
•

. 0
~
~~ •

SInalltalk-80™ .
for the

Macintosh™

trrru® ~M®.~~~®.~~=~@TM flf@@lf®.mMO[fl)@ ~W~~®M
[@If ~rru® [MJ®'©O[fl)~@®rru ™

August 1, 1985

About this Release page 2

Installing with or without a Hard Disk page 4

Getting Started in Smalltalk-80 page 5

Differences from Other Small talk-80s page 6

System Sources and FileOut page 7

Tracking and Saving Changes page 8

Memory Space page 9

File System page 10

ToolBox page 11

About this Version of Smalltalk-80 page 11

Sample Smalltalk File Descriptions page 12

References page 14

APPLE MAKES NO WARRANTY OR REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS SOFTWARE, OR THE ACCOMPANYING MANUAL,
THEIR QUALITY, PERFORMANCE, MERCHANTABILITY, COMPLETENESS OR
FITNESS FOR A PARTICULAR PURPOSE. THIS IS A PRE-RELEASE VERSION OF THE
PRODUCT. AS A RESULT, THIS SOFTWARE AND MANUAL ARE SOLD TO YOU "AS
IS" AND YOU, THE PURCHASER, ARE ASSUMING THE ENTIRE RISK AS TO ITS
QUALITY AND PERFORMANCE.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN
THE SOFTWARE OR MANUAL.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU
OF ALL OTHERS, ORAL OR WRITTEN, EXPRESS OR IMPLIED.

Smalltalk-80 is a trademark of the Xerox Corporation.
Macintosh is a trademark of Mcintosh Laboratory, Inc. and is used

by Apple Computer, Inc. with its express permission
The Macintosh man and his Smalltalk balloon are copyright

© 1985 Apple Computer, Inc. all rights reserved.

The Smalltalk-80 Programming System
for the Macintosh

About this Release
In response to requests from several universities, we have put together this
"pre-product" release (0.2) of the Smalltalk-80 programming system which runs on the
Macintosh XL and Macintosh 512K computers. We hope that this will enable more
hands-on experience with Smalltalk in the universities, and that it will give other
interested parties a chance to experiment with the system.

Release 0.2 supplants an earlier release (March 1985) that ran only on the Macintosh
XL. Two images are supplied with the new release: level 0 and level 1. Both images
incorporate the following improvements:

• Improved volume management capable of supporting file server access
• Automatic spelling correction for variable and message names
• Ability to handle multiple images on the same disk
• A single interpreter works on all machines and expands to use extra memory

Level 1 requires 1 MB or more of memory, and incorporates further improvements:
• Total object capacity has been raised from 24K to 32K
• Can expand to take advantage of 2MB memory on the XL

(available from AST Research, Inc.)
.• Able to run on some Macintosh computers with 1 MB or more of memory

(available from various manufacturers, but must be contiguous
and must follow ToolBox memory organization)

Level 0 is a stripped-down image which will run on the Macintosh 512K. It is missing
many of the classes in level 1, but it retains full support for browsing, editing, compiling
and debugging. Although available memory is low (3K objects, 44K bytes free), it is
adequate to support many introductory examples. If the Macintosh is connected to a
hard disk, either local or shared over AppleTalk, users may access the full Smalltalk-80
source code. The system will also run with only the internal disk drive, using
decompilation to view system methods; full source is retained for user-defined

. methods.

We have worked hard to make this implementation of the Smalltalk-80 system usable,
and we feel that it can serve well as an introduction to object-oriented programming in
general, and to the Smalltalk-80 system as well. Level 1 can even serve as a useful
environment in which to build prototypes of simple systems.

Documentation and Support
We have included only enough documentation to get you started. If you are not
already familiar with the Smalltalk-80 system, you will need further documentation not
provided by Apple, such as the two Smalltalk-80 books by Goldberg and Robson (see
references). Courses and training materials that relate to Smalltalk-80 are available
from PPI, an organization that offers general training in object-oriented programming
as well as specific courses on Smalltalk-80. For further information, contact:

Productivity Products International
27 Glen Road
Sandy Hook, CT 06482
(203) 426-1875

page 2

The Smalltalk-80 Programming System
for the Macintosh

Apple cannot provide support for this pre-product release, since we are charging only
enough to cover our costs of duplication and handling. If you should discover bugs in
the documentation or in the system itself, your only recourse will be to work around
them yourself. If a later version is released, there will be neither an upgrade price nor
a guaranteed code migration path.

An Apple Smalltalk Newsletter
We want to know what you find to be good or bad about the system as released. We
are especially interested in specific improvements or extensions which you find
amusing or useful, or in any training materials which you may develop. Assuming
there is sufficient response, we shall assemble such contributions in a newsletter for
those who have purchased this release.

Since we do not have time to maintain an ongoing newsletter, we hereby solicit offers
to take over publication of the newsletter following our first free issue. Assuming we
find a volunteer to take over the newsletter, we will make the new arrangement known
in the pilot issue.

Please send your comments and contributions to the address below:
The Smalltalk Group, Mail Stop 22-Y
Apple Computer
20525 Mariani Drive
Cupertino, CA 95014

The Future of Smalltalk at Apple
You will notice that this release violates Macintosh standards of user interface design
in many ways. Windows do not repaint automatically, and mouse clicks may be lost.
These are characteristics of the Smalltalk-80 system as originally licensed, and we
have not tried to fix them for this early release.

One of the reasons why we will not support this release is that we are contemplating
substantial changes to the system with the goal of integrating Smalltalk with the
Macintosh ToolBox. The result will be a Smalltalk system that is smaller, faster, and
more compatible with other Macintosh software. Compare the effect of executing

Pen new mandala: 30 diameter: 360
which draws lines without the aid of the ToolBox, with that of

COPen new mandala: 30 diameter: 360
and you will see why we are excited about the combination of Smalltalk's flexibility with
the speed of the Macintosh Toolbox.

In spite of the changes which we anticipate, we plan to stick with the language syntax,
semantics, fi/eOut formats, and general programming interface embodied in this
release of the Smalltalk-80 system.

page 3

The Smalltalk-80 Programming System
for the Macintosh

Installing Level 1 Smalltalk with a Hard Disk
To run Smalltalk-80 on a Macintosh XL with MacWorks or on a Macintosh with a hard
disk, your hard disk must be capable of holding the following files plus some 1300K of
working space (roughly 3500K total):

1300K
577K

24K
56K
67K
36K

Smalltalk-80.sources
Level1.image
Level1.changes
Smalltalk (interpreter)
12 examples (.st)
DivJoin.

This release is shipped on seven Macintosh diskettes. All files needed to run on the
Macintosh XL are on the first 6 diskettes. Because of the size of the first two files, they
have been split up into six files named

1.LeveI1.image and 2.LeveI1.image, and
1.Smalltalk-80.Sources through 4.Smalltalk-80.Sources.

First move all the above files to your MacWorks volume, and then use the DivJoin
program to reconstitute the two large files from their constituents. DivJoin is a program
that allows very large files to be stored on diskettes by breaking them into pieces (each
of which fits on a diskette) and reassembling them again.

To reconstitute the sources file, first double click on DivJoin. Once inside DivJoin,
select Open from the File menu and choose 1.Smalltalk-80.sources. Now select
Join this File from the Div/Join menu to join all parts of the image together. If you
need more space at this point, you can leave the DivJoin program and delete
1.Smalltalk-80.Sources through 4.Smalltalk-80.Sources. Again in the DivJoin
program, open 1.LeveI1.image and select Join this File. You have now
reconstituted your files and can delete 1.LeveI1.image and 2.LeveI1.image.

You can minimize the amount of space needed during installation by moving and
reconstituting Smalltalk-80.sources before moving any of the other files to your
MacWorks volume. In this way you could get by with around 2500K of disk space.
However, you will probably want more space for the convenience of keeping a backup
copy of the image and changes, so as to avoid the full installation procedure the next
time you want to start from a clean copy of Smalltalk.

Installing Level 0 on a Hard Disk
When using a 512K Macintosh with a hard disk, or in case you have a Macintosh XL
with only 512K of memory, you will want to install level 0 on your hard disk. The
procedure for this is just the same as for level 1, except that you want LevelO.image
and LeveIO.changes, instead of Level1. These files may are located on the last two
diskettes in the set and, since LevelO.image fits on one disk, there is no need to use
DivJoin.

page 4

The Smalltalk-80 Programming System
for the Macintosh

Installing Level 0 without a Hard Disk
If you do not have a hard disk, then Smalltalk must be run from diskettes. In this case
there is no need for installation, since we have configured the last two diskettes as
ready-to-run Smalltalk disks. We recommend that you first copy these disks and retain
them as backups before proceding further. Having made a backup copy, you may
delete DivJoin from disk #6 to make more space available (DivJoin is only used for
hard disk installation).

Starting Smalltalk with a Hard Disk
. To start Smalltalk after it has been installed on your hard disk, double-click or open the

image icon (LeveI1.image or LeveIO.image). It takes about half a minute to load the
image into memory, after which the Smalltalk screen is displayed.

Starting Smalltalk without a Hard Disk
First boot your Macintosh from disk 6 (system, interpreter and LeveIO.changes). If you
have an external disk drive, place disk 7 (with LevelO.image on it) in the external disk
drive. If you only have the internal disk drive, eject disk 6 and insert disk 7. To start
Smalltalk double-click or open the icon for LeveIO.image. With only one disk drive, you
will be asked to change disks a few times while the Smalltalk interpreter loads the
image. It takes about a minute to load the image into memory, after which the
Smalltalk screen is displayed.

Once in Smalltalk
Once in Smalltalk, saving your state and quitting are done by selecting options from
the "screen menu." Point in a gray area where there is no window and hold the mouse
button down (don't let go!). The screen menu will appear, presenting a choice of
several global operations, such as restoring the display, opening new windows,
making a snapshot, and quitting. Move the cursor to the command you want -- or
outside the menu if you don't want any of them -- and then release the button.

Making a snapshot is like the save operation in most Mac software, but it causes the
entire state of your Smalltalk -- not just the active window -- to be written, back onto the
image file, after which you may continue working in Smalltalk. If you make an
unrecoverable error, or if Smalltalk should crash, restarting Smalltalk will return you to
the state at your last snapshot or quit-with-save.

The quit option is like the quit operation in most Mac software. It first prompts you to
choose whether to save the changes you have made. If you choose no, then the next
time you run Smalltalk, none of the changes since you started (or since your most
recent snapshot) will remain. If you choose yes, then the next time you run Smalltalk
everything will be just as you left it - all the windows will be where they were, even
interrupted processes will remain in a state of suspended animation. [Note, therefore,
that if you suspect your Smalltalk to be flawed, you should not snapshot or save
changes at quit]. Open files will be closed by the snapshot and quit operations, and
they will be re-opened automatically upon restarting Smalltalk.

page 5

The Smalltalk-80 Programming System
for the Macintosh

System Workspace and 'Hello' File
Many useful executable expressions have been collected in a window called the
System Workspace in the Level 1 image. Because this text consumes valuable space,
it has been omitted from the Level 0 image, but we have included an annotated copy
as an appendix to this documentation.

We have also included several interesting code fragments in a file named 'Hello'.
Here is what you need to do to open a window on that file. Once in Smalltalk, click the
mouse in the window in the upper right corner of the screen. If it is not already
selected, select the item (FileStream oldFileNamed: 'Hello') edit.

Selection is done just as in MacWrite. If there is no such text, you can type it, just as
with MacWrite. When the text has been selected, slowly move the cursor into the white
scroll bar at the left of the text area. In the rightmost edge of this area, the cursor
should take on the shape of a little menu. When that happens, click the mouse button
and hold it down. A menu will pop up on the screen, from which you should choose
'Dolt', and then release the mouse button. This causes Smalltalk to compile the
selected expression and execute it, which has the effect of creating a new window
viewing the contents of the file named 'Hello'.

When the file has been opened, Smalltalk needs you to specify a rectangular area for
the window on the screen. The cursor should change to a bracket shape, prompting
you to click where you want the upper left corner of the window, then it should change
to another bracket prompting you to click where you want the lower right corner of the
window. Once you have done this, the text in the file will appear, and it should tell you
everything else you need to know.

Save Frequently
The Smalltalk-80 system is by nature a very malleable programming environment.
Some of the changes you make may leave you with a dead system. A good rule is
"Don't play for more than you would be happy to lose." Even if you never make a silly
mistake, the power might go off, or you might find a bug that we don't know about.

Differences from Other Smalltalk-80s
We have found it necessary or convenient to depart from the specification of
Smalltalk-80 which is documented in the Smalltalk-80 literature. We list on this page
the chief differences that will be noticed by users with experience on other systems.

Mouse Buttons
You can click in right edge of a scroll bar for the yellowButton menu.
The Option key works as a shift to give "yellow" button when otherwise needed.
You can click window title tabs for the blue Button menu.
The Enter key works as a shift to give "blue" button when otherwise needed.
Click in the gray area outside all windows for the screen menu

page 6

The' Smalltalk-80 Programming System
for the Macintosh

Keyboard and Editing Operations
Apple-X, C, V are keyboard synonyms for cut, copy, paste.
Use shift-6 to get up-arrow, shift-minus to get left-arrow.
Use Apple-period for keyboard interrrupt (used to be control-C).
Text selection can be extended by shift-clicking.
Typing does not interfere with,the paste buffer.
Paste does not leave an extended selection.

The inspectors in this Smalltalk have an extra panel at the bottom. Here you can type
and evaluate expressions in the context of the inspected object, without their being
overwritten by the display of field values.

Spelling correction in this Smalltalk is automatic, rather than voluntary, and you have
the opportunity of choosing among the closest matches. The correction algorithm
favors messages that begin the same, but you can choose try harder to include a
wider variety of messages in the search.

System Sources and File Servers
Smalltalk always expects the system sources to be named Smalltalk-80.sources. If
there is no file by that name, Smalltalk will use decompilation to show source code for
system methods. Each time Smalltalk starts up, it checks every mounted volume for
the files it needs. Consequently, if your Macintosh is on a network, and if there is a disk
server on that network, and if that disk server is "mounted" as a volume on your
Macintosh, and if there is a copy of Smalltalk-80.sources on the disk server ... guess
what. .. Smalltalk will open the file over the network for its access to sources. In this
way it is possible for many Macintoshes without hard disks to browse full source code if
they are connected to a network with a disk server.

Fileln and FileOut
You can save and load parts of your Smalltalk system -- individual methods, classes,
groups of classes, and so on -- in a text file format called "fileOut format". The fileOut
and fileln operations are available in browser menus and as messages of which there
are examples in the System Workspace window. These files can be moved from one
image to another, and can be read by MacWrite. You can even edit them in MacWrite if
you are very careful not to disturb the file format conventions, and save as text-only.

Note that browsers do not properly reflect changes made in other browsers or in filelns.
ft may be necessary to reselect an item or, in some cases, even to close and reopen
the browser. The update option in the leftmost panel causes a browser to show new
system categories which have been created by another browser or by a fileln.

Smalltalk State
Two files, an image and a changes file (by convention named xxx.image and
xxx.changes), together. constitute the full state of a given Smalltalk system.

page 7

The Smalltalk-80 Programming System
for the Macintosh

Therefore, to completely back up the state of your work in Smalltalk, you must save
copies of both of these files. You may rename the copies at will, but you must abide by
the convention that the two names begin the same, and end with .image and
.changes.

The Image and the Changes File
If you become a serious user of Smalltalk, you will find it useful to understand how the
changes file (Smalltalk-80.changes) is used. Each time you accept a method, or
execute an expression (do it) in Smalltalk, a copy of the source code in question is
appended to the changes file. This file provides the necessary data to later browse the
source code for the changes you have made.

Since the changes file constitutes a log of changes you have made, it can be very
valuable in case of disasters. In the System Workspace you will find the executable
statement, Smalltalk recover: 5000. This will copy the last 5000 characters of the
changes file to a temporary file and prompt you to open a window on that text. In that
window, you can select important lost information, and re-execute it to recreate the
changes you lost. The changes file is in fileOut format. The file window includes a
menu command fileltln, which will cause a fileln of the currently selected portion
of the file. In the case of method definitions, the methodsFor: line which precedes the
definition must be included, as well as the exclamation points that delimit the end of the
method definition item. The longest recovery that can be effected in this way is
currently the practical file size limit of 16000 characters imposed by the file edit
window.

The changes file grows every time you run Smalltalk. If you redefine a method twenty
times, there will be twenty copies of it in the changes file. Also, even when you quit
Smalltalk without saving changes, the changes file will have grown as a result.
Eventually, it will be necessary to condense the changes file - that is, to write a new
copy which contains only the code currently accessible from the image. This can be
accomplished by executing the statement Smalltalk condenseChanges. It is
advisable to make a backup copy of your state (.image and .changes) before
condensing the changes file. The process can take a long time (10 minutes or more),
depending on how many changes you have made in your image.

Users without hard disks will have to pay particular attention to the amount of space
remaining on the disk used for changes. The condensing process itself requires
additional space for the condensed copy, so one should ideally condense the changes
file whenever it becomes as large as the free space remaining on the disk. If one is
attempting serious work without a hard disk, this restriction may become a problem. In
such cases, you may fileln the goodie named dropChanges.st, and then execute
Smalltalk dropChanges. The result will be to reclaim all space in the changes file,
but future browsing of the changes made up to that time will only present a decompiled
version of the code - in other words temporary names and comments will be lost. If you
must resort to this solution, you should probably save fileOuts of the code you care
about, so as to retain a copy of the code with commments.

page 8

The Change Set

The Smalltalk-80 Programming System
for the Macintosh

Besides the changes file itself, the Smalltalk-80 system provides another completely
independent mechanism for recording what changes have been made. While the
changes file is a linear log which records all the text involved, the changes set holds
references to changes made to the classes and methods within the system. It is
used in conjunction with the fileOutChanges method. For example, executing

(FileStream newFileNamed: 'Jan26/Changes.st') fileOutChanges
will cause every change recorded in the change set to be written out to the named file.
Such "fileOut" files are a much more compact way of saving a Smalltalk project than
saving the whole image. If you use project windows, a separate change set is
maintained for each project window in your Smalltalk. Note that the statement

Smalltalk noChanges
can be used to reset the current change set. If three more changes are made
thereafter, only those three changes, and no previous changes, will be recorded.

Whenever a fileout includes a class initialize message, it will also automatically
generate a statement to invoke this method at the end of the file.

Memory Space
Space is very tight on 512K machines, and therefore Smalltalk may be uselessly
cramped or may crash if other systems compete for its space in memory. In particular,
we know it will crash if MacsBug is loaded, and it is very cramped if a ram-resident file
system is used. .

You may be interested in the question of how to make more free space available. We
offer a few tools and a few suggestions, and we request that, if you have good success,
you let us know what you did, so that we can pass it on to other users.

For measurement, you will find Smalltalk printSpaceAnalysis (only in level 1 - use
fileOut to move it, or write your own) useful. It lists on a file roughly how much space
(objects and words) is consumed by each class and by instances of that class.

Here are some suggestions about how to reclaim significant amounts of space:

Remove FileLists (simply execute FileList remove).

Remove the debugger step and send commands, and any other code which uses the simulation
in class ContextPart. If you can't live without step and send, then implement breakpoints (a useful
thing to do anyway), and then use these to restore the operation of step and send.

Make MessageSet, and maybe even the Debugger, be a subclass of Browser so that they can
share code for printing, fileOut, senders and messages.

If you have a hard disk, remove the decompiler (simply execute Decompiler remove). One minor
problem is that the decompiler is currently used for viewing the code of do-it methods from the
debugger. If you can't live without this, then figure out how to log the text of do-it methods in the
changes file and give them a proper source code pOinter.

page 9

The Smalltalk-80 Programming System
for the Macintosh

After removing significant parts of the system in this way, you can use Smalltalk
removeUnSentMessages. This method locates any messages which are
implemented, but nowhere sent in the system, and then removes then. It is useful to
run this method several times in a row (like 5), because each method removed may
render other methods inaccessible. This method takes a long time (from 5 to 25
minutes) to run.

Finally, you should run Symbol rehash, which will reclaim all the Symbols which are
no longer in use as a result of the removal of methods.

Memory Management
The interpreter furnished with this release uses garbage collection rather than
reference counts to reclaim unused storage. For this reason, it is not necessary to
break circular structures in this implementation, though you will find many places
where such "release" code still exists in this image. You will notice occasional pauses
in the operation of the system when garbage collection takes place. Some of these
take longer than others, and we are working hard to make them all shorter.

A side-effect of the incremental garbage collection scheme used in this implementation
is that Behavior aillnstances and related enumeration messages will sometimes
enumerate objects that are no longer truly accessible. If you want to. be sure of the
results, execute Smalltalk garbageCollect immediately prior to such enumeration.

Even with garbage collection, it is still possible to run out of memory. If there is enough
space in your system, a NotifyWindow will appear telling you that space is low. The
stack of senders will allow you to check if the cause was endless recursion. It is
generally advisable to close the NotifyWindow, rather than proceeding, since there will
be no soft error recovery possible after proceeding. If the problem was not an endless
recursion, you should consider how you might have unintentionally consumed a lot of
storage. In some cases you may have to jettison some other competing objects in the
system. Level 1, contains a method System Dictionary deleteClasses which
performs such a jettison operation.

You can find out how much memory is available in your system by printing
Smailtalk spaceleft

which returns the number of free objects and number of free words of data. The
minimum safe operating margin is around 1000 objects and 4000 words of data.

The Macintosh File System
This implementation of Smalltalk-80 includes an interface to the Macintosh file system.
Instances of MacVolume refer to the various disk directories. Files can be opened by
sending messages to FileStream, such as FileStream fileNamed: 'Hello'.
Several examples appear in the System Workspace. There is a default volume on
which a file name will be sought, but you can override this by including a prefix (with
colon) in the file name, as in 'Internal:fileName'. If you don't know what volumes
are available, you can use ? in place of the volume name, as in '? :Hello', and

page 10

The Smalltalk-80 Programming System
for the Macintosh

Smalltalk will present you with a menu of the currently mounted volumes and their
aliases. You can eject a volume by sending it the message eject, or by choosing
eject disk from the screen menu. If there are files open on this volume, you will be
prompted to close them before ejection.

Files in the Macintosh file system are modelled by instances of MacFileStream. These
respond to normal stream protocol, a well as to several other messages which can be
found by browsing through the implementation. If you overwrite an existing file, it is
necessary to send the message shorten to the fileStream prior to closing, lest part of
the old data remain after the end of the new contents.

The default type of files created by Smalltalk is TEXT. This means that they can be
read by MacWrite as text-only. If you wish to give other properties to a file, you can use
the method setType:creator: to do so, following the general approach used in
MacFileStream typeTEXT. If you wish to write formatted text that can be read by
MacWrite, you will have to implement the MacWrite document format which is fairly
complex. Please let us know if you do it.

Further "information about the interface to the Macintosh file system appears in the
appendix Using the Volume Oriented File Package.

The Macintosh ToolBox
This version of Smalltalk includes an interface to the Macintosh ToolBox routines. You
can call any Macintosh ToolBox routine as long as the routine has a trap number
(some do not and so must be reimplemented in Smalltalk, which we have not done yet)
and its arguments are simple enough. The message is constructed as follows:

the receiver is Mac, the sole instance of class Macintosh,
the first keyword is the name of the routine

followed by the first argument;
each additional keyword is the formal name of its argument

followed by the argument itself.
Examples are:

Mac penNormal.
Mac textSize: 14.
Mac offsetRect: someRect dx: 22 dy: -33.

A nearly complete exercise of the QuickDraw routines can be found in
TooIBox-Support>Macintosh>quickdraw sample>drawStuff

and the routines which it calls. A complete description of the ToolBox interface can be
found in the appendix Smalltalk ToolBox Access.

About this Version of Smalltalk-80
This version of the Smalltalk-80 system, known as version 1, was licensed from the
Xerox Corporation as part of an early collaboration on Smalltalk development. Since
that time, Xerox has made changes and additions to their version which they now offer
for general licensing as version 2. While there are several differences between

page 11

The Smalltalk-80 Programming System
for the Macintosh

these two versions, the language is nearly identical, and most of the kernel
programming tools operate similarly. The principal features of version 2 that are not
supported in this release include:

Multiple Inheritance support (not actually used in version 2)
Sticky browser selections
Changes file browser
"Pluggable" viewing protocol

Some of our customers already have a license for the Xerox version 2 image. It would
be nice if this image could be adapted to run on the Apple interpreter so that there
would be complete compatibility between Smalltalks on different machines within such
organizations. If you are such a customer, you should at least let us know that you
want such an image. More importantly, if you would like to make it happen, write us a
letter to that effect. We are prepared to furnish the information you would need to
produce such an image. This could make an interesting student project, and the result
would be a valuable contribution to the Smalltalk-80 community. The current Xerox
licensing policy provides for distribution of such a modified image among others who
have purchased a Xerox license.

Sample Smalltalk Files
Included with your Smalltalk system are several Smalltalk files ("goodies") which add
interesting or useful capability to your Smalltalk. Execute (FileStream
oldFileNamed: 'filename.st') fileln to read any of the sample files into your
system. The file names are not case-sensitive, but spaces are significant. The .st
naming is only a convention - it makes it easy to browse all Smalltalk files using *.st in
the top pane of a file list.

Printing.st includes a definition for MacPrintStream. This supports access to an
Apple Imagewriter connected to the printer port. It also adds a menu option for printing
most windows. Printing from the window title menu produces a bitmap of the window
in question. Printing from a text pane menu produces text with an attempt to support
the unusual Smalltalk characters. The class method examples includes an
expression for printing the bits of an arbitrary screen rectangle. Some such bitmaps
will be too wide for the printer; use a wide-carriage printer, or figure out how to print
landscape bitmaps (actually easier than the portrait format supported by
MacPrintStream). Imbedded in this file is a method for rotating bitmaps by 90 degrees,
which might be otherwise useful.

FFT.st defines a class which will perform a one-dimensional complex Fast Fourier
Transform of data held in Smalltalk arrays. The example method test illustrates the
use of this capability. This code computes a complex Fourier transform; what many
people expect is a "power spectrum" which can be derived by summing the squares of
corresponding real and imaginary components.

Fractal.st contains code for producing three-dimensional surfaces based on fractal
geometry. Execute Fractal example for an example.

page 12

The Smalltalk-80 Programming System
for the Macintosh

Toothpaste.st alows one to draw shaded worm-like curves on the screen using a
"brush" that looks like a highlighted sphere. Execute Form toothpaste: 30 and then
paint with the cursor. Use option-click to stop.

Web.st is another cute drawing program. It uses a model which lags behind the
current mouse position, and then draws lines between the lagging cursor and the
current cursor. Execute QDPen new web and then draw with the mouse. Click to
erase the screen, and option-click to stop.

Macintosh-guickdraw.st is a full set of QuickDraw call definitions. This makes all
the QuickDraw messages visible, which they are not with the current space-saving
generic lookup mechanism (see appendix). At the cost of some memory space, it thus
makes QuickDraw messages easier to browse.

Dictionarylnspectors.2.st allows direct access to keys and values when inspecting
dictionaries. This goodie has already been included in the Level 1 image.

MacPaint.st defines a method which will create a graphics file readable by MacPaint.
The comment at the end of method Form macPaintOn: gives a sample invocation. The
method is already included in Level 1, but its example comment is in error. If you fileln
this goodie, it will correct the comment.

RS232.st defines a few methods which support input and output via the two
Macintosh serial ports. One of these includes a large comment explaining how to set
baud rate etc., and another is a sample application which downloads text (eg from a
lap computer) to a Mac file.

RetrieveSources.st allows access to the full system sources, even if your Macintosh
does not have a hard disk. If you have browsed to a given method (decompiled), and
wish to see the full system source (as you would with a hard disk) choose retrieve (a
new option) from the code pane menu. You will be asked to insert one of the disks with
the divided source file on it, and then the full code will appear. This technique will fail if
you happen to choose one of the three methods that straddle breaks between the file
divisions.

DropChanges.st is for the fearless programmer whose .changes file has grown too
large (even after condensing), yet who still wants to continue making changes. One
could, of course, simply delete the changes file, but this will prevent the further
recording of changes. Instead, by executing Smalltalk dropChanges, the current
source code will be discarded (save it first, if you care), but'the change file will continue
to record further development.

page 13

Known Bugs

The Smalltalk-80 Programming System
for the Macintosh

If you collapse the Transcript, or have multiple views open on it (we haven't tracked
down the details), Transcript operations occasionally fail or get hung in a loop. In case
of such a failure, it should suffice to interrupt with Apple-period, then execute
Transcript clear in some other window.

The Smalltalk simulator, which is used for step and send in the debugger, is
incapable of single-stepping through process-switching operations such as
Processor yield. Try to be aware of this situation, as it will crash in a way that can be
cured only by rebooting.

The error message 'Error opening or reading image' is unclear. It can mean any of
several things:

You accidentally opened the Smalltalk interpreter instead of an image. This causes Smalltalk to
look for an image named 'Smalltalk-80.image', which causes an error if that image is not found.

There was insufficient memory available to load this image. This can be due to the presence of a
debugger or ram-resident operating system patches which reduce the space available to
applications. It could also happen if the image had been run on a larger machine in which it had
room to grow larger than the limits of the current machine.

Smalltalk was unable to locate the image due to naming conventions in an unusual file system.
For instance, this version of Smalltalk does not deal with nested file groups. Try putting all your
Smalltalk files at the top level of the file system.

There was an actual 110 error in opening or reading the image.

The message position:, sent to a MacFileStream, will not extend a file beyond its
current size. To grow a file, you must actually write data, as with nextPutAII:.

References
The four principal references currently available for the Smalltalk-80 system are:

BYTE Magazine, August 1981. This issue is a Smalltalk-80 special, and includes
articles on the language, graphics and other aspects of the system.

Smalltalk-BO, The Language and its Implementation by A. Goldberg and D.Robson,
Addison-Wesley 1983.

Smalltalk-BO, The Interactive Programming Environment by A. Goldberg,
Addison-Wesley 1984. Contains a summary of the language as well.

Smalltalk-BO, Bits of History, Words of Advice, edited by Glenn Krasner,
Addison-Wesley 1983. Specific to implementation techniques - not useful as a tutorial.

page 14

Appendix 1
Using the Volume Oriented File Package

The Volume Oriented File Package that is in the latest release of Smalltalk (June 18th
image and beyond) is slightly different than the previous file package that Smalltalk
used. Highlights are multiple volume support, source and changes file hunting, user
aliases, and user defaults.

The Basics
Disk and Diskette no longer exist. The most common operations on files can be
translated to the new system as follows:

Old File Package
Disk file: 'fool
Disk old File : 'fool
Disk newFile: 'fool
Disk filesMatching: '*.st'

New File Package
FileStream fileNamed: 'fool
FileStream oldFileNamed: 'fool
FileStream newFileNamed: 'fool
FileDirectory filesMatching: '*.st'

All file names are of the format: <volume prefix>:<name>. The volume prefix and
colon may be left off to access the default volume (see below for more on the default
volume). Valid volume prefixes are Internal, External, MacDefault, and the names
of whatever volumes are mounted. In addition, ? may be used as a volume prefix to
get a menu of all volume prefixes to choose from.

New volume prefixes may be aliased to existing volumes via the message alias:to:
sent to FileDirectory. For instance FileDirectory alias: 'Diskette' to: 'Internal'
will set up Diskette to be a valid volume prefix referring to the same volume as prefix
Internal does. Note that there is no difference between an alias and the original
volume prefix however, aliasing is not transitive (Le. if you alias a to b, then b to c, a is
now different from b and c). Volume prefixes may be removed with the message
unalias: sent to FileDirectory.

The volume prefixes Internal, External, and MacDefault, are initially set up to be
the internal diskette, the external diskette, and the Macintosh default volume (where
the Smalltalk application was started from) respectively. These volumes are known as
the fixed volumes and have some special properties. You of course may alias other
prefixes to these volumes, and may alias the names to other volu mes, however, the
properties of being fixed volumes stays with the volumes, not the prefixes.

Any volume may be made to be the Smalltalk default volume, which is used when no
volume prefix is specified. This can be done by sending default: to FileDirectory.
For instance FileDirectory default: 'External' sets the default to be the external
drive. The default is just like an alias, and so if you re-alias the volume prefix, the
default will not have changed. Do not confuse the Smalltalk default with the Macintosh
default volume (which MacDefault is initially a volume prefix for), they have no
connection to each other. However, one can make the Smalltalk default the same as
the Macintosh default with the expression: FileDirectory default: 'MacDefault'
which is how the system is initially set up. Finally, you can have no default by sending
the message noDefault to FileDirectory which cause the system to ask you to
choose a volume every time you do not include a volume prefix in a file name.

page 1-1

When the system starts up it aliases all mounted volumes using their names as volume
prefixes (so you can use the name of a volume directly). As you execute if new
volumes become known (via inserting a diskette for example) then they will be aliased
in the same way. To eject a disk, choose ejeci from the screen menu, and then select
the volume you want to eject from the pop up menu that appears. Ejecting now merely
places the volume off-line (it used to unmount it) and so files may be still open on an
ejected disk. Upon shutdown, all volumes are flushed and all but the fixed volumes
are forgotten. In the process, all files that were open on forgotten volumes are closed
and placed in a state such that further activity on them will fail. Files on fixed volumes
will be re-opened when the system comes up (if still referenced) but no check will be
made to see if it is really the same volume.

The Frills
Smalltalk will now hunt for the sources and changes files when it starts up. The name
of the changes file is taken to be the same as the image file with .image stripped off (if
it's there) and .changes tacked on. Note that the system forms the name at startup
and so you can rename your image from the Finder so long as you rename the
changes file too. Furthermore, you can now have multiple images on you disks. If you
double click on an image, then it will be opened by Smalltalk If you just double click
on Smalltalk then it will try to open an image named Smalltalk-80.image and
bomb if it isn't there.

The changes file and sources files have now been untied. Now you can have one
without the other. Hence, never set SourceFiles to nil if you want to run without
sources (occasionally useful), do SourceFiles ~ Array new: 2 instead.
Furthermore, unlike before, the system will try to find the sources and changes each
time you startup (before, once you ran without them, you had to manually reinstate
them).

The Guts
The following messages can be sent to class FileDirectory. They cover all of the old
functions that were performed by Disk and then some.

aliasesDo:

checkName:fixErrors:

convertName:to:

enumerate all the associations between
volume prefixes and actual volumes

check the first argument as a legal file
name if it is answer it, if isn't and the
second argument is true answer a
fixed-up version of the name, else error

convert the first argument to a volume
and a file name and then evaluates the
second argument with them as the two
values

page 1- 2

do:

filterWith:

fromUser

isLegalFileName:

enumerate all volumes, will duplicate
some, includes the default

like do: but replaces each volume with
the result of the block

puts up a menu and lets the user select
a volume prefix, answers the volume

answers true or false based on
whether or not its argument is a valid file
name

Much of the pre-existing generic file package was removed (classes File and
FilePage for starters) as it was actually quite Xerox specific. As a consequence,
adding a another file package (in addition to Macintosh files) may be quite difficult if it
is lower level than the Macintosh file model. However, since I don't see us using
another file system with our Smalltalk I don't think that this is a big worry (famous last
words ...)

Most of the standard Macintosh volume operations have been defined for instances of
MacVolume. In particular the messages eject, flush, mount, and un mount exist.
Furthermore close and open exist for compatibility with the abstract Smalltalk model;
they perform a flush and a getVolinfo respectively. Smalltalk tries to keep you from
wreaking havoc on the Macintosh file system, but is easy to get around. For instance
never unmount the Macintosh startup volume (go on, make my day ...).

page 1- 3

Appendix 2
Smalltalk ToolBox Interface Details

General Comments about Smalltalk Toolbox access:

Within class Macintosh in your standard Image there are several method
categories of interest. Category globals contains methods to access various
quickdraw globals. Category quickdraw calls contains the calls we thought should
be implemented using primitive 160 to make them a little faster. The category
quickdraw sample contains a sample program that does various things with
quickdraw. This is a good sample program for you to see how to use the Toolbox
using Smalltalk. To run it, execute Mac drawStuff. The memory inspect category
contains a method, dOResult, that allows you to see what the DO result was after a
Toolbox call that returns result information in DO. There are also methods in
memory inspect for looking at any particular memory location.

If you need to define some additional PascalRecords, look at the existing
definitions within class categoryToolbox-Support to see how to deal with things like
nested Pascal RECORDS.

There are 8 types of data currently being passed between SmallTalk and the
Toolbox. They are Integer, Longlnt, Boolean, Point, Rectangle, String, Pointer and
Handle. Each of these types is stored in Smalltalk format while using it within
Smalltalk code, then it is converted to Pascal format within a call to the Toolbox.
Pointers and Handles are stored within a Smalltalk class called PascalRecord.
The Pascal Record class was created specifically to deal with Pascal RECORDs
and other pieces of Toolbox data that are accessed by either a pointer or a handle.
More details on PascalRecords later. Within the Toolbox interpreter there are 16

low level routines to deal with conversion (both ways) of these 8 data types.
These routines are called from Primitives 160, 161 and 162 through groups of
intermediate level routines that set things up for the low level conversion routines to
handle.

Primitive 160 is used by defining a method within Smalltalk for each Toolbox
procedure you want to call. This method contains parameter information in its
literal frame. There are a few methods defined in this way in the quickdraw calls
category of class Macintosh in your image. If you haven't defined a Toolbox call
using primitive 160, then primitive 162 is called automatically through the
doesNotUnderstand method of class Macintosh. It looks up the name of the
method in a table of Toolbox calls where it then gets the correct parameter
information for the call. The lookup uses only the first 8 characters of the name and
ignores case. Once they obtain parameter information, both primitive 160 and
primitive 162 call a interpreter routine 'CaIlTraps' to do the actual data conversion
and perform the call. For Toolbox calls that you use very frequently, you may want
to use primitive 160 since it is slightly faster. Most Toolbox calls will work fine
already though using primitive 162 and that is what we recommend for probably
90% of the calls. Primitive 160 uses more space than primitive 162 so use it
sparingly.

page 2-1

There may be some errors in the table used by primitive 162. If you have problems
with any Toolbox call that uses primitive 162, implement the call yourself with
primitive 160 then please let us know about the problem! You also need to know
that currently Smalltalk can only access Toolbox calls that are made through traps.
This includes all of Quickdraw and most of the Toolbox calls. You may find a few
that won't work though. These will be available in a future release!

Primitive 161 (used to read from and store into the fields of
Pascal records)

A PascalRecord in Smalltalk has three fields:
handle <Largelnteger>
pointer <Largelnteger>
bits < ByteArray>.

In this memo, Pascal Record means one of these above Smalltalk objects but
Pascal RECORD means a Pascal format piece of memory used to store Pascal
format fields. This is usually associated with a Pascal RECORD TYPE definition.
There should be a subclass of Pascal Record defined in SmallTalk for each type of
Toolbox Pascal RECORD you need to access. For example: BitMap, GrafPort,
Region, etc. A PascalRecord should be in only one of these four states:

1. handle = Nil, pointer = Nil, bits = Nil. (no space allocated for this record)
2. pointer = a SmallPositivelnteger or LargePositivelnteger,

handle = Nil, bits = Nil. (data space for this record is in a fixed
location within a Toolbox heap)

3. handle = a Small Integer or LargePositivelnteger,
pointer = Nil, bits = Nil. (data space for this record is in a
relocatable location within a Toolbox heap)

4. bits = a Smalltalk ByteArray containing an even number of bytes,
pointer = Nil, handle = Nil. (data space for this record is in a
relocatable location within the Smalltalk heap)

From one of these states, the conversion routines produce the correct information
for Pascal as follows:

Conversion to a Pascal pointer:
if handle = nil then follow it and pass the pointer
if pointer = nil, then pass the pointer
if bits -= nil, pass the address of the bits within the ByteArray,

offset to skip ST's length and class fields
otherwise return a primitive error

Conversion to a Pascal handle:
if handle -= nil then pass it
if pointer -= nil, then create a handle on the stack and pass it
it bits -= nil, create a handle and pointer on the stack pointing the

the address of the bits within the ByteArray and pass it
otherwise return a primitive error

page 2-2

Here is an example of how we use PascalRecords and primitive 161. If we want
Smalltalk to be able to read and write the portRect field of grafports, we would
define the following two methods in class GrafPort: (GrafPort being a subclass of
Pascal Record)

portRect
"Pascal = rect := aPort.portRect;"
<primitive: 161 recordOffset: 16 type: 'R'>
iself primitive Failed

portRect: rect
"Pascal = aPort.portRect := rect;"
<primitive: 161 recordOffset: 16 type: 'R'>
i self primitive Failed

This tells primitive 161 that at offset 16 (bytes) within self (the Pascal RECORD
pointed to by the PascalRecord parameter on the Smalltalk stack) there is a
rectangle field. If there are two parameters (portRect: rect) the primitive knows it is
a write. It then converts the SmallTalk format rectangle on the top of the Smalltalk
stack into an 8 byte Pascal format rectangle and stores this at offset 16 within the
Pascal RECORD. If there is only one parameter, primitive 161 converts the
rectangle at offset 16 from a Pascal format rectangle into a Smalltalk format
rectangle which it passes back on the Smalltalk stack.

Here is a table of the 8 types of data that can be passed in the Type Descriptor
field to primitives 161 and 160. In the case of primitive 161, there will only be one
parameter described in the Type Descriptor field. As you will see below,
primitive 160 has one type for each parameter in a particular Toolbox call.

type code
I
L
B
P
R
S
D
H

Toolbox Type
Integer
Longlnt
Boolean
Point
Rectangle
String
Pointer
Handle

ST class (data formats are different)
Smalllnteger, Largelnteger up to 16 bits
Smalllnteger, Largelnteger up to 32 bits
Boolean
Point
Rectangle
String
Pascal Record (think Q for girect pointer)
PascalRecord

Primitive 160 (used to call Toolbox register or stack based
routines through the Toolbox Trap mechanism)

Here is some sample code to create a grafport, use it to frame a rectangle, and
release the port. Mac is a Smalltalk object of class Macintosh which implements
Macintosh Toolbox methods by calling primitive 160 with the correct Trap number
and Parameter types as arguments. The Smalltalk code:

I port old Port I
oldPort ~ Mac getPort.
port ~ GrafPort newM.

Mac open Port: port.
Mac setPort: port.

"newM for data on the Mac heap, newS for data on the
Smalltal~ heap"

page 2-3

Mac frameRect: (10@20 rect: 1 00@100).
Mac setPort: old Port.
Mac close Port: port.

You do not really need to understand how to set up calls to primitive 160 since
primitive 162 already has a table containing parameter information for all the
Toolbox traps. This documentation is only provided in case you want to speed up a
few of the calls you use over and over again within a loop. Here are some of the
methods in class Macintosh which get called in the above example:

getPort
"Pascal = PROCEDURE GetPort (VAR gp: GrafPtr);"
<primitive: 160 trapA: 16rC74 type: '--VD'>

"trap number" "no function, ignore receiver, VAR pointer"
i self primitive Failed

openPort: port
"Pascal = PROCEDURE OpenPort (gp: GrafPtr);"
<primitive: 160 trapA: 16rC6F type: '--0'>

"trap number" "no function, ignore receiver, pointer"
i self primitive Failed

frameRect: rect
"Pascal = PROCEDURE FrameRect (r: Rect);"
<primitive: 160 trapA: 16rCA 1 type: '--R'>

"trap number" "no function, ignore receiver, rectangle"
i self primitiveFailed

close Port: port
"Pascal = PROCEDURE ClosePort (gp: GrafPtr);"
<primitive: 160 trapA: 16rC7D type: '--0'>

"trap number" "no function, ignore receiver, pointer"
i self primitive Failed

Type Descriptor (Type) Details:

For primitive 160, the Type Descriptor parameter describes the same type
codes as listed in the table within the primitive 161 description above.

When a type code character represents a VAR parameter, precede it by the
character 'V'.

When a parameter is passed in a register to a Toolbox routine instead of on the
stack, the Type Descriptor string has to let primitive 160 know about this. The
Toolbox uses three registers (DO, A 1 and AO) to pass and return parameters. In the
Type Descriptor string, the register codes are:

00='0'
A1 = '1'
AO='2'

The register code character optionally follows the normal type code character.

page 2-4

Unlike primitive 161 which always expects a Type Descriptor string of length 1,
primitive 160 expects a Type Descriptor string of the following format:

<Type Descriptor> = <function result type><receiver type><parameter info>

<result type> =

<receiver type> =

<parameter info> =

More examples:

globalToLocal: pt

type code or '-' if not a function. The code character
can optionally be followed by a register code
if the function result is passed back from the Toolbox
in a register ..
type code of receiver if receiver is used as
a parameter or '-' if receiver is ignored.
a type code character for each parameter
other than the receiver. Each type code
character is preceded by a 'V' if that
parameter is a VAR parameter. Each
type code character can optionally be followed
by a register code if the parameter is
passed to the Toolbox in a register. Nothing
if there are no parameters.

"Pascal = PROCEDURE GlobalToLocal (VAR pt: Point);"
<primitive: 160 trapA: 16rC71 type: '--VP'>

"trap number" "no function, ignore receiver, VAR point"
i self primitiveFailed

sectRect: srcRectA srcRectB: srcRectB dstRect: dstRect
"Pascal = FUNCTION SectRect (srcRectA, srcRectB: Rect;

VAR dstRect: Rect): BOOLEAN;"
<primitive: 160 trapA: 16rCAA type: 'B-RRVR'>

"trap number" "Boolean function, ignore receiver, rect, rect, VAR rect"
i self primitiveFailed

newPtr
"Pascal = FUNCTION newPtr (logicaISize: Size): Ptr;"
<primitive: 160 trapA: 16r01 E type: 'D2-LO'>

"trap number" "pointer function result in AO, ignore receiver,
longint input param in DO"

i self primitive Failed

The conversion routines check the type of each argument passed on the Smalltalk
stack against the Type Descriptor information in the call to primitive 160 or 162.
A primitive failure is flagged if there is a type mismatch. The interpreter routine
CaliTraps then converts each value appropriately and calls the designated trap.

Consider the case of SetPt (VAR pt: Point; h, v: INTEGER) which could become:

setPt: pt h: h v: v
"Pascal = PROCEDURE SetPt (VAR pt: Point; h,v: INTEGER);"
<primitive: 160 trapA: 16rC80 type: '--VPII'>

"trap number" "no function, ignore receiver, VAR point, integer, integer"
i self primitive Failed

page 2-5

In this case point does not need to have valid field values on input. The Smalltalk
object passed in must be a Smalltalk point. It would be OK here though if this point
were created by the Smalltalk statement 'Point new'. This statement creates a
point whose fields are both NIL. When they get Var parameters with NIL fields, the
conversion routines pass zero as the input values to the Toolbox. The return
values from the Toolbox call are then copied into the fields of the point parameter.

The Toolbox routine setPt could optionally be encoded as:

"point" setx: x y: y
<primitive: 160 trapA: 16rC80 type: '-VPII'>

"trap number" "no function, receiver is VAR point, integer, integer"
i self primitive Failed

Here the receiver (hence the comment "point") is also used as the first parameter
so we save pushing a parameter on the stack.

Smallintegers and Booleans are not allowed as VAR parameters. For
Largelntegers and Strings as VAR parameters, the input object is converted into
the result object via a Become. For Points, Rectangles, and PascalRecords, the
new values for the appropriate pointer fields are substituted within the original
object.

When using data in this SmalitalkIToolbox environment, you must not pass the
Toolbox the address (pointer or handle) of any data stored in the Smalltalk heap if
the Toolbox is going to remember that address after it returns from that one call. It
is not possible for the location of a Smalltalk ByteArray object to change during the
time a single Toolbox call is running. It can change between calls, however; so
ByteArrays should only be used for data whose address is passed to the Toolbox
every time the Toolbox uses the data. This way the conversion routines will create
the correct address each time.

In both primitives, the 'primitive: <160 or 161 >' part is optional. For example,
primitive 160 can be called by

<trapA: 16rC71 type: '--VP'>
and primitive 161 can be called by

<recordOffset: 16 type: 'I'>.

page 2-6

Appendix 3
A Summary of Useful Expressions

from the Level 1 System Workspace

Changes
Smalltalk noChanges.

Resets the set of changes to be empty.
Form removeFromChanges.

Removes all changes in class Form from the changes set.
Smalltalk changes asSortedCollection

printlt to see a list of al/ changes in the changes set.
Smalltalk browseChangedMessages.

Opens a message browser on all methods in the changes set.
(FileStream fileNamed: 'Changes.st') fileOutChanges.

Writes a file of all changes in the changes set.
FileStream fileNamed: 'PenChanges.st') fileOutChangesFor: Pen.

Writes a file of all changes for class Pen in the changes set.
(FileStream oldFileNamed: ' Changes.st') fileln.

Reads in changes from the file 'Changes. sf'

Files
(FileStream fileNamed: 'Hello') edit.

Opens a file edit window on the file 'hello'.
FileDirectory filesMatching: '*.st'

Printlt to view file names. It is actually more convenient
to open a file list and type *.skReturn> in the top pane.

Inquiry
InputState browseAIIAccessesTo: 'deltaTime'.

Like 'inst var refs' in the browser.
Smalltalk browseAIICallsOn: #isEmpty.

Like 'senders' in the browser.
Smalltalk browseAIICallsOn: #showWhile: and: #read.

Browses methods which send both these messages.
Smalltalk browseAlllmplementorsOf: #includes:

Like 'implementors'in the browser.
Smalltalk browseAIICallsOn: (Smalltalk associationAt: #Mac).

Browse all references to a global variable
Smalltalk browseAIICallsOn: (Cursor classPool associationAt: #ReadCursor).

Browse all references to a class variable
Smalltalk browseAIICallsOn: (Undeclared associationAt: #Disk)

Browse all references to an undeclared variable
Smalltalk browseAIIMethodslnCategory: #examples

The name says it al/.
Smalltalk browseAIISelect: [:m I m isQuick].

(hackers) Browse all methods for which the block is true.
Smalltalk browse: Pen

Open a browser on the class Pen

page 3-1

Enumeration
Smalltalk printSpaceAnalysis

Creates a text file listing number of objects and words of space
used by the code of each class and by the instances of that class.

Smalltalk garbageCol/ect.
Force Smalltalk to do a full garbage collection.
Use before the following enumerations ...

FileStream instanceCount
Printlt to find out how many there are currently

StrikeFont alllnstances inspect.
Inspect an array of all instances of this class.

(Smalltalk collectPointersTo: StrikeFont somelnstance) inspect.
Opens an inspector on all objects which point to one of the fonts.

Undeclared Variables Dictionary
Undeclared keys

printlt to see names of any undeclared variables.
Undeclared inspect

Nicer way to view undeclared variables if you're in Level 1
or if you've filed in Dictionarylnspectors

Undeclared ~ Dictionary new.
Resets the dictionary of undeclared variables. Note this will
preclude your being able to find the methods in which they occur.

Undeclared associationsDo: [:assn I Smalltalk browseAIICallsOn: assn]
Browses all references to the first undeclared variable encountered.

Dependents Dictionary
(Object c1assPool at: #DependentsFields) keys

printlt to see what is in the global dependents dictionary
(Object classPool at: #DependentsFields) keysDo:

[:each I (each isKindOf: DisplayText) if True: [each release]]
. Releases certain objects from the dependents dictionary.

Housekeeping
Transcript clear.

Resets the transcript window.
Smalltalk allBehaviorsDo:

[:class I class removeSelector: #Dolt; removeSelector: #Doltln:].
Removes methods generated by dolt and print/to

Smalltalk removeKey: #GlobaIName.
Removes a symbol from the global dictionary. You should check first
that there are no outstanding references to it. .

Smalltalk declare: #GlobalName from: Undeclared.
Will make GlobalName be a new global variable. If it was formerly
in Undelcared, then all references to it will be forwarded to the
new global variable. This is how forward references are handled in file Ins.

page 3-2

Source Files
Source Files ~ Array

with: (FileStream oldFileNamed: Smalltalk sourcesName) readOnly
with: (FileStream oldFileNamed: Smalltalk changesName).
Establishes source and changes files.

SourceFiles do: [:x I X close].
Closes source and changes files.

Source Files ~ Array new: 2.
Causes Smalltalk to run with no source or changes files (although retrieve.st will still work).

Smalltalk condenseChanges
Copy all methods in the changes file to a new file, and then replace
the current changes file by the new one. In the process, multiple
copies of method definitions and other unnecessary text is removed.
This process may take a long time, and will require sufficient disk
space for both copies of the file during the process. You should make
backup copies of your image and changes before running this method.

Measurements
Smalltalk spaceLeft

printlt to see how much space is currently available.
Symbol instanceCount

printlt to see how many Symbols are in use
Symbol rehash.

Purge any Symbols which are no longer in use.
Time millisecondsToRun: [Pen example]

printlt to see how long it takes to execute the block.
MessageTally spyOn: [Pen example].

(Level 1 only) Presents an time-use profile for execution of the block.

Crash recovery
Smalltalk recover: 5000.

Opens a window on the last 5000 characters added to the changes file
ScheduledControllers removeAndUnschedule: <someController>

Execute this from a debugger if a window gets scheduled which is
incapable of responding properly to all window protocol.
You'll have to poke around until you find the top-level controller,
and then type an expression that refers to it in place of <some Controller>

page 3-3

