■ Computer Architecture:  A Quantitative Approach [2]

■ The PowerPC Architecture: A Specification for a New Family of RISC Pro-
cessors [1]. Note that this specification is referred to as The PowerPC Ar-
chitecture in the body of this document.

■ PowerPC 603 RISC Microprocessor User’s Manual [4]

■ PowerPC 603 RISC Microprocessor Technical Summary [5]

■ PowerPC 604 RISC Microprocessor User’s Manual [6]

■ PowerPC 604 RISC Microprocessor Technical Summary [7]

■ Technical Introduction to the Macintosh Family [26]

■ PowerPC Reference Platform Specification, Version 1.1 [28]

■ PCI Local Bus Specification, Revision 2.1 [14]

■ IEEE 1275, IEEE Standard for Boot (Initialization Configuration) Firm-
ware, Core Requirements and Practices [9] and relevant bindings
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Conventions Used in this Document
Within the body of this document lists of requirements are clearly defined. The
convention used is to head each requirements list with the word “Require-
ments:” in bold face type. Following this heading are one or more require-
ments. These requirements may point to other standards documents, or figures
or tables which conveniently show the requirement. The referenced material
becomes part of the requirements in this document. Users of this document
must comply with these requirements to build a standard platform. Other mate-
rial in this document is supportive description of these requirements, architec-
ture notes, or implementation notes. Architecture or implementation notes are
flagged with a descriptive phrase—for example, “Hardware Implementation
Note”— and followed by indented paragraphs. The descriptive material and
notes provide no additional requirements and may be used for their information
content.

Big-Endian numbering of bytes and bits is used in this document, unless
indicated otherwise.

Typographical conventions used in this document are described in Table  on
page xxiii.

Table 1.  Typographical Conventions 

Text Element Description of Use

Italics

Used for emphasis such as the first time a new term is used. Indicates a book ti-
tle. Indicates PowerPC instruction mnemonics. Indicates Open Firmware proper-
ties, methods, and configuration variables. Indicates RTAS function and 
parameter names

0xnnnn Prefix to denote hexadecimal numbers. 

0bnnnn Prefix to denote binary numbers. 

nnnnn Numbers without a prefix are decimal numbers. 

0xF. . . FFF100

This hexadecimal notation represents a replication of the hexadecimal character 
to the right of the ellipsis to fill out the field width. For example, the address 0xF 
. . . FFF100 would be 0xFFFFF100 on a processor with a 32-bit address bus or 
0xFFFFFFFFFFFFF100 on a processor with a 64-bit address bus.

0:9
Ranges of bits are specified by two numbers separated by a colon. The range in-
cludes the first number, all numbers in between, and the last number.

0xm-0xn
A range of addresses or values within the document is always inclusive, from m 
up to and including n.



xxiv About this Document

Personal Use Copy - Not for Reproduction

Acknowledgments
This document has come together through the work of many people in several
companies. The primary responsibility for writing sections fell on employees
of Apple, IBM, and Motorola. Industry review was solicited and comments
were received from such companies as Advanced Micro Devices, Canon, Fire-
Power, National Semiconductor, and Toshiba.

Not everyone who worked on this document can be mentioned here due to
space limitations. The contributions of some key individuals are worth men-
tioning. The document was brought together by a team of engineers who
merged existing material with new material and spent countless hours review-
ing and discussing this document. This team included Art Adkins, Richard
Arndt, Stanford Au, Don Banks, Jerry Barrett, Rob Baxter, Rich Bealkowski,
Mike Bell, Doug Bossen, Jim Brennan, John Bruner, Steve Bunch, Pat Carr,
Leo Clark, Ron Clark, Bob Coffin, Clayton Cole, Scott Comer, Gary De Ange-
lis, Sanjay Deshpande, Brad Frey, Jim Gable, Bill Galcher, Brian Hansche, Ron
Hochsprung, Kohichi Kii, John Kingman, Steve MacKenzie, Don McCauley,
Andy McLaughlin, Todd Moore, Dan Neal, Luan Nguyen, Jim Nicholson, John
O’Quin, Mike Paczan, Ray Pedersen, Charlie Perkins, Patrick Perrino, Dave
Peterson, Greg Pfister, Craig Prouse, Andy Rawson, Paul Resch, Joe St. Clair,
Kanti Shah, Fred Strietelmeier, Howard Tanner, M. Teodorovich, Don
Thorson, Steve Thurber, Dave Tjon, Abraham Torres, George Towner, Ted
Toyokawa, Tom Tyson, and Lee Wilson.

Comments on this Document
Comments on this document are welcome. Because of time and resource con-
straints, we will not always be able to provide responses to general industry
comments. We will review your comments for possible incorporation in future
versions of the specification. All comments become the property of Apple,
IBM, and Motorola and may be used for any purpose whatsoever. For this rea-
son, comments must not contain any proprietary data. Please preface your com-
ments with the statement “These comments do not contain confidential or
proprietary information and may be used for any purpose”. Comments may be
addressed to:

info-hrp@austin.ibm.com 



1

Page - 1

Introduction Chapter 1

This architecture specification provides a comprehensive computer system
hardware-to-software interface definition, combined with minimum system re-
quirements, that enables the development of and software porting to a range of
compatible industry-standard computer systems from portables through serv-
ers. These systems are based on the PowerPC microprocessor, as defined in
The PowerPC Architecture [1]. The definition supports the development of
both uniprocessor and multiprocessor system implementations.

A key attribute and benefit of the architecture is the ability of hardware plat-
form developers to have degrees of freedom of implementation below the level
of architected interfaces and therefore have the opportunity for adding unique
value. This flexibility is achieved through architecture facilities including: (1)
device drivers; (2) Open Firmware (OF); (3) Run-Time Abstraction Services
(RTAS); and (4) hardware abstraction layers. The role of items 1 and 4 are
described in separate operating system documentation. The role that items 2
and 3 play in the architecture will be described in subsequent paragraphs and
chapters.

Though the PowerPC microprocessor is the most widely used RISC proces-
sor, substantial legacy software exists and a mechanism for running the bulk of
this legacy software is a requirement. The system address map has been
defined with a specific objective of assisting efficient x86 emulation. Addition-
ally, the PowerPC microprocessors support Bi-Endian (see Section 2.3, “Bi-
Endian Support,” on page 14 and Appendix C, “Bi-Endian Designs,” on
page 265) operation which is a key attribute important to running the supported
operating systems and applications. Bi-Endian capability is not available in the
current IBM PC compatible x86-based system architecture.

The architecture combines leading-edge IBM PC and Apple Macintosh
technologies to create a superior personal computing platform. By design, it



2 Chapter 1 Introduction

Personal Use Copy - Not for Reproduction

supports a wide range of computing needs including personal productivity,
engineering design, data management, information analysis, education, desk-
top publishing, multimedia, entertainment, and database, file, and application
servers. The architecture effectively leverages industry-standard I/O through
the PCI bus while accommodating legacy I/O from both the IBM PC compati-
ble and the Apple Macintosh domains. This approach provides several key ben-
efits for system manufacturers and end customers: (1) systems can be designed
and manufactured to enable the customer a choice of operating system support
which could include AIX, Mac OS, NetWare, OS/2, Solaris, or Windows NT
and (2) smooth application, operating system, and customer system transitions
are enabled by accommodation for legacy software, I/O devices, and peripher-
als. This architecture helps protect the customer’s investment while moving to
more advanced portable, desktop, and server computing platforms. Systems
based on this architecture are expected to offer price/performance advantages
and to address the expected growth in computing performance and functional-
ity.

CHRP systems must be able to meet certain minimum requirements to be
considered compliant with the architecture specified in this document. Apple,
IBM, and Motorola are reviewing these requirements and intend to make them
available at a later date.

1.1 Platform Topology
To the experienced computer designer and system manufacturer, much of the
content of the architecture will be familiar. A typical desktop topology is
shown in Figure 1 on page 4. This topology consists of a single PowerPC mi-
croprocessor, volatile System Memory, and a single Host Bridge providing a
PCI Bus. The PCI Bus and ISA Bridge provide for connection of I/O devices.

A more complex general topology is shown in Figure 2 on page 5. All plat-
forms consist of one or more PowerPC microprocessors, a volatile System
Memory separate from other subsystems, and a number of I/O devices, which
may initiate transactions to System Memory. The processors are linked over the
primary processor bus/switch to each other, to the System Memory, and to one
or more Host Bridges (Host Bridge 0 must be a PCI Host Bridge). In general,
I/O devices do not connect to the primary processor bus/switch. The Host
Bridges connect to secondary buses which have I/O devices connected to them.
In turn, one or more bus bridges may be employed to tertiary buses (for
instance ISA or PCI) with additional I/O devices connected to them. Typically,
the bus speeds and throughput decrease and the number of supportable loads
increases as one progresses from the primary processor bus to more remote
buses. Multiprocessor platforms have a symmetric (at least from the software
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point of view) shared memory model; refer to Section 12.1, “SMP System
Organization,” on page 216.

There are variations on these topologies, which are likely to occur and are
therefore worth describing below. The architecture describes interfaces, not
implementation. The logical software model must remain the same, even if the
physical topology is different.

■ In a smaller platform, the Host Bridge and/or the memory and/or an I/O de-
vice may be integrated into a single chip. In this case, the topology would 
not look like Figure 1 from a chip point of view, but instead would be inte-
grated onto the single chip.

■ In a larger platform, secondary buses may be implemented, with two or 
more Host Bridges, as two or more parallel expansion buses for perfor-
mance reasons. Similarly, tertiary buses may be two or more parallel expan-
sion buses off each secondary bus. This is indicated by the ellipses near the 
Host Bridge and the Bus Bridge.

■ In a high performance platform, with multiple processors and multiple 
memories, a switch may be employed to allow multiple parallel accesses by 
the processors to memory. The path through the switches would be decided 
by the addressing of the memory.

Each of the following chapters provides information necessary to success-
fully implement compliant systems. It is recommended that the reader become
thoroughly familiar with the contents of these chapters and their references
prior to beginning system or software development. It is anticipated that stan-
dard chip sets will simplify the development of compliant implementations
consistent with the topologies shown below and will be available from third-
party industry sources.
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Figure 1. Typical Desktop Topology
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Figure 2. General Platform Topology

PowerPC Processor

(L1/L2 Cache)

PowerPC Processor

(L1/L2 Cache)

System Memory
Host

Bridge

Bus

Bridge

I/O

Device

I/O

Device

I/O

Device

I/O

Device

Primary Processor Bus/Switch

Secondary Bus (PCI)

Tertiary Bus (ISA or PCI)

• • •

• • • • • •

• • •



Blank page when cut - 6



2

Page - 7

System 
Requirements Chapter 2

This chapter gives an operational overview of Common Hardware Reference
Platform systems and introduces platform specific software components that
are required for operating system support. The chapter also addresses some
system level requirements that are broad in nature and are fundamental to the
architecture described in later chapters. Lastly, a table of requirements is pre-
sented as a guide for platform providers.

2.1 System Operation

2.1.1 Control Flow

Figure 3 on page 8 is an example of typical phases of operation from power-on
to full system operation to termination. This section gives an overview of the
processes involved in moving through these phases of operation. This section
will introduce concepts and terms that will be explained in more detail in the
following chapters. Most requirements relating to these processes will also ap-
pear in later chapters.

The discussion in this chapter will be restricted to systems with a single pro-
cessor. Refer to Chapter 12, “The Symmetric Multiprocessor Option,” on
page 215 for the unique requirements relating to multiprocessor systems.
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2.1.2 POST

Power On Self Test (POST) is the process by which the firmware tests those ar-
eas of the hardware that are critical to its ability to carry out the boot process. It
is not intended to be all-inclusive or to be sophisticated in how it relates to the
user. Diagnostics with these characteristics will generally be provided as a ser-
vice aid.

2.1.3 Boot Phase

The following sections describe the boot phase of operation. The fundamental
requirements of the boot phase are:

1. Identify and configure system components.

2. Generate a Device Tree.

3. Initialize/reset system components.

4. Locate an operating system boot image.

5. Load the boot image into memory.

Figure 3. Phases of Operation (example)
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2.1.3.1 Identify and Configure System Components

The firmware must, by various means, become aware of every component in
the system and configure or reset those components into a known state. Com-
ponents include all bridges and device controllers, but may exclude devices
that are not involved in the boot process.

Firmware is generally written with a hardware platform in mind, so that
some components and their configuration data can be hardcoded. Examples of
these components are: number and type of processors, cache characteristics,
and the use of components on the planar. This hardcoding is not a requirement,
only a practical approach to a part of this task.

Certain system information must come from “walking” the I/O buses. This
is a technique that will yield identification of I/O device controllers and bridges
that reside on modern, well-behaved buses such as PCI. In general, it is not
possible to walk the ISA bus.

ISA configuration requires either Plug-n-Play (PnP) protocols and adapters
or special handling by the system firmware or software. This architecture
requires a portion of non-volatile memory (name = isa-config) for storage of
ISA configuration data which allows firmware and operating systems to record
and retrieve this data as required (see Section 8.4.4, “Configuration (0x71),” on
page 145).

2.1.3.2 Generate a Device Tree

The firmware will build a device tree. The operating system will gain access to
the device tree through Client Interface Services (CIS).

Certain configuration information (configuration variables) may be stored
in non-volatile memory. They will be stored under the partition names of-con-
fig or common, depending on the nature of the information (see Chapter 8,
“Non-Volatile Memory,” on page 141).

2.1.3.3 Initialize/Reset System Components

Operating Systems require devices to be in a known state at the time control is
transferred from the firmware. Firmware may gain control with the hardware in
various states depending on what has initiated the boot process.

■ Normal boot: Initiated by a power-on sequence; all devices and registers be-
gin in a hardware reset state.

■ Wakeup from Hibernation: Should be indistinguishable from a normal boot.
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■ Resume from Suspend: Devices that were left powered on during suspend 
may be in the state left by software or in a hardware reset state. Firmware 
must be able to deal with this and alter the state as necessary to conform to 
the conditions below.

■ Reboot: Device state is unpredictable. Firmware must be able to deal with 
this and alter the state as necessary to conform to the conditions below.

The hardware reset state for a device is an inactive state. An inactive state is
defined as a state that allows no system level activity; there can be no bus activ-
ity, interrupt requests, or DMA requests possible from a device that is in a reset
state. Since operating systems may configure devices in a manner that requires
very specific control over these functions to avoid transitory resource conflicts,
these functions should be disabled at the device and not at a central controlling
agent (for example, the interrupt controller). Devices that do not share any
resources may have these resources disabled at a system level (for example,
keyboard interrupts may be disabled at the interrupt controller in standard con-
figurations).

Requirements:

2–1. I/O devices must adhere to the reset states given in Table 1 on page 10 
when control of the system is passed from firmware to an operating 
system.

2–2. Prior to passing control to the operating system, firmware or hardware 
must initialize all registers not visible to the operating system to a state 

Table 1. I/O Device Reset States

Bus Devices Left Open by Open Firmware Other Devices

PCI

Interrupts not active 
No outstanding I/O operations
Device is configured

The device is inactive:
•I/O access response disabled
•Memory access response disabled
•PCI master access disabled
•Interrupts not active
Device is reset (see note)

ISA
Configured per NVRAM
•Tri-state interrupts (inactive)
•Tri-state DMA (inactive)

Hardware reset state (see note)
•Tri-state interrupts (inactive)
•Tri-state DMA (inactive)

PCMCIA Configured per OF device tree Powered off (see note)

Note: May optionally be configured, but must be inactive.
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that is consistent with the system view represented by the OF device 
tree.

2–3. Hardware must provide a mechanism, callable by software, to hard 
reset all processors and I/O subsystems in order to facilitate the 
implementation of the RTAS system-reboot function.

2–4. For the Power Management option:  Hardware must provide a 
software-controllable mechanism to reset the I/O subsystems without 
affecting the state of the processors or memory to facilitate 
implementation of the RTAS hibernate function.

Hardware Implementation Note: Requirement 2–4 provides RTAS with a 
means to reset I/O that can only be reset by hardware independent of 
the device.

2.1.3.4 Locate an OS Boot Image 

The operating system boot image is located as described in the PowerPC Mi-
croprocessor Common Hardware Reference Platform System binding to: IEEE
Std 1275-1994 Standard for Boot (Initialization, Configuration) Firmware
[10]. A device and filename can be specified directly from the command inter-
preter (the boot command) or OF will locate the image through an automatic
boot process controlled by configuration variables. Once a boot image is lo-
cated, the device path is set in the device tree as the bootpath property of the
/chosen node.

If multi-boot (multiple bootable operating systems residing on the same
hardware platform) is supported, a configuration variable instructs the firm-
ware to display a multi-boot menu from which the OS and bootpath are
selected.

2.1.3.5 Load the Boot Image into Memory

After locating the image, it is loaded into memory at the location given by a
configuration variable or as specified by the OS load image format. 

2.1.4 Transfer Phase

The image is prepared for execution by checking it against certain configura-
tion variables; this may result in a reboot (for example, little-endian?).
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Once the operating system gains control, it may use the CIS interface to
learn about the hardware platform contents and configuration. The OS will
generally build its own version of this configuration data and may discard the
OF code and device tree in order to reclaim the space used by Open Firmware.
A set of platform-specific functions are provided by Run-Time Abstraction
Services (RTAS) which is instantiated by the OS invoking the instantiate-rtas
method of the RTAS Open Firmware device tree node.

2.1.5 Run-Time

During run-time, the operating system has control of the system and will have
RTAS instantiated to provide low-level hardware-specific functions.

2.1.6 Termination

Termination is the phase during which the operating system yields control of
the system and may return control to the firmware depending on the nature of
the terminating condition.

2.1.6.1 Power Off

If the user activates the system power switch, power may be removed from the
hardware immediately (switch directly controls the power supply) or software
may be given an opportunity to bring the system down in an orderly manner
(power management control of the power switch).

If power is removed from the hardware immediately, the operating system
will lose control of the system in an undetermined state. Any I/O underway
will be involuntarily aborted and there is potential for data loss or system dam-
age. A shut-down process prior to power removal is highly recommended and
has become standard in most modern operating systems.

In most power managed systems, power switch activation is fielded as a
power management interrupt and the operating system (through RTAS) is able
to quiesce the system before removing power. The operating system may turn
off system power using the RTAS power-off function.

2.1.6.2 Suspend

The suspend state is entered upon the occurrence of various events in certain
power managed systems. During suspend, only the contents of main memory
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are preserved. Since the processor and all non-essential I/O may be turned off,
a reboot-like process is required to restore the system.

To enter a suspend state, the operating system (OS) must call the RTAS sus-
pend function. When system operation resumes, the firmware returns to the
caller of the suspend function.

2.1.6.3 Hibernate

The hibernation state is entered upon the occurrence of various events in cer-
tain power managed systems. During hibernation, the system is effectively
powered down. Memory contents are stored (normally to disk) and a reboot is
required to restore the system.

RTAS provides a hibernate function to assist operating systems with saving
the storage image. When the system reboots, the OS determines that it is wak-
ing up from hibernation and takes the appropriate actions to restore the system.

2.1.6.4 Reboot

The operating system may cause the system to reset and reboot by calling the
RTAS system-reboot function.

2.2 Firmware

Requirements:

2–5. Platforms must implement Open Firmware as defined in PowerPC 
Microprocessor Common Hardware Reference Platform System 
binding to: IEEE Std 1275-1994 Standard for Boot (Initialization, 
Configuration) Firmware [10].

2–6. Platforms must implement the Run-Time Abstraction Services (RTAS) 
as described in Chapter 7, “Run-Time Abstraction Services,” on 
page 91.

2–7. Operating systems must use Open Firmware and the RTAS functions to 
be compatible with all platforms. 

Hardware Implementation Note: Legacy Firmware may be implemented in 
addition to the above requirements. Legacy Firmware is described in 
the PowerPC Reference Platform Specification, Version 1.1 [28] 
including any addenda on the PowerPC forum on CompuServe. 
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Legacy firmware may be required by some operating systems until 
new versions are released which interface to Open Firmware.

Software Implementation Note: Operating systems may interface directly 
with the hardware without calling the RTAS functions until new 
versions of those operating systems are released which interface to 
RTAS.

Software Implementation Note: In addition to providing the RTAS interface, 
operating systems may provide direct hardware interfaces. An 
operating system which utilizes a platform specific interface instead of 
an RTAS function is called a “platform aware” operating system.

2.3 Bi-Endian Support
In Little-Endian mode, the address of a word in memory is the address of the
least significant byte (the “little” end) of the word. Increasing memory ad-
dresses will approach the most significant byte of the word. In Big-Endian sys-
tems, the address of a word in memory is the address of the most significant
byte (the “big” end) of the word. Increasing memory addresses will approach
the least significant byte of the word. 

Operating systems written to work in either Little-Endian or Big-Endian
mode can operate on Common Hardware Reference Platform implementations.
Firmware will initialize the platform to either Little-Endian (MSRLE=1) or
Big-Endian (MSRLE=0) mode at boot time, depending on the need of the oper-
ating system.

This subject is covered in more detail in tutorials on endianess in The Pow-
erPC Architecture [1], in How to Create Endian-Neutral Software for Portabil-
ity [3], and in Appendix C, “Bi-Endian Designs,” on page 265.

Requirements:

2–8. Platforms must support operation in Big-Endian mode. 

2–9. Platforms must support operation in Little-Endian mode. 

2.4 64-Bit Addressing Support
A 32-bit-addressing platform is designed to operate with a 32-bit real address
space (4 GB) only. Such a platform may contain either of the two processor
(32-bit or 64-bit) implementations defined by the PowerPC microprocessor ar-
chitecture, subject to the requirement 4–8 that a 64-bit processor implementa-
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tion also implement the 32-bit-compatibility bridge architecture. Given this last
requirement, the only difference in programming model between a 32-bit and
64-bit processor in a 32-bit-addressing platform is in the format of page table
entries. Operating systems are required to support both formats (reference re-
quirement 4–7). 

 A 64-bit-addressing-capable platform is defined as one capable of support-
ing memory configured above 4 GB (greater than 32 bits of real addressing).
This means that all hardware elements in the topology down to the Host
Bridges are capable of dealing with a real address range greater than 32 bits,
and all Host Bridges are capable of providing a translation mechanism for 32-
bit I/O bus addresses. The initial mode of operation (when the operating system
receives control from firmware) is 32-bit execution mode, including Host
Bridges. All of System Memory is configured and reported by OF. (Note that
this architecture allows only System Memory above 4 GB in the real address
space.) 

 A 32-bit operating system will utilize memory in the range up to 4 GB, and
will operate a 64-bit-addressing-capable platform as a 32-bit-addressing plat-
form with a 64-bit processor in it, regardless of how much memory is present.
Memory above 4 GB will be unusable. 

 A 64-bit-addressing-aware operating system is an OS that can deal with a
real address space larger than 4GB. It must handle the 64-bit processor page
table format (required of all OSs), and must understand Host Bridge mecha-
nisms and Host Bridge Open Firmware methods for supporting System Mem-
ory greater than 4 GB.

 On a 64-bit-addressing-capable platform with no memory configured
above 4 GB, it is expected (although not required) that a 64-bit-addressing-
aware OS would not enable 64-bit addressing in Host Bridges, and would oper-
ate the platform as if it were a 32-bit-addressing platform with a 64-bit proces-
sor. On a 64-bit-addressing-capable platform with memory configured above 4
GB, it is expected that a 64-bit-addressing-aware OS would recognize and use
the memory above 4 GB (implying the enablement of 64-bit addressing in the
Host Bridge(s)). 

Software Implementation Note: The 64-bit addressing elements of the 
configuration are defined in the OF device tree as follows:

1. The 64-bit property of the cpu nodes. This property is used to de-
fine the presence of a 64-bit PowerPC processor and the associ-
ated page table format (independent of the real addressing 
capability of the entire platform).

2. The 64-bit-addressing property of the Host Bridge node(s). This 
property is required to be present on all HB nodes when the mem-
ory configuration has memory above 4 GB. It is reported so that 
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64-bit-addressing-aware OSs may recognize a 64-bit-addressing-
capable platform and may choose to enable 64-bit addressing in 
Host Bridges even when no memory is configured above 4 GB. 
Open Firmware supplies a method on 64-bit-addressing-capable 
platforms (set-64-bit-addressing) which an OS uses to enable HB 
addressing of the full real address space above 4 GB.

3. Memory being reported above 4 GB in the memory node(s). This 
implies that the platform is 64-bit-addressing-capable. 

2.5 Minimum System Requirements
This section summarizes the minimum hardware and functionality required for
Common Hardware Reference Platform compliance.

The term portable is used to describe that class of systems that is primarily
battery powered and is easily carried by its user.

The term personal is used to describe that class of systems that is bound to a
specific work area due to its size or power source, and whose use is generally
restricted to a single direct user or a small set of users.

The term server is used to describe that class of systems that supports a
multi-user environment, providing a particular service such as file storage,
software repository, or remote processing capability.

Each of these classes have unique requirements due to the way they are used
or what operating systems they generally employ and, for this reason, the
requirements that follow are based on the type of system being developed. 

Requirements:

2–10. Platforms must contain the minimum required components given in 
Table 2 on page 19.

2–11. Portable and personal CHRP operating systems must support all the 
following:

a. PS/2™ and ADB™ keyboard/mouse interfaces.

b. 16550-compatible and SCC serial ports.

c. SCSI and IDE hard disk interfaces.

Software Implementation Note: Server-targeted CHRP operating systems 
are not subject to requirement 2–11 and may limit this I/O support to 
the intended target platform. Server-targeted CHRP operating 
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systems may, however, run on appropriately configured portable 
and/or personal platforms.

Hardware Implementation Note: Platform providers should consult OS 
providers for specific requirements of individual server-targeted 
operating systems.

2.5.1 Table Description

Minimum requirements for Common Hardware Reference Platforms are sum-
marized in Table 2 on page 19. 

2.5.1.1 Subsystem

Major subsystems are listed. This enumeration does not preclude the addition
of new subsystems or the enhancement of listed subsystems; however, these
must meet the definition and requirements given in Section 2.6, “Options and
Extensions,” on page 20.

2.5.1.2 Specification

This column lists the specification of subsystems in a standard platform.

2.5.1.3 Portable, Personal, Server

These columns categorize the specifications according to the following legend. 
Legend:

■ R: Required.

■ R*: Entries categorized as R* denote specifications from which platform 
vendors may choose one or more to satisfy the requirement. All R* specifi-
cations are supported by portable and personal CHRP operating systems.

■ O: Optional (refer to the definition of optional given in Section 2.6, “Op-
tions and Extensions,” on page 20).

■ M: Required for systems designed to run Apple Mac OS.
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The categorization of the subsystem is given in the first line of each table
entry; each individual specification is categorized separately in subsequent
lines. If a subsystem is listed as optional, there may be specifications that are
required if the particular subsystem is provided. This would be represented by
an “O” in the first row of the entry with “R”s listed for the required specifica-
tions.If a subsystem is listed as required, a list of optional specifications means
that a choice may be made from the list to fulfill the requirement.

Hardware Implementation Note: Platform providers are not required to 
provide all the I/O mechanisms labeled with R*. However, some 
application security and licensing measures will depend on them and 
platform limitations may result from their omission. 

Hardware and Software Implementation Note: Server-targeted CHRP 
operating systems are not required to support all of the I/O 
mechanisms labeled with R* and thus platform providers should 
consult OS providers for specific requirements of individual server-
targeted CHRP operating systems.

2.5.1.4 Description

The description column gives additional information about the requirements.
Two documents are referenced extensively:

1. [20]PowerPC Microprocessor Hardware Reference Platform: I/O Device 
Reference. Use this document for additional information on the annotated 
specifications.

2. [23] Macintosh Technology in the Common Hardware Reference Platform. 
Use this document for specific physical, timing, and electrical requirements 
of the annotated specifications.
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Table 2.  Summary of Minimum Platform Requirements 

Subsystem Specification

P
or

ta
bl

e

P
er

so
na

l

S
er

ve
r

Description

Processor PowerPC micropro-
cessor

R R R Further defined in Chapter 4, “Processor and Memory,” on 
page 49. Contact OS vendor for specific OS dependencies.

Minimum System 
Memory

8 MB expandable to at 
least 32 MB 

R R R Operating systems have specific requirements; contact OS 
vendor. All operating systems will run with 32 MB in-
stalled.

OS ROM or Socket 4 MB R R M [23]

Firmware Storage Sized as needed R R R Most firmware implementations will fit in 256 KB.
The preferred implementation is FLASH memory and 

should be processor-writable.

Non-Volatile Memory 8 KB R R R 8 KB is sufficient for a system with a single operating sys-
tem installed. Multi-boot systems must evaluate the need 
for more space. Each operating system may require up to 1 
KB.

See Chapter 8, “Non-Volatile Memory,” on page 141 for 
more information on Non-Volatile Memory.

External Cache O O O An external cache is recommended for performance.
See Section 4.2.4, “Cache Memory,” on page 65 for more 

information.

Hard Disk Sized as needed
SCSI
IDE
PC Card

R
O
O
O

R
O
O
O

R
O
O
O

[20], [23] “Medialess” systems are not covered by this ar-
chitecture.

Floppy
3.5” 1.44 MB MFM
Media sense
Auto eject
Manual eject

O
R
R
R
R

O
R
R
R
R

O
R
R
M
R

[20] Not required, but a means to attach for software in-
stallation must be provided. This may be through a pro-
vided connector or over a network.

Media sense: Implementations must allow polling of the 
drive up to 100x per second to determine the presence of 
media in the drive.

A method for manual ejection of floppies is required.

CD-ROM 
4X speed
ISO9660
Multi-session

O
R
R
R

O
R
R
R

O
R
R
R

[20] Not required, but a means to attach for software in-
stallation must be provided. This may be through a pro-
vided connector or over a network

Alphanumeric Input 
Device PS/2 Keyboard inter-

face
ADB
Terminal

R
R*

R*
O

R
R*

R*
O

O
O

O
O

[20], [23] Servers do not require a keyboard for normal op-
eration, however a means to attach an A/N Input Device 
must be provided; an ASCII terminal is a example of such 
a device.

Keyboards must be capable of generating at least 101 
scan codes.

Pointing Device
2 buttons
PS/2 interface (see 
note 1)
ADB (see note 1)

R
R
R*

R*

R
R
R*

R*

O
O
O

O

[20], [23] If a platform includes a keyboard, it must also 
include a pointing device with the functionality of at least 
a 2-button mouse
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2.6 Options and Extensions
An option is a system resource that is covered by this architecture, but is not re-
quired to be implemented. Platforms that implement options are required to
conform to the definitions in this architecture, so that an aware OS environ-
ment can recognize and support them.

An extension is a resource that is outside the scope of, but does not contra-
dict, this architecture. It is a resource which cannot be depended on by software
to be present on a platform; operating systems are not required to be aware of,
or capable of supporting, these resources. 

Audio 16bit Stereo, 22.05 
and 44.1 KHz, full du-
plex.

R R O Servers do not require high quality audio.
The programming model for this basic audio capability is 

specified in [20].

Tone R R R Must be implemented with separate hardware from system 
audio; must be capable of concurrent operation with sys-
tem audio. May share speaker with system audio. See Ta-
ble 29 on page 120 for the RTAS interface for tone 
generation.

Graphics 

1024x768
Bi-Endian
640x480x8 LFB
VGA

R

O
R
R
O

R

R
R
R
O

O

O
O
O
O

Servers do not require graphics during normal operation 
and need not support a graphics subsystem.

Portables may provide screen resolution in accordance 
with current state-of-the-art LCD technology.

Some operating environments will prefer platforms that 
provide hardware support of VGA for performance con-
siderations.

Real Time Clock R R R The RTC must be non-volatile and run continuously with a 
resolution of at least one second. See Section 7.3.3, “Time 
of Day,” on page 106 for further information.

VIA R R M [23]

Serial Port
16550
SCC 

O
O
O

R
R*
R*

O
O
O

[20]
[23]

Parallel Port P1284 +ECP Mode O R O [20]

Network O O O

Interrupt Controller Open PIC
8259 tree

R
R

R
R

R
R

[20]
8259 required for ISA compatibility.

Direct Memory Ac-
cess (DMA)

ISA R R R [20] ISA DMA must be 82378ZB compatible. 

Power Management States as defined. R O O Refer to Chapter 11, “Power Management,” on page 185

Infrared IrDA O O O

Table 2.  Summary of Minimum Platform Requirements  (Continued)

Subsystem Specification

Po
rt

ab
le
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al
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er Description
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Options and extensions must be dormant or invisible in the presence of a
non-aware OS environment. In general this means they are initialized to an
inactive state, and can be activated by an aware OS.

Requirements:

2–12. An option, if implemented, must operate as specified in this 
architecture.

2–13. Extensions, if implemented, must come up passively, such that an 
operating system which does not use the extension will not be affected.

2–14. Options, if implemented, must come up passively or as otherwise 
specified in this architecture.

2–15. An extension, if implemented, must not contradict this architecture.

Options provided by this architecture are listed below. Open Firmware con-
figuration variable and properties associated with these options are given in
PowerPC Microprocessor Common Hardware Reference Platform System
binding to: IEEE Std 1275-1994 Standard for Boot (Initialization, Configura-
tion) Firmware [10].

1. Power Management

2. Symmetrical Multiprocessing

3. 64 bit support

4. PC Emulation

5. Multi-boot
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System Address 
Map Chapter 3

The address map of a Common Hardware Reference Platform is made up of
several distinct areas. These areas are one of five basic types. Each of these
types has its own general characteristics such as coherency, alignment, size re-
strictions, variability of starting address and size, the system action on access
of the area, and so on. This chapter will give details on some of those character-
istics, and other chapters will define the other characteristics. The variable
characteristics of these areas will be reported to the operating system via prop-
erties in the OF device tree.

3.1 Address Areas
The following is a definition of the five areas and some of their characteristics:

■ System Memory refers to memory which forms a coherency domain with re-
spect to the PowerPC processor(s) that execute application software on a 
system. See Section 4.2.2.1, “Memory Coherence,” on page 57 for details 
on aspects of coherence. System Memory Spaces refer to one or more pieces 
that together form the System Memory.

■ Peripheral Memory Space refers to a range of real addresses which are as-
signed to the Memory Space of a Host Bridge (HB) and which are sufficient 
to contain all of the Load and Store address space requirements of the de-
vices in the Memory Space of the I/O bus that is generated by the HB. The 
frame buffer of a graphics adapter is an example of a device which may re-
side in the Peripheral Memory Space. In addition to a Memory Space, many 
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types of I/O buses have a separate address space called the I/O Space. An 
HB which generates such I/O buses must decode another address range, the 
Peripheral I/O Space.1

■ Peripheral I/O Space refers to a range of real addresses which are assigned 
to the I/O Space of an HB and which are sufficient to contain all of the Load 
and Store address space requirements of all the devices in the I/O Space of 
the I/O bus that is generated by the HB, including the expansion of those ad-
dresses due to the discontiguous I/O address mode. A keyboard controller is 
an example of a device which may require Peripheral I/O Space addresses. 

■ System Control Area refers to a range of addresses which contains the sys-
tem ROM(s) (firmware ROM and, if implemented, OS-ROM) and an unar-
chitected, reserved, platform-dependent area used by firmware and Run-
Time Abstraction Services for control of the platform. The ROM areas are 
defined by the OF properties in the openprom and os-rom nodes of the OF 
device tree. The Mac OS-ROM definition, for implementations which re-
quire it, can be found in Macintosh Technology in the Common Hardware 
Reference Platform [23].

■ Undefined refers to areas that are not one of the above four areas. The result 
of accessing one of these areas is defined in Chapter 10, “Error and Event 
Notification,” on page 157 as an “invalid address” error.

In addition to these five major areas, there are several subsets of these areas
for the first HB (HB0) of a platform. Note that HB0 must be a PCI Host Bridge
(PHB) so HB0 will be indicated by PHB0 from here on. These subsets may be
optional and may modify the general characteristics of the area. They include:

■ Compatibility holes are address decodes on PHB0 of a platform which are 
defined for use by software which needs compatibility with existing PC sys-
tems relative to the requirement for specific holes in the System Memory 
and I/O bus Memory Spaces. These holes may also impact the design of the 
System Memory controller. These holes can be enabled independently, but 
the platform need not provide the capability to enable the processor-hole 
while the io-hole is disabled.

— io-hole is an address range on the I/O bus side of PHB0. Platforms which 
provide support for Video Graphics Array (VGA) compatibility will sup-
port the io-hole. When enabled, this creates a hole in the first System 
Memory Space (as viewed by the I/O) from 640 KB to (1 MB - 1), and 

1 A peripheral space may also include a “configuration” address space. The configuration space will
be abstracted by a Run-Time Abstraction Service (for example, see Section 7.3.5, “PCI Configura-
tion Space,” on page 114).
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accesses by the I/O to this address range will remain on the I/O bus (al-
lowing I/O device to device transfers in this address range). The exist-
ence of this hole is indicated by the existence of the io-hole node 
property in the PHB0 node of the OF device tree. The hole is activated or 
deactivated by the set-io-hole OF method. 

— processor-hole is an optional address range on the processor side of 
PHB0. When enabled, this creates a hole in the first System Memory 
Space (as viewed by the processor) from 640 KB to (768 KB - 1), and 
causes accesses in this address space to go to the Memory Space of the 
I/O bus of PHB0, in the 640 KB to (768 KB - 1) range (thus giving the 
Peripheral Memory Space characteristics to this address range in System 
Memory). The existence of this optional hole is indicated by the exist-
ence of the processor-hole node property in the PHB0 node of the OF 
device tree. The hole is activated or deactivated by the set-processor-
hole OF method.

■ Initial memory alias spaces are areas in the Peripheral Memory Space of 
PHB0 which allow accessing the first (initial) 16 MB address range (0 to 
(16 MB - 1)) on one side of PHB0 from a different address range on the 
other side of PHB0. These spaces are required to be enabled when either of 
the compatibility holes are enabled. It is necessary to enable these alias 
spaces on PHB0 in order to support devices which must be configured in the 
0 to (16 MB - 1) range. The peripheral-memory-alias and system-memory-
alias spaces are enabled or disabled as a pair, with one exception, via the 
set-initial-aliases OF method for PHB0. The exception is when the PC Em-
ulation option is enabled (see Section 3.3, “PC Emulation Option,” on 
page 44). The state of the alias spaces (enabled or disabled) is indicated by 
the initial-memory-alias property of PHB0 node. The initial memory alias 
spaces are entirely contained within the Peripheral Memory Space.

— peripheral-memory-alias space is an address space on the processor side 
of PHB0. When enabled, this address range allocates the 16 MB of ad-
dress space at the high end of the Peripheral Memory Space for PHB0, 
and this is used to address the first 16 MB of the Memory Space on the 
I/O side of PHB0. This address range is used to access I/O devices which 
cannot have their addresses set in the Peripheral Memory Space. For ex-
ample, ISA devices or ISA-compatible devices must be setup to have ad-
dresses below 16 MB.

— system-memory-alias space is an address space on the I/O side of PHB0. 
When enabled, this address range, which is at the same address in the I/O 
bus Memory Space as the peripheral-memory-alias on the processor 
side, can be used to address the first 16 MB of System Memory. This ad-
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dress range is used, for example, to access System Memory in the 
640 KB to (1 MB - 1) range when the io-hole is enabled (see also Table 
10 on page 79 for other uses).

Table 3 on page 26 shows the valid combinations of these alias and hole
areas for normal system operations. Of these combinations, the rows which
indicate the valid states when the OF passes control to the operating system are
States 1 and 2, depending on whether the initial memory alias spaces are
enabled or not.

Software Implementation Note: Software should be careful to assure that 
no I/O operations using the alias spaces or holes are occurring during 
the transition period from one state in the table to another. Software 
may pass through states which do not appear in the table during the 
transition from one state in the table to another.

In describing the characteristics of these various areas, it will be convenient
to have a nomenclature for the various boundary addresses. Table 4 on page 26
defines the labels which will be used when describing the various address
ranges. Note that “bottom” refers to the smallest address of the range and “top”
refers to the largest address.

Table 3. Valid Hardware Combinations of Compatibility Holes and Initial Memory Alias Spaces

State Number
PC

Emulation
Option

Peripheral-
memory-

alias

System-
memory-

alias

Processor-
hole

Io-hole

1 disabled disabled disabled disabled disabled

2 disabled enabled enabled disabled disabled

3 disabled enabled enabled disabled enabled

4 disabled enabled enabled enabled enabled

5 enabled enabled disabled disabled enabled

6 enabled enabled disabled enabled enabled

Table 4. Map Legend

Label Description

BIOn
Bottom of Peripheral I/O Space for HBn (n=0, 1, 2,...). The OF property ranges in the 
device tree for HBn will contain the value of BIOn.
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Operating systems and other software should not use fixed addresses for
these various areas. A given platform may, however, make certain of these
addresses unchangeable. Each of these areas will be defined in the OF device
tree in the node of the appropriate controller. This will give platforms maxi-
mum flexibility in implementing the System Address Map to meet their market
requirements. Some of the values set up for these areas by the OF may be
changeable by an OF method. Refer to the chapters describing the various con-
troller architectures for more information.

TIOn
Top of Peripheral I/O Space for HBn (n=0, 1, 2,...). The value of TIOn can be deter-
mined by adding the size of the area as found in the OF property ranges in the OF de-
vice tree for HBn to the value of BIOn found in that same property.

BPMn
Bottom of Peripheral Memory Space for HBn (n=0, 1, 2,...). The OF property ranges 
in the device tree for HBn will contain the value of BPMn.

TPMn

Top of Peripheral Memory Space for HBn (n=0, 1, 2,...). For PHB0, when the initial 
memory alias spaces are enabled, the Peripheral Memory Space is split into two pieces 
in the OF device tree, as indicated by the ranges property in the OF device tree for the 
PHB0 node; BPM0 to (BIM - 1) and BIM to TPM0. When the initial memory alias 
spaces are disabled or for other HBs other than PHB0, the Peripheral Memory Space 
is in one piece in the OF device tree, as indicated by the ranges property in the OF de-
vice tree for HBn node; BPMn to TPMn. The value of TPMn can be determined by ei-
ther adding the size of the area as found in the OF property ranges in the OF device 
tree for HBn to the value of BPMn found in that same property or by adding the size 
of the area as found in the OF property ranges in the OF device tree for HBn to the 
value of BIM found in that same property, depending on whether the initial memory 
alias spaces are disabled or enabled, respectively.

BIM

Bottom of initial memory alias space for PHB0. Corresponding top of initial memory 
alias space is equal to TPM0. The value of BIM is (TPM0 - 16 MB + 1). If the initial 
memory alias spaces are enabled, then the value of BIM is indicated by the ranges 
property in the OF device tree for PHB0 node, otherwise it can be calculated by 
(TPM0 - 16 MB + 1) (see explanation under TPMn, above).

BSCA
Bottom of System Control Area. Corresponding top of the System Control Area is 
(4 GB - 1). The OF property reg in the OF device tree for the System Control Area 
node contains the value of BSCA.

BSMn
Bottom of System Memory Space n (n=0, 1, 2,...); BSM0 = 0. The OF property reg in 
the OF device tree for the Memory Controller node contains the value of BSMn.

TSMn
Top of System Memory Space n (n=0, 1, 2,...). The value of TSMn can be determined 
by adding the value of BSMn as found in the Memory Controller node of the OF de-
vice tree to the value of the size of that area, found in the same property.

Table 4. Map Legend (Continued)

Label Description
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Requirements: 

3–1. All unavailable addresses in the Peripheral Memory and Peripheral I/O 
Spaces must be conveyed in the OF device tree.

a. A device type of reserved must be used to specify areas which are 
not to be used by software and not otherwise reported by OF.

b. Shadow aliases must be communicated as specified by the appropri-
ate OF bus binding.

3–2. There must not be any address generated by the system which causes 
the system to hang.

Hardware Implementation Note: The reason for requirement 3–1 is to 
reserve address space for registers used only by the firmware or 
addresses which are used only by the hardware.

3.2 Address Decoding and Translation
In general, different components in the hardware are going to decode the ad-
dress ranges for the various areas. In some cases the component may be re-
quired to translate the address to a new address as it passes through the
component. The requirements, below, describe the various system address de-
codes and, where appropriate, what address transforms take place outside of
the processor. The details are clarified by the example system address maps
which can be found in Figure 4 on page 33, Figure 5 on page 34, and Figure 6
on page 35. Note that Direct Memory Access (DMA) operations can either be
controlled directly by the device doing the I/O operation (that is, an I/O bus
master operation), or may be controlled by a controller which is separate from
the device (that is, a third party DMA operation). 

The HB requirements in this section refer to HBs which are defined by the
CHRP architecture. Currently, there is only one HB defined by the CHRP
architecture, and that is the PHB. HBs which implement I/O buses other than
those defined by the CHRP architecture are encouraged to use this addressing
model. However, HBs which are implemented as extensions, are in the dis-
abled (passive) state when control is passed to the operating system, and there-
fore need not implement the same programming model.

Requirements:

3–3. Processor Load and Store operations must be routed and translated as 
shown in Table 5 on page 32.
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3–4. DMA operations in the Memory Space of an I/O bus must be routed and 
translated as shown in Table 6 on page 32.

3–5. In addition to Table 6 on page 32, if the platform is designed to support 
System Memory configured at an address of 4 GB or above, then the 
Translation Control Entry (TCE) translation mechanism, described in 
Section 3.2.2, “Translation of 32-Bit DMA Addresses in 64-Bit 
Addressing Systems,” on page 38 must be implemented on all HBs. If 
the operating system enables the platform to access System Memory at 
or above 4 GB, then TCEs must be used to translate all DMA 
operations in the Memory Space of the I/O bus of the HB which use a 
32-bit address.

3–6. An HB must not act as a target for operations in the I/O Space of an I/O 
bus.

3–7. The following are the System Control Area requirements:

a. Each platform must have exactly one System Control Area. 

b. The System Control Area must not overlap with the System Memory 
Space(s), Peripheral Memory Space(s), or the Peripheral I/O 
Space(s) in the platform.

3–8. The following are the System Memory Space requirements:

a. Each platform must have at least one System Memory Space.

b. The System Memory Space(s) must not overlap with the Peripheral 
I/O Space(s), Peripheral Memory Space(s), the System Control 
Area, or other System Memory Space(s) in the platform.

c. The first System Memory Space must start at address 0 (BSM0 = 0), 
must be at least 16 MB before a second System Memory Space is 
added, and must be contiguous except that if the processor-hole is 
enabled, then there will be a hole from 640 KB to (768 KB - 1).

d. Each of the additional (optional) System Memory Space(s) must 
start on a 4 KB boundary.

e. Each of the additional (optional) System Memory Space(s) must be 
contiguous within itself.

f. There must be at most eight System Memory Spaces below BSCA 
and at most eight at or above 4 GB.
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g. If multiple System Memory Spaces exist below BSCA, then they 
must not have any Peripheral Memory or Peripheral I/O Spaces in-
terspersed between them.

3–9. The following are the Peripheral Memory Space requirements:

a. The Peripheral Memory Space(s) must not overlap with the System 
Memory Space(s), Peripheral I/O Space(s), the System Control 
Area, or other Peripheral Memory Space(s) in the platform.

b. When the OF passes control to the operating system, there must be 
no I/O device configured in the address range (TPM0 - 16 MB + 1) 
to TPM0 in the Peripheral Memory Space for PHB0, in order to as-
sure that 16 MB of space is available for the initial memory alias 
spaces.

c. The size of each Peripheral Memory Space (TPMn - BPMn + 1) 
must be a power of two for sizes up to and including 256 MB, with 
the minimum size being 16 MB, and an integer multiple of 256 MB 
plus a power of two which is greater than or equal to 16 MB for sizes 
greater than 256 MB (for example, 16 MB, 32 MB, 64 MB, 
128 MB, 256 MB, 256 + 16 MB, 256 + 32 MB,..., 512 + 16 MB,...).

d. The boundary alignment for each Peripheral Memory Space must be 
an integer multiple of the size of the space up to and including 
256 MB and must be an integer multiple of 256 MB for sizes greater 
than 256 MB.

e. There must be exactly one Peripheral Memory Space per HB.

f. The Peripheral Memory Space for every HB defined by the CHRP 
architecture must reside below BSCA.

3–10. The following are the Peripheral I/O Space requirements:

a. The Peripheral I/O Space(s) must not overlap with the System Mem-
ory Space(s), Peripheral Memory Space(s), the System Control 
Area, or other Peripheral I/O Space(s) in the platform.

b. The size of each Peripheral I/O Space (TIOn - BIOn + 1) must be a 
power of two with the minimum size being 8 MB (that is, sizes of 
8 MB, 16 MB, 32 MB, 64 MB, and so on, are acceptable).

c. The boundary alignment for each Peripheral I/O Spaces must be an 
integer multiple of the size of the space.

d. There must be at most one Peripheral I/O Space per HB.
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e. Peripheral I/O Spaces for all HBs defined by the CHRP architecture 
must reside below BSCA.

3–11. The following are the initial memory alias space requirements:

a. The peripheral-memory-alias and system-memory-alias spaces must 
be implemented on PHB0, and these initial memory alias spaces 
must have the capability to be enabled or disabled by the set-initial-
aliases OF method for PHB0 node.

b. The initial state of the peripheral-memory-alias and system-mem-
ory-alias spaces, when control passes from OF to the operating sys-
tem, must be enabled if there is any device on the I/O side of PHB0 
which is configured in the 0 to (16 MB - 1) address range of the 
Memory Space of the I/O bus, and must be disabled otherwise.

3–12. The following are the compatibility hole requirements:

a. The initial state of the io-hole and the processor-hole, when control 
passes from OF to the operating system, must be disabled (if imple-
mented).

b. If a platform implements the PC Emulation option, then the io-hole 
must be implemented. See Section 3.3, “PC Emulation Option,” on 
page 44 for more information.

c. Platforms for which VGA support is provided or which have an ISA 
bus must also implement the io-hole (see Table 2 on page 19 for the 
platform VGA requirements). 

3–13. I/O devices which cannot be configured in the Peripheral Memory 
Space address range must be located on the I/O bus of PHB0, or on 
another I/O bus which is generated by a bridge attached to this bus, and 
must be configured in the 0 to (16 MB - 1) address range.

Hardware Implementation Note: OF may wish to display an error message 
to the user if it finds a device which cannot be configured due to 
requirement 3–13.

After a DMA accesses passes through an HB it is routed and translated as
per Table 5 on page 32. Platforms do not need to support I/O device DMA
access to the ROM areas. 

The figures beginning with Figure 4 on page 33 show examples of system
address maps.
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Table 5. Processor Bus Address Space Decoding and Translation

Address Range at 
Processor Bus

Route and Translation Requirements Other Requirements and Comments

BSCA to (4 GB - 1)
To ROM controller or to a platform dependent area. Translation depen-
dent on implementation.

Areas other than ROM are reserved 
for firmware use, or will have their 
address passed by the OF device tree.

BIOn to TIOn
(n=0,1,...)

HBn responds. For requirements, see Section 3.2.1, “Peripheral I/O Ad-
dress Translation,” on page 37.

BPMn to TPMn
(n=0, 1,...)

Send through HBn to the Memory Space of the I/O bus. For PHB0, if the 
peripheral-memory-alias is enabled, then translate an address in the pe-
ripheral-memory-alias space (BIM to TPM0; 16 MB range) so that this 
address range becomes 0 to (16 MB - 1), otherwise do not translate.

BSMm to TSMm
(m>0)

To System Memory Space m, no translation.
Can be at or above 4 GB, or below 
BSCA. 

0 to TSM0

No translation. If the processor-hole is disabled or not implemented, then 
send entire range to System Memory. If processor-hole is enabled, then 
send 640 KB to (768 KB - 1) through PHB0 to the Memory Space of the 
I/O bus and send the remainder of the range to System Memory.

All other addresses See Chapter 10, “Error and Event Notification,” on page 157. Access is to undefined space.

Table 6. DMA Address Decoding and Translation (I/O Bus Memory Space)

Address Range at 
I/O Side of HBn

Route and Translation Requirements Other Requirements and Comments

BIOn to TIOn
(note 1)

HBn either does not respond or responds and signals an error to the device 
(see Chapter 10, “Error and Event Notification,” on page 157).

This is an error.

BPMn to TPMn
(note 1)

For PHB0, if the system-memory-alias space is enabled and the access is 
to the system-memory-alias space (BIM to TPM0), then translate so that 
this address range becomes 0 to (16 MB - 1) and send through PHB0 
(note 2), otherwise the HBn does not respond.

If not an access to the system-mem-
ory-alias space, this is an I/O device 
to device transfer.

640 KB to 1 MB - 1
(PHB0 only)

If the io-hole is disabled or not implemented, then pass through PHB0 un-
translated (note 2). If the io-hole is enabled, PHB0 does not respond.

BSCA to (4 GB - 1) May pass through HB untranslated, or HB may not respond. Implementation dependent.

All other Memory 
Space addresses

Pass through HB. If the address is greater than or equal to 4 GB, see re-
quirements 3–22 and 3–23 for translation requirement. If the address is 
less than 4 GB, then do not translate unless note 2 is applicable.

Valid accesses are to System Mem-
ory or possibly to other HB Periph-
eral Memory Spaces.

Note 1: n = # of HB Viewing or Receiving the Operation.
Note 2: If the HB 64-bit-addressing option is enabled, translate via the TCE before passing through the HB.
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Figure 4. Example of an Address Map for a 32-Bit Addressing System with One PHB

(see note 1)
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Figure 5. Example of an Address Map for a 32-Bit Addressing System with Two HBs
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Figure 6. Example of an Address Map for a 64-Bit Addressing System with One PHB
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The beginning addresses and sizes of the Peripheral I/O Space(s) and
Peripheral Memory Space(s), as set up by OF, may have values which are fixed
by the platform or may be changeable by the change-address-map OF method.
The change-address-map OF method will return a failure indication if it was
not able to change the map (for example, if the address area is unchangeable in
the platform, or if an invalid or unsupported size or alignment was specified).
The OF node property corresponding to the boundary and size of these areas is
the ranges property of the HB node. When a platform allows these areas to be
changed, they can be changed to a size and alignment according to require-
ments 3–9c, 3–9d, 3–10b, and 3–10c.

Hardware and Software Implementation Notes:

1. The change-address-map OF method does not need to support all 
possible sizes for the areas to which it allows changing; it is per-
missible to return a failure indication on some combination of sizes 
and alignments allowed by requirements 3–9 and 3–10, but to al-
low others.

2. If software receives a failure indication from change-address-map 
it may try other valid size and alignment combinations, in case the 
platform does not support all valid size and alignments but does 
support some (see note 1, above).

3. A platform which supports changing of the address map via the 
change-address-map OF method should support all sizes via that 
method which can be reported by OF during boot time. This allows 
the operating system to set the map after a wakeup back to what it 
was before a hibernate, in the case that the configuration and ad-
dress map have changed during the time between hibernate and 
wakeup.

Support for the io-hole may also be needed to support certain peer to peer
operations (see Table 10 on page 79).

Certain System Memory addresses must be reserved in all systems for spe-
cific uses (see Section 4.1.2, “PowerPC Microprocessor Differences,” on
page 51 for more information).

Before leaving this section, it is important to note (because it is somewhat
buried in various requirements, above) that all I/O devices which cannot be
configured at an address in the Peripheral Spaces of a HB (for example, VGA
or ISA devices which have to be configured below 16 MB), must reside in the
Peripheral Space of PHB0 and be on the PCI bus generated by PHB0 or on an
ISA bus or another I/O bus which is generated from that PCI bus.
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3.2.1 Peripheral I/O Address Translation

The CHRP architecture defines a discontiguous I/O address mode which al-
lows for the expansion of low 64 KB of the I/O Space of the I/O bus to an
8 MB address space in the processor’s Peripheral I/O Space. This mode is en-
abled by the set-discontiguous-io OF method. When enabled, this expansion
puts each 32 bytes of the lowest 64 KB of the I/O Space of the I/O bus in its
own 4 KB page in the processor’s Peripheral I/O Space. Enabling this mode al-
lows operating systems to add protection for accesses to an I/O Space of the
I/O bus on a 32 byte granularity (using the normal processor page protection
mechanisms). This is illustrated in Figure 7 on page 38. 

Requirements: 

3–14. When the discontiguous I/O mode is enabled, Processor Load and Store 
addresses in the first 8 MB of Peripheral I/O Space experience the 
following translation. The high order seven bits of each 4 KB page 
offset are ignored. Thus, all page offsets wrap to the same 32 bytes 
within that page. Successive page numbers, starting at BIO, reference 
successive 32-byte blocks of Peripheral I/O Space, starting at address 0 
(see Figure 7 on page 38).

3–15. When the discontiguous I/O mode is disabled (that is, in the contiguous 
mode), addresses are translated so that BIO to (BIO + 64 KB - 1) is sent 
through to the I/O Space of the I/O bus starting at address 0, and 
(BIO + 8 MB) to TIO is sent through to the I/O Space of the I/O bus 
starting at 8 MB (see Figure 7 on page 38).

3–16. The discontiguous I/O mode must be disabled when control is passed to 
the operating system.

Addresses in the Peripheral I/O Space from BIO + 64 KB to
BIO + (8 MB - 1) must be reserved for hardware use.Addresses in the Periph-
eral I/O Space from (BIO + 64 KB) to (BIO + (8 MB - 1)) are reserved for
hardware use. HBs may treat the areas as reserved or may pass them through to
the I/O Space of the I/O bus at addresses 64 KB to (8 MB - 1). I/O devices
should not be configured in the 64 KB to (8 MB - 1) range for two reasons.
First, hardware may not pass this address range through the HB when the dis-
contiguous mode is disabled. Secondly, if the platform is switched from contig-
uous to discontiguous mode, these devices would no longer be accessible if
configured in this range.
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3.2.2 Translation of 32-Bit DMA Addresses in 
64-Bit Addressing Systems

I/O devices which are only capable of accessing up to 4 GB via DMA need a
way to access above that limit when used in 64-bit addressing systems and the
addressing requirements go beyond 4 GB. This could be accomplished by the
device driver transferring the data to a DMA buffer in System Memory in the
first 4 GB of address space, and then transferring the data at or above 4 GB by
doing a software move of the data. This, however, will not perform well, and it
is in these large systems where performance is generally the most critical.

Figure 7. Models for Load and Store Instructions to Peripheral I/O Space
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Therefore, the CHRP architecture defines a mechanism for translating DMA
addresses for I/O devices which are only capable of addressing a 4 GB I/O
Memory Space, to the larger address space required in some 64-bit addressing
systems. This capability in an HB will be called the 64-bit addressing option,
and is required to be implemented if the platform is designed to support System
Memory configured at an address of 4 GB or above. 

The 64-bit addressing option is disabled when the operating system is given
control. After the operating system has determined that the platform contains
System Memory at or above 4 GB, it may assume that all HBs support the
64-bit addressing option and enable the option by using the
set-64-bit-addressing OF method in each HB node of the OF device tree (each
HB has to be enabled separately in order to set up the TCE table address and
size for each). The operating system can determine the existence of HB support
of 64-bit addressing option by looking for the existence of the 64-bit-address-
ing property in the HB node(s) of the OF device tree and if all HBs support the
64-bit addressing option, the operating system may enable the HBs’ 64-bit
addressing option, even if there is no System Memory configured at an address
of 4 GB or above (that is, 64-bit capable systems can be enabled to support the
Translation Control Entry (TCE) translation mechanism to translate DMA
operations, even if they don’t have any System Memory located at or above
4 GB).

Requirements: 

3–17. For 64-bit addressing option in HBs: In platforms which are designed 
to support System Memory configured at an address of 4 GB or above, 
the TCE mechanism, described in Section 3.2.2, “Translation of 32-Bit 
DMA Addresses in 64-Bit Addressing Systems,” on page 38, must be 
implemented on all HBs. After a DMA operation is accepted by the HB 
and pre-translated as per Table 6 on page 32, if the 64-bit addressing 
option of the HB is enabled, the HB must use the TCE mechanism to 
translate the address when the I/O device presents a 32-bit address to 
the Memory Space of the HB.

3–18. For 64-bit addressing option in HBs: The bits of the TCE must be 
implemented as defined in Table 5 on page 32.

3–19. For 64-bit addressing option in HBs: Enough bits must be 
implemented in the TCE so that I/O DMA devices are able to access all 
System Memory addresses.

3–20. For 64-bit addressing option in HBs: TCEs must be stored as Big-
Endian entities.
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3–21. For 64-bit addressing option in HBs: When the 64-bit addressing 
option is enabled, an HB must not accept 32-bit accesses unless they 
would also be accepted under the requirements in Table 6 on page 32.

3–22. For 64-bit addressing option in HBs: If an HB accepts 64-bit 
addresses on DMA accesses (as reported by the existence of the 64-bit-
dma property in the HB node of the OF device tree for that specific HB) 
and if the 64-bit addressing option of the HB is enabled, then that HB 
must not use TCEs to translate I/O bus Memory Space DMA addresses 
which support a full 64-bit address (for example, Dual Address Cycle 
(DAC) accesses on the PCI bus do not use the TCE translation 
mechanism in the PCI HB (PHB)). 

3–23. For 64-bit addressing option in HBs: If an HB accepts 64-bit 
addresses on DMA accesses and if the 64-bit addressing option of the 
HB is enabled, that HB must translate 64-bit I/O bus Memory Space 
DMA accesses (for example, DAC PCI accesses for the PHB) in the 
upper 4 GB of the 64-bit Memory Space of the I/O bus to the 0 to 
(4 GB - 1) address range before passing the access to the host side of 
that HB (for example, for a PHB, if AD[63:32] (PCI notation) are equal 
to 0xFFFF FFFF, then the PHB must set AD[63:32] to 0), otherwise the 
HB must not translate 64-bit accesses (see Figure 8 on page 43). 

3–24. For 64-bit addressing option in HBs: After translation of the address 
via requirements 3–17 or 3–23, above, an HB must use the translated 
address to access the system, unless that address would re-access the 
same HB (for example, is in the Peripheral Memory Space or Peripheral 
I/O Space of that HB), in which case the HB should generate an invalid 
address error. (See Chapter 10, “Error and Event Notification,” on 
page 157)

3–25. For 64-bit addressing option in HBs: TCEs must be located in System 
Memory or appear to software as though they are in System Memory, 
the memory must be a contiguous real address range, and the memory 
must be coherent.

3–26. For 64-bit addressing option in HBs: Each HB must provide the 
capability of having its own independent TCE table.

3–27. For 64-bit addressing option in HBs: Any non-recoverable error 
while an HB is accessing its TCE table must result in a TCE access 
error; the action to be taken by the HB being defined under the TCE 
access error in Chapter 10, “Error and Event Notification,” on 
page 157.
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3–28. For 64-bit addressing option in HBs: In implementations which cache 
TCEs, if software issues a Store instruction to a TCE, then the hardware 
must perform the following steps: First, if any data associated with the 
page represented by that TCE is in an I/O bridge cache or buffer, the 
hardware must write the data, if modified, to System Memory. 
Secondly, it must invalidate the data in the cache. Finally, it must 
invalidate the TCE in the cache. 

3–29. For 64-bit addressing option in HBs: Neither an I/O device nor an HB 
must ever modify a TCE.

3–30. For 64-bit addressing option in HBs: If the page mapping and control 
bits in the TCE are set to 0b00, the hardware must not change its state 
based on the values of the remaining bits of the TCE.

Software Implementation Note: Software must be careful when attempting 
DMA operations through an HB to that HB’s own TCE table, because 
HB implementations which cache TCEs are not required to detect 
changes to the TCEs that they have cached while doing a DMA 
operation to their own TCE table.

The translation in requirement 3–23 is so that an I/O device which is capa-
ble of accessing a full 64-bit address space can get access to the first 4 GB of
the address space without going through a TCE translation. Normally, one
would expect that this would be possible by the 64-bit device just issuing a
DMA operation with an address of less than 4 GB. However, some I/O buses
(for example, PCI) do not have a protocol where the I/O device tells the HB
that they are capable of greater than 32 bits of addressing when the address is
less than 4 GB. In such a case, the HB will not be able to tell the difference
between a 32-bit device and a 64-bit device for addresses below 4 GB, and
therefore has to assume a 32-bit device and use TCEs. Note that none of this
precludes having 32-bit and 64-bit I/O devices on the same bus at the same
time.

Figure 8 on page 43 is a representation of how the 32-bit to 64-bit TCE and
64-bit to 64-bit translations work. The information for the translation from 32
bits to the number of address bits required by the platform is contained in the
TCE entries in a TCE table of an HB. The I/O bus address is first checked to
see if the access is targeted to the address space on the other side of the HB.
Since there is not a way for the device to indicate that the operation is headed to
the other side of the HB, the selection process is by the same method as for the
32-bit addressing system case; that is, an HB will accept a 32-bit address for
translation via a TCE if the access would be accepted under the requirements in
Table 6 on page 32. If an HB accepts the access and responds, the I/O bus
address is first pre-translated according to Table 6 on page 32. If the address
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accesses the area from BIM to TPM for PHB0 (the system-memory-alias
space), and if the system-memory-alias space is enabled, then the address is
pre-translated by changing the address to be in the range of 0 to (16 MB - 1).
The resulting address is then used to select the appropriate TCE in the TCE
table of an HB. It does this as follows. The most significant 20 bits of the
address (for example, AD[31:12], for PCI) is used as an offset into the TCE
table for an HB to select the TCE. Thus, the first TCE maps the addresses
0x00000000 to 0x00000FFF of the Memory Space of the I/O bus; the second
entry controls translation of addresses 0x00001000 to 0x00001FFF, and so on.
The translated real system address is generated as follows. The Real Page
Number (RPN) from the TCE replaces the 20 most significant bits of the
address from the I/O bus. The least significant 12 bits from the I/O bus address
are used as-is for the least significant 12 bits of the new address.

Thus, the HB’s TCE table entries have a one-to-one correspondence with
the first n pages of the Memory Space of the I/O bus. Each HB has its own
TCE table starting address, but software may elect to overlay the TCE tables
from different HBs. The size of the Memory Space of the I/O bus that can be
mapped to System Memory for a particular HB depends on how much System
Memory is allocated to the TCE table for that HB and on how much mappable
I/O bus Memory Space is unavailable due to I/O devices which are mapped
there (that is, the Peripheral memory and Peripheral I/O spaces are unavail-
able). The size and location of the HB’s TCE table is set up and changed by the
set-64-bit-addressing OF method for the HB. At the time that OF passes con-
trol to the operating system, the 64-bit addressing option of the HB will not be
enabled and the TCE table will not have any default size or location. The set-
64-bit-addressing OF method allows the operating system to set the size of the
TCE table to zero while enabling the 64-bit-addressing option of the HB. This
would only be used in the case where all I/O devices are 64-bit capable and will
always put out an address greater than or equal to 4 GB.

Software Implementation Note: All DMA activity for the I/O devices 
serviced by an HB must be stopped before setting or changing the size 
of the TCE table for that HB, or changing the table’s location. 

Hardware and Software Implementation Note: It may be desirable to have 
the maximum size of contiguous I/O Memory Space possible that gets 
translated by TCEs without having to first go through the pre-
translation for the system-memory-alias space, and which does not 
have holes due to the Peripheral Memory or Peripheral I/O Space 
interference. In order to accomplish this, the hardware or OF can place 
the Peripheral I/O and Peripheral Memory Spaces for the HB at the 
largest address possible in the lower 4 GB of address space, and 
make those areas as small as possible. For example, if the Peripheral 
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I/O and Peripheral Memory Spaces for an HB are in the upper 1 GB of 
address space, and if the io-hole is disabled, then there will be 3 GB of 
contiguous I/O bus Memory Space which can be mapped via TCEs.

Figure 8. I/O Device DMA Address Translation
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Each TCE also contains two control bits. These are used to identify whether
that page is mapped to the system address space, and if the page is mapped,
whether it is mapped read/write, read only, or write only. See the Table 7 on
page 44 for a definition of these control bits. 

The HB’s TCE table is the analogue of the system translation tables. How-
ever, unlike the system translation tables, the dynamic page faulting of memory
during an I/O operation is not required (the page fault code point in the TCE
control field is used to indicate an error condition and is to be used for error
detection).

3.3 PC Emulation Option
This section describes an optional set of changes to the system architecture that
improves the performance and/or compatibility of a stand-alone emulation en-
vironment for PC software. The PC Emulation option consists of minor modifi-
cations to the system address map. To support the PC Emulation option,
platforms must implement the io-hole and the complete set of additional fea-
tures described in this section.

Table 7. TCE Definition 

Bits Description

0 to 51

RPN: If the page mapping and control field of the TCE indicate anything other than 
page fault, then these bits contain the Real Page Number (RPN) to which the bus ad-
dress is mapped in System Memory. In certain HB implementations, all of these bits 
may not be required, however enough bits must be implemented to match the largest 
real address in the platform.

52 to 60 Reserved for future use.

61 Reserved for future use (assigned for IBM use).

62 to 63

Page Mapping and Control: These bits define page mapping and read-write authority. 
They are coded as follows:
00 Page fault (no access)
01 System Memory (read only)
10 System Memory (write only)
11 System Memory (read/write)

Code point 0b00 signifies that the page is not mapped. It must be used to indicate a page 
fault error. Hardware must not change its state based on the value in the remaining bits 
of a TCE when code point 0b00 is set in this field of the TCE.

For accesses to System Memory with an invalid operation (write to a read-only page or 
read to a write-only page), the HB will generate an error. See Chapter 10, “Error and 
Event Notification,” on page 157 for more information about error handling.
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Using the system address map described in this chapter as a base for discus-
sion, the environment foreseen by the PC Emulation option has all of the fol-
lowing attributes:

■ From the points of view of the processor and I/O bus masters (including 
third party DMA controllers), an image in memory, from 0 through a “top of 
emulated memory,” which exactly matches that of a PC. 

■ The io-hole is enabled, to allow I/O bus master and third party DMA access 
to legacy devices such as VGA.

■ From the point of view of the processor, memory above the “top of emu-
lated memory” in which an emulator may reside, including areas for unique 
interrupt and exception handling code.

■ From the points of view of I/O bus masters (including ISA bus masters, if 
below 16 MB), the address space above the “top of emulated memory” is 
prevented from mapping to System Memory, and may instead reference 
PCI/ISA memory or be intercepted by the host bridge as an error.

■ From the points of view of I/O bus masters, disabling of the alias for the low 
16 MB of System Memory (the system-memory-alias space) so that address 
range would address PCI memory or be intercepted by the host bridge as an 
error.

If a platform implements the PC Emulation option, this will be indicated by
the existence of the pc-emulation property in the root node of the OF device
tree, and the option is enabled by the set-pc-emulation method in the system
node. In addition, the set-pc-emulation method initializes the Top of Emulated
Memory Register (TEMR) and the Exception Relocation Register (ERR), and
assures the requirement 3–34 is met. Figure 9 on page 46 shows an example of
an address map with the PC Emulation option enabled. 
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Figure 9. Example Address Map with the PC Emulation Option Enabled
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To create the environment described above, one must define two pointer
registers and associate some new behaviors with various regions of the system
address map. The following requirements describe the functionality that is
needed to provide the appropriate system address map.

Requirements:

3–31. For PC Emulation option: The platform must implement the TEMR, 
and all of the following must be true:

a. The TEMR must contain the largest address in System Memory 
which is set aside for the image of PC memory. 

b. The granularity of the contents of TEMR must be 1 MB.

c. The HB must not respond to I/O bus Memory Space DMA opera-
tions in the address range of (TEMR + 1) to the top of System Mem-
ory, or must respond and signal an invalid address error. 

3–32. For PC Emulation option: PCI devices must not be configured 
between (TEMR + 1) and the top of System Memory which is below 
BSCA.

3–33. For PC Emulation option: The platform must implement the ERR, 
and all of the following must be true:

a. The value of exception-relocation-size OF property must be the 
amount of address space above 0xFFF00000 that is relocated down 
into System Memory and is a fixed value, as determined by the plat-
form.

b. The granularity of exception-relocation-size must be 4 KB and the 
minimum size must be 12 KB.

c. The contents of the ERR must be the address of the base of the re-
gion in System Memory to which references to the interrupt/excep-
tion handling area (normally at the top of the 32-bit address space) 
are relocated.

d. The granularity of the ERR must be 1 MB.

3–34. For PC Emulation option: When the PC Emulation option is enabled, 
the peripheral-memory-alias space must be enabled, the system-
memory-alias space must be disabled, and the io-hole must be enabled.

Hardware Implementation Note: Since the software only has access to the 
ERR and the TEMR through the set-pc-emulation OF method, the 
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actual implementation of these registers can be abstracted from the 
software, and the value that gets put into the actual hardware registers 
can be transformed by set-pc-emulation to be something more directly 
usable by the hardware.

Software Implementation Notes: 

■ It is assumed that the processor is programmed with Machine 
State Register (MSR) Interrupt Prefix (IP) bit set to a 1 (MSRIP=1; 
that is, exception/interrupt handlers at the top of the 32-bit address 
space). 

■ Software must set up the interrupt/exception area at the new loca-
tion before relocating that area via the ERR (that is, before calling 
the set-pc-emulation method which sets the ERR).

■ The set-pc-emulation method, when used to disable the PC Emu-
lation option, does not have to put the system-memory-alias space 
back into the state that it was in before the enabling of the PC Em-
ulation option.

■ The set-pc-emulation method may use the set-initial-aliases OF 
method of the PHB0 node to assure that the peripheral-memory-
alias is enabled and may use the set-io-hole OF method of the 
PHB- to assure that the io-hole is enabled.

■ The set-initial-aliases method should not be called while the PC 
Emulation option is enabled, or else the system-memory-alias may 
get re-enabled.
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Processor and 
Memory Chapter 4

The purpose of this chapter is to specify the processor and memory related re-
quirements of the CHRP architecture. The processor architecture section ad-
dresses differences between the processors in the PowerPC family as well as
their interface variations and features of note. The memory architecture section
addresses coherency, minimum system memory requirements, memory con-
troller requirements, and cache requirements.

4.1 Processor Architecture
The PowerPC architecture governs software compatibility at an instruction set
and environment level. However, each processor implementation has unique
characteristics which are described in its user’s manual. To facilitate shrink-
wrapped software, the CHRP architecture places some limitations on the vari-
ability in processor implementations. Nonetheless, it is possible for these dif-
ferences to affect platform-aware software. Further, it is possible for system
support chips (for example memory controller, L2 cache, PCI bridge) to affect
platform-aware software. Platform-aware software is defined as any software
which attempts to manipulate the platform external to the processor itself, in-
cluding optimization of external data transfers and synchronization, for exam-
ple. Lastly, evolution of the PowerPC architecture and implementations creates
a need for both software and hardware developers to stay current with its
progress. The following material highlights areas deserving special attention
and provides pointers to the latest information.
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4.1.1 Processor Architecture Compliance

The PowerPC architecture is defined in The PowerPC Architecture [1]. This ar-
chitecture description is broken into three parts as defined below:

■ Book I, PowerPC User Instruction Set Architecture

■ Book II, PowerPC Virtual Environment Architecture

■ Book III, PowerPC Operating Environment Architecture

The latest updates to the PowerPC architecture can be obtained by accessing
the following URL: http://www.austin.ibm.com/tech/ppc-chg.html

Requirements:

4–1. Platforms must incorporate only processors which comply fully with 
the PowerPC architecture.

4–2. For the Symmetric Multiprocessor option:  Multiprocessing 
platforms must use only processors which implement the processor 
identification register. See PowerPC 604 RISC Microprocessor User’s 
Manual [6] for a definition of this register.

4–3. Platforms must incorporate only processors which implement tlbie and 
tlbsync, and slbie and slbia for 64-bit implementations.

4–4. Except where specifically noted otherwise in Section 4.1.4, “PowerPC 
Architecture Features Deserving Comment,” on page 53, platforms 
must support all functions specified by the PowerPC architecture.

Hardware Implementation Note: Requirements 4–1, 4–2, and 4–3 may 
restrict the platform developer’s choice of processor. For example, an 
embedded processor might have a different operating environment 
architecture. All announced PowerPC microprocessors in the 600-
series (for example, 603, 603e, and 604) conform to these 
requirements, with the exception that the 603 family does not support 
requirement 4–2.

Hardware and Software Implementation Note: The PowerPC architecture 
and the CHRP architecture view tlbia as an optional performance 
enhancement. Processors need not implement tlbia. Software that 
needs to purge the TLB should provide a sequence of instructions that 
is functionally equivalent to tlbia and use the content of the OF device 
tree to choose the software implementation or the hardware 
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instruction. See Section 4.1.2, “PowerPC Microprocessor 
Differences,” on page 51 for details.

Hardware Implementation Note: The timebase freeze/thaw functionality 
described in requirement 12–8 may also be useful to a uniprocessor 
system in achieving B2 and better security ratings.

4.1.2 PowerPC Microprocessor Differences

There are a few significant differences among the programming models pro-
vided by PowerPC microprocessors in the 600-series. The 603 family imple-
ments a set of power management modes which are not described in the
PowerPC architecture, and which are different from the minimal support pro-
vided by the 604 family. The 64-bit implementations use a different page table
format which enables a 64-bit address space, and adds a 64-bit execution mode.
A more complete understanding of these differences may be obtained by study-
ing The PowerPC Architecture [1] and the user’s manuals for the various pro-
cessors. The 601 is not supported by the CHRP architecture.

The CHRP architecture creators cooperate with processor designers to
maintain a list of supported differences, to be used by operating systems
instead of the processor version number (PVN), enabling execution on future
processors. Open Firmware communicates these differences via properties of
the cpu node of the OF device tree. The currently supported differences and
their associated properties in the OF device tree include the following: 64-bit,
32-64-bridge, 603-translation, 603-power-management, general-purpose,
graphics, tlbia, performance-monitor, emulation-assists, and external-control.
See PowerPC processor binding to: IEEE Std 1275-1994 Standard for Boot
(Initialization, Configuration) Firmware [11] for more details. 

In addition to the differences described above, the PowerPC architecture
allows for implementation-specific, software-transparent differences. The sec-
ond and third pages above Base (the address specified for interrupt vector loca-
tion by MSRIP) are reserved for implementation-specific routines provided by
the processor designer which make details of the processor implementation
transparent to operating system and application software; see Table 8 on page
52 and also the description of the ERR in requirement 3–33. The software-
assisted translation mechanism implemented by the 603 is an example of how
the second and third pages can be used.

Software Implementation Note: A 64-bit operating system need not require 
64-bit client interface services in order to boot. Because of the 
problems that might be introduced by dynamically switching between 
32-bit and 64-bit modes in Open Firmware, the configuration variable 
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64-bit-mode? is provided so that Open Firmware can statically 
configure itself to the needs of the operating system.

Software Implementation Note: Only those portions of the range from 
0xFFF00000 to 0xFFF02FFF which are actually used prior to setting 
MSRIP=0 must be set aside in ROM as described in Table 8 on 
page 52.

.

Requirements:

4–5. Operating systems must use the properties of the cpu node of the OF 
device tree to determine the programming model of the processor 
implementation.

4–6. Operating systems must provide an execution path which uses the 
properties of the cpu node of the OF device. The PVN is available to the 
platform aware operating system for exceptional cases such as 
performance optimization and errata handling.

4–7. Operating systems must support both of the page table formats (32-bit 
and 64-bit) defined by the PowerPC architecture.

4–8. Processors which exhibit the 64-bit property of the cpu node of the OF 
device tree must also implement the “bridge architecture,” an option in 
the PowerPC architecture. See the updates on the Internet associated 
with The PowerPC Architecture [1].

4–9. Platforms must restrict their choice of processors to those whose 
programming models may be described by modifications to that of the 
604 by the properties defined for the cpu node of the OF device tree in 
PowerPC processor binding to: IEEE Std 1275-1994 Standard for Boot 

Table 8. Fixed Real Storage Locations Having Defined Uses  

Real Address (hex)
when MSRIP=0

Real Address (hex)
when MSRIP=1

Use

0000 - 00FF FFF00000-FFF000FF Reserved for OS use.

0100 - 0FFF FFF00100-FFF00FFF
These locations are for the interrupt 
vectors.

1000 - 2FFF FFF01000-FFF02FFF

Reserved for microprocessor-depen-
dent firmware use. OF must initialize 
this area and OS software must pre-
serve this area.
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(Initialization, Configuration) Firmware [11] (for example, 64-bit and 
603-translation).

4–10. Platform firmware must initialize the second and third pages above 
Base correctly for the processor in the platform, and in the correct 
endian mode, prior to giving control to the operating system.

4–11. Operating system and application software must not alter the state of 
the second and third pages above Base.

4.1.3 Processor Interface Variations

The processor interface for the 32-bit processors (for example, 603 and 604) is
described by the PowerPC 60x Microprocessor Interface Specification [18].
The processor interface for the 64-bit processors is described by the PowerPC
6xx Bus Definition [19]. Individual implementations may subset these specifi-
cations, provided these variations are described in their respective user’s manu-
als. The processor interface for the 603 family has been optimized for portable
applications by keeping address-only cycles internal to the processor. This opti-
mization leads to functional restrictions which must be understood by the plat-
form and system software providers.

Requirements:

4–12. For the Symmetric Multiprocessor option:  The 603 family of 
processors must not be used in a symmetric multiprocessing complex.

4–13. The 603 family of processors must be used only with system logic that 
does not reorder data transfers.

4.1.4 PowerPC Architecture Features Deserving 
Comment

Some PowerPC architecture features are optional, and so need not be imple-
mented in a platform. Usage of others may be discouraged due to their poten-
tial for poor performance. The following sections elaborate on the disposition
of these features in regard to compliance with the PowerPC architecture.

4.1.4.1 Unaligned Little-Endian Scalar Operations

The initial set of PowerPC processor designs did not support unaligned Little-
Endian scalar operations in hardware, but interrupted to the system alignment
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handler to provide the opportunity for the operating system to emulate these
operations. Later implementations of the architecture have added hardware
support for these operations.

Requirements:

4–14. Operating systems must provide an alignment interrupt handler which 
correctly emulates the execution of any unaligned LE accesses that are 
not implemented in hardware, except those which may be generated by 
lwarx, ldarx, stwcx., stdcx., eciwx, ecowx, and the multiple scalar 
operations (see 4.1.4.2, “Little-Endian Multiple Scalar Operations,” on 
page 54).

Software Implementation Note: Because of performance impacts, 
software is strongly discouraged from using unaligned Little-Endian 
scalar operations. 

Hardware Implementation Note: Because legacy software generates 
unaligned Little-Endian scalar operations, hardware is not exempted 
from supporting these operations.

4.1.4.2 Little-Endian Multiple Scalar Operations

The PowerPC architecture does not support multiple scalar operations in Little-
Endian mode. The multiple scalar operations are Load and Store String and
Load and Store Multiple.

Requirements:

4–15. Software must not use multiple scalar operations in LE mode. Results 
of multiple scalar operations in LE mode are undefined.

Architecture Note: Multiple scalar operations in LE mode actually generate 
an alignment interrupt instead of a program interrupt. They are, 
nonetheless, intended to be unsupported.

4.1.4.3 Direct-Store Segment Support

The CHRP architecture does not require platforms to support direct-store seg-
ments. However, direct-store segments may be required for some I/O bus ex-
tensions to the CHRP architecture.
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Requirements:

4–16. Platforms must not use direct-store segments to implement interfaces 
defined by the CHRP architecture.

4–17. Operating systems must not depend on direct-store segment support 
when using interfaces specified by the CHRP architecture.

4.1.4.4 Big-Endian Multiple Scalar Operations

The PowerPC architecture supports multiple scalar operations in Big-Endian
mode. The multiple scalar operations are Load and Store String and Load and
Store Multiple. In future PowerPC processor implementations, these instruc-
tions are likely to have greater latency and take longer to execute, perhaps
much longer, than a sequence of individual Load or Store instructions. 

Software Implementation Note: Because of the long-term performance 
disadvantage associated with multiple scalar operations, their use by 
software is not recommended. However, there is a window of system 
implementations in which store multiples will provide the highest 
bandwidth from the processor to I/O. Therefore, with the knowledge of 
imminent need to rewrite some code, certain developers (especially 
graphics device driver developers) may choose to use store multiples. 
Note that the PowerPC architecture does not guarantee order among 
data stored by a Store Multiple instruction.

4.1.4.5 External Control Instructions (Optional)

The external control instructions (eciwx and ecowx) provide a mechanism for
non-privileged code to interact with external devices which require a knowl-
edge of real, rather than effective, addresses. Together with monitoring of
translation activity by the external hardware, they provide a means for external
access to system memory without pinning that memory.

Software Implementation Note: Operating systems should isolate 
applications from the external control instructions by providing them in 
service libraries, and may also use them in device drivers.

Hardware Implementation Note: Platforms are not required to support the 
external control instructions.
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Requirements:

4–18. If the external control facility defined by the PowerPC architecture is 
supported, that support will be described as properties of the 
appropriate nodes (for example, memory controller and host bridge) of 
the OF device tree. See PowerPC Microprocessor Common Hardware 
Reference Platform System binding to: IEEE Std 1275-1994 Standard 
for Boot (Initialization, Configuration) Firmware [10] for more details.

4–19. Platforms must not use external control instructions as the sole interface 
to functions specified by the CHRP architecture.

4–20. Operating systems must not require the external control instructions 
when using interfaces specified by the CHRP architecture.

4.2 Memory Architecture
The Memory Architecture of a Common Hardware Reference Platform imple-
mentation is defined by The PowerPC Architecture [1] and the System Mem-
ory, Storage Ordering Models, Memory Controller, and Cache Memory
sections which follow, as well as Chapter 3, “System Address Map,” on
page 23, which defines what platform elements are accessed by each real
(physical) system address.

4.2.1 System Memory

System Memory normally consists of dynamic read/write random access mem-
ory which is used for the temporary storage of programs and data being oper-
ated on by the processor(s). A platform usually provides for the expansion of
System Memory via plug-in memory modules and/or memory boards.

Requirements:

4–21. Platforms must provide at least 8 MB of System Memory. (Also see 
Chapter 3, “System Address Map,” on page 23 for other requirements 
which apply to memory within the first 16 MB of System Memory.)

4–22. Platforms must support the expansion of System Memory to 32 MB or 
more.
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Hardware Implementation Note: These requirements are minimum 
requirements. Each operating system has its own recommended 
configuration which may be greater.

Software Implementation Note: System Memory will be described by the 
properties of the memory node(s) of the Open Firmware (OF) device 
tree.

4.2.2 Storage Ordering Models

For “correct” execution of a program, correct ordering of its storage accesses is
essential. Most programs are written with a “sequential” ordering (also called
“serial,” or “strong” ordering) assumption or model. In this type of ordering,
Loads and Stores are performed in the order specified by the program. The sat-
isfaction of this assumption is guaranteed by the hardware.

The sequential execution model in the PowerPC architecture requires that
Loads and Stores issued by a program appear to the program to be strongly
ordered. (See requirement 4–27.) However, it is not necessary that those
accesses complete in storage, or are viewed by other processors or mecha-
nisms, in the same order. This is called a weakly ordered storage model. Weak
ordering can lead to performance improvements in complex systems by allow-
ing a processor to consider its Load and Store instructions complete before the
corresponding storage operations are performed with respect to other proces-
sors and mechanisms.

4.2.2.1 Memory Coherence

Coherence refers to the ordering of writes to a single location. Specifically, a
location is said to be coherent if no two processors or I/O observe any subset of
a series of Stores to that location to be occurring in mutually conflicting orders.
The PowerPC Architecture [1] provides specifications for implementing coher-
ence among caches and physical memory for System Memory locations within
a symmetric multiprocessor.

The PowerPC architecture specifies accesses (Loads and Stores) to bytes,
half-words aligned on half-word boundaries, words aligned on word bound-
aries, and, for 64-bit implementations of the architecture, also, double-words
aligned on a double-word boundaries, as being “single-copy atomic.” A single-
copy atomic operation is performed without permitting other processors or
mechanisms to access the target locations from the beginning to the end of the
operation. Accesses to data of all other sizes can be non-single copy atomic.

Single copy atomic Stores to a given location are coherent if they are serial-
ized in some order, and no processor is able to observe any subset of those
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Stores in a conflicting order. This serialization results in a sequence of values
assigned to the location. For a location that is cachable, the unique sequence is
defined over values assumed not only by the physical memory location, but
also by copies of the location in caches. It is not necessary that the physical
memory location assume each value in the sequence. For example, if a proces-
sor has a write-back cache, it may update a location several times before the
value is written to the physical memory. Not every value written is visible to
another processor. However, if the location is coherent, the order of values seen
by another processor is compatible with the order in which Stores are made.1

Thus, for example, a processor can never Load a “newer” value first and then,
later, Load an “older” value.

A platform may maintain coherence on blocks of data, referred to as coher-
ency blocks, that are larger than data-sizes prescribed for single-copy atomic
accesses. Typically, the coherency block is of the size of a cache line, but it can
be smaller. The coherency block is treated as a whole, or as a single location,
with respect to values it assumes, and these values form a unique sequence of
which all the processors and I/O observe a subset.

The PowerPC architecture allows assignment of the hardware coherence
property on a per-page (4 KB) basis. If a given page of physical memory is
declared as Memory Coherence Required2 (M-bit equals 1), all coherency
blocks within that page are kept coherent. It is permitted by the PowerPC archi-
tecture, however, that a page in physical memory may be accessed via different
virtual addresses that have different coherence property specifications. This is
called “M-bit aliasing.” Similar mismatches are also permitted by the PowerPC
architecture among Caching Inhibited (I-bit), Write Through (W-bit), and
Guarded Storage (G-bit) properties. Under certain circumstances, the PowerPC
architecture disallows the assumption of hardware-maintained coherence when
a location is accessed with aliased W, I, or M bits.3

Requirements:

4–23. Platforms must provide the ability to maintain System Memory 
Coherence.

4–24. I/O transactions to System Memory through a Host Bridge must be 
made with coherence required.

1 See the section entitled “Memory Coherence” in Book II, The PowerPC Architecture [1].

2 See the section entitled “Storage Access Modes” in Book III, The PowerPC Architecture [1].

3 ibid.
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Hardware Implementation Note: For some system buses, enabling a 
transaction for snooping is a method for invoking the coherence 
mechanism. For these buses, requirement 4–24 translates into a 
requirement that all I/O transactions to system memory be enabled for 
snooping.

Hardware Implementation Note: Some processors may ignore the M=1 
setting for a line when it is accessed as a result of an instruction-fetch 
miss. However, if the line contains both instructions and data, there 
may be subsequent data accesses to that line which are required to be 
coherent. In this case, the non-coherent copy of the line must be 
discarded and the line must be refetched coherently. I/O writes to the 
line must also be performed coherently with respect to copies of the 
line contained in data caches or in combined caches.

Memory, other than System Memory, is not required to be coherent. Such
memory may include memory in I/O devices.

4.2.2.2 Consistency Model

Consistency refers to the ordering of accesses to more than one location. In sys-
tems which support a sequentially consistent memory model, Loads and Stores
performed by a program not only appear to be strongly ordered to the program
executing them, but are also observed by concurrent programs on other proces-
sors as being performed in the same order. This is not true of a system that em-
ploys a weakly consistent memory model. In a weakly consistent memory
model, weak ordering is the default for storage accesses.

Weakly ordered storage accesses can lead to a temporarily inconsistent view
of memory among processors. For example, suppose a processor performs a
Store to location A, followed by a Store to location B, then for some finite
period of time, it is possible that if another processor or mechanism reads the
new value of B, it can subsequently perform a read on location A and yet
receive the old value of A — a view of memory that is inconsistent with that of
the program which performed the two store operations.

However, with mutually inconsistent views of memory, cooperating pro-
grams cannot communicate correctly and, therefore, cannot compute correctly.
Such programs must ensure that a consistent view of memory is attained before
they start to communicate. An ability to enforce a sequential consistency on
demand is therefore essential.1

1 Note that cooperating concurrent programs running on a system that enforces sequential consis-
tency for all storage accesses always execute correctly.
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The PowerPC architecture supports a weakly consistent memory model. To
enforce sequential consistency on demand, it provides ordering instructions:
eieio, sync, and isync. Eieio guarantees that qualifying storage accesses sepa-
rated by it get performed in the order they are issued by the program. Sync and
isync instructions guarantee that when they complete, all coherent storage
accesses issued prior to them have been performed with respect to all proces-
sors and mechanisms that accesses those locations coherently. Thus, using
these instructions, it is possible for communicating programs to guarantee that
accesses before and after these instructions are observed to have performed in a
mutually consistent order.

Most platforms based on the CHRP architecture are expected to incorporate
the weakly consistent memory model as specified by the PowerPC architecture.

Requirements:

4–25. Software must assume only the Weakly Consistent storage model.

4–26. Platforms must guarantee that a processor’s accesses to the same 
location are kept strongly ordered, unless the location is accessed by the 
processor with WIM-bit aliasing which prohibits the assumption of 
hardware-maintained coherence.

As specified in the PowerPC architecture, software must use ordering
instructions to impose strong ordering between accesses to different physical
memory locations, coherent or otherwise, when it has a dependency on the
order of accesses being strong. Self modifying code, if used, must be written in
such a fashion as to ensure that the instruction fetch pipeline and the cache do
not contain the original code once the modification has been made.

Software Implementation Note: Explicit ordering must be employed if self 
modifying code is used. The following sequence of instructions is one 
way to accomplish this: dcbst, sync, icbi, sync, isync.

4.2.2.3 Storage Ordering and I/O

Looking out from a processor, there are interfaces and bridge devices
beyond which the ordering operations defined by the PowerPC architecture
cannot be propagated. Such interfaces or bridges form the boundary of the sys-
tem which encloses the PowerPC coherency domain which satisfies the Pow-
erPC coherency architecture.

Figure 10 on page 61 shows an example system. The shaded portion is the
PowerPC coherency domain. Buses 1 through 3 lie outside this domain. The
figure shows two I/O subsystems, each interfacing with the host system via a
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Host Bridge. Notice that the boundary is shown to traverse through the Host
Bridges. This marks the usually identifiable boundary inside the Host Bridge
hardware. On one side (the shaded portion) of this boundary PowerPC architec-
tural semantics are in force, and on the other side lies the logic that interfaces
with protocols of the I/O interconnect.

The fundamental ordering rule for the PowerPC sequential execution model
is that if a processor performs a Store operation to a location followed by a
Load to the same location, and if it is the only processor storing to that location,
then the Load must return the value deposited by the Store operation. This
ordering rule might be violated outside the coherency domain if I/O devices
within the same I/O subsystem are allowed to make concurrent accesses to the
location. The burden of guaranteeing satisfaction of this sequential ordering

Figure 10. Example System Diagram Showing the PowerPC Ordering Domain
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rule, therefore, is on both system hardware and software. For a more detailed
discussion see Section 5.1.2.3, “PCI Delayed Read Interaction,” on page 74.

Accesses outside the coherency domain are assumed to be made to I/O
devices. These accesses are considered performed (or complete) when they
complete at the device’s I/O bus interface.

It is not sufficient to ensure strong ordering on a processor’s accesses to a
single location outside the coherency domain. It is also important to able to
ensure that Stores to a number of different locations outside the coherency
domain are completed in a strongly ordered manner. For example, suppose
some data has to be deposited in an I/O device before the device’s control reg-
ister is written to start its operation. It is essential, in this case, that the Stores
that deposit the data complete before the Store that writes into the control regis-
ter. For this reason, semantics of eieio must be extended beyond the coherency
domain. Because the PowerPC ordering operations do not travel beyond the
PowerPC coherency domain, system hardware must take appropriate action to
enforce the ordering semantics of eieio on accesses leaving the domain. See
Chapter 5, “I/O Bridges,” on page 69.

Requirements:

4–27. Platforms must guarantee that, for a particular processor, accesses to the 
same location beyond the PowerPC coherency domain are performed in 
a strongly ordered manner, given that no I/O device is allowed to make 
concurrent accesses to the location. Note that it is not sufficient to 
merely produce an appearance of strong ordering with respect to the 
processor performing the accesses.

4–28. Platforms must guarantee that the storage ordering semantics of eieio 
are preserved for accesses leaving the PowerPC coherency domain at 
any given host bridge, all the way to destination I/O devices. That is, 
Load and Store accesses (in any combination) by a processor to an I/O 
device which are separated by an eieio, must complete in the same 
order that the processor issued those accesses.

Apart from the ordering disciplines stated in requirements 4–27 and 4–28,
no other ordering discipline is guaranteed by the system hardware for Loads
and Stores performed by a processor to locations outside the PowerPC coher-
ency domain. Any other ordering discipline, if necessary, must be enforced by
software via programming means.

Software Implementation Note: For example, if software wants to initiate a 
peer-to-peer operation only after a number of Store operations it 
issued to the device have completed, it can issue a sequence of 
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instructions such as follows: Store <Location A>, Store <Location B>, 
Store <Location C>, eieio, Load <Location C>, eieio, where locations 
A, B, and C are in the device and are assumed to have a “cache-
inhibited and guarded” mapping. After issuing this sequence the 
software can start the peer-to-peer operation. The first eieio 
guarantees that all the Stores are sent before the Load is sent. The 
second eieio guarantees that all subsequent storage operations are 
not sent until the Load completes at the processor, at which point the 
program can be certain that all the previous Stores to device are also 
complete.

The elements of a system outside its coherency domain are not expected to
issue explicit PowerPC ordering operations. System hardware must therefore
take appropriate action to impose ordering disciplines on storage accesses
entering the coherency domain. A strong-ordering rule is enforced on an I/O
device’s accesses to the same location. Write operations from the same source
are completed in a sequentially consistent manner.

Requirements:

4–29. Platforms must guarantee that accesses entering the PowerPC 
coherency domain that are from the same I/O device and to the same 
location are completed in a sequentially consistent manner.

4–30. Platforms must guarantee that multiple write operations entering the 
PowerPC coherency domain that are issued by the same I/O device are 
completed in a sequentially consistent manner.

It is the responsibility of the host bridges to guarantee that requirements 4–
27 through 4–30 are satisfied. A host bridge must take into account the particu-
lar I/O interconnection network that it interfaces to and the protocol character-
istics and interfaces of the I/O buses involved, which will influence the actual
set of ordering rules that the above requirements translate into and that the host
bridge implements. For example, Section 5.1.2, “Data Buffering and Instruc-
tion Queuing,” on page 70 specifies ordering rules for a PCI host bridge that
interfaces to a PCI-based I/O tree.

4.2.2.3.1 Storage Ordering and I/O Interrupts

The conclusion of I/O operations is often communicated to processors via in-
terrupts. For example, at the end of a DMA operation that deposits data in the
system memory, the device performing the operation might send an interrupt to
the processor. Arrival of the interrupt, however, is no guarantee that all the data
has actually been deposited; some might be on its way. The receiving program
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must not attempt to read the data from the memory before ensuring that all the
data has indeed been deposited. There may be system and I/O subsystem spe-
cific method for guaranteeing this. See Section 5.1.2.2, “DMA Ordering,” on
page 73.

4.2.2.4 Atomic Update Model

An update of a memory location by a processor, involving a Load followed by
a Store, can be considered “atomic” if there are no intervening Stores to that lo-
cation from another processor or mechanism. The PowerPC architecture pro-
vides primitives in the form of Load And Reserve and Store Conditional
instructions which can be used to determine if the update was indeed atomic.
These primitives can be used to emulate operations such as “atomic read-mod-
ify-write” and “atomic fetch-and-add.” Operation of the atomic update primi-
tives is based on the concept of “Reservation,”1 which is supported in a CHRP
system via the coherence mechanism.

Requirements:

4–31. The Load And Reserve and Store Conditional instructions must not be 
assumed to be supported for Write-Through storage.

Software Implementation Note: To emulate an atomic read-modify-write 
operation, the instruction pair must access the same storage location, 
and the location must have the Memory Coherence Required attribute.

Hardware Implementation Note: The reservation protocol is defined in 
Book II of the PowerPC Architecture [1] for atomic updates to locations 
in the same coherency domain.

4.2.3 Memory Controllers

A Memory Controller responds to the real (physical) addresses produced by a
processor or a host bridge for accesses to System Memory. It is responsible for
handling the translation from these addresses to the physical memory modules
within its configured domain of control.

1 See the section entitled “Synchronization” in Appendix E of Book I, The PowerPC Architecture
[1], and the section entitled “Atomic Update Primitives” in Book II, The PowerPC Architecture [1]
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Requirements:

4–32. Memory controller(s) must support the accessing of System Memory as 
defined in Chapter 3, “System Address Map,” on page 23.

4–33. Memory controller(s) must be fully initialized and set to full power 
mode prior to the transfer of control to the operating system. This 
requirement applies to normal boot and wakeup. (See Chapter 11, 
“Power Management,” on page 185 for an explanation of these terms.)

4–34. All allocations of System Memory space among memory controllers 
must have been done prior to the transfer of control to the operating 
system.

4–35. Memory controller(s) must maintain System Memory in Big-Endian 
byte order when the system is operating in Big-Endian mode 
(MSRLE=0) and in Little-Endian byte order when the system is 
operating in Little-Endian mode (MSRLE=1). Whether System Memory 
is maintained in “True Little-Endian” or “PowerPC Little-Endian”1 
form while in Little-Endian mode is platform dependent, but must be 
transparent to software. See Section 2.3, “Bi-Endian Support,” on 
page 14 and Appendix C, “Bi-Endian Designs,” on page 265 for more 
information on Bi-Endian designs.

Software Implementation Note: Memory controller(s) are described by 
properties of the memory-controller node(s) of the OF device tree.

4.2.4 Cache Memory

All of the PowerPC microprocessors include some amount of on-chip or inter-
nal cache memory. The CHRP architecture allows for cache memory which is
external to the processor chip, and this external cache memory forms an exten-
sion to internal cache memory. 

Requirements:

4–36. All caches must meet the requirements of the CHRP architecture 
coherency model, as stated in “Storage Ordering Models” on page 57.

4–37. For the Symmetric Multiprocessor or Power Management option: 
Each cache must be able to be completely flushed and invalidated via 

1 See the section entitled “PowerPC Little-Endian Byte Ordering” in Appendix D of Book I of The
PowerPC Architecture [1], for an explanation of PowerPC Little-Endian byte ordering.
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the RTAS cache-control function. (See Section 7.3.10.1, “Cache-
control,” on page 136 for more information.)

4–38. For the Power Management option:  External caches must be able to 
be placed in low power or disabled states via the RTAS cache-control 
function.

4–39. For the Symmetric Multiprocessor or Power Management option: 
To ensure compatibility with all CHRP implementations, operating 
systems must use the RTAS cache-control function to flush an entire 
cache rather than code directly to any specific system or processor 
implementation.

4–40. If a platform implementation elects not to cache portions of the address 
map in all external levels of the cache hierarchy, the result of not doing 
so must be transparent to the operation of the software, other than a 
difference in performance.

4–41. All caches must be fully initialized and enabled, and they must have 
accurate state bits prior to the transfer of control to the operating 
system.

4–42. If an in-line external cache is used, it must support one reservation as 
defined for the Load And Reserve and Store Conditional instructions.

4–43. For the Symmetric Multiprocessor or Power Management option: 
Platforms must implement their cache hierarchy such that all caches at a 
given level in the cache hierarchy can be flushed and disabled before 
any caches at the next level which may cache the same data are flushed 
and disabled (that is, L1 first, then L2, and so on).

4–44. For the Symmetric Multiprocessor or Power Management option: 
If a cache implements snarfing, then the cache must be capable of 
disabling the snarfing during flushing in order to implement the RTAS 
cache-control function in an atomic way.

4–45. Software must not depend on being able to change a cache from copy-
back to write-through.

Software Implementation Note: Each first level cache will be defined via 
properties of the cpu node(s) of the OF device tree. Each higher level 
cache will be defined via properties of the l2-cache node(s) of the OF 
device tree. See the PowerPC processor binding to: IEEE Std 1275-
1994 Standard for Boot (Initialization, Configuration) Firmware [11] 
for more details.
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Software Implementation Note: To ensure proper operation, cache(s) at 
the same level in the cache hierarchy should be flushed and disabled 
before cache(s) at the next level (that is, L1 first, then L2, and so on).

Hardware Implementation Note: The PowerPC architecture would seem to 
imply that all caches can be controlled via the cache control and 
prefetching instructions and the page table attribute bits. In fact, the 
vast majority of external caches are not affected by these attributes of 
the PowerPC architecture and, in general, depend solely on a fixed 
address boundary check to determine cachability. Internal caches are 
expected to comply with the PowerPC processor architecture. It is the 
responsibility of the platform designer to verify that the allowed 
flexibility in external cache function affects only the performance and 
not the programming model (coherency, for example) of the platform.

Hardware Implementation Note: There may be a significant performance 
impact to some operating systems if parts of an OS’s System ROM 
and/or a local bus video frame buffer are not actually cached outside 
the processor, for example, in an external Level 2 cache. The CHRP 
architecture permits this cost vs. performance trade-off to be made by 
hardware vendors, since software compatibility is, by definition, not 
affected.
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I/O Bridges Chapter 5

There is at least one I/O bridge in a Common Hardware Reference Platform.
That is, there will be at least one bridge which interfaces to the system bus on
the processor side, and interfaces to the Peripheral Component Interface (PCI)
bus on the other. This bridge is called the PCI Host Bridge (PHB). The archi-
tecture for PHBs is defined in this chapter. In addition, there may be other
bridge components in the platform to bridge from one I/O bus to some other or
to the same I/O bus. For example, to bridge from the PCI bus to an ISA bus.
Requirements for these other bridges will be discussed, as appropriate, in this
chapter.

5.1 PCI Host Bridge (PHB) Architecture
The PHB architecture places certain requirements on PHBs. There should be
no conflict between this document and the PCI Local Bus Specification, revi-
sion level 2.1 [14] document, but if there is, the PCI documentation takes pre-
cedence. The intent of this architecture is to provide a base architectural level
which supports the PCI architecture and to provide optional constructs which
allow for use of 32-bit PCI devices in platforms with greater than 4 GB of sys-
tem addressability.

Requirements: 

5–1. All PHB implementations must be compliant with the PCI Local Bus 
Specification, revision level 2.1 [14].

5–2. All requirements defined in Chapter 3, “System Address Map,” on 
page 23 for HBs must be implemented by all PHBs in the platform.
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5–3. HB0 must be a PHB (PHB0).

5.1.1 PHB Implementation Options

There are a few implementation options when it comes to implementing a
PHB. Some of these become requirements, depending on the characteristics of
the system for which the PHB is being designed. Requirement 5–2, which
states that all requirements defined in Chapter 3, “System Address Map,” on
page 23 for HBs must be implemented by all PHBs, defines the requirements
for the following:

■ The 64-bit addressing option requires that PHBs designed for use in plat-
forms which are designed to support System Memory configured at an ad-
dress of 4 GB or above must provide the TCE address translation 
mechanism in order to give 32-bit PCI devices in such platforms the capa-
bility to address all of System Memory directly. The existence of this 64-bit 
addressing option support is reported by the existence of the 64-bit-address-
ing property in the PHB node(s) of the OF device tree, and the 64-bit ad-
dressing option can be enabled by the operating system by the set-64-bit-
addressing OF method.

■ Platforms which implement the 64-bit addressing option may optionally 
support the PCI Dual Address Cycle (DAC) capability during DMA opera-
tions. The existence of this DAC option support is reported by the existence 
of the 64-bit-dma property in the PHB node(s) of the OF device tree, and 
this option is enabled along with the 64-bit addressing option by the operat-
ing system by the set-64-bit-addressing OF method.

■ PHB implementations (for 32-bit or 64-bit addressing systems) may choose 
to implement one or both of the compatibility holes, as defined in Chapter 3, 
“System Address Map,” on page 23.

5.1.2 Data Buffering and Instruction Queuing

Some PHB implementations may include buffers or queues for DMA, Load,
and Store operations. The PowerPC architecture provides several instructions,
including eieio and sync, which allow programs to order and synchronize oper-
ations to System Memory or I/O. These instructions may or may not propagate
(depending on the processor and platform implementation) down to the
PHB(s), but will definitely not propagate beyond a PHB. As far as eieio is con-
cerned, where the propagation stops is immaterial, and the platform will keep
the programming model the same (see requirement 5–4, below). The sync
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instruction, however, cannot be propagated out to the end I/O device because
the PCI bus does not lend itself to this capability. What this means is that for
the cases where the programming model is dependent on completion of a write
to an I/O device before continuing, software must take care of the synchroniza-
tion. For example, the PCI architecture specifies that a read operation issued to
a PCI device will flush the PCI and PHB data buffers. This can be used, then, to
assure completion of a write to a device by doing a read of something on the
device after writing to the device. This will force the write data to arrive at the
device before the read data is returned (within the restrictions detailed in sec-
tion 5.1.2.3, “PCI Delayed Read Interaction,” on page 74). In addition, inter-
rupts from a PCI device can bypass data written by the PCI device, and it may
be necessary to use a similar technique to guarantee that data written by a
device is forced out of data buffers on the I/O side of the PHB prior to using the
data. 

Most processor accesses to System Memory go through the processor data
cache. When sharing System Memory with I/O devices, hardware must main-
tain consistency with the processor data cache and the System Memory, as
defined by the requirements in Section 4.2.2.1, “Memory Coherence,” on
page 57.

Requirements: 

5–4. PHB implementations which include buffers or queues for DMA, Load, 
and Store operations must make sure that these are transparent to the 
software, with a few exceptions which are allowed by the PCI architec-
ture, by the PowerPC architecture, and in Section 4.2.2.1, “Memory Co-
herence,” on page 57.

Since the implications of combining the PowerPC ordering rules and the
PCI ordering rules and the exceptions that they allow are not obvious, the fol-
lowing sections will describe the combination of these rules and the resulting
requirements on the PHB.

5.1.2.1 Load and Store Ordering

Although it is possible to create a PHB which would emulate an eieio instruc-
tion, such a PHB would be unnecessarily complex. By combining the PowerPC
and PCI ordering rules and implementing those rules, a PHB can maintain the
eieio programming model without having to put an eieio instruction in its in-
struction queue. The following are the requirements on the PHB in order to
meet these other architectures’ ordering rules.
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Requirements:

5–5. A Load or Store to either the Peripheral Memory Space or the 
Peripheral I/O Space of a PHB must never be passed to the I/O bus 
before a previous Store to either the Peripheral Memory Space or the 
Peripheral I/O Space of that same PHB (that is, multiple Stores to the 
I/O bus generated by one PHB must be kept in order and a Load must 
not pass a Store).

5–6. A Load to either the Peripheral Memory Space or the Peripheral I/O 
Space of a PHB must never be passed to the I/O bus before a previous 
Load to either the Peripheral Memory Space or the Peripheral I/O Space 
of that same PHB when both of those Loads go to the exact same 
address.

With the exception of the one case stated in requirement 5–6 for two Load
operations to the same address, a Store or Load to either the Peripheral Mem-
ory or Peripheral I/O Spaces is allowed to pass a previous Load, but is not
required to do so. This works because when the software is concerned about
the ordering of these, it will place an eieio after the Load, and the processor
will not issue the following Load or Store until the data is returned from the
previous Load (that is, the processor handles the ordering in this case when the
software cares about the ordering). The reason for requirement 5–6 is that the
read operations on the PCI bus are not tagged as to which device requested the
read, and if one Load (read) is issued to the PCI bus and retried and a Load to
the same address issued by another processor is allowed to pass this retried
Load, then the second processor could get the data that was requested by the
first processor. Even this would not be a problem, providing the second proces-
sor did not first do a Store to that address followed by a Load. In this case, the
Load would pick up the data from the first processor’s Load, and therefore
would get back something different than what it thought it had previously sent
with its Store (that is, without requirement 5–6 the sequence of Load from pro-
cessor 1, followed by a Store by processor 2, followed by a Load by processor
2, for example, could return the wrong data to processor 2). Of course, since it
is not a requirement for a Store or Load to either the Peripheral Memory or
Peripheral I/O Spaces to be allowed to pass a previous Load, one solution (and
legitimate implementation as an implementation cost versus performance
trade-off) is to never allow any Load or Store to pass any other Load or Store in
a PHB’s instruction queue (that is, order all Load and Store operations from the
processors).
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5.1.2.2 DMA Ordering

There are certain ordering rules that DMA operations must follow. In general,
the ordering for the DMA path operations from the I/O bus to the processor
side of the PHB is independent from the Load and Store path, with one excep-
tion as stated in requirement 5–11 below, and, indeed must be independent in
the cases which are stated in requirements 5–7 and 5–8, below. Note that in the
requirements, below, a read request is the initial request to the PHB and the
read completion is the data phase of the transaction (that is, the data is re-
turned). The PHB may signal a “retry” on the initial read request and later pro-
vide the data when the requester comes back to get it (that is, when the device
requests it again). Thus, the read request and read completion may occur during
different PCI bus transactions.

Requirements:

5–7. Data from a DMA read completion must be allowed to complete prior 
to Load or Store operation which was previously queued in the PHB, in 
order to prevent a possible deadlock.

5–8. Load data buffered in a PHB must not prevent a subsequent DMA write 
request from being posted into the PHB or from making progress 
through the PHB, in order to prevent a possible deadlock on the PCI 
bus.

5–9. A DMA write or read request from an I/O device to the processor side 
of the PHB must never be passed to the processor side of the PHB 
before the data from a previous I/O DMA write operation has been 
flushed to the processor side.

5–10. A previous DMA read request accepted by a PHB but not yet completed 
must not prevent a subsequent DMA write request from being posted 
into the PHB or from making progress through the PHB, in order to 
prevent a possible deadlock on the PCI bus.

5–11. All DMA write data (destined for the processor side of the PHB) in the 
PHB buffers must be flushed out of the PHB prior to delivering data 
from a Load operation which has come after the DMA write operations.

Requirement 5–11 is the one case where the Load and Store path is coupled
to the DMA path. This requirement guarantees that the software has a method
for forcing DMA write data out of any buffers in the path prior to servicing a
completion interrupt from the device. Note that the device can do that, also, via
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requirement 5–9, by following any write by a read through the same path prior
to issuing a completion interrupt.

A DMA read operation is allowed to be processed prior to the completion of
a previous DMA read operation, but is not required to be.

5.1.2.3 PCI Delayed Read Interaction

As mentioned previously, read operations on the PCI bus are not tagged as to
which device requested the read. For PCI devices designed prior to version 2.1
of the PCI Local Bus Specification [14], this did not matter, since the PCI ar-
chitecture did not allow delayed read operations. Version 2.1 does allow de-
layed read operations (a delayed read operation is one where the target device
retries the PCI master, but goes off and does the read operation anyway, so that
it can have the data ready when the master comes back and tries the operation
again). This means that if two devices on the PCI bus (one of which could be
the PHB) are reading from the exact same address (that is, the exact same byte
address), and if one or both of those devices can write the data at that address,
then the device(s) doing the writing can get stale data upon a read. This has im-
plications in programming certain I/O operations. Several scenarios can occur:

1. Two (or more) processors reading the same address on a PCI device, with 
one of those device drivers also writing that address.

2. Two peer PCI devices reading the same address on another PCI device, with 
one of those devices also writing that address.

3. Two peer PCI devices reading the same address in System Memory, with 
one of those devices also writing that address.

4. The device driver (where the PHB acts as a PCI master on behalf of the de-
vice driver) and a PCI I/O device reading the same address on another PCI 
device, with one of those also writing that address.

Except for scenario 1, software must create the appropriate protocols to
assure that the problem does not occur. Scenario 1 is prevented from happening
by requirement 5–6.

5.1.3 Byte Ordering Conventions

A system can run in Little-Endian (LE) or Big-Endian (BE) mode. Depending
on which mode the system is operating, the paths for data from the processor to
the I/O or the System Memory to the I/O may need to do something special
based on the mode of operation. Some of the LE and BE aspects that are unique
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to the PHB will be discussed below. For more information about system re-
quirements, see Section 2.3, “Bi-Endian Support,” on page 14 and Appendix C,
“Bi-Endian Designs,” on page 265.

The PCI bus itself can be thought of as not inherently having an endianess
associated with it (although its numbering convention indicates LE). It is the
devices on the PCI bus that can be thought of as having endianess associated
with them. Some PCI devices will contain a mode bit to allow them to appear
as either a BE or LE device. Some devices will even have multiple mode bits;
one for each data path (Load and Store versus DMA). In addition, some devices
may have multiple concurrent apertures, or address ranges, where the device
can be accessed as a LE device in one aperture and as a BE device in another.

Requirements: 

5–12. The hardware platform must be designed such that software must 
follow Table 9 on page 76 while running in the various processor modes 
(LE = 0 and LE = 1) and issuing Load and Store operations to various 
entities with various endianess, including doing any necessary address 
un-modification when running with LE = 1 (for platforms using 
processors implementing LE mode via address modification).

5–13. When performing DMA operations through a PHB while running with 
the processor mode of LE = 1, if the platform is implemented with the 
true LE format in System Memory, or while running with the processor 
mode of LE = 0 with BE format in System Memory, then the platform 
must not modify the data during the transfer process; the lowest 
addressed byte in System Memory being transferred to the lowest 
addressed byte on the PCI bus, the second byte in System Memory 
being transferred as the second byte on the PCI bus, and so on.

5–14. When performing DMA operations through a PHB while running with 
the processor mode of LE = 1, if the platform is implemented with the 
PowerPC LE format in System Memory, then the platform must 
transform the data during the transfer process to true LE format by 
reflecting the bytes within a doubleword (that is, the DMA is done as 
though the data is accessed a byte at a time, with the address modified 
by the same modification as used by the processor for 1-byte Loads and 
Stores, namely, exclusive-or the address with 0b111). 
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Hardware Implementation Note: Requirement 5–14, above, may have 
implications on the design of a PHB, depending on the hardware 
platform implementation and component partitioning (see Appendix C, 
“Bi-Endian Designs,” on page 265 for more information).

Software Implementation Note: When dealing with non-scalar (string) 
data, BE and true LE data is in System Memory in the same order 
(MSB at the lowest address). The PCI device will typically treat the 
data register as a non-scalar register, and thus, as the equivalent of a 
BE scalar register. If the processor is running in the BE mode, then 
essentially the BE to BE case in Table 9 on page 76 holds true, and in 
such cases, programmed transfers of data is accomplished by doing 
(depending on the direction of data transfer) either a Load from the 
System Memory buffer followed by a Store to the I/O device or a Load 
from the I/O device and a Store to System Memory. If the processor is 
running in the LE mode and is implemented using the address 
modification technique, then the string is stored basically reflected 
within a doubleword in System Memory. In such cases, a Load of 
something greater than 1-byte will bring the string into the processor 
register in reverse order (most significant character of the string in the 
LSB of the register), and when the Store is issued to the device, the 
platform will reverse the order of the bytes within the operation size (as 
required for scalar data to get true LE data; that is, in order to make the 
lower right hand corner operation of Table 9 on page 76 come out 
correctly), and the data will appear with the most significant character 
of the string on the lowest address byte of the PCI bus. Moves from the 
I/O to System Memory work in the reverse. In any case, the Load or 
Store Reverse instructions are not used for these string move 
operations. 

Table 9. Load and Store Programming Considerations

Destination

PowerPC Processor Mode: 
LE=0

(processor operating in
BE mode)

PowerPC Processor Mode: 
LE=1

(processor operating in
LE mode)

BE scalar entity: 
For example,

TCE or BE register in a PCI device
Load or Store Load or Store Reverse

LE scalar entity:
For example,

LE register in a PCI device or 
PCI Configuration Registers

Load or Store Reverse Load or Store
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5.1.4 PCI Bus Protocols

This section details the items from the “PCI Local Bus Specification” and “PCI
System Design Guide” documents where there is variability allowed, and
therefore further specifications, requirements, or explanations are needed.

5.1.4.1 Peripheral I/O Space

Although an HB in general does not have to implement a Peripheral I/O Space,
the PCI bus contains an I/O address space, and therefore requires a Peripheral
I/O Space.

Requirements: 

5–15. There must be exactly one Peripheral I/O Space per PHB.

5.1.4.2 Dual Address Cycle (DAC)

The DAC capability of the PCI architecture allows PCI devices which are at-
tached to a 32-bit PCI bus to use a 64-bit address (the address phase of the
transaction extending to two clocks). PHB support for DAC when the PHB is
the target of a DMA operation and the 64-bit addressing option is enabled is
optional, but is specified by this architecture (see Chapter 3, “System Address
Map,” on page 23 and Figure 8 on page 43). PHB support for DAC when the
PHB is the master on the PCI bus (that is, support for Load or Store operations
at or above 4 GB to Peripheral Memory Space) is not required and is not speci-
fied by this architecture. If DAC DMA capability is supported, this support is
reported by the existence of the 64-bit-dma property in the HB node(s) of the
OF device tree, and is enabled along with the 64-bit addressing option by the
operating system by the set-64-bit-addressing OF method.

5.1.4.3 PCI Interrupt Acknowledge Cycle

The PCI Interrupt Acknowledge Cycle was provided in the PCI architecture for
use with bridges which require 8259-like interrupt controller support.

Requirements: 

5–16. If a PHB has an interrupt controller on the PCI side of the bridge which 
requires the PCI Interrupt Acknowledge Cycle generation, then that 
PHB must provide a 1-byte register which, when read by a processor 
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using a 1-byte Load instruction, will generate a PCI Interrupt Acknowl-
edge cycle on the PCI bus. 

If this register exists in a PHB, then so will the 8259-interrupt-acknowledge
property of the root node of the OF device tree, and the address of this register
will be passed via this 8259-interrupt-acknowledge property in the root node.

5.1.5 Programming Model

Normal memory mapped Load and Store instructions are used to access a
PHB’s facilities or PCI devices on the I/O side of the PHB. Chapter 3, “System
Address Map,” on page 23 defines the addressing model. Addresses of I/O de-
vices are passed by OF via the device tree.

Requirements: 

5–17. If a PHB defines any registers that are outside of the PCI Configuration 
space, then the address of those registers must be in the Peripheral 
Memory Space or Peripheral I/O Space for that PHB, or must be in the 
System Control Area.

PCI master DMA transfers refer to data transfers between a PCI master
device and another PCI device, an ISA device (when ISA is implemented), or
System Memory, where the PCI master device supplies the addresses and con-
trols all aspects of the data transfer. Transfers from a PCI master to the PCI I/O
Space are essentially ignored by a PHB (except for address parity checking).
Transfers from a PCI master to PCI Memory Space are either directed at PCI
Memory Space (for peer to peer operations) or need to be directed to the host
side of the PHB. DMA transfers directed to the host side of a PHB may be to
System Memory or may be to another I/O device via the Peripheral Memory
Space of another HB. Transfers that are directed to the Peripheral I/O Space of
another HB are considered to be an addressing error (see Chapter 10, “Error
and Event Notification,” on page 157). For information about decoding these
address spaces and the address transforms necessary, see Chapter 3, “System
Address Map,” on page 23.

5.2 I/O Bus to I/O Bus Bridges
The PCI bus architecture was designed to allow for bridging to other slower
speed I/O buses or to another PCI bus. The requirements when bridging from
one I/O bus to another I/O bus in the platform are defined below.
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Requirements: 

5–18. All bridges must comply with the bus specification(s) of the buses to 
which they are attached.

5.2.1 What Must Talk to What

Since there are a number of different address spaces and multiple buses in the
platform, this section describes which devices must be able to access which ad-
dress spaces.

An ISA DMA device is one which requires a DMA controller in the system
to provide an address and control the transfer (also called a third party DMA
device), whereas an ISA DMA master (or I/O bus master) is a device which
generates the address and controls the operation.

Requirements: 

5–19. Table 10 on page 79 details the minimum requirements that the plat-
form must implement relative to I/O device access to the various ad-
dress spaces. 

Table 10. Which I/O Devices Must Be Able to Access Which Address Spaces 

Source Device
Destination

Device

Platform
Support

Required?
Other Requirements and Comments

ISA DMA 
master

ISA memory No

PCI memory Limited

Platforms must support this if the io-hole is imple-
mented and the source and destination devices reside 
on the same side of the same PHB and the operation 
does not traverse a PCI to PCI bridge and the device 
is configured in the io-hole (640 KB to (1 MB - 1) 
address range) and the io-hole is enabled.

System 
Memory

Limited

System Memory addresses in the 0 to (16 MB - 1) 
range only and with a possible hole due to the io-hole 
(if enabled) or due to ISA devices configured in this 
range.
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Some operating systems may not support all these modes (refer to informa-
tion available from the operating systems). Examples of what an operating sys-

ISA DMA 

ISA memory No

PCI memory Yes

Platforms must support this when the source and des-
tination devices reside on the same side of the same 
PHB and the operation does not traverse a PCI to PCI 
bridge. The destination device must be configured ei-
ther in the BPM to (BIM - 1) range, or if io-hole is 
enabled, in the 640 KB to (1 MB - 1) address range. 

System 
Memory

Yes

System Memory addresses in the 0 to (16 MB - 1) 
range should be accessed via the system-memory-
alias area to get around possible holes in the address 
space due to io-hole being enabled or due to ISA de-
vices configured in this range. 

PCI Master

ISA memory Yes

The PHB as a PCI master must be able to access the 
full 16 MB ISA Memory Space. Other PCI masters 
must support this when the ISA memory is in the 
640 KB to (1 MB - 1) range and the io-hole is en-
abled.

PCI memory Yes

Platforms must support this when the source and des-
tination devices reside on the same side of the same 
PHB. In this case, the destination device must be con-
figured either in the BPMn to TPMn (n not equal to 
0; BPM0 to (BIM - 1) for PHB0) range, or for PHB0, 
if io-hole is enabled, may also reside in the 640 KB to 
(1 MB - 1) address range. Platforms with multiple 
PHBs may also support this when the destination de-
vice resides in the Peripheral Memory Space of a dif-
ferent PHB than the source device.

System 
Memory

Yes

For PHB0, if the io-hole is enabled, then the system-
memory-alias must be enabled and used to access 
System Memory addresses in the 640 KB to 
(1 MB - 1) range.

ISA DMA or 
DMA Master

ISA or
PCI I/O

No

PCI Master
I/O Space of 
ISA or PCI

Yes
This is only required when the destination device re-
sides on the same side of the same PHB as the source 
device (see also requirement 3–6).

Table 10. Which I/O Devices Must Be Able to Access Which Address Spaces  (Continued)

Source Device
Destination

Device

Platform
Support

Required?
Other Requirements and Comments
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tem might not support include:

■ A PCI device which requires configuration below 1 MB when the operating 
system does not support the io-hole.

■ PCI devices which require a PCI address below 1 MB and which will not 
configure into the io-hole due to their size may not be configured by the OF 
or the operating system.

■ ISA devices which would cause holes in the ISA DMA master buffer area in 
System Memory or the corresponding ISA DMA master(s). Therefore sys-
tem board devices should not be configured outside the io-hole range, and 
firmware should configure I/O devices in the io-hole range if possible.

ISA to PCI operations cannot traverse a PCI to PCI bridge or else a dead-
lock condition can occur.

5.2.2 PCI to PCI Bridges

The CHRP architecture allows the use of PCI to PCI bridges in the platform. If
the 64-bit addressing option is enabled, the TCEs can be used with the devices
attached to the other side of the PCI to PCI bridge when those devices are ac-
cessing something on the processor side of the PHB. After configuration, PCI
to PCI bridges are basically transparent to the software as far as addressing is
concerned (the exception is error handling). For more information, see the PCI
to PCI Bridge Architecture Specification [16].

Requirements:

5–20. PCI to PCI bridges used on the base platform must implement the 
architecture as specified in the PCI to PCI Bridge Architecture 
Specification [16].

Hardware Implementation Note: PCI to PCI bridges may limit operations to 
the PCI I/O space to 16 bits on the side opposite the PHB (that is, 
addresses of 0 to (64K - 1) are passed through the bridge, but not 
addresses of 64K and above). Therefore, I/O devices will be limited to 
the first 64 KB of Peripheral I/O Space (with discontiguous mode 
disabled) in such cases.
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5.2.3 PCI to ISA Bridges 

The CHRP architecture allows for at most one ISA bridge attached to one (and
only one) PCI bus in a platform. If the 64-bit addressing option is enabled, the
TCEs can be used with ISA devices when those devices are accessing some-
thing on the processor side of the PHB.

Requirements: 

5–21. There must be at most one ISA bus in a platform.

5–22. If there is an ISA bridge on a platform, it must be attached to the I/O 
side of HB0.

5–23. If there is an ISA bridge on a platform, a DMA controller must be 
available for the ISA DMA operations, and the DMA controller must be 
compatible with the register set defined in Chapter 9, “I/O Devices,” on 
page 151.

5–24. OF must program a PCI to ISA bridge such that all addresses for ISA 
DMA master operations get passed through the PCI to ISA bridge and 
do not get translated as they pass through the bridge.

5–25. If an ISA device is to participate in PCI to ISA peer to peer operations 
then the ISA device must be configured in the 640 KB to (1 MB - 1) 
address range (the io-hole) and the io-hole must be enabled.

5–26. PCI to ISA bridges must do a subtractive decode on the PCI side of the 
bridge in the PCI Memory Space from 0 to (16 MB - 1) and in the PCI 
I/O Space from 0 to (64 KB - 1) (that is, they must pass any PCI access 
in these address ranges to the ISA bus if the PCI cycles in these ranges 
are not first picked up by another PCI device).

Requirement 5–21 does not imply the number of ISA expansion slots and an
ISA bus without slots counts as one ISA bus. It may be possible to meet
requirement 5–21 with multiple physical ISA buses, but it must appear to soft-
ware to be one logical ISA bus, including all programming models and the
appearance in the OF device tree as one and only one PCI to ISA bridge.

Since the OF may not know which devices will participate in PCI to ISA
peer to peer operations, requirement 5–25 says that OF should configure all
ISA devices in the io-hole address range if possible. See also the requirements
in Section 5.2.1, “What Must Talk to What,” on page 79 for additional require-
ments.
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Hardware Implementation Notes: 

■ Type F DMA is recommended for multimedia operations.

■ The IEEE definition of the ISA bus is in draft form and is called 
IEEE 996, A Standard for an Extended Personal Computer Back 
Plane Bus [13].

■ The PCI to PCI Bridge Architecture Specification [16] does not 
support the attachment of PCI to ISA bridges to the PHB through a 
PCI to PCI bridge, and does not support ISA DMA or ISA DMA 
master transactions through a PCI to PCI bridge to another PCI 
device.

5.2.4 16-Bit PC Card (PCMCIA) and Cardbus PC 
Card Bridges 

The CHRP architecture allows for 16-bit PC Card and Cardbus PC Card
bridges. If the 64-bit addressing option is enabled, the TCEs can be used with
16-bit PC Card or Cardbus PC Card devices. For more information on PC
Cards, see the PC Card Standard specification [17].

If a platform supports 16-bit PC Card or Cardbus PC Card cards, then the
following requirement applies.

Requirements: 

5–27. A platform which supports Cardbus PC Card devices must also support 
16-bit PC Card devices.
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Interrupt Controller Chapter 6

This chapter specifies the requirements for the CHRP interrupt controller. It
also proposes a distributed implementation of the interrupt controller.

6.1 Interrupt Controller Architecture
The Open PIC Multiprocessor Interrupt Controller Register Interface Speci-

fication1 is the basis of the CHRP interrupt controller architecture. The Open
PIC Specification contains a register-level architectural definition of an inter-
rupt controller that supports up to 32 processors. The Open PIC specification
defines means for assigning properties such as priority, vector, destination, etc.,
to I/O and interprocessor interrupts, as well as an interface for presenting them
to processors. It supports both specific and distributed methods for interrupt
delivery. The interrupt controller also provides timer-interrupt facilities and
means to facilitate assertion of “Initialize” signals to processors.

Requirements:

6–1. Platforms must implement interrupt controllers that are in register-level 
architectural compliance with Open PIC Multiprocessor Interrupt 
Controller Register Interface Specification, Revision 1.2 [8] including 
its PowerPC architecture appendix.

1 The PowerPC architecture Appendix in the Open PIC Specification Revision 1.2 defines options
for PowerPC-based systems. However, more options are currently in the process of being included
in the said appendix and are expected to appear in future revisions of the specification.
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6–2. The Interrupt Acknowledge register implemented in the CHRP 
interrupt controller.

6–3. Platforms must make per-processor registers available in the “publicly 
accessible area” of the Open PIC register map.

6–4. All interrupt controller registers must be accessed via Caching-
Inhibited and Guarded mapping.

6–5. The INIT signals defined in Open PIC must be connected to Soft Reset 
pins on PowerPC processors.

6–6. Interrupts must be disabled at the CHRP interrupt controller at the point 
of transfer of control to the operating system.

Software Implementation Note: Private access interface to the per-
processor registers is optional. Software should not depend on it being 
available.

Software Implementation Note: The Who Am I register might not be 
implemented in a CHRP interrupt controller. An alternative system-
specific method may be defined, instead, for a processor to find out its 
own Open PIC identity for use in specifying interrupt destinations. For 
an example of such a method, see Section Section 12.2, “An SMP 
Boot Process,” on page 218.

Hardware Implementation Note: Allocation of PCI interrupts is discussed 
in Section 9.1.3, “Assignment of Interrupts to PCI Devices,” on 
page 152.

Hardware Implementation Note: The number of I/O interrupts supported 
are platform dependent.

6.2 Distributed Implementation — A 
Proposal

It is an intention of the CHRP architecture to allow a variety of system
structures and sizes. It is in keeping with this intention to expect system struc-
tures that include multiple I/O busses which are physically distant from each
other and from the processors themselves. It would be impractical in such sys-
tems to have an interrupt controller implemented as a single centrally placed
integrated circuit. The following distributed implementation of the Open PIC
architecture is therefore proposed. The CHRP architecture provides addressing
infrastructure to support it.
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The interrupt controller is logically divided into two partitions: The I/O
interrupt source partition containing the Interrupt Source Registers that accepts
I/O interrupt signals and translates them into the vector, priority, and destina-
tion information to be presented to processors; and another partition that con-
tains the rest of the controller functionality. The I/O interrupt source partition
may be further partitioned into multiple sub-partitions. Each sub-partition rep-
resents an I/O interrupt group. An I/O interrupt group is defined by its lowest
interrupt number and the number of interrupts in the group. These are specified
via Open Firmware Interrupt Controller properties. See section on Open PIC
interrupt controller node properties in PowerPC Microprocessor Common
Hardware Reference Platform System binding to: IEEE Std 1275-1994 Stan-
dard for Boot (Initialization, Configuration) Firmware [10].

The interrupt controller may be partitioned into one or more physical units:
A base unit called the Interrupt Delivery Unit (IDU), which houses the global,
timer-related, and public-access per-processor registers, contains logic to
deliver interrupts to processors, and may optionally house a single I/O interrupt
source sub-partition. Additionally, there may be zero or more external Interrupt
Source Units (ISUs), each housing Interrupt Source Registers for an I/O inter-
rupt group.

The IDU and the external ISUs may communicate via a system-dependent
means. Figure 11 on page 88 shows a system map with the IDU containing an
I/O interrupt group and one external ISU.
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The IDU and the ISUs are individually mapped, in a non-overlapped man-
ner, in the system memory. Typically, an external ISU will be mapped within
the address range occupied by the bus, from whose devices it receives inter-
rupts. Open Firmware properties for the interrupt controller specify the base
addresses for the IDU and for the external ISUs, if any. See section on Open
PIC interrupt controller node properties PowerPC Microprocessor Common
Hardware Reference Platform System binding to: IEEE Std 1275-1994 Stan-
dard for Boot (Initialization, Configuration) Firmware [10].

The relative offsets of register addresses within the IDU with respect to its
base address are identical to those specified in the Open PIC Specification. In
the ISU, the ISRs for interrupt group are mapped contiguously starting at the

Figure 11. System Memory Map Showing Mapping of the IDU and an ISU
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base address of the ISU with the lowest numbered interrupt first. All registers
are aligned on 16-byte boundaries, as required by the Open PIC Specification.

Proposed requirements:

■ Platforms must have an IDU.

■ The registers in the IDU must be placed at offsets to the base address de-
fined in the Open PIC Specification.

■ Platforms must support at least one I/O interrupt group, either via the IDU 
or via an external ISU.

■ The ISRs in an external ISU must be placed contiguously starting at the 
base address specified for it with the lowest numbered interrupt first.

■ All registers in the CHRP interrupt controller must be aligned on 16-byte 
boundary and must be implemented in Little Endian format.

Hardware Implementation Note: A centralized, single-chip implementation 
is covered by the distributed scheme just outlined, as a special case. 
In such an implementation, the IDU supports the only I/O interrupt 
group in the system.

Software Implementation Note: Open Firmware reg properties for the 
interrupt controller supply base addresses of the IDU and of the 
external ISUs, if any. Open Firmware interrupt-ranges properties of the 
interrupt controller specify the interrupt groups supported by the IDU 
and by the external ISUs, if any. Software should use Open Firmware 
properties of the interrupt controller to locate the Open PIC registers.
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Run-Time Abstraction 
Services Chapter 7

7.1 RTAS Introduction
The Run-Time Abstraction Services (RTAS) functions are provided by CHRP
platforms to insulate operating systems from having to know about and manip-
ulate a number of key platform functions which ordinarily would require plat-
form-dependent code. Operating systems call these functions rather than
manipulating hardware registers directly, reducing the need for platform tailor-
ing by OS suppliers. This method of abstracting access to these platform func-
tions also permits hardware vendors considerable flexibility in hardware
implementation. Since RTAS is provided by the hardware vendor, this ap-
proach places the responsibility for supporting the platform with the hardware
vendor, not the OS vendor. This permits separating the schedules of hardware
and software, permits different suppliers to provide each, and reduces the re-
lease and test requirements for OSs, since they can be tested to conform to the
RTAS interfaces and not to every specific hardware configuration.

In order for platforms to achieve this separation of operating system code
from platform dependencies, RTAS defines an interface between the platform
and the operating systems that provides control of some of the common devices
found on all CHRP platforms. RTAS is a system programming interface that is
realized on a specific platform by an RTAS implementation. The RTAS imple-
mentation provides the platform specific processing of the common compo-
nents while operating system drivers are necessary to provide device specific
processing for I/O adaptors. In general, operating systems should not access
RTAS resources directly. They should call RTAS to control the device.
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RTAS limits itself to the run-time control of non-I/O, typically system
board-resident hardware features. Traditionally, features such as these have
almost always been implemented differently on different platforms. This list of
features includes things like non-volatile memory, time-of-day clock, memory
bridges, and power management control functions. Such differences tradition-
ally require much effort and require platform-dependent code in OSs. RTAS
permits an OS to operate over a much wider range of platforms without spe-
cialized code for each platform. The presence of RTAS does not prevent an OS
from incorporating customized code to manipulate arbitrary platform hard-
ware, provided such hardware is defined in the Open Firmware Device Tree as
being present. We refer to such OSs as being “aware” of the platform feature.

The role of RTAS versus Open Firmware is very important to understand.
Open Firmware and RTAS are both vendor-provided software, and both are tai-
lored by the hardware vendor to manipulate the specific platform hardware.
However, RTAS is intended to be present during the execution of the OS, and
to be called by the OS to access platform hardware features on behalf of the
OS, whereas Open Firmware need not be present when an OS is running. This
frees Open Firmware’s memory to be used by applications. RTAS is small
enough to painlessly coexist with OSs and applications.

This chapter uses the term RTAS to refer both to the architected RTAS inter-
face and to an RTAS implementation.

7.2 RTAS Environment 
Since RTAS provides an interface definition between the operating system and
the firmware provided by the platform vendor, both the operating system and
the firmware on the hardware platform must use the calling convention as de-
fined in this chapter.

RTAS must operate in an environment that does not interfere with the oper-
ating system. It can not cause any exceptions, nor can it depend on any particu-
lar virtual memory mappings. For this reason, it runs in real mode with
exceptions disabled.

All RTAS functions are invoked from the operating system by calling the
rtas-call function. The address of this function is obtained from Open Firm-
ware when RTAS is instantiated. See requirement 7–13 for more details. RTAS
will determine what function to invoke based on the data passed into the rtas-
call function. This section describes the mechanisms used to invoke the rtas-
call function, the machine state, register usage, resource allocation, and the
invocation requirements.
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7.2.1 Machine State

When RTAS functions are invoked, the calling processor shall have address
translations, floating point, and most other exceptions disabled and it shall be
running in privileged state. 

Requirements:

7–1. RTAS must be called in “real mode,” that is, all address translation must 
be disabled. Bits IR and DR of the MSR register must be zero.

7–2. RTAS must be called in privileged mode, and the PR bit of the MSR 
must be set to 0.

7–3. RTAS must be called with external interrupts disabled, and the EE bit of 
the MSR must be set to 0.

7–4. RTAS must be called with trace disabled, and the SE and BE bits of the 
MSR must be set to 0.

7–5. RTAS must be called with floating point disabled, and the FE0, FE1 and 
FP bits must be set to 0.

7–6. RTAS must be called with the SF and LE bits of the MSR set to the 
same values that were in effect at the time that RTAS was instantiated.

7–7. With the exception of the DR and RI bits, RTAS must not change the 
state of the machine by modifying the MSR.

7–8. If rtas-call is entered in a non-recoverable mode, indicated by having 
the RI bit of the MSR set equal to 0, then RTAS must not enter a 
recoverable mode by setting the RI bit to 1.

7–9. If called with RI of the MSR equal to 1, then RTAS must protect its own 
critical regions from recursion by setting the RI bit to 0 when in the 
critical regions.

Software Implementation Note: If the ME bit is left enabled, the operating 
system’s exception handler must be aware that RTAS might have been 
running and that various processor registers might not be in the 
expected state for an interrupted operating system process. If the 
operating system cannot tolerate this, it should disable ME while RTAS 
is running, or set RI to zero which would preclude recoverability but 
permit logging machine checks. 

Software Implementation Note: There are some provisions for recursive 
calls to RTAS error handling functions. Therefore, RTAS should set the 
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RI bit in the MSR if SRR0/SRR1 or any other RTAS resource is in a 
state where information would be lost and prohibit recovery.

Software Implementation Note: Requirement 7–6 implies that RTAS must 
be prepared to be instantiated in either Big-Endian or Little-Endian 
modes, and to be able to be instantiated in 64-bit mode on platforms 
that can support 64-bit execution.

7.2.2 Register Usage

Requirements:

7–10. Except as required by a specific function, RTAS must not modify the 
following operating environment registers: TB, DEC, SPRG0-SPRG3, 
EAR, DABR, SDR1, ASR, SR0-SR15, FPSCR, FPR0-FPR3, and any 
processor specific registers.

7–11. RTAS must preserve the following user mode registers: R1-R2, R13-
R31, and CR.

7–12. RTAS must preserve the following operating environment registers: 
MSR, DAR, DSISR, IBAT0-IBAT3, and DBAT0-DBAT3.

Software Implementation Note: RTAS is entered in real mode (with 
address translation turned off). In this mode, all data accesses are 
assumed to be cached in copy back mode with memory coherence 
required. Since these settings may not be appropriate for all accesses, 
RTAS is free to use the Block Address Translation registers to set up 
its own virtual mappings. The operating system machine check 
handler can only depend on those registers that are required to be 
unchanged (see requirement 7–10).

Software Implementation Note: RTAS either may not change the 
preserved registers, or may save them as long as they are restored 
before returning to the operating system.

Software Implementation Note: The SRR0-SRR1, LR, CTR, XER 
registers, as well as any reservations made via the load and reserve 
instructions, need not be preserved.
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7.2.3 RTAS Critical Regions

The operating system that uses RTAS is responsible for protecting RTAS and
devices used by RTAS from any simultaneous accesses that could corrupt
memory or device registers. Such corruption could be caused by simultaneous
execution of RTAS code, or by a device driver accessing a control register that
is also modified by RTAS. In a single processor system, most recursive calls to
RTAS are prevented by clearing the EE bit of the MSR. This will limit recur-
sive calls to RTAS to those made from the machine check handler. This handler
may need to call various RTAS services such as check-exception or system-re-
boot even if the error was detected while in a RTAS service.

The operating system and RTAS must co-exist on the same platform. RTAS
must not change device registers that are used by the operating system, nor
may the operating system change device registers on devices used by RTAS.
With the advent of more and more integration into common super parts, some
of these registers may physically reside on the same component. In this section,
device implies the collection of common registers that together perform a func-
tion. Each device must be represented in the Open Firmware Device Tree.

Requirements:

7–13. Except as noted in requirement 7–19, the operating system must ensure 
that RTAS calls are not re-entered and are not simultaneously called 
from different processors in a multi-processor system.

7–14. Any RTAS access to device or I/O registers specified in this document 
must be made in such a way as to be transparent to the operating 
system.

7–15. Any device that is used to implement the RTAS abstracted services 
must have the property used-by-rtas in the Open Firmware Device Tree. 
However, if the device is only used by the suspend, hibernate, power-
off, and system-reboot calls, which do not return directly to the 
operating system, the property should not be set. The display-character 
device must be marked used-by-rtas only if it is a specialized device 
used only for display-character.

7–16. Platforms must be designed such that accesses to devices that are 
marked used-by-rtas have no side effects on other registers in the 
system.

7–17. Any operating system access to devices specified as used-by-rtas must 
be made in such a way as to be transparent to RTAS.
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7–18. RTAS must not generate any exceptions (for example, no alignment 
exceptions, page table walk exceptions, etc.).

7–19. The operating system machine check and soft reset handlers may call 
the RTAS services:

■ nvram-fetch

■ nvram-store

■ check-exception

■ set-indicator

■ system-reboot

■ set-power-level(0,0)

■ power-off

Software Implementation Note: While RTAS must not generate any 
exceptions, it is still possible that a machine check interrupt may occur 
during the execution of a RTAS function. In this case the machine 
check handler may be entered from the RTAS service.

Software Implementation Note: It is permissible for an operating system 
exception handler to make an RTAS call as long as requirements 7–13 
and 7–10 are met. In particular, it is expected that the RTAS check-
exception will be called from the operating system exception handlers.

7.2.4 Resource Allocation and Use

During execution, RTAS will require memory for both code and data. This
memory may be in RAM, in a private memory area only known by the system
firmware, or in memory allocated by the operating system for RTAS use. RTAS
should use this memory for its stack and any state savings.

Requirements:

7–20. The operating system must allocate rtas-size bytes of contiguous real 
memory as RTAS private data area. This memory must be aligned on a 
4096 byte boundary and may not cross a 256 megabyte boundary.

7–21. The RTAS private data area must not be accessed by the operating 
system.
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7–22. Except for the RTAS private data area, the argument buffer, System 
Memory pointed to by any reference parameter in the argument buffer, 
and any other System Memory areas explicitly permitted in this chapter, 
RTAS must not modify any System Memory. RTAS may, however, 
modify System Memory during error recovery provided that such 
modifications are transparent to the operating system.

7–23. If the operating system moves or otherwise alters the addresses 
assigned to ISA or PCI devices that are marked used-by-rtas after it has 
instantiated RTAS, then the operating system must restart RTAS by 
calling restart-rtas prior to making any further RTAS calls. 

7–24. RTAS must execute in a timely manner and may not sleep in any 
fashion nor busy wait for more than a very short period of time. 

Software Implementation Note: A RTAS call should take the same amount 
of time to perform a service that it would take an operating system to 
perform the same function. A specific goal is that RTAS primitives 
should take less than a few tens of microseconds.

Software Implementation Note: Resources that need to be manipulated by 
RTAS, such as NVRAM, may reside on the PCI bus. If the operating 
system moves these devices, then RTAS must be restarted.

7.2.5 Instantiating RTAS

RTAS is instantiated by an explicit client interface service call into Open Firm-
ware. The Open Firmware Device Tree contains a property (rtas-size, under the
rtas node) which defines how much real memory RTAS requires. The operat-
ing system allocates rtas-size bytes of real memory, and then invokes the in-
stantiate-rtas method of the RTAS node, passing this address as the rtas-base-
address input argument. Firmware binds RTAS to that address, binds the ad-
dresses of devices that RTAS uses, performs any RTAS initialization, and re-
turns the address of the rtas-call function that is appropriate for the current
machine state.

Requirements:

7–25. The instantiate-rtas Open Firmware method must have the arguments 
specified in Table 11 on page 98.
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7–26. RTAS must operate in the endian mode in effect at the time of the 
instantiate-rtas call.

Software Implementation Note: The firmware may provide two distinct 
implementations, one for each endianess, or may provide a single 
implementation that is bi-endian. The implementation technique is left 
up to the designer of the firmware.

7.2.6 RTAS Device Tree Properties

The Open Firmware Device Tree must contain an rtas device node that de-
scribes the implemented RTAS features and the output device supported by
RTAS. Within this device node will be properties that describe the RTAS func-
tions implemented by the firmware. For every implemented function, there will
be an Open Firmware property whose name is the same as the RTAS function.
The value of this property is passed into the rtas-call function when making a
RTAS call. Note that some RTAS functions are optional and some are required.
This is defined in Table 12 on page 99.

Requirements:

7–27. The Open Firmware Device Tree must contain a device node named 
rtas which describes the RTAS implementation.

7–28. The RTAS device node must have a property for each implemented 
RTAS function in Table 12 on page 99. The value of this property is a 
token that is passed into the rtas-call function to indicate which RTAS 
function to invoke.

Table 11. instantiate-rtas Argument Call Buffer

Parameter Type Name Values

In rtas-base-address Real Address of RTAS memory

Out rtas-call Real address used to invoke RTAS functions
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Table 12. RTAS Tokens for Functions 

RTAS property/function Required? Notes

restart-rtas Required

nvram-fetch Required Execution time proportional to amount of data

nvram-store Required Execution time proportional to amount of data

get-time-of-day Required

set-time-of-day Required

set-time-for-power-on

event-scan Required

check-exception Required

read-pci-config Required

write-pci-config Required

display-character

set-indicator Required
Some specific indicators are required, and 
some are optional

get-sensor-state

set-power-level

Required in Power 
Managed Platforms

get-power-level

assume-power-management

relinquish-power-manage-
ment

power-off
Provided for platforms with software con-
trolled power off capability, with or without 
other Power Management capability

hibernate

suspend

system-reboot Required
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7–29. The Open Firmware properties listed in Table 13 on page 100 must be 
in the RTAS Device Tree node prior to booting the operating system.

7–30. All RTAS functions listed as “Required” in Table 12 on page 99 must 
be implemented in RTAS.

7–31. For the Power Management option:  The functions listed as 
“Required in Power Managed Platforms” in Table 12 on page 99 must 
be implemented in RTAS.

7–32. For the Symmetric Multiprocessor option: The functions listed as 
“Required in SMP Platforms” in Table 12 on page 99 must be 
implemented in RTAS.

cache-control

Required in Power 
Managed Platforms

Required in SMP 
Platforms

freeze_time_base

Required in SMP 
Platforms

Turn off time base

thaw_time_base Turn time base back on

stop-self

start-cpu

Table 13. Open Firmware Device Tree Properties

name value

rtas-size integer size of RTAS memory area in bytes

rtas-version
An integer encoding of the RTAS interface version. This document de-
scribes version 1.

rtas-event-scan-rate
The rate, in calls per minute, at which rtas-event-scan should be called by 
the operating system. See Section 7.3.4.1, “Event-scan,” on page 110.

rtas-display-device The phandle of the device node used by the RTAS call, display-character

rtas-error-log-max The maximum size of an extended error log.

Table 12. RTAS Tokens for Functions  (Continued)

RTAS property/function Required? Notes
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Software Implementation Note: It is permitted for RTAS not to implement 
those functions that are not appropriate or not needed on a particular 
platform. For example, if the system does not have power 
management features, then it is perfectly reasonable not to implement 
the RTAS power management calls.

Software Implementation Note: Vendors may introduce private RTAS calls 
of their own. If they do, the property names should be of the form 
“vendor,property” where vendor is a company name string as defined 
by Open Firmware. Future versions of this architecture will not choose 
RTAS property names that include a comma.

7.2.7 Calling Mechanism and Conventions

RTAS is called through a mechanism similar to the Open Firmware client inter-
face service. An argument buffer is constructed which describes the desired
RTAS call. This description includes an indication of the RTAS call that is be-
ing invoked, the number and value of the input parameters, the number of re-
sult values, and space for each of the result values.

Requirements:

7–33. In order to make an RTAS call, the operating system must construct an 
argument call buffer aligned on an eight byte boundary in physically 
contiguous real memory as described by Table 14 on page 101.

Table 14. RTAS Argument Call Buffer 

Cell Number Use

1 Token Specifying which RTAS Call

2 Number of Input Parameters

3 Number of Output Parameters

4 First Input Parameter

... Other Input Parameters

4 + Number of Inputs -1 Last Input Parameter

4 + Number of Inputs First Output Value
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7–34. If the system is a 32-bit system, or if the SF bit of the MSR was 0 when 
RTAS was instantiated, then all cells in the RTAS argument buffer must 
be 32-bit sign extended values that are aligned to 4 byte boundaries.

7–35. If the SF bit of the MSR was 1 when RTAS was instantiated, then all 
cells in the RTAS argument buffer must be 64-bit values that are aligned 
to 8 byte boundaries.

7–36. RTAS functions must be invoked by branching to the rtas-call address 
which is returned by the instantiate-rtas Open Firmware method (see 
Table 11 on page 98).

7–37. Register R3 must contain the argument buffer’s real address when rtas-
call is invoked.

7–38. Register R4 must contain the real address of the RTAS private data area 
when rtas-call is invoked (see requirement 7–20).

7–39. The Link Register must contain the return address when rtas-call is 
invoked.

Software Implementation Note: RTAS is not required to perform sanity 
checking of its input parameters. Using invalid values for any 
parameter in a RTAS argument buffer gives undefined results.

Software Implementation Note: The token that specifies the RTAS call is 
obtained by looking up the desired call from the rtas node of the Open 
Firmware Device Tree.

Software Implementation Note: Most operating systems will need to 
implement simple wrappers to provide an interface that is natural for 
the operating system (for example C function calls to the RTAS 
interface). These interfaces are operating system specific and are 
beyond the scope of this specification.

... Other Output Parameters

4 + Number of Inputs
+ Number of Outputs -1

Last Output Value

Table 14. RTAS Argument Call Buffer  (Continued)

Cell Number Use
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7.2.8 Return Codes

Requirements:

7–40. The first output value of all the RTAS functions must be a status word 
which denotes the result of the call. The status word will take on one of 
the values in Table 15 on page 103. Non-negative values indicate suc-
cess.

7.3 RTAS Call Function Definition
This section specifies the semantics of all the RTAS calls. It specifies the RTAS
function name, the contents of its argument call buffer (its token, input parame-
ters, and output values) and semantics.

7.3.1 restart-rtas

If the operating system moves or otherwise alters addresses assigned to PCI or
other buses, the resources used by RTAS may be assigned to different loca-
tions. RTAS needs to be informed of this change so it can continue to access its
resources. It is the responsibility of RTAS to determine the new locations of its

Table 15. RTAS Status Word Values

Values Status Word Meanings

0 RTAS function call succeeded.

-1
RTAS function call encountered a hardware error or 
failed for some unspecified reason.

-2
A necessary hardware device was busy, and the re-
quested function could not be performed. The opera-
tion should be retried at a later time.

9000-9999 Reserved for vendor specific success codes.

-9000- (-9999) Reserved for vendor specific error codes.

Additional Negative Numbers
An error was encountered. The meaning of this error 
is specific to the RTAS function that was invoked.

Additional Positive Numbers
The function succeeded. The meaning of the status 
word is specific to the RTAS function that was in-
voked.
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devices by reading PCI configuration space or referencing unarchitected regis-
ters known to RTAS code.

Requirements:

7–41. RTAS must implement a restart-rtas function that uses the argument 
call buffer defined by Table 16 on page 104.

7–42. If any device marked used-by-rtas, or a device used as the rtas-display-
device if the OS will in the future call the display-character function, is 
moved or reconfigured, then the operating system must invoke restart-
rtas before using any other RTAS function.

7–43. RTAS must update any necessary configuration state information based 
on the current configuration of the machine when restart-rtas is called.

7.3.2 NVRAM Access Functions

The architecture requires an area of non-volatile memory (NVRAM) to hold
Open Firmware options, RTAS information, machine configuration state, oper-
ating system state, diagnostic logs, etc. The type and size of NVRAM is speci-
fied in the Open Firmware Device Tree. The format of NVRAM is detailed in
Chapter 8, “Non-Volatile Memory,” on page 141. 

In order to give a shrink wrapped operating system the ability to access
NVRAM on different platforms that may use different implementations or
locations for NVRAM, some layer of abstraction must be provided to the oper-
ating system. The functions in this section provide an interface for reading and
writing NVRAM. 

Table 16. restart-rtas Argument Call Buffer

Parameter Type Name Values

In

Token Token for restart-rtas

Number Inputs 0

Number Outputs 1

Out Status
0: Success
-1: Hardware Error
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7.3.2.1 nvram-fetch

The RTAS function nvram-fetch will copy data from a given offset in NVRAM
into the user specified buffer.

Requirements:

7–44. RTAS must implement an nvram-fetch function that returns data from 
NVRAM using the argument call buffer defined by Table 17 on 
page 105.

7.3.2.2 nvram-store

The RTAS function nvram-store will copy data from the user specified buffer
to a given offset in NVRAM.

Requirements:

7–45. RTAS must implement an nvram-store function that stores data in 
NVRAM using the argument call buffer defined by Table 18 on 
page 106.

Table 17. nvram-fetch Argument Call Buffer 

Parameter Type Name Values

In

Token Token for nvram-fetch

Number Inputs 3

Number Outputs 2

Index Byte offset in NVRAM

Buffer Real address of data buffer

Length Size of data buffer (in bytes)

Out
Status

0: Success
-1: Hardware Error
-3: Parameter out of range

Num Number of bytes successfully copied
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7–46. If the nvram-store operation succeeded, the contents of NVRAM must 
have been updated to the user specified values. The contents of 
NVRAM are undefined if the RTAS call failed.

7–47. The caller of the nvram-store RTAS call must maintain the NVRAM 
partitions as specified in Chapter 8, “Non-Volatile Memory,” on 
page 141.

7.3.3 Time of Day

The minimum system requirements include a non-volatile real-time clock
which maintains the time of day even if power to the machine is removed. Min-
imum requirements for this clock are described in Table 2 on page 19.

7.3.3.1 Time of Day Inputs/Outputs

Requirements:

7–48. The date and time inputs and outputs to the RTAS time of day function 
calls are specified with the year as the actual value (for example, 1995), 
the month as a value in the range 1-12, the day as a value in the range 1-
31, the hour as a value in the range 0-23, the minute as a value in the 

Table 18. nvram-store Argument Call Buffer 

Parameter Type Name Values

In

Token Token for nvram-store

Number Inputs 3

Number Outputs 2

Index Byte number in NVRAM

Buffer Real address of data buffer

Length Size of data buffer (in bytes)

Out
Status

0: Success
-1: Hardware Error
-3: Parameter out of range

Num Number of bytes successfully copied
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range 0-59, and the second as a value in the range 0-59. The date must 
also be a valid date according to common usage: the day range being 
restricted for certain months, month 2 having 29 days in leap years, etc.

7–49. Operating systems must account for local time, for daylight savings 
time when and where appropriate, and for leap seconds. 

7–50. RTAS must account for leap years.

7.3.3.2 Get-time-of-day

Requirements:

7–51. RTAS must implement a get-time-of-day call using the argument call 
buffer defined by Table 19 on page 107.

7–52. RTAS must read the current time and set the output values to the best 
resolution provided by the platform.

Table 19. get-time-of-day Argument Call Buffer 

Parameter Type Name Values

In

Token Token for get-time-of-day

Number Inputs 0

Number Outputs 8

Out

Status
0: Success
-1: Hardware Error
-2: Clock Busy, Try again later

Year Year

Month 1-12

Day 1-31

Hour 0-23

Minute 0-59

Second 0-59

Nanoseconds 0-999999999
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7.3.3.3 Set-time-of-day

Requirements:

7–53. RTAS must implement a set-time-of-day call using the argument call 
buffer defined by Table 20 on page 108:

7–54. RTAS must set the time of day to the best resolution provided by the 
platform.

Software Implementation Note: The operating system maintains the clock 
in UTC. This allows the various operating systems and diagnostics to 
co-exist with each other and provide uniform handling of time. Refer to 
Table 2 on page 19 for further details on the time of day clock. 

Table 20. set-time-of-day Argument Call Buffer 

Parameter Type Name Values

In

Token Token for set-time-of-day

Number Inputs 7

Number Outputs 1

Year Year

Month 1-12

Day 1-31

Hour 0-23

Minute 0-59

Second 0-59

Nanosecond 0-999999999

Out Status
0: Success
-1: Hardware Error
-2: Clock Busy, Try again later
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7.3.3.4 Set-time-for-power-on

Some platforms provide the ability to set a time to cause the platform power
on. The set-time-for-power-on call provides the interface to the operating sys-
tem for setting this timer.

Requirements:

7–55. RTAS must implement the set-time-for-power-on call using the argument 
call buffer defined by Table 20 on page 108:

7–56. If the system is in a powered down state at the time scheduled by set-
time-for-power-on (within the accuracy of the clock), then power must 
be reapplied and the system must go through its power on sequence.

7.3.4 Error and Event Reporting

The error and event reporting RTAS calls are designed to provide an abstract
interface into hardware registers in the system that may contain correctable or

Table 21. set-time-for-power-on Argument Call Buffer

Parameter Type Name Values

In

Token Token for set-time-for-power-on

Number Inputs 7

Number Outputs 1

Year Year

Month 1-12

Day 1-31

Hour 0-23

Minute 0-59

Second 0-59

Nanosecond 0-999999999

Out Status
0: Success
-1: Hardware Error
-2: Clock Busy, Try again later



110 Chapter 7 Run-Time Abstraction Services

Personal Use Copy - Not for Reproduction

non-correctable errors and to provide an abstract interface to certain platform
events that may be of interest to the operating system. Such errors and events
may be detected either by a periodic scan or by an exception trap.

These functions are not intended to replace the normal error handling in the
operating system. Rather, they enhance the operating system’s abilities by pro-
viding an abstract interface to check for, report, and recover from errors or
events on the platform that are not necessarily known to the operating system. 

The operating system uses the error and event RTAS calls in two distinct
ways:

1. Periodically, the operating system calls event-scan to have the system firm-
ware check for any errors or events that have occurred. 

2. Whenever the operating system receives an interrupt or exception that it can 
not fully process, it must call check-exception.

The first case covers all errors and events that do not signal their occurrence
with an interrupt or exception. The second case covers those errors and events
that do signal with an interrupt or exception. It is platform dependent whether
any specific error or event causes an interrupt on that platform.

Requirements:

7–57. RTAS must return the event generated by a particular interrupt or event 
source by either check-exception or event-scan, but not both.

7.3.4.1 Event-scan

Requirements:

7–58. RTAS must implement an event-scan call using the argument call buffer 
defined by Table 22 on page 111.
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7–59. The event-scan call must fill in the error log with a single error log 
formatted as specified in Section 10.3.2, “RTAS Error/Event Return 
Format,” on page 168. If necessary, the data placed into the error log 
must be truncated to length bytes.

7–60. RTAS must only check for errors or events that are within the classes 
defined by the Event mask. Event mask is a bit mask of error and event 
classes. Refer to Table 50 on page 159 for the definition of the bit 
positions.

7–61. If Critical is non-zero, then RTAS must perform only those operations 
that are required for continued operation. No extended error 
information will be returned.

7–62. The event-scan call must return the first found error or event and clear 
that error or event so it is only reported once.

7–63. The operating system must continue to call event-scan while a status of 
“New Error Log returned” is returned.

7–64. The event-scan call must be made at least rtas-event-scan-rate times 
per minute for each error and event class and must have the Critical 
parameter equal to 0 for this periodic call.

Table 22. event-scan Argument Call Buffer

Parameter Type Name Values

In

Token Token for event-scan

Number Inputs 4

Number Outputs 1

Event Mask Mask of event classes to process

Critical Indicates whether this call must complete quickly

Buffer Real address of error log

Length Length of error log buffer

Out Status
1: No Errors Found
0: New Error Log returned
-1: Hardware Error
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Software Implementation Note: In a multiprocessor system, each 
processor should call event-scan periodically, not always the same 
one. The event-scan function needs to be called a total of rtas-event-
scan-rate times a minute.

Software Implementation Note: The maximum size of the error log is 
specified in the Open Firmware Device Tree as the rtas-error-log-max 
property of the RTAS node.

Software Implementation Note: This call does not log the error in NVRAM. 
It returns the error log to the operating system. It is the responsibility of 
the operating system to take appropriate action.

Software Implementation Note: For best system performance, the 
requested rtas-event-scan rate should be as low as possible, and as a 
goal should not exceed 120 scans per minute. Maximum system 
performance is obtained when no scans are required.

7.3.4.2 Check-exception

Requirements:

7–65. RTAS must implement a check-exception call using the argument call 
buffer defined by Table 23 on page 113.
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7–66. The operating system must provide the value specified in Table 24 on 
page 113 in the “Additional Information” parameter in the call to check-
exception.

Table 23. check-exception Argument Call Buffer

Parameter Type Name Values

In

Token Token for check-exception

Number Inputs 6

Number Outputs 1

Vector Offset
The vector offset for the exception. See The Pow-
erPC Architecture [1], Section 5.4, “Interrupt Pro-
cessing”.

Additional Informa-
tion

Information which RTAS may need to determine the 
cause of the exception, but which may be unavail-
able to it in hardware registers. See Table 24 on 
page 113 for details.

Event Mask Mask of event classes to process

Critical Indicates whether this call must complete quickly

Buffer Real address of error log

Length Length of error log

Out Status
1: No Errors Found
0: New Error Log returned
-1: Hardware Error

Table 24. Additional Information Provided to check-exception call

Source of Interrupt Value of “Additional Information” Variable

External Interrupt Interrupt number

Machine Check Exception Value of register SRR1 at entry to machine check handler

System Reset Exception Value of register SRR1 at entry to system reset handler

Other Exception Value of register SRR1 at entry to exception handler
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7–67. The check-exception call must fill in the error log with a single error log 
formatted as specified in Section 10.3.2, “RTAS Error/Event Return 
Format,” on page 168. The data in the error log must be truncated to 
length bytes.

7–68. If Critical is non-zero, then RTAS must perform only those operations 
that are required for continued operation. No extended error 
information will be returned.

7–69. The check-exception call must return the first found error or event and 
clear that error or event so it is only reported once.

7–70. RTAS must only check for errors or events that are within the classes 
defined by the Event mask. Event mask is a bit mask of error and event 
classes. Refer to Table 50 on page 159 for the definition of the bit 
positions.

Software Implementation Note: All operating system reserved exception 
handlers should call check-exception to process any errors that are 
unknown to the operating system.

Software Implementation Note: The interrupt number for external device 
interrupts is provided in the Open Firmware device tree as specified in 
the PowerPC Microprocessor Common Hardware Reference 
Platform System binding to: IEEE Std 1275-1994 Standard for 
Boot (Initialization, Configuration) Firmware [10].

7.3.5 PCI Configuration Space

Device drivers and system software need access to PCI configuration space.
Chapter 3, “System Address Map,” on page 23 defines system address spaces
for PCI memory and PCI I/O spaces. It does not define an address space for
PCI configuration. Different PCI bridges may implement the mechanisms for
accessing PCI configuration space in different ways. The RTAS calls in this
section provide an abstract way of reading and writing PCI configuration
spaces.

The PCI Local Bus Specification, Revision 2.1 defines two addressing
modes for the PCI configuration space. The PCI access functions both take a
config_addr input parameter which is similar to a Type 1 address. This address
is a 24-bit quantity composed of bus, device, function, and register numbers, all
concatenated (high to low). Bus is an 8-bit quantity, device a 5-bit quantity,
function a 3-bit quantity, and register an 8-bit quantity. This allows the config-
uration of up to 256 buses (including sub-bridges), 32 devices per bus, 8 func-
tions per device, and 256 bytes of register space per function. Thus, up to 8192
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devices on various buses may be addressed. The config_addr for a device is
obtained from the Open Firmware Device Tree.

The PCI Local Bus Specification, Revision 2.1 requires that unimplemented
or reserved register space read as 0’s, and that reads of the Vendor ID register
of devices or functions which aren’t present should be unambiguously reported
(reading 0xFFFF is sufficient). Writes to unimplemented or reserved register
space are specified as no-ops. Writes to devices or functions which aren’t
present are undefined. These operations are undefined if a bus is specified
which doesn’t exist.

Requirements:

7–71. For the RTAS PCI configuration space functions, the parameter 
config_addr must be a configuration address as specified by the PCI 
Bus Binding to IEEE 1275 Standard for Boot (Initialization, 
Configuration) Firmware [12].

7–72. All RTAS PCI Read/Write functions must follow the PCI Local Bus 
Specification, Revision 2.1 or later.

7.3.5.1 Read-pci-config

Requirements:

7–73. RTAS must implement a read-pci-config call using the argument call 
buffer defined by Table 25 on page 115.

Table 25. read-pci-config Argument Call Buffer 

Parameter Type Name Values

In

Token Token for read-pci-config

Number Inputs 2

Number Outputs 2

 Config_addr Configuration Space Address

Size
Size of Configuration Cycle in bytes, value can 
be 1, 2, or 4 
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7–74. The read-pci-config call must return the value from the configuration 
register which is located at config_addr in PCI configuration space.

7–75. The read-pci-config call must perform a 1-byte, 2-byte, or 4-byte 
configuration space read depending on the value of the size input 
argument.

7–76. The config_addr must be aligned to a 2-byte boundary if size is 2 and to 
a 4-byte boundary if size is 4.

7–77. The read-pci-config call of devices or functions which are not present 
must return Success with all ones as the output value.

7.3.5.2 Write-pci-config

Requirements:

7–78. RTAS must implement a write-pci-config call using the argument call 
buffer defined by Table 26 on page 116.

Out
Status

0: Success
-1: Hardware Error

Value Value Read from config_addr

Table 26. write-pci-config Argument Call Buffer 

Parameter Type Name Values

In

Token Token for write-pci-config

Number Inputs 3

Number Outputs 1

Config_addr Configuration Space Address

Size
Size of Configuration Cycle
in bytes,
can be 1, 2, or 4 

Value Value to be written to config_addr

Table 25. read-pci-config Argument Call Buffer  (Continued)

Parameter Type Name Values
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7–79. The write-pci-config call must store the value from the configuration 
register which is located at config_addr in PCI configuration space.

7–80. The write-pci-config call must perform a 1-byte, 2-byte, or 4-byte 
configuration space write depending on the value of the size input 
argument.

7–81. The config_addr must be aligned to a 2-byte boundary if size is 2 and to 
a 4-byte boundary if size is 4.

7–82. The write-pci-config call of devices or functions which aren’t present 
must be ignored. A status of Success must be returned.

7.3.6 Operator Interfaces and Platform Control

The RTAS operator interface and platform control functions provide an OS
with the ability to perform platform services in a portable manner. The RTAS
operator interface provides the ability for an OS to notify the user about OS
events during boot, to notify the user of abnormal events, and to obtain infor-
mation from the platform. The platform control functions give the OS the abil-
ity to obtain platform-specific information and to control platform features. 

These calls are all “best effort” calls. RTAS should make its best effort to
implement the intent of the call. If the Platform Hardware does not implement
some optional feature, it is permitted for RTAS to either return an error, or to
virtualize the service in some way and return “Operation Succeeded.” 

Software Implementation Note: For example, a keyswitch could be 
virtualized by storing a keyswitch value in NVRAM and by providing a 
user interface to modify this value. The RTAS call get-sensor-state on 
the keyswitch would just return the value stored in NVRAM.

Software Implementation Note: If these services are only called prior to the 
use of any of the underlying devices by the OS, for example, during 
boot time, or only after the OS has finished using the devices, for 
example, during a crash, then the OS can avoid mutual exclusion and 
sharing concerns. Otherwise, synchronization per Section 7.2.3, 
“RTAS Critical Regions,” on page 95, must be performed.

Out Status
0: Success
-1: Hardware Error

Table 26. write-pci-config Argument Call Buffer  (Continued)

Parameter Type Name Values
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7.3.6.1 Display-character

The RTAS call display-character can be used by an operating system to display
informative messages during boot, or to display error messages when an error
has occurred and the operating system can not depend on its display drivers.
This call is intended to display the characters on an LCD panel, graphics con-
sole, or attached tty. The precise implementation is platform vendor specific.

Requirements:

7–83. RTAS must implement a display-character call using the argument call 
buffer defined by Table 27 on page 118 to place a character on the 
output device.

7–84. The operating system must serialize all calls to display-character with 
any other use of the rtas-display-device.

7–85. If a physical output device is used for the output of the RTAS display-
character call, then it must have at least one line and 4 characters.

7–86. Certain ASCII control characters must have their normal meanings with 
respect to position on output devices which are capable of cursor 
positioning. In particular, ^M (0x0D) must position the cursor at 
column 0 in the current line, and ^J (0x0A) must move the cursor to the 
next line, scrolling old data off the top of the screen.

7–87. RTAS must not output characters to the rtas-display-device except for 
explicit calls to the display-character function.

Table 27. display-character Argument Call Buffer

Parameter Type Name Values

In

Token Token for display-character

Number Inputs 1

Number Outputs 1

Value Character to be displayed

Out Status
0: Success
-1: Hardware error
-2: Device busy, try again later
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Software Implementation Note: RTAS should try to produce output to the 
user. This could be to the system console, to an attached terminal, or 
to some other device. It could be implemented using a diagnostic 
processor or network. RTAS could also implement this call by storing 
the messages in a buffer in NVRAM so the user could determine the 
reason for a crash upon re-boot.

Software Implementation Note: This call will modify the registers 
associated with the rtas-display-device. The operating system may 
also access this device but must be aware that calls to display-
character will change the state of the device.

7.3.6.2 Set-indicator

The RTAS set-indicator function provides the operating system with an ab-
straction for controlling various lights, indicators, and other resources on a
hardware platform. If multiple indicators of a given type are provided by the
platform, this function permits addressing them individually.

Requirements:

7–88. RTAS must implement a set-indicator call which sets the value of the 
indicator of type Indicator and index Indicator-index using the 
argument call buffer defined by Table 28 on page 119 and indicator 
types defined by Table 29 on page 120.

Table 28. set-indicator Argument Call Buffer

Parameter Type Name Values

In

Token Token for set-indicator

Number Inputs 3

Number Outputs 1

Indicator Token defining the indicator

Indicator-index Index of specific indicator (0, 1, ...)

State Desired new state

Out Status

0: Success
-1: Hardware Error
-2: Hardware busy, try again later
-3: No such indicator implemented
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7.3.6.3 Get-sensor-state

The RTAS call get-sensor-state can be used by a shrink wrapped operating sys-
tem to read the current state of various sensors on any Platform. If multiple

Table 29. Defined Indicators 

Indicator Name
Token 
Value

Defined Values
Default 
Value

Examples/Comments

Tone Frequency 1
Unsigned Integer

(units are Hz)
1000

Generate an audible tone using the tone generator hardware (see Ta-
ble 2 on page 19). RTAS will select the closest implemented audible 
frequency to the requested value.

Tone Volume 2
0-100 (units are 

percent),
0 = OFF

0
Set the percentage of full volume of the tone generator output, scaled 
approximately logarithmically.

System Power 
State

3

 Off(0), On(1), 
Standby(2), 
Suspend(3), 
Hibernate(4)

On
An external indicator which may be provided to indicate the system 
power state. Colors and/or blinking may be used to indicate power 
states other than Off and On.

Warning Light 4

Off(0)
Green(1)
Amber(2)
Red (3)

Off

Example Operating system policy:

Green indicates no problems, amber indicates a near-abnormal volt-
age, temperature, or other environmental condition, red indicates an 
out-of-range condition which must be acted upon. Software should 
display the condition to the user before displaying amber or red.

Disk Activity 
Light

5 On (1), Off (0) Off
Software may turn this light on when one or more disk transactions 
are in progress on any attached drive.

Hexadecimal 
Display Unit 

(LED)
6

0x0-0xFFFF: 4 
Hex Digits to dis-

play
0xFFFFFFFF: 
Clear Display

Clear

Can be used to indicate boot progress, or fatal error indications when 
no other I/O device can be trusted. Values in the range 
0xE000…0xEFFF are reserved for firmware and POST usage, and 
must be documented by the platform vendor if used. Other values are 
OS-specific, and must documented in OS documentation if used.

Battery Warn-
ing Time

7
Minutes

Zero minutes = dis-
abled

Zero

Sets the Battery Warning threshold. A Battery Warning event will be 
sent when approximately this many minutes of battery lifetime re-
mains. The timing is more accurate with smaller parameter values. 
See Table 62 on page 199 and Section 11.2.3.5, “Battery-Related 
RTAS Calls,” on page 208 for further detail.

Condition Cycle 
Request

8
Disable (0)
Enable (1)

Not in 
Progress

Setting this indicator requests the power circuitry to start a Battery 
Condition cycle. See Section 11.2.3.5, “Battery-Related RTAS 
Calls,” on page 208 for further detail.

Vendor Specific
9000-
9999

Indicator values reserved for platform vendor use.
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sensors of a given type are provided by the platform, this function permits ad-
dressing them individually.

Requirements:

7–89. RTAS must implement a get-sensor-state call which reads the value of 
the sensor of type Sensor which has index Sensor-index using the argu-
ment call buffer defined by Table 30 on page 121 and the sensor types 
defined by Table 31 on page 121.

Table 30. get-sensor-state Argument Call Buffer

Parameter Type Name Values

In

Token Token for get-sensor-state

Number Inputs 2

Number Outputs 2

Sensor Token defining the sensor type

Sensor-index Index of specific sensor (0, 1, ...)

Out
Status

0: Success
-1: Hardware Error
-2: Hardware Busy, Try again later
-3: No such sensor implemented

State Current sensor’s state

Table 31. Defined Sensors 

Sensor Name
Token 
Value

Defined Values Description

Key Switch 1

Off (0),
Normal (1),
Secure (2), 

Maintenance (3)

Key switch modes are tied to OS security 
policy. Suggested meanings: Mainte-
nance mode permits booting from floppy 
or other external, non-secure media. Nor-
mal mode permits boot from any at-
tached device. Secure mode permits no 
manual choice of boot device, and may 
restrict available functionality which can 
be accessed from the main operator sta-
tion. Off completely disables the system.
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Enclosure 
Switch

2
Open (1),
Closed (0)

This is a switch which indicates that the 
computer enclosure is open. For safety 
reasons, opening the enclosure should 
generally cause power to be removed.

Thermal Sensor 3
Temperature

(in Degrees Celsius)

If implemented, returns the internal tem-
perature of the most temperature-sensi-
tive portion of platform.

Lid Status 4
Open(1),
Closed(2)

If implemented, permits a power man-
aged OS to determine that a computer is 
not going to be used soon, and can be put 
into a reduced-power state

Power Source 5
AC (0), Battery (1)
AC & Battery(2)

Indicates source of primary power.

Battery Voltage 6 Voltage (in units of Volts) Current battery output voltage.

Battery Capacity 
Remaining

7

High(3)
Mid(2)
Low(1)

Very Low(0)

Used mainly for batteries which do not 
provide information about their current 
state. The actual value may depend on 
the implementation, including battery 
chemistry.

Battery Capacity 
Percentage

8
0-1000

(in units of 0.1%)
Used mainly for batteries which do re-
port their current state of charge.

Environmental 
and 

Power State 
(EPOW) Sensor

9

EPOW_Reset(0)
Warn_Cooling(1)
Warn_Power(2)

System_Shutdown(3)
System_Halt(4)

EPOW_Main_Enclosure(5)
EPOW_Power_Off(7)

RTAS assessment of the environment 
and power state of the platform.

Refer to Section 11.2.1.2, “Definition of 
RTAS Abstracted Power Management 
Event Types,” on page 199 for further in-
formation.

Battery Condi-
tion Cycle State

10
None (0)

In Progress (1)
Requested (2)

Current state of the Battery Condition Cy-
cle hardware. See Section 11.2.3.5, “Bat-
tery-Related RTAS Calls,” on page 208 
for further information.

Battery Charg-
ing State

11
Charging (0)

Discharging (1)
No Current Flow (2)

Indicates whether the battery is currently 
being charged, being used as a power 
source (discharging), or neither.

Vendor Specific
9000-
9999

Reserved for use by platform vendors.

Table 31. Defined Sensors  (Continued)

Sensor Name
Token 
Value

Defined Values Description
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7.3.7 Power Management

The ability to manage power consumption is a requirement for several con-
forming systems, such as laptop computers and “Green” or Energy Star com-
puters. RTAS provides the mechanisms necessary for an operating system to
manage the power consumption of the hardware. All policy decisions are up to
the operating system. 

Power management may be applied to an arbitrary power management
domain. Power domains for a given platform are defined in the Open Firmware
Device Tree. See Chapter 11, “Power Management,” on page 185 and Pow-
erPC Microprocessor Common Hardware Reference Platform System binding
to: IEEE Std 1275-1994 Standard for Boot (Initialization, Configuration)
Firmware [10].

Power management will involve changing clock speeds, lowering or remov-
ing power from devices, and setting certain control bits inside of processors.
The RTAS power management calls only apply to power management services
outside the processors. It is the responsibility of the operating system to man-
age individual CPUs.

Although a fundamental principle of power management is that system soft-
ware as opposed to platform hardware/firmware provides all power manage-
ment policy, there are times during the boot life of an operating system when
system software is unable to provide this control (for example, prior to the
loading of the power management system software). During these times the
platform must assume responsibility for making certain policy decisions. The
assume-power-management and relinquish-power-management RTAS calls
provide a mechanism for handing responsibility back and forth between system
software and the platform. Refer to the Chapter 11, “Power Management,” on
page 185 for a discussion of how these calls are intended to be utilized in a
power managed system.

Requirements:

7–90. For the Power Management option:  The operating system must con-
trol the power management features of the processors and any attached 
power-manageable devices for which it has device drivers.

Software Implementation Note: The RTAS Power Management calls 
provide a mechanism, not a policy. It is the responsibility of the 
operating system to implement the Power Management policy. It is 
also the responsibility of the operating system to maintain any 
necessary state information.
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7.3.7.1 Set-power-level

Requirements:

7–91. For the Power Management option:  RTAS must implement a set-
power-level call which changes the power level setting of a power 
domain. This call must be implemented using the argument call buffer 
defined by Table 32 on page 124.

7–92. For the Power Management option:  Power_domain must be a power 
domain identified in the Open Firmware Device Tree.

7–93. For the Power Management option:  Level must be a power level as 
specified by Section 11.2.1.1, “Definition of Domain Power Levels,” on 
page 198.

7–94. For the Power Management option:  The set-power-level call must 
set the level of the specified domain to the power level specified by 
level or to the next higher implemented level.

7–95. For the Power Management option:  The set-power-level call must 
return the power level actually set in the Actual_level output parameter.

Software Implementation Note: The set-power-level(0,0) call, if 
implemented, removes power from the root domain, turning off power 
to all domains. The external events which can turn power back on are 

Table 32. set-power-level Argument Call Buffer

Parameter Type Name Values

In

Token Token for set-power-level

Number Inputs 2

Number Outputs 2

Power_domain Token defining the power domain

Level Token for the desired level for this domain

Out
Status

0: Success
-1: Hardware Error
-2: Busy, Try again later

Actual_level The power level actually set
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platform specific. The RTAS primitive power-off also removes power 
from the system, but permits specifying the events which can turn 
power back on.

Software Implementation Note: The implemented values for the Level 
parameter for each power domain are defined in the Open Firmware 
device tree.

7.3.7.2 Get-power-level

Requirements:

7–96. For the Power Management option:  RTAS must implement a get-
power-level call which returns the current setting of a power domain. 
This call must be implemented using the argument call buffer defined 
by Table 33 on page 125.

7–97. For the Power Management option:  Power_domain must be a power 
domain identified in the Open Firmware Device Tree.

Software Implementation Note: The get-power-level call only returns 
information about power levels whose state is readable in hardware. It 
does not need to remember the last set state and return that value.

Table 33. get-power-level Argument Call Buffer 

Parameter Type Name Values

In

Token Token for get-power-level

Number Inputs 1

Number Outputs 2

Power_domain Token defining the power domain

Out
Status

0: Success
-1: Hardware Error
-2: Busy, try again later
-3: Can’t determine current level

Level The current power level for this domain



126 Chapter 7 Run-Time Abstraction Services

Personal Use Copy - Not for Reproduction

7.3.7.3 Assume-power-management

This call transfers control of the power management policy from the platform
to system software.

Requirements:

7–98. For the Power Management option:  RTAS must implement an as-
sume-power-management call which transfers control of the power 
management policy from the platform to system software, using the ar-
gument call buffer specified in Table 34 on page 126.

Hardware Implementation Note: Even after the successful completion of 
the assume-power-management call, platform hardware/firmware may 
take actions (including turning off platform power) without the direction 
of system software to provide safety or prevent the destruction of 
platform hardware. In these cases, the platform should make an effort 
to inform system software of its imminent intervention.

7.3.7.4 Relinquish-power-management

This call transfers control of the power management policy from system soft-
ware to the platform.

Requirements:

7–99. For the Power Management option:  RTAS must implement a 
relinquish-power-management call which transfers control of the power 
management policy from system software to the platform, using the 
argument call buffer specified in Table 34 on page 126.

Table 34.  assume-power-management Argument Call Buffer

Parameter Type Name Values

In

Token Token for assume-power-management

Number Inputs 0

Number Outputs 1

Out Status
0: Success
-1: Hardware Error
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7–100. For the Power Management option:  If the power management policy 
is under control of the operating system, the relinquish-power-
management call must be performed prior to the completion of the 
transition into the Suspend, Hibernate, or Off system power states.

7.3.7.5 Power-off

This primitive turns power off on a system which is equipped to perform a soft-
ware-controlled power off function. It may be implemented on platforms which
do not implement any other Power Management functions.

Requirements:

7–101. If software controlled power-off hardware is present: The power-off 
function must turn off power to the platform, using the argument call 
buffer described in Table 36 on page 128.

7–102. If software controlled power-off hardware is present: 
Power_on_mask, which is passed in two parts to permit a possible 64 
events even on 32-bit implementations, must be a bit mask of power 
management events, refer to requirement 11–3. If a bit in the 
resume_mask is set to 1, then the hardware should enable the 
corresponding hardware power-on mechanism.

Table 35.  relinquish-power-management Argument Call Buffer

Parameter Type Name Values

In

Token Token for relinquish-power-management

Number Inputs 0

Number Outputs 1

Out Status
0: Success
-1: Hardware Error
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7.3.8 Suspend and Hibernate

Suspension is the process of placing the memory subsystem in a low power
data retentive state and placing the processor in a powered off state. When
power is restored to the processor, the firmware recognizes that the system was
in a suspend state. The firmware re-initializes all devices and transfers control
back to the operating system.

Hibernation is the process of saving a system image on disk and powering
down the system. When power is reapplied, the system firmware reboots the
system. Operating system boot or initialization code recognizes that the system
was hibernating, restores the saved image, and returns control to the point of
hibernation. Firmware is not involved in wakeup from hibernation, other than
its usual role in rebooting the system.

For more details on power management refer to Chapter 11, “Power Man-
agement,” on page 185.

Software Implementation Note: Hibernation can be performed without the 
use of the RTAS hibernate primitive, but the primitive can be valuable 
for saving the last part of the OS if the OS cannot save itself without 
corrupting state information that is to be part of the saved image.

Table 36. power-off Argument Call Buffer

Parameter Type Name Values

In

Token Token for power-off

Number Inputs 2

Number Outputs 1

Power_on_mask_hi
Mask of events that can cause a power on event - 
event mask values [0:31] (right-justified if the cell 
size is 64 bits)

Power_on_mask_lo
Mask of events that can cause a power on event - 
event mask values [32:63] (right-justified if the cell 
size is 64 bits)

Out Status
On successful operation, does not return
-1: Hardware error
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7.3.8.1 Suspend

The RTAS function suspend preserves the System Memory image exclusive of
that devoted to firmware use, records suspend restoration parameters in the sys-
tem’s configuration memory, and sets the system power state to suspend in a
system dependent manner (this usually means powering down everything ex-
cept the memory sub-system and its refresh, and some mechanism to trigger
the resume). When the system is subsequently powered up, the firmware reads
the suspend restoration parameters, resets its devices, and returns to the caller
of suspend.

Requirements:

7–103. The RTAS suspend function must implement the power-saving Suspend 
state using the argument call buffer defined in Table 37 on page 129.

7–104. The RTAS suspend call must be made only from the processor 
identified by processor_number.

Table 37. suspend Argument Call Buffer

Parameter Type Name Values

In

Token Token for suspend

Number Inputs 3

Number Outputs 2

Resume_mask_hi
Mask of events that can cause a resume 
event - event mask values [0:31] (right-jus-
tified if the cell size is 64 bits)

Resume_mask_lo
Mask of events that can cause a resume 
event - event mask values [32:63] (right-
justified if the cell size is 64 bits)

Processor_number

Token defining the processor to be awak-
ened on a resume event. This is the reg 
value for the processor, as provided in the 
Open Firmware device tree

Out

Status
0: Success
-1: Hardware error

Resume_event Event that cause the resume
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7–105. Resume_mask, which is passed in two parts to permit a possible 64 
events even on 32-bit implementations, must be a bit mask of power 
management events, refer to requirement 11–3. If a bit in the 
resume_mask is set to 1, then the hardware should enable the 
corresponding hardware wakeup mechanism. 

7–106. Resume_event must be a power management event that caused the 
resume.

7–107. In an SMP system, the operating system must have invoked the RTAS 
stop-self function on all other processors prior to invoking suspend.

7–108. All elements of the I/O sub-system must be in a quiescent state at the 
time of the call: they must not be transferring data to or from memory, 
nor be able to cause an interrupt to any processor.

7.3.8.1.1 Suspend Restoration (Resume)
Upon receiving a wakeup event that was enabled using resume_mask, the sys-
tem will resume execution on the processor identified by processor_number.

Requirements:

7–109. Upon return from the RTAS suspend call, the state of the memory 
locations, exclusive of the first 256 bytes of real memory and the RTAS 
private data area, must be in the same state they were in at the time of 
the call to suspend.

7–110. Upon return from suspend, execution must be on the processor 
indicated by processor_number.

7–111. Upon return from suspend, all processors except the processor 
identified by processor_number must be in the stopped state.

7–112. Upon return from suspend, the firmware must restore the registers and 
devices which are reserved for firmware to the same state as before the 
suspend.

7–113. Upon return from suspend, the firmware must place all elements of the 
I/O system into a safe state.

7–114. The return from suspend must restore the registers listed in requirement 
7–10 to the same state that existed prior to the suspend call.

Software Implementation Note: RTAS need not reprobe the I/O subsystem 
on resume, and in fact should avoid doing so in order to make resume 
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quicker. Firmware is NOT required to restore the I/O subsystem to the 
previous state; this is the responsibility of the operating system.

Software Implementation Note: This call may violate requirements stated 
in requirement 7–10 in that it actually saves and restores the values. 

Software Implementation Note: The first 256 bytes of real memory are 
available for firmware use during the suspend/resume operations.

Software Implementation Note: The OS timebase must be reestablished 
using the Real-Time Clock upon resuming, since an unknown amount 
of time will have passed.

Software Implementation Note: RTAS is not required to permit 
configuration changes of devices which are reserved for firmware use 
while in a Suspend state. If such devices are removed or modified 
while suspended, the results are unspecified.

Software Implementation Note: Changing the hardware configuration 
while in a Suspend state may cause a Configuration Change event as 
defined in Table 62 on page 199 if the platform provides this capability.

Software Implementation Note: Since the Open Firmware device tree is 
not updated in a Suspend/Resume sequence, it is OS dependent 
whether an OS supports platform hardware configuration changes 
while in the Suspend state.

7.3.8.1.2 Hibernate
The RTAS hibernate call provides the capability to save the current system im-
age for later restoration. One way that this could be implemented (using Open
Firmware, with minimal support in RTAS) is to save the address of the memory
list, to reset the I/O subsystem (avoiding resetting the memory subsystem, as
this may disrupt memory contents), and then to re-enter Open Firmware. Open
Firmware can then recognize the block list, and instead of performing a normal
boot, can use its device drivers to write the data to the specified device. Once
the data is recorded, Open Firmware causes the system to enter a low power hi-
bernate state. Other implementations which meet the Requirements are also
possible.

Requirements:

7–115. The RTAS hibernate call must be implemented using the argument call 
buffer described by Table 38 on page 132.
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7–116. The wakeup_mask, which is passed in two parts to permit a possible 64 
events even on 32-bit implementations, must be a bit mask of power 
management events, refer to requirement 11–3. If a bit in the 
wakeup_mask is set to 1, then the hardware should enable the 
corresponding hardware wakeup mechanism. 

7–117. The area of memory described by the hibernate block_list must be 
written to the device(s) as indicated.

7–118. The hibernate block_list must start with a list length in bytes and then 
must have quadruples of real address, length of memory block, device 
id, and block number as shown in Table 39 on page 132. Additional 
requirements on the block list are:

a. The block list must be a sequence of cells as defined in requirements 
7–34 and 7–35.

b. Block numbers are in 512 byte units.

Table 38. hibernate Argument Call Buffer 

Parameter Type Name Values

In

Token Token for hibernate

Number Inputs 3

Number Outputs 1

Block_list A real pointer to a block list 

Wakeup_mask_hi
Mask of events that can cause a wakeup event - 
event mask values [0:31] (right-justified if the cell 
size is 64 bits)

Wakeup_mask_lo
Mask of events that can cause a wakeup event - 
event mask values [32:63] (right-justified if the cell 
size is 64 bits)

Out Status
On successful operation, does not return
-1: Hardware error

Table 39. Format of Block List 

Length of list in bytes

 Address of memory area 1



7.3 RTAS Call Function Definition 133

Personal Use Copy - Not for Reproduction

7–119. The hibernate block_list must be contained in system memory below 4 
GB.

7–120. The Device fields of the hibernate block_list must be real pointers to 
System Memory below 4 GB that point to Open Firmware Path Names.

7–121. A device specified in the hibernate block_list must correspond to an 
device in the Open Firmware Device Tree that has write and read 
methods, and has a device type of block.

7–122. The memory areas defined by the hibernate block_list must only 
include System Memory outside that reserved for firmware (both the 
RTAS data area and Open Firmware’s memory defined by real-base 
and real-size).

7–123. The memory areas defined by the hibernate block_list must only 
include System Memory below 4 GB.

7–124. Execution of the hibernate call must cause the System Memory areas 
described in the block_list to be saved on disk on the device(s) specified 
starting at the specified block numbers.

Length of memory area 1

Device for area 1

Block Number for area 1

 Address of memory area 2

Length of memory area 2

Device for area 2

Block Number for area 2

...

 Address of memory area n

Length of memory area n

Device for area n

Block number for area n

Table 39. Format of Block List  (Continued)
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7–125. After system memory is saved, hibernate must place the system into its 
lowest power state.

7–126. In an SMP system, all other processors must be in the stopped state 
before invoking hibernate. This is the responsibility of the operating 
system.

7–127. Prior to making the hibernate call, the operating system must put all I/O 
devices into a quiescent state: they must not be transferring data to or 
from memory, nor be able to cause an interrupt to any processor.

7–128. Open Firmware must deterministically initialize a platform. The Open 
Firmware device tree and device addresses assigned on a given 
platform must be the same on successive reboots and hibernate 
wakeups if the platform hardware configuration has not changed.

Software Implementation Note: The firmware is free to move and 
otherwise modify System Memory during this call.

7.3.8.2 Hibernate Restoration (Wakeup)

From the standpoint of the platform firmware, wakeup is no different from any
other system initialization process. It is the responsibility of the operating sys-
tem to:

1. Recognize that this is a wakeup

2. Find the saved hibernation image on disk

3. Restore the hibernation image to memory

4. Transfer control back to the proper point for continued execution.

Software Implementation Note: Wakeup from hibernate is entirely an 
operating system implemented function, initiated by booting the 
system. Upon booting, OS boot or initialization code runs and notices 
a hibernation image. This early code must be careful to instantiate 
RTAS in an area of memory which will not be destroyed when the OS 
places the hibernation image into memory.

Software Implementation Note: In a Multiboot situation, it is possible for 
different operating systems resident on a system to be hibernating at 
the same time. This is a quick way to switch between operating system 
environments. In this scenario, the user would indicate to system 
firmware a different OS to boot/wakeup next, hibernate the system, 
and do a reboot operation to wakeup that OS image.
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Software Implementation Note: The OS timebase must be reestablished 
using the Real-Time Clock upon wakeup, since an unknown amount of 
time will have passed.

7.3.9 Reboot

During execution, it may become necessary to shut down processing and re-
boot the system in a new mode. For example, a different operating system may
need to be loaded, or the same operating system may need to be re-booted with
different settings of System Environment Variables.

7.3.9.1 System-reboot

Requirements:

7–129. RTAS must implement a system-reboot call which resets all processors 
and all attached devices. After reset, the system must be booted with the 
current settings of the System Environment Variables (refer to Section 
8.4.3, “System (0x70),” on page 145 for more information).

7–130. The RTAS system-reboot call must be implemented using the argument 
call buffer defined by Table 40 on page 135.

Hardware Implementation Note: The platform must be able to perform a 
system reset and reboot. On a multiprocessor system, this should be 
a hard reset to the processors.

Table 40. system-reboot Argument Call Buffer

Parameter Type Name Values

In

Token Token for system-reboot

Number Inputs 0

Number Outputs 1

Out Status
On successful operation, does not return
-1: Hardware error
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7.3.10 Caches

The following interfaces allow simple control of internal and external caches,
primarily for turning these caches on or off for power management or for man-
agement of a multiprocessor system.

When flushing and disabling caches, the operating system must take care to
flush caches in order (see Section 4.2.4, “Cache Memory,” on page 65) and
take care to synchronize with access by other elements of the system. These
operations shall only be called by a processor connected to the cache. The cur-
rent processor shall be the only active processor connected to the cache.

7.3.10.1 Cache-control 

Requirements:

7–131. For the Symmetric Multiprocessor or Power Management option: 
RTAS must implement a cache-control call to place the cache into a 
new state, using the argument call buffer defined by Table 41 on 
page 136.

7–132. For the Symmetric Multiprocessor or Power Management option: 
When entering the new state indicated by the How parameter, the 
actions specified in Table 42 on page 137 must be performed on the 
caches.

Table 41. cache-control Argument Call Buffer

Parameter Type Name Values

In

Token Token for cache-control

Number Inputs 2

Number Outputs 1

Cache_id
phandle of the cache
(for L1 caches, the phandle of the processor)

How New state of the cache

Out Status
0: Success
-1: Hardware error
-3: Bad state for this cache
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7–133. For the Symmetric Multiprocessor or Power Management option: 
The RTAS cache-control operations performed on the specified cache 
must appear to be a single atomic operation as seen from the operating 
system. A return status of success implies “committed,” that the 
operation is complete, and that any dirty data is safely out of the cache. 
These operations must not violate the cache coherency of the caches.

7.3.11 SMP Support 

In a Symmetric Multiprocessor (SMP) system, the operating system needs the
ability to synchronize the clocks on all the processors. To do this, it must have
the ability to stop all clocks at the same time. For example, the TBEN signal
provided on the PowerPC 604 microprocessor can be used to implement this
clock control function.

7.3.11.1 freeze-time-base

Requirements:

7–134. For the Symmetric Multiprocessor option: RTAS must implement a 
freeze-time-base call which freezes, or keeps from changing, the time 

Table 42. Cache-control states 

State Number State Name Action

1 Copy-back The cache must be enabled in a full powered copy-back mode.

2 Write-Through
If necessary, the cache must be flushed. The cache must then 
be enabled in a full powered Write-Through mode.

3 Low-power
If necessary, the cache must be flushed and invalidated. The 
cache must then be placed in a low power but still functioning 
mode.

4 Disabled
The cache must be flushed, and then put in the lowest powered 
disabled mode.

5 Flush
The cache contents are flushed, and the cache remains in its 
current state.

9000-9999 Reserved Reserved for platform vendor specific actions.
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base register on all processors. This call must be implemented using the 
argument call buffer defined by Table 43 on page 138.

7–135. For the Symmetric Multiprocessor option: The freeze-time-base 
operation must simultaneously affect every processor of an SMP 
system.

7.3.11.2 thaw-time-base

Requirements:

7–136. For the Symmetric Multiprocessor option: RTAS must implement a 
thaw-time-base call which thaws, or permits the change of, the time 
base register on all processors. This call must be implemented using the 
argument call buffer defined by Table 44 on page 138.

Table 43. freeze-time-base Argument Call Buffer

Parameter Type Name Values

In

Token Token for freeze-time-base

Number Inputs 0

Number Outputs 1

Out Status
0: Success
-1: Hardware Error

Table 44. thaw-time-base Argument Call Buffer

Parameter Type Name Values

In

Token Token for thaw-time-base

Number Inputs 0

Number Outputs 1

Out Status
0: Success
-1: Hardware Error
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7–137. For the Symmetric Multiprocessor option: The thaw-time-base 
operation must simultaneously affect every processor of an SMP 
system.

7.3.11.3 stop-self

The stop-self primitive causes a processor to stop processing OS or user code,
and to enter a state in which it is only responsive to the start-cpu RTAS primi-
tive. This is referred to as the RTAS stopped state.

Requirements:

7–138. For the Symmetric Multiprocessor option: RTAS must implement a 
stop-self call which places the calling processor in the RTAS stopped 
state. This call must be implemented using the argument call buffer de-
fined by Table 45 on page 139.

7–139. For the Symmetric Multiprocessor option: RTAS must insure that a 
processor in the RTAS stopped state will not check stop or otherwise 
fail if a machine check or soft reset exception occurs. Processors in this 
state will receive the exception, but must perform a null action and re-
main in the RTAS stopped state.

Software Implementation Note: If this call succeeds, it will not return. The 
CPU will wait for some other processor to issue a start-cpu targeted to 
this processor.

Table 45. stop-self Argument Call Buffer

Parameter Type Name Values

In

Token Token for stop-self

Number Inputs 0

Number Outputs 1

Out Status
If successful, this call does not return
-1: Hardware Error
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7.3.11.4 start-cpu

The start-cpu primitive is used to cause a processor which is currently in the
RTAS stopped state to start processing at an indicated location.

Requirements:

7–140. For the Symmetric Multiprocessor option: RTAS must implement a 
start-cpu call which removes the processor specified by the CPU_id 
parameter from the RTAS stopped state. This call must be implemented 
using the argument call buffer defined by Table 46 on page 140.

7–141. For the Symmetric Multiprocessor option: The processor specified 
by the CPU_id parameter must be in the RTAS stopped state entered 
because of a prior call by that processor to the stop-self primitive.

7–142. For the Symmetric Multiprocessor option: When a processor exits 
the RTAS stopped state, it must begin execution in real mode, at the real 
location indicated by the Start_location parameter, with register R3 set 
to the value of parameter Register_R3_contents, in the endian mode of 
the processor executing the start-cpu primitive. All other register 
contents are indeterminate.

Table 46. start-cpu Argument Call Buffer

Parameter 
Type

Name Values

In

Token Token for start-cpu

Number Inputs 3

Number Outputs 1

Cpu_id
Token identifying the processor to be started, ob-
tained from the reg value for the CPU in the Open 
Firmware device tree

Start_location
Real address at which the designated CPU will begin 
execution

Register_R3_contents
Value which will be loaded into Register R3 before 
beginning execution at Start_location

Out Status
0: Success
-1: Hardware Error



8

Page - 141

Non-Volatile MemoryChapter 8

This chapter describes the requirements relating to the Common Hardware
Reference Platform Non-Volatile Memory. Non-Volatile Memory is the reposi-
tory for system information that must be persistent across reboots, power man-
agement activities, and power cycles. 

8.1 System Requirements

Requirements:

8–1. Platforms must implement at least 8 KB of Non-Volatile Memory. This 
is sufficient for a system with a single operating system installed. Allow 
1 KB for each additional operating system installed.

8–2. Non-Volatile Memory must maintain its contents in the absence of 
system power.

8–3. Firmware must reinitialize NVRAM to a bootable state if NVRAM data 
corruption is detected.

8–4. Operating systems must reinitialize their own NVRAM partitions if 
NVRAM data corruption is detected. Operating systems may create free 
space from the first corrupted partition header to the end of NVRAM 
and utilize this area to initialize their partitions.
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Hardware Implementation Note: Non-volatile memory is normally 
implemented with battery-powered RAM and is generally called 
NVRAM. This terminology will be used throughout the remainder of 
this chapter, although it should be understood that this is not the only 
possible implementation.

Software Implementation Note: Refer to Section 7.3.2, “NVRAM Access 
Functions,” on page 104 for information on accessing NVRAM.

8.2 Structure
NVRAM is formatted as a set of partitions that adhere to the structure in
Table 47 on page 143. Partitions are prefixed with a header containing sig-
nature, checksum, length, and name fields. The structure of the data
field is defined by the partition creator/owner (designated by “signature”
and “name”). 

Requirements: 

8–5. NVRAM partitions must be structured as shown in Table 47 on 
page 143.

8–6. All NVRAM space must be accounted for by partitions.

8.3 Signatures
The signature field is used as the first level of partition identification.
Table 48 on page 144 lists all the currently defined signature types and their
ownership classes. The ownership class determines the permission of a particu-
lar system software component to create and/or modify partitions and/or parti-
tion contents. All partitions may be read by any system software component,
but the ownership class has exclusive write permission. Global ownership
gives read/write permission to all system software components. These restric-
tions are made to minimize the possibility of corruption of NVRAM during up-
date activities.

Hardware and Software Implementation Note: It is recommended that 
partitions be ordered on the signature field with the lowest value 
signature partition at the lowest NVRAM address (with the exception 
of signature = 0x7F, free space). This will minimize the effect of 
NVRAM data corruption on system operation.
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Table 47. NVRAM Structure 

Field Name Size Description

signature 1 byte The signature field is used to identify the partition type and provide some level of 
checking for overall NVRAM contamination. Signature assignments are given in 
Table 48 on page 144.

checksum 1 byte The checksum field is included to provide a check on the validity of the header. The 
checksum covers the signature, length, and name fields and is calculated (on a 
byte by byte or equivalent basis) by: add, and add 1 back to the sum if a carry resulted as 
demonstrated with the following program listing.

unsigned char sumcheck(bp,nbytes)                                                           
unsigned char *bp /* buffer pointer */ 
unsigned int nbytes; /* number of bytes to sum */ 
{ 
unsigned char b_data; /* byte data */
unsigned char i_sum; /* intermediate sum */ 
unsigned char c_sum;  /* current sum */ 
for (c_sum = 0; nbytes; nbytes--) 
{ 
b_data = *bp++; /* read byte from buffer */ 
i_sum = c_sum + b_data;  /* add to current sum */ 
if(i_sum < c_sum) /* did a carry out result? */ 
i_sum += 1;  /* if so, add 1 */ 

c_sum = i_sum;  /* copy to current sum */ 
} 

return (c_sum);
}

This checksum algorithm guarantees 0 to be an impossible calculated value.

length 2 bytes
Big-Endian
format

The length field designates the total length of the partition, in 16-byte blocks, begin-
ning with the signature and ending with the last byte of the data area. This allows a max-
imum partition length of 16 x 2**16 = 1 MB.
Software Implementation Note: The length fields must always provide valid offsets to 
the next header since an invalid length effectively causes the loss of access to every parti-
tion beyond it.

name 12 bytes The name field is a null-terminated (if less than 12 bytes) string used to identify a par-
ticular partition within a signature group. There is no general uniqueness requirement, 
but each OS partition name must be prefixed with a 3 character Organizationally Unique 
Identifier (OUI) assigned by the IEEE Registration Authority Committee to the OS ven-
dor, followed by a comma. If an OS vendor does not have an assigned OUI, a prefix of “,” 
(comma) will be used to signify “other.”
Before assigning a new name to a partition, software should scan the existing partitions 
and ensure that an unwanted name conflict is not created.

data Length minus 
16 bytes

 The structure of the data area is controlled by the creator/owner of the partition.
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8.4 Architected Partitions

8.4.1 Open Firmware (0x50)

This partition is required for storing Open Firmware Configuration Variables.

Requirements:

8–7. The system NVRAM must include a 0x50 partition with the name of-
config to store Open Firmware Configuration Variables. 

Table 48. NVRAM Signatures 

Signature Signature Type
Ownership 
Class

# Required Description

0x01 - 0x0F Support 
Processor

Any support 
processor

0 to n Reserved for support processor use.

0x50 Open Firmware Firmware 1 Open Firmware Configuration Variables.

0x51 Reserved Firmware n/a Reserved

0x52 Hardware Firmware 1 to n These partitions are used to store administrative machine data 
such as serial numbers, ec levels, etc. This is often referred to as 
Vital Product Data (VPD).

0x53 - 0x5F Firmware Firmware 0 to n General firmware usage.

0x70 System Global 1 The System partition is used to store environment variables that 
must be accessed by firmware and operating systems.

0x71 Configuration Global 0 to n Configuration partitions are used to store configuration data gen-
erated by the system firmware or the operating system that is re-
quired at boot time to properly configure the system.

0x72 Error Log Global 0 to n This partition is used to store the error logs built as a result of var-
ious RTAS calls. 

0x73 Multi-boot Global 0 or 1 This partition will contain an entry for each OS installed on the 
system which will participate in a multiple boot process.

0x74 - 0x7E Global Global 0 to n General global usage.

0x7F Free Space Global 0 to n This signature is used to mark free space in the NVRAM array. 
The name field of all signature 0x7F partitions must be set to 
0x7...77.

0xA0 - 0xAF OS Any OS 0 to n General operating system usage.

0x00, 0x10 - 0x4F, 0x60 - 0x6F, 0x80 - 0x9F, 0xB0 - 0xFF Reserved
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8.4.2 Hardware (0x52)

This partition type is used to store Vital Product Data (VPD).

Requirements:

8–8. VPD must be stored in the 0x52 partition using the format defined in 
the PCI Local Bus Specification, Revision 2.1, section 6.4 [14].

8.4.3 System (0x70)

The System partition is required for storing environment variables that are
common to all platforms and operating systems.

Requirements:

8–9. Every system NVRAM must contain a System partition with the 
partition name = common.

8–10. Data in the common partition must be stored as null-terminated strings 
of the form: name=<string> and be terminated with a string of at least 
two null characters.

8–11. All names used in the common partition must be unique.

8–12. Device and file specifications used in the common partition must follow 
IEEE Std 1275 nomenclature conventions.

Software Implementation Note: Open Firmware will look for the boot-script 
variable in the common System partition; boot-script=<string> is a list 
of Open Firmware commands to be executed during the boot startup 
sequence. See PowerPC Microprocessor Common Hardware 
Reference Platform System binding to: IEEE Std 1275-1994 Standard 
for Boot (Initialization, Configuration) Firmware [10] for information on 
the use of this variable.

8.4.4 Configuration (0x71)

8.4.4.1 ISA Configuration Data

ISA configuration data (integrated devices and plug-in cards) is passed to the
OS in the OF device tree. In order to enable OS reconfiguration of ISA device
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resources, the ISA configuration database will also be entered into NVRAM.
This gives the operating system the ability to observe and modify the configu-
ration which will be used by the firmware on the next system boot.

Requirements:

8–13. System NVRAM must include a 0x71 partition with the name isa-
config to store configuration data for all ISA devices. 

8–14. The isa-config data area must use the resource format given in the 
ISA/EISA/ISA-PnP binding to IEEE 1275, IEEE Standard for Boot 
(Initialization Configuration) Firmware, Core Requirements and 
Practices [9].

8–15. During boot, firmware must use the ISA configuration data stored in the 
isa-config NVRAM partition to generate the ISA portion of the OF 
device tree.

Architecture Note: This NVRAM partition is used to store configuration data 
for both Plug and Play (PnP) and non-PnP ISA adapters. For non-PnP 
devices, Vendor IDs will be assigned and documented in PowerPC 
Microprocessor Hardware Reference Platform: I/O Device 
Reference [20].

8.4.4.2 Power Management Configuration Data

Power Management configuration data provides power state and transition data
necessary to power manage add-in devices. 

Requirements:

8–16. For the Power Management option:   NVRAM must include a 0x71 
partition with the name pm-config to store power management 
configuration data. 

8–17. For the Power Management option:   The pm-config data area must 
use the format given in the PowerPC Microprocessor Common 
Hardware Reference Platform System binding to: IEEE Std 1275-1994 
Standard for Boot (Initialization, Configuration) Firmware [10].



8.4 Architected Partitions 147

Personal Use Copy - Not for Reproduction

8.4.5 Error Log (0x72)

NVRAM error logs are optional.
It is recommended that operating systems record RTAS-returned error logs

in NVRAM to provide error information in the event of a checkstop/reboot. It
is also recommended that an error log be provided for errors discovered during
IPL POST. 

Requirements:

8–18. If an operating system implements an NVRAM error log partition for 
RTAS, 

a. the partition name must be rtas-err-log.

b. the error log format must be as given in Table 54 on page 176.

c. error log entries must be filled by the operating system in a manner 
that will make the most recent log visible.

8–19. If firmware implements an NVRAM error log partition for POST, 

a. the partition name must be post-err-log.

b. the error log format must be as given in Table 54 on page 176.

c. error log entries must be filled by the firmware in a manner that will 
make the most recent log visible. If multiple entries are provided, 
they must be filled in a manner that will make the first and last error 
occurrences visible to the OS.

8.4.6 Multi-Boot (0x73)

The multi-boot partition is only required if multi-boot is implemented on a
platform. The partition will contain entries for each operating system installed
on the platform that will participate in the multi-boot process. A configuration
variable, multi-boot?, is defined in PowerPC Microprocessor Common Hard-
ware Reference Platform System binding to: IEEE Std 1275-1994 Standard for
Boot (Initialization, Configuration) Firmware [10] which instructs the firm-
ware whether or not to present the multi-boot menu to the user during the boot
process. This variable may be accessed by the OS through the boot-script vari-
able in the NVRAM partition named common.
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Requirements:

8–20. For the Multi-Boot option: The multi-boot partition must be named 
multi-boot.

8–21. For the Multi-Boot option: Each participating operating system must 
be represented in the multi-boot partition as a 4-tuple of null-terminated 
strings of the form name=<string> as represented in Table 49 on 
page 148. 

8–22. For the Multi-Boot option: The multi-boot partition must be 
terminated with a string of at least two null characters.

8–23. Device and file specifications used in the multi-boot partition must 
follow IEEE 1275, IEEE Standard for Boot (Initialization 
Configuration) Firmware, Core Requirements and Practices [9] 
nomenclature conventions. 

8.4.7 Free Space (0x7F)

Requirements:

8–24. All unused NVRAM space must be included in a signature = 0x7F Free 
Space partition.

8–25. All Free Space partitions must have the name field set to 0x7...77.

Table 49.  Multi-Boot String Definitions

String Name String Description

boot-name Text giving the name of the file(OS) to boot. This will be used by 
the multi-boot utility to build the user menu.

boot-path The Open Firmware device path and file specification of the file 
to boot.

icon-path The Open Firmware device path and file specification of icon to 
be used on the user menu.

config-var These are overrides to the OF configuration variables. The string 
is a list of <configuration variable name>=<value> substrings 
separated by spaces.
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8.5 NVRAM Space Management
A partition should be added or extended by consuming free space. Any signa-
ture 0x7F partition whose length is greater than or equal to the space require-
ments of the new partition may be all or partially consumed by this process. If
there is no signature 0x7F partition with sufficient free space, partitions may be
moved or deleted to provide the required space. As partitions are created and
modified, it is likely that free space will become fragmented; free space consol-
idation may become necessary.

Requirements:

8–26. A system software component must not move or delete any NVRAM 
partition unless it is in the ownership class of that partition (see 
Table 48 on page 144). There are two exceptions to this requirement:

a. Open Firmware may, with the appropriate backup precautions, mod-
ify any area of NVRAM in the interest of space management and/or 
maintaining NVRAM data integrity. Firmware must maintain the re-
quired 1 KB of contiguous NVRAM space for each installed operat-
ing system following any such modifications.

b. Upon detection of a corrupted partition, the operating system may 
create free space beginning with the header of the corrupted partition 
through the end of the NVRAM space, and use this space to reinitial-
ize its partitions.

8–27. The NVRAM partition header checksum must be calculated as shown 
in Table 47 on page 143.

Software Implementation Note: Operations that manipulate NVRAM 
partitions should be serialized to prevent conflict with other active 
processes that require NVRAM access.

Software Implementation Note: Restrictions are placed on which system 
software components may manipulate which partitions. This is to help 
ensure system integrity by protecting system-level information that is 
required by the boot process.

Software Implementation Note: If an operating system finds it necessary 
to remove a partition owned by another operating system, proper user 
notification and options should be provided.
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Software Implementation Note: A partition should not be extended through 
internal linkages to other partitions. If this is done, unrecoverable 
orphan partitions may result. Since any operating system may have 
any number of partitions defined, a safe way to extend an OS partition 
is to create an additional partition if free space allows.
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I/O Devices Chapter 9

This chapter describes requirements for PCI and ISA devices. It adds detail to
areas of PCI and ISA architecture that are either unaddressed or optional. It
also places some requirements on firmware and operating systems for device
support. It provides references to specifications to which devices must comply
and gives design notes for devices that run on CHRP systems. This chapter ref-
erences the PowerPC Microprocessor Common Hardware Reference Platform:
I/O Device Reference [20] frequently. This document is available from IBM
and contains the detailed register level architecture for I/O devices.

9.1 PCI Devices

Requirements: 

9–1. PCI devices must comply with the PCI Local Bus Specification, Revi-
sion 2.1 [14].

PCI is rapidly becoming the dominant bus in the computer industry and will
increasingly become the foundation for all I/O in CHRP systems as ISA
devices are migrated to PCI.
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9.1.1 Resource Locking

Requirements: 

9–2. PCI devices, excepting bridges, must not depend on the PCI LOCK# 
signal for correct operation nor require any other PCI device to assert 
LOCK# for correct operation.

There are some legacy devices on legacy buses which require LOCK#.
Additionally, LOCK# is used in some implementations to resolve deadlocks
between bridges. These uses of LOCK# are permitted. 

9.1.2 PCI Expansion ROMs

Requirements:

9–3. PCI expansion ROMs must have a ROM image with a code type of 1 
for Open Firmware as provided in the PCI Local Bus Specification, 
Revision 2.1 [14]. This ROM image must abide by the ROM image 
format for Open Firmware as documented in the PCI Bus Binding to 
IEEE 1275 Standard for Boot (Initialization, Configuration) Firmware 
[12]

CHRP systems rely on Open Firmware - not BIOS - to boot. This is why
strong requirements for Open Firmware device support are made.

Vital Product Data (VPD) is put in the PCI expansion ROM in accordance
with the PCI Local Bus Specification, Revision 2.1 [14] when it is provided.
Although this is an optional feature, it is strongly recommended that VPD be
included in all PCI expansion ROMs. 

9.1.3 Assignment of Interrupts to PCI Devices

Requirements:

9–4. All PCI devices must use the Open PIC interrupt controller. They must 
not use the legacy (8259 derived) interrupt controller which is reserved 
for ISA. The programming model for the legacy interrupt controller is 
defined in PowerPC Microprocessor Common Hardware Reference 
Platform: I/O Device Reference [20]. 
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9–5. PCI devices that do not share Peripheral Memory Space and Peripheral 
I/O Space of the same PHB must not share the same Open PIC interrupt 
source.

9–6. When PCI-to-ISA bridges with embedded ISA devices are provided in 
a PCI part, the part must provide the capability to attach to the legacy 
interrupt controller defined in the PowerPC Microprocessor Common 
Hardware Reference Platform: I/O Device Reference [20].

For further information on the Open PIC interrupt controller refer to Chap-
ter 6, “Interrupt Controller,” on page 85. 

It is strongly advised that system board designers assign one Open PIC
interrupt pin for each interrupt source. Additionally, multi-function PCI
devices should have multiple interrupt source pins.

9.1.4 PCI Devices with Required Register 
Definitions

Requirements:

9–7. PCI devices must implement the programming model (register level 
definition, interrupts, and so forth) for those devices which are in the 
minimum system requirements and are specified in the PowerPC 
Microprocessor Common Hardware Reference Platform: I/O Device 
Reference [20].

9–8. The following PCI devices, when used, must adhere to the 
programming model provided in the PowerPC Microprocessor 
Common Hardware Reference Platform: I/O Device Reference [20]:

■ MESH SCSI Controller

■ ADB (Apple Desktop Bus) Controller

■ SCC (Serial Communications Controller)

■ Bus master IDE Controller

■ VGA Compatible Graphics Controller

9–9. If a PCI device is defined in the PowerPC Microprocessor Common 
Hardware Reference Platform: I/O Device Reference [20] and a specific 
implementation of that device has additional registers beyond those 
defined as used by programming, then those additional registers must 
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be reported in the Open Firmware device tree as reserved (see Section 
3.1, “Address Areas,” on page 23).

With regard to requirement 9–7, there may be additional registers defined
for the initialization of these PCI devices which the firmware has knowledge of
but programming does not. Requirement 9–9 addresses how this situation is
handled in the Open Firmware device tree.

For MESH SCSI, ADB, and SCC see the Macintosh Technology in the
Common Hardware Reference Platform [23] for specific physical, timing, and
electrical requirements.

9.1.5 PCI-PCI Bridge Devices

Requirements:

9–10. PCI-to-PCI bridges must be compliant with the PCI to PCI Bridge Ar-
chitecture Specification [16]

9–11. Firmware must initialize PCI-to-PCI bridges to work in CHRP systems. 
See PCI Bus Binding to IEEE 1275 Standard for Boot (Initialization, 
Configuration) Firmware [12].

9.1.6 Graphics Controller and Monitor 
Requirements for Clients 

The graphics requirements for servers are different from those for portable and
personal systems. 

Requirements:

9–12. Portable and personal platforms must provide Bi-Endian graphics 
aperture support as described in the PowerPC Microprocessor Common 
Hardware Reference Platform: I/O Device Reference [20].

9–13. Plug-in graphics controllers for portable and personal platforms must 
provide graphics mode sets in the Open Firmware PCI expansion ROM 
image in accordance with the PCI Bus Binding to IEEE 1275 Standard 
for Boot (Initialization, Configuration) Firmware [12].
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Portable and personal platforms are strongly urged to support some mecha-
nism which allows the platform to electronically sense the display capabilities
of monitors. 

For graphics controllers that are placed on the system board, the graphics
mode sets can be put in system ROM. The mode set software put in the system
ROM in this case would be FCode and would be largely or entirely the same as
the FCode that would be in the PCI expansion ROM if the same graphics con-
troller was put on a plug-in PCI card.

Refer to Section C.4, “Bi-Modal Devices,” on page 276 and the PCI Multi-
media Design Guide [29] for information on Bi-Endian graphics apertures.

9.2 ISA Devices
There is a legacy of programming for ISA devices which has little platform

performance impact and thus will be preserved for the foreseeable future. The
ISA devices of primary interest are listed here and their programming model in
given in the PowerPC Microprocessor Common Hardware Reference Plat-
form: I/O Device Reference [20]. 

Requirements:

9–14. The following ISA devices, when used, must adhere to the program-
ming model provided in the PowerPC Microprocessor Common Hard-
ware Reference Platform: I/O Device Reference [20].

■ Legacy Interrupt Controller

■ Serial Port Controller

■ Parallel Port Controller

■ Floppy Disk Controller 

■ DMA Controller 

■ Audio Controller

■ Keyboard and Mouse Controller

9–15. When an ISA device is included in a PCI part, is required by the 
minimum requirements, and is among those specified in the PowerPC 
Microprocessor Common Hardware Reference Platform: I/O Device 
Reference [20], it must completely retain the programming model. 



156 Chapter 9 I/O Devices

Personal Use Copy - Not for Reproduction

9–16. The system tone and the system audio must be able to be used 
concurrently.

9–17. ISA devices included in a PCI part must route their interrupt signals to 
the legacy interrupt controller defined in the PowerPC Microprocessor 
Common Hardware Reference Platform: I/O Device Reference [20].
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Page - 157

Error and Event 
Notification Chapter 10

10.1 Introduction
RTAS provides a mechanism which helps operating systems avoid the need for
platform-dependent code that checks for, or recovers from, errors or excep-
tional conditions. The mechanism is used to return information about hardware
errors which have occurred as well as information about non-error events, such
as power-management interrupts or environmental conditions (for example,
temperature or voltage out-of-bounds) which may need OS attention. This per-
mits RTAS to pass hardware event information to the operating system in a
way which is abstracted from the platform hardware. This mechanism prima-
rily presents itself to the operating system via two RTAS functions, event-scan
and check-exception, which are described further in Section 7.3.4, “Error and
Event Reporting,” on page 109.

The event-scan function is called periodically to check for the presence or
past occurrence of a hardware event, such as a soft failure or voltage condition,
which did not cause a program exception or interrupt (for example, an ECC
error detected and corrected by background scrubbing activity). The check-
exception function is called to provide further detail on what platform event has
occurred when certain exceptions or interrupts are signalled. The events
reported by these two functions are mutually exclusive on any given platform;
that is, a platform may choose to notify the OS of a particular event type either
through event-scan or through an interrupt and check-exception, but not both.

Since RTAS is platform-specific, it can examine hardware registers, can
often diagnose many kinds of hardware errors down to a root cause, and may
even perform some very limited kinds of error recovery on behalf of the operat-
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ing system. The reporting format, described in this chapter, permits RTAS to
report the type of error which has occurred, what entities in the platform were
involved in the error, and whether RTAS has successfully recovered from the
error without the need for further operating system involvement. RTAS may
not, in many cases, be able to determine all the details of an error, so there are
also returned values which indicate this fact. RTAS may optionally provide
extended error diagnostic information, as described in Section 10.3.2.2,
“Extended Error Log Format Returned by RTAS,” on page 174.

A platform-aware OS can handle errors and events with as much sophistica-
tion as desired by providing platform-specific code and drivers, and a hardware
vendor can provide such code and drivers for specific platforms to make an OS
platform-aware. However, the abstractions provided by this architecture enable
the handling of most platform errors and events without integrating platform-
specific code into each supported OS. 

Architecture Note: It is not a goal of the RTAS to diagnose all hardware 
failures. Most I/O device failures, for example, will be detected and 
recovered by an associated device driver. RTAS attempts to determine 
the cause of a problem and report what it finds, to aid the end user (by 
providing meaningful diagnostic data for messages) and to prevent the 
loss of error syndrome information. RTAS is never required to correct 
any problem, but in some cases may attempt to do so. System vendors 
who want more extensive error diagnosis may create operating system 
error handlers which contain specific hardware knowledge, or could 
use RTAS to collect a minimum set of error information which could 
then be used by diagnostics to further analyze the cause of the error.

10.2 RTAS Error and Event Classes
Table 50 on page 159 describes the predefined classes of error and event notifi-
cations that can be presented through the check-exception and event-scan
RTAS functions. More detailed descriptions of these classes are given later in
this chapter. Table 50 defines nodes in the Open Firmware device tree which,
through an open-pic-interrupt property, may list the platform-dependent inter-
rupts related to each class. From this information, operating systems know
which interrupts may be handled by calling check-exception. The Open Firm-
ware structure for describing these interrupts is defined in the PowerPC Micro-
processor Common Hardware Reference Platform System binding to: IEEE Std
1275-1994 Standard for Boot (Initialization, Configuration) Firmware [10].
Table 50 also defines the mask parameter for the check-exception and event-
scan RTAS functions which limits the search for errors and events to the
classes specified.
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Requirements:

10–1. Platform-specific error and event interrupts that a platform provider 
wants the operating system to enable must be listed in the open-pic-
interrupt property of the appropriate Open Firmware event class node, 
as described in Table 50 on page 159.

10–2. To enable platform-specific error and event interrupt notification, 
operating systems must find the list of interrupts (described in Table 50 
on page 159) for each error and event class in the Open Firmware 
device tree, and enable them.

10–3. Operating systems must have interrupt handlers for the enabled 
interrupts described in requirement 10–2, which call the RTAS check-
exception function to determine the cause of the interrupt.

10–4. Platforms which support error and event reporting must provide 
information to the OS via the RTAS event-scan and check-exception 
functions, using the reporting format described in Table 53 on 
page 172. 

10–5. Optional Extended Error Log information, if returned by the event-scan 
or check-exception functions, must be in the reporting format described 
in Table 54 on page 176.

10–6. To provide control over performance, the RTAS event reporting 
functions must not perform any event data gathering for classes not 
selected in the event class mask parameter, nor any extended data 
gathering if the time critical parameter is non-zero or the log buffer 
length parameter does not allow for an extended error log.

10–7. To prevent the loss of any event notifications, the RTAS event reporting 
functions must be written to gather and process error and event data 

Table 50. Error and Event Classes with RTAS Function Call Mask

Class Type
Open Firmware Node Name

(where the open-pic-interrupt 
property lists the interrupts)

RTAS Function Call Mask
(value = 1 enables class)

Internal Errors internal-errors bit 0 

Environmental and Power Warnings epow-events bit 1 

Power Management Events power-management-events bit 2 
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without destroying the state information of events other than the one 
being processed.

10–8. Any interrupts or interrupt controls used for error and event notification 
must not be shared between error and event classes, or with any other 
types of interrupt mechanisms. This allows the operating system to 
partition its interrupt handling and prevents blocking of one class of 
interrupt by the processing of another.

10–9. If a platform chooses to report multiple event or error sources through a 
single interrupt, it must ensure that the interrupt remains asserted or is 
re-asserted until check-exception has been used to process all 
outstanding errors or events for that interrupt.

10.2.1 Internal Error Indications

Hardware may detect a variety of problems during operation, ranging from soft
errors which have already been corrected by the time they are reported, to hard
errors of such severity that the OS (and perhaps the hardware) cannot meaning-
fully continue operation. The mechanisms described in Section 10.1, “Intro-
duction,” on page 157 are used to report such errors to the OS. This section
describes the architectural sources of errors, and describes a method that plat-
forms can use to report the error. All OSs need to be prepared to encounter the
errors reported as they are described here. However, in some platforms more
sophisticated handling may be introduced via RTAS, and the OS may not have
to handle the error directly. More robust error detection, reporting, and correct-
ing are at the option of the hardware vendor.

The primary architectural mechanism for indicating hardware errors to an
operating system is the machine check interrupt. If an error condition is sur-
faced by placing the system in check stop, it precludes any immediate partici-
pation by the operating system in handling the error (that is, no error capture,
logging, recovery, analysis, or notification by the operating system). For this
reason, the machine check interrupt is preferred over going to the check stop
state. However, check stop may be necessary in certain situations where further
processing represents an exposure to data integrity. To better handle such cases,
a special hardware mechanism may be provided to gather and store residual
error data, to be analyzed when the system goes through a subsequent success-
ful reboot.

Less critical internal errors may also be signalled to the operating system
through a platform-specific interrupt in the “Internal Errors” class, or by peri-
odic polling with the event-scan RTAS function.



10.2 RTAS Error and Event Classes 161

Personal Use Copy - Not for Reproduction

Architecture Note: The machine check interrupt will not be listed in the 
Open Firmware node for the “Internal Errors” class, since it is a 
standard architectural mechanism. The machine check interrupt 
mechanism is enabled from software by setting the MSRME bit =1. 
Upon the occurrence of a machine check interrupt, bits in SRR1 will 
indicate the source of the interrupt and SRR0 will contain the address 
of the next instruction that would have been executed if the interrupt 
had not occurred. Depending on where the error is detected, machine 
check interrupt may be surfaced from within the processor, via logical 
connection to the processor machine check interrupt pin, or via a 
system bus error indicator (for example, Transfer Error Acknowledge - 
TEA). 

Requirements:

10–10. Operating systems must set MSRME=1 prior to the occurrence of a 
machine check interrupt in order to enable machine check processing 
via the check-exception RTAS function.

10–11. For hardware-detected errors, platforms must generate error indications 
as described in Table 51 on page 162, unless the error can be handled 
through a less severe platform-specific interrupt, or the nature of the 
error forces a check stop condition.

10–12. Platforms which detect and report the errors described in Table 51 on 
page 162 must provide information to the OS via the RTAS check-
exception function, using the reporting format described in Table 53 on 
page 172. 

10–13. To prevent error propagation and allow for synchronization of error 
handling, all processors in a multi-processor system must receive any 
machine check interrupt signalled via the external machine check 
interrupt pin.

10.2.1.1 Error Indication Mechanisms

Table 51 on page 162 describes the mechanisms by which software will be no-
tified of the occurrence of operational failures during the types of data transfer
operations listed below. The assumption here is that the error notification can
occur only if a hardware mechanism for error detection (for example, a parity
checker) is present. In cases where there is no specific error detection mecha-
nism, the resulting condition, and whether the software will eventually recog-
nize that condition as a failure, is undefined.
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Table 51. Error Indications for System Operations

Initiator Target Operation
Error Type
(if detected)

Indication to 
Software

Comments

Processor N/A Internal Various Machine check
Some may cause check 

stop

Processor Memory

Load

Invalid address Machine check

System bus
time-out

Machine check

Address parity on 
system bus

Machine check

Data parity on
system bus

Machine check

Memory parity or 
uncorrectable 

ECC
Machine check

Store

Invalid address Machine check

System bus
time-out

Machine check

Address parity on 
system bus

Machine check

Data parity on
system bus

Machine check

External 
cache
load

Memory parity or 
uncorrectable 

ECC
Machine check

Associated with Instruc-
tion Fetch or Data Load

External 
cache
flush

Cache parity or
uncorrectable 

ECC
Machine check

External 
cache
access

Cache parity or
uncorrectable 

ECC
Machine check

Associated with
Instruction Fetch or 

Data Transfer
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Processor I/O

Load

Data parity on
I/O bus

Machine check

Data parity on
system bus

Machine check

Store

Data parity on
I/O bus

Machine check

Data parity on
system bus

Machine check

Load or 
Store

Address parity on 
system bus

Machine check

Invalid address Machine check

I/O bus time-out Machine check

Retry count
expired

Machine check

Target-abort Machine check

Invalid size Machine check

No response from 
device

Ignore a Store, 
all-1’s returned 

on a Load

Invalid address or con-
figuration cycle to non-

existent device

Processor
Invalid tar-
get address 

Load or 
Store

No response from 
system

Machine check

I/O Memory

DMA - 
I/O to

memory

Data parity on
PCI bus

PHB Target-
aborts operation

May be recoverable; see 
note following table

Data parity on
system bus

Machine check

DMA - 
memory
to I/O

Data parity on
PCI Bus

PHB signals 
PERR#

May be recoverable; see 
note following table

Data parity on
system bus

Machine check 
or PHB signals 

Memory parity or 
uncorrectable 

ECC
Machine check

Table 51. Error Indications for System Operations (Continued)

Initiator Target Operation
Error Type
(if detected)

Indication to 
Software

Comments
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Implementation Note: I/O devices should detect the occurrence of PCI 
Target-abort or PCI data parity errors on DMA and report them via an 
external interrupt (for possible device driver recovery) or retry the 

I/O Memory

DMA -
either

direction

Address parity on 
I/O bus

Machine check

Address parity on 
system bus

Machine check

I/O bus time-out Machine check

Invalid address Machine check

PHB TCE extent
PHB target-

aborts operation
May be recoverable; see 

note following table

PHB page fault
PHB target-

aborts operation
May be recoverable; see 

note following table

PHB
unauthorized

access

PHB target-
aborts operation

May be recoverable; see 
note following table

I/O I/O
DMA -
either

direction

Data parity on
PCI bus

Device signals 
PERR#

May be recoverable; see 
note following table

Data parity on 
system bus

Machine check

Address parity on 
I/O bus

Machine check

Address parity on 
system bus

Machine check

I/O bus time-out Machine check

I/O
Invalid tar-
get address 

DMA - 
either

direction

No response from 
any device

PCI device
master-aborts

Signal device driver as 
an external interrupt,

PCI I/O Device Any
Internal, indicated 

by SERR#

SERR#, caus-
ing machine 

check

Use of SERR# for inter-
nal errors is discouraged

ISA I/O Device Any ISA bus IOCHK# Machine check

Table 51. Error Indications for System Operations (Continued)

Initiator Target Operation
Error Type
(if detected)

Indication to 
Software

Comments
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operation. Since system state has not been lost, reporting these errors 
via a Machine Check to the CPUs is inappropriate. Some devices or 
device drivers may cause a catastrophic error. Systems which wish to 
recover from these types of errors should choose devices and device 
drivers which are designed to handle them correctly.

10.2.2 Environmental and Power Warnings

Environmental and Power Warnings (EPOW) is an option that provides a
means for the platform to inform the operating system of these types of events.
The intent is to enable the operating system to provide basic information to the
user about these problems and to minimize the logical damage done by these
problems. For example, an operating system might want to abort all disk I/O
operations in progress to ensure that disk sectors are not corrupted by the loss
of power.

These warnings include action codes that the platform can use to influence
the operating system behavior when various hardware components fail. For
example, a fan failure where the system can continue to operate in the safe
cooling range may just generate an action code of WARN_COOLING, but a
fan failure where the system cannot operate in the safe cooling range may gen-
erate an action code of SYSTEM_HALT.

Implementation Note: Hardware can not assume that the operating system 
will process or take action on these warnings. These warnings are only 
provided to the operating system in order to allow the operating system 
a chance to cleanly abort operations in progress at the time of the 
warning. Hardware still assumes responsibility for preventing 
hardware damage due to environmental or power problems.

An operating system that wants to be EPOW-aware will look for the epow-
events node in the Open Firmware device tree, enable the interrupts listed in its
open-pic-interrupt property, and provide an interrupt handler to call check-ex-
ception when one of those interrupts are received.

Requirements:

10–14. If the platform supports Environmental and Power Warnings by 
including a EPOW device tree entry, then the platform must support the 
EPOW sensor for the get-sensor-state RTAS function.

10–15. The EPOW sensor, if provided, must contain the EPOW action code 
(defined in Table 52 on page 166) in the least significant 4 bits. In cases 
where multiple EPOW actions are required, the action code with the 
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highest numerical value (where 0 is lowest and 7 is highest) must be 
presented to the operating system. The platform may implement any 
subset of these action codes, but must operate as described in Table 52 
for those it does implement.

10–16. To ensure adequate response time, platforms which implement the 
EPOW_MAIN_ENCLOSURE or EPOW_POWER_OFF action codes 
must do so via interrupt and check-exception notification, rather than by 
event-scan notification.

10–17. For interrupt-driven EPOW events, the platform must ensure that an 
EPOW interrupt is not lost in the case where a numerically higher-
priority EPOW event occurs between the time when check-exception 
gathers the sensor value and when it resets the interrupt.

Implementation Note: One way for hardware to prevent the loss of an 
EPOW interrupt is by deferring the generation of a new EPOW 
interrupt until the existing EPOW interrupt is reset by a call to the RTAS 
check-exception function. Another way is to ignore resets to the 
interrupt until all EPOW events have been reported.

Table 52. EPOW Action Codes

Action Code Value Description

EPOW_RESET 0
No EPOW event is pending. This action code is the lowest 
priority.

WARN_COOLING 1
A non-critical cooling problem exists. An EPOW-aware 
operating system logs the EPOW information.

WARN_POWER 2
A non-critical power problem exists. An EPOW-aware 
operating system logs the EPOW information.

SYSTEM_SHUTDOWN 3
The system must be shut down. An EPOW-aware operat-
ing system logs the EPOW error log information, then 
schedules the system to be shut down in 10 minutes.

SYSTEM_HALT 4
The system must be shut down quickly. An EPOW-aware 
operating system logs the EPOW error log information, 
then schedules the system to be shut down in 20 seconds.
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Software Note: A recommended operating system processing method for 
an EPOW_MAIN_ENCLOSURE event is as follows: Prepare for 
shutdown, mask the EPOW interrupt, and wait for 50 milliseconds. 
Then call get-sensor-state to read the EPOW sensor. If the EPOW 
action code is unchanged, wait an additional 50 milliseconds. If the 
action code is EPOW_POWER_OFF, attempt to power off. Otherwise, 
the power condition may have stabilized, so interrupts may be enabled 
and normal operation resumed.

10.2.3 Power Management Events

Power Management Events, when implemented, are also reported through ei-
ther the check-exception or event-scan functions, depending on whether the
events are implemented to report through interrupts or not. The architected
events are defined in Chapter 11, “Power Management,” on page 185 and are
returned in the fixed portion of the RTAS return value (see Table 53 on
page 172).

10.3 RTAS Error and Event Information 
Reporting

Architecture Note: All data formats listed in this section are either 
referenced as byte fields (and therefore are independent of Endian 
orientation), or an indicator in the data structure describes their Endian 

EPOW_MAIN_ENCLOSURE 5

The system may lose power. The hardware ensures that at 
least 4 milliseconds of power within operational thresh-
olds is available. An EPOW-aware operating system per-
forms any desired functions, masks the EPOW interrupt, 
and monitors the sensor to see if the condition changes. 
Hardware does not clear this action code until the system 
resumes operation within safe power levels.

EPOW_POWER_OFF 7

The system will lose power. The hardware ensures that at 
least 4 milliseconds of power within operational thresh-
olds is available. An EPOW-aware operating system per-
forms any desired operations, then attempts to turn system 
power off. An EPOW-aware operating system does not 
clear the EPOW interrupt for this action code. This action 
code is the highest priority.

Table 52. EPOW Action Codes (Continued)

Action Code Value Description
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orientation. Bits are numbered from left (high-order:0) to right (low-
order:7).

10.3.1 Introduction

This section describes the data formats used to report events and errors from
RTAS to the Operating System. A common format is used for errors and events
to simplify software both in RTAS and in the OS. Both errors and events may
have been analyzed to some degree by RTAS, and value judgments may have
been applied to decide how serious an error is, or even how to describe it to the
OS. These judgments are made by platform providers, since only they know
enough about the hardware to decide how serious a problem it is, whether and
how to recover from it, and how to map it onto the abstracted set of events and
errors that a system is required to know about. There will be cases with some
platforms where no reasonable mapping exists, and platform features may not
be fully supported by the OS (an example might be a platform with power man-
agement features beyond those provided for in this specification). In such
cases, error reports may also be non-specific, leaving platform-specific details
to platform-aware software.

10.3.2 RTAS Error/Event Return Format

This section describes in detail the return value retrieved by an RTAS call to ei-
ther the event-scan or check-exception function.

The return value consists of a fixed part and an optional Extended Error
Report, described in the next section, which contains full details of the error.
The fixed part is intended to allow reporting the most common problems in a
simple way, which makes error detection and recovery simple for operating
systems that want to implement a very simple error handling strategy. At the
same time, the mechanism is capable of providing full disclosure of the error
syndrome information for operating systems which have a more complete error
handling strategy.

RTAS can return at most one return code per invocation. If multiple condi-
tions exist, RTAS returns them in descending order of severity on successive
calls.

10.3.2.1 Reporting and Recovery Philosophy, and 
Description of Fields

All RTAS implementations use a common error and event reporting scheme, as
described in detail below. It is not required that error recovery be present in
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RTAS implementations, nor is it required that a high degree of error recovery
or survival be undertaken by operating systems. If such behavior is desired,
then specific platform-dependent handlers can be loaded into the OS. However,
this section defines return result codes and a philosophy which can be used if
aggressive error handling is implemented in RTAS. This section describes the
fields of the Error Report format, and the philosophy which should be applied
in generating return values from RTAS or interpreting such return codes in an
OS.

In general, an OS would look at the Disposition field first to see if an error
has been corrected already by RTAS. If not corrected to the OS’s satisfaction,
the OS would examine the Severity field. Based on that value, and optionally
on any information it can use from the Type and other fields, the OS will make
a determination of whether to continue or to halt operations. In either case, it
may choose to log information regarding the error, using the remaining fields
and optional Extended Error Log.

The following sections describe the field values in Table 53 on page 172.

10.3.2.1.1 Version Field
This field is used only to distinguish among present and potential future for-
mats for the remainder of the error report. This value will be incremented if ex-
tensions are made to the format described here. Future versions will be
backward-compatible; the primary function of this field is for future OSs to
identify whether an error report may contain some (unknown at present) fea-
ture that was added after the initial version of this specification.

10.3.2.1.2 Severity
This field represents the value judgment of RTAS of how serious the problem
being reported should be considered by the OS. A platform-aware OS may
choose to ignore the RTAS judgment, but non-platform-aware OSs have no
way to make adequate value judgments, and should in general believe the
RTAS assessment of the situation.

Errors which are believed to represent a permanent hardware failure affect-
ing the entire system are considered “FATAL.” OSs would not attempt to con-
tinue normal operation after receiving notice of such an error. OSs may not
even be able to perform an orderly shutdown in the presence of a Fatal error,
though they may make a policy decision to try.

Less serious errors, but still causing a loss of data or state, are considered
“ERRORs.” In general, continuing after such an error is questionable, since
details of what has failed may not be available, or if available, may not map
nicely onto any ongoing activity with which the OS can associate it. However,
OSs may make a policy decision (for example, based on the error Type, the Ini-
tiator, or the Target) to continue operation after an Error.
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There are some types of errors, such as parity errors in memory or a parity
error on a transfer between CPU and memory, which occur synchronously with
the current process execution context. Such errors are sometimes fatal only to
the current thread of execution; that is, they affect only the current CPU state
and possibly that of any memory locations being currently referenced. If that
context of execution is not essential to the system’s operation (for example, if
an error trap mechanism is available in the OS and can be triggered to recover
the OS to a known state), recovery and continuation may be possible. Or at
least, since the memory of the machine is in an undamaged state, the system
may be able to be brought down in an orderly fashion. Such errors are reported
as having severity “ERROR_SYNC.” It is OS dependent whether recovery is
possible after such an error, or whether the OS will treat it as a fatal problem.

The “WARNING” return value indicates that a non-state-losing error, either
fully recovered by RTAS or not needing recovery, has occurred. No OS action
is required, and full operation is expected to continue unhindered by the error.
Examples include corrected ECC errors or bus transfer failures which were re-
tried successfully.

The “EVENT” return value is the mechanism RTAS uses to communicate
event information to the OS. The event may have been detected by polling
using event-scan or on the occurrence of an interrupt by calling check-excep-
tion. In either case, the Error Return value indicates the event which has
occurred in the Type field. See the Type description below for a description of
specific events and their expected handling.

The “NO ERROR” return value indicates that no error was present. In this
case, the remainder of the Error Return fields are not valid and should not be
referenced.

10.3.2.1.3 RTAS Disposition
An aggressive RTAS implementation may choose to attempt recovery for some
classes of error so a non-platform-aware OS can continue operation in the face
of recoverable errors. If RTAS detects an error for which it has recovery code,
it attempts such action before it returns a value to the OS (that is, the mecha-
nisms are linked in RTAS and cannot be separately accessed). Note that Dispo-
sition is nearly independent from Severity. Severity says how serious an error
was, and Disposition says, regardless of severity, whether or not the OS has to
even look at it. In general, an OS will first examine Disposition, then Severity.

A return value of “FULLY RECOVERED” means that RTAS was able to
completely recover the machine state after the error, and OS operation can con-
tinue unhindered. The severity of the problem in this case is irrelevant, though
for consistency a “FATAL” error can never be “FULLY RECOVERED.”

A return value of “LIMITED RECOVERY” means that RTAS was able to
recover the state of the machine, but that some feature of the machine has been
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disabled or lost (for example, error checking), or performance may suffer (for
example, a failing cache has been disabled). The RTAS implementation may
return further information in the extended error log format regarding what
action was done or what corrective action failed. In general, a conservative OS
will treat this return the same as “NOT RECOVERED,” and initiate shutdown.
A less conservative OS may choose to let the user decide whether to continue
or to shut down.

A value of “NOT RECOVERED” indicates that the RTAS either did not
attempt recovery, or that it attempted recovery but was unsuccessful.

10.3.2.1.4 Optional Part Presence
This is a single flag, valid only if the 32-bit Error Return value is located in
memory, which indicates whether or not an Extended Error Log Length field
and the Extended Error Log follows it in memory. It will be set on an in-mem-
ory return result from RTAS if and only if the RTAS call indicated sufficient
space to return the Extended Error Log, and the RTAS implementation supports
the Extended Error Log.

10.3.2.1.5 Initiator
This field indicates, to the best ability of RTAS to determine it, the initiator of a
failed transaction. (Note that in the “Initiator” field of Table 51 on page 162,
the value “I/O” indicates one of the defined I/O buses or devices. This field
contains finer-grained details of which type of I/O bus failed, if known, and
“UNKNOWN” if RTAS cannot tell.)

10.3.2.1.6 Target
If RTAS can determine it, this field indicates the target of a failed transaction.

10.3.2.1.7 Type
This field identifies the general type of the error or event. In some cases (for
example, INTERN_DEV_FAIL, or power management events), multiple pos-
sible events are grouped together under a common return value. In such cases,
a platform-aware OS may use the Extended Error Log to distinguish them. A
non-platform-aware OS will generally treat all errors of a given type the same,
so it generally will not need to access the Extended Error Log information.

In the table, the EPOW and power management values are associated with a
Severity of EVENT. All other values will be associated with Severity values of
FATAL, ERROR, ERROR_SYNC, or WARNING, and may or may not be cor-
rected by RTAS.

EPOW is an event type which indicates the potential loss of power or envi-
ronmental conditions outside the limits of safe operation of the platform. See
“Environmental and Power Warnings” on page 165 for more information.
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Power Management event types are described in Section 11.2.1.2, “Defini-
tion of RTAS Abstracted Power Management Event Types,” on page 199. OSs
implementing power management features will pass these events to the appro-
priate power management software.

Additional Type values will be added in future revisions of the specifica-
tion. If an OS does not recognize a particular event type, it can examine the
severity first, and then choose to ignore the event if it is not serious.

10.3.2.1.8 Extended Error Log Length
This optional 32-bit field is present in memory following the 32-bit Error Re-
turn value only if the Optional Part Presence flag is “PRESENT.” If present, it
indicates the length in bytes of the Extended Error Log information which im-
mediately follows it in memory. The length does not include this field or the
Error Return field, so it may be zero.

10.3.2.1.9 RTAS Error Return Format Fixed Part
The summary portion of the error return is designed to fit into a single 32-bit
integer. When used as a data return format in memory, an optional Length field
and Extended Error Log data may follow the summary. The fixed part contains
a “presence” flag which identifies whether an extended report is present.

In the table below, the location of each field within the integer is included in
parentheses after its name. Numerical field values are indicated in decimal
unless noted otherwise.

 
Table 53. RTAS Error Return Format (Fixed Part) 

Bit Field Name (bit 
number(s))

Description, Values (Described in Section 10.3.2.1, “Reporting and 
Recovery Philosophy, and Description of Fields,” on page 168)

Version (0:7)
A distinct value used to identify the architectural version of message.

Current version = (1)

Severity (8:10)

Severity level of error/event being reported:
FATAL (5)
ERROR (4)
ERROR_SYNC (3)
WARNING (2)
EVENT (1)
NO_ERROR (0)
reserved for future use (6-7)
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RTAS Disposition (11:12)

Degree of recovery which RTAS has performed prior to return after an 
error (value is FULLY_RECOVERED if no error is being reported):

FULLY_RECOVERED(0)
Note: Cannot be used when Severity is “FATAL”.

LIMITED_RECOVERY(1)
NOT_RECOVERED(2)
reserved for future use (3)

Optional_Part_Presence (13)

Indicates if an Extended Error Log follows this 32-bit quantity in 
memory:

PRESENT (1): The optional Extended Error Log is present.
NOT_PRESENT (0): The optional Extended Error Log is not 

present.

Reserved (14:15) Reserved for future use (0:3)

Initiator (16:19)

Abstract entity that initiated the event or the failed operation:
UNKNOWN (0): Unknown or Not Applicable
CPU (1): A CPU failure (in an MP system, the specific CPU is 

not differentiated here)
PCI (2): PCI host bridge or PCI device
ISA (3): ISA bus bridge or ISA device
MEMORY (4): Memory subsystem, including any caches
POWER_MANAGEMENT (5): Power Management sub-

system
Reserved for future use (6-15)

Target (20:23) Abstract entity that was apparent target of failed operation (UN-
KNOWN if Not Applicable): Same values as Initiator field

Table 53. RTAS Error Return Format (Fixed Part)  (Continued)

Bit Field Name (bit 
number(s))

Description, Values (Described in Section 10.3.2.1, “Reporting and 
Recovery Philosophy, and Description of Fields,” on page 168)
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Typically, most operating systems care about, and have handlers for, only a few
specific errors. Since coding of an error is unique in the above scheme, an oper-
ating system can check for specific errors, then if nothing matches exactly, look
at more generic parts of the error message. This permits generic error message
generation for the user, providing the basic information that RTAS delivered to
the operating system. Platforms may provide more complete error diagnosis
and reporting in RTAS, combined with off-line diagnostics which take advan-
tage of the information reported from previous failures.

10.3.2.2 Extended Error Log Format Returned by RTAS

The following tables define an extended error log format by which the RTAS
can optionally return detailed information to the software about a hardware er-
ror condition. This format is also intended to be usable as residual error log

Type (24:31)

General event or error type being reported:
Internal Errors:

RETRY (1): too many tries failed, and a retry count expired
TCE_ERR (2): range or access type error in an access through 

a TCE
INTERN_DEV_FAIL (3): some RTAS-abstracted device has 

failed (for example, TODC) 
TIMEOUT (4): intended target did not respond before a time-

out occurred
DATA_PARITY (5): Parity error on data 
ADDR_PARITY(6): Parity error on address
CACHE_PARITY (7): Parity error on external cache
ADDR_INVALID(8): access to reserved or undefined address, 

or access of an unacceptable type for an address
ECC_UNCORR (9): uncorrectable ECC error 
ECC_CORR (10): corrected ECC error 
RESERVED (11-63): Reserved for future use

Environmental and Power Warnings:
EPOW(64): See Extended Error Log for sensor value
RESERVED (65-95): Reserved for future use

Power Management Events(96-159): power management event oc-
curred - see Table 62 on page 199 for defined event values

Reserved for future use (160-223)
Vendor-specific events(224-255): Non-architected
Other (0): none of the above

Extended Error Log Length 
(32:63) 

Length in bytes of Extended Error Log information which follows 
(see 10.3.2.2, “Extended Error Log Format Returned by RTAS,” on 
page 174)

Table 53. RTAS Error Return Format (Fixed Part)  (Continued)

Bit Field Name (bit 
number(s))

Description, Values (Described in Section 10.3.2.1, “Reporting and 
Recovery Philosophy, and Description of Fields,” on page 168)
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data in NVRAM, so that the operating system could alternatively retrieve error
data after an error event which caused a reboot.

Figure 12 and Table 54 on page 176 shows the general layout for the
extended error log format, while Tables 55 through 60 show the detailed layout
of bytes 12 through 39. The detail area format is determined by bits 4:7 of byte
2, which indicate the error log type.

Extended product-unique data may be added to the end of the error log buffer
(starting at byte 40) for capture and logging by the operating system. Platforms
which provide extended data indicate the maximum length of the error log
buffer in the rtas-error-log-max RTAS property in the Open Firmware device
tree, so that the operating system can allocate a buffer large enough to hold the
extended error log data when calling the RTAS event-scan or check-exception
functions. If the allocated buffer is not large enough to hold all the error log
data, the data is truncated to the size of the buffer.

Figure 12. Layout of extended error log format from RTAS.

General Extended Error Log Format Detailed Error Log Formats

Header

Product-specific
extensions

0

11
12

39
40

Detail Data

(CPU, Memory, I/O, POST,
EPOW, Power Management)
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Table 54. RTAS General Extended Error Log Format 

Error Log Format

Byte Bit(s) Description

0

0 1 = Log Valid

1 1 = Unrecoverable Error

2 1 = Recoverable (correctable or successfully retried) Error

3
1 = Unrecoverable Error, Bypassed - Degraded operation
(for example, Single CPU taken off-line, bad cache bypassed)

4
1 = Predictive Error - Error is recoverable, but indicates a trend to-
ward unrecoverable failure (for example, correctable ECC error 
threshold)

5 1 = “New” Log (always 1 for data returned from RTAS)

6
1 = Addresses/Numbers are Big-Endian format, 0 = Little-Endian
Note: This bit will always be set to the Endian mode in which RTAS 
was instantiated.

7 Reserved

1 0:7 Reserved

2

0 Set to 1 - (Indicates log is in PowerPC format)

1:2 Reserved

3
1 = No failing address was available for recording within the log’s 
Detailed Log Data, so the address field is invalid

2 4:7

Log format indicator, defines format used for bytes 12-39:

(0) Reserved
(1) CPU-detected failure, see Table 55 on page 178
(2) Memory-detected failure, see Table 56 on page 178
(3) I/O-detected failure, see Table 57 on page 180
(4) Power-On Self Test (POST) failure, see Table 58 on page 182
(5) Environmental and Power Warning, see Table 59 on page 183
(6) Power Management Event, see Table 60 on page 183
(7-11) Reserved
(12-15) Vendor-specific

Note: Some of these elements are sensitive to Endian orientation, and are indicated by an “*” in the 
Byte column. Byte 0, Bit 6 of the log structure indicates the Endian orientation.
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3

0:3 Reserved

4
1 = Error is residual information from a failure which occurred prior 
to the last boot (for example, stored information about a machine 
check that crashed the system before RTAS could report it to the OS)

5
1 = Error detected during IPL process (If neither bit 5 nor bit 7 is on, 
the error occurred after control was passed to the operating system)

6 1 = Configuration changed since last boot.

7
1 = Error detected prior to IPL (in POST or firmware extended diag-
nostics)

4-7

Note: Time and Date are based upon the same values and time base as the RTAS 
Time-of-Day functions.
Time of most recent error in BCD format:

HHMMSS00, where HH=00-23, MM=00-59, SS=00-59

8-11
Date of most recent error in BCD format:

YYYYMMDD, where YYYY=1995-future, MM=01-12, DD=01-31

12-39 Detailed log data (See Detail log formats, Tables 55 through 60)

Table 54. RTAS General Extended Error Log Format  (Continued)

Error Log Format

Byte Bit(s) Description

Note: Some of these elements are sensitive to Endian orientation, and are indicated by an “*” in the 
Byte column. Byte 0, Bit 6 of the log structure indicates the Endian orientation.
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Table 55. Error Log Detail for CPU-Detected Error 

CPU-detected error log format, bytes 12-39 

Byte Bit(s) Description

12

0
1 = CPU internal Error, other than cache
Note: If failure cannot be isolated, these bits may all be 0

1 1 = CPU internal cache error 

2 1 = External (L2) cache parity or multi-bit ECC error 

3 1 = External (L2) cache ECC single-bit error

4 1 = Time-out error, waiting for memory controller 

5 1 = Time-out error, waiting for I/O

6 1 = Address/Data parity error on Processor Bus

7 1 = Transfer error on Processor Bus

13 Physical CPU ID number 

14-15 * Identifier number of sender of data/address parity error, or element which timed out

16-23 * 64-bit Memory Address for cache error (High-order bytes =0 if 32-bit addressing)

24-39 Reserved

Note: Some of these elements are sensitive to Endian orientation, and are indicated by an “*” in 
the Byte column. Byte 0, Bit 6 of the log structure indicates the Endian orientation.

Table 56. Error Log Detail for Memory Controller-Detected Error 

Memory Controller-detected error log format, bytes 12-39

Byte Bit(s) Description

12

0
1 = Uncorrectable Memory Error (parity or multiple bit ECC)
Note: If failure cannot be isolated, these bits may all be 0

1 1 = ECC correctable error

2 1 = Correctable error threshold exceeded

Note: Some of these elements are sensitive to Endian orientation, and are indicated by an “*” in the
Byte column. Byte 0, Bit 6 of the log structure indicates the Endian orientation.
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12

3 1 = Memory Controller internal error 

4 1 = Memory Address (Bad address going to memory)

5 1 = Memory Data error (Bad data going to memory)

6 1 = Memory bus/switch internal error

7 1 = Memory time-out error

13

0 1 = Processor Bus parity error, detected by Memory Controller 

1 1 = Processor time-out error, detected by Memory Controller

2 1 = Processor bus Transfer error

3 1 = I/O Host Bridge time-out error, detected by Memory Controller

4
1 = I/O Host Bridge address/data parity error, detected by Memory 
Controller

5:7 Reserved

14 Physical Memory Controller number which detected error (0 if only one controller)

15
Physical Memory Controller number which caused error (0 if only single memory 
controller, or if the error source is in main memory, not another memory controller)

16-23 * 64-bit Memory Address (High-order bytes =0 if only 32-bit address)

24-25 * Syndrome bits (included if single-bit correctable error)

26 Memory Card Number (0 if on system board)

27 Reserved

28-31 * 0:31
Memory sub-elements (for example, SIMMs/DIMMs) implicated on 
this card (or system board), 1 bit per sub-element

32-33 * Identifier number of sender of data/address parity error, or element which timed out

34-39 Reserved

Table 56. Error Log Detail for Memory Controller-Detected Error  (Continued)

Memory Controller-detected error log format, bytes 12-39

Byte Bit(s) Description

Note: Some of these elements are sensitive to Endian orientation, and are indicated by an “*” in the
Byte column. Byte 0, Bit 6 of the log structure indicates the Endian orientation.
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Table 57. Error Log Detail for I/O-Detected Error 

I/O-detected error log format, bytes 12-39

Byte Bit(s) Description

12

0
1 = I/O Bus Address Parity Error 
Note: If failure cannot be isolated, these bits may all be 0

1 1 = I/O Bus Data Parity Error 

2 1 = I/O Bus Time-out Error

3 1 = I/O Device Internal Error

4
1 = Signaling device is a PCI to non-PCI bridge chip, indicating an
error on the secondary bus (for example, ISA IOCHK#)

5 1 = Mezzanine/Processor Bus Address Parity Error 

6 1 = Mezzanine/Processor Bus Data Parity Error

7 1 = Mezzanine/Processor Bus Time-out Error 

13

0 1 = Bridge is connected to Processor Bus 

1 1 = Bridge is connected to Memory Controller via Mezzanine Bus 

2:7 Reserved 

14 PCI Bus ID of the device signaling the error

15
0:4 PCI Device ID of the device signaling the error

5:7 PCI Function ID of the device signaling the error

16-17 * PCI “Device ID” of the device signaling the error (from configuration register)

18-19 * PCI “Vendor ID” of the device signaling the error (from configuration register)

20 PCI “Revision ID” of the device signaling the error (from configuration register)

21
Slot Identifier number of the device signaling the error
’00’ if system board device
’FF’ if multiple devices signaling an error

22 PCI Bus ID of the sending device at the time of error

Note: Some of these elements are sensitive to Endian orientation, and are indicated by an “*” in the
Byte column. Byte 0, Bit 6 of the log structure indicates the Endian orientation.
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23
0:4 PCI Device ID of the sending device at the time of error

5:7 PCI Function ID of the sending device at the time of error

24-25 *
PCI “Device ID” of the sending device at the time of error (from configuration
register)

26-27 *
PCI “Vendor ID” of the sending device at the time of error (from configuration
register)

28
PCI “Revision ID” of the sending device at the time of error (from configuration
register)

29
Slot Identifier number of the sending device at the time of error
’00’ if system board device
’FF’ if sender cannot be identified, or if no sender (for example, internal SERR#)

30-39 Reserved

Table 57. Error Log Detail for I/O-Detected Error  (Continued)

I/O-detected error log format, bytes 12-39

Byte Bit(s) Description

Note: Some of these elements are sensitive to Endian orientation, and are indicated by an “*” in the
Byte column. Byte 0, Bit 6 of the log structure indicates the Endian orientation.
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Table 58. Error Log Detail for Power-On Self Test-Detected Error

Power-On Self Test error log format, bytes 12-39

Byte Bit(s) Description

12 0 1 = Firmware Error

1 1 = Configuration Error

2 1 = CPU POST Error 

3 1 = Memory POST Error 

4 1 = I/O Subsystem POST Error

5 1 = Keyboard POST Error

6 1 = Mouse POST Error 

7 1 = Graphic Adapter / Display POST Error

13 0 1 = Diskette Initial Program Load (IPL) Error

1 1 = Drive Controller IPL Error (SCSI, IDE, etc.)

2 1 = CD-ROM IPL Error

3 1 = Hard disk IPL Error 

4 1 = Network IPL Error 

5 1 = Other IPL Device Error (Tape, Flash Card, etc.)

6 Reserved

7 1 = Self-test error in firmware extended diagnostics

14-25
Device Name (Open Firmware Device for which self-test failed. Name truncated if 
longer than 12 bytes.)

26-29 * POST Error Code

30-31 * Firmware Revision Level

32-39
Location Name (platform-specific identifier which points to specific instance of fail-
ing device)

Note: Some of these elements are sensitive to Endian orientation, and are indicated by an “*” in the
Byte column. Byte 0, Bit 6 of the log structure indicates the Endian orientation.
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Table 59. Event Log Detail for Environmental and Power Warnings

Environmental and Power Warning event log format, bytes 12-39

Byte Bit(s) Description

12-15 * EPOW Sensor Value (low-order 4 bits contain the action code)

16-39 Reserved

Note: Some of these elements are sensitive to Endian orientation, and are indicated by an “*” in the
Byte column. Byte 0, Bit 6 of the log structure indicates the Endian orientation.

Table 60. Event Log Detail for Power Management Events

Power Management event log format, bytes 12-39

Byte Bit(s) Description

12-15 * Integer identifier of the source of the power management event (product-specific)

16-39 Reserved

Note: Some of these elements are sensitive to Endian orientation, and are indicated by an “*” in the
Byte column. Byte 0, Bit 6 of the log structure indicates the Endian orientation.
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Power 
Management Chapter 11

Power management is a set of hardware, firmware, and system software facili-
ties employed in the efficient utilization of electrical power while continuing to
meet the computational needs of the user. Support for power management is an
important new feature of this architecture. Although the initial impetus for
power management was the extension of useful operational time for battery-
powered portable computing, the scope of power management has been broad-
ened to include energy conservation in non-portable personal computers and
servers. Power management facilities can also be utilized to perform certain
network resource management functions such as remote shutdown/power-off
and reboot/power-on.

The fundamental principle of reducing average power consumption is quite
simple — turn off any device which is not currently in use. This policy is very
straight-forward to implement, but ignores the reality that any device which is
currently unused may be required at any instant in the future. If it is required
immediately after it was turned off, both the time required to turn the device off
and the time required to restore it to its power-on state are wasted. This delay
will impact the responsiveness of the system. The key to power management
which is unobtrusive is the anticipation of the future device utilization require-
ments of the user.

11.1 Power Management Concepts
A common understanding of power management concepts and terminology
will facilitate the description of power management facilities to be provided by
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hardware, firmware, and system software. The following sections contrast
power management policy and mechanism, present the concepts of device and
system power states, and discuss power domains and control points. This is fol-
lowed by sections describing power sources and batteries, power management
events, the explicit transfer of policy responsibility, and EPA Energy Star Com-
pliance.

11.1.1 Power Management Policy Versus 
Mechanism

Briefly mechanism is the how of power management and policy is the when
and why. Policy determines the conditions under which power state transitions
are initiated. Mechanism deals with the means by which these transitions are
carried out and the sensing of events which trigger these transitions.

The term policy is often used to refer to both the strategies used to control
power as well as the entity executing these strategies. Policy can be imple-
mented in hardware, firmware, system software, or application software, but is
usually implemented via a combination of two or more of these. The rule
employed in this architecture is to allow hardware and firmware to set policy
until system and/or application software explicitly assumes control. Once this
takes place, platform hardware/firmware is designed to totally surrender con-
trol to system and/or application software except in cases where it must inter-
vene to insure the safety of persons, property or the platform hardware.

The underlying principle is that the operating system as the central service
in the computing system has the most information concerning future device
access demands of the current computational workload and thus is in the best
position to optimize energy usage while maintaining overall system respon-
siveness and/or computational throughput. The operating system is also best
equipped to resolve conflicts between system power state transition requests
from multiple active power management aware (PM-aware) applications.

Power management mechanism involves both the hardware facilities which
control the consumption of electrical power in devices and the methods of rout-
ing control information from the policy to these facilities. Mechanism also
refers to methods of routing information from devices or sensors to the policy.
Mechanism is implemented by hardware, Run-Time Abstraction Services, and
system software (primarily device drivers and interrupt handlers).

To intelligently utilize these mechanisms the policy must have access to an
internal model of the power consumption of the devices which constitute the
system and understand the topology of devices as they are organized in power
domains.
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11.1.2 Device Power States

A device is any physical entity which consumes power in a computer system.
All devices appear as nodes in the Open Firmware device tree. Some devices
provide software controllable modes of operation which consume varying lev-
els of power. These devices will be called power-manageable devices. Other
devices have no such capability. Power savings can still be achieved in systems
which employ this second class of devices by either removing power from
these devices or clocking them at slower speeds. These devices will be called
indirectly-managed devices.

An indirectly-managed device is defined to possess a single power state.
Power-manageable devices have two or more power states. An important
attribute of each power state is whether the device retains its internal functional
parameters. An indirectly-managed device always retains its internal functional
parameters. A power-manageable device is required to retain its internal func-
tional parameters in all supported power states with the possible exception of
its lowest power state.

Most devices have associated with them a device driver through which the
operating system controls the device and obtains services from it. A power-
management-enabled device driver is responsible for providing to the operat-
ing systems mechanisms for controlling the power state of a device. The num-
ber and characteristics of these device power states are recorded in the device
tree and are made available to the operating system via the client interface of
Open Firmware. The device driver associated with a power-manageable device
is also responsible for restoring the internal operational parameters of the
device when directed to bring the device to an operational state if the prior
device power state may have caused these internal parameters to be lost.

Certain devices employ internal power conservation techniques which are
not software controllable. It is recommended that such a device provide a
means of disabling its power conservation mode if the utilization thereof
effects the device’s service time in any way. These power conservation tech-
niques must not impact the correct operation of software.

11.1.3 System Power Management States

The concept of a system power state facilitates the description of the problems
associated with managing power and the individual responsibilities of hard-
ware, firmware, and system software. The following sections present defini-
tions for six “static” power states. Section 11.1.4, “System Power Transitory
States,” on page 190 defines three transitory power states.
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11.1.3.1 Power Management Disabled

In this state the system is its most responsive to application and system soft-
ware. It may also be the state where power usage is maximum. All power-man-
ageable devices are inhibited from entering any of their supported lower power
states. All self-managed devices are inhibited from entering their energy con-
servation modes, if this capability is available. All power domains (see Section
11.1.5.1, “Power Domains,” on page 191) are set to their Full On power level
(domain power levels are described in section 11.1.5.4, “Domain Power Lev-
els,” on page 194).

11.1.3.2 Power Management Enabled

The Power Management Enabled state is the state in which a power managed
system spends the majority of its operational time. While the system is in the
Power Management Enabled state the power management software is actively
engaged in the control of the device power states with the goal of minimizing
energy consumption.

In this state the system is completely operational. Various devices may be
commanded by the power management software to move to lower power
states. This may increase latency for applications requiring service from these
devices.

11.1.3.3 Standby

Standby is intended to be the lowest power state where the system is responsive
to interrupts from all sources. The CPU will be placed in a low power mode if
one is available. However, the CPU is still in control of the system and will re-
spond (perhaps sluggishly) to interrupts. The power management software will
place all I/O devices in the lowest power state supported by the device unless it
is involved in the generation or routing of power management events. Opera-
tional parameters are retained within the devices. No data loss occurs in
Standby.

An operating system implementation specific set of I/O interrupts will cause
an immediate transition back to the Power Management Enabled State. This
transition should be imperceptible to the user and certainly less than one sec-
ond.



11.1 Power Management Concepts 189

Personal Use Copy - Not for Reproduction

11.1.3.4 Suspend

Suspend is defined to be a system state which consumes very little power and
yet allows the very rapid resumption of software activity based on the detection
of a platform specific and software maskable set of events.

After operational parameters of peripheral devices and the contents of both
the L1 and write-back L2 caches are saved to main memory, these devices may
be powered off. Main memory is placed in a low power data retention state (for
Dynamic RAM, slow refresh). All I/O devices not necessary to the detection of
Resume events are normally powered off. Finally the main processor itself may
be powered off.

If the processor does not retain its internal state, the re-application of power
followed by a reset is required to move to a more responsive state. The transi-
tion from the Suspend state to one of the more responsive states is called
Resume. This process should require less than 10 seconds.

Depending on the amount of time the system spends in the Suspend state
and the amount of time required to return to an operational state after entering
Suspend, the system may not be able to maintain all communication sessions
established prior to entering this state.

11.1.3.5 Hibernate

In the Hibernate state the system should consume no more power than when
the system is in the Off state, yet the preparation described below allows the
restoration of system and operational software upon the detection of one or
more of a platform specific and software maskable set of events. This set may
be different than the set of events which trigger Resume.

Prior to entering the Hibernate state, the operational state of the system must
first be saved to main memory. This process is the same as the process of pre-
paring for Suspend described above. Preparation for Hibernate, however,
requires an additional step. After the operational state of the system is con-
tained in main memory, an image of main memory must be written (perhaps in
compressed form) to a nonvolatile secondary storage medium. During this
time, devices which are necessary to the process will be brought to whatever
device power states are required to execute the process.

If this process is successful, it will be possible on reboot of the system to
restore the operational state of the system to one which is indistinguishable to
the user from the state of the system prior to the time that the transition to
Hibernate took place. An exception is communication sessions which will have
been broken and will need to be reestablished by the user after the operational
state of the system has been restored.
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After the successful completion of preparing for hibernation, the system
should move immediately to the Hibernate state. In the Hibernate state the sys-
tem is not operational. Power usage may not be zero in this state, but to the user
all indication that the system is powered will be absent.

The restoration of a former operational state from the Hibernate state is
called Wakeup. Although the time required for this process is highly dependent
on the installed operating system and will increase for larger system memory
sizes, it should require less time than that required to perform a cold boot. A
goal for this process is less than 100 seconds from the trigger event to the time
when the system appears responsive to user input.

11.1.3.6 Off

In this state the system is not operational. Power usage may not be zero in this
state, but to the user all indication that the system is powered will be absent.
One or more of a platform specific and software maskable set of events ini-
tiates the transition out of this state. This set may be different than the set of
events which trigger Resume or Wakeup. On exiting the Off state, the boot pro-
cessor will experience a hardware reset. 

11.1.4 System Power Transitory States

A system power transitory state is a process which if successfully completed
moves the system from one static power state to another. These processes are
initiated by either explicit user request or one or more power management
events. Some of these actions are very quick and simple, others are more in-
volved. This section presents three of the more involved system power transi-
tory states. Section 11.1.8, “Power Management Events,” on page 195 defines
the concept of power management events.

11.1.4.1 Resume

Resume is defined to be the process of restoring the system to the operational
state that existed prior to the transition to the Suspend system state. In order to
exit the Suspend state the boot processor may experience a reset at the outset of
the Resume process.

After reinitializing all standard devices, firmware transfers control back to
the system software which was active prior to the system Suspend request.
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11.1.4.2 Wakeup

Wakeup is defined to be the process of restoring the system to the operational
state that existed prior to the transition to the Hibernate state. The process is
normally initiated by the detection of a wakeup event by hardware. Hardware
and firmware reset and disable or initialize and enable system support logic and
system board I/O devices. A possibly abbreviated power on self test follows.
The remainder of the process proceeds just like a cold boot. The operating sys-
tem is responsible to discriminate this from a cold boot, find the image of the
system state which has been saved to a secondary nonvolatile storage medium,
and bring it back into main memory.

11.1.4.3 Powerup

Powerup is defined as the process, also known as cold boot, of moving from
the Off state to either the Power Management Enabled or Power Management
Disabled system power state. Hardware and firmware are responsible to initial-
ize all system devices and generally performs some type of hardware test. The
actuation of the system power switch is an example of action which could ini-
tiate the Powerup transitory state.

11.1.5 Power Domains and Domain Control 
Points

A power domain groups one or more devices together and represents a depen-
dency relationship. This dependency relationship often cuts across device driv-
ers and therefore must be managed at a level which transcends the device
drivers. The power level of a power domain affects the power consumption of
one or more devices within a domain in a manner which is outside the normal
capability of a manageable device or its device driver. It may accomplish this
by interrupting or restoring the flow of power to a device or lowering or raising
its clock frequency. A power domain control point is a device in the Open
Firmware device tree which provides software control over a power domain.
Power domains, domain control points, and domain power levels are discussed
in the following sections.

11.1.5.1 Power Domains

Logically a power domain is a set of devices in the Open Firmware device tree
that share the same power domain name. Membership is specified via the Open
Firmware property power-domains.
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Any device whose power consumption is dependent on a mechanism of
which the device driver is unaware must belong to a power domain. Domains
may have hierarchical relationships with one another.

A device may be the member of more than one power domain. Membership
in multiple domains may be used to represent dependency upon multiple differ-
ent external provisions such as multiple voltages or clocks. Devices are not
considered members of multiple power domains, however, simply because they
are in a subdomain.

The device power state of power-manageable devices affects the total aver-
age and peak power consumption of the domain to which it belongs. Addition-
ally the various legal power state transitions of these devices will impose
different transitory power demands on the domain.

A platform which supports the set-power-level RTAS function must support
the root power domain. This domain is the parent of all other power domains in
the system (or contains all physical devices if there are no subordinate
domains). If a device in the Open Firmware device tree does not have domain
membership explicitly defined by encoding the power-domains property in a
system with software control of the main power switch, it defaults to being a
member of the root domain.

11.1.5.2 Power Domain Control Point

A power domain control point is a device which appears in the device tree and
exercises control over one or more power domains. The Open Firmware prop-
erty controls-power-domains enumerates these domains for a given control
point. Control points may themselves be members of other power domains.
This membership is expressed through the power-domains property just like
other devices. A power domain controller is not allowed, however, to be a
member of a domain that it controls.

11.1.5.3 Power Domain Dependencies

The power domain dependency tree is a data structure which represents the
functional dependencies of power domains within a platform. A functional de-
pendency exists when the power level of one domain affects the operation or
usefulness of another domain. The value of the power-domains-tree property of
the rtas node encodes the power domain dependency tree data structure.

Refer to Figure 13 on page 193 which provides a representation of a simple
set of dependency relationships between power domains and devices in the
Open Firmware device tree. The figure shows three power domains and three
devices. The devices are not formally part of the domain dependency tree and
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are not explicitly represented in the power-domains-tree property. Devices
have membership in one or more power domains. This membership implies a
dependency relationship between a device and its containing domain. Devices
may have dependencies on other devices. One device is dependent on another
if the power state of the first affects the operation of the other.

In the figure, Device A belongs to two domains — Domain 1 and Domain 2.
Device B and Device C, which share a mutual dependency, belong to Domain
2. Domain 1 and Domain 2 are children of Domain 0. This means that the
power level of Domain 0 affects the operation of Domain 1 and Domain 2.
Because Domain 1 and Domain 2 are siblings, the power state of Domain 1
must not affect the operation of Domain 2 and vice versa. While it is legal for
Device B and Device C to share either a one way or mutual dependency, the
requirements for the power domain dependency tree do not allow a dependency
relationship to exist between a device which is a member of one domain and
another device which has membership in a sibling or ancestral domain. For
example, if a dependency relationship were to exist between Device A and
Device B, Domains 1 and 2 would need to be combined to maintain compli-
ance to the requirements for a power domain dependency tree. These require-
ments are given in Section 11.2.2.1, “Power Domain Dependency Tree,” on
page 201.

Figure 13. Example Domain and Device Dependency Relationships

Domain 0

Domain 1 Domain 2

Device A Device B Device C
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11.1.5.4 Domain Power Levels

There are four defined domain power levels: Full On, Reduced, Freeze, and
Off. Domains may support all levels, but must support at least two. Switching
domain power levels affects operation of devices within the domain and any
subdomains. This switching must not, however, affect the correct operation of
other domains. The states are defined so that an operating system knows how
devices are affected and can take appropriate action before changing domain
power levels. The implementation of power domain levels must insure that de-
vices within the domain and any subdomains will operate in a known fashion.
The four domain power levels are described below. 

■ Full On: In this level devices in the domain and any subdomain have full 
power available to them.

■ Reduced: This level must consume less power than Full On. Power avail-
able to devices within the domain and all subdomains must allow the de-
vices to be fully operational although they may experience increased service 
times. Operating systems should assume that devices in the domain will not 
work as quickly as in Full On. 

■ Freeze: This level must consume less power than Reduced. Power available 
to devices in the domain and any subdomains must allow those devices to 
retain their internal operational parameters, but the devices are not required 
to be functional. Operating systems should assume that the devices in the 
domain can no longer be used.

■ Off: This level must consume less power than Freeze and ideally will con-
sume no power. Devices in the domain and any subdomains are not func-
tional and will not retain their internal parameters. Operating systems need 
to be aware that device parameters may need to be reset or restored after 
switching the domain to another level.

A given power domain may not implement all four levels defined above.
The power domain dependency tree specifies the power levels supported for
each domain.

Hardware Implementation Note: Domain power levels are separate from 
device power states. Changing power levels only changes the power 
available to devices within the domain. The implementation of the 
RTAS method set-power-level must not directly operate on a device 
and the indirect effects must be constrained to those described above.
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The defined values for the Level argument used in the set-power-level and
get-power-level RTAS calls are specified in Section 11.2.1.1, “Definition of
Domain Power Levels,” on page 198.

11.1.6 Power Sources

A power source is either a DC/DC convertor or a subsection of an AC power
supply which sources power to a given set of devices via a distribution plane or
cabling network. Power sources have associated with them the values peak-
power and average-power. Each defined power source in a system appears in
the property value list of the platform-power-sources property of the rtas node
of the Open Firmware device tree. Each device which consumes power sourced
by a power source encodes the power-sources property to list the power
sources upon which it depends.

Power sources and their lists of dependent consuming devices are intended
to be used by system software in the budgeting of power.

11.1.7 Batteries

Battery management is a vital aspect of power management in a battery-oper-
ated platform. The platform-battery-sources property of the Open Firmware
device tree rtas node encodes important characteristics of the batteries which
are present in a system. This data structure provides the identification and man-
ufacturer’s rated capacity for each battery in the platform.

11.1.8 Power Management Events

A power management event (PM event) is a condition which is reported to the
policy entity and, based on the specific policy algorithm, may result in device
and/or system power state transitions. PM events are generated by devices, de-
vice drivers, or application programs. A generator of a PM event is called an
event source. PM events which are generated internal to a device driver or ap-
plication program are beyond the scope of this architecture.

A key feature of this architecture which enables a shrink-wrap operating
system to effectively manage power is the grouping of power management
events into abstract event types. Because these event types have well-defined
semantics, it becomes possible for an operating system to set reasonable policy
algorithms without knowing the details of the specific platform.

There are three basic mechanisms for getting processor attention when an
event occurs. The first is employed when the boot processor is not powered as
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during Suspend, Hibernate, or Off. Here the mechanism is the re-application of
power followed by a reset which is directed to the boot processor. In the case of
a Resume from Suspend, the event type which triggered the Resume is returned
via a parameter in the RTAS suspend call buffer. For Wakeup and Powerup a
subsequent call to the RTAS function event-scan may provide more informa-
tion as to the specific causal event.

The second attention mechanism is employed when the processor(s) is (are)
powered as in the system power states Standby and Power Management
Enabled. In this case the platform asserts the power management interrupt. On
receipt of a power management interrupt the processor can use the RTAS call
check-exception to identify the event type and source. A third mechanism is a
polled one provided via the RTAS call event-scan. In addition other PM event
delivery mechanisms may be employed which are unique to the operating sys-
tem.

Architecture Note: Although the change in state of some sensors may be 
reported as a power management event, the get-sensor-state RTAS 
call always returns the current state of the sensor, not necessarily its 
value at the time that the event was asserted. Power management 
events are reported either via an interrupt which is discriminated by a 
check-exception call or via event-scan. Which mechanism an event 
source employs is platform dependent, but a specific event will not be 
reported by both methods. If more than one event source of a given 
type exists on a platform, the event presented is the logical OR of 
these events. Thus a given event type may employ both event 
reporting mechanisms. Properties in the device tree specify which 
interrupts must be enabled by system software for each of the defined 
error/event classes. The event type is reported in the type field of the 
error/exception return buffer fixed part (see Chapter 10, “Error and 
Event Notification,” on page 157) and the event source is specified in 
the extended part of same (refer to Section 10.3.2.2, “Extended Error 
Log Format Returned by RTAS,” on page 174).

11.1.9 Explicit Transfer of Power Management 
Policy

A pair of RTAS calls allow the explicit transfer of power management policy
responsibility between the platform and the system software. The assume-
power-management call transfers responsibility for power management control
from the platform hardware/firmware to system software. The relinquish-
power-management call transfers responsibility back to the platform. The de-
fault platform policy is not intended to provide active device power manage-
ment which is the responsibility of system software.
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On hard reset the platform hardware/firmware owns the responsibility for
power management policy. This normally involves very simple rules concern-
ing the effects of a limited number of events such as depressing the system
power switch or the restoration of AC power after an outage. When system
software is loaded and the power management software is operational, it signi-
fies its readiness to assume responsibility for the system power management
policy by executing the assume-power-management RTAS call.

In the termination phase of the typical operation of a system, system soft-
ware should explicitly transfer responsibility for system power management
back to the platform. This is accomplished by calling the relinquish-power-
management RTAS function. See Section 7.3.7, “Power Management,” on
page 123 for a description of these functions.

11.1.10 EPA Energy Star Compliance

The EPA Memorandum of Understanding (MOU) as amended in October,
1994, states that a computer system must possess a low-power “sleep” mode in
which the system unit consumes less than 30 watts. The utilization of the Sus-
pend or Hibernate system power states described above in a system design are
possible means by which this may be achieved. The EPA MOU is subject to
change at any time.

11.2 Power-Managed Platform 
Requirements
The design of a power-managed system presents the designer with new re-
quirements based on the desired level of power management functionality. The
following sections present these requirements. First parameters defined for use
by RTAS are given. Then current and future Open Firmware properties re-
quired in a power-managed system are presented. Next general requirements
for all platforms which support power management are given. Finally some op-
tional power management features and recommendations are presented.



198 Chapter 11 Power Management

Personal Use Copy - Not for Reproduction

11.2.1 Definition of Power Management Related 
Parameters Utilized by RTAS

Platforms which support power management are required to implement all
RTAS calls designated for power-managed platforms as defined in Section
7.2.6, “RTAS Device Tree Properties,” on page 98. The following sections de-
fine the values of parameters associated with power management which are
employed in specific RTAS calls.

11.2.1.1 Definition of Domain Power Levels

The set-power-level and get-power-level RTAS calls use the argument Level.
The following defines the requirements for the implementation of this value.

Requirements:

11–1. For the Power Management option:  The set-power-level and get-
power-level RTAS calls must respectively accept as input and return the 
values of the argument Level as defined in Table 61 on page 198.

Table 61. Defined Power Levels

Level Value Description

Full On 100
Platform insures that power and clocking meets the requirements of all devices within the domain 
for maximal performance.

Reserved 21-99 Reserved for future use.

Reduced Power 20
Platform uses whatever techniques available to lower power consumption within the specified 
domain, but does nothing which prevents correct operation.

Reserved 11-19 Reserved for future use.

Freeze 10
Platform may use power conservation techniques which stop operation of devices within the do-
main, but does nothing which prevents devices within the domain from retaining their internal 
functional parameters.

Reserved 1-9 Reserved for future use.

Off 0 Platform may remove power from all devices within the specified domain.
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11.2.1.2 Definition of RTAS Abstracted Power 
Management Event Types

The RTAS calls event-scan and check-exception are both capable of reporting
power management events and event types using the error log format defined
in Section 10.3.2, “RTAS Error/Event Return Format,” on page 168.

The error log format field designated “Type” has the values 96 through 159
allocated for reporting power management event types. These event types and
their Error Log Type field values are listed in Table 62 on page 199. 

Requirements:

11–2. For the Power Management option:  The Type field of the error log 
within the range 96 to 159 must be defined as specified in Table 62 on 
page 199.

Table 62. Defined Power Management Event Types 

Event
Type 
Field 
Value

Semantics

Power Switch On 96
This event means that the user has requested a change in system power state. The precise target 
state is based on current policy settings. This event is presented only when the current system state 
is Suspend, Hibernate, or Off

Power Switch Off 97

This event means that the user has requested a change in system power state. The precise target 
state is based on current policy settings. This event is presented only when the current system state 
is PM enabled, PM disabled, or Standby. Platform designers should not rely upon software response 
to this event to deenergize power within an enclosure if safety is a concern.

Lid Open 98
A lid as used here is something physical which covers or protects the standard user input (keyboard 
or pad and/or pointing device) and output (display) and prevents their usage. The Lid Open event 
signifies that these user interface devices are now available.

Lid Close 99
User interface devices as defined above are now unavailable. The user has signalled that he no 
longer desires to interact with the system by closing the lid.

Sleep Button 100
User is requesting a system power state transition from the current state to a policy dependent lower 
power state.

Wake Button 101 A transition from the current system power state to a more responsive state is requested.

Battery Warning 102
The battery status sensor is signalling that remaining time to battery empty condition has dropped 
below that set via the set-indicator RTAS call.

Battery Critical 103
A battery energy level has been reached which is below a platform dependent level. Generally this 
means that there is not sufficient energy remaining to perform a Hibernate.
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Software Implementation Note: The power-type property of the power-
management-events node of the Open Firmware device tree provides 
a list of power management event types which are supported on a 
given platform. 

Switch to Battery 104
This event signifies that a dual AC/battery powered system has lost AC and has switched automati-
cally to internal battery power.

Switch to AC 105
This signifies that a dual powered system has automatically switched its power source from its in-
ternal battery back to available AC power.

Keyboard or mouse 
activity

106
The user has pressed keys on the keyboard or pad, moved the mouse, or depressed a mouse click 
button. This event is generated only when the system is in the Suspend or Hibernate states

Enclosure Open 107

An enclosure is a physical barrier which constrains the variability of the machine configuration. 
This event signifies that the enclosure has been opened and that the system configuration may have 
been modified. If the opening of the enclosure involves any safety concern, this event should not be 
relied upon to ensure safety. Hardware interlocks should be employed in this case.

Enclosure Closed 108
This event signifies that the physical barrier as defined above is again in place. If there exists a 
safety concern, this event should not be used to energize power within an enclosure.

Ring Indicate 109
Either the ring indicate signal of an external serial port connector has been asserted or an internal 
modem has detected the ring pulses.

LAN Attention 110
A local area network connection has signalled indicating a request for a power state transition to a 
more responsive state.

Time Alarm 111 The time threshold set via the set-time-for-power-on RTAS call has been met or exceeded.

Configuration 
change

112
A significant configuration change such as attachment to a docking station has occurred. This event 
would be generated when the system power state is Suspend or Hibernate.

Reserved 113-159 Reserved for future use.

Table 62. Defined Power Management Event Types  (Continued)

Event
Type 
Field 
Value

Semantics
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11.2.1.3 Definition of Power Management Event Mask 
Argument

Requirements:

11–3. For the Power Management option:  The Resume_mask of the sus-
pend RTAS call, the Wakeup_mask of the hibernate RTAS call and the 
Power-on-mask of the power-off RTAS call must be defined by the 64 
bit quantity generated by 0x8000000000000000 right shifted by (n-96), 
where n equals the Type field value specified in Table 62 on page 199.

11.2.2 Open Firmware Device Tree Properties

The PowerPC Microprocessor Common Hardware Reference Platform System
binding to: IEEE Std 1275-1994 Standard for Boot (Initialization, Configura-
tion) Firmware [10] specifies several new power related device tree properties.
This section specifies the manner in which they are to be used to convey power
management information from firmware to system software. This information
includes a description of all the platform power domains and all supported ab-
stract event sources.

11.2.2.1 Power Domain Dependency Tree

The power domain dependency tree is given via the Open Firmware property
power-domains-tree. This property is specified by the platform designer and
takes into account all the functional interdependencies between members of
each domain as well as dependencies on the containing domain and members
of other domains. A dependency domain tree must meet the following require-
ments.

Requirements:

11–4. For the Power Management option:  The power domain dependency 
tree must have a single root node which is the root power domain.

11–5. For the Power Management option:  Each node of the power domain 
dependency tree must have a single parent except the root domain 
which has no parent.

11–6. For the Power Management option:  The effects of changing the 
power level of a domain must be limited to member devices and 
subdomains only.
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11.2.2.2 Properties for Power Domain Control Points

Power domain control points require properties describing the power domains
they control, the domains they are a member of, and properties describing the
power levels they support.

Requirements:

11–7. For the Power Management option:  System firmware must provide 
the Open Firmware controls-power-domains property for all domain 
control points. The value of this property is a list of domain numbers 
specifying the domains over which this device exercises control.

Hardware Implementation Note: A power domain controller is not a 
member of the domain it controls. A control point of the root power 
domain is not a member of any power domain. If controls-power-
domains property list includes domain 0, this overrides the default 
domain membership rule of requirement 11–18.

11.2.2.3 Properties for Power-Manageable Devices

Power-manageable devices are those that support software controllable switch-
ing among different power states. These states are separate from domain power
levels. The following gives the requirements for a platform which implements
power-manageable devices.

Requirements:

11–8. For the Power Management option:  System firmware must provide 
the Open Firmware power-domains property describing the 
membership of a power-manageable device in the platform power 
domains.

11–9. For the Power Management option:  If system firmware provides 
device power state information, it must use the Open Firmware device-
power-states property to describe the supported device states. This 
property is described in the PowerPC Microprocessor Common 
Hardware Reference Platform System binding to: IEEE Std 1275-1994 
Standard for Boot (Initialization, Configuration) Firmware [10] and 
contains the following information for each state:

■ Initial device power state
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■ Power consumption of the device per power source while idle in this 
state

■ Power consumption of the device per power source while in use in 
this state

■ Manufacturer’s rated lifetime of the device while in this state

11–10. For the Power Management option:  If system firmware provides 
device power state information, it must use the device-state-transitions 
property describing the allowable transitions between the state 
described in device-power-states. This property is described in the 
PowerPC Microprocessor Common Hardware Reference Platform 
System binding to: IEEE Std 1275-1994 Standard for Boot 
(Initialization, Configuration) Firmware [10] and contains the 
following information:

■ A value specifying the source state of this transition

■ A value specifying the destination state of this transition

■ Power consumed per power source to make this transition

■ Wall clock time required to make this transition

■ Manufacturer’s rated tolerance on the number of cumulative occur-
rences of this transition

11–11. For the Power Management option:  If system firmware provides 
device power state information, each device in the Open Firmware 
device tree which consumes power provided by a power source must 
encode the power-sources property which is a list of power sources 
(indices into the platform-power-sources data structure).

Software Implementation Note: Each power-manageable device may 
provide the Open Firmware property power-management-mapping to 
define the set of device power states and the mapping from domain 
power levels to device power state for the device. This property value 
is device dependent and is defined in the Open Firmware binding for 
each device type.

11.2.2.4 Properties for Indirectly-Managed Devices

Devices that are not directly power manageable still require information about
power consumption and domain membership.
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Requirements:

11–12. For the Power Management option:  System firmware must provide 
the Open Firmware power-domains property describing the power 
domains of which this device is a member.

11–13. For the Power Management option:  If system firmware provides 
device power state information, it must use the Open Firmware device-
power-states property to provide this information.

11–14. For the Power Management option:  If system firmware provides 
device power state information, each device must encode the power-
sources property which is a list of power sources (indices into the 
platform-power-sources data structure) from which the device draws 
power.

11.2.2.5 Properties for Power Sources

Requirements:

11–15. For the Power Management option:  If system firmware provides 
device power state information, the platform-power-sources property of 
the Open Firmware device tree must specify all defined power sources 
of the platform.

Software Implementation Note: The platform-power-sources property 
provides the following information for each power source in the 
platform:

■ peak-power in milliwatts

■ average-power in milliwatts

11.2.2.6 Properties for Batteries

Requirements:

11–16. For the Power Management option:  If system firmware of a battery-
operated platform provides device power state information, it must also 
provide the platform-battery-sources property for its main batteries.

Software Implementation Note: The platform-battery-sources property 
provides the following information for each battery in the platform:
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■ Battery Identifier

■ Rated Capacity in milliwatt-hours

11.2.2.7 Other Open Firmware Property Usage Rules

Requirements:

11–17. For the Power Management option:  System firmware must provide 
the Open Firmware power-domains property for each physical (non-
system) node of the device tree unless the device is a member of the 
root power domain.

11–18. For the Power Management option:  If the root node of the device 
tree encodes the power-domains property, the membership of any 
physical node which does not encode this property must be assigned to 
the root power domain.

Architecture Note: The root power domain (power domain 0) is defined to 
contain all the physical devices of the system. Thus setting the power 
level of domain 0 to Off turns off the entire system. If this is the only 
domain which exists on a given platform, only the root node of the 
device tree is required to have the power-domains property. 

11.2.2.8 Power Management NVRAM Partition

An NVRAM configuration partition named pm-config is defined in Section
8.4.4.2, “Power Management Configuration Data,” on page 146. The contents
of this partition are defined in the PowerPC Microprocessor Common Hard-
ware Reference Platform System binding to: IEEE Std 1275-1994 Standard for
Boot (Initialization, Configuration) Firmware [10]. System Firmware is re-
sponsible for creating the nodes defined in this binding in the Open Firmware
device tree.

11.2.3 General Hardware Requirements

The following sections present hardware requirements for systems which are
designed to support power management.
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11.2.3.1 Hardware Functionality

While hardware may be employed as an aid to system software in the monitor-
ing of device activity, hardware should not effect device power state transitions
without the direction of system software except in situations where it must act
to protect platform hardware or the safety of persons and property.

Requirements:

11–19. For the Power Management option:  Hardware/firmware must not 
change the power state of a device unless this change is not observable 
by system software and does not affect the operation of software or im-
pact the predictability of device service time. This requirement is void 
if hardware/firmware must act to protect life or property.

11–20. For the Power Management option:  Power domain power level tran-
sitions must not affect the correct operation of sibling or ancestral 
power domains.

11–21. For the Power Management option:  The indirect effects of power 
level changes upon device within a given power domain must be lim-
ited to the following:

■ Devices may present increased service time when the power level is 
Reduced.

■ Devices may be rendered inoperative when the domain is placed in 
the Freeze or Off power levels.

■ Devices may loose internal functional parameters when the domain 
in placed in the Off power state.

11.2.3.2 Power Management Controller

The power management controller is a mechanism which carries out the func-
tions of sensing Wakeup events and optionally Resume events, controlling the
power supply secondary voltages, and controlling any power state related indi-
cators. The implementation of a power management controller is optional.

A power management controller is powered at any time the system is capa-
ble of being turned on. For battery-powered systems, this logic presents a con-
stant drain on the battery. For AC-powered systems, power for this logic may
be provided by an auxiliary secondary derived from the AC main.
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After responsibility for platform power management policy is assumed by
system software, software failures may impede some fundamental operations
such as turning off system power when the system power switch is pressed. To
prevent this, consideration may be given to providing a watchdog timer which
would provide the command to the power supply to turn off the secondary volt-
ages in the event that the power management software fails to complete its
task.

11.2.3.3 System Power Switch and Power Supply

If the system power switch is used as a power management event source in-
stead of hard-wiring it to the power supply, the function of the switch and
power supply require modification.

Requirements:

11–22. For the Power Management option:  To support the usage of the 
system power switch as a power management event source, the 
actuation of this switch must not interrupt the secondary voltages to the 
system.

11–23. For the Power Management option:  In support of requirement 11–
22, the secondary voltages from the power supply must be software 
controllable. 

Hardware Implementation Note: An unavoidable result of these 
requirements for an AC-powered system is that the primary AC circuit 
is not broken when the system power switch is actuated. This may 
raise a safety concern. The recommended mechanism for safety 
interlock during service is the removal of the AC line cord. It should be 
noted that in the majority of implementations of these requirements the 
safety provisions will actually improve from industry standard practice 
due to the fact that the AC power cord will attach directly to the system 
power supply which is contained in a grounded metal enclosure. Since 
all secondary voltages are controlled by logic level signals, users 
and/or service personnel will not be exposed to any AC line voltages 
even when the system unit covers are removed.

Architecture Note: It is strongly recommended that systems choose to 
support the requirements of this section. Many operating systems 
cache file system data in system memory (NT and AIX, for example). 
Unexpected loss of power can lead to damage to the file systems in 
these operating systems. Implementation of these requirements can 
help reduce the frequency of occurrence of this problem.
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11.2.3.4 Indicators

Requirements:

11–24. For the Power Management option:  The platform must establish 
control of all indicators following a hardware reset until system soft-
ware assumes control of power management policy via the assume-
power-management RTAS call.

Software Implementation Note: Prior to the transfer of power management 
responsibility from the platform to system software, system software 
may not be guaranteed exclusive control of indicators even if it uses 
the set-indicator RTAS call.

11.2.3.5 Battery-Related RTAS Calls

The RTAS calls set-indicator and get-sensor-state may be utilized by an oper-
ating system to monitor battery charge status and general battery health in a
battery operated system. This section gives guidance on the expected usage of
these calls in managing a battery. Section 7.3.6.2, “Set-indicator,” on page 119
and Section 7.3.6.3, “Get-sensor-state,” on page 120 give detailed descriptions
of these functions.

When called with the token value corresponding to the sensor Battery
Capacity Percentage the calling system software is returned a value which rep-
resents the current percentage of remaining battery energy. System software
may use this value to estimate remaining battery life based on the current or
anticipated application workload.

Batteries of varying chemistry are used in these systems. Some of these bat-
teries require conditioning cycles to eliminate charging “memory” effects
which reduce the effective capacity of a battery. Intelligent batteries contain
integrated circuitry which detects when these effects are degrading charging
performance. The get-sensor-state function when called using the token corre-
sponding to the Battery Condition Cycle State sensor provides a mechanism for
system software to query an intelligent battery to determine if a conditioning
cycle is required. This sensor should be polled on a periodic basis (period less
than 5 minutes).

Figure 14 on page 209 gives a condition cycle state transition diagram
which details how the calls are used to sense the need for a condition cycle, ini-
tiate a condition cycle, determine its progress, and handle error conditions. The
following sections explain the conditions shown on the diagram edges which
initiate state transitions.



11.2 Power-Managed Platform Requirements 209

Personal Use Copy - Not for Reproduction

11.2.3.5.1 Condition Cycle Indicated
The battery condition monitor circuitry has determined that a conditioning cy-
cle would help restore the battery’s charging capacity. At the same time the AC
charger is connected which is a prerequisite to initiate a condition cycle. Fac-
tors which contribute to the need to initiate a condition cycle vary depending
on battery technology.

System software can sense the need for a condition cycle by calling get-sen-
sor-state with the sensor token for the Battery Condition Cycle State sensor. A
return value of requested indicates that permission to initiate a condition cycle
is being requested.

11.2.3.5.2 Condition Cycle Aborted
The following conditions will initiate a condition cycle abort:

■ The AC charger is disconnected.

■ The battery is removed from the system.

■ An error is detected.
The reasons for this error depend on the battery and/or the power module
implementation.

11.2.3.5.3 RTAS call set-indicator
One possible response of system software to the receipt of a request to initiate a
condition cycle is to indicate to the platform that a condition cycle is autho-

Figure 14. Battery Condition Cycle State Transition Diagram

None

In Progress Requested

Condition Cycle
 Indicated

Condition
Cycle Aborted

RTAS call set-indicator

Condition Cycle
Terminated



210 Chapter 11 Power Management

Personal Use Copy - Not for Reproduction

rized. The mechanism which RTAS provides to carry this out is the set-indica-
tor function. When this is called with the indicator value set to Condition Cycle
Request and the State value set to one (enable), the platform is directed to ini-
tiate a condition cycle.

11.2.3.5.4 Condition Cycle Terminated
There are many reasons for terminating the condition cycle. These are:

■ The condition cycle has reached successful completion.

■ The AC charger has been disconnected.

■ The battery has been removed.

■ The condition cycle has been terminated by system software.
System software uses the set-indicator call with the indicator value set to
Condition Cycle Request and the State set to 0 (disable).

■ An error has been detected.

11.2.3.6 Other Implementation Recommendations

In a power-managed system the reliability of any electromechanical storage
subsystems must be examined carefully. For example, it may be necessary to
specify a hard disk which has been designed and tested to endure more than the
number of start/stop cycles than would be required in a system without power
management.

Consideration should be given to providing power domains subordinate to
the root on single board systems to allow the removal of power from certain
subsystems to reduce power consumption. Consideration should also be given
to defining a separate power domain for add-in adapters to allow power to
unused adapters to be turned off. This does, however, require self-identifying
and automatically configurable adapters.

It is recommended that the system preserve security features during power
management. For instance, if the system has a mechanism to check for a user
password when powering on from an Off state, then this facility should also
exist when waking up from a Hibernate state.

11.3 Operating System Requirements
To facilitate the following discussion of architectural aspects of power manage-
ment software, please refer to Figure 15 on page 212 which gives a conceptual
view of a power-management-enabled operating system.
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At the highest level an application called the PM User Interface provides the
user’s interface to Power Management. The policy execution module is called
the PM Executive. The PM Executive receives system power state transition
requests from the PM User Interface and from PM-aware applications. It
receives event messages from device drivers or via interrupt handlers. The PM
Executive is responsible to initiate commands to the various PM extended
device drivers to control the current power state of the various system
resources. The PM Executive can be integrated in the operating system kernel,
or exist as a kernel extension or privileged user-level application. It serves as
an arbiter to resolve possible conflicts between system power state transition
requests from multiple active PM-aware applications.

Although the power management policy may be implemented in a central-
ized executive, the power management mechanism should be implemented in a
distributed manner via power management extensions to the individual device
drivers. System software is shielded from selected hardware differences across
system implementations by code called the power management Run-Time
Abstraction Services.



212 Chapter 11 Power Management

Personal Use Copy - Not for Reproduction

Figure 15. Example Power Management Software Structure
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■ Power Management Enabled (and PM Disabled)

■ Standby

■ Suspend

■ Hibernate

Software Implementation Note: It is recommended that operating systems 
which are targeted for portable computers implement all the defined 
system power states. An operating system targeted for AC-powered 
non-mobile computers should implement either Suspend or Hibernate. 
An operating system targeted for servers only should implement the 
Power Management Enabled system power state.
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The Symmetric 
Multiprocessor 
Option Chapter 12

The Common Hardware Reference Platform supports the implementation of
symmetric multiprocessor (SMP) systems as an optional feature. This Chapter
provides information concerning the design and programming of such systems. 

SMP systems provide increased computational power in a broadly industry-
accepted manner that is supported by numerous operating systems as well as
middleware such as database systems. This added power is often applied to
server systems. However, it is also appropriate for high-end client worksta-
tions, where it can provide necessary increased performance for tasks such as
graphics, audio signal processing, speech recognition, etc. The ability to add
processors to increase performance can also provide increased investment pro-
tection for users of client workstations, as well as server systems.

SMP systems differ from uniprocessors in a number of ways. These differ-
ences are not all covered in this chapter. Other chapters that cover SMP-related
topics include:

■ non-processor-related initialization and other requirements: Chapter 2, 
“System Requirements,” on page 7

■ interrupts: Chapter 6, “Interrupt Controller,” on page 85

■ error handling: Chapter 10, “Error and Event Notification,” on page 157

Many other general characteristics of SMPs—such as interprocessor com-
munication, load/store ordering, and cache coherence—are defined in The
PowerPC Architecture [1]. Requirements and recommendations for system



216 Chapter 12 The Symmetric Multiprocessor Option

Personal Use Copy - Not for Reproduction

organization and time base synchronization are discussed here, along with
SMP-specific aspects of the boot process.

SMP hardware platforms require SMP-specific operating system support.
An operating system supporting only uniprocessor platforms will not automati-
cally be usable on an SMP, even when an SMP platform has only a single pro-
cessor installed; conversely, an SMP-supporting operating system will not
automatically be usable on a uniprocessor. It is, however, a requirement that
uniprocessor operating systems be able to run on one-processor SMPs, and that
SMP-enabled operating systems also run on uniprocessors. See the next sec-
tion.

12.1 SMP System Organization
The only multiprocessor defined by the Common Hardware Reference Plat-
form architecture is an SMP. This is a computer system in which multiple pro-
cessors equally share functional and timing access to and control over all other
system components, including memory and I/O, as defined in the requirements
below. Other multiprocessor organizations (“asymmetric multiprocessors,” “at-
tached processors,” etc.) are not included in the Common Hardware Reference
Platform architecture. These might, for example, include systems in which only
one processor can perform I/O operations; or in which processors have private
memory that is not accessible by other processors. 

Requirements 12–4 through 12–7 below further require that all processors
be of (nearly) equal speed, type, cache characteristics, etc. These requirements
are included to avoid a combinatorial explosion of software testing. For exam-
ple, it is manifestly impossible for all operating system, subsystem, and appli-
cation software to be certified against all possible simultaneously installed
combinations of processor type, speed, and cache size. This obviously does not
stop particular specific combinations from being certified for particular spe-
cific software; but “shrink-wrapped” software cannot be expected to have been
tested against all possible combinations. 

Note that the above issues of symmetry refer only to the hardware platform.
System or application software certainly may, should it be considered desirable
for some purpose, dedicate processors to particular tasks or implement other
functional asymmetries. 

Requirements and implementation notes related to SMPs follow.
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Requirements: 

12–1. Operating systems that do not explicitly support the SMP option must 
support SMP-enabled hardware platforms, actively using only one 
processor. 

12–2. For the Symmetric Multiprocessor option: SMP Operating Systems 
must support uniprocessor platforms.

12–3. For the Symmetric Multiprocessor option: The “SMP Extensions” 
sections of the Open Firmware binding for the CHRP architecture and 
for the PowerPC, and the SMP support section of the RTAS (see 
Section 7.3.11, “SMP Support,” on page 137) must be implemented.

12–4. For the Symmetric Multiprocessor option: All processors in the 
configuration must have equal functional access and “quasi-equal” 
timing access to all of system memory, including other processors’ 
caches, via cache coherence. “Quasi-equal” means that the time 
required for processors to access memory is sufficiently close to being 
equal that all software can ignore the difference without a noticeable 
negative impact on system performance; and no software is expected to 
profitably exploit the difference in timing. 

12–5. For the Symmetric Multiprocessor option: All processors in the 
configuration must have equal functional and “quasi-equal” timing 
access to all I/O devices and adaptors. “Quasi-equal” is defined as in 
requirement 12–4 above, with I/O access replacing memory access for 
this case. 

12–6. For the Symmetric Multiprocessor option: SMP Operating Systems 
must at least support SMPs with the same PVR contents and speed (for 
example, 133 MHz). The PVR contents includes both the PVN and the 
revision number.

12–7. For the Symmetric Multiprocessor option: All caches at the same 
hierarchical level must have the same Open Firmware properties. 

12–8. Hardware for SMPs must provide a means of “freezing” and “thawing” 
the processor time base for use by RTAS. See Section 7.3.11, “SMP 
Support,” on page 137. This is for purposes of clock synchronization at 
initialization.

Software Implementation Note: Requirement 12–1 has implications on the 
design of uniprocessor operating systems, particularly regarding the 
handling of interrupts. See the sections that follow, particularly Section 
12.2.2, “Finding the Processor Configuration,” on page 220.
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Software Implementation Note: While requirement 12–6 does not require 
this, Operating Systems are encouraged to support processors of the 
same type but different PVR contents as long as their programming 
models are compatible.

Hardware Implementation Note: Particularly when used as servers, SMP 
systems make heavy demands on the I/O and memory subsystems. 
Therefore, it is strongly recommended that the I/O and memory 
subsystem of an SMP platform should either be expandable as 
additional processors are added, or else designed to handle the load 
of the maximum system configuration.

Software Implementation Note: Because of performance penalties 
associated with inter-processor synchronization, the weakest 
synchronization primitive that produces correct operation should be 
used. For example, eieio can often be used as part of a sequence that 
unlocks a data structure, rather than the higher-overhead but more 
general sync instruction. 

Hardware Implementation Note: Defining an exact numeric threshold for 
“quasi-equal” is not feasible because it depends on the application, 
compiler, subsystem, and operating system software that the system 
is to run. It is highly likely that a wider range of timing differences can 
be absorbed in I/O access time than in memory access time. An 
illustrative example that is deliberately far from an upper bound: A 2% 
timing difference is certainly quasi-equal by this definition. While 
significantly larger timing differences are undoubtedly also quasi-
equal, more conclusive statements must be the province of the 
operating system and other software. 

12.2 An SMP Boot Process
Booting an SMP entails considerations not present when booting a uniproces-
sor. This section indicates those considerations by describing a way in which
an SMP system can be booted. It does not pretend to describe “the” way to boot
an SMP, since there are a wide variety of ways to do this, depending on engi-
neering choices that can differ from platform to platform. To illustrate the pos-
sibilities, several variations on the SMP booting theme will be described after
the initial description.

This section concentrates solely on SMP-related issues, and ignores a num-
ber of other initialization issues such as hibernation and suspension. See Sec-
tion 2.1, “System Operation,” on page 7 for a discussion of those other issues. 
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12.2.1 SMP-Safe Boot

The basic booting process described here is called “SMP-Safe” because it tol-
erates the presence of multiple processors, but does not exploit them. This pro-
cess proceeds as follows: 

1. At power on, one or more finite state machines (FSMs) built into the system 
hardware initialize each processor independently. FSMs also perform basic 
initialization of other system elements, such as the memory and interrupt 
controllers. 

2. After the FSM initialization of each processor concludes, it begins execu-
tion at a location in ROM that the FSM has specified. This is the start of ex-
ecution of the system firmware that eventually provides the Open Firmware 
interfaces to the operating system. 

3. One of the first things that firmware does is establish one of the processors 
as the master: The master is a single processor which continues with the rest 
of the booting process; all the others are placed in a stopped state. A proces-
sor in this stopped state is out of the picture; it does nothing that affects the 
state of the system and will continue to be in that state until awakened by 
some outside force, such as an inter-processor interrupt (IPI).1 

One way to choose the master is to include a special register at a fixed ad-
dress in the memory controller. That special register has the following prop-
erties: 

— The FSM initializing the memory controller sets this register’s contents 
to 0 (zero). 

— The first time that register is read, it returns the value 0 and then sets its 
own contents to non-zero. This is performed as an atomic operation; if 
two or more processors attempt to read the register at the same time, ex-
actly one of them will get the 0 and the rest will get a non-zero value. 

— After the first attempt, all attempts to read that register’s contents return 
a non-zero value. 

The master is then picked by having all the processors read from that spe-
cial register. Exactly one of them will receive a 0 and thereby become the 
master. 

1 Another characteristic of the stopped state, defined by the Open Firmware PowerPC binding, is
that the processor remembers nothing of its prior life when placed in a stopped state; this distin-
guishes it from the idle state. That isn’t strictly necessary for this booting process; idle could have
been used. However, since the non-master processor must be in the stopped state when the operating
system is started, stopped might as well be used.
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Note that the operation of choosing the master cannot be done using the 
PowerPC memory locking instructions, since at this point in the boot pro-
cess the memory is not initialized. The advantage to using a register in the 
memory controller is that system bus serialization can be used to automati-
cally provide the required atomicity.

4. The master chosen in step 3 then proceeds to do the remainder of the system 
initialization. This includes, for example, the remainder of Power-On Self 
Test, initialization of Open Firmware, discovery of devices and construction 
of the Open Firmware device tree, loading the operating system, starting it, 
and so on. Since one processor is performing all these functions, and the rest 
are in a state where they are not affecting anything, code that is at least very 
close to the uniprocessor code can be used for all of this (but see Section 
12.2.2, “Finding the Processor Configuration,” on page 220 below).

5. The operating system begins execution on the single master processor. It 
uses the Open Firmware Client Interface Services to start each of the other 
processors, taking them out of the stopped state and setting them loose on 
the SMP operating system code. 

This completes the example SMP boot process. Variations are discussed
beginning at Section 12.2.3, “SMP-Efficient Boot,” on page 222. Before dis-
cussing those variations, an element of the system initialization not discussed
above will be covered.

12.2.2 Finding the Processor Configuration

Unlike uniprocessor initialization, SMP initialization must also discover the
number and identities of the processors installed in the system. By “identity” is
meant the interrupt address of each processor as seen by the interrupt control-
ler; without that information, a processor cannot reset interrupts directed at it.
This identity is determined by board wiring: The processor attached to the
“processor 0” wire from the interrupt controller has identity 0. For information
about how this identity is used, see the “Symmetric Multiprocessor (SMP)”
section of the Open Firmware system binding for the CHRP architecture.

12.2.2.1 The Very Special Register Technique

One way to find the processor configuration is to use a very special register
in the memory controller, rather than a merely “special” one as described in the
prior section. This very special register returns not just 0 or non-0, but an indi-
cator of the identity of the processor. (This can be discovered by the memory
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controller through logic that inspects the bus grant lines.) Note that returning
this identity alone does not suffice to pick a master as defined above. Suppose,
for example, a processor discovers it is number 0. Does that mean it should
declare itself the master? That had better not be written into the code unless the
hardware guarantees that the physical slot corresponding to number 0 is always
occupied by a processor; this would be the case if, for example, processor 0
were on a motherboard and additional processors were on plug-in optional
daughter boards. However, it is not unusual in SMPs for all processors to be on
plug-in daughter boards; in that case, the first processor to access the register
must receive some data to indicate that it was first, no matter what the identity
of the processor. (Also, what should happen if the motherboard-mounted pro-
cessor is out of commission?)

12.2.2.2 The IPI Technique

There is a way to discover the number and identities of SMP processors that
doesn’t use a very special register.

In this technique, Inter-Processor Interrupts (IPIs) are used. The master is
chosen as was done in step 3 of Section 12.2.1, “SMP-Safe Boot,” on page 219.
The master then performs the remainder of its own self-test (if required). It also
does at least the minimum initialization of memory and the interrupt controller,
interrupt vectors, and so on, required to allow all possible processors to indi-
vidually respond sanely to IPIs and perform the operations indicated below.
The master also sets its own Processor ID Register (PIR) to a value that can
designate no possible processor.

The master then performs the following operation for P=0 to 32 (which is
the limit of the number of processors in the Open PIC specification):

1. Set a lock named L.

2. Set a memory value YOU_ARE to P.

3. IPI processor P (whoever that is; it might be yourself).

4. Wait for L to be reset. If L is not reset within a suitably chosen fixed time 
period, declare processor P to be missing or dead and resume the loop.

5. Since L was reset, somebody responded; declare processor P alive and re-
sume the loop.

Corresponding to this, the IPI interrupt handler, executed by each processor
in response to an IPI, does the following:

1. Loads the value in YOU_ARE into its PIR.
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2. Resets lock L.

3. Returns from the interrupt, possibly back into the dormant state.

If necessary, the non-dormant master can be differentiated from the other 
processors, which must go dormant, by noting back in step 1 what its initial 
PIR value was. This assumes, of course, that all the other processors’ PIRs 
were set to a value different from the one set either by the FSM or by some 
other means.

At the conclusion of this process, every processor has its identity in its own
PIR and the processors in the configuration have been identified.

12.2.3 SMP-Efficient Boot 

The booting process as described so far tolerates the existence of multiple pro-
cessors but does not attempt to exploit them. It is not impossible that the boot-
ing process can be sped up by actively using multiple processors
simultaneously. In that case, the pick-a-master technique must still be used to
perform sufficient initialization that other inter-processor coordination facili-
ties—in-memory locks and IPIs—can be used. Once that is accomplished, nor-
mal parallel SMP programming techniques can be used within the initialization
process itself. 

12.2.4 Use of a Service Processor

A system might contain a service processor that is distinct from the processors
that form the SMP. If that service processor has suitably intimate access to and
control over each of the SMP processors, it can perform the operations of
choosing a master and discovering the SMP processor configuration. In that
case, special or very special registers are unnecessary, as is the IPI technique. 

In the rather unlikely event that the service processor is itself an SMP,
recurse. 
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Operating System 
Information Appendix A

Six operating systems are targeted for support of the CHRP architecture. Table
63 on page 223 lists these operating systems and gives sources of information
for them. The second column in this table gives telephone contacts for obtain-
ing additional information. The third column gives the location of any elec-
tronic form of documents describing the support of the CHRP architecture by
these operating systems. System vendors must carefully consider the require-
ments which operating systems place on platforms. Platforms which conform
to the CHRP architecture could be configured to support only some of the oper-
ating systems or with enough resources the platform could support any of the
operating systems. Platforms may also supply hardware capabilities which are
not taken advantage of by some or all of the operating systems. 

Table 63. Sources of Operating Systems Information

Operating System Contact for Information
Location of On-line 
Documentation

AIX

AIX product license and product information 
is available from M. Dane Dixon, AIX OEM 
Relations with IBM, at 1-512-838-2445.
Application porting information is available 
from the IBM AIX Power Team General Infor-
mation Line at 1-800-222-2363.
AIX information is available from Motorola at 
1-800-759-1107 extension PR.
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Mac OS

Mac OS Licensing Department, Apple Com-
puter, Inc., 1 Infinite Loop, MS 305-1DS, Cu-
pertino, CA 95014, Telephone 1-408-974-
4645.

NetWare PowerPC 
Edition

OS/2 Warp Connect 
PowerPC Edition

For information on the microkernel call 1-800-
816-7493 or 1-407-443-6805.
For information on OS/2 Warp Connect Pow-
erPC Edition call 1-800-426-4579 extension 
50 or e-mail ips@otirmg.mhs.compuserve.
com.

Solaris PowerPC 
Edition

Solaris product information is available from 
Abe Ellenberg, Manager of OEM Engineering 
with Sun, at 1-310-348-6057, FAX 1-310-348-
8605, or e-mail abe.ellenberg@west.sun.com.

Windows NT

For information pertaining to developing hard-
ware abstractions for these platforms contact 
Motorola RISC software support at 1-512-891-
2999.
For information on Windows NT call your Mi-
crosoft representative.

Table 63. Sources of Operating Systems Information (Continued)

Operating System Contact for Information
Location of On-line 
Documentation
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Requirements 
Summary Appendix B

This appendix lists all the requirements of this architecture. The requirements
are collected under the chapter heading. This appendix may be used for a quick
reference list of all requirements for building a standard platform. The require-
ments list follows:

Chapter 2 System Requirements

2–1. I/O devices must adhere to the reset states given in Table 1 on page 10 
when control of the system is passed from firmware to an operating sys-
tem.

2–2. Prior to passing control to the operating system, firmware or hardware 
must initialize all registers not visible to the operating system to a state 
that is consistent with the system view represented by the OF device tree.

2–3. Hardware must provide a mechanism, callable by software, to hard reset 
all processors and I/O subsystems in order to facilitate the implementa-
tion of the RTAS system-reboot function.

2–4. For the Power Management option:  Hardware must provide a soft-
ware-controllable mechanism to reset the I/O subsystems without affect-
ing the state of the processors or memory to facilitate implementation of 
the RTAS hibernate function.
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2–5. Platforms must implement Open Firmware as defined in PowerPC Mi-
croprocessor Common Hardware Reference Platform System binding 
to: IEEE Std 1275-1994 Standard for Boot (Initialization, Configura-
tion) Firmware [10].

2–6. Platforms must implement the Run-Time Abstraction Services (RTAS) 
as described in Chapter 7, “Run-Time Abstraction Services,” on 
page 91.

2–7. Operating systems must use Open Firmware and the RTAS functions to 
be compatible with all platforms.

2–8. Platforms must support operation in Big-Endian mode.

2–9. Platforms must support operation in Little-Endian mode.

2–10. Platforms must contain the minimum required components given in Ta-
ble 2 on page 19.

2–11. Portable and personal CHRP operating systems must support all the fol-
lowing:

a. PS/2™ and ADB™ keyboard/mouse interfaces.

b. 16550-compatible and SCC serial ports.

c. SCSI and IDE hard disk interfaces.

2–12. An option, if implemented, must operate as specified in this architecture.

2–13. Extensions, if implemented, must come up passively, such that an oper-
ating system which does not use the extension will not be affected.

2–14. Options, if implemented, must come up passively or as otherwise speci-
fied in this architecture.

2–15. An extension, if implemented, must not contradict this architecture.

Chapter 3 System Address Map

3–1. All unavailable addresses in the Peripheral Memory and Peripheral I/O 
Spaces must be conveyed in the OF device tree.

a. A device type of reserved must be used to specify areas which are not 
to be used by software and not otherwise reported by OF.
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b. Shadow aliases must be communicated as specified by the appropri-
ate OF bus binding.

3–2. There must not be any address generated by the system which causes the 
system to hang.

3–3. Processor Load and Store operations must be routed and translated as 
shown in Table 5 on page 32.

3–4. DMA operations in the Memory Space of an I/O bus must be routed and 
translated as shown in Table 6 on page 32.

3–5. In addition to Table 6 on page 32, if the platform is designed to support 
System Memory configured at an address of 4 GB or above, then the 
Translation Control Entry (TCE) translation mechanism, described in 
Section 3.2.2, “Translation of 32-Bit DMA Addresses in 64-Bit Ad-
dressing Systems,” on page 38 must be implemented on all HBs. If the 
operating system enables the platform to access System Memory at or 
above 4 GB, then TCEs must be used to translate all DMA operations in 
the Memory Space of the I/O bus of the HB which use a 32-bit address.

3–6. An HB must not act as a target for operations in the I/O Space of an I/O 
bus.

3–7. The following are the System Control Area requirements:

a. Each platform must have exactly one System Control Area.

b. The System Control Area must not overlap with the System Memory 
Space(s), Peripheral Memory Space(s), or the Peripheral I/O Space(s) 
in the platform.

3–8. The following are the System Memory Space requirements:

a. Each platform must have at least one System Memory Space.

b. The System Memory Space(s) must not overlap with the Peripheral 
I/O Space(s), Peripheral Memory Space(s), the System Control Area, 
or other System Memory Space(s) in the platform.

c. The first System Memory Space must start at address 0 (BSM0 = 0), 
must be at least 16 MB before a second System Memory Space is 
added, and must be contiguous except that if the processor-hole is en-
abled, then there will be a hole from 640 KB to (768 KB - 1).

d. Each of the additional (optional) System Memory Space(s) must start 
on a 4 KB boundary.
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e. Each of the additional (optional) System Memory Space(s) must be 
contiguous within itself.

f. There must be at most eight System Memory Spaces below BSCA 
and at most eight at or above 4 GB.

g. If multiple System Memory Spaces exist below BSCA, then they 
must not have any Peripheral Memory or Peripheral I/O Spaces inter-
spersed between them.

3–9. The following are the Peripheral Memory Space requirements:

a. The Peripheral Memory Space(s) must not overlap with the System 
Memory Space(s), Peripheral I/O Space(s), the System Control Area, 
or other Peripheral Memory Space(s) in the platform.

b. When the OF passes control to the operating system, there must be no 
I/O device configured in the address range (TPM0 - 16 MB + 1) to 
TPM0 in the Peripheral Memory Space for PHB0, in order to assure 
that 16 MB of space is available for the initial memory alias spaces.

c. The size of each Peripheral Memory Space (TPMn - BPMn + 1) must 
be a power of two for sizes up to and including 256 MB, with the min-
imum size being 16 MB, and an integer multiple of 256 MB plus a 
power of two which is greater than or equal to 16 MB for sizes greater 
than 256 MB (for example, 16 MB, 32 MB, 64 MB, 128 MB, 
256 MB, 256 + 16 MB, 256 + 32 MB,..., 512 + 16 MB,...).

d. The boundary alignment for each Peripheral Memory Space must be 
an integer multiple of the size of the space up to and including 
256 MB and must be an integer multiple of 256 MB for sizes greater 
than 256 MB.

e. There must be exactly one Peripheral Memory Space per HB.

f. The Peripheral Memory Space for every HB defined by the CHRP ar-
chitecture must reside below BSCA.

3–10. The following are the Peripheral I/O Space requirements:

a. The Peripheral I/O Space(s) must not overlap with the System Mem-
ory Space(s), Peripheral Memory Space(s), the System Control Area, 
or other Peripheral I/O Space(s) in the platform.

b. The size of each Peripheral I/O Space (TIOn - BIOn + 1) must be a 
power of two with the minimum size being 8 MB (that is, sizes of 
8 MB, 16 MB, 32 MB, 64 MB, and so on, are acceptable).
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c. The boundary alignment for each Peripheral I/O Spaces must be an 
integer multiple of the size of the space.

d. There must be at most one Peripheral I/O Space per HB.

e. Peripheral I/O Spaces for all HBs defined by the CHRP architecture 
must reside below BSCA.

3–11. The following are the initial memory alias space requirements:

a. The peripheral-memory-alias and system-memory-alias spaces must 
be implemented on PHB0, and these initial memory alias spaces must 
have the capability to be enabled or disabled by the set-initial-aliases 
OF method for PHB0 node.

b. The initial state of the peripheral-memory-alias and system-memory-
alias spaces, when control passes from OF to the operating system, 
must be enabled if there is any device on the I/O side of PHB0 which 
is configured in the 0 to (16 MB - 1) address range of the Memory 
Space of the I/O bus, and must be disabled otherwise.

3–12. The following are the compatibility hole requirements:

a. The initial state of the io-hole and the processor-hole, when control 
passes from OF to the operating system, must be disabled (if imple-
mented).

b. If a platform implements the PC Emulation option, then the io-hole 
must be implemented. See Section 3.3, “PC Emulation Option,” on 
page 44 for more information.

c. Platforms for which VGA support is provided or which have an ISA 
bus must also implement the io-hole (see Table 2 on page 19 for the 
platform VGA requirements).

3–13. I/O devices which cannot be configured in the Peripheral Memory Space 
address range must be located on the I/O bus of PHB0, or on another I/O 
bus which is generated by a bridge attached to this bus, and must be con-
figured in the 0 to (16 MB - 1) address range.

3–14. When the discontiguous I/O mode is enabled, Processor Load and Store 
addresses in the first 8 MB of Peripheral I/O Space experience the fol-
lowing translation. The high order seven bits of each 4 KB page offset 
are ignored. Thus, all page offsets wrap to the same 32 bytes within that 
page. Successive page numbers, starting at BIO, reference successive 
32-byte blocks of Peripheral I/O Space, starting at address 0 (see 
Figure 7 on page 38).
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3–15. When the discontiguous I/O mode is disabled (that is, in the contiguous 
mode), addresses are translated so that BIO to (BIO + 64 KB - 1) is sent 
through to the I/O Space of the I/O bus starting at address 0, and 
(BIO + 8 MB) to TIO is sent through to the I/O Space of the I/O bus 
starting at 8 MB (see Figure 7 on page 38).

3–16. The discontiguous I/O mode must be disabled when control is passed to 
the operating system.

3–17. For 64-bit addressing option in HBs: In platforms which are designed 
to support System Memory configured at an address of 4 GB or above, 
the TCE mechanism, described in Section 3.2.2, “Translation of 32-Bit 
DMA Addresses in 64-Bit Addressing Systems,” on page 38, must be 
implemented on all HBs. After a DMA operation is accepted by the HB 
and pre-translated as per Table 6 on page 32, if the 64-bit addressing op-
tion of the HB is enabled, the HB must use the TCE mechanism to trans-
late the address when the I/O device presents a 32-bit address to the 
Memory Space of the HB.

3–18. For 64-bit addressing option in HBs: The bits of the TCE must be im-
plemented as defined in Table 5 on page 32.

3–19. For 64-bit addressing option in HBs: Enough bits must be implement-
ed in the TCE so that I/O DMA devices are able to access all System 
Memory addresses.

3–20. For 64-bit addressing option in HBs: TCEs must be stored as Big-En-
dian entities.

3–21. For 64-bit addressing option in HBs: When the 64-bit addressing op-
tion is enabled, an HB must not accept 32-bit accesses unless they would 
also be accepted under the requirements in Table 6 on page 32.

3–22. For 64-bit addressing option in HBs: If an HB accepts 64-bit addresses 
on DMA accesses (as reported by the existence of the 64-bit-dma prop-
erty in the HB node of the OF device tree for that specific HB) and if the 
64-bit addressing option of the HB is enabled, then that HB must not use 
TCEs to translate I/O bus Memory Space DMA addresses which support 
a full 64-bit address (for example, Dual Address Cycle (DAC) accesses 
on the PCI bus do not use the TCE translation mechanism in the PCI HB 
(PHB)).

3–23. For 64-bit addressing option in HBs: If an HB accepts 64-bit addresses 
on DMA accesses and if the 64-bit addressing option of the HB is en-
abled, that HB must translate 64-bit I/O bus Memory Space DMA ac-
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cesses (for example, DAC PCI accesses for the PHB) in the upper 4 GB 
of the 64-bit Memory Space of the I/O bus to the 0 to (4 GB - 1) address 
range before passing the access to the host side of that HB (for example, 
for a PHB, if AD[63:32] (PCI notation) are equal to 0xFFFF FFFF, then 
the PHB must set AD[63:32] to 0), otherwise the HB must not translate 
64-bit accesses (see Figure 8 on page 43).

3–24. For 64-bit addressing option in HBs: After translation of the address 
via requirements 3–17 or 3–23, above, an HB must use the translated ad-
dress to access the system, unless that address would re-access the same 
HB (for example, is in the Peripheral Memory Space or Peripheral I/O 
Space of that HB), in which case the HB should generate an invalid ad-
dress error. (See Chapter 10, “Error and Event Notification,” on 
page 157)

3–25. For 64-bit addressing option in HBs: TCEs must be located in System 
Memory or appear to software as though they are in System Memory, the 
memory must be a contiguous real address range, and the memory must 
be coherent.

3–26. For 64-bit addressing option in HBs: Each HB must provide the capa-
bility of having its own independent TCE table.

3–27. For 64-bit addressing option in HBs: Any non-recoverable error while 
an HB is accessing its TCE table must result in a TCE access error; the 
action to be taken by the HB being defined under the TCE access error 
in Chapter 10, “Error and Event Notification,” on page 157.

3–28. For 64-bit addressing option in HBs: In implementations which cache 
TCEs, if software issues a Store instruction to a TCE, then the hardware 
must perform the following steps: First, if any data associated with the 
page represented by that TCE is in an I/O bridge cache or buffer, the 
hardware must write the data, if modified, to System Memory. Secondly, 
it must invalidate the data in the cache. Finally, it must invalidate the 
TCE in the cache.

3–29. For 64-bit addressing option in HBs: Neither an I/O device nor an HB 
must ever modify a TCE.

3–30. For 64-bit addressing option in HBs: If the page mapping and control 
bits in the TCE are set to 0b00, the hardware must not change its state 
based on the values of the remaining bits of the TCE.

3–31. For PC Emulation option: The platform must implement the TEMR, 
and all of the following must be true:
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a. The TEMR must contain the largest address in System Memory 
which is set aside for the image of PC memory.

b. The granularity of the contents of TEMR must be 1 MB.

c. The HB must not respond to I/O bus Memory Space DMA operations 
in the address range of (TEMR + 1) to the top of System Memory, or 
must respond and signal an invalid address error.

3–32. For PC Emulation option: PCI devices must not be configured be-
tween (TEMR + 1) and the top of System Memory which is below 
BSCA.

3–33. For PC Emulation option: The platform must implement the ERR, and 
all of the following must be true:

a. The value of exception-relocation-size OF property must be the 
amount of address space above 0xFFF00000 that is relocated down 
into System Memory and is a fixed value, as determined by the plat-
form.

b. The granularity of exception-relocation-size must be 4 KB and the 
minimum size must be 12 KB.

c. The contents of the ERR must be the address of the base of the region 
in System Memory to which references to the interrupt/exception 
handling area (normally at the top of the 32-bit address space) are re-
located.

d. The granularity of the ERR must be 1 MB.

3–34. For PC Emulation option: When the PC Emulation option is enabled, 
the peripheral-memory-alias space must be enabled, the system-memo-
ry-alias space must be disabled, and the io-hole must be enabled.

Chapter 4 Processor and Memory

4–1. Platforms must incorporate only processors which comply fully with the 
PowerPC architecture.

4–2. For the Symmetric Multiprocessor option:  Multiprocessing plat-
forms must use only processors which implement the processor identifi-
cation register. See PowerPC 604 RISC Microprocessor User’s Manual 
[6] for a definition of this register.
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4–3. Platforms must incorporate only processors which implement tlbie and 
tlbsync, and slbie and slbia for 64-bit implementations.

4–4. Except where specifically noted otherwise in Section 4.1.4, “PowerPC 
Architecture Features Deserving Comment,” on page 53, platforms must 
support all functions specified by the PowerPC architecture.

4–5. Operating systems must use the properties of the cpu node of the OF de-
vice tree to determine the programming model of the processor imple-
mentation.

4–6. Operating systems must provide an execution path which uses the prop-
erties of the cpu node of the OF device. The PVN is available to the plat-
form aware operating system for exceptional cases such as performance 
optimization and errata handling.

4–7. Operating systems must support both of the page table formats (32-bit 
and 64-bit) defined by the PowerPC architecture.

4–8. Processors which exhibit the 64-bit property of the cpu node of the OF 
device tree must also implement the “bridge architecture,” an option in 
the PowerPC architecture. See the updates on the Internet associated 
with The PowerPC Architecture [1].

4–9. Platforms must restrict their choice of processors to those whose pro-
gramming models may be described by modifications to that of the 604 
by the properties defined for the cpu node of the OF device tree in Pow-
erPC processor binding to: IEEE Std 1275-1994 Standard for Boot (Ini-
tialization, Configuration) Firmware [11] (for example, 64-bit and 603-
translation).

4–10. Platform firmware must initialize the second and third pages above Base 
correctly for the processor in the platform, and in the correct endian 
mode, prior to giving control to the operating system.

4–11. Operating system and application software must not alter the state of the 
second and third pages above Base.

4–12. For the Symmetric Multiprocessor option:  The 603 family of proces-
sors must not be used in a symmetric multiprocessing complex.

4–13. The 603 family of processors must be used only with system logic that 
does not reorder data transfers.

4–14. Operating systems must provide an alignment interrupt handler which 
correctly emulates the execution of any unaligned LE accesses that are 
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not implemented in hardware, except those which may be generated by 
lwarx, ldarx, stwcx., stdcx., eciwx, ecowx, and the multiple scalar opera-
tions (see 4.1.4.2, “Little-Endian Multiple Scalar Operations,” on 
page 54).

4–15. Software must not use multiple scalar operations in LE mode. Results of 
multiple scalar operations in LE mode are undefined.

4–16. Platforms must not use direct-store segments to implement interfaces de-
fined by the CHRP architecture.

4–17. Operating systems must not depend on direct-store segment support 
when using interfaces specified by the CHRP architecture.

4–18. If the external control facility defined by the PowerPC architecture is 
supported, that support will be described as properties of the appropriate 
nodes (for example, memory controller and host bridge) of the OF de-
vice tree. See PowerPC Microprocessor Common Hardware Reference 
Platform System binding to: IEEE Std 1275-1994 Standard for Boot (Ini-
tialization, Configuration) Firmware [10] for more details.

4–19. Platforms must not use external control instructions as the sole interface 
to functions specified by the CHRP architecture.

4–20. Operating systems must not require the external control instructions 
when using interfaces specified by the CHRP architecture.

4–21. Platforms must provide at least 8 MB of System Memory. (Also see 
Chapter 3, “System Address Map,” on page 23 for other requirements 
which apply to memory within the first 16 MB of System Memory.)

4–22. Platforms must support the expansion of System Memory to 32 MB or 
more.

4–23. Platforms must provide the ability to maintain System Memory Coher-
ence.

4–24. I/O transactions to System Memory through a Host Bridge must be made 
with coherence required.

4–25. Software must assume only the Weakly Consistent storage model.

4–26. Platforms must guarantee that a processor’s accesses to the same loca-
tion are kept strongly ordered, unless the location is accessed by the pro-
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cessor with WIM-bit aliasing which prohibits the assumption of 
hardware-maintained coherence.

4–27. Platforms must guarantee that, for a particular processor, accesses to the 
same location beyond the PowerPC coherency domain are performed in 
a strongly ordered manner, given that no I/O device is allowed to make 
concurrent accesses to the location. Note that it is not sufficient to mere-
ly produce an appearance of strong ordering with respect to the proces-
sor performing the accesses.

4–28. Platforms must guarantee that the storage ordering semantics of eieio are 
preserved for accesses leaving the PowerPC coherency domain at any 
given host bridge, all the way to destination I/O devices. That is, Load 
and Store accesses (in any combination) by a processor to an I/O device 
which are separated by an eieio, must complete in the same order that the 
processor issued those accesses.

4–29. Platforms must guarantee that accesses entering the PowerPC coherency 
domain that are from the same I/O device and to the same location are 
completed in a sequentially consistent manner.

4–30. Platforms must guarantee that multiple write operations entering the 
PowerPC coherency domain that are issued by the same I/O device are 
completed in a sequentially consistent manner.

4–31. The Load And Reserve and Store Conditional instructions must not be 
assumed to be supported for Write-Through storage.

4–32. Memory controller(s) must support the accessing of System Memory as 
defined in Chapter 3, “System Address Map,” on page 23.

4–33. Memory controller(s) must be fully initialized and set to full power 
mode prior to the transfer of control to the operating system. This re-
quirement applies to normal boot and wakeup. (See Chapter 11, “Power 
Management,” on page 185 for an explanation of these terms.)

4–34. All allocations of System Memory space among memory controllers 
must have been done prior to the transfer of control to the operating sys-
tem.

4–35. Memory controller(s) must maintain System Memory in Big-Endian 
byte order when the system is operating in Big-Endian mode (MSR-
LE=0) and in Little-Endian byte order when the system is operating in 
Little-Endian mode (MSRLE=1). Whether System Memory is main-
tained in “True Little-Endian” or “PowerPC Little-Endian” form while 
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in Little-Endian mode is platform dependent, but must be transparent to 
software. See Section 2.3, “Bi-Endian Support,” on page 14 and Appen-
dix C, “Bi-Endian Designs,” on page 265 for more information on Bi-
Endian designs.

4–36. All caches must meet the requirements of the CHRP architecture coher-
ency model, as stated in “Storage Ordering Models” on page 57.

4–37. For the Symmetric Multiprocessor or Power Management option: 
Each cache must be able to be completely flushed and invalidated via the 
RTAS cache-control function. (See Section 7.3.10.1, “Cache-control,” 
on page 136 for more information.)

4–38. For the Power Management option:  External caches must be able to 
be placed in low power or disabled states via the RTAS cache-control 
function.

4–39. For the Symmetric Multiprocessor or Power Management option: 
To ensure compatibility with all CHRP implementations, operating sys-
tems must use the RTAS cache-control function to flush an entire cache 
rather than code directly to any specific system or processor implemen-
tation.

4–40. If a platform implementation elects not to cache portions of the address 
map in all external levels of the cache hierarchy, the result of not doing 
so must be transparent to the operation of the software, other than a dif-
ference in performance.

4–41. All caches must be fully initialized and enabled, and they must have ac-
curate state bits prior to the transfer of control to the operating system.

4–42. If an in-line external cache is used, it must support one reservation as de-
fined for the Load And Reserve and Store Conditional instructions.

4–43. For the Symmetric Multiprocessor or Power Management option: 
Platforms must implement their cache hierarchy such that all caches at a 
given level in the cache hierarchy can be flushed and disabled before any 
caches at the next level which may cache the same data are flushed and 
disabled (that is, L1 first, then L2, and so on).

4–44. For the Symmetric Multiprocessor or Power Management option: If 
a cache implements snarfing, then the cache must be capable of disabling 
the snarfing during flushing in order to implement the RTAS cache-con-
trol function in an atomic way.

4–45. Software must not depend on being able to change a cache from copy-
back to write-through.
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Chapter 5 I/O Bridges

5–1. All PHB implementations must be compliant with the PCI Local Bus 
Specification, revision level 2.1 [14].

5–2. All requirements defined in Chapter 3, “System Address Map,” on 
page 23 for HBs must be implemented by all PHBs in the platform.

5–3. HB0 must be a PHB (PHB0).

5–4. PHB implementations which include buffers or queues for DMA, Load, 
and Store operations must make sure that these are transparent to the 
software, with a few exceptions which are allowed by the PCI architec-
ture, by the PowerPC architecture, and in Section 4.2.2.1, “Memory Co-
herence,” on page 57.

5–5. A Load or Store to either the Peripheral Memory Space or the Peripheral 
I/O Space of a PHB must never be passed to the I/O bus before a previ-
ous Store to either the Peripheral Memory Space or the Peripheral I/O 
Space of that same PHB (that is, multiple Stores to the I/O bus generated 
by one PHB must be kept in order and a Load must not pass a Store).

5–6. A Load to either the Peripheral Memory Space or the Peripheral I/O 
Space of a PHB must never be passed to the I/O bus before a previous 
Load to either the Peripheral Memory Space or the Peripheral I/O Space 
of that same PHB when both of those Loads go to the exact same ad-
dress.

5–7. Data from a DMA read completion must be allowed to complete prior to 
Load or Store operation which was previously queued in the PHB, in or-
der to prevent a possible deadlock.

5–8. Load data buffered in a PHB must not prevent a subsequent DMA write 
request from being posted into the PHB or from making progress 
through the PHB, in order to prevent a possible deadlock on the PCI bus.

5–9. A DMA write or read request from an I/O device to the processor side of 
the PHB must never be passed to the processor side of the PHB before 
the data from a previous I/O DMA write operation has been flushed to 
the processor side.

5–10. A previous DMA read request accepted by a PHB but not yet completed 
must not prevent a subsequent DMA write request from being posted 
into the PHB or from making progress through the PHB, in order to pre-
vent a possible deadlock on the PCI bus.
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5–11. All DMA write data (destined for the processor side of the PHB) in the 
PHB buffers must be flushed out of the PHB prior to delivering data 
from a Load operation which has come after the DMA write operations.

5–12. The hardware platform must be designed such that software must follow 
Table 9 on page 76 while running in the various processor modes 
(LE = 0 and LE = 1) and issuing Load and Store operations to various 
entities with various endianess, including doing any necessary address 
un-modification when running with LE = 1 (for platforms using proces-
sors implementing LE mode via address modification).

5–13. When performing DMA operations through a PHB while running with 
the processor mode of LE = 1, if the platform is implemented with the 
true LE format in System Memory, or while running with the processor 
mode of LE = 0 with BE format in System Memory, then the platform 
must not modify the data during the transfer process; the lowest ad-
dressed byte in System Memory being transferred to the lowest ad-
dressed byte on the PCI bus, the second byte in System Memory being 
transferred as the second byte on the PCI bus, and so on.

5–14. When performing DMA operations through a PHB while running with 
the processor mode of LE = 1, if the platform is implemented with the 
PowerPC LE format in System Memory, then the platform must trans-
form the data during the transfer process to true LE format by reflecting 
the bytes within a doubleword (that is, the DMA is done as though the 
data is accessed a byte at a time, with the address modified by the same 
modification as used by the processor for 1-byte Loads and Stores, 
namely, exclusive-or the address with 0b111).

5–15. There must be exactly one Peripheral I/O Space per PHB.

5–16. If a PHB has an interrupt controller on the PCI side of the bridge which 
requires the PCI Interrupt Acknowledge Cycle generation, then that 
PHB must provide a 1-byte register which, when read by a processor us-
ing a 1-byte Load instruction, will generate a PCI Interrupt Acknowl-
edge cycle on the PCI bus.

5–17. If a PHB defines any registers that are outside of the PCI Configuration 
space, then the address of those registers must be in the Peripheral Mem-
ory Space or Peripheral I/O Space for that PHB, or must be in the System 
Control Area.
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5–18. All bridges must comply with the bus specification(s) of the buses to 
which they are attached.

5–19. Table 10 on page 79 details the minimum requirements that the platform 
must implement relative to I/O device access to the various address spac-
es.

5–20. PCI to PCI bridges used on the base platform must implement the archi-
tecture as specified in the PCI to PCI Bridge Architecture Specification 
[16].

5–21. There must be at most one ISA bus in a platform.

5–22. If there is an ISA bridge on a platform, it must be attached to the I/O side 
of HB0.

5–23. If there is an ISA bridge on a platform, a DMA controller must be avail-
able for the ISA DMA operations, and the DMA controller must be com-
patible with the register set defined in Chapter 9, “I/O Devices,” on 
page 151.

5–24. OF must program a PCI to ISA bridge such that all addresses for ISA 
DMA master operations get passed through the PCI to ISA bridge and 
do not get translated as they pass through the bridge.

5–25. If an ISA device is to participate in PCI to ISA peer to peer operations 
then the ISA device must be configured in the 640 KB to (1 MB - 1) ad-
dress range (the io-hole) and the io-hole must be enabled.

5–26. PCI to ISA bridges must do a subtractive decode on the PCI side of the 
bridge in the PCI Memory Space from 0 to (16 MB - 1) and in the PCI 
I/O Space from 0 to (64 KB - 1) (that is, they must pass any PCI access 
in these address ranges to the ISA bus if the PCI cycles in these ranges 
are not first picked up by another PCI device).

5–27. A platform which supports Cardbus PC Card devices must also support 
16-bit PC Card devices.

Chapter 6 Interrupt Controller

6–1. Platforms must implement interrupt controllers that are in register-level 
architectural compliance with Open PIC Multiprocessor Interrupt Con-
troller Register Interface Specification, Revision 1.2 [8] including its 
PowerPC architecture appendix.
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6–2. The Interrupt Acknowledge register implemented in the CHRP interrupt 
controller.

6–3. Platforms must make per-processor registers available in the “publicly 
accessible area” of the Open PIC register map.

6–4. All interrupt controller registers must be accessed via Caching-Inhibited 
and Guarded mapping.

6–5. The INIT signals defined in Open PIC must be connected to Soft Reset 
pins on PowerPC processors.

6–6. Interrupts must be disabled at the CHRP interrupt controller at the point 
of transfer of control to the operating system.

Chapter 7 Run-Time Abstraction Services

7–1. RTAS must be called in “real mode,” that is, all address translation must 
be disabled. Bits IR and DR of the MSR register must be zero.

7–2. RTAS must be called in privileged mode, and the PR bit of the MSR 
must be set to 0.

7–3. RTAS must be called with external interrupts disabled, and the EE bit of 
the MSR must be set to 0.

7–4. RTAS must be called with trace disabled, and the SE and BE bits of the 
MSR must be set to 0.

7–5. RTAS must be called with floating point disabled, and the FE0, FE1 and 
FP bits must be set to 0.

7–6. RTAS must be called with the SF and LE bits of the MSR set to the same 
values that were in effect at the time that RTAS was instantiated.

7–7. With the exception of the DR and RI bits, RTAS must not change the 
state of the machine by modifying the MSR.

7–8. If rtas-call is entered in a non-recoverable mode, indicated by having the 
RI bit of the MSR set equal to 0, then RTAS must not enter a recoverable 
mode by setting the RI bit to 1.

7–9. If called with RI of the MSR equal to 1, then RTAS must protect its own 
critical regions from recursion by setting the RI bit to 0 when in the crit-
ical regions.
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7–10. Except as required by a specific function, RTAS must not modify the 
following operating environment registers: TB, DEC, SPRG0-SPRG3, 
EAR, DABR, SDR1, ASR, SR0-SR15, FPSCR, FPR0-FPR3, and any 
processor specific registers.

7–11. RTAS must preserve the following user mode registers: R1-R2, R13-
R31, and CR.

7–12. RTAS must preserve the following operating environment registers: 
MSR, DAR, DSISR, IBAT0-IBAT3, and DBAT0-DBAT3.

7–13. Except as noted in requirement 7–19, the operating system must ensure 
that RTAS calls are not re-entered and are not simultaneously called 
from different processors in a multi-processor system.

7–14. Any RTAS access to device or I/O registers specified in this document 
must be made in such a way as to be transparent to the operating system.

7–15. Any device that is used to implement the RTAS abstracted services must 
have the property used-by-rtas in the Open Firmware Device Tree. How-
ever, if the device is only used by the suspend, hibernate, power-off, and 
system-reboot calls, which do not return directly to the operating system, 
the property should not be set. The display-character device must be 
marked used-by-rtas only if it is a specialized device used only for dis-
play-character.

7–16. Platforms must be designed such that accesses to devices that are marked 
used-by-rtas have no side effects on other registers in the system.

7–17. Any operating system access to devices specified as used-by-rtas must 
be made in such a way as to be transparent to RTAS.

7–18. RTAS must not generate any exceptions (for example, no alignment ex-
ceptions, page table walk exceptions, etc.).

7–19. The operating system machine check and soft reset handlers may call the 
RTAS services:

■ nvram-fetch

■ nvram-store

■ check-exception

■ set-indicator

■ system-reboot
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■ set-power-level(0,0)

■ power-off

7–20. The operating system must allocate rtas-size bytes of contiguous real 
memory as RTAS private data area. This memory must be aligned on a 
4096 byte boundary and may not cross a 256 megabyte boundary.

7–21. The RTAS private data area must not be accessed by the operating sys-
tem.

7–22. Except for the RTAS private data area, the argument buffer, System 
Memory pointed to by any reference parameter in the argument buffer, 
and any other System Memory areas explicitly permitted in this chapter, 
RTAS must not modify any System Memory. RTAS may, however, 
modify System Memory during error recovery provided that such mod-
ifications are transparent to the operating system.

7–23. If the operating system moves or otherwise alters the addresses assigned 
to ISA or PCI devices that are marked used-by-rtas after it has instanti-
ated RTAS, then the operating system must restart RTAS by calling re-
start-rtas prior to making any further RTAS calls.

7–24. RTAS must execute in a timely manner and may not sleep in any fashion 
nor busy wait for more than a very short period of time.

7–25. The instantiate-rtas Open Firmware method must have the arguments 
specified in Table 11 on page 98.

7–26. RTAS must operate in the endian mode in effect at the time of the instan-
tiate-rtas call.

7–27. The Open Firmware Device Tree must contain a device node named rtas 
which describes the RTAS implementation.

7–28. The RTAS device node must have a property for each implemented 
RTAS function in Table 12 on page 99. The value of this property is a 
token that is passed into the rtas-call function to indicate which RTAS 
function to invoke.

7–29. The Open Firmware properties listed in Table 13 on page 100 must be in 
the RTAS Device Tree node prior to booting the operating system.

7–30. All RTAS functions listed as “Required” in Table 12 on page 99 must be 
implemented in RTAS.
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7–31. For the Power Management option:  The functions listed as “Required 
in Power Managed Platforms” in Table 12 on page 99 must be imple-
mented in RTAS.

7–32. For the Symmetric Multiprocessor option: The functions listed as 
“Required in SMP Platforms” in Table 12 on page 99 must be imple-
mented in RTAS.

7–33. In order to make an RTAS call, the operating system must construct an 
argument call buffer aligned on an eight byte boundary in physically 
contiguous real memory as described by Table 14 on page 101.

7–34. If the system is a 32-bit system, or if the SF bit of the MSR was 0 when 
RTAS was instantiated, then all cells in the RTAS argument buffer must 
be 32-bit sign extended values that are aligned to 4 byte boundaries.

7–35. If the SF bit of the MSR was 1 when RTAS was instantiated, then all 
cells in the RTAS argument buffer must be 64-bit values that are aligned 
to 8 byte boundaries.

7–36. RTAS functions must be invoked by branching to the rtas-call address 
which is returned by the instantiate-rtas Open Firmware method (see 
Table 11 on page 98).

7–37. Register R3 must contain the argument buffer’s real address when rtas-
call is invoked.

7–38. Register R4 must contain the real address of the RTAS private data area 
when rtas-call is invoked (see requirement 7–20).

7–39. The Link Register must contain the return address when rtas-call is in-
voked.

7–40. The first output value of all the RTAS functions must be a status word 
which denotes the result of the call. The status word will take on one of 
the values in Table 15 on page 103. Non-negative values indicate suc-
cess.

7–41. RTAS must implement a restart-rtas function that uses the argument call 
buffer defined by Table 16 on page 104.

7–42. If any device marked used-by-rtas, or a device used as the rtas-display-
device if the OS will in the future call the display-character function, is 
moved or reconfigured, then the operating system must invoke restart-
rtas before using any other RTAS function.
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7–43. RTAS must update any necessary configuration state information based 
on the current configuration of the machine when restart-rtas is called.

7–44. RTAS must implement an nvram-fetch function that returns data from 
NVRAM using the argument call buffer defined by Table 17 on 
page 105.

7–45. RTAS must implement an nvram-store function that stores data in 
NVRAM using the argument call buffer defined by Table 18 on 
page 106.

7–46. If the nvram-store operation succeeded, the contents of NVRAM must 
have been updated to the user specified values. The contents of NVRAM 
are undefined if the RTAS call failed.

7–47. The caller of the nvram-store RTAS call must maintain the NVRAM 
partitions as specified in Chapter 8, “Non-Volatile Memory,” on 
page 141.

7–48. The date and time inputs and outputs to the RTAS time of day function 
calls are specified with the year as the actual value (for example, 1995), 
the month as a value in the range 1-12, the day as a value in the range 1-
31, the hour as a value in the range 0-23, the minute as a value in the 
range 0-59, and the second as a value in the range 0-59. The date must 
also be a valid date according to common usage: the day range being re-
stricted for certain months, month 2 having 29 days in leap years, etc.

7–49. Operating systems must account for local time, for daylight savings time 
when and where appropriate, and for leap seconds.

7–50. RTAS must account for leap years.

7–51. RTAS must implement a get-time-of-day call using the argument call 
buffer defined by Table 19 on page 107.

7–52. RTAS must read the current time and set the output values to the best 
resolution provided by the platform.

7–53. RTAS must implement a set-time-of-day call using the argument call 
buffer defined by Table 20 on page 108:

7–54. RTAS must set the time of day to the best resolution provided by the 
platform.

7–55. RTAS must implement the set-time-for-power-on call using the argu-
ment call buffer defined by Table 20 on page 108:
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7–56. If the system is in a powered down state at the time scheduled by set-
time-for-power-on (within the accuracy of the clock), then power must 
be reapplied and the system must go through its power on sequence.

7–57. RTAS must return the event generated by a particular interrupt or event 
source by either check-exception or event-scan, but not both.

7–58. RTAS must implement an event-scan call using the argument call buffer 
defined by Table 22 on page 111.

7–59. The event-scan call must fill in the error log with a single error log for-
matted as specified in Section 10.3.2, “RTAS Error/Event Return For-
mat,” on page 168. If necessary, the data placed into the error log must 
be truncated to length bytes.

7–60. RTAS must only check for errors or events that are within the classes de-
fined by the Event mask. Event mask is a bit mask of error and event 
classes. Refer to Table 50 on page 159 for the definition of the bit posi-
tions.

7–61. If Critical is non-zero, then RTAS must perform only those operations 
that are required for continued operation. No extended error information 
will be returned.

7–62. The event-scan call must return the first found error or event and clear 
that error or event so it is only reported once.

7–63. The operating system must continue to call event-scan while a status of 
“New Error Log returned” is returned.

7–64. The event-scan call must be made at least rtas-event-scan-rate times per 
minute for each error and event class and must have the Critical param-
eter equal to 0 for this periodic call.

7–65. RTAS must implement a check-exception call using the argument call 
buffer defined by Table 23 on page 113.

7–66. The operating system must provide the value specified in Table 24 on 
page 113 in the “Additional Information” parameter in the call to check-
exception.

7–67. The check-exception call must fill in the error log with a single error log 
formatted as specified in Section 10.3.2, “RTAS Error/Event Return 
Format,” on page 168. The data in the error log must be truncated to 
length bytes.
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7–68. If Critical is non-zero, then RTAS must perform only those operations 
that are required for continued operation. No extended error information 
will be returned.

7–69. The check-exception call must return the first found error or event and 
clear that error or event so it is only reported once.

7–70. RTAS must only check for errors or events that are within the classes de-
fined by the Event mask. Event mask is a bit mask of error and event 
classes. Refer to Table 50 on page 159 for the definition of the bit posi-
tions.

7–71. For the RTAS PCI configuration space functions, the parameter 
config_addr must be a configuration address as specified by the PCI Bus 
Binding to IEEE 1275 Standard for Boot (Initialization, Configuration) 
Firmware [12].

7–72. All RTAS PCI Read/Write functions must follow the PCI Local Bus 
Specification, Revision 2.1 or later.

7–73. RTAS must implement a read-pci-config call using the argument call 
buffer defined by Table 25 on page 115.

7–74. The read-pci-config call must return the value from the configuration 
register which is located at config_addr in PCI configuration space.

7–75. The read-pci-config call must perform a 1-byte, 2-byte, or 4-byte con-
figuration space read depending on the value of the size input argument.

7–76. The config_addr must be aligned to a 2-byte boundary if size is 2 and to 
a 4-byte boundary if size is 4.

7–77. The read-pci-config call of devices or functions which are not present 
must return Success with all ones as the output value.

7–78. RTAS must implement a write-pci-config call using the argument call 
buffer defined by Table 26 on page 116.

7–79. The write-pci-config call must store the value from the configuration 
register which is located at config_addr in PCI configuration space.

7–80. The write-pci-config call must perform a 1-byte, 2-byte, or 4-byte con-
figuration space write depending on the value of the size input argument.

7–81. The config_addr must be aligned to a 2-byte boundary if size is 2 and to 
a 4-byte boundary if size is 4.



247

Personal Use Copy - Not for Reproduction

7–82. The write-pci-config call of devices or functions which aren’t present 
must be ignored. A status of Success must be returned.

7–83. RTAS must implement a display-character call using the argument call 
buffer defined by Table 27 on page 118 to place a character on the output 
device.

7–84. The operating system must serialize all calls to display-character with 
any other use of the rtas-display-device.

7–85. If a physical output device is used for the output of the RTAS display-
character call, then it must have at least one line and 4 characters.

7–86. Certain ASCII control characters must have their normal meanings with 
respect to position on output devices which are capable of cursor posi-
tioning. In particular, ̂ M (0x0D) must position the cursor at column 0 in 
the current line, and ^J (0x0A) must move the cursor to the next line, 
scrolling old data off the top of the screen.

7–87. RTAS must not output characters to the rtas-display-device except for 
explicit calls to the display-character function.

7–88. RTAS must implement a set-indicator call which sets the value of the in-
dicator of type Indicator and index Indicator-index using the argument 
call buffer defined by Table 28 on page 119 and indicator types defined 
by Table 29 on page 120.

7–89. RTAS must implement a get-sensor-state call which reads the value of 
the sensor of type Sensor which has index Sensor-index using the argu-
ment call buffer defined by Table 30 on page 121 and the sensor types 
defined by Table 31 on page 121.

7–90. For the Power Management option:  The operating system must con-
trol the power management features of the processors and any attached 
power-manageable devices for which it has device drivers.

7–91. For the Power Management option:  RTAS must implement a set-
power-level call which changes the power level setting of a power do-
main. This call must be implemented using the argument call buffer de-
fined by Table 32 on page 124.

7–92. For the Power Management option:  Power_domain must be a power 
domain identified in the Open Firmware Device Tree.
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7–93. For the Power Management option:  Level must be a power level as 
specified by Section 11.2.1.1, “Definition of Domain Power Levels,” on 
page 198.

7–94. For the Power Management option:  The set-power-level call must set 
the level of the specified domain to the power level specified by level or 
to the next higher implemented level.

7–95. For the Power Management option:  The set-power-level call must re-
turn the power level actually set in the Actual_level output parameter.

7–96. For the Power Management option:  RTAS must implement a get-
power-level call which returns the current setting of a power domain. 
This call must be implemented using the argument call buffer defined by 
Table 33 on page 125.

7–97. For the Power Management option:  Power_domain must be a power 
domain identified in the Open Firmware Device Tree.

7–98. For the Power Management option:  RTAS must implement an as-
sume-power-management call which transfers control of the power man-
agement policy from the platform to system software, using the 
argument call buffer specified in Table 34 on page 126.

7–99. For the Power Management option:  RTAS must implement a relin-
quish-power-management call which transfers control of the power 
management policy from system software to the platform, using the ar-
gument call buffer specified in Table 34 on page 126.

7–100. For the Power Management option:  If the power management policy 
is under control of the operating system, the relinquish-power-manage-
ment call must be performed prior to the completion of the transition into 
the Suspend, Hibernate, or Off system power states.

7–101. If software controlled power-off hardware is present: The power-off 
function must turn off power to the platform, using the argument call 
buffer described in Table 36 on page 128.

7–102. If software controlled power-off hardware is present: 
Power_on_mask, which is passed in two parts to permit a possible 64 
events even on 32-bit implementations, must be a bit mask of power 
management events, refer to requirement 11–3. If a bit in the 
resume_mask is set to 1, then the hardware should enable the corre-
sponding hardware power-on mechanism.
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7–103. The RTAS suspend function must implement the power-saving Suspend 
state using the argument call buffer defined in Table 37 on page 129.

7–104. The RTAS suspend call must be made only from the processor identified 
by processor_number.

7–105. Resume_mask, which is passed in two parts to permit a possible 64 
events even on 32-bit implementations, must be a bit mask of power 
management events, refer to requirement 11–3. If a bit in the 
resume_mask is set to 1, then the hardware should enable the corre-
sponding hardware wakeup mechanism.

7–106. Resume_event must be a power management event that caused the re-
sume.

7–107. In an SMP system, the operating system must have invoked the RTAS 
stop-self function on all other processors prior to invoking suspend.

7–108. All elements of the I/O sub-system must be in a quiescent state at the 
time of the call: they must not be transferring data to or from memory, 
nor be able to cause an interrupt to any processor.

7–109. Upon return from the RTAS suspend call, the state of the memory loca-
tions, exclusive of the first 256 bytes of real memory and the RTAS pri-
vate data area, must be in the same state they were in at the time of the 
call to suspend.

7–110. Upon return from suspend, execution must be on the processor indicated 
by processor_number.

7–111. Upon return from suspend, all processors except the processor identified 
by processor_number must be in the stopped state.

7–112. Upon return from suspend, the firmware must restore the registers and 
devices which are reserved for firmware to the same state as before the 
suspend.

7–113. Upon return from suspend, the firmware must place all elements of the 
I/O system into a safe state.

7–114. The return from suspend must restore the registers listed in requirement 
7–10 to the same state that existed prior to the suspend call.

7–115. The RTAS hibernate call must be implemented using the argument call 
buffer described by Table 38 on page 132.
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7–116. The wakeup_mask, which is passed in two parts to permit a possible 64 
events even on 32-bit implementations, must be a bit mask of power 
management events, refer to requirement 11–3. If a bit in the 
wakeup_mask is set to 1, then the hardware should enable the corre-
sponding hardware wakeup mechanism.

7–117. The area of memory described by the hibernate block_list must be writ-
ten to the device(s) as indicated.

7–118. The hibernate block_list must start with a list length in bytes and then 
must have quadruples of real address, length of memory block, device 
id, and block number as shown in Table 39 on page 132. Additional re-
quirements on the block list are:

a. The block list must be a sequence of cells as defined in requirements 
7–34 and 7–35.

b. Block numbers are in 512 byte units.

7–119. The hibernate block_list must be contained in system memory below 4 
GB.

7–120. The Device fields of the hibernate block_list must be real pointers to 
System Memory below 4 GB that point to Open Firmware Path Names.

7–121. A device specified in the hibernate block_list must correspond to an de-
vice in the Open Firmware Device Tree that has write and read methods, 
and has a device type of block.

7–122. The memory areas defined by the hibernate block_list must only include 
System Memory outside that reserved for firmware (both the RTAS data 
area and Open Firmware’s memory defined by real-base and real-size).

7–123. The memory areas defined by the hibernate block_list must only include 
System Memory below 4 GB.

7–124. Execution of the hibernate call must cause the System Memory areas de-
scribed in the block_list to be saved on disk on the device(s) specified 
starting at the specified block numbers.

7–125. After system memory is saved, hibernate must place the system into its 
lowest power state.

7–126. In an SMP system, all other processors must be in the stopped state be-
fore invoking hibernate. This is the responsibility of the operating sys-
tem.
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7–127. Prior to making the hibernate call, the operating system must put all I/O 
devices into a quiescent state: they must not be transferring data to or 
from memory, nor be able to cause an interrupt to any processor.

7–128. Open Firmware must deterministically initialize a platform. The Open 
Firmware device tree and device addresses assigned on a given platform 
must be the same on successive reboots and hibernate wakeups if the 
platform hardware configuration has not changed.

7–129. RTAS must implement a system-reboot call which resets all processors 
and all attached devices. After reset, the system must be booted with the 
current settings of the System Environment Variables (refer to Section 
8.4.3, “System (0x70),” on page 145 for more information).

7–130. The RTAS system-reboot call must be implemented using the argument 
call buffer defined by Table 40 on page 135.

7–131. For the Symmetric Multiprocessor or Power Management option: 
RTAS must implement a cache-control call to place the cache into a new 
state, using the argument call buffer defined by Table 41 on page 136.

7–132. For the Symmetric Multiprocessor or Power Management option: 
When entering the new state indicated by the How parameter, the actions 
specified in Table 42 on page 137 must be performed on the caches.

7–133. For the Symmetric Multiprocessor or Power Management option: 
The RTAS cache-control operations performed on the specified cache 
must appear to be a single atomic operation as seen from the operating 
system. A return status of success implies “committed,” that the opera-
tion is complete, and that any dirty data is safely out of the cache. These 
operations must not violate the cache coherency of the caches.

7–134. For the Symmetric Multiprocessor option: RTAS must implement a 
freeze-time-base call which freezes, or keeps from changing, the time 
base register on all processors. This call must be implemented using the 
argument call buffer defined by Table 43 on page 138.

7–135. For the Symmetric Multiprocessor option: The freeze-time-base op-
eration must simultaneously affect every processor of an SMP system.

7–136. For the Symmetric Multiprocessor option: RTAS must implement a 
thaw-time-base call which thaws, or permits the change of, the time base 
register on all processors. This call must be implemented using the argu-
ment call buffer defined by Table 44 on page 138.
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7–137. For the Symmetric Multiprocessor option: The thaw-time-base oper-
ation must simultaneously affect every processor of an SMP system.

7–138. For the Symmetric Multiprocessor option: RTAS must implement a 
stop-self call which places the calling processor in the RTAS stopped 
state. This call must be implemented using the argument call buffer de-
fined by Table 45 on page 139.

7–139. For the Symmetric Multiprocessor option: RTAS must insure that a 
processor in the RTAS stopped state will not check stop or otherwise fail 
if a machine check or soft reset exception occurs. Processors in this state 
will receive the exception, but must perform a null action and remain in 
the RTAS stopped state.

7–140. For the Symmetric Multiprocessor option: RTAS must implement a 
start-cpu call which removes the processor specified by the CPU_id pa-
rameter from the RTAS stopped state. This call must be implemented us-
ing the argument call buffer defined by Table 46 on page 140.

7–141. For the Symmetric Multiprocessor option: The processor specified by 
the CPU_id parameter must be in the RTAS stopped state entered be-
cause of a prior call by that processor to the stop-self primitive.

7–142. For the Symmetric Multiprocessor option: When a processor exits the 
RTAS stopped state, it must begin execution in real mode, at the real lo-
cation indicated by the Start_location parameter, with register R3 set to 
the value of parameter Register_R3_contents, in the endian mode of the 
processor executing the start-cpu primitive. All other register contents 
are indeterminate.

Chapter 8 Non-Volatile Memory

8–1. Platforms must implement at least 8 KB of Non-Volatile Memory. This 
is sufficient for a system with a single operating system installed. Allow 
1 KB for each additional operating system installed.

8–2. Non-Volatile Memory must maintain its contents in the absence of sys-
tem power.

8–3. Firmware must reinitialize NVRAM to a bootable state if NVRAM data 
corruption is detected.

8–4. Operating systems must reinitialize their own NVRAM partitions if 
NVRAM data corruption is detected. Operating systems may create free 
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space from the first corrupted partition header to the end of NVRAM and 
utilize this area to initialize their partitions.

8–5. NVRAM partitions must be structured as shown in Table 47 on 
page 143.

8–6. All NVRAM space must be accounted for by partitions.

8–7. The system NVRAM must include a 0x50 partition with the name of-
config to store Open Firmware Configuration Variables.

8–8. VPD must be stored in the 0x52 partition using the format defined in the 
PCI Local Bus Specification, Revision 2.1, section 6.4 [14].

8–9. Every system NVRAM must contain a System partition with the parti-
tion name = common.

8–10. Data in the common partition must be stored as null-terminated strings 
of the form: name=<string> and be terminated with a string of at least 
two null characters.

8–11. All names used in the common partition must be unique.

8–12. Device and file specifications used in the common partition must follow 
IEEE Std 1275 nomenclature conventions.

8–13. System NVRAM must include a 0x71 partition with the name isa-config 
to store configuration data for all ISA devices.

8–14. The isa-config data area must use the resource format given in the 
ISA/EISA/ISA-PnP binding to IEEE 1275, IEEE Standard for Boot (Ini-
tialization Configuration) Firmware, Core Requirements and Practices 
[9].

8–15. During boot, firmware must use the ISA configuration data stored in the 
isa-config NVRAM partition to generate the ISA portion of the OF de-
vice tree.

8–16. For the Power Management option:   NVRAM must include a 0x71 
partition with the name pm-config to store power management configu-
ration data.

8–17. For the Power Management option:   The pm-config data area must 
use the format given in the PowerPC Microprocessor Common Hard-
ware Reference Platform System binding to: IEEE Std 1275-1994 Stan-
dard for Boot (Initialization, Configuration) Firmware [10].
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8–18. If an operating system implements an NVRAM error log partition for 
RTAS,

a. the partition name must be rtas-err-log.

b. the error log format must be as given in Table 54 on page 176.

c. error log entries must be filled by the operating system in a manner 
that will make the most recent log visible.

8–19. If firmware implements an NVRAM error log partition for POST,

a. the partition name must be post-err-log.

b. the error log format must be as given in Table 54 on page 176.

c. error log entries must be filled by the firmware in a manner that will 
make the most recent log visible. If multiple entries are provided, 
they must be filled in a manner that will make the first and last error 
occurrences visible to the OS.

8–20. For the Multi-Boot option: The multi-boot partition must be named 
multi-boot.

8–21. For the Multi-Boot option: Each participating operating system must 
be represented in the multi-boot partition as a 4-tuple of null-terminated 
strings of the form name=<string> as represented in Table 49 on 
page 148.

8–22. For the Multi-Boot option: The multi-boot partition must be terminated 
with a string of at least two null characters.

8–23. Device and file specifications used in the multi-boot partition must fol-
low IEEE 1275, IEEE Standard for Boot (Initialization Configuration) 
Firmware, Core Requirements and Practices [9] nomenclature conven-
tions.

8–24. All unused NVRAM space must be included in a signature = 0x7F Free 
Space partition.

8–25. All Free Space partitions must have the name field set to 0x7...77.

8–26. A system software component must not move or delete any NVRAM 
partition unless it is in the ownership class of that partition (see Table 48 
on page 144). There are two exceptions to this requirement:

a. Open Firmware may, with the appropriate backup precautions, mod-
ify any area of NVRAM in the interest of space management and/or 
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maintaining NVRAM data integrity. Firmware must maintain the re-
quired 1 KB of contiguous NVRAM space for each installed operat-
ing system following any such modifications.

b. Upon detection of a corrupted partition, the operating system may 
create free space beginning with the header of the corrupted partition 
through the end of the NVRAM space, and use this space to reinitial-
ize its partitions.

8–27. The NVRAM partition header checksum must be calculated as shown in 
Table 47 on page 143.

Chapter 9 I/O Devices

9–1. PCI devices must comply with the PCI Local Bus Specification, Revi-
sion 2.1 [14].

9–2. PCI devices, excepting bridges, must not depend on the PCI LOCK# sig-
nal for correct operation nor require any other PCI device to assert 
LOCK# for correct operation.

9–3. PCI expansion ROMs must have a ROM image with a code type of 1 for 
Open Firmware as provided in the PCI Local Bus Specification, Revi-
sion 2.1 [14]. This ROM image must abide by the ROM image format 
for Open Firmware as documented in the PCI Bus Binding to IEEE 1275 
Standard for Boot (Initialization, Configuration) Firmware [12]

9–4. All PCI devices must use the Open PIC interrupt controller. They must 
not use the legacy (8259 derived) interrupt controller which is reserved 
for ISA. The programming model for the legacy interrupt controller is 
defined in PowerPC Microprocessor Common Hardware Reference 
Platform: I/O Device Reference [20].

9–5. PCI devices that do not share Peripheral Memory Space and Peripheral 
I/O Space of the same PHB must not share the same Open PIC interrupt 
source.

9–6. When PCI-to-ISA bridges with embedded ISA devices are provided in a 
PCI part, the part must provide the capability to attach to the legacy in-
terrupt controller defined in the PowerPC Microprocessor Common 
Hardware Reference Platform: I/O Device Reference [20].
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9–7. PCI devices must implement the programming model (register level def-
inition, interrupts, and so forth) for those devices which are in the mini-
mum system requirements and are specified in the PowerPC 
Microprocessor Common Hardware Reference Platform: I/O Device 
Reference [20].

9–8. The following PCI devices, when used, must adhere to the programming 
model provided in the PowerPC Microprocessor Common Hardware 
Reference Platform: I/O Device Reference [20]:

■ MESH SCSI Controller

■ ADB (Apple Desktop Bus) Controller

■ SCC (Serial Communications Controller)

■ Bus master IDE Controller

■ VGA Compatible Graphics Controller

9–9. If a PCI device is defined in the PowerPC Microprocessor Common 
Hardware Reference Platform: I/O Device Reference [20] and a specific 
implementation of that device has additional registers beyond those de-
fined as used by programming, then those additional registers must be 
reported in the Open Firmware device tree as reserved (see Section 3.1, 
“Address Areas,” on page 23).

9–10. PCI-to-PCI bridges must be compliant with the PCI to PCI Bridge Ar-
chitecture Specification [16]

9–11. Firmware must initialize PCI-to-PCI bridges to work in CHRP systems. 
See PCI Bus Binding to IEEE 1275 Standard for Boot (Initialization, 
Configuration) Firmware [12].

9–12. Portable and personal platforms must provide Bi-Endian graphics aper-
ture support as described in the PowerPC Microprocessor Common 
Hardware Reference Platform: I/O Device Reference [20].

9–13. Plug-in graphics controllers for portable and personal platforms must 
provide graphics mode sets in the Open Firmware PCI expansion ROM 
image in accordance with the PCI Bus Binding to IEEE 1275 Standard 
for Boot (Initialization, Configuration) Firmware [12].

9–14. The following ISA devices, when used, must adhere to the programming 
model provided in the PowerPC Microprocessor Common Hardware 
Reference Platform: I/O Device Reference [20].
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■ Legacy Interrupt Controller

■ Serial Port Controller

■ Parallel Port Controller

■ Floppy Disk Controller

■ DMA Controller

■ Audio Controller

■ Keyboard and Mouse Controller

9–15. When an ISA device is included in a PCI part, is required by the mini-
mum requirements, and is among those specified in the PowerPC Micro-
processor Common Hardware Reference Platform: I/O Device 
Reference [20], it must completely retain the programming model.

9–16. The system tone and the system audio must be able to be used concur-
rently.

9–17. ISA devices included in a PCI part must route their interrupt signals to 
the legacy interrupt controller defined in the PowerPC Microprocessor 
Common Hardware Reference Platform: I/O Device Reference [20].

Chapter 10 Error and Event Notification

10–1. Platform-specific error and event interrupts that a platform provider 
wants the operating system to enable must be listed in the open-pic-in-
terrupt property of the appropriate Open Firmware event class node, as 
described in Table 50 on page 159.

10–2. To enable platform-specific error and event interrupt notification, oper-
ating systems must find the list of interrupts (described in Table 50 on 
page 159) for each error and event class in the Open Firmware device 
tree, and enable them.

10–3. Operating systems must have interrupt handlers for the enabled inter-
rupts described in requirement 10–2, which call the RTAS check-excep-
tion function to determine the cause of the interrupt.

10–4. Platforms which support error and event reporting must provide infor-
mation to the OS via the RTAS event-scan and check-exception func-
tions, using the reporting format described in Table 53 on page 172.
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10–5. Optional Extended Error Log information, if returned by the event-scan 
or check-exception functions, must be in the reporting format described 
in Table 54 on page 176.

10–6. To provide control over performance, the RTAS event reporting func-
tions must not perform any event data gathering for classes not selected 
in the event class mask parameter, nor any extended data gathering if the 
time critical parameter is non-zero or the log buffer length parameter 
does not allow for an extended error log.

10–7. To prevent the loss of any event notifications, the RTAS event reporting 
functions must be written to gather and process error and event data 
without destroying the state information of events other than the one be-
ing processed.

10–8. Any interrupts or interrupt controls used for error and event notification 
must not be shared between error and event classes, or with any other 
types of interrupt mechanisms. This allows the operating system to par-
tition its interrupt handling and prevents blocking of one class of inter-
rupt by the processing of another.

10–9. If a platform chooses to report multiple event or error sources through a 
single interrupt, it must ensure that the interrupt remains asserted or is 
re-asserted until check-exception has been used to process all outstand-
ing errors or events for that interrupt.

10–10. Operating systems must set MSRME=1 prior to the occurrence of a ma-
chine check interrupt in order to enable machine check processing via 
the check-exception RTAS function.

10–11. For hardware-detected errors, platforms must generate error indications 
as described in Table 51 on page 162, unless the error can be handled 
through a less severe platform-specific interrupt, or the nature of the er-
ror forces a check stop condition.

10–12. Platforms which detect and report the errors described in Table 51 on 
page 162 must provide information to the OS via the RTAS check-ex-
ception function, using the reporting format described in Table 53 on 
page 172.

10–13. To prevent error propagation and allow for synchronization of error han-
dling, all processors in a multi-processor system must receive any ma-
chine check interrupt signalled via the external machine check interrupt 
pin.
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10–14. If the platform supports Environmental and Power Warnings by includ-
ing a EPOW device tree entry, then the platform must support the EPOW 
sensor for the get-sensor-state RTAS function.

10–15. The EPOW sensor, if provided, must contain the EPOW action code (de-
fined in Table 52 on page 166) in the least significant 4 bits. In cases 
where multiple EPOW actions are required, the action code with the 
highest numerical value (where 0 is lowest and 7 is highest) must be pre-
sented to the operating system. The platform may implement any subset 
of these action codes, but must operate as described in Table 52 for those 
it does implement.

10–16. To ensure adequate response time, platforms which implement the 
EPOW_MAIN_ENCLOSURE or EPOW_POWER_OFF action codes 
must do so via interrupt and check-exception notification, rather than by 
event-scan notification.

10–17. For interrupt-driven EPOW events, the platform must ensure that an 
EPOW interrupt is not lost in the case where a numerically higher-prior-
ity EPOW event occurs between the time when check-exception gathers 
the sensor value and when it resets the interrupt.

Chapter 11 Power Management

11–1. For the Power Management option:  The set-power-level and get-
power-level RTAS calls must respectively accept as input and return the 
values of the argument Level as defined in Table 61 on page 198.

11–2. For the Power Management option:  The Type field of the error log 
within the range 96 to 159 must be defined as specified in Table 62 on 
page 199.

11–3. For the Power Management option:  The Resume_mask of the sus-
pend RTAS call, the Wakeup_mask of the hibernate RTAS call and the 
Power-on-mask of the power-off RTAS call must be defined by the 64 
bit quantity generated by 0x8000000000000000 right shifted by (n-96), 
where n equals the Type field value specified in Table 62 on page 199.

11–4. For the Power Management option:  The power domain dependency 
tree must have a single root node which is the root power domain.
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11–5. For the Power Management option:  Each node of the power domain 
dependency tree must have a single parent except the root domain which 
has no parent.

11–6. For the Power Management option:  The effects of changing the pow-
er level of a domain must be limited to member devices and subdomains 
only.

11–7. For the Power Management option:  System firmware must provide 
the Open Firmware controls-power-domains property for all domain 
control points. The value of this property is a list of domain numbers 
specifying the domains over which this device exercises control.

11–8. For the Power Management option:  System firmware must provide 
the Open Firmware power-domains property describing the membership 
of a power-manageable device in the platform power domains.

11–9. For the Power Management option:  If system firmware provides de-
vice power state information, it must use the Open Firmware device-
power-states property to describe the supported device states. This prop-
erty is described in the PowerPC Microprocessor Common Hardware 
Reference Platform System binding to: IEEE Std 1275-1994 Standard 
for Boot (Initialization, Configuration) Firmware [10] and contains the 
following information for each state:

■ Initial device power state

■ Power consumption of the device per power source while idle in this 
state

■ Power consumption of the device per power source while in use in 
this state

■ Manufacturer’s rated lifetime of the device while in this state

11–10. For the Power Management option:  If system firmware provides de-
vice power state information, it must use the device-state-transitions 
property describing the allowable transitions between the state described 
in device-power-states. This property is described in the PowerPC Mi-
croprocessor Common Hardware Reference Platform System binding 
to: IEEE Std 1275-1994 Standard for Boot (Initialization, Configura-
tion) Firmware [10] and contains the following information:

■ A value specifying the source state of this transition

■ A value specifying the destination state of this transition
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■ Power consumed per power source to make this transition

■ Wall clock time required to make this transition

■ Manufacturer’s rated tolerance on the number of cumulative occur-
rences of this transition

11–11. For the Power Management option:  If system firmware provides de-
vice power state information, each device in the Open Firmware device 
tree which consumes power provided by a power source must encode the 
power-sources property which is a list of power sources (indices into the 
platform-power-sources data structure).

11–12. For the Power Management option:  System firmware must provide 
the Open Firmware power-domains property describing the power do-
mains of which this device is a member.

11–13. For the Power Management option:  If system firmware provides de-
vice power state information, it must use the Open Firmware device-
power-states property to provide this information.

11–14. For the Power Management option:  If system firmware provides de-
vice power state information, each device must encode the power-sourc-
es property which is a list of power sources (indices into the platform-
power-sources data structure) from which the device draws power.

11–15. For the Power Management option:  If system firmware provides de-
vice power state information, the platform-power-sources property of 
the Open Firmware device tree must specify all defined power sources 
of the platform.

11–16. For the Power Management option:  If system firmware of a battery-
operated platform provides device power state information, it must also 
provide the platform-battery-sources property for its main batteries.

11–17. For the Power Management option:  System firmware must provide 
the Open Firmware power-domains property for each physical (non-sys-
tem) node of the device tree unless the device is a member of the root 
power domain.

11–18. For the Power Management option:  If the root node of the device tree 
encodes the power-domains property, the membership of any physical 
node which does not encode this property must be assigned to the root 
power domain.
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11–19. For the Power Management option:  Hardware/firmware must not 
change the power state of a device unless this change is not observable 
by system software and does not affect the operation of software or im-
pact the predictability of device service time. This requirement is void if 
hardware/firmware must act to protect life or property.

11–20. For the Power Management option:  Power domain power level tran-
sitions must not affect the correct operation of sibling or ancestral power 
domains.

11–21. For the Power Management option:  The indirect effects of power lev-
el changes upon device within a given power domain must be limited to 
the following:

■ Devices may present increased service time when the power level is 
Reduced.

■ Devices may be rendered inoperative when the domain is placed in 
the Freeze or Off power levels.

■ Devices may loose internal functional parameters when the domain 
in placed in the Off power state.

11–22. For the Power Management option:  To support the usage of the sys-
tem power switch as a power management event source, the actuation of 
this switch must not interrupt the secondary voltages to the system.

11–23. For the Power Management option:  In support of requirement 11–22, 
the secondary voltages from the power supply must be software control-
lable.

11–24. For the Power Management option:  The platform must establish con-
trol of all indicators following a hardware reset until system software as-
sumes control of power management policy via the assume-power-
management RTAS call.

11–25. For the Power Management option:  To claim power management ca-
pability an operating system must implement at least one of the follow-
ing system power states:

■ Power Management Enabled (and PM Disabled)

■ Standby

■ Suspend
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■ Hibernate

Chapter 12 The Symmetric Multiprocessor Option

12–1. Operating systems that do not explicitly support the SMP option must 
support SMP-enabled hardware platforms, actively using only one pro-
cessor.

12–2. For the Symmetric Multiprocessor option: SMP Operating Systems 
must support uniprocessor platforms.

12–3. For the Symmetric Multiprocessor option: The “SMP Extensions” 
sections of the Open Firmware binding for the CHRP architecture and 
for the PowerPC, and the SMP support section of the RTAS (see Section 
7.3.11, “SMP Support,” on page 137) must be implemented.

12–4. For the Symmetric Multiprocessor option: All processors in the con-
figuration must have equal functional access and “quasi-equal” timing 
access to all of system memory, including other processors’ caches, via 
cache coherence. “Quasi-equal” means that the time required for proces-
sors to access memory is sufficiently close to being equal that all soft-
ware can ignore the difference without a noticeable negative impact on 
system performance; and no software is expected to profitably exploit 
the difference in timing.

12–5. For the Symmetric Multiprocessor option: All processors in the con-
figuration must have equal functional and “quasi-equal” timing access to 
all I/O devices and adaptors. “Quasi-equal” is defined as in requirement 
12–4 above, with I/O access replacing memory access for this case.

12–6. For the Symmetric Multiprocessor option: SMP Operating Systems 
must at least support SMPs with the same PVR contents and speed (for 
example, 133 MHz). The PVR contents includes both the PVN and the 
revision number.

12–7. For the Symmetric Multiprocessor option: All caches at the same hi-
erarchical level must have the same Open Firmware properties.

12–8. Hardware for SMPs must provide a means of “freezing” and “thawing” 
the processor time base for use by RTAS. See Section 7.3.11, “SMP 
Support,” on page 137. This is for purposes of clock synchronization at 
initialization.
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Bi-Endian Designs Appendix C

This appendix discusses ways in which platforms can meet the requirement of
operating in both of the PowerPC endian modes, as required by the CHRP ar-
chitecture. Current PowerPC processors assume that storage is Big-Endian
when the processor is in Big-Endian mode or PowerPC Little-Endian when the
processor is in Little-Endian mode. Therefore, when the processor is in Little-
Endian mode, a translation of Little-Endian data must be made somewhere in
the platform to PowerPC Little-Endian before the data reaches the PowerPC
processor. Later sections discuss the design of graphics adaptors which support
both Big-Endian and Little-Endian accesses and the effect on platform designs
if the processor architecture changes.

C.1 Little-Endian Address and Data 
Translation
In order for PowerPC processors running in Little-Endian mode to correctly ac-
cess an object in Little-Endian-organized storage, the object must have its bytes
show up in the correct processor byte lanes, and the Big-Endian address must
be changed to refer to the correct location (after the object has had its byte
lanes reordered). This translation puts the data into PowerPC Little-Endian for-
mat and has three parts.

The first part of the translation achieves address conversion and is done by
the PowerPC processor. It is summarized below (a more detailed discussion
can be found in Book I, Appendix D of The PowerPC Architecture [1]).

The PowerPC architecture defines two status bits that determine whether a
PowerPC processor uses Big-Endian or Little-Endian modes. The endian mode
of the kernel and the endianess of the current operating mode are recorded in
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two status bits. When Little-Endian mode is enabled, the effective address
(EA) is modified in the PowerPC processor as shown in Table 64 on page 266
before it is used to reference memory. 

This address modification results in correct Little-Endian addresses being
presented to memory for aligned accesses (as will become clearer in the exam-
ple below). The PowerPC architecture allows unaligned accesses in Little-
Endian mode to interrupt, so incorrect memory references will not be generated
if the processor does not support them. One subtlety here is that string opera-
tions and load and store multiple are considered unaligned accesses, and thus
may interrupt in Little-Endian mode also. There is also a transformation which
can modify the EA to support unaligned accesses in Little-Endian mode, but it
is beyond the scope of this discussion.

The second part of the translation ensures that the bytes of the object
addressed show up on the correct byte lanes of the processor. In Little-Endian
mode, this translation requires that the bytes of a doubleword be reversed
between I/O storage and the processor. This byte reversal may happen either as
the data is read from or written to a Little-Endian I/O device and put into Sys-
tem Memory, or it may occur as the data in Little-Endian order in System
Memory is brought into the processor. The required byte alignment as a func-
tion of endian mode and access is summarized in Table 65 on page 267. The
table assumes that the doubleword value 0x1011121314151617 is stored at
address 0 (actually any doubleword-aligned address.)

Thus, a processor in Big-Endian mode that accesses the halfword at address
4 expects to see the value 0x1415. The most significant byte of the halfword,
0x14, appears in byte lane 4 and the least significant byte, 0x15, in byte lane 5.
The table shows that applying the address mapping of Table 64 on page 266 to
the address and reversing the bytes between storage and the processor will
result in referencing the quantity 0x1415 in byte lanes 3 and 2 at halfword
address 2 in a Little-Endian storage platform, as required.

Table 64.  Address Modification for Little-Endian Mode

Data Access EA Modifier

Byte XOR with 0b111

Halfword XOR with 0b110

Word XOR with 0b100

Doubleword (no change)
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The third part of the translation requires that, in Little-Endian mode,
addresses be generated correctly when addressing data in Little-Endian storage
or when addressing I/O device addresses. For instance, since the effective
address generated by the Little-Endian program as modified by the processor is
used to access I/O, the programmer writing a device driver would have to pre-
compensate the effective address used to access an adapter so that, after the

Table 65.  Bytes Accessed Versus Endian Mode

Big-Endian

Byte Address

Little-Endian

0 1 2 3 4 5 6 7

7 6 5 4 3 2 1 0

Byte at addr 0  10 Byte at addr 7

Byte at addr 1 11 Byte at addr 6

Byte at addr 2 12 Byte at addr 5

Byte at addr 3 13 Byte at addr 4

Byte at addr 4 14 Byte at addr 3

Byte at addr 5 15 Byte at addr 2

Byte at addr 6 16 Byte at addr 1

Byte at addr 7 17 Byte at addr 0

Halfword at 0  10  11 Halfword at 6

Halfword at 2 12 13 Halfword at 4

Halfword at 4 14 15 Halfword at 2

Halfword at 6 16 17 Halfword at 0

Word at addr 0 10 11 12 13 Word at addr 4

Word at addr 4 14 15 16 17 Word at addr 0

Doubleword at 0 10 11 12 13 14 15 16 17 Doubleword at 0

Instr at addr 0 i00 i01 i02 i03 Instr at addr 4

Instr at addr 4 i10 i11 i12 i13 Instr at addr 0
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modification by the processor, the real address used to access the adapter is the
real address of the target storage/register on the adapter. This translation must
be done in every device driver and makes writing device drivers very error-
prone. A better solution is to solve the address modification problem one time
in hardware. Logic must be added to the I/O interface such that, when Little-
Endian mode is selected, the added logic undoes the modification to the three
low-order bits of the address. Then the unmodified (remodified) address used
to access the I/O adapter is the same address as generated by the program. This
platform design is required, since a programmer writing a device driver is able
to use the control register addresses as specified in the adapter hardware refer-
ence manual.

In summary, whenever the machine is running in an endian mode different
from the native mode of the processor (that is, the PowerPC processor expects
Big-Endian storage order, but the platform is running in a Little-Endian mode)
the address must be remapped and the byte lanes reversed somewhere on the
way to or from the I/O subsystems. 

C.2 Conforming Bi-Endian Designs
Several designs for implementing a Bi-Endian architecture are possible. Two
approaches are described in the following material. The first approach is one in
which both the memory and I/O subsystems are Bi-Endian, and the second ap-
proach is one in which memory is Big-Endian and the I/O subsystems are Bi-
Endian.

C.2.1 Processor and I/O Mode Control

The mode of the platform will be changed by firmware, which has to perform
the required functions to place the processor and I/O subsystem in the mode de-
sired by the operating system. These designs are based on the assumption that
the processor and I/O are in the same endian mode. No attempt has been made
to design a platform where Little-Endian data is read and translated for a Big-
Endian-mode processor running Big-Endian applications. The processor comes
up in Big-Endian mode at power on or after a hardware reset. The synchroniza-
tion requirements for changing the processor from one endian mode to the
other are processor implementation-dependent and are specified in the Book
IV, Processor Implementation Features document for the processor implemen-
tation. 

Since the processor does not provide an external signal indicating the
endian mode selected, the platform must provide a mechanism to allow firm-
ware to control the endian mode of other subsystems. During configuration,
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firmware will use this mechanism to select the endian mode to be used by stor-
ing the appropriate control value to the address of the control mechanism. The
platform design may place the control mechanism address in the System Con-
trol Area or in Peripheral Memory space, whichever is more convenient. Firm-
ware must be able to address and alter the mode control mechanism in both
endian modes.

C.2.2 Approach #1—Bi-Endian Memory and Bi-
Endian I/O Design

The Bi-Endian Memory and Bi-Endian I/O design for a Bi-Endian platform is
shown in Figure 16 on page 271. I/O devices are categorized as “Transportable
I/O,” which consists of devices such as disks, tapes, and networks, and “Pre-
sentation I/O,” which consists of devices such as graphics, audio, and video
adaptors. For this design, memory, the processor, and Transportable I/O inter-
faces must support both endian modes. Data may exist on the Transportable de-
vices in either Big-Endian or Little-Endian format; it is brought in, and sent out
to the outside world, in either form. Presentation I/O are by design either Big-
Endian or Little-Endian (or with extra hardware they may be Bi-Endian). 

The processor accesses both storage and I/O through a controlled byte
reversal multiplexor and controlled address modification function (called
Xpose and Mod in Figure 16 on page 271). The address modification algorithm
is shown in Table 64 on page 266. The byte reversal multiplexor reverses the
position of each byte in a doubleword as shown in Table 67 on page 270. Simi-
larly, when the transfer between the processor and I/O is on a 4-byte I/O bus,
the byte reversal is performed as shown in Table 68 on page 270.

In this design, the memory and I/O are connected as if they were Big-
Endian. In this case, byte 0 of storage or I/O is considered the most significant
byte and passes through the controlled byte reversal multiplexor to byte 0 of
the processor (MSB of the processor). The rules for applying the byte reversal
multiplexor and the address modification are as shown in Table 66 on
page 269.

Table 66: Rules for Byte Reversal and Address Modification

Mode Function

Big-Endian No byte reversal of data and no address translation

Little-Endian Byte reversal of data and address translation
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Table 67.  Endian Mode Data Byte Reversal

Table 68.  Byte Reversal, Unequal Bus Widths

From the viewpoint of the endianess of the data, I/O interfaces access only
storage, not the processor or other I/O interfaces. I/O master transfers that
move data from one device to another do not enter into the endianess transla-
tion.

The following three sections describe the interfaces that must be designed to
perform this Bi-Endian support. For the three interfaces, both address process-
ing and data handling are described.

I/O Storage Byte

Byte BE Mode LE Mode

0 0 7

1 1 6

2 2 5

3 3 4

4 4 3

5 5 2

6 6 1

7 7 0

I/O Storage Byte
Description

Word Byte BE Mode LE Mode

0

0 0 7

Word 0: Even ad-
dressed word

1 1 6

2 2 5

3 3 4

1

0 4 3

Word 1: Odd addressed 
word

1 5 2

2 6 1

3 7 0
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C.2.2.1 Processor-to-Memory Interface

In this form of the design, memory is assumed to be in the same endian mode
as the processor. Memory is accessed in two modes: as a result of cache-inhib-
ited loads and stores, or as a result of cache reads or writes. Each of these oper-
ations will be described below.

Operations between cache and memory are always doublewords or larger,
and as such the address in either endian mode is unaffected. Data is byte

Figure 16. Bi-Endian Platform with Bi-Endian Memory and I/O
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reversed for Little-Endian mode and not byte reversed for Big-Endian mode.
The result of these operations is that data brought into cache from Big-Endian
memory is unchanged, and data brought into cache from memory in Little-
Endian mode is byte reversed and stored as the PowerPC processor expects to
see it (that is, most significant byte first). Writing data back to memory from
cache in Little-Endian mode reverses the byte order and restores the data in Lit-
tle-Endian order.

Cache-inhibited loads and stores have to adjust the data and addresses for
the expected processor formats of data and addresses. For Little-Endian mode,
the address generated by an instruction points to where the data exists in Little-
Endian storage. The address is translated by the processor, and then translated
again outside the processor which returns it to its original value. The data is
byte reversed, putting it in the order expected by the processor logic on fetches
or expected in storage for stores. For Big-Endian mode, the address is
unchanged and the data is placed in memory in the order contained in the pro-
cessor.

C.2.2.2 I/O-to-Memory Interface

There are no address or data transformations between memory and I/O. Data is
placed in memory in the same order as it exists on the I/O devices independent
of endian mode. The one exception might be Presentation I/O devices. Adap-
tors for these devices could be designed to accept data from Little-Endian and
Big-Endian storage, or to always accept data only in one format. In this case,
software would have to handle the data transformation. For example, a graph-
ics adaptor that expected data in Little-Endian format would need software to
byte reverse the data into Big-Endian mode before putting the data in memory.

C.2.2.3 Processor-to-I/O Interface

In Little-Endian mode, the address as modified by the processor must be modi-
fied again by the I/O interface such that the address used for the I/O access is
the address computed by the storage instruction. Within the processor, the I/O
addresses computed by a storage instruction are modified by the processor be-
fore the access is performed. Regardless of whether the access is to I/O space
memory or a device control register, the address originally computed by the in-
struction is the address that must be used to access I/O space. The address mod-
ification algorithm shown in Table 64 on page 266 is used to remodify this I/O
address. This function is shown in Figure 16 on page 271 in the box labeled
“Mod,” which is controlled by the box labeled “Mode Control.”
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The data transfer between the processor and I/O is managed in the same
manner as the transfer between the processor and memory. Bytes are crossed
between source and destination byte channels as indicated in Table 67 on
page 270 and Table 68 on page 270. This byte transposition will occur once in
Little-Endian mode to transform the processor-held data in Big-Endian format
to Little-Endian format for I/O. In Big-Endian mode, the byte order is not
transformed.

C.2.3 Approach #2—Bi-Endian I/O Design

The Bi-Endian I/O design for a Bi-Endian platform is shown in Figure 17 on
page 274. For this design, storage is always Big-Endian, which means data is
always stored with the most significant byte at the lowest address. Transport-
able I/O interfaces must support both endian modes. Data may exist on the
Transportable devices in either Big-Endian or Little-Endian format; it is
brought in, and sent out to the outside world, in either form. Presentation I/O
are by design either Big-Endian or Little-Endian (or with extra hardware they
may be Bi-Endian).

The processor accesses both storage and I/O. I/O master transfers that move
data from one device to another do not enter into the endianess translation.
From a platform viewpoint, I/O interfaces access only storage, not the proces-
sor or other I/O interfaces.

I/O accesses storage through a controlled byte reversal multiplexor and con-
trolled address modification function (called Xpose and Mod in Figure 17 on
page 274). This is further explained in Section C.2.3.2, “I/O-to-Memory Inter-
face,” on page 274.

The following three sections describe the interfaces that must be designed to
perform this Bi-Endian support. For the three interfaces, both address process-
ing and data handling are described.

C.2.3.1 Processor-to-Memory Interface

Address translations are performed by the processor. Cache block transfers be-
tween the processor and storage are always a doubleword or larger, and the ad-
dress is not affected by the endian mode. With Big-Endian storage, Little-
Endian-mode loads and stores of aligned scalars with caching enabled work
correctly after the address translation. When Little-Endian mode is enabled,
loads and stores with caching inhibited use the address as modified by the pro-
cessor. These instructions work the same and have the same constraints as for
loads and stores out of cache.
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For the processor-to- or from-memory interface, the data handling is inde-
pendent of endian mode. The memory stores multi-byte scalars in Big-Endian
order, which has the most significant byte at the first byte of the address.

C.2.3.2 I/O-to-Memory Interface

In Little-Endian mode, storage addresses generated by I/O devices are modi-
fied using the address modification described in Table 64 on page 266 prior to

Figure 17. Bi-Endian Platform with Bi-Endian I/O
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performing the access. This address modification is shown in the block labeled
“Mod” on the right side of the Memory Controller and Bus Bridge, shown in
Figure 17 on page 274. This address modification is performed for both Trans-
portable I/O and Presentation I/O adaptors. This address modification is re-
quired to adjust for the format of the data in memory that has been byte
reversed to place the MSB first.

Data transferred to and from I/O devices that must switch endian modes
must have data that is stored in Little-Endian format converted to Big-Endian
format. I/O transfers may be done at any implementation-determined width,
but this byte reversal of data in Little-Endian mode is done by treating the data
as a string of bytes that must be reversed within a doubleword (see Table 67 on
page 270). For unaligned transfers or transfers of less than a doubleword, bytes
must be crossed from the source byte channel to the destination byte channel as
shown in this table. This design places a byte-reversing multiplexor in the path
from I/O to memory. This byte reversal multiplexor is shown as the “Xpose”
box in Figure 17 on page 274.

When the interface between main storage and I/O requires a conversion
from a two-word bus to a one-word bus, the byte reversal should be done in
accordance with Table 68 on page 270, which assumes a two-word bus to main
storage and a one-word bus to I/O.

An unaligned access (for example, read or write of System Memory) that
crosses a doubleword boundary must be performed as multiple accesses on
processors which do not support unaligned accesses. The address modification
algorithm described above does not work for unaligned accesses. One approach
to handling unaligned accesses is to perform the access as multiple aligned
accesses using byte, halfword, and word operations for which the main storage
address is modified as described above.

The specific design of the Presentation I/O device adaptors will determine
whether a second byte-reversing multiplexor is present on the device, and will
influence how device drivers must interface with this device. For instance, an
audio adaptor that has byte reversal logic in it may be placed on a bus, while a
graphics adaptor that does not have byte reversal logic may be on the same or a
different bus. Depending upon the mode of the processor and memory, neither
device may need byte reversal or both may need it. For example, a graphics
adaptor with a Little-Endian design (that is, registers and data are expected in
Little-Endian order) could be addressed by a Big-Endian processor via soft-
ware performing the byte reversal as the Big-Endian data was sent to the graph-
ics adaptor. Alternatively, the graphics adaptor could be designed to perform
the byte reversal. In this case, the adaptor would pass data straight through
when the processor is in Little-Endian mode and do a byte reversal when the
processor is in Big-Endian mode.
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C.2.3.3 Processor-to-I/O Interface

In Little-Endian mode, the address as modified by the processor must be modi-
fied again by the I/O interface such that the address used for the I/O access is
the address computed by the storage instruction. Within the processor, the I/O
addresses computed by a storage instruction are modified by the processor be-
fore the access is performed. Regardless of whether the access is to I/O space
memory or a device control register, the address originally computed by the in-
struction is the address that must be used to access I/O space. The address mod-
ification algorithm shown in Table 64 on page 266 is used to remodify this I/O
address. This function is shown in Figure 17 on page 274 in the boxes labeled
“Mod.”

The data transfer between the processor and I/O is managed in the same
manner as the transfer between I/O and memory except that the processor is the
master (it provides address and control) rather than an I/O mechanism. Bytes
are crossed between source and destination byte channels as indicated in
Table 67 on page 270 and Table 68 on page 270. This byte reversal is per-
formed on all I/O transfers. The processor performs unaligned accesses as mul-
tiple accesses to aligned doublewords and may transfer an odd number of bytes
within an aligned doubleword.

C.3 Software Support for Bi-Endian 
Operation
The endian mode-switching logic is a function provided by firmware before
control is passed to the operating system. The specific set of instructions is pro-
cessor- and platform-implementation-dependent.

As pointed out above, data for Presentation I/O and multi-byte control data
(registers) for any I/O device may have to be byte reversed by software. Ser-
vices to perform these operations should be provided by the support software.
Typically, this would be language syntax and compiler support for a load and
store with byte reversal of 2-, 4- and 8-byte scalars. If the compilers for all lan-
guages do not support these forms of loads and stores, then the operating sys-
tem should supply services that perform the byte reversal. 

C.4 Bi-Modal Devices
For performance reasons, applications in many operating environments write
directly to graphics adaptors. Graphics adaptors for CHRP implementations
will provide both Big-Endian and Little-Endian data transfer methods. (See Ta-



C.4 Bi-Modal Devices 277

Personal Use Copy - Not for Reproduction

ble 2 on page 19) It is recommended that graphics subsystems implementing
this support use the design shown in Figure 18 on page 278, which applies to
both the frame buffer and the graphics subsystem’s register/command space.
This should provide good performance when using the hardware acceleration
features of the graphics subsystem. In this design, the graphics subsystem is ac-
cessed through address “apertures” which perform the endian switch of data as
it passes through the aperture, as necessary.

The register/command apertures provide two ways (Big- and Little-Endian)
to access the control data. They are defined address ranges within the address
map of the adaptor. While two dedicated apertures are desired, one aperture
may be used if it can programmably accommodate Big- or Little-Endian. The
aperture labelled “BE” would always provide byte swapping in a two-aperture
implementation. The aperture labelled “LE/BE” would provide no byte swap-
ping in a two-aperture implementation, and provide byte swapping in a single-
aperture implementation based on one of the following:

1. The size of the facility being accessed would automatically determine how 
swapping is to occur for a particular access (that is, half- or full-word, or no 
swapping).

2. Software would programmably set the swapping function to either half-
word, full-word, or none as appropriate.

The frame buffer apertures provide two ways to access the pixel data. The
frame buffer apertures are defined address ranges within the address map of the
adaptor. Each frame buffer aperture can be independently controlled to provide
one of the following modes, under software control:

1. No swapping.

2. Byte swapping within each halfword, for example, . This 
becomes  for a platform with a 64-bit data 
interface, such as the PCI bus with optional 64-bit bus extension.

3. Byte swapping across the entire word, for example, . This 
becomes  for a platform with a 64-bit data 
interface, such as the PCI bus with optional 64-bit bus extension.

4. Byte swapping across a doubleword, for example, 
 for 64-bit pixels on a 64-bit extended data 

bus.

Hardware Implementation Note: Determination of the correct swapping 
mode for a given access may be performed automatically in the 
hardware. This approach is not recommended if there is a possibility 

ABCD BADC⇒
ABCDEFGH BADCFEHG⇒

ABCD DCBA⇒
ABCDEFGH DCBAHGFE⇒

ABCDEFGH HGFEDCBA⇒
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that the pixel depth in the frame buffer can be interpreted differently by 
multiple devices, or is not guaranteed to be “known” or implied by the 
state of the graphics subsystem hardware.

With this capability, one aperture could access the frame buffer in Little-
Endian mode, while the other could access it in one of the Big-Endian modes.
Similarly, one aperture could be defined to swap for 16-bit pixels, while the
other could be defined to swap for 24- or 32-bit pixels. Alternatively, several
apertures may be defined to support the various pixel depths.

Platforms employing only one frame buffer aperture would provide the pre-
viously described swapping options under software control.

24-bit pixels are defined to occupy the least significant 3 bytes of a full
word. The most significant byte may be used as an alpha byte, or may be

Figure 18. Bi-Endian Apertures for the Graphics Subsystem
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unused. 16-bit pixels are always halfword aligned, and 24- or 32-bit pixels are
always full-word aligned.

Pixels between 32 and 64 bits are defined to occupy the least significant
bytes in the 64-bit field, and are doubleword aligned.

C.5 Future Directions in Bi-Endian 
Architecture
This section discusses possible future directions in the design of PowerPC mi-
croprocessors and the effect these changes would have on Bi-Endian platform
design. The current implementations of Little-Endian mode in PowerPC micro-
processors reduce internal processor complexity by moving some of the Bi-En-
dian support out of the processor.

Future implementations of the PowerPC architecture may support a true Lit-
tle-Endian mode. In this true Little-Endian mode, data would go to the proces-
sor in Little-Endian format and be addressed from the processor with the Little-
Endian address. In the interim, some PowerPC processor designs may imple-
ment support for Little-Endian unaligned operations.

Figure 19 on page 280 shows a design which could be used with future ver-
sions of the PowerPC processor implementing full Bi-Endian support. No
external address modifications or byte reversal multiplexors are required. The
previous designs may be migrated to this design by physically removing the
byte reversal multiplexors and address modification logic components from the
design, or by functionally removing them by changing the rules under which
they are applied. For instance, Approach #1 (Figure 16 on page 271) would
require the address modification and byte-transposing multiplexor to always be
off. The address modification is no longer needed, because the processor would
not modify the address since it deals with Little-Endian data in Little-Endian
order. The byte reversal is not required because the processor accepts data in
true Little-Endian order. The same applies to Approach #2.
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Figure 19. Design with a Full Bi-Endian Processor
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Architecture Migration 
Notes Appendix D

This appendix provides information describing the migration from legacy sys-
tems. The PowerPC Reference Platform, Apple RISC architecture, and IBM
RISC server systems were used in the development of the CHRP architecture.
The objective was to reduce the porting effort of operating systems and appli-
cations coming from each of these environments. The information below de-
scribes the relationship of the Apple RISC architecture to the CHRP
architecture and of the PowerPC Reference Platform to this architecture. The
PowerPC Reference platform used IBM RISC client and server information.

Many components of this architecture are included for compatibility with
the second generation Power Macintosh desktop products. Features of the sec-
ond generation Power Macintosh and references to their use in this architecture
are listed below:

■ Based on the PowerPC microprocessor family. See Section 4.1, “Processor 
Architecture,” on page 49.

■ Use of the PCI bus to support all I/O and system expansion. See 5.1 , “PCI 
Host Bridge (PHB) Architecture,” on page 69.

■ Use of bus to bus bridges to support other buses such as NuBus™, SCSI, 
and IDE. See Section 5.2, “I/O Bus to I/O Bus Bridges,” on page 78.

■ Use of Open Firmware for system start-up and to allow use of expansion 
cards from other architectures. See Section 2.2, “Firmware,” on page 13.

■ Function of processor bus coherency. See Section 4.2.2, “Storage Ordering 
Models,” on page 57.
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■ Support for both Big-Endian and Little-Endian modes. See Section 2.3, “Bi-
Endian Support,” on page 14.

■ Provide Macintosh style I/O such as ADB, SCC, and LocalTalk. See Sec-
tion 2.5, “Minimum System Requirements,” on page 16 and Chapter 9, “I/O 
Devices,” on page 151.

Some material used in this document was originally published in the Pow-
erPC Reference Platform Specification, Version 1.1 [28]. For those currently
developing products for the PowerPC Reference Platform, this evolution infor-
mation will aid in understanding the architecture in this document. Table 69 on
page 282 shows the sections in the PowerPC Reference Platform Specification
and indicates their allocation in this document or the reason some material was
not carried forward. Material carried from the PowerPC Reference Platform
Specification, Version 1.1 has been modified and new material inserted.

Table 69. PowerPC Reference Platform Specification Evolution 

PowerPC Reference Platform Section Presentation in this Document

Chapter 1, “Introduction” Chapter 1, “Introduction,” on page 1

Chapter 2, “Hardware Configuration” Section 2.5, “Minimum System Requirements,” on page 16

Chapter 3, “Architecture through Section 3.1 System Topology” Chapter 1, “Introduction,” on page 1

Section 3.2, “System Memory” Section 4.2.2.1, “Memory Coherence,” on page 57

Section 3.3, “I/O Memory” Section 4.2.2.1, “Memory Coherence,” on page 57

Section 3.4, “System I/O,” and Section 3.5 Self Modifying Code” Section 4.2.2.1, “Memory Coherence,” on page 57

Section 3.6, “Resource Locking” Section 9.1.1, “Resource Locking,” on page 152

Section 3.7. “Bus Errors” Chapter 10, “Error and Event Notification,” on page 157

Section 3.8, “Memory Map” Section 4.2.1, “System Memory,” on page 56

Section 3.8.1, “Example Memory Maps” Chapter 3, “System Address Map,” on page 23

Section 3.9, “Memory Ordering” Section 4.2.2.1, “Memory Coherence,” on page 57

Section 3.10, “Configuration and Diagnostics” Not covered in the Architecture

Section 3.11, “Power Management” Chapter 11, “Power Management,” on page 185

Section 3.12, “Bi-Endian Support” Section 2.3, “Bi-Endian Support,” on page 14
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Section 3.13, “Multiprocessor Considerations”
Chapter 12, “The Symmetric Multiprocessor Option,” on 
page 215

Section 3.14, “Alignment Considerations”
Section 4.1.4.1, “Unaligned Little-Endian Scalar Operations,” on 
page 53 and Section 4.1.4.2, “Little-Endian Multiple Scalar Oper-
ations,” on page 54

Section 3.15, “Support for Loads and Stores to System I/O Bus,” 
and Section 3.16, “Cache-Inhibited Loads and Stores to System 
Memory”

Section 4.1.4.3, “Direct-Store Segment Support,” on page 54 

Section 3.17, “PowerPC Architecture Features Not Recom-
mended”

Section 4.1.4, “PowerPC Architecture Features Deserving Com-
ment,” on page 53

Chapter 4, “Machine Abstraction” Chapter 7, “Run-Time Abstraction Services,” on page 91

Chapter 5, “Boot Process,” through Section 5.4, “Transferring 
Control”

The legacy process is defined in the current version of the Pow-
erPC Reference Platform Specification [28]

Section 5.5, “NVRAM”

NVRAM for the legacy process is described in the PowerPC Ref-
erence Platform Specification [28]. NVRAM for the Open Firm-
ware process is described in Chapter 8, “Non-Volatile Memory,” 
on page 141

Section 5.6, “Residual Data”
Residual data for the legacy process is described in the PowerPC 
Reference Platform Specification [28]

Section 5.7, “Open Firmware Extension”
Refer to the PowerPC Microprocessor Common Hardware Refer-
ence Platform System binding to: IEEE Std 1275-1994 Standard 
for Boot (Initialization, Configuration) Firmware [10]

Chapter 6, “Reference Implementation”
Hardware system vendors may publish separate books with imple-
mentation examples for compliant platforms

Appendix A, “Implementation Examples” Separate books prepared by hardware system vendors 

Appendix A.7, “Proposed Diagnostic Strategy” Not covered in the Architecture

Appendix B, “Bi-Endian Design Guidance” Appendix C, “Bi-Endian Designs,” on page 265

Appendix C, “Additional Compliant Subsystems and Devices” Separate books prepared by hardware system vendor

Appendix D, “Windows NT” Obtain information from the operating systems

Appendix E, “AIX” Obtain information from the operating systems

Appendix F, “Workplace OS” Obtain information from the operating systems

Appendix G, “Solaris” Obtain information from the operating systems

Table 69. PowerPC Reference Platform Specification Evolution  (Continued)

PowerPC Reference Platform Section Presentation in this Document
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Appendix H, “Taligent” Obtain information from Taligent™

Appendix I, “PowerPC Supplement to IEEE 1275”
See PowerPC Microprocessor Common Hardware Reference 
Platform System binding to: IEEE Std 1275-1994 Standard for 
Boot (Initialization, Configuration) Firmware [10]

Appendix J, “Plug and Play Extensions” See the PowerPC Reference Platform Specification [28]

Appendix K, “Dump of Residual Data”
Residual data is described in the PowerPC Reference Platform 
Specification [28]

Obtaining Additional Information Section , “Obtaining Additional Information,” on page 300

Bibliography Section , “Bibliography,” on page 297

Acronyms and Abbreviations Section , “Glossary,” on page 285

Glossary Section , “Glossary,” on page 285

Trademark Information Section , “Trademark Information,” on page 295

Index Section , “Index,” on page 303

Table 69. PowerPC Reference Platform Specification Evolution  (Continued)

PowerPC Reference Platform Section Presentation in this Document
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Glossary

This glossary contains an alphabetical list of terms, phrases, and abbreviations
used in this document. 

Term Definition 

AC Alternating current

AD Address data line

ADB Apple Desktop Bus

addr Address

Architecture The hardware/software interface definition or software module
to software module interface definition.

ASCII American National Standards Code for Information Inter-
change

ASR Address Space Register

BAT Block address translation

BE Big-Endian or Branch Trace Enable bit in the MSR

BIM Bottom of initial memory

BIO Bottom of Peripheral Input/Output Space 

BIOS Basic input/output system

Boundedly undefined
Describes some addresses and registers which when referenced
provide one of a small set of predefined results.
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BPM Bottom of Peripheral Memory

BSCA Bottom of System Control Area

BSM Bottom of System Memory

CD-ROM Compact disk read-only memory

CHRP Common Hardware Reference Platform

CIS Client interface service

COM Communication

CPU Central processing unit

CR Condition Register

CTR Count Register

DABR Data Address Breakpoint Register

DAC Dual address cycle

DAR Data Address Register

DBAT Data block address translation

DBDMA Descriptor based direct memory access

DDC 1 Display data channel for unidirectional information from dis-
plays. 

DEC Decrementer

DIMM Dual in-line memory module

DOS Disk operating system

DR Data relocate bit in MSR

DSISR Data Storage Interrupt Status Register

DMA Direct memory access

EA Effective address

EAR External Access Register

ECC Error checking and correction

ECP Extended capability port

EE External interrupt enable bit in the MSR

EISA Extended industry standard architecture
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EPA Environmental protection agency

EPOW Environment and power warning

ERR Exception Relocation Register

ESCD Extended system configuration data

FCode A computer programming language defined by the Open Firm-
ware standard which is semantically similar to the Forth pro-
gramming language, but is encoded as a sequence of binary
byte codes representing a defined set of Forth words.

FE0 Floating-Point exception mode 0 bit in the MSR

FE1 Floating-Point exception mode 1bit in the MSR

FP Floating-Point available bit in the MSR

FPR Floating-Point register

FPSCR Floating-Point Status And Control Register

FSM Finite state machine

GB Gigabytes - as used in this document it is 2 raised to the power
of 30

HB Host Bridge

Hz Hertz

IBAT Instruction block address translation

ID Identification

IDE Integrated device electronics

IDU Interrupt delivery unit

IEEE Institute of Electrical and Electronics Engineers

I/O Input/output

I/O bus master Any entity other than a processor, cache, memory controller, or
host bridge which supplies both address and data in write trans-
actions or supplies the address and is the sink for the data in
read transactions.

ILE Interrupt Little-Endian bit in MSR

Instr Instruction

IP Interrupt prefix bit in MSR
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IPI Interprocessor interrupt

IPL Initial program load

IR Instruction relocate bit in MSR register or infrared

IrDA Infrared Data association which sets standards for infrared sup-
port including protocols for data interchange.

ISA Industry standard architecture (typically refers to the PC local
bus)

ISO International Standards Organization

ISR Interrupt source register

ISU Interrupt source unit

JEIDA Japan Electronic Industry Development Association

KB Kilobytes - as used in this document it is 2 raised to the power
of 10

KHz Kilo Hertz

LAN Local area network

LCD Liquid crystal display

LE Little-Endian bit in MSR or Little-Endian

LED Light emitting diode

LFB Linear frame buffer

LR Link Register

L1 Primary cache

L2 Secondary cache

MB Megabytes - as used in this document it is 2 raised to the power
of 20

ME Machine check enable

MESH Macintosh enhanced SCSI hardware

MFM Modified frequency modulation

MHz Mega Hertz

MOD Address modification bit in the MSR

MOU Memorandum of understanding
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MP Multiprocessor

MSB Most significant byte

MSR Machine State Register

N/A Not applicable

Nibble Refers to the first or last four bits in an 8 bit byte

NVRAM Nonvolatile random access memory

OF Open Firmware

OS Operating system

OUI Organizationally unique identifier

PC Personal computer

PC Card A memory or I/O card compatible with the PC Card Standard
[17]. When cards are referred to as PC Cards, what is being ad-
dressed are those characteristics common to both 16-bit PC
Cards and CardBus PC Cards.

PCI Peripheral Component Interconnect

PCMCIA Personal Computer Memory Card International Association
(see PC Card)

Peripheral I/O Space
The range of real addresses which are assigned to the I/O Space
of a Host Bridge (HB) and which are sufficient to contain all of
the Load and Store address space requirements of all the de-
vices in the I/O Space of the I/O bus that is generated by the
HB. A keyboard controller is an example of a device which
may require Peripheral I/O Space addresses. This portion of the
system address space was referred to as “System I/O” in the
PowerPC Reference Platform Specification.

Peripheral Memory Space
The range of real addresses which are assigned to the Memory
Space of a Host Bridge (HB) and which are sufficient to con-
tain all of the Load and Store address space requirements of the
devices in the Memory Space of the I/O bus that is generated
by the HB. The frame buffer of a graphics adapter is an exam-
ple of a device which may require Peripheral Memory Space
addresses. This portion of the system address space was re-
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ferred to as “I/O Memory” in the PowerPC Reference Platform
Specification [28].

Peripheral Space
Refers to the physical address space which may be accessed by
a processor, but which is controlled by a host bridge. At least
one peripheral space must be present and it is referred to by the
suffix 0. A host bridge will typically provide access to at least
a memory space and possibly to an I/O space.

PHB PCI Host Bridge

PIC Programmable interrupt controller

PIR Processor Identification Register

Platform Refers to the hardware plus firmware portion of a system com-
posed of hardware, firmware, and operating system.

PM Power management

PnP Plug and play

POST Power-on self test

PR Privileged bit in the MSR

Processor revision number
A 16-bit number that distinguishes between various releases of
a particular processor version, for example different engineer-
ing change levels.

PVN Processor version number. Uniquely determines the particular
processor and PowerPC architecture version.

PVR Refers to the Processor Version Register. A register in each
processor that identifies its type. The contents of the PVR in-
clude the processor version number and processor revision
number.

RAM Random access memory

Real address A real address results from doing address translation on an ef-
fective address when address translation is enabled. If address
translation is not enabled, the real address is the same as the ef-
fective address. An attempt to fetch from, load from, or store to
a real address that is not physically present in the machine may
result in a Machine Check interrupt.
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Reserved The term “reserved” is used within this document to refer to
bits in registers or areas in the address space which should not
be referenced by software except as described in this docu-
ment. 

Reserved for firmware use
Refers to a given location or bit which may not be used by soft-
ware, but are used by firmware.

Reserved for future use
Refers to areas of address space or bits in registers which may
be used by future versions of the architecture.

RFU Reserved for future use

RI Recoverable interrupt bit in the MSR

RISC Reduced instruction set computing

ROM Read only memory

RPN Real page number

RTAS Run-time abstraction services

RTC Real time clock

SCC Serial communications controller

SCSI Small computer system interface

SDR Storage Description Register

SE Single-step trace enabled bit in the MSR

SF Processor 32-bit or 64-bit processor mode bit in the MSR

Shrink-wrap OS 
A single version of an operating system that runs on all compli-
ant platforms. 

Shrink-wrap Application
A single version of an application program that runs on all
compliant platforms with the applicable operating system. 

SIMM Single in-line memory module

SMP Symmetric multiprocessor

Snarf An industry colloquialism for cache-to-cache transfer. A typi-
cal scenario is as follows: (1) cache miss from cache A, (2) line
found modified in cache B, (3) cache B performs castout of
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modified line, and (4) cache A allocates the modified line as it
is being written back to memory. 

Snoop The act of interrogating a cache for the presence of a line, usu-
ally in response to another party on a shared bus attempting to
allocate that line.

SPRG Special Purpose Registers for General use

SR System Registers

SRR Save/Restore Register

System Refers to the collection of hardware, system firmware, and op-
erating system software which comprise a computer model.

System address space
The total range of addressability as established by the processor
implementation.

System Control Area 
Refers to a range of addresses which contains the system
ROM(s) and an unarchitected, reserved, platform-dependent
area used by firmware and Run-Time Abstraction services for
control of the platform. The ROM areas are defined by the OF
properties in the openprom and os-rom nodes of the OF device
tree.

System firmware
Refers to the collection of all firmware on a system including
Open Firmware, RTAS and any legacy firmware.

System Memory
Refers to those areas of memory which form a coherency do-
main with respect to the PowerPC processor or processors that
execute application software on a system.

System software
Refers to the combination of operating system software, device
driver software, and any hardware abstraction software, but ex-
cludes the application software.

TB Time base

TBD To be determined

TBEN Time base enable signal on a PowerPC processor

TCE Translation Control Entry
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TEA Transaction error acknowledge signal on a PowerPC processor

TEMR Top of Emulated Memory Register

TIO Top of Peripheral Input/Output Space

Third party DMA
The process by which an entity independent of the data source
and sink generates addresses for transfers from the source to
the sink; or a noun referring to the independent entity; or a noun
referring to the transfer done using this technique.

TLB Translation lookaside buffer

TODC Time of day clock

TPM Top of Peripheral Memory

TSM Top of System Memory

tty Teletypewriter or ASCII character driven terminal device

UCT Universal coordinated time

URL Universal resource locator

VESA Video Electronics Standards Association

VGA Video graphics array

VIA Versatile interface adapter

VPD Vital product data

XER Fixed-Point Exception Register

Xpose Transpose data during LE mode transfer

x86 Intel processors such as 80386, 80486,...
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Trademark Information

The following terms, denoted by a registration symbol (®) or trademark sym-
bol (™) on the first occurrence in this publication, are registered trademarks or
trademarks of the companies as shown in the list below:

Trademark Company

Apple Desktop Bus
Apple Computer, Inc.

AIX International Business Machines Corporation

Apple Apple Computer, Inc.

CHRP Apple Computer, Inc., International Business Machines Cor-
poration, and Motorola, Inc.

Ethernet Xerox

IBM International Business Machines Corporation

Intel Intel Corporation

LocalTalk Apple Computer, Inc. 

Macintosh Apple Computer, Inc. 

Mac OS Apple Computer, Inc.

Micro Channel International Business Machines Corporation

Motorola Motorola, Inc.

NetWare Novell, Inc.
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NuBus Texas Instruments

Power Macintosh
Apple Computer, Inc.

PowerPC International Business Machines Corporation 

PS/2 International Business Machines Corporation

Solaris SunSoft

Taligent Taligent, Inc.

Windows Microsoft Corporation

Windows NT Microsoft Corporation
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cessor Common Hardware Reference Platform: A System Architecture are
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■ IBM at 1-800-PowerPC (1-800-769-3772) in the U.S.A 

— If the 1-800-PowerPC number can not be reached or if multilingual oper-
ators are required, use 1-708-296-6767

■ IBM at (39)-39-600-4455 in Europe

■ Motorola at 1-800-845-MOTO (6686)

The PowerPC Reference Platform Specification in PostScript format is
available via anonymous FTP and on CompuServe. The FTP server address is
ftp.austin.ibm.com and the material is placed in the directory /pub/technol-
ogy/spec. The document is maintained on a library of the PowerPC forum.

The PowerPC Reference Platform Specification and PowerPC Micropro-
cessor Common Hardware Reference Platform: A System Architecture are
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The Open PIC Multiprocessor Interrupt Controller Register Interface Spec-
ification is available from Advanced Micro Devices, Inc. or Cyrix, Inc. Send a
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The PowerPC Microprocessor Common Hardware Reference Platform Sys-
tem binding to: IEEE Std 1275-1994 Standard for Boot (Initialization, Config-
uration) Firmware and PowerPC processor binding to: IEEE Std 1275-1994
Standard for Boot (Initialization, Configuration) Firmware are available via
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anonymous FTP to playground.sun.com. These documents are located on the
path /pub/p1275/bindings/postscript/*.ps.
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To order copies of EIA standards, contact Global Engineering Documents at
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Copies of PCMCIA standards including the PC Card Standard may be
obtained by calling PCMIA at 1-408-720-0107 or Fax to 1-408-720-9416 or by
calling JEIDA at +81-3-3433-1923 or Fax to +81-3-3433-6350.

Plug and Play information is available on CompuServe Plug and Play forum
(GO PLUGPLAY).
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microprocessor and the PowerPC Microprocessor Common Hardware Refer-
ence Platform: A System Architecture.
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the IBM design kits which give further information on their reference imple-
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■ Within Europe (33)-6713-5757 in French

■ Within Europe (33)-6713-5756 in Italian

■ Within Europe (49)-511-516-3444 in English

■ Within Europe (49)-511-516-3555 in German

■ In Asia (81)-755-87-4745 in Japanese
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ily of RISC Processors are available at http://www.austin.ibm.com/tech/ppc-
chg.html.

Updates to The PowerPC Microprocessor Common Hardware Reference
Processor: A System Architecture are available via anonymous FTP. The FTP
server address is ftp.austin.ibm.com and the material is placed in the directory
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■ PowerPC Endian Switch Code by Gary Tsao

■ Plug and Play for PowerPC Reference Platform by Gary Tsao
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■ The PowerPC™ Hardware Reference Platform, by Steve MacKenzie, 
David Tjon, Allan Steel, and Steve Bunch

OEMs, IHVs, and ISVs may obtain information on Motorola products and
Motorola system design kits by contacting their local Motorola sales office or
1-800-845-MOTO (6686).

Information on the full range of Motorola’s semiconductor, software, design
kits, and system products may be found at Motorola’s PowerPC World Wide
Web home page located at http://www.mot.com/PowerPC/.

Information on the full range of IBM products may be found at IBM’s
World Wide Web home page located at http://www.ibm.com/.

Information on the full range of Apple products may be found at Apple’s
World Wide Web home page located at http://www.apple.com/.

An electronic forum on CompuServe has been established for the discussion
of PowerPC reference platform topics and for obtaining answers to questions
on the PowerPC reference platform. Go to the “PowerPC” forum on Com-
puServe and join the “Reference Platform” topic. 

Information on IrDA documents is available on the World Wide Web at
ftp://hplose.hpl.hp.com.

VESA documents including the DDC 1 standard are available on the World
Wide Web at www.vesa.org.
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power management 51
603 processor family 51
604 processor family 51
60x bus 53
620 processor family 51
64-bit address space 51
64-bit Addressing 14
64-bit execution mode 51
64-bit implementations 50, 51
6xx bus 53

A
ADB 16, 19
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areas 23
compatibility holes 24
decode and translate table 32
example: 32-bit with one HB 33
example: 32-bit with two HBs 34
example: 64-bit with one HB 35
initial memory alias spaces 25
io-hole 24
legend of terms 23
Peripheral I/O Space 24
Peripheral Memory Space 23
processor-hole 25
routing and translation 28
System Control Area 24
System Memory 23
Undefined 24

AIX 223

aliasing
I-bit 58
M-bit 58
W-bit 58

alphanumeric input device 19
asymmetric multiprocessor compared with SMP 216
atomic stores 57
atomic update model 64
attached processor compared with SMP 216
audio 20

B
B2 security, uniprocessor 51
BE. See Big-Endian
Big-Endian

multiple scalar operations 55
PHB implications 74

Boot 8, 11
bridge

ISA to PC Card 83
PC Card 83
PCI to ISA 82
PCI to PC Card 83
PCI to PCI 81

bridge architecture 52

C
cache

disabled state 66
enabled 66
external 65
flushing 65
initialization 66
in-line 66
in-line, reservation support 66
internal 65
invalidate 65
low power state 66
memory 65
RTAS cache-control 66
state bits 66

cache control 136
cache flushing 65
cache line 58
cache memory 65
cache, external 19
Caching Inhibited (I bit) 58
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Cardbus 83
CD-ROM 19
Check stop condition 160
check-exception 110
checksum, NVRAM 143
CIS 9
Client Interface Services in SMP booting 220
coherence

memory 57
symmetric multiprocessor 57

coherency
TCE 40, 41

coherency domain 60
coherency granule 58
compatibility holes

defined 24
PCI Host Bridge option 70

Configuration 9
configuration, NVRAM partition 144, 145
consistency model 59
cpu

OF properties 51

D
DAC. See Dual Address Cycle
Device tree 9
direct memory access 20
direct-store segments 54
discontiguous I/O

defined 37
figure showing 38
initial state 37

display-character 104
DMA 20
DMA ordering 73
Dual Address Cycle

defined 77
option of the PHB 77

E
emulation-assists 51
endian modes 265
endianess 14
energy conservation 185
EPA Energy Star compliance 197
ERR Register 47
error log, NVRAM partition 144, 147
event-scan 110
exception handler 93
external cache 65

external control instructions 55

F
firmware 13

NVRAM partition 144
firmware storage 19
floppy disk 19

G
graphics 20
Guarded Storage (G bit) 58

H
hard disk 19
hardware, NVRAM partition 145
HB. See Host Bridge
Hibernate 13, 128, 189
Host Bridge 61

address map example 33, 34, 35
option to accept 64-bit DMA addresses 40
PCI. See PCI Host Bridge

I
I/O bus to I/O bus bridge

general requirement 79
PCI to ISA 82
PCI to ISA, maximum number 82
PCI to PCI 81

I/O interrupt group 87
I/O subsystem 60
I-bit aliasing 58
IDU 87
infrared 20
initial memory alias spaces

defined 25
peripheral-memory-alias 25

Initialization 9
instantiate-rtas 97, 102
internal cache 65
Inter-Processor Interrupts in booting 221
Interrupt Acknowledge Cycle 77
Interrupt Controller

architecture 85
Distributed implementation 86
single-chip implementation 89

interrupt controller 20
8259 support 77

Interrupt Delivery Unit 87
Interrupt Source Unit 87
io-hole
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defined 24
DMA decode 32

IPI in booting 221
ISA 9, 145

device participation in DMA data transfers 79, 80
DMA controller requirement 82
ISA to PC Card bridge 83
PCI to ISA bridge 82

ISU 87

K
keyboard 16, 19

L
LE. See Little-Endian
legacy firmware 13
Little-Endian 265–268

address and data translation 265
PHB implications 74
PowerPC Little-Endian 265

load and store string operations 55

M
Mac OS 224
machine check 96
Machine check interrupt 160
master in booting SMP 219, 221, 222
M-bit aliasing 58
memory coherence 57
Memory Coherence Required (M bit) 58
memory controllers 64

full power mode 65
initialization 65

memory, cache 65
memory, non-volatile 19
memory, system 19
minimum requirements

alphanumeric input device 19
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cache, external 19
CD-ROM 19
DMA 20
firmware storage 19
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non-volatile memory 19
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real time clock 20
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multiple scalar operations
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NetWare 224
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Non-Volatile Memory 19, 141
NVRAM 19, 104, 141

O
OF method
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instantiate-rtas 97
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64-bit-dma 40, 70, 77
8259-interrupt-acknowledge 78
external-control 51
for RTAS 100
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interrupt-ranges 89
io-hole 25
memory 57
memory-controller 65
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Off (system power state) 190
Open Firmware 1, 13
Open PIC 85
operating systems 223
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HB accepts 64-bit DMA addresses 40
instruction queuing in PHB 70
io-hole 24
PC Emulation 44
PCI Dual Address Cycle 70
PHB 64-bit addressing 70
PHB Dual Address Cycle support 77
processor-hole 25
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external control 55
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ordering of DMA data 73
ordering of Load and Store operations 71
OS/2 224

P
pages reserved for implementation specific use 51
parallel port 20
partitions 144
PC Card 83
PC Card bridge 83
PC Emulation option
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Exception Relocation Register (ERR) 47
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number required per HB 30
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PHB requirement 77
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boundary alignment 30
changing size 36
decoding and translation 32
defined 23
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number required per HB 30
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size restrictions 30
system-memory-alias 25

peripheral-memory-alias
defined 25
Load and Store decode 32

personal 16
PHB. See PCI Host Bridge
platform-aware software 49
Plug and Play 146
pointing device 19
portable 16
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power management 185–213

batteries 195
concepts 185
device power states 187
EPA Energy Star compliance 197
hardware requirements 197
mechanism 186
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policy 123, 186
power domain control point 192
power domain dependency tree 192
power domains 124, 125, 191
power management events 195
software requirements 210
system power states 187
system power transitory states 190

power management disabled 188
power management enabled 188
power management events 195
power-off 96, 127
Power-on-mask 127
PowerPC Little-Endian 265
PowerPC Little-Endian System Memory 65
Powerup 191
processor configuration in SMPs 220
processor identification register 50
processor interface

32-bit 53
64-bit 53

processor version number 51
processor-hole

defined 25
Load and Store decode 32

PS/2 16, 19
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R
real mode 94
real time clock 20
real-time clock 106
reboot 13
recursion in boot process with SMPs 222
requirement

16-bit PC Card support 83
contiguous System Memory 29
data buffering in PHB 71
Exception Relocation Register (ERR) 47
I/O bus to I/O bus bridges 79
I/O DMA routing and translation 29
instruction queuing in PHB 71

ISA bridge attached to a PHB 82
ISA DMA controller 82
Load and Store routing and translation 28
maximum number of ISA bridges 82
ordering of DMA data 73
PCI Interrupt Acknowledge Cycle 77
peripheral-memory-alias 31
PHB data coherency 71
PHB Peripheral I/O Space 77
system-memory-alias 31
TCEs must be in System Memory 40
Top of Emulated Memory Register(TEMR) 47
Translation Control Entry translation 29

reservation protocol 64
Reset 9
restart-rtas 97
Resume 190
ROM 24
ROM, OS 19
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argument buffer 101
assume-power-management 123, 126
cache-control 66, 136
calling conventions 101
cell size 102
check-exception 96, 112
display-character 118
event-scan 110
freeze-time-base 137
get-power-level 125
get-sensor-state 121
get-time-of-day 107
hibernate 131
nvram-fetch 96, 105
nvram-store 96, 105
read-pci-config 115
register usage 94
relinquish-power-management 123, 126
restart-rtas 97, 104
set-indicator 96, 119
set-power-level 124
set-time-for-power-on 109
set-time-of-day 108
start-cpu 140
stop-self 139
suspend 129
system-reboot 96, 135
thaw-time-base 138
tokens for functions 99
write-pci-config 116

RTAS private data area 96
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RTAS stopped state 139, 140
rtas-call 92, 93, 97, 98, 102
rtas-display-device 104
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SCC 20
self modifying code 60
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serial ordering 57
serial port 20
serialization order 58
server 16
service processor use in booting SMP 222
set-power-level 96
signature 142
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slbia 50
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asymmetric multiprocessor compared 216
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boot process 218–222
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Inter-Processor Interrupt use in booting 221
interrupts 215
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operating system support 216
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service processor in booting 222
special register for boot 219
start-cpu 140
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Soft Reset 86
Solaris 224
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start-cpu 139
Status Word Values 103
stop-self 140
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Write-Through 64
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system address map
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System Memory
address decoding 32
Big-Endian 65
compatibility holes 24
contiguous requirement 29
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first area 29
Little-Endian 65
non-overlap requirement 29
reserved addresses 36

System Memory requirements 56
system-memory-alias
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DMA decoding 32

T
TBEN signal 137
TCE. See Translation Control Entry
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TEMR (Top of Emulated Memory Register) 47
tightly-coupled multiprocessor. See SMP
Time Base Register 137, 138
time of day clock 20
timebase 51
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Topology 2
Translation Control Entry
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requirement to be in System Memory 40
requirement to implement 39
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uniprocessor compared with SMP 216
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WARP 224
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