
Making the Transition to
SR10 Operating System Releases

apollo

Making the Transition to
SRIO Operating System

Releases
Order No. 011435-A02

© Copyright Hewlett-Packanl Company 1988, 1989 All Rights Reserved.
Reproduction, adaptation, or translation without prior written permission is
prohibited, except as allowed under the copyright laws. Printed in USA.

First Printing: July 1988

Latest Printing: October 1989

UNIX is a registered trademark of AT&T in the USA and other countries.

WHILE THE INFORMATION IN THIS PUBLICATION IS BEUEVED TO BE
ACCURATE, HEWLE'IT-PACKARD MAKES NO WARRANTY OF ANY
KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packanl shall not be liable
for errors contained herein or for incidental or consequential damages in
connection with the furnishing, performance of use of this material. Information in
this publication is subject to change without notice.

RESTRICTED RIGHTS LEGEND. Use, duplication or disclosure by the
Government is subject to restrictions as set forth in subdivision (b) (3) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013.
Hewlett-Packanl Company, 3000 Hanover Street, Palo Alto, CA 94304

109876543 2 1

Preface

Making the Transition to SR10 Operating System Releases details the
changes made to the operating system at Software Release 10 (SRI0). It
also discusses converting an existing network of Apollo machines to
SRI0 and the implications of managing a mixed network of SRI0 and
pre-SRIO software release machines.

This document is intended mainly for programmers and system adminis
trators who already understand the Domain/OS operating system,
although skilled users may find information of value here as well.

How This Document is Organized

We've organized this manual as follows:

Chapter 1

Chapter 2

Gives a brief high-level look at changes to the
operating system at SRI0.

Discusses these changes in more detail, espe
cially as they affect the general operating sys
tem environment.

Preface iii

Chapter 3 Describes the implications of SR10 changes in
the context of system administration. It also
describes issues and procedures for managing a
mixed network.

Chapter 4 Discusses the SR10 changes as they affect the
programming environment.

Appendix A Provides an overview of the SRIO protection
model and how it interacts with UNIX protec
tions and pre-SR10 Domain protection. .

An Index follows Appendix A.

Related Manuals

the Domain Documentation Master Index (011242) for a complete list of
related documents. For detailed information on system administration,
see the following environment-specific manuals:

Managing Aegis System Software (010852)

Managing BSD System Software (010853)

Managing SysV System Software (010851)

Managing Domain/OS and Domain Routing in an Internet (005694)

Making the Transition to SRIO TCPIIP (011717)

Printing in the Aegis Environment (011774)

Managing NCS Software (011895)

Using Your Aegis Environment (011021)

Using Your BSD Environment (011020)

Using YourSysV Environment (011022)

For information on installing SR10 software, see Installing Software with
Apollo's Release and Installation Tools (008860).

iv Preface

You can order Apollo documentation by calling 1-800-225-5290. If you
are calling from outside the U.S., dial (508) 256-6600 and ask for Apollo
Direct Channel.

Problems, Questions, and Suggestions

We appreciate comments from the people who use our system. To make
it easy for you to communicate with us, we provide the Apollo Product
Reporting (APR) system for comments related to hardware, software, and
documentation. By using this formal channel, you make it easy for us to
respond to your comments.

You can get more information about how to submit an APR by consulting
the appropriate Command Reference manual for your environment
(Aegis, BSD, or SysV). Refer to the mkapr (make apollo product report)
shell command description. You can view the same description online by
typing:

$ man mkapr (in the SysVenvironment)

% man mkapr (in the BSD environment)

$ help mkapr (in the Aegis environment)

Alternatively, you may use the Reader's Response Form at the back of
this manual to submit comments about the manual.

Documentation Conventions

This manual uses the following symbolic conventions:

commands and keywords Bold words or characters in formats and
command descriptions represent com
mands or keywords that you must use
literally. Bold words in text indicate the
first use of a new term. File and path
names are also in bold.

Preface v

user-supplied values

output

CI'RL/

----88----

vi Preface

Italic words or characters in formats and
command descriptions represent values
that you must supply.

Information that the system
displays appears in this
typeface. Typewriter font
is also used for example
program text.

The notation CI'RL/ followed by the name
of a key indicates a control character
sequence. Hold down <CI'RL> while you
press the key.

Vertical ellipsis points mean that irrelevant
parts of a figure or example have been
omitted.

This symbol indicates the end of a chapter.

Contents

Chapter 1 Overview of Changes
Compatibility with Previous Releases ... 1-2

Compatibility with SR9.7 ... 1-2
Compatibility with All Pre-SRI0 Releases 1-3
Compatibility with Layered Products 1-4

Overview of SRI0 Features .. 1-4
Prerequisites and Cautions ...•....• 1-5
FJle System Olanges .. 1-12
Protection Model and An. Changes 1-13
Registry Changes ... 1-14
Changes to GPIO Support .. 1-14
The serch and scrattr Commands ... 1-17
The fppmask Command ... 1-17
The Programming Environment .. 1-17

New Concepts for Aegis Users ... 1-17
UNIX Identifiers .. 1-18
The fetc/passwd, fetc/group, and feteforg Files 1-18
Project Lists .. 1-18

Contents vii

Chapter 2 Changes to the Operating System at
SRIO

The Node Environment ... 2-1
Three User Environments .. 2-2
Guaranteed Environment ... 2-2
Differences in Project Lists 2-3
Shell Configuration Files 2-4
Key Definitions .. 2-4
Local/etc and 'node_data/etc Directories 2-7
The /usr/apollo Directory ... 2-8
The Print Environment ... 2-9
SIO Lines ... 2-9
Setting inprocess 2-10
The /com/lopstr Command ... 2-10
Tab Settings 2-10
Wildcard Expansion ... 2-10

System Initialization and Startup; Login 2-11
The Log-In Sequence ... 2-12
The /etc/environ File .. 2-12
The /etc/rc File ... 2-13
The /etc/rc. user File 2-13
The /etc/rc.local File .. 2-13
Establishing a Default SYSTYPE .. 2-14
The Mail System .. 2-14

The File System 2-15
Case Sensitivity .. 2-15
Longer Names .. 2-18
Links ... 2-18
New Directory Entries 2-19

The Protection Model: ACLs and Modes 2-19
Protected Subsystems ... 2-20
SID Structure ... 2-20
Access Rights ... 2-20
Protection Inheritance .. 2-22
The Local-Access-Only Attribute .. 2-23
Protection from Remote root Processes: lprotect 2-24
Controlling Access via spm: The spm30ntrol File 2-24
Obsolete Commands .. 2-25

The Registry .. 2-25
Registry Structure .. 2-26
Editing the Registry Database .. 2-26

viii Contents

The /etc/passwd, /etc/group, and /etc/org Files 2-27
The Local Registty ... 2-27
Decentralizing Registty Administtation 2-27
Required Accounts and Reserved IDs 2-28
Mail System Field•.........•..............•......................•... 2-29
Obsolete Commands .. 2-30

Chapter 3 Implications for System
Administrators

Installing SRIO on the First Node from Media 3-2
Installing SRIO on Other Nodes ... 3-2

Prerequisites for DSEE UselS .. 3-2
Back Up the Files ... 3-2
Using invol: Once per Disk .. 3-5
Install Software•.......•.........•............•....................... 3-5
Restore•....•.....•..........•.......•....•..........•......•..•................. 3-5
Other Considerations ... 3-6

Setting Up a Registty .. 3-6
The cvtrgy Tool .. 3-8
Converting Registty Data to the SRIO Fonnat 3-9
Converting from SR9.7 to SRIO .. 3-13
Converting from SRI0 to SR9.7 .. 3-14
Converting /etc/passwd and /etc/group Files•...... 3-15
Converting Passwords ..•. 3-15
Registty Site Node Considerations .. 3-16
Enabling Registty Services .. 3-17
Starting the llbd ..•..•.................•.. 3-18
Starting and Administering the glbd .. 3-19
Starting the rgyd Process ... 3-19

Creating a Replica Registty .. 3-20
The Local Registty•.. 3-20
Merging Registries•...............•... 3-20
Registty in a Single-Node Environment ... 3-21
Cataloging Nodes .. 3-21
Converting Names: the cvtname Tool... 3-21
Operating Mixed Networlcs ... 3-22

New VelSions of SR9.7 Programs ... 3-22
Registty•.....•... 3-23
Protection Incompatibilities in Mixed Networlcs 3-23
Running setuid and setgid Programs .. 3-25

Contents ix

Implications for Backups ... 3-25
File System Incompatibilities ... 3-29
Layered Product Incompatibilities ... 3-31
Domain/lX: SRI0 Incompatibilities .. 3-32

Chapter 4 Implications for Programmers
General 4-1

Compatibility . '" 4-1
SRI0 Library Model .. 4-2
The Bind Utility ... 4-3
The Ibr Utility ... 4-3
The tb -args Command ... 4-4
The /bin/ld Command .. 4-4
Libraries 4-4
Insert Files .. 4-5
Implications of Obsolete System Types 4-6
The ios_$ Interface .. 4-6
The pad_$ Interface ... 4-6
The mkdir(2) System Call.. 4-7
The open(2) System Call ... 4-7
The fst Command ... 4-7

Case Sensitivity............... 4-7
PathnaDles 4-8
Calls that Return NaDles .. 4-8
Symbol NaDles ... 4-9
Transition Aids 4-9
Summary of Incompatibilities .. 4-13

Invoking PrograDls .. 4-14
Clean-Up Handlers ... 4-14
Number ofStreaDls (File Descriptors) Open 4-14
Relocatable and Absolute Code ... 4-16
PrograDl Invocation Semantics 4-16
Inheritance Rules 4-17
PrograDls Affected ... 4-18
Transition Aids 4-18

Object Module Format 4-18
Transition Aids 4-19
Mixed Networks and COFF Modules 4-19

Long Path and Component NaDles .. 4-20
Summary of Cbanges ... 4-20

x Contents

New Data Types ... 4-20
New Interfaces ... 4-21
Transition Aids ... 4-21
Summary ofIncOIDpatibilities•... 4-22

ACLs•...........•... 4-23
Summary of Changes ... 4-23
Summary of IncOIDpatibilities .. 4-24

RecOIDmendations for Data Alignment ... 4-25
Natural Alignment ... 4-25
Padding Structured Data .. 4-26
Summary of Recommendations ... 4-28

Dot and Dot-Dot .. 4-28
Summary of Changes ... 4-28
Changed Interfaces .. 4-29
New Interfaces ... 4-29
Summary of Incompatibilities .. 4-30

Changes to Data Structures ... 4-30
SYSTYPEs .. 4-31

Type Managers and SYSTYPEs .. 4-31
Incompatibilities between System V Release 2 and 3 4-31
Incompatibilities between 4.2BSD and 4.3BSD 4-32
Some New Features of the Domain C Compiler 4-32

Function Prototypes ... 4-32
Informational Messages ... 4-32
Run-Time Version Specification .. 4-32
The Section Specifier .. 4-33
Reference Variables ... 4-33
Built-In Function .. 4-33

Disk Storage: mallocO and rws_$alloc ... 4-33
Disk Storage and Static Arrays ... 4-34
Some New Features of the Pascal Compiler 4-34

Preprocessor Variable .. 4-34
Syntax for Specifying Size and Alignment 4-34
Routine Signatures ... 4-34
Signature Comparison Standards ... 4-35

Some New Features of the FORTRAN Compiler 4-35
Data Type COMPLEX*16 ... 4-35
I/O to Streams .. 4-35
INa..UOE Syntax of UNIX f17 Compiler 4-36
Compiler Options ... 4-36
Uppercase Option: -u ... 4-36
Free Fonnat Option: -ff .. 4-37
Tabs .. 4-37

Contents xi

UnitO .. 4-37
Flexnames .. 4-37
Support for il7 Commands and Options 4-37

New Debugger .. 4-38
Compatibility with Domain/Debug (fcom/debug) 4-38

Precautions for Mixed Networks .. 4-38
Links ... 4-39
Command Search Rules (PATH) ... 4-39
Type Managers ... 4-39
The C Compiler .. 4-39

SRlO and the Domain Software Engineering Environment 4-39
Colons in Element Names .. 4-40
Bound Configuration Threads (BCTs) 4-41
Copying DSEE Objects with cp and cpt 4-41
Case Sensitivity and DSEE .. 4-42
Running in a Mixed Environment .. 4-42

Appendix A Protection and ACLs
Overall Network Protection Model... A-I
The UNIX Protection Model ... A-2
SRIO Extensions to the UNIX Model ... A-3

Extended Access Rights ... A-3
Extended Organizational Divisions ... A-3
Extended Subject Categories ... A-4
Benefits of Extensions .. A-4
Protection Inheritance Enhancements A-4

Interactions of UNIX Protection and ACLs A-5
Extended Entry Rights Mask ... A-5
Apollo's Extended UNIX Commands A-7

ACL Search Order .. A-8
Changes in Protections Between SR9.7 and SRlO A-9

Identifiers A-9
Required Entries and Ownership ... A-lO
Inheritance Mechanism .. A-II
Rights ... A-12

Tools for Manipulating Protections on Objects A-13
Additional New Protection Capabilities .. A-14

Local Access Only (LAO) ... A-14
The lprotect Command .. A-14
Node Owners ... A-15

xii Contents

Chapter 1

Overview of Changes

Software Release 10 (SRI 0) of the Domain operating system,
Domain/OS, provides major benefits to Apollo's customers in the fonn of
an extended Aegis environment and enhanced support in the Domain ker
nel for UNIX functionality and better perfonnance. The Domain/IX pro
duct is obsolete, and the system software now comprises one operating
system and three environments.

The three SRIO operating environments can run independently of each
other or concurrently. The Aegis environment provides all the functional
ity of the Aegis operating system, including the SRIO extensions. The
BSD and SysV environments provide users with enhanced Berkeley
Software Distribution 4.3 and AT&T System V Release 3 UNIX environ
ments, respectively. SysV is compatible with the System V Release 3
Interface Definition (SVID) for Base OS, Base libraries, and library
Extensions.

It is important to note that each of these environments runs without rely
ing on the presence of any other. Neither of the UNIX environments, for
example, requires a Icom directory to run properly.

SRIO requires more effort to install than previous releases. Although we
expect that our customers will eventually upgrade all their nodes to SRIO,
we realize that not all sites will be able to upgrade to SRIO all at once.
Therefore, we provide the tools and information you need to operate a
mixed network of pre-SRI 0 and SRIO machines effectively.

This document has two functions. First, it discusses changes in the

Overview ojChanges 1-1

Domain system at SRIO, including changes in the programming environ
ment, as well as the implications of those changes. We expect that this
infonnation will be of interest to many system users, although particularly
to programmers and system administrators. The book is also a source of
infonnation about managing the conversion of an existing network to
SRIO and about operating a mixed network. These two subjects will
mainly interest system administrators.

Making the Transition to SRlO Operating System Releases is organized in
four parts: an overview of the changes made in SRIO, a general discus
sion of changes to the operating system that affect all users, and two sec
tions discussing the implications of these changes for system administra
tors and programmers. In all cases, when we speak of SR9.x nodes, we
are referring to nodes running an operating system release of SR9.0 or
higher, including SR9.7, but not running SRIO. We specify the release
(for example, SR9.7) where appropriate.

In many sections, we specify other manuals you can use to obtain more
infonnation on a subject. If no specific manuals are recommended, check
the Managing System Software books for the three environments.

Compatibility with Previous Releases

SRIO has a high degree of backward compatibility. Most pre-SRIO pro
grams will run on SRIO system software level machines, and Aegis com
mands and interfaces will operate as before, with few exceptions. In fact,
Apollo customers with no need to operate UNIX environments will
operate substantially as they have in the past, except for those areas of
Aegis where we've provided extended functionality.

We've standardized our BSD and SysV commands and interfaces to make
it far simpler to port UNIX applications to Domain/OS systems.

Compatibility with SR9.7

The SR9.7 version of the operating system is the primary compatibility
release for SRIO. In a mixed network, we strongly urge that you upgrade
as many nodes to SR9.7 as possible, before you install SRIO. We also
urge you to port existing applications to SR9.7 before you port them to
SRIO. Of the pre-SRIO releases, only an SR9.7 node can copy, read, or
delete files on an SRIO node.

1-2 Overview of Changes

The Isr9.' _compatibility Directory

Several compatibility issues between SR9.7 and SRlO require that we
provide new SR9.7 programs or replace existing ones in order for SR9.7
nodes to operate correctly in mixed networks. SRIO includes a directory
named Isr9.'_compatibility/sr9.'_executables that contains these pro
grams. All SRIO nodes, depending on the environments installed, will
contain some subset of the contents of this directory.

This directory includes a README file, an SR9.7 version of Honey
DanBer uucp to allow uucp to operate correctly in mixed networks, a
new version of the crpasswd command for SR9.7 Domain/IX, the registry
conversion tool (cvtrgy), improved versions of some other Aegis com
mands, new libraries that correct bugs and provide mixed network sup
port, and new Network Computing System (NCS) libraries and
commands.

Programs in this directory must execute on SR9.7 nodes. Each site should
copy new versions of as many of these SR9.7 programs as applicable to as
many SR9.7 nodes in the network as need them.

Another directory named Isr9.'_compatibility/compat_with_sr9 con
tains its own README, bsd4.2 and sys5 programming tools and
libraries, as well as a version of IcomlIbr that handles objects created
between SR9.S and SR9.7. The directory also contains a library named
Iswtulib. Some routines in pre-SRIO versions of the swtlib library have
been removed from the SRIO version of swtlib because the operating sys
tem does not use them. The swtulib library contains these routines; if you
need them, you can use inlib to bind in the swtulib routines.

Compatibility with All Pre·SRIO Releases

From an SRIO node, you can copy, read, and delete files to or from nodes
running any previous software release. The only potential loss of infor
mation here is in the transformation between SRIO-style protections and
pre-SRIO protections, although all changes in protection result in more
restrictive access rather than less. See Chapters 2 and 3 for full informa
tion about SRIO protection. From pre-SR9.7 nodes, you cannot copy files
to or from an SRIO node, although you can execute some network com
mands and non-file operations like bldt and pst.

The default object file format at SRIO is an extended version of the
AT&T System V Common Object File Format (COFF). SR9.7 nodes
cannot execute COFF modules, but SRIO does support the pre-SRIO obj

Overview o/Changes 1-3

fonnat (Apollo object file fonnat). You can execute obj modules on both
SRIO and pre-SRIO nodes.

At SRIO, it is not possible to compile a module targeted to run on pre
SR9.5 systems (that is, you can't produce SR9.2 object modules on
SRIO). You can do this, however, for systems with software releases
between SR9.5 and SR9.7, if you use the appropriate compilers.

All pre-SRIO disk volumes (floppy and removable hard disks) can be
mounted on SRIO systems. However, you cannot mount SRIO-fonnat
disk volumes on any pre-SRIO system, including SR9.7. The SRIO ver
sion of the invol utility includes an option to generate pre-SRIO fonnat
volumes. This allows you, for example, to fonnat floppy disks on an
SRIO node and mount them on pre-SRIO systems.

You cannot use an SR9.x node as a source node for Authorized Areas for
SRIO installations.

Compatibility with Layered Products

Correct installation of some layered products shipped before SRIO may
require that a Icom directory already exist. At SRIO, the Icom directory
is not created automatically when only a BSD or SysV environment is
installed. You may have to create a Icom directory manually to allow ins
tallation of these layered products. The products affected by this are
listed in the Release Document for SRIO.

Overview of SRIO Features

This section provides an overview of the features of SRIO. For detailed
infonnation about many of these subjects, see the appropriate sections in
later chapters. Where a feature has no particular effect on compatibility
between pre-SRIO and SRIO systems, it is not discussed further here.

We've separated the changes at SRIO into four categories, as follows.
Changes to the programming environment are treated separately, in
Chapter 4.

1-4 Overview o/Changes

• The node environment
• The file system
• The protection model and ACLs
• The registry

Prerequisites and Cautions

Although only nodes ronning SR9.7 or higher can communicate with a
node ronning SRIO system software, any SR9.x node can upgrade to the
SRIO version. For a node to ron SRIO successfully, it must have at least 2
MB of memory; we suggest a memoIy size of 3 MB to 4 MB for optimal
perfonnance of many applications.

SRIO will not ron on saul machines; that is, on nodes with model types
DNlOO, DN400, DN420, or DN600.

Changes to disk structures at SRIO require that you refonnat a node's disk
with the SRIO version of the invol utility before you install SRIO. There
fore, you will have to back up user files on each disk, invol the disk, then
restore the files.

When you're planning the conversion process for an internet, remember
that nodes cannot boot diskless over the connection between two net
works. Therefore, you should probably plan on installing SRIO on at least
one node in each network in an internet.

If disk space is a consideration on your network, you can install certain
subsets of SRIO environments. See Installing Software with Apollo's
Release and Installation Tools for details.

The os_helper Process

At SRIO, certain changes to the Naming Server Helper (Ds_helper) pro
cess require the system administrator to manipulate some of the files on
pre-SRIO os_helper site nodes before installing the SRIO system
software on those nodes. You must perfonn the following tasks:

1. If you currently run the os_helper process on a diskless node,
use the edns command to delete these diskless node sites from
your naming server before you install SRIO on the diskless
node's partner. The os_helper cannot ron on diskless nodes at
SRIO.

Overview of Changes 1-5

2. Save your os_helper databases, either by copying them to
another node or by using wbak to copy them to media, before
you install SRIO on an os_helper site. Once you've installed
SRIO, you'll restore them to a new location before restarting the
ns _helper process. For complete details on how to accomplish
this, see the sections on installation in Chapter 3.

SRI0 and Domain Internets

After you install SRlO on Domain internet router nodes, you must reas
sign netwode numbers to the router's principal and alternate networlcs.
Refer to Managing Domain/OS and Domain Routing in an Internet for
procedures that describe how to assign network numbers.

System Initialization

Initialize the first SRIO node in a network from removable media. Once
you've done this and installed the SRIO software, the node is a source for
installations across the netwode. We suggest you install SRIO across the
netwode from the Authorized Area the first install creates.

Because of the changes to the protection model, you cannot use a node
running pre-SR I 0 system software as a source area for installations.

Node and User Environment Changes

We've made significant changes to the node initialization and user log-in
processes. When the system software is first installed on a netwode, the
system administrator decides which environments will be available for
subsequent installations. The default environment (BSD, SysV, or Aegis)
for a node is selected at node software installation time, from the choices
made available by the system administrator.

Each node, disked or diskless and regardless of environment(s) installed,
has a local/etc directory. Some entries in this directory are links to the
node's 'node_data/etc directory. Every node also has the following
directories:

1-6 Overview o/Changes

lusr
lusr/apoDolbin
'node_data/system _logs
'node _ data/systmp

Initialization and Login

The node initialization sequence has been changed to provide greater
UNIX compatibility. Instead of the Display Manager (OM), the init pro
cess runs as Process 1. The init process reads the file letclrc (which is a
link to 'node data/etc/rc), invokes the processes specified there, reads
the letclttys file, and invokes letcldm or spm (which initializes the
serial lines and starts the OM). Once tbC OM is started, the boot startup
files in 'node_data execute as usual. See Managing System Software for
details.

We've also made changes to the log-in sequence and the way sheDs pro
cess startup files like .cshrc.

The lusr/apoDolbin Directory

Some commands and files which did not originate with the UNIX system,
but are necessary to operate in a distributed environment, are now in a
new directory named lusr/apollolbin. (Others that have to do with sys
tem administration have been moved to the letc directory.) The
lusr/apoDolbin directory includes some Icom commands rewritten to
have both UNIX semantics and additional functionality.

It also contains new commands that must be available in all three environ
ments and some commands that have been moved to ;usr/apollo/bin from
Icom. In the latter case, links in Icom point to lusr/apoDo/bin so that
sheD scripts continue to work correctly. These links in Icom may disap
pear at SRI1. The lusr/apoDolbin directory is now part of the default
command search rules in all shells.

Print Environment

Changes to the print environment at SRIO include enhancements to the
prf command to provide queue and job control, a new interface for
adding drivers to prsvr, and a print manager that allocates and coordi
nates print resources in a network. SRIO also supports the UNIX line
printing subsystems, lp and lpr.

Overview of Changes 1-7

Process Server Creation

For situations where the DM is not available (for example, if the X Win
dow System is the default windowing system), we provide the letc/server
command, which is analogous to the DM cps command. The letc/server
command allows you to run servers on a node regardless of whether any
one is logged in.

Because we expect that most Apollo sites currently use the Display
Manager, we use cps in examples of process creation in this document.
For examples of using letc/server to start processes, see the Managing
System Software books and online help pages.

SIOLines

We pro'fide tty support (getty and init) for remote login over SIO lines, as
well as continued support for the siologin and siomonit functions.

Handling Devices and Mounting via /dev

Both SRIO UNIX environments support handling devices in the Idev
directory and building special files with the mknod command.

Process Accounting

We provide UNIX process accounting on a per-node basis with letc/sa
and letc/accton. See the online manual pages for details.

Login Monitoring

We've added a file letc/login_log.conf, which is a link to the file
'node_datalIogin_log.conf. You can use this file to record certain login
related events on a node. (Logins include access via telnet and r1ogin.)
This file allows you to specify that attempts to log in be recorded. You
can record only successful attempts, only unsuccessful attempts, or both
successful and unsuccessful attempts. The types of logins that you can
record are as follows:

1-8 Overview of Changes

• Logins to the node's Display Manager
• Logins to a window on the node
• Logins to the node via the Server Process Manager (spm)
• Logins to the node via siologin

For more information on how to enable and manage login monitoring, see
Managing System Software for your particular environment.

Archiving Typed Files and Changes to rbak and wbak

We've made changes to the rbak and wbak commands to make them
easier to use in a mixed pre-SRIO and SRIO network and to support SRIO
file systems. Additional information on rbak and wbak is in Chapter 3 of
this document.

We've also added support to tar and cpio for archiving typed files. For
details, see the manual pages for these commands.

KornSheU

We provide and support the Kom shell in both BSD and SysV.

Fonts

At SRIO, the keyboard allows 8-bit character input. The system software
continues to convert and display fonts in the old 7-bit format. We con
verted most fonts to 8-bit format and provide a tool, Isys/dm/cvtJont,
that allows you to convert permanently any 7 -bit font into the new 8-bit
font format. This tool can also combine dual font files that supported 8-
bit fonts in previous releases into a single SRIO 8-bit file.

We also provide a tool, Isys/dmltrJont, that allows you to rearrange the
order of the character glyphs in the font table. See online manual pages
for further information.

Overview o/Changes 1-9

Other features of the new font support include the following:

• Maximum 256 possible characters in an 8-bit font
• Mono and proportionally spaced fonts
• Bounding box coordinates around character
• Underlining specification

We include support for the ISO Latin-l character set (ISO 8859/1).
We've also included utilities to convert the overloaded 7-bit national fonts
to the ISO 8-bit format. These utilities reside in the lusr/apoUolbin direc
tory. They are listed below. See online manual pages for details on usage.

french to iso
german_to _ iso
nor.dan _ to _ iso

swedish to iso
swiss to- iso
uk to'iso

Converts overloaded French to ISO format.
Converts overloaded German to ISO format.
Converts overloaded Norwegian
and Danish to ISO format.
Converts overloaded Swedish to ISO format.
Converts overloaded Swiss to ISO format.
Converts overloaded UK to ISO format.

Pre-SRIO nodes do not preserve the value of the top bit of 8-bit charac
ters. For example, if you copy files with SRIO-format 8-bit character
names from an SRIO node to a pre-SRIO node and back, the names will
lose the data in the eighth bit.

DPSSlMail to UNIX Mail and uucp; UNIX Mail

SRIO provides a gateway from DPSS/Mail (a layered product) to UNIX
mail and to uucp. A field associated with person entries in the registry
allows users to specify a mail address. A new command (edsd) allows
users to edit their entries in a directory of subscribers. The SRIO BSD and
SysVenvironments support 4.3BSD mail and AT&T System V Release 3
mail, respectively. Both forms of mail use the sendmail utility as a base.

UNIX Text Processing

UNIX text processing tools in Domain/IX sys5 have been removed from
the base operating system. Improved versions are available as part of
DOCUMENTER'S WORKBENCH, a layered product which is available
for both BSD and SysV.

1-10 Overview o/Changes

2DGMR

The 20 Graphics Metafile Resource (20 GMR) is a collection of routines
that provides the ability to manipulate files of 20 picture data. SRIO does
not include 20 GMR with the base operating system. It is available as a
layered product. This layered 20 GMR release (Release 2.1) is not com
patible with Release 1.0.

Installation Tools

At SRlO, we've provided new software installation tools that allow sys
tem administrators to tailor software installations to individual environ
ments much more easily. See Installing Software with Apollo's Release
and Installation Tools for complete details.

Integrated TCP!IP

The TCP/IP software is now a part of the base operating system. One ver
sion operates in all environments.

For complete information about user and administrative concerns, see the
document Making the Transition to SRlO TCPIIP.

HoneyDanBer uucp

A single version of uucp, known as HoneyDanBer, operates in both
UNIX environments. HoneyOanBer uucp is faster and more robust than
previous implementations.

Since pre-SRIO Oomain/lX systems use different uucp software, be
aware of certain incompatibilities if you are maintaining a mixed network
of SRIO systems and pre-SRIO Oomain/IX systems. See Chapter 3 for
details.

SysV STREAMS

STREAMS is the Apollo implementation of AT&T STREAMS, part of
the Network Extensions to System V Release 3. It provides a framework
for developing communication services. STREAMS is available as part
ofSysV.

Overview o/Changes 1-11

The Transport Interface (TI) provides a protocol-independent interface to
the transport layer of communication services developed with STREAMS.
TI is based on the transport layer services defined in the OSI Transport
Service Specification.

See the Managing System Software books for a list of STREAMS docu
mentation available from Apollo.

File System Changes

The operating system contains both a new file system and a new, more
robust directory structure. The kernel and libraries are completely case
sensitive at SRIO. Component names in a patbname can be up to 255
characters long; patbnames can be up to 1023 characters long. The
number of possible entries in a directory is practically infinite.

These features supply faster file access, correct behavior for UNIX pro
grams, and support for larger directories and longer names.

At SR I 0, instead of supporting parallel types of links, we support a single
type. All UNIX commands and system calls that previously manipulated
symbolic links now perfonn their equivalent operations on directory sym
bolic links.

All directories at SRIO contain the following entries:

(dot, the current directory)
.. (dot-dot, parent of the current directory)

In Aegis, you'll only see dot and dot-dot if you use the -h option to the Id
command. In UNIX environments, use the ·a option to Is to see dot and
dot-dot.

The default file type at SRIO is type unstruct. These files have no header
or streams infonnation in them. If you have programs that expect this
type of infonnation, change them to worlc correctly at SRIO. Pre-SR9.7
nodes do not understand this file type. The default file type on SR9.7
nodes is uasc.

1-12 Overview o/Changes

Protection Model and ACL Changes

Protection of file system objects is based on the Access Control Ust
(Aa.). The SRIO protection model integrates Aa.s and the UNIX pro
tections (modes) more tightly than at previous releases. The Aa. model
implements the UNIX protection style faithfully and provides extensions,
as well. Protection in the two Domain/OS UNIX environments works
exactly as you would expect it to work: in a UNIX environment, down to
the differences in default protection inheritance between 4.3BSD and Sys
tem V Release 3. A complete description of the SRIO protection model in
the context of the UNIX system and pre-SRIO Domain software is in
Appendix A of this book.

This means that if you are a UNIX system user already, you don't need to
use ACLs unless you want the extra functionality they supply. BSD and
SysV users can use the following commands to manipulate ACLs: Isad,
cpacl, dbacl, and chad. See the online manual pages for information.

SRIO Aa.s have a simplified set of access rights (pwrxk), including a
new right k (keep) that allows you to prevent an object from being deleted
or renamed, regardless of the permissions associated with the directory in
which it resides. Each object bas a set of required permissions, and you
can add more layers of protection with extended Aa.s.

Pre-encoded, or canned, Aa.s are no longer required and are not sup
ported. The expanded Aa. inheritance mechanism allows you to specify
UNIX pennissions inheritance via the initial file and directory AQ.s.
We've altered the edad command to let you add an attribute to an object
to specify that the object can only be locked and mapped from the home
node.

A new command, Iproted, allows a node user to protect the node from
remote access by root processes. (Root is similar, though not equivalent,
to locksmith.)

SRIO also includes a command, import'passwd, which allows you to
import passwd files from other systems and merge the infonnation with
an existing passwd file. For further information, see the online manual
page for this command and the Managing System Software books.

You'll also find complete information about protections at SRIO in the
book Managing System Software for your site's environment(s).

Overview o/Changes 1-13

Registry Changes

The SRIO registry is based on the Apollo Network Computing System
(NCS); it comprises a server mechanism and a database of name and
account information. The registry and its servers can be replicated, which
is useful in large networlcs. By virtue of this replication, the registry data
is available a much higher percentage of the time than in an environment
that uses a single copy of a user account information file.

The new registry provides faster access, greater availability for updates,
and easier maintenance than at previous releases.

The concept of ownership within the registry allows you to decentralize
registry administration by changing the ownership of groups and organi
zations in the registry database.

Registry information is manipulated by a single tool, the edrgy command.
Access to most of the functionality of the edrgy tool is limited to the
registry administrator(s). In the UNIX environments, the passwd, chfn,
and cbsh commands also operate on the registry.

At SRIO, we use the UNIX password encryption algorithm to encrypt
passwords stored in the registry, although SR9.x encryption is recognized
as well.

Apollo's implementation of the. two UNIX environments includes the
Jete/passwd and Jete/group files, which contain user account and group
information, respectively. Domain/OS also adds a file Jetc/org, which
contains information on organizations. (See the discussion of the registry
in the Managing System Software books for details.) These are typed
files, generated by the registry daemon automatically, and are readable but
cannot be edited directly.

Changes to GPIO Support

The following general changes occur in Domain GPIO with SRIO:

• All device descriptor files (ddfs) must be rebuilt with the SRIO
version of the crddf command.

• All ddfs are now character-special devices.

1-14 Overview of Changes

• Global entry points are now case sensitive for case-sensitive
languages such as C.

• A new GPIO procedure has been added to support the acquisi
tion of devices in a streams type manager. The procedure is
pbu _ $acquire _stream.

• A new set of system calls, the scsC$ calls, have been added to
support the use of SCSI devices.

The following GPIO commands and procedures are new or changed at
SRIO:

• aqdev (changed)
• crddf (changed)
• pbu_$acquire (changed)
• pbu_$acquire_stream (new)

The following sections provide an overview of changes to GPIO com
ponents that are provided as part of standard system software. Refer to
online pages for complete information.

The aqdev Command

At SRIO, a new program, by default, is always invoked with a new pro
cess. As a transitional feature, the aqdev command has been changed to
accommodate drivers written prior to SRIO. All programs running in the
current shell after acquiring the device will run in-process and will have
access to the loaded GPIO device. For more information on in-process
and the SRIO process model, see Chapter 4.

A new option (-c) allows aqdev to run a command instead of invoking the
shell. The format for using the -c option is as follows:

aqdev Idevifoo [.d[b]] [-c progname argl arg2 ...]

If aqdev is invoked by using the -c option, aqdev will acquire the device,
run progname, release the device, and return to the shell.

Overview o/Changes 1-15

The crddfCommand

We've changed the crddf (create device descriptor file) command in the
following ways:

• All GPIO driver procedures are now case sensitive for case
sensitive languages such as C.

• Added options support the creation of SCSI ddfs

• All library pathnames are now case sensitive for case-sensitive
languages such as C.

• Library patbnames have not changed in length. The maximum
size of a ddf patbname is still 64 characters.

• A ddf created by the crddf command is now a character-special
device.

• Three new options have been added to the crddf command for
extensible streams and UNIX open support.

We've added the following options to the crddf command:

1-16 Overview of Changes

This option allows you to change
the type UID (Unique Identifier) of
the ddf file to the type of
type_name. To do this, crddf
detennines the major device number
corresponding to the type UID of
type_name. If a major device
number does not exist for the
type_name UID, crddf assigns a
number. The crddf command also
assigns a major device number to
type_name as the ddf's major dev
ice number.

This option allows you to set the
major device number of the ddf file
(without reference to the type UID
of type_name, as in the -type
option described above). To do this,
crddf detennines the type UID
corresponding to the decimal

The scrch and scrattr Commands

number that you have specified as
the major device number. If the
major de;tce number does not
correspond to an existing type UID,
it notifies you and does not set the
device number. The crddf com
mand also assigns the
major_device _number to the ddf.

This option allows you to set the
minor device number of the ddf file
to the specified decimal number.

The Icomlscrcb command, which showed screen characteristics, has been
deleted from the operating system. The Icomlscrcb entry now links to the
lusr/apoUolbinlscrattr command, which shows screen attributes.

The fppmask Command

We've removed the Icomlfppmask command, which controlled the con
ditions under which floating-point exceptions were raised, from the
operating system at SRIO. To set these conditions, you must now use the
fpp _ system call interface. See the online help and manual pages for
these calls for further information.

The Programming Environment

Chapter 4 contains an overview of significant changes to the program
ming environment, as well as a discussion of these changes in the context
of writing and executing programs in an SRIO Domain/OS environment.

New Concepts for Aegis Users

The tighter integration of the three environments in the Domain operating
system causes a number of concepts that were formerly reserved to
DomainIIX to be visible to Aegis users as well. We discuss some of these
here.

Overview of Changes 1-17

UNIX Identifiers

UNIX identifiers are decimal numbers associated with each primary name
and Unique Identifier (UID) in the registry. These are included for UNIX
compatibility and are relevant to UNIX programs. The registry conver
sion procedure adds UNIX identifiers to registry database entries when
you convert the registry at SRIO, but if you are creating a brand new net
work (and therefore a new registry database), you must assign UNIX
identifiers when you create entries. At SRIO, legal UNIX identifiers are
in the range 0-65535.

The operating system reserves certain UNIX identifiers; you'll receive an
error message from edrgy if you attempt to assign one of these to a name.

These identifiers must be unique across an internet and within a category
(person, group, or organization). They don't need to be unique across
categories, however; your system can have a person, group, and organiza
tion with the same UNIX identifiers.

The /etc/passwd, /etc/group, and /etc/org Files

At SRIO, each node, regardless of which environment is installed, has a
directory named letc. Its contents depend on which environment(s) you
have installed. In all environments, letc will contain, among other things,
three files, passwd, group, and org, that provide user account information
to UNIX programs. Aegis-only users may ignore these files. The letc
directory also contains local files and commands that pertain to system
operation and administration. Some entries in letc are links to
'node _ data/etc.

Project Lists

The project list provides a way other than accounts to allow access to file
system objects (files and directories).

With BSD-based UNIX systems, a user process has a set of groups associ
ated with it. The process group set (project list) consists of the list of
groups to which a user belongs. In UNIX systems, a user's project list
normally consists of the log-in group in letclpasswd and any other groups
to which the user belongs (from letclgroup). You are granted access to a
file if you are a member of any group with permissions to that file.

1-18 Overview o/Changes

On a Domain/OS system, the scheme is similar. A process' identity con
sists of a person, group, organization (pgo) triplet. The project list
comprises the user's log-in group and all other groups in the registry that
the user belongs to, assuming that the group is marked in the registry with
the attribute projlist _ok.

The access rights allowed by the project list consist of the logical OR of
the access rights allowed to each group in your project list. TIle project
list is only created if the PROJLIST environment variable is true or if the
SYSTYPE environment variable value is BSDxxx (for example, BSD4.3)
at login.

----88----

Overview o/Changes 1-19

Chapter 2

Changes to the Operating
System at SRIO

In this chapter, we discuss some of the changes to the operating system in
more detail. In later chapters, we'll provide information about these
changes in the context of system administration and programming.
We've broken this chapter into four categories:

• The node environment
• The file system
• The protection model and ACLs
• The registry

Changes to the programming environment are covered in Chapter 4.

The Node Environment

We've made substantial changes to the general node environment at SRlO
in several areas, including node initialization and startup and how default
environments and shells are determined.

Changes to the Operating System at SRlO 2-1

Three User Environments

The SRIO operating system software provides three possible environ
ments to the user: Aegis, which contains all the previous functionality of
Aegis system software, as well as SRIO extensions; BSD, our implemen
tation of the Berkeley Software Distribution 4.3 release of the UNIX
operating system; and SysV, our implementation of the AT&T System V
Release 3 version of the UNIX operating system.

At installation time, the system administrator chooses which
environment(s) to have available on a node. If you choose to install all of
the system directories and files necessary for all three environments on a
node, all three environments will be available to any user of that node.

Each of these environments functions separately from the other. You can
run a completely Aegis-style environment with Aegis and nothing else,
either of the UNIX environments independently of Aegis, or any other
configuration of one, two, or three environments.

Guaranteed Environment

In order to provide a minimum guaranteed UNIX environment so that our
third-party vendors' installation scripts will run, we provide, in all operat
ing system installations, the following SysV commands in the Isys5.3/bin
directory:

cat In
chgrp Is
chmod mkdir
chown mv
cp rm
cpio rmdir
cmp sed
diff sort
expr sum
find uniq
grep tar
id wc

The guaranteed UNIX shell, if no other one is available, is the SysV
Bourne shell in letc!sys_sh.

2-2 Changes to the Operating System at SR10

DitTerences in Project Lists

Project lists are fully implemented at SRIO, which may cause some unex
pected behaviors for users accustomed to the SR9.7 implementation and
how it interacted with ACLs. (We assume in examples below that
PROJUST=true.)

At SR9.7, project list entries matched only ACL entries of the exact form:

%.proj.%.%

and the first exact match allowed access. IT there was no exact match in
the ACL entry for the project list entry, access was denied For example,
if joeuser had the following groups in his project list:

mkting
unix
development

and while logged in as joeuser.mkting.r _d. %, tried to access a file with
the following ACL:

Acl for //node/other_user/file:
other user.%.%.% pgndwrx
%.development.r_d.% pgndwrx

he would not gain access to the file because the ACL did not have an
entry for %.development.%.%. joeuser would have had access to the
file if the ACL contained entries for any or all of the following:

%.mkting.%.%
%.unix.%.%
%.development.%.%

10 addition, if there had been an exactly matching entry in the file's ACL,
the user would have only those access rights associated with the first exact
match from the project list.

At SRlO, the operating system substitutes each group in the project list
into the SID and the ACL is checked for a match. The access rights asso
ciated with each ACL entry that matches a group from the project list are
ORed together. That is, at SRIO, the user gets all the rights associated

Changes to the Operating System at SR10 2-3

with ACL entries for all the groups in his project list. For example, if
joeuser tried to access a file with the following ACL:

%.groupl.% r
%.othergroup.% w
%.anothergroup.% x

and his project list contained all three groups, he would have the OR of
the access rights, or rwx. Before SRIO, he would oo1y have had the rights
associated with whichever project list entry was checked first.

Shell Configuration Files

The various shells execute their configuration files as detailed in the fol
lowing table:

Shell When started by login Always
/bin/csh -/.login -I.cshrc
/bin/ksh -I.profile -/.kshrc
/bin/sh -I.profile -I.shrc
Icom/sh -/user_data/sh/login -/user_data/sh!startup

Key Definitions

At SRIO, the Display Manager (DM) automatically loads key definitions
at login from files in the Isys/dm directory. For example, nodes with the
U.S. version of the Low-Profile II keyboard load the file
Isys/dmlstd _ keysJ. .

If the SYSTYPE environment variable is set to bsd4.3 or sys5.3, the DM
loads the file std _keys.unix. Any key definitions in the
-/user _ datalkey _ defs.xx are then loaded, after which any other personal
key definition files specified in -/user_datalstartup_dm files are loaded.

At logout, any changes made to key definitions are saved in the appropri
ate -/user_datalkey_defs file, and the appropriate Isys/dmlstd_keys key
definitions are restored.

2-4 Changes to the Operating System at SRi 0

SRIO allows you to define certain new keys. For keyboards that use the
std keys3 keyboards only, you can combine the ESC, DEL, BS, and
RETuRN keys with both SHIFf and CfRL. That is, the following are
now valid definable key names:

escs
dels
bss
crs
escc orAesc
delc orAdel
bsc orAbs
erc or Aer

There is also a new std keys. basic file that clears the ESC keys and
defines the DEL keys: -

kddeleeke
kddels eeke
kdescke
kdescske

This provides an additional eight definable keys, at the cost of any user's
existing key_defs_8bit3 file. (See the next paragraph for a description of
the key_defs_8bit3 file.)

SR9.7 systems store the binary versions of the most recent key definitions
in the -/user_datalkeY_defs2 or -/user_dataikeLdefsJ file. At SRIO,
the most recent key definitions are stored in -/user datalkey defs 8bit2
and -/user_datalkey_defs_8bit3. A user's directories resiOred -to an
SRIO node may contain a key _ defs[23] file. If it does, the DM automati
cally executes a program (/sysldmltkd) that creates a key _ defs _ 8bit file
from the keLdefs[23] file. There is no need for users or system adminis
trators to run the tkd command explicitly.

The DM loads the key definitions in the -/user datalkeydefs 8bit3 or
-/user_datalkeydefs_8bit2 file (assuming the file exists) after it has
loaded all standard key definitions. Key definitions in the
-/user _ datalkeydefs _ 8bit3 or -/user _ datalkeydefs _ 8bit2 files will over
ride definitions set by the standard key definition file.

Changes to the Operating System at SR10 2-5

Standard Key Definitions

At SRIO, you are still able to modify key definitions. However, some of
the standard key definitions have been changed.

• The Af5 (CTRL/F5) key can be defined to have the compose
function by uncommenting the following line in the appropriate
startup file.

tops /usr/apollo/bin/kbm -0 £5

The compose key enables you to enter characters that are in the
upper half of the 8-bit character sequence on any keyboard.
When you press the compose key followed by a 2-character
sequence, the corresponding 8-bit character will be written. For
example, AF51! corresponds to an inverted exclamation point.
See the Using Your Environment manual for Aegis, BSD, or
SysV, or the file /usr/pub/compose for a list of all compose
keystroke combinations. The kbm program allows you to set
other keyboard characteristics; see the online help page.

• On multinational keyboards, if you press the left ALT key
before pressing any key that is marked with both ASCII and
national characters, you will toggle that key between the ASCII
and the national character. For example, if you are currently
typing ASCII characters, pressing the AL T key makes all subse
quent characters (up to another ALT) national characters. The
SHIFT/ALT key combination toggles the entire keyboard
between producing ASCII characters and national characters.

• There is now a single set of UNIX environment key definitions,
rather than separate sets for the BSD and SysVenvironments.
The UNIX key definitions are located in the
/sys/ dm/std _ keys.unix file.

• The definitions of the READ key and m3 (right) mouse button
in std _ keys.unix have been changed to read mixed-case path
names correctly. The previous definition quoted the entire

. string, including any unintentional preceding or trailing spaces,
and attempted to treat it as a pathname.

• The SHELL key (15s) now invokes the user's default log-in
shell, as defined by the value of the SHELL environment
variable.

2-6 Changes to the Operating System at SR10

• The definition of the rls combination (SHIFT/pOP) has been
changed from pop to an icon toggle.

• The r2s combination (SHIFT/AGAIN) has been defined as a
read-write toggle (ro command).

• Key definitions have been added for the numeric pad keys npa
through npd.

Local/etc and 'node data/etc Directories

Each node, regardless of the environment(s) installed, has a local fetc
directory, which contains many of the commands necessary to administer
both nodes and networks. There are, in addition, some typed objects in
each /etc directory to network-wide files like fetc/passwd. There are also
links to the node's 'node_data directory for specific files.

In the past, we've used a link from a node's fetc directory to a file in the
node's 'node data directory as a way of implementing such files as
/etc/re. That is, before SRlO, a node would have a link named /etc/re
that would resolve to a file 'node data/etc.rc. At SRIO, we've created a
'node data/etc directory so that a node's /etc/rc link resolves to the file
'node - data/etc/reo

Some of the files that reside in 'node data/etc are listed below. All of
these files may not be present, depending on which layered software pack
ages are installed on the node; others may be present, as well.

exports
fstab
inetd.conf
mnttab
mtab
nfsstat.dat
re
re.local
rc.user
ttys

Changes to the Operating System at SRlO 2-7

The /usr/apollo Directory

All SRIO systems, regardless of which environments are installed, have a
lusr/apoUo directory, which contains certain commands common to all
environments, as well as Domain extensions to the UNIX environment.
The directory also includes C include files for Domain system calls. It
contains the following subdirectories:

lusr/apoUolbin

lusrl apollolIib

Wildcard expansion in Aegis environments is per
formed by (/com) commands; in UNIX environ
ments, the shell expands wildcards. The result of
this has been that executing Aegis command lines
in UNIX shells (or vice versa) could cause unin
tended results.

To alleviate the problems of different behavior in
different types of shells, and to make it possible to
run either BSD or SysV without having to have a
Icom directory, we've added lusr/apoUolbin.

This directory contains Domain commands that
are necessary in all three environments, as well as
commands that extend the UNIX environments.
Some of these commands previously resided in the
Aegis Icom directory, but are also useful in UNIX
environments, and others are specific to the UNIX
system under Domain/OS. This directory name
has been added to the default path (command
search rules) for all shells.

Commands that were previously available in the
Icom directory are still available in that directory.
Where an identically named command is also
located in lusr/apoUo, the command in Icom may
be a link to a program in lusr/apoUo. In other
cases, particularly where the Icom commands use
derived wildcards, the version in Icom will have
different semantics from the one in lusr/apollo.

This directory contains binaries and related files
that UNIX system users do not run directly, for
example, the cc compiler that the Ibinlcc program
calls. The ftn compiler is also in this category.
The /binlf77 program needs to call the ftn com
piler, which resides in lusr/apollollib.

2-8 Changes to the Operating System at SRlO

lusr/apollo/include This directory contains Aegis system call C
include files with function prototypes. Both
Isys5.3/usrlinclude and Ibsd4.3/usr/include con
tain links, named apollo, that point here. This
allows you to specify <apollo/foo.h> in a program
and requires only one copy of these include files.
Versions of the Aegis system call C insert files that
do not have function prototypes are located in the
Isys/ins directory.

The Print Environment

The SRIO print environment consists of a new print architecture which
adds a print server manager to the prf and prsvr commands.

The architecture is based on the Apollo Networlc Computing System, and
is structured as a series of filters and drivers. Features include job query
and control, and printer query and control. A sample printer driver and
sample filter, along with a new manual, allow programmers to expand the
system.

The Aegis print environment supports all devices we supported previously
plus the Tektronix 4639d color printer. The new print environment can
queue jobs from SRIO nodes to SR9.7 printer nodes and print jobs queued
from SR9.7 nodes.

We have expanded UNIX printing by allowing the use of Idev/lp, which
frees it of the requirement to use prf.

For more information on the Aegis print environment, see Printing in the
Aegis Environment. For more information on the BSD or SysV print
environments see the SysV and BSD Managing System Software books.

SIO Lines

Although Idev/siox and Idev/ttyx (where x is the port number) can refer to
the same physical port, the system treats them differently. The state of
DCD (Data Carrier Detect, pin #8 on a standard 25-pin RS-232 connec
tor) is ignored 00 opeo for Idev/siox, but is meaningful for Idev/ttyx.

Ignoring the state of DCD oo/dev/tty devices when calling ios_$opeo is
possible by specifying ios_$no_opeo_delay_opt in the ios_$open call.
For Idev/sio devices, the ios_$oo_delay_opt is always implied.

Changes to the Operating System at SRlO 2-9

Setting inprocess

Because of changes to the process model, you can no longer use set
inprocess in UNIX shells as you were able to do using Domain/lX. You
can, however, use export inprocess in Aegis shells, as follows:

export inprocess; inprocess := true

See Chapter 4 for a discussion of the single-program-per-process model.

The Icom/lopstr Command

'Ibe Icom/lopstr command lists the open streams of a process. Before
SRIO, when multiple programs per process were possible, this was more
meaningful than at SRIO. At SRIO, except when INPROCESS is true,
lopstr only reports the standard three streams open in the lopstr process.

Tab Settings

The Aegis and UNIX environments understand tab settings differently.
To have tabs display correctly on your screen (for example, when you use
the Ibinlls command), issue the command

sHy -tabs

either from the shell or the appropriate UNIX startup file. You can also
change tab settings with the DM command ts.

Wildcard Expansion

In Aegis environments, wildcard expansion is performed by Icom com
mands; in UNIX environments, the shell expands wildcards. If you
attempt to use Icom commands with wildcards in UNIX environments,
you'll see surprising and incorrect results. If you attempt to use UNIX
commands in an Aegis environment, the wildcard will not be expanded at
all, since neither the UNIX command nor the Aegis shell (I cornish) inter
prets wildcards.

At SRIO, we provide two versions of several commands: one in lcom, for
use in Aegis environments, and one in the letc or lusr/apoDoIbin

2--10 Changes to the Operating System atSR10

directories, for use in UNIX envirorunents. Versions in /eom will expand
wildcards; versions in fete or lusr/apollolbin will not.

System Initialization and Startup; Login

Before SRlO, a node booted in the following way:

1. In nonnal mode, you typed ex aegis at the Mnemonic Debugger
prompt; in service mode, you came up to the boot shell and typed
go.

2. The boot shell loaded the program /sys/env, which first loaded
the global libraries from /lib, then loaded and ran the Display
Manager from /sys/dm/dm on display nodes, and the Server Pro
cess Manager from /sys/spm/spm on non-display nodes.

3. The DM executed the file 'node_data/startup.type, where type
was the appropriate monitor type (or SPM executed
'node _ data/startup.spm).

4. The DM displayed the log-in prompt and the user logged in.

At SRI0, a node boots in the following way:

1. In nonnal mode, you type ex domain_os at the Mnemonic
Debugger prompt (ex aegis will also work). In service mode,
you come up to the boot shell and type go.

2. The boot shell loads the program /sys/env, which first loads the
global libraries from /lib, using the infonnation in the
/etclsys.eonf file, then loads and runs the program /ete/init.

3. The init process runs in two phases. First, it runs the Bourne
shell script in /ete/re, which is a link to 'node _ data/ete/re. The
shell that runs this script is in /ete/sys_sh.

4. In its second phase, init reads the file /etclttys, which is a link to
'node_data/etclttys. This file describes what processes to start
up for the console (display) and the SIO lines. (The siomonit
and siologin commands are still available for configuring a
node's SIO lines, but the use of getty and the /etclttys file is
simpler and much preferred. In the entry for the console,

Changes to the Operating System at SR10 2-11

/etc/ttys specifies a program called /etc/ dm _or _ spm, which init
now starts.

5. The /etc/dm_or_spm program executes /sys/dm/dm on a node
with a display, or /sys/spm/spm otherwise. Then the DM (or
SPM) performs the rest of the startup as it happened before
SRIO. (Or you can specify an alternative window manager pro
gram to run in place of /etc/dm_or_spm.)

You will see init running as Process I on SRI 0 nodes.

You can revert to the pre-SRIO initialization behavior by typing dm or
spm at the boot shell prompt.

The Log-In Sequence

The log-in sequence has been changed so that the startup script
(/sys/dm/startup_login.xxx) executes the login_sh command, which
starts up a log-in shell. It also executes the startup_dm.xxx file in the
user_data directory. (The line in the log-in startup script executing
user_data/startup _ dm.xxx used to be commented out by default; now it
is uncommented.) Also, you can no longer change your password or
home directory at log-in time. That is, the .p and/or ·h options to
/com/login are no longer valid.

Default Shell Setting

Normally, /etc/login_sh determines what shell to start from the log-in
account's default shell field in the registry. If the registry shell field is
empty, the default shell is determined by the setting of the ENVIRON
MENT environment variable in /etc/environ, either aegis, bsd, or sysv.
The settings in /etc/environ are determined at installation time; do not
edit this file.

The /etc/environ File

The /etc/environ file records the initial setting of the environment vari
ables SYSTYPE and ENVIRONMENT for a node. The file contains
comments, as well as a line to set the node's ENVIRONMENT to either
aegis, bsd4.3, or sys5.3, and another line which sets the initial value of
the SYSTYPE variable to bsd4.3, sys5.3, or blank (no SYSTYPE).

2-12 Changes to the Operating System at SRlO

A user can override the per-node settings by creating a file in the home
directory named .environ and resetting the variables there. The format of
the .environ file is the same as that of the letelenviron file.

The letc/rc File

The letelre file is a shell script that starts servers and performs other ini
tialization tasks on a node. The SYSTYPE recorded in the letelenviron
file determines the environment in which re actually runs. (Because init
runs as a bsd4.3 process, letclre runs in a bsd4.3 environment by default,
that is, if no SYSTYPE is set in letclenviron.

The file executes as a root process, so servers started from letelre run as
root.wheel. We suggest that you start all your servers from this file, if
they run correctly as root. However, since servers started from letc/re
will run as root.wheel, the letclre file must be protected from editing by
users other than root. Without being root, the node user can control
whether servers are started, by creating or deleting files in the
'node data/daemons directory. If no file with the server's name exists in
'node-data/daemons, that server will not be started by init, even if there
is an entry in the letclrc file.

The letc/rc.user File

This file is a link to 'node data/etelrc.user. Since it executes as
user.server.none, you can use it to start up servers that do not need to run
as root, like netman. This file is executed by letelre. It directly replaces
that portion of the 'node _ data/startup.type file that performed server
startup.

The letclrc.local File

The letelreJocal file is invoked by letelre. It starts TCP/IP and its related
servers.

Changes to the Operating System at SRlO 2-13

Establishing a Default SYSTYPE

The node's default SYSTYPE is controlled by the letc/environ file. Valid
settings for SYSTYPE are bsd4.3, sys5.3, or [blank]. This setting is also
made during the installation process. Although, in the past, node startup
files have set the SYSTYPE variable, users should no longer set this vari
able in that way. Display Manager (DM) startup files should only be used
to set DM windows.

The Mail System

A new field associated with a person's name in the registry allows the
user to specify which mailer delivers that user's mail. The edsd com
mand edits this field in the registry. This feature is not usable until the
SRlO registry is the primary (that is, writable) registry on the network.

A UNIX mail gateway is now supplied with DPSS/Mail, which allows
users to receive messages with one type of mail that were sent on another.
To enable this facility, the system administrator sets the mailer field in the
registry, with edsd, to addresses of the form user@unix(forDPSS/Mailto
UNIX mail) and user@dpss (for UNIX mail to DPSS/Mail).

The sendmail configuration file must be changed to identify the mailer for
the DPSS and UNIX gateways. An entry similar to the following should
be used:

Mdpss, P-/usr/1ib/mai1er/post_dpss,
F-FOhum, 8=10, R-20, A=post_dpss $u
Munix, P-/bin/mai1, F-FOhum, S-10, R-20, A=mai1 -d $u

All DPSS messages can be delivered through send mail, if you wish. This
option can be configured on a system-wide basis by setting the sm option
in the configumtion file Imail/$conftg/ver.17. SysV mail has been
changed to use sendmail as a delivery mechanism. SysV mail users must
have sendmail and sendmail.cf on their node. See Managing System
Software for both UNIX environments for details of sendmail.

2-14 Changes to the Operating System at SRlO

The File System

General changes to the file system include case sensitivity, higher limits
on the length of both patbnames and components of patbnames, differ
ences in links, differences in protections, the addition of two new entries
to every directory, and virtually unlimited directory sizes.

At SRIO, each file system object has an owner. Owner information,
including UNIX identifiers, is stored with the object in the file system.

Case Sensitivity

At SRIO, the system's kernel and libraries are case sensitive in handling
pathnames. Any program or shell script that assumes that the system
ignores case in names will not have the expected results.

The edrgy tool allows you to create only lowercase names in the registry
database. User names are mapped to lowercase at log-in time (with
IcomlIogin). (The lbinlIogin command does not map names.)

Naming Server Helper

The Naming Server Helper (ns_helper), however, is still case insensitive;
it will continue to intetpret IINODENAME and IInodename the same
way. We suggest you use lowercase names only for node names, since
future releases may be case sensitive. For information about the implica
tions of these changes on programs and program interfaces, see Chapter 4.

Conversion Tool: cvtname

Prior to SRIO, the colon (:) was used as an escape character for the pur
pose of storing mixed-case names. For example, the filename Readme
was stored as :readme. Domain/IX programs mapped :r and intetpreted it
as R. In pre-SRIO Aegis-only environments, colons used in pathnames
were treated as literal characters, since Aegis was not case sensitive.

Changes to the Operating System at SR10 2-15

With the move to case sensitivity in all environments at SRIO, colons no
longer have meaning as an escape character. Thus, in converting pre
SRIO file systems to SRIO, a method of selectively deciding whether a
colon in a pre-SRIO patbname should be left as is or mapped to an upper
case character is necessary.

When you copy a pre-SRIO colon-mapped filename to an SRIO system
(or restore to an SRIO system with rbak), any colon-character constructs
are mapped to the appropriate uppercase equivalent automatically. To
allow you to decide the treatment of colons in patbnames in a selective
way, we provide the conversion tool cvtname.

The tool allows you to either restore colons to a pathname as literal char
acters or treat them as escape characters. It also allows you to convert
any patbname to lowercase, uppercase, or mixed-case names. See
Chapter 3 for infonnation on running cvtname. The cvtname command
resides in the Isr9.7 _compatibility/compat_with_sr9.7/com directory.

Transition Aid: DOWNCASE Variable

We supply a transition aid for case sensitivity in the form of a per-process
environment variable, DOWNCASE, which affects the way the naming
server interprets patbnames. If DOWNCASE is set to true, then a process
is said to run in downcase mode, and will be affected as described in the
next paragraph; essentially, downcase mode simulates a pre-SRIO system
with respect to case sensitivity and the interpretation of some special
characters.

The default SRIO behavior is for DOWNCASE to be false. When
DOWNCASE is false (or doesn't exist), the system is case sensitive and
the naming server treats all characters literally, with certain exceptions
based on usage. These exceptions and their contexts are shown in the fol
lowing table:

Characters Context
,

in 'node_data only
./foo file "foo" in this directory
. ./foo file "foo" in the parent ofthis directory
-!foo file "foo" in the naming directory

2-16 Changes to the Operating System at SRlO

When a process runs in downcase mode (DOWNCASE = true), the nam
ing server's behavior changes in two ways:

• It forces all pathoames to lowercase before it attempts to resolve
them; that is, case sensitivity is turned off.

• It treats the set of characters

-, . ()

as syntax, and not as literal characters in a name. (This mimics
the behavior of the NAMECHARS variable, which is no longer
supported.)

DOWNCASE also affects interpretation of the backslash (\), dot (.), and
dot-dot (..). In addition to the contexts shown above, programs running in
downcase mode interprets characters as shown in the following table:

Characters Context
\foo file "foo" in the parent of this directory
.foo file "foo" in this directory
.. foo file "foo" in the parent of this directory
-foo file "foo" in the naming directory

A process running in the downcase mode cannot access mixed-case path
names.

SRlO, regardless of the setting of DOWNCASE, retains the syntactic
meaning of characters in the variable link mechanism, as you can see
below:

$(variable _name)

The naming server treats everything after the dollar-sign/open-parenthesis
sequence, up to the closed parenthesis, as an environment variable name,
and expands it to the current value of that variable. If variable_name is
in lowercase and the opemting system cannot find it, the system converts
the variable name to all uppercase and tries again.

Changes to the Operating System at SRI 0 2-17

Transition Aid: The case Command

The Display Manager (DM) command case allows you to change the case
of letters in a selected range of text. You can use this command to change
uppercase letters in source code or shell scripts to lowercase. See the on
line manual pages for additional information.

Longer Names

Links

At SRIO, the maximum length of a leaf (pathname component) name is
255 characters; the maximum length of a patbname is now 1023 charac
ters. The previous limits were 32 and 256 characters, respectively. These
changes mainly affects programs that use pre-SRIO system calls. For
information on new and changed system calls and interfaces, see Chapter
4. We also provide a tool that examines an object module and reports any
calls that may be affected by the change in name lengths. See Chapter 4
for information.

All names returned by the naming server are null terminated.

At SRIO, we support a single type of symbolic link: that is part of the
directory structure. All UNIX commands and system calls that create,
remove, or othetwise manipulate UNIX symbolic links have been
changed to perform equivalent operations on directory symbolic links.
This means, for example, that the command

In -s foo bar

is functionally identical to

crl bar foo

in that both create a link. named bar that points to an object named foo.

2-18 Changes to the Operating System at SR10

New Directory Entries

At SRIO, the following appear as the first two entries in every directory:

(dot, the current directory)
.. (dot-dot, parent of the current directory)

These directory entries cannot be deleted. Aegis users do not see these
entries unless they use the new ·h option to the IcomlId command. The
BSD Is ·a command displays them, and the UNIX system calls that
operate on directories now return dot and dot-dot as the first two entries in
a directory. The pre-SRIO Aegis directory calls do not return these
entries; new naming calls do, however. See Chapter 4 for details of these
calls.

The Protection Model: ACLs and Modes

If UNIX protection semantics are sufficient for your purposes, there's no
need for you to learn about ACLs at all. In each of the Domain/OS UNIX
environments, all the functionality associated with protection (commands,
system calls) operates as it does in the UNIX type from which the
environment was derived. However, since the ACL mechanism provides
a more powerful protection mechanism, we make it available in the two
UNIX environments via the lsacl, cpacl, dbacl, and chacl commands.
Those operating in the Aegis environment will find the ACL mechanism
simplified and slightly changed, as explained below. For a more exhaus
tive discussion of protections and how they relate to pre-SRlO Domain
software, see Appendix A.

The SRlO protection model integrates two protection mechanisms, the
Access Control List (ACL) model and the UNIX model, into a means of
protecting both system software and user files. The SRlO model is a
superset of the UNIX pennissions. Changes to the protection model have
been made so that we can support the UNIX protection mechanisms more
gracefully, without forfeiting the fuller functionality of extended ACLs
for those who have a need for them. All the features of both mechanisms
are available in all three environments.

When we speak of default protection inheritance, we mean the way in
which newly created file system objects receive their initial protections.
As installed, the files and directories in BSD provide Berkeley default
protection inheritance, and files and directories installed with SysV

Changes to the Operating System at SR10 2-19

provide System V default protection inheritance. Unless you use edacl to
change the initial default ACLs, newly created objects in these environ
ments always inherit permissions in the way their respective UNIX
environments would. Directories can also be set up to allow newly
created objects to inherit protection in the Aegis fashion.

We've made changes to the acl, edacl, and salacl commands so that they
operate properly with the new ACL structures and features, and we've
added commands to allow you to list, copy, and change ACLs in the two
UNIX environments. See the manual pages for Isacl, cpacl, dbacl, and
chacl.

Protected Subsystems

Protected subsystems have not changed at SRIO.

However, since programs run by scripts are run out-of-process by default,
a shell script with the following format does not wode:

subs -up
do something which requires subsystem access
subs -down

You can make this wode in an Aegis shell by setting the INPROCESS
environment variable to true.

SID Structure

The structure of the Subject Identifier (SID) in an ACL has changed; it
now consists of three fields instead of four: person, group, and organiza
tion. The node field has been removed. The major visible effect of these
changes is how access rights are mapped back and forth when you're
operating in a mixed netwode, and this is treated in Chapter 3.

Access Rights

Each file system object now has a set of required permissions for owner,
group, others (world), and organization. The set of access rights
includes the UNIX rwx (read, write, execute), p (protect), and k (keep)
rights. Any permissions necessary beyond this required set are stored in
an extended ACL, which is essentially a pre-SRIO ACL (with the access

2-20 Changes to the Operating System at SR10

rights limited to the aforementioned set and a three-field SID). Because
the required pennissions are stored with the object, no additional system
overhead is involved in presenting the required pennissions for an object.

In either of the UNIX environments, the protections associated with an
object's owner, as reported by statO and fstatO, are derived directly from
the required entry for owner, and the protection for the object's group
from the required entry for group, assuming that the SID seeking access is
the owner or a member of the group. Pennissions for "other" are derived
from the logical OR of all pennissions other than the required entries for
person and group, including extended ACL entries, if any. They are
reported as the appropriate combination of rwx for each of the three
UNIX fields.

The p right has the same effect as before SRIO; it specifies who, other
than the owner, may change the object's pennissions.

The k right is new at SRIO. UNIX protections require that if one object in
a directory is deletable, they all are; that is, if you have write rights in the
directory, you can delete any object in the directory. The k right allows
you to keep an object in a directory from being deleted, even if the direc
tory is writable. In addition, the k right protects the name of the object. If
the object has the k right set for some SID, that SID may not rename the
object, either.

Some of the previous ACL access rights have been merged and others
have been removed altogether. It is necessary to understand how pre
SRIO nodes see SRIO-style ACLs, and vice versa For complete infonna
tion on the ACL rights that are no longer supported, and how ACLs map
back and forth in a mixed environment, see Chapter 3.

Write-Only and Execute.Only Files

Accessing a file on the Domain system's single-level file store requires
that it be mappable into the address space of the machine. At previous
releases, Domain/IX automatically added read pennission to any write
only or execute-only mode, to make the file mappable (that is, readable).

At SRIO, in both UNIX environments, a chmod to a write-only (-w-) or
execute-only (--x) mode results in the expected behavior. The system no
longer adds the read pennission.

Changes to the Operating System at SR10 2-21

Protection Inheritance

Another major change in the protection model at SRIO has to do with the
way the permissions for a newly created object are inherited. In the past,
there were two methods of inheritance: the Aegis initial file and directory
ACLs, and the Domain/IX mechanism which based the protection inher
ited on the SID of the object's creating process.

The Domain/lX mechanism has been removed, and all protection inheri
tance is specified via the initial default file and directory ACLs of the con
taining directory. However, we've added new options to edad and a new
chad command. These features enable you to specify access rights to be
inherited and allow you to change a directory's inheritance protection
mechanism. The following subsections describe the new features.

Extended edad Features

New options to the edad command enable you to alter initial default
ACLs to mimic the inheritance behavior of either of the UNIX environ
ments or of the Aegis environment. In all cases in the list below, process
refers to the process that created the object. (Note that these options only
operate on required entries, and, except for -ignore, only on initial default
ACLs.)

-inh aU Inherit pgo and access rights from process.

-inh]ights Inherit only access rights from process, pgo from I

-ignore Ignore these rights when checking, but entry is on
of the required ones (pgo).

New chad Features

Options to the chad command enable you to set protection inheritance
mechanism of any directory as follows:

• -B sets the directory to use BSD semantics.

• -S sets the directory to use SysY semantics.

2-22 Changes to the Operating System at SRlO

With the ·S option, existing ACLs are removed and the protections on the
directory are detennined by SysV inheritance rules: owner and group
rights are inherited from the current process.

With the ·B option, existing ACLs are removed and the protections on the
directory are detennined by BSD inheritance rules: owner rights are
inherited from the current process, group rights from the directory.

Default Protection Inheritance Mechanisms

We emphasize again that, unless you use the edacl or chacl commands to
change them, the permissions on BSD system objects, as installed, pro
vide Berkeley-style inheritance, and the pennissions on SysV provide
System V-style inheritance.

The only exception to this is the behavior of mkdir. The mkdir com
mand and the mkdir system call alter the way a directory inherits protec
tions. When you use mkdir to create a tree now, the new directory inher
its its initial file and directory ACLs from its parent directory. You can
use the /usr/apollolbin ACL commands (Isacl, cpacl, dbacl, and chacl)
to force a particular directory to inherit protection fu. either of the UNIX
styles (as mkdir previously did).

This means you must be more careful in setting up initial file and direc
tory ACLs when you first create a directory tree, as the ACLs are pro
pagated by UNIX mkdir commands.

Because of the possible combination of required entries and ignored
fields, the acl command not only displays the entire ACL of an object but
also gives the rights associated with the current process to the object.

The Local-Access-Only Attribute

As . an addit: .. at measure of access protection, we support a local·
access.only protection attribute, which specifies that an object can be
locked and mapped only from the home node.

You can use the chacl, Isacl, edacl, and acl command to set and display
this attribute.

Changes to the Operating System at SR10 2-23

Protection from Remote root Processes: Iprotect

As additional protection, we've added a command, letclIprotect, that
allows a node user to protect his or her node from access by a remote pro
cess running as root.

The right to run the lprotect command is controlled by the file
'node data/node owners. The file must exist and be owned by root for
lproteet to work:- The lprotect command checks protection entries on
that file and allows anyone with p rights to run lprotect.

A system administrator can choose whether to distribute the
'node_data/node_owners file, in order to prevent users from using the
Iprotect command, or distribute it and allow node owners to have this
control over their nodes.

This feature is useful for server nodes. It also allows the system adminis
trator to determine the protection policy of a network and then to grant
powers to individual nodes (or their owners). The
'node data/node owners file also can be used to control who can sigp a
process with a different SID on the node. At SRIO, a user can only signal
(using sigp) a process with the same SID, unless the SID of the signaling
process is an owner of (has p rights to) 'node_data/node _owners.

Controlling Access via spm: The spm _control File

At SRIO, you can protect a node so that the Server Processor Manager
(SPM) prevents unauthorized users from creating processes on or logging
in to the node. If the file 'node_data/spm_control exists on the node
running spm, all process creation and log-in requests are validated. Only
users with an SID matching an entry in the file are allowed access; all oth
ers are rejected. If the file does not exist, then all requests are allowed.

The spm _control file contains a list of SIDs, one per line, specifying
users who are authorized. Each entry should be specified as follows:

user.group.org

where a % character in a field matches anything.

2-24 Changes to the Operating System at SR10

The first example shown here allows access to all users. The second
allows access to all members of group grp.

%.%.%
%.grp.%

Obsolete Commands

Changes to the protection model have made the following commands
obsolete:

fix cache
ftush _cache
addroot
sup

The Registry

The registry has changed significantly at SRIO. It is a server-based and
distributed system, which allows better support of very large networks
and networks of different machines, and stores more account infonnation
fields.

The registry is an NCS application that consists of a database of naming
and account infonnation and a server which manages changes to the data
and propagates updated infonnation. The registry may be replicated; that
is, there may be more than one copy of the database/server combination
residing on different nodes in the network.

Each node communicates with a registry server node to obtain access to
registry infonnation. This is in contrast to pre-SRIO systems which
directly mapped and accessed registry data files. The new server mechan
ism is faster and available more of the time. There is also a local registry
on each node that provides account infonnation about previous users of
the node in the event that a registry server is not available.

The new registry is a distributed system, which allows better support of
very large networks and networks of different machines, and stores more
types of account infonnation. Because of changes in fonnat between
pre-SRIO and SRlO registries, system administrators must manage a

Changes to the Operating System at SRlO 2-25

conversion from the old fonnat to the new. It is a relatively simple matter
to run a mixed network using both pre-SRI 0 and SRIO registries, but only
one set of registries can be writable at a time. The other set of registries
must be regenemted periodically by the system administrator, using the
tools we provide. See Chapter 3 for infonnation on opemting in a mixed
networlc.

Registry Structure

At SRIO, the registry is implemented using Apollo's Network Computing
Architecture. The registry comprises a database of names and accounts,
and a server that manages the database and any registry replicas. To suc
cessfully run the SRIO registry, a networlc must have a Global Location
Broker daemon (glbd) running. The registry server node, and any repli
cas, must have a Local Location Broker daemon (llbd) and a registry
server daemon (rgyd) running. For additional infonnation on NCS and
the registry, see Chapter 3, as well as Managing System Software for your
specific environment

Editing the Registry Database

To edit infonnation in the registry database, you use the edrgy tool, which
replaces the edacct, cmacct, edppo, and cmppo commands. In UNIX
environments, the passwd, chfn, and chsh commands also opemte on the
registry. With edrgy, you can add, edit, or delete person, group, and
organization names, group and organization membership lists, accounts,
and policy and ownership infonnation. Most operations in edrgy, with
the exception of viewing and those that act on the local registry, are
reserved for the registry administrator. The edrgy tool supports a default
shell entry so that you can specify what shell users get when they log in.

In SRIO, legal account names for edrgy must begin with a lowercase
letter (a-z), and any character after the first must be either a lowercase
letter (a-z), a digit (0-9), or the underscore character L). (The
importyasswd command enforces this restriction as well.) We did this
to provide compatibility with pre-SRIO names on Apollo systems.

The login command no longer allows a user to change home directory or
password at log-in time; that is, the -h and -p options to login are
obsolete. You can use the Aegis chhdir and chpass commands for this
purpose.

2-26 Changes to the Operating System at SRlO

The letc/passwd, letc/group, and letc/org Files

The letclpasswd, letclgroup, and letclorg files hold UNIX user account,
group membership, and organization membership information, respec
tively. These files are required by some UNIX programs and utilities, and
are automatically constructed from the registry database by the registry
server (rgyd), and updated when the registries are updated.

In SRIO, these files are typed objects with an OST type manager. None
of the files is editable; to alter the information in them, you must edit the
registry with edrgy or one of the other commands previously listed. The
vipw command is not supplied with Domain/OS systems.

The Local Registry

Formerly, the node's local registry was found in the file
Iregjstryllocal_site. At SRlO, a node's local registry is contained in the
file Isys/registry/rgy_local. You can edit the local registry by invoking
edrgy with the -I option, on the node whose local registry you wish to
edit, or on a remote node with the -s IInode option on the edrgy -I com
mand line. You can also edit a node's local registry from within edrgy.
See online manual pages for edrgy for details.

Although it is necessary to convert existing registries to the SRIO format
in order to run SRIO completely, it is not necessary to convert local regis
tries since the local registry is recreated at SRIO. The SRIO operating
system software does not recognize the pathname Iregistryllocal_site as
the location of the local registry, and, in fact, the Iregistry directory does
not appear on SRIO nodes.

Decentralizing Registry Administration

The SRIO registry is based on the concept of ownership. If you own a
certain relation in the registry database, you can control who has the right
to alter that relation. You can use this concept to partition your registry in
such a way that its administration can reflect your company's
organization. See Managing System Software for your environment for
details on how to accomplish this.

Changes to the Operating System at SR10 2-27

The registry uses groups and organizations to separate classes of names
with a common interest. The owner of the registry can delegate owner
ship of a organization, say, to a different person or account name, and the
new owner is then responsible for administering that organization within
the registry.

Required Accounts and Reserved IDs

The registry database, as provided at SR1O, includes the following associ
ations between reserved names and UNIX identifiers:

Type Name ID
person root 0
person daemon 1
person none 12
person user 14
person lp 16
person sys_person 13
person admin 15
person uucp 4
person bin 3
group wheel 0
group daemon 1
group none 12
group backup 16
group locksmith 14
group login 15
group mail 6
group bin 3
group server 18
group sys 19
group staff 10
group sys_admin 17
group sys_proj 13
org wheel 0
org apollo 1
org none 12
org sys org 13

Access to various pieces of system software depend on these IDs. The
system prevents you from changing any of them.

2-28 Changes to the Operating System at SRlO

The registry database includes the following reserved accounts:

user.none.none
admin.none.none
bin.bin.none
daemon.none.none
Ip.bin.none
root.staff.none
uucp.none.none
none.none.none
sys _ user.none.none

Both system software and various subsystems like Ip and uucp depend on
these accounts. Don't delete them, and be careful if you need to edit them
for any reason, say, to change passwords.

The SRIO registry database also includes the member relationships shown
in the following table:

name group org
user backup apollo

sys_admin
bin mail
root bin

sys

Each name in the first column is included on the membership list for the
groups or organizations specified in the second or third column. (See the
Managing System Software books for complete information about groups,
organizations, and membership lists.)

Mail System Field

Person entries in the registry now contain a field that identifies the mailer
that delivers that user's mail. This field is set with the correct mail
address for each mail user by the tool edsd (edit subscriber directory).
The system administrator performs this task. This feature will operate
correctly only when the SRlO registries are writable.

Changes to the Operating System at SRIO 2-29

To allow older versions of DPSS/Mail to operate correctly with this new
feature, you should specify the rgy command in the DPSS/Mail
configuration file, Imaill$config/ver.17.

Obsolete Commands

Changes to the registry have made the following commands obsolete. In
some cases, the function has been subsumed into edrgy.

lrgy
crrgy
salrgy
edacct
edppo
cmacct
cmppo
mrgrgy
adppo (unreleased)

The crpasswd command, which was used to build letc/passwd,
letc/group, and letc/passwd.map files from registry files, is obsolete at
SRIO. The letc/passwd.map file, which mapped UNIX userids to Aegis
UIDs at previous releases, is also obsolete.

----BB----

2-30 Changes to the Operating System at SRlO

Chapter 3

Implications for System
)\dh11inistrators

There are two major aspects of SRIO that affect system administration.
FlISt, unlike previous releases, SRIO cannot be installed on a disk over a
previous software release. Changes to on-disk structures and to the file
system, among others, require that you initialize each disk with the SRIO
version of the invol utility before you install the SRIO software on it.
'Ibis fact requires you to plan a conversion from your current SR9.x
operating system software to SRIO software networlc-wide.

Second, although we expect SRIO will eventually be the standard
software release in use at Apollo sites, we realize that all sites will not be
able to convert all their nodes to SRIO at once. Therefore, the system
administrator must also be concerned with operating in a mixed environ
ment (pre-SRIO and SRIO machines on the same networlc or internet).
We've provided information about tools and compatibility between SRIO
and SR9.x in this chapter to make it possible for you to operate smoothly
in a mixed networlc.

Before installing SRIO on the network, however, you should upgrade all
nodes that will need to communicate with the SRIO nodes to the SR9.7
version of the operating system.

Implications for System Administrators 3-1

Installing SRIO on the First Node from Media

You must perform a media imtallation and initialization procedure on the
first node you convert to SRIO in a network. The complete procedure for
this can be found in Installing Software with Apollo's Release and Instal
lation Tools. 1bis procedure needs to be performed only once, on the first
node within a network to receive SRIO software. Subsequent nodes are
brought up by using a subset of that procedure and installing across the
network.

We recommend that the first SRIO node be used as a source area for SRIO
system software installations taking place across the network.

Installing SRIO on Other Nodes

Normally, you'll install SRIO on other nodes (after the first) by setting up
the first node as an Authorized Area for the software and installing across
the network. This is much simpler than installing from the media and
does not require any special level of registry access. Once you've
installed SRIO on a node, you need approximately 5000 blocks of free
space on the node's boot volume in order to boot the node. The salvol
utility reports the amount of free space remaining.

An overview of the steps is provided below. See Installing Software with
Apollo's Release and Installation Tools for details.

Prerequisites for DSEE Users

If you use the Domain Software Engineering Environment (OSEE), there
are several considerations you should be aware of before you install
SRIO. See the section in Chapter 4 entitled "SRIO and the Domain
Software Engineering Environment" for details.

Back Up the Files

Because you must invol each diSk before you install SRIO on it, you '11
have to back up (and later restore) user data files that reside on the node.
You can do this by copying the user directories and files to another node
in the network, and then recopying to the newly installed SRIO node, or

3-2 Implications for System Administrators

you can use the wbak and rbak commands to back up and restore from
tape. 00 not back up such system directories as Isys or Icom, as you will
install SRIO versions of these directories.

There are considerations for using rbak and wbak in mixed networks.
See the appropriate sections in this chapter.

The SRIO versions of the rbak and wbak commands automatically map
any "colon-character" constructs to their uppercase equivalents. You
should be aware of this if you're restoring pre-SRIO data to SRIO nodes,
especially if there are literal colons in any pathnames. Use the cvtname
conversion tool after the files have been restored to maintain literal colons
in pathnames. There are also considerations having to do with the map
ping of pre-SRIO ACLs to SRIO ACLs. See the section in this chapter
entitled "Protection Incompatibilities. "

Backing Up DSEE Files

If, instead of using rbak or wbak, you choose to use either the BSO and
SysV command cp or the Aegis command cpt to copy OSEE objects to
another node, you must ensure that copying preserves subsystem seals.
When using cp, include the -P and -0 options on the command line. The
-P and -0 options are only available with the SRlO version of cpo The cpt
command preserves subsystem seals by default; do not override this
behavior by issuing the command with either the -nsubs option or the
-dad option.

Suggestions for Backing Up Existing User Files

When you decide which user files to back up before you invol a disk, you
should consider saving some or all of the files and directories listed
below. This list is not exhaustive, but backing up these objects will save
users considerable time in duplicating their pre-SRIO working environ
ment on the newly installed SRIO node.

Obviously, the most important directory to save is the user's home direc
tory. You should, however, consider saving 'node_data/startup?· files,
OM startup files from Isysldm, and any printer configuration files if the
node is attached to a printer. Save a copy of the top-level (I directory)
links so you'll be able to recreate them easily.

You'll probably also want to save the contents of directories like -/com
and lusr/local, and any local commands you've added to /bin or Icom.

Implications for System Administrators 3-3

(Don't make the mistake of copying entire pre-SRIO leom trees back onto
an SRIO node just to get a few commands, though.) Also, if the node's
owner has changed the icon fonts at all, save Isysidmifontsiieoos.

You'll want to save the following TCP/IP administrative files. (See Mak
ing the Transition to SR10 TCPIIP for details.)

letclhosts
letc/networks
letc/gateways
Isys/teplhostmaplIocal.txt
Isys/teplhostmaplhosts.txt

Finally, you'll want to save system configuration files like letelre,
lusrlIib/crontab, and the uuep configuration files. Use the infonnation in
these files to edit the newly installed configuration file templates; in some
cases, like uuep, configuration file fonnats have changed. You might also
need to save passwords for third-party applications like Interleaf.

Once you've installed SRIO, be sure to recreate backup lists for the user's
directories.

Backing Up os_helper Databases

If the node on which you'll be installing SRIO is an os_helper database
site, you must save the database files before you install SRIO. The fol
lowing procedure describes what you must do before installing SRIO on
an os_helper site node:

I. Stop the os_helper process on the node, with sigp.

2. Copy the database files to another node; you can copy them to
any pre-SRIO node.

The following table shows the three database files, the directory
where they reside on pre-SRIO file systems, and the directories
where they reside in SRIO file systems.

~ Implications for System Administrators

FileName Pre·SRIO Location SRIO Location
os_helper.db /sys/node_data /sys/os/helper_data
os_helper.prop /sys/node_data /sys/os/helper_data
os helper.err log /sys/node data /sys/node data/system 10,

3. Iostall SRIO.

4. Copy the database files back to this node, to the new locations.

5. Start ns _helper again.

Using invol: Once per Disk

Installing SRIO software to a disked node includes initializing its boot
disk with the SRIO version of the invol command. You'll find a detailed
procedure for using invol on a disk in Installing Software with Apollo's
Release and Installation Tools.

Install Software

We recommend that you install SRIO system software onto nodes from
the Authorized Area created on the first node by the installation tool. It is
possible, of course, to create multiple Authorized Areas on different
nodes to facilitate installing software over large networks. You can also
create a single Authorized Area that resides on more than one disk.

For complete information on installing SRIO base software, as well as
about installing optional software products, see Installing Software with
Apollo's Release and Installation Tools. The SRIO release includes com
pletely new installation tools, which run only on SRIO nodes.

Restore

Once you've completed installation of the SRIO system software, you
should restore user data to the disk. Be aware that there may be differ
ences in how the SR9.x ACLs were restored to SRIO ACLs (see the infor
mation on ACLs in mixed networks) and that colon-character sequences
in patbnames will be mapped automatically to capital letters.

Implications for System Administrators 3-5

Other Considerations

If the node that you've just converted to SRlO is going to be a replica
registry site, you must also create a registry database and start the
appropriate servers on the node. See the section entitled "Creating a
Replica Registry" in this chapter.

Setting Up a Registry

When setting up a registry, you should choose as a registry site a disked
node with ample memory and processes, since the node will have to run
both an Dbd process and a rgyd process. If your network does not have
any pre-SRIO NCS applications running, you'D also have to have a glbd
process running somewhere on the network. See later sections for infor
mation about these processes.

In order to have registry services, your first SRIO node should also be, at
least temporarily, an SRIO registry site. You can move the registry site
once you have other SRIO nodes up on your network. For infonnation on
how to move the master registry site, see Managing System Software for
your particular environment

Apollo networks with pre-SRlO registries must convert these registries
from the old (pre-SRIO) fonnat to the new fonnat. The program
linstall/toolslcvtrgy operates on an SR9.7 node to convert an SR9.x regis
try to an SRIO-fonnat registry; it also can convert an SRlO registry to an
SR9.x registry. Only one version of the registry (SR9.x or SRIO) may be
writable on a network. The other version must be maintained as a read
only copy. Your site may choose to maintain its writable registry in either
SR9.x or SRIO fonnat, depending on how many nodes of each type you
have in your network. However, once you have marked the SR9.x
registry read-only with the -readooly option to cvtrgy, you cannot make
it writable again and you cannot run evtrgy in the ·from9tolO direction.

If you are a new Apollo site, you will create a registry database and add
names and account infonnation to it In this case, no conversion is
necessary.

You needn't convert local registries because SRIO creates a new local
registry in the Isyslrefli.stry directory instead of in lregistryllocal_ site, as
in previous releases. The cvtrgy command does not operate on local
registries.

3-6 Implications for System Administrators

If your Apollo systems share files with other UNIX systems, you must
en~ure that each person and group in the Apollo registry has the same user
and group IDs on all of the hosts that share files.

We provide a tool called letc/import.J)asswd that can help you to iden
tify and resolve possible conflicts of names and IDs. Another tool called
letclsyncids fixes the user and group IDs stored as part of the protection
infonnation for each file and directory on an Apollo file system.

Reference documentation for import.J)asswd and syncids is available
online and in the appropriate command reference: SysV Command Refer
ence (order number 005798), BSD Command Reference (order number
005800), or Aegis Command Reference (order number 002547). For com
plete infonnation about using import.J)asswd, you should refer to
Chapter 4 of the Managing System Software manual for your environ
ment.

Mixed networks of SRIO and SR9.x nodes must maintain two sets of
registries, one in each fonnat. SRIO nodes operate from the SRIO regis
tries and pre-SRIO nodes from the SR9.x registries. Either set of these
registries can be designated writable, but only one set can be writable at a
time; the other must be updated periodically by using cvtrgy. In practice,
until you have a substantial number of nodes running the SRIO software,
you'll probably wish to have your SRIO registry be read-only. To avoid
confusion and competition for resources, we suggest that you maintain
SRlO fonnat registries only on an SRIO node, and maintain your SR9.x
registries on an SR9.7 node.

On a mixed network where the writable registry is in SRIO fonnat, if
you're logged in on an SR9.x node, you won't be able to change any
registry infonnation (except possibly local registry infonnation). Instead,
you'll have to make the changes from an SRIO node, then rebuild the
SR9.x registry, before the changes are effective for SR9.x nodes on the
network. Similar restrictions exist for SRlO nodes on networks where the
writable registry is in SR9.x fonnat.

The new subscriber directory feature of DPSS/Mail only operates when
the SRlO registry is writable.

Implications for System Administrators 3-7

The cvtrgy Tool

The cvtrgy tool allows the system administrator to generate an SRIO for
mat registry database from SR9.7 registry files; or, it generates SR9.7
registry files with data from the SRIO registry. The tool operates on
SR9.7 nodes only. Whenever the conversion from 10 to 9 occurs, if a
registry exists at the destination node specified in the command line, the
tool quits without updating. This means that, before running cvtrgy, you
should rename (or move) the old registry database.

The cvtrgy command resides in the linstallltoois directory. In the follow
ing examples, we assume that you have the linstallltoois directory as an
entry in your PATH environment variable or as part of your csr (Com
mand Search Rules). The linstail/toois directory is not part of the default
PATH and csr settings.

In this section, we've attempted to provide everything you need to know
about cvtrgy to get SRIO registries running in a mixed environment.
More information about cvtrgy is available in the online help file.

The format for invoking the cvtrgy shell command is as follows:

cvtrgy [-from9tolO l-fromlOt09] -readonly
-from Iinode_name -to Iinode_name [-nq] [-owner pgo] -first

You must be logged in as root or locksmith to run cvtrgy.

Operating the tool creates a read-only registry of the destination type.
That is, cvtrgy -from9tolO creates a read-only SRI0 format registry,
while cvtrgy -fromlOt09 creates a read-only SR9.x format registry.
Regardless of which direction the conversion goes (9 to 10 or 10 to 9), the
SRI0 registry data is updated in the replicas automatically. You must
manually update the data in the SR9.x replica registries.

In order to add or change accounts and other registry data, you must edit
the writable registry with the tool appropriate to the registry's format (that
is, with edrgy on SRIO, edacct and edppo on SR9.x) on a node running
the same software release as the format of the writable registry. Thus, if
your SRI0 registries were writable, you'd have to edit them, using edrgy,
from a node running SRI0.

The .readonly option is only meaningful in the "9-to-l0" direction, but
don't use it until you decide to run your site strictly with writable SRI0
registries; that is, until you are primarily an SRI0 site. Once you've used

3-8 Implications for System Administrators

the option in a mixed network, your SR9.x registries are no longer writ
able, and the effect is not reversible, and you cannot run cvtrgy in the
-from9tolO direction again.

Performance Implications

For large networks, you should run the cvtrgy process at some time when
it will not contend for resources with other processes. The SR9.7 node on
which you run cvtrgy should also not run other resource-intensive ser
vices like backups, print servers, or mail delivery if you have a busy
network.

How often you must run cvtrgy is a function of how often you modify
your writable registries and how important it is that users of the read-only
registries have the updated information immediately.

One side effect of running cvtrgy -from9tolO is that you will not be able
to edit the SR9.x registry while cvtrgy is running. When cvtrgy
-fromlOto9 is running, no one can log in to an SR9.x node until cvtrgy
has completed executing and recreated the Irgy_site directory. We sug
gest, therefore, that you run the tool at a time when the registries are not
heavily used.

Converting Registry Data to the SRIO Format

Before any SRIO node can have the benefit of registries, you must have
the pre-SRlO registry data in the new SRIO format. If you are a new
Apollo site, a new registry database will be created in the correct format.
If you are not, you must convert the data.

The cvtrgy tool runs on SR9.7 nodes only, although it can convert regis
tries in both directions. It actually modifies both registries, in ways we'll
discuss shortly. Its primary function is to convert information in the
SR9.x ppo and acet files to the SRIO registry format, but you'll also want
to run it periodically in a mixed network in order to propagate changes
you've made from the writable registry to the read-only one. You'll need
to run cvtrgy to keep the two (SR9.x and SRIO) registries synchronized,
regardless of which registry is writable.

If there are duplicate entries in the SR9.x registry data, cvtrgy ignores all
but the first one it encounters, and it issues a warning that it has. (You
should delete duplicates at some point.)

Implications for System Administrators 3-9

At SRIO, the registry contains canned person, group, and organization
entries, as well as canned accounts. (A "canned" entry has a UID
attached to it which the operating system knows about, which means that
the name-UID attachment cannot be altered without affecting some opera
tions in the system.) A list of these canned entries is shown in the follow
ing table:

Person Group Organization
root* wheel wheel
daemon daemon apollo*
none none* none *
user* backup* sys_org*
lp locksmith*
sys_person* login*
uucp mail
admin bin
bin server*

sys
staff
sys_admin*
sys..,proj*

Some of these canned entries were also canned in SR9.7 registries. These
are marked in the table with an asterisk (*). Where an entry is canned at
SRIO, but was not at SR9.7, the canned entry (name-UID association)
must be propagated into the the SR9.7 registry so that the system will
always associate the name with the correct UID. The cvtrgy tool does
this as part of the registry conversion process. For example, the first time
you run cvtrgy, it changes the bin entry in the SR9 registry to bin sr9,
and adds the SRIO bin canned entry to both the SRIO and SR9 registries.
Where an entry was canned in both SR9.7 and SRIO, cvtrgy does not
change the SR9.7 entry.

3-10 Implications for System Administrators

Canned accounts at SRIO are as follows:

bin.mail.none
root.bin.none
root.sys.none
root.staff.none
daemon.none.none
none.none.none
user.none.none
Ip.bin.none
admin.none.none
sys JM'I'son.none.none
uucp.daemon.none
bin.bin.none

Changes by cvtrgy to noncanned SR9 entries are reflected in any
accounts where the person, group, or organization name appears. For
example, cvtrgy changes the group name staff, to staft'_sr9 in the SR9
registry. An account previously named root.staft'.none in the SR9 regis
try will then be renamed to root.staft'_sr9.none. Since cvtrgy also·
creates the canned account root.statJ.none, the SR9 registry has both
root.staft'.none and root.staft'_sr9.none accounts. (Ultimately, the SRIO
registry will have both, too.)

FIles previously owned by root.staff.none in the SR9 registry are now
owned by root.staft'_sr9.none, which can cause problems in the operation
of subsystems like Ip and uucp on the SR9 nodes in a mixed network. If a
file depends on having a specific owner in order to execute correctly (for
example, files in the SysV Ip system), you must manually change the
owner from the name with the _sr9 suffix to the appropriate name.

Since the two accounts in the registry may have different passwords, you
should be aware of which account you're specifying when you log in. If
you're accustomed to logging in as root and using the password associ
ated with the old root.staft'.none account, you may have to log in expli
citly as root.staff_sr9.none for that password to be valid. You can, of
course, change the default password for the SRIO root.staff.none to be
the same as the root.staft'_sr9.none account.

If you want to delete the _sr9 SIDs to reduce clutter in the registry, you
should first change the ACU on any files owned by the _ sr9 SIDs so that
the files are owned by active accounts. Otherwise, you may have to
become root in order to to access the files or modify protections.

Implications/or System Administrators 3-11

To start the first instance of a rgyd after you've run cvtrgy, log in as root
and execute the following shell command:

fetclserver -p fetclrgyd

The registry database conversion process automatically assigns the same
password to all the default reserved accounts in the SRIO registry. The
8-character string -apollo- is the default password for all these accounts.
The registry owner can change it The account for user has the same
password, but logging in as user .none.none requires no password.

The cvtrgy tool assigns UNIX identifiers automatically during the conver
sion process if you prefer. However, if your site runs Domain/lX, you
will want to preserve the identifiers associated with accounts in your
current (pre-SRIO) fetclpasswd and fete/group files. In normal opera
tion, cvtrgy looks for the fetclpasswd and fetclgroup files and assigns
identifiers from them, if they exist. For this reason, you should run cvtrgy
on an SR9.7 node that has Domain/IX installed, and either contains your
master fetclpasswd and fete/group files or has a link to them.

If cvtrgy doesn't find the fetclpasswd and fetclgroup files and an fetc
directory exists, it queries you before assigning new UNIX identifiers,
unless the -nq (no query) flag is tumed on, in which case cvtrgy exits
with an error. After you've run cvtrgy successfully, you must run the
version of crpasswd released with SRIO to synchronize the UNIX IDs
assigned by cvtrgy with the ones found in the fete files. This version of
crpasswd also renames entries in the fete files, if necessary. For example,
it changes bin to bin _ sr9. It also preserves associated information like
shell field and home directory.

This version of crpasswd is shipped in the finstall/tools directory, and
you must copy it to the SR9.7 node where you want to run it (probably the
same node where you run cvtrgy).

At SRIO, each file system object has protection and ownership informa
tion associated with it, a UID and UNIX identifier pair for each of the
object's person, group, and organization. If you change the UNIX
identifier associated with the UID in the registry, the registry reassociates
all names and data in the registries with the new UNIX identifier. In order
to synchronize the UID and UNIX identifier in the file system if you make
such a change, you must run fete/syndds on all disks that might contain
the old UID and UNIX identifier pair. You can also synchronize IDs, for
the local registry only, from inside the edrgy tool.

3-12 Implications for System Administrators

Converting from SR9.7 to SRIO

When you create the first set of SRIO registries from the SR9.x registry
files, leave the SRIO registries as the read-only set for now, since the
majority of your nodes and users will be working in SR9.x environments
for a while yet.

You must be logged in as root or locksmith to run cvtrgy. That is, your
SID must be root.%.%, or %.Iocksmith.%. Use the following shell
command line to convert your SR9.x registries to an SRIO format registry
database:

cvtrgy -from9tol0 -from IInode _ namellregjstry/rgy _site
-to IInode _ name2 -owner pgo -first

(You only specify the -first option the first time you convert from SR9.7
to SRIO.) You must be logged in as root or locksmith because the
conversion process changes the SR9.x registries in several ways. In fact,
you should control access to the node while you're running cvtrgy, to
keep any other process from locking the SR9.x registries.

The IInode _ name1 argument specifies the node on which the SR9.x regis
tries reside; this may be the node on which you're running cvtrgy, or a
remote one. Note that you must specify the full patbname of the SR9.x
registry. The IInode_name2 argument specifies the destination SRIO node
where the newly converted registry data should be placed.

The tool prompts for the name of the SRIO registry database owner. This
must be a pgo, and an account, already in the SR9.x registries. If you
omit the -owner flag, cvtrgy will prompt you for an owner, assuming that
the -nq flag is not present. If -nq is on, cvtrgy quits with an error if you
don't specify -owner.

If you're running cvtrgy with the -first option, you don't need either the
rgyd or lIbd server processes running. However, both of these servers
must be running if you run cvtrgy without the -first option, that is, any
time you run it after the first conversion.

Any warnings are informational only; cvtrgy makes no attempt to manage
or "clean up" your SR9.x registries. Actual errors that stop the program
require you to rerun it once you've corrected the source of the errors.

If the node on which cvtrgy is run has Domain/lX installed, cvtrgy
assigns UNIX identifiers for the SRIO registry database from the node's

Implications for System Administrators 3-13

/etc files; if not, the tool prompts you to allow it to generate the identifiers
automatically.

The newly created SRIO format registry is marked read-only.

Converting from SRIO to SR9.7

You must be logged in as root or locksmith to run cvtrgy in this direc
tion, too. Use the following shell command line to convert your SRIO
registries to an SR9.x format registry:

cvtrgy .fromlOto9 .from IInode_nameJ
·to / / node _ name2/registry/rgy _site

The rgyd and llbd servers must be running on the SRlO node.

The IInode _name} argument specifies the node where the SRlO registry
resides. The IInode _ name2 argument specifies the node on which the
SR9.x registries will reside; this may be the node on which you're running
cvtrgy, or a remote one.

The cvtrgy tool does not overwrite the /registry/rgy_site file, so before
you run the tool in the 10·to·9 direction, you must delete or rename the
/registry/rgy _site file on the SR9.x destination node (llnode _ name2 in the
example above).

Errors that stop the program require you to rerun it, once you've corrected
the source of the errors.

The SR9.x registries on this node are marked read-only. If you have mul
tiple registry sites in your network, you must propagate the new SR9.x
registries to other SR9.x registry sites in the network.

After running cvtrgy, you must also run the Domain/IX crpasswd com
mand on an SR9.x node to update the /etc/passwd and /etc/group files.
The SRIO directory /install/tools contains a new version of crpasswd
which you should copy to all SR9.7 nodes that have a need to run
crpasswd. (You can rename or replace the old version of crpasswd.)

3-14 Implications for System Administrators

Converting /etc/passwd and /etc/group Files

If you run the cvtrgy tool on a node where Domain/IX is installed, cvtrgy
merges the information in these files into the SRIO registry database.

The SRIO registry database contains predefined names, some of which
you may also have had in your SR9.x registries. If there are collisions
between names when you convert the old registries, the pre-SRIO names
are renamed with a suffix of _sr9. For example, the name bin will be
renamed bin _ sr9 in both registries, and then the new entry for bin is
added to both registries. After the conversion, both registries contain both
bin and bin sr9 entries. You must also run the Domain/IX crpasswd
command to' update the /etclpasswd and /etc/group files. Use the
/sr9.7 compatibility/sr9.7 executables version of crpasswd, which is
shipped with SRIO. -

If you change UNIX IDs in the SR9.7 /etclpasswd or /etc/group files
after you've already run cvtrgy at least once, you will want to propagate
the new numbers to the SRIO registry. Use the following procedure:

1. Run cvtrgy with the -invalidate _ unixids option to remove the
UNIX ID information from the SR9.7 registry files.

2. Run crpasswd to update the password and group files.

3. Run cvtrgy in the -from9to10 direction.

4. Run /etc/syncids on all SRIO disks.

Converting Passwords

The SRIO registry uses UNIX password encryption instead of the encryp
tion algorithm supported in previous releases. When a user changes his or
her password for the first time on an SRIO node, the system uses the new
algorithm to encrypt the password. If a user does not change a password,
the SRIO registry uses the SR9.x format password placed there by cvtrgy.

There is no need to ask users to re-encrypt their passwords (by retyping or
changing them on an SRIO node), except in the following case.

If you are in a UNIX environment, and you have UNIX programs that
read /etc/passwd and expect the password to be encrypted in the UNIX
style, you will want to have all your users re-encrypt their passwords, as
soon as you're ready to mark your SRIO registries writable by using the

Implications for System Administrators 3-15

cvtrgy -readonJy option. (Remember that you use -readonJy only once,
and that its effects are not reversible.)

If this situation is relevant to your site, or you think it might become so in
the future, we suggest the following strategy to force users to re-encrypt
their passwords within some reasonable time after SRIO nodes become
available.

Once your SRIO registry becomes writable, edit the SRIO registry data
base, using the edrgy tool, and set the password expiration date for all
users to the previous day's date. The next time a user logs in on an SRIO
node, the login program will prompt the user to change password.

The user can type the same password, which the registry then encrypts in
the SRIO style; the user then has the same password regardless of which
type of machine (SR9.x or SRIO) he or she is working on. If the user
types a new password, then the new password is only valid on SRIO
machines, until you use the cvtrgy tool to propagate the changes to the
SR9.x registries.

Registry Site Node Considerations

We've mentioned already that the master registry site node should be
disked, and have ample memory and processes available. The glbd
(which may run on a node other than the master registry site) runs more
efficiently if it has at least 2 MB of physical memory available.

The sr9.7_compatibility/sr9.7_executables directory includes new
SR9.7 versions of NCS software. This software includes /lib/ddslib,
which you should copy to the /lib directory on the SR9.7 node, and a new
Isys/ncs tree. You must use this new NCS software on SR9.7 nodes that
run the Global Location Broker daemon, glbd, as well as on nodes that
interact with the SRIO registry.

There must be at least one glbd process running on each network, and an
Ubd process must run on the same node as the glbd process. In addition,
an Ubd and a rgyd process must run on each registry site.

3-16 Implications for System Administrators

Another consideration is the order in which these servers are started on a
node. If you already have NCS applications running on your network,
you are aware of these considerations. If you are not, they are outlined
below.

On the master node, start network routing services and any TCP/IP
servers first, then start node servers in the following order. Start them in
this order regardless of whether you start servers in the node startup file,
the letc/rc file, or manually. We recommend that you use the letc/rc file.

1. llbd
2. glbd
3. rgyd
4. Other node servers

Again, the glbd may not necessarily be running on the master registry site
node, since there is no particular advantage to having both processes run
ning on the master registry site node.

On registry site nodes, you must adhere to the same order, leaving out the
glbd, if appropriate. You administer the registry servers via the
rgy_admin tool; see Managing System Software for your environment for
details about administration.

Enabling Registry Services

The SRIO registry requires the services of several daemons (or servers) to
manage and administer the SRIO registry and any replicas. An NCS com
ponent called the Location Broker enables SRIO nodes in your network to
locate SRIO registries and to use their services.

Once you have a registry database, enable the registry server to provide
registry services to your SRIO nodes. You obtain a registry database in
one of two ways:

• If you are converting a network from SR9.7 to SRIO, use
cvtrgy to create an SRIO format registry database from the
SR9.7 registry data files.

• If you are creating a new network (that is, one on which the first
and all other nodes will run only SRIO software), use the
rgy_create utility, which creates an SRIO format registry data
base that contains all the necessary reserved entries. (This tool

Implications for System Administrators 3-17

exists only in the first linstall/tools directory created when you
install from tape; networlc installs from that directory do not
propagate rgy _create.)

Once you have a registry database, enable registry services by starting the
registry server.

Before you start the registry server (/etc/rgyd), however, you must have a
Global Location Broker daemon (glbd) running somewhere on the net
worlc, and a Local Location Broker daemon (llbd) running on each SRIO
registry site node. For further infonnation about the components of NCS,
including administrative infonnation, see Managing NCS Software.

Starting the Ilbd

To start the Ubd on a node, enter the following command at the Display
Manager prompt:

Command: cps letc/ncs/llbd

You can start the Ubd on one node from another node with the crp com
mand at a shell prompt:

crp -on /lremote _node -cps letc/ncs/llbd

To start the process from the 'node_datalstartup.type file, place the fol
lowing line in the file, after any lines that start network routing services or
a TCP server:

cps /etc/ncs/llbd

The letc/rc file will run llbd if the file letc/daemons/lIbd exists.

3-18 Implications for System Administrators

Starting and Administering the glbd

To start the first instance of a glbd on a network, enter the following com
mand at the Display Manager prompt:

Command: cps letclncs/glbd -create -first

You can start the first glbd on one node from another node with the crp
command at a shell prompt:

crp -on IIremote _node -cps -n glbd '/etc/ncs/glbd -create -first'

To start a replica glbd on a network, enter the following command at the
Display Manager prompt:

Command: cps letclncs/glbd -create -from dds:llnode

where IInode is the node from which you want to initialize the Global
Location Broker. The glbd starts automatically when the node is
rebooted, as long as the appropriate line in letc/rc is uncommented and
the letc/daemons/glbd exists.

A replicated GLB requires some maintenance in order to maintain con
sistency. See Managing NCS Software.

Starting the rgyd Process

To start the first instance of rgyd after you've run cvtrgy, log in as root
and enter the following shell command:

letclserver -p letclrgyd

The registry database conversion process automatically assigns the same
password to all the default reserved accounts in the registry. The 8-
character string -apollo- is the default password for all these accounts.
The registry owner can change it. The account for user has the same
password, but logging in as user.none.none requires no password.

implications for System Administrators 3-19

If you create the empty file letc/daemons/rgyd, the node's letc/rc file, as
shipped, ensures that this daemon is restarted every time the node is
rebooted.

Creating a Replica Registry

To create a copy of the existing registry database, use the rgyd process
with the -create flag. To create a brand new empty copy of the registry
database, use the linstaU/tools/rgy _create process. See the Managing
System Software books and the online manual page for rgy _create for
further details.

After you have the registry database information in place on the node,
you'l1 have to make provisions for starting the llbd and the rgyd servers
on the replica registry node.

The Local Registry

A node's local registry is found in the file Isys/registry/rgy_local at
SRIO. If there is no Isys/registry directory on the node, the node runs
without a local registry; if the Isys/registry directory exists, the system
creates a local registry at the first login of an account other than
user.none.none. You can use edrgy to change the default size and
expiration settings in the local registry and to synchronize the local regis
try infonnation with the master registry.

Merging Registries

If you must merge SRIO registries for any reason (for example, when you
are creating an internet out of previously disjoint Apollo networks), use
the letc/rgy _merge command. See the online manual pages for this com
mand, as well as the various system software and internet administration
manuals.

3-20 Implications for System Administrators

Registry in a Single-Node Environment

In a single-node environment (or peIhaps even in a two-node network),
you can operate without running a registry server (or llbd or glbd), by
using the limited capacity of the local registry. Briefly, you must start the
registry server (rgyd), copy the information you need into the node's
local registry via the edrgy copy command and stop the server. You may
wish to use the netsvc command to take a single node out of the network
and force use of its local registry. You'll then be able to run from infor
mation stored in the local registry. See the Managing System Software
books for further details.

Cataloging Nodes

There are no changes to the ctnode and uctnode commands that catalog
and uncatalog nodes in the network. Remember that node names should
all be lowercase. Don't catalog nodes with mixed case names in the event
that the Naming Server becomes case sensitive in a later release.

Converting Names: the cvtname Tool

The cvtname command allows you to choose to convert colon-mapped
characters in a pathname.

You can specify, with options to cvtname, that the pathname(s) resulting
from the conversion be either all lowercase, all uppercase, or mixed case.
Another option allows you to list the conversions to take place without
actually converting the names. Normally, in mixed-case mode, the tool
queries you to verify that the conversions were correct; an option exists to
tum this feature off.

The name conversion tool only works on an SRIO directory structure; so,
before you attempt to use it, you must have initialized the node's disk and
installed SRIO. The cvtname tool will "walk" a tree for you, so you
don't need to specify the names of subdirectories in a pathname, and you
really only need to run the tool once.

!fyou don't specify -nq, cvtname presents you with both the unconverted

Implications for System Administrators 3-21

and converted versions of the pathname. Type y to convert or n to let the
name stand. Changes take effect immediately. You can quit cvtname at
any time by typing q to quit. Note that The tool will not convert some
colon-character sequences in a patbname without converting them all.
See the online manual pages for complete information on this tool.

Operating Mixed Networks

In a mixed networlc, you'll have machines with SRIO system software and
machines with SR9.x system software. Any machines that do not run at
least SR9.7 system software will be unable to communicate with SRIO
nodes. Before you begin converting nodes to SRIO, make sure that all the
nodes on your networlc are at least at SR9.7, unless you must maintain
pre-SR9.7 nodes for other reasons. Generally speaking, the major prob
lem in mixed networlcs is that pre-SR9.7 nodes cannot see files and/or
read directories on SRIO nodes, usually because of insufficient rights or
incompatibilities in directory formats.

Copying a file (or directory) from an SR9.7 node to an SRIO (in the Aegis
environment) with the -sael option may limit access to the file more than
you expect, since converting ACLs from SR9.7 access rights to SRIO
never allows more access to an object, but can allow less.

New Versions of SR9.7 Programs

In the course of developing SRIO, we altered elements in the system
which caused previous versions of some SR9.7 commands to operate
incorrectly or incompletely. In order to maintain complete compatibility
between SR9.7 and SRIO, we've rereleased any commands that were
affected in this way; they are now in a directory named
/sr9.7_compatibility/sr9.7_executables. This directory is installed as
part of the standard installation of SRIO; system administrators must
manually copy these commands to the appropriate nodes.

The sr9.7_compatibility/sr9.7_executables directory includes new
SR9.7 versions of NCS software. This software includes /lib/ddslib,
which you should copy to the /lib directory on the SR9.7 node, and a new
/sys/ncs tree. You must use this new NCS software on SR9.7 nodes that
run the Global Location Broker daemon, glbd, as well as on nodes that
interact with the SRIO registry.

3-22 Implications for System Administrators

Registry

You provide registry services to both SR9.x and SRlO nodes by maintain
ing both the old and the new-style registries on the network. The pre
SRIO nodes on the network use the SR9.x registries, and the SRIO regis
tries obtain registry services from the SRIO registry servers. The pre
SRlO mechanism will continue to work as it always did, and there is no
need for both types of registry to be on the same node. In fact, pre-SRIO
registries should not be maintained on SRIO nodes.

Registry-Specific Cautions

Spaces and commas are not legal characters in passwords in SR9.x regis
tries, and therefore are not present in these registries. (Pre-SRIO versions
of login treat a space or a comma as the end of the string.) These charac
ters are, however, legal in SRlO registries. In addition, pre-SRIO regis
tries, because they are case insensitive, only understand lowercase
passwords.

Therefore, creating a password that contains a space, comma, or upper
case letter in the writable SRIO registry makes the account associated
with that password unusable on pre-SRIO machines, once you've pro
pagated the changes to the SR9.x registries.

If your users were accustomed to typing their passwords without paying
attention to case, they will have problems at SRIO. Make users aware that
typing with the CAPS LOCK key on is no longer a good idea.

Protection Incompatibilities in Mixed Networks

At SRlO, some of the protection rights previously supported were col
lapsed into a smaller set of rights. This section describes changes to the
access rights and their implications in mixed networks.

At SRIO, passing in any of the old (supported at SR9.x but not at SRlO)
rights will not generate an error. But programs that examine rights bits
need to be modified if they expect to see any bits from the set gndcale or
do not expect to see k rights.

Implications for System Administrators 3-23

ACL incompatibilities in mixed networks of SRIO and SR9.x systems are
limited to those that stem from the conversion of access rights. However,
no conversion from SR9.x protections to SRIO ever decreases an object's
protection. The following tables illustrate how ACLs map between SR9.x
and SRIO nodes for access checking.

SR10 ACLRights Interpreted by SR9

SRIO right(s) SR9.x sees Notes
p pg g right is seen if p is on
r r no change
w cale never a subset of cale
x s execute = search
!k d ifnotk, d
k Id ifk, notd

n this right will always be on

SR9.x ACL Rights Interpreted by SR10

SR9.x right(s) SRIOsees Notes
p p no change
r r no change
x x no change
s x search = execute
cale w only if all of cale present
d !k ifd, notk
!d k if not d,k
go rights unsupported in SRIO

It is not possible to modify any subset of cale rights on an SRIO directory.
If, for example, an SR9.x node attempts to set cl rights on an SRIO direc
tory, w rights will not be added. Only modifying all or none of the cale
set will work correctly.

3-24 Implications for System Administrators

When SR9.x tries to access an SRIO directory, it can perfonn either all
modify operations on that directory (the SRIO ACL includes w, which
SR9.x sees as cale), or no modify operations (SRIO ACL has no w, so
SR9.x sees none of cale). If the k right is set on an SRIO ACL, no d right
is seen by an SR9.x node.

Running setuid and setgid Programs

The SRIO system software does not detect the set-user-id or set-group-id
bits in the protections of objects on pre-SRIO file systems. This means
that, while logged in on an SRIO node, you cannot invoke a setuid pro
gram that resides on a pre-SRIO node and have it run as setuid. This is
because SR9.x systems are not able to specify the owner of a file to the
SRIO operating system.

Implications for Backups

The SRIO tape fonnat which rbak and wbak support is different from the
pre-SRIO fonnat. For this reason, any attempt to restore an SRIO fonnat
tape with a pre-SRIO version of rbak can cause serious errors, including
(but not limited to) incorrect directory names, unusual characters, and cor
rupted file contents. Also for this reason, you should not create individual
tapes that contain material written by both SRIO and pre-SRIO versions of
wbak.

Protections and Backups

Restoring pre-SRIO objects to SRIO systems changes the ACLs on the
object into SRIO-style ACLs, with new rights. However, while rights
may change in slight ways, the transfonnation never decreases the amount
of protection that the pre-SRIO ACL provided.

SRIO rbak and wbak Commands

The rbak and wbak commands perfonn ACL and name conversions
along the lines just described. The SRIO versions of rbak and wbak
automatically map any colon-character constructions to the appropriate
uppercase letter or character, regardless of whether the colon is intended
to be literal. If you intend to use literal colons in pathnames, you should
use the cvtname tool after the restore to ensure that they are reinstated.

Implications for System Administrators 3-25

Certain restrictions apply when you're using rbak and wbak in a mixed
environment. FlISt, backing up an SRIO node with wbak from an SR9.7
node works correctly so long as the names of the objects on the SRIO
node confonn to the SR9.7 restrictions with respect to patbname and com
ponent name length.

If you attempt to restore an SRIO fonnat tape with the standard SR9.7
rbak, serious errors will occur. To restore SRIO objects to SRIO volumes
from SR9.7 nodes, use the rbak command installed in the
Isr9.'_executables directory. This version of rbak prints an error mes
sage if it encounters a tape fonnat that it does not recognize. You'll also
need to be sure that this command resides on any SR9.7 node that needs
to use rbak to restore objects to SRIO nodes.

To create a tape on an SRlO node that you can read on an SR9.7 node, use
the -presrlO flag with wbak. This tape will have no ACLs by default.
To restore the tape to an SR9.7 node, use a pre-SRlO version of rbak. If
you make a tape on an SRIO node without the presrlO option, you will
not be able to restore that tape successfully to a pre-SRIO system.

Because there are no canned ACLs in SRIO, ACL entries for
%.backup.% are no longer given to directories (and files) by default at
installation. This allows you flexibility in the way you perfonn backups
on your network. To operate as you did before SRIO, add ACL entries
for %.backup. % to file system objects that you wish to back up.

If you wish to perfonn backups in an alternate way, say, running as root,
you can do that without adding ACL entries. You do not need to perfonn
backups as root. See the Managing System Software books for specific
suggestions about perfonning backups as root, as well as infonnation
about the effects of Iprotect and the LOCAL_ACCESS_ONLY attribute on
running backups as root.

Before SRIO, the operating system used a mechanism we called colon
mapping to distinguish uppercase letters (and a few special characters) in
the case-insensitive Aegis environment A file you created in a
Domain/IX environment named *Readme would appear, in an Aegis
shell, as :readme.

The SRIO versions of the rbak and wbak commands automatically map
colon-character constructs (pre-SRIO capita11etters) into the appropriate
character. Therefore, if you wish to preserve literal colons in existing
patbnames, you should use the cvtname tool. In an SRlO file system, the
colon bas no meaning as an escape character.

3-26 Implications for System Administrators

Mixed Networks and uucp

Because pre-SRIO Domain/lX systems use a different version of uucp
than the HoneyDanBer version shipped with SRIO, pre-SRIO uucp can
not share spooling queues with SRIO uucp. In order for you to upgrade
your uucp site node to SRIO and still interoperate with pre-SRIO nodes,
we provide an SR9.7 version of HoneyDanBer uucp to run on SR9.7
nodes only. Installing this on SR9.7 nodes allows SR9.7 and SRIO nodes
to share a common spooling queue. This version of HoneyDanBer uucp
is in the directory Isr9.7 _ compatibility/sr9.7 _ executables.

Usually only one node in an Apollo network: is configured as the uucp site
node. Other nodes on the network have their lusrlspooIluucp and
lusrllib/uucp directories linked to the uucp site node. In a network of
mixed pre-SRIO and SRIO machines, only machines running Honey
DanBer uucp will interoperate. Therefore, you must have the SR9.7 ver
sion of HoneyDanBer uucp running on any SR9.7 nodes that you want to
be able to communicate with the SRlO HoneyDanBer site node.

If the site node is upgraded to SRIO HoneyDanBer uucp, the SR9.7
HoneyDanBer 1$(SYSTYPE)/usrlbin uucp files should be installed on
any SR9.7 user nodes you want to run uucp. If the site node is running
SR9.7, the SR9.7 HoneyDanBer 1$(SYSTYPE)/usrlIib/uucp and
1$(SYSTYPE)/usrlspool/uucp files should be installed. Note that the
configuration files must be converted from the old names and formats to
the new ones. This means that, once you've upgraded to HoneyDanBer
uucp, pre-SR9.7 nodes on your network will not be able to use the old
version of uucp to communicate. Refer to the Managing System Software
books for further details on converting configuration files. Refer to the
online file Isr9.7 compatibility/sr9.7 executables/uucp README for
installation instruCtions. - -

Through modems, however, the SRIO version of uucp will communicate
with pre-SRIO Apollo uucp, as well as other vendors' versions of uucp
and HoneyDanBer uucp.

Mail Address Registry Field

The mail gateway field (which uses the SRIO registry for storing informa
tion) has no effect when you run with a read-only SRIO registry.

Implications for System Administrators 3-27

Print Services

The new Aegis print architecture works transparently in a mixed environ
ment that contains SRIO and SR9.7 print servers. Two information
request options, -prelO and -check, have been added to the prf com
mand to provide additional control in mixed environments.

By default, the SRIO prf command first submits a print job using the
SR9.7 format (it creates a file in Isys/print/queue and copies the data file
to Isys/printlspooler). The SRlO prf command then queries the print
managers on the network to find the specified printer name. If the name is
found to be an active SRIO printer, the job is added to the print manager's
queue. If the specified printer does not exist, prf returns with no error
message, assuming the job has been queued to an SR9 print server.

The -prelO option eliminates the query to the print manager. Use this
option only when you are sure there are no SRIO print managers on the
netwotX.

The -check option is used if you want to be sure you are queuing a job to
an SRIO printer. Adding the -check option to your command line or
startup.prf file will cause prf to report an error and not queue the job if
the specified printer name is not an active SRIO printer. This option will
become a default in a future release.

Ordinarily, in a mixed environment of SRIO and pre-SRIO systems, the
Isys/print directory must be located on an SR9.7 node; otherwise, users
on SR9.7 nodes cannot queue jobs. However, the
Isr9.7 _ compatibility/sr9.7 _ executables directory contains versions of
Icom/prf and Ilib/prflib that overcome this restriction. If you install these
items on the SR9.7 nodes in place of the original prf and prflib, you can
then put the Isys/print directory on an SRIO node and queue jobs success
fully from the SR9.7 nodes. In all cases, the print manager and print
server can run on SRIO or SR9.7 nodes.

If you find it necessary or desirable to put the spool directory on an SR 1 0
volume, then you must copy llib/prflib and Icom/prf from the
Isr9.7 _ compatibility/sr9. 7_ executables directory to the SR9.7 nodes on
your network and reload the libraries (by rebooting or exiting the Display
Manager).

The new features of the SRIO architecture are, of course, not supported on
an SR9.xnode.

3-28 Implications for System Administrators

File System Incompatibilities

There are some incompatibilities between the file systems of SRIO and
pre-SRIO operating systems.

Object File Formats

The fonnat for executable files changed at SRlO. Before SRIO, the sys
tem used the obj fonnat (Apollo object file fonnat). At SRI0 and beyond,
the system uses an extended version of the AT&T Common Object File
Fonnat (COFF) standard. (For additional infonnation on the COFF stan
dard, see Chapter 4.)

Because of the difference in object file fonnats between SR9.x and SRI0,
be careful about which object modules you try to run on which nodes.
Any SR9.2 object modules that run on SR9.S (and were not compiled for
sys3 or bsd4.1) will run on SRI0, assuming they meet other compatibility
restrictions like case sensitivity and longer names. However, pre-SRI0
machines will not be able to run SRI0 (COFF) object files at all.

You should consider these restrictions when setting up links between
nodes, as well.

Be aware of type managers compiled as COFF objects, since they may get
passed between nodes and find their way to pre-SRI0 nodes. Type
managers compiled as obj objects do run on SRI0 nodes. However, in
mixed networks, type managers that reside on an SRI0 node may not
always be loaded dynamically across the network to a pre-SRIO node,
since SRI0 type managers are compiled as COFF modules, and COFF
objects do not run on pre-SRI0 nodes.

This problem can occur when you use products like Domain/Access
Release 3.0, since type m~agers included with this product are compiled
as COFF objects. See the Release Document for Domain/Access Release
3.0 for complete details.

Layered products that require you to compi,e programs are also subject to
the limitations on COFF and obj objects in, mixed networks. For example,
with Domain/LU6.2 Release 1.1, a TranSaction Program (TP) that you
compile by using an SRlO compiler won't run on a pre-SRI0 node
because the program is a COFF object. For further details about using
Domain/LU6.2 Release 1.1 in a mixed network, see the Release Docu
ment for this layered product.

Implications for System Administrators 3-29

Command Search Rules

From a pre-SRIO node, if you have an SRIO node in your command
search rules (CSR) or PAm, you'll have problems because you can't run
COFF object modules on pre-SRIO systems, and all commands at SRIO
are compiled with COFF.

Be aware of the effects of variant links in a mixed network, especially the
$(SYSTYPE) link. On an SRIO node running BSD, for example, the
$(SYSTYPE)lusr directory will resolve to Ibsd4.3/usr. If you want to
maintain, say, bsd4.2 directories on a directory, add the pathname for the
bsd4.2 trees to the PAm or CSR explicitly, or specify the patbname in
full every time you try to gain access to the trees. If you run SR9.7 pro
grams on SRIO nodes, you must be aware that the SYSTYPE variable
may not be what the program expects.

Differences in Name Resolution

The major differences in name resolution that were just detailed have a
significant impact in a mixed environment. The potential problems in
ignoring case when you're operating in a case-sensitive environment are
obvious, but what may be more subtle is how changes in the tilde,
backslash, and other special characters affect users in mixed networks.

For example, if you type cat -file on a pre-SRIO machine, you'll see the
contents of the file in your naming directory named file. If you type the
same thing on an SRIO node, you'll get "No such file or directory,"
assuming you don't have a file literally named file. The correct syntax for
specifying a file in the naming directory is -/file. You'll have to make
users aware of the probable ill effects of this and other constructions in
shell scripts, search rules, and programs, as well.

Remote Process Creation

For you to create a remote process (up) on an SR9.7 node from an SRIO
node and have the improved features of the SRIO crp command, the type
spmio must exist on the SR9.7 node. The type is installed in Isyslmgrs on
an SRIO node by the SRIO installation procedure, and must be installed
manually on the SR9.7 node.

3-30 Implications for System Administrators

To install this type, use the inty shell command, as shown below. (If you
don't install the type, crp continues to work as it did at SR9.7.)

inty spmio source_volume -n nodeypec

The source_volume argument tells from which SRIO node to copy the
type name and manager. The node _spec argument specifies the target, or
SR9.7, node.

When you use crp to log in to a pre-SR9.7 node from an SRIO node,
you'll have difficulties using the -me option. This is because the crp -me
command sequence sets your naming and working directories and, if
either of those directories is an SR 1 0 directory, the pre-SR9. 7 node cannot
resolve it. Invoke crp without -me and log in to avoid this problem.

Using emt in Mixed Networks

SRIO includes a version of the emt utility for users who wish to crp from
an SRIO node onto an SR9.x node and use emt on the SR9.x node. This
version of the emt utility resides in the following directory:
Isr9.7 _compatibility/sr9.7_executables/com.

Layered Product Incompatibilities

The change to COFF format introduces incompatibilities with the Net
work License Server.

Network License Server

If your NLS application was built as an obj format object module (that is,
with pre-SRIO tools), it operates correctly on both SRIO and pre-SRIO
nodes in a mixed network. However, if your application was built as a
COFF object, you must run the obj2coft' tool over the library
Isys/nls/nls_lib for the application to run on SRIO nodes.

Implications for System Administrators 3-31

DomainlIX: SRIO Incompatibilities

Any incompatibilities between Domain/lX (that is, pre-SRIO) and SRIO
UNIX environments, other than those we've already discussed, are lim
ited to differences between System V Release 2 and System V Release 3,
and between 4.2BSD and 4.3BSD. These incompatibilities are reflected
in the standard documentation for those UNIX systems.

----BB----

3-32 Implications for System Administrators

Chapter 4

Implications for Programmers

This chapter addresses the implications for programmers of changes to the
SRIO operating system software.

General

In general, changes to the programming environment at SRIO fall into the
same areas as other parts of the operating system. These areas include
case sensitivity, different naming rules, and changes to protection.

We've made a number of changes specific to the programming environ
ment, including new compilers, new default object file format (COFF),
absolute code, single program-per-process model, and ANSI C function
prototypes.

Compatibility

The SRIO BSD and SysV environments are based on 4.3BSD and System
V Release 3 UNIX systems, respectively. The commands, bindable
libraries, and include files originated with the UNIX 4.3BSD and System
V Release 3 versions.

System V Release 2 and System V Release 3 are generally forward com
patible, but 4.2BSD and 4.3BSD are not, completely. If your programs

Implications/or Programmers 4-1

rely on Domain/IX 4.2BSD or System V Release 2 features (that is, sys
tem types of bsd4.2 or sys5), you should copy the appropriate 4.2BSD
and System V Release 2 lusr/include directories, under the Ibsd4.2 and
Isys5 directories, from an SR9.7 node.

The bsd4.1 and sys3 system types are obsolete.

SRIO Library Model

The scheme for loading program libraries has changed at SRI0. By using
a per-node configuration file, letclsys.conf, you can specify which
libraries are to be treated as "global, " that is, loaded into global space at
node boot time, and which libraries are to be treated as "shared," that is,
loaded into the private address space of a program at run time. This dis
tinction is especially useful for systems with small virtual address spaces
(16 MB and 64 MB) that do not have enough room in global A space to
load all libraries.

Shared libraries (those not marked "global") may be loaded either stati
cally or dynamically. That is, they may be loaded when a program con
taining a reference to the library gets loaded, or loaded only when the exe
cuting program actually executes a call on the library. A dynamic library
is marked "dynamic" in the sys.conf file. Note that a library marked
"global" cannot also be "dynamic."

All libraries specified in letclsys.conf, whether they are global or shared,
have their entry points inserted into the Known Global Table (KGT) of
global A at boot time. Any new versions of these libraries copied into llib
are visible until the node exits back to the boot shell or shuts down.

Libraries can also be designated "optional," which means that no error
will be reported if the library is not found. Additional flags in
letclsys.conf allow you to specify the smaller-virtual-address-space sys
tems for which certain libraries are not to be global.

In the absence of the sys.conf file, a default set of libraries is always
loaded. Some libraries not marked "global" may get loaded globally
anyway, if they are referenced by libraries that are loaded globally.

4-2 Implications for Programmers

The Bind Utility

We've made the following changes to the bind utility for SRIO:

• The binder now handles only COFF objects; that is, objects
produced by SRIO compilers, SRIO linkers (bind or ld), or
SRlO archivers (lbr or ar). The binder does not handle any
object files compiled prior to SRIO.

• The bind utility now supports both a .runtype option to
control the UNIX run-time system call semantics and a
-systype option to control pathname semantics. The SRIO
compilers also support both the .runtype and ·systype
options.

• At SRIO, you must use the ·allocbss bind option whenever
you compile a C program with either Ibinlcc or with
/com/cc and the ·bss option. The ·aUocbss option allocates
space for globals, and is required, even if the C program
consists of only one source file. When you bind with
.allocbss, you cannot run the output file through the binder
again.

If you compile by using Ibinlcc -WO -nbss or Icom/ce (without the -bss
option), you should use -mergebss to merge the resulting multiple global
data sections. Conversely, if you compile with /binlce or /com/cc -bss,
you must use -allocbss in the final bind operation to create a single data
section and to put all the uninitialized global variables (which are not
assigned a section during compilation) into the section. Unlike
-mergebss, the -allocbss option does not merge any existing
uninitialized global data sections into the .bss section.

The Ibr Utility

We've made the following changes to the librarian utility, Ibr, for SRlO:

• The lbr utility handles only objects generated by SRlO
compilers, SRIO linkers (bind or ld) or SRIO archivers (lbr
or ar). The lbr utility now generates library files in the

Implications for Programmers 4-3

form of UNIX archive (ar) files. For compatibility, we pro
vide a version of Ibr that handles objects created between
SR9.5 and SR9.7. This command resides in
Isr9.7 _compatibility/compat_with_sr9.7/com. Note that
the Ibr_sr9.2 utility is now obsolete.

• The format of ·list output is now the same as ar ·tv format.

The tb -args Command

Because COFF objects do not have the information necessary to support
the ·args to /com/tb, the option has been removed.

The Ibin/ld Command

Because /bin/Id no longer invokes /comlbind, you must be aware of dif
ferent search rules when you construct a Ibin/Id command line. At SRIO,
Ibin/Id searches libraries in the order they appear on the command line.

Libraries

The library !lib/unixlib is obsolete at SRIO. It has been replaced by
lIib/clib and !lib!libc.

We've provided libraries with the SRIO release that you can use to run the
SRIO compilers on SR9.7 nodes. They reside in
/sr9.7 _compatibility/sr9.7 _executables!lib. You must copy the follow
ing libraries from an SRIO node to the SR9.7 node that you want to run
the SRIO compilers on:

!liblkg_.lib
!lib/name .lib
lIiblIoader __ .lib

The /sr9.7 _compatibility/sr9.7 _executables directory contains an SR9.7
version of lIib/streams to correct an error you may encounter when run
ning in a mixed network. If you run a program on an SR9.7 node that
uses the ios_$close call to close a temporary file that resides on an SRIO
node, the call returns the error status "fOOOl, object not found." The
operation has correctly occurred on the SRIO node, but the return of that
status code may cause the program to fail. Install the !lib/streams from

4-4 Implications for Programmers

ISr9.7_compatibility/sr9.7_executablesllib/streams on the SR9.7 node
to correct this behavior.

Please note that this version of the streams library supports only Version
3.1 of TCP/IP. IT you are running Version 3.0 of TCP/lP, you should not
install this version of lIib/streams on your SR9. 7 node.

The IIib/prflib Library

Any applications that bind a pre-SR10 version of the library lIib/prflib
must rebind with the SR10 prflib. Use the -inlib option to bind to accom
plish this.

Insert Files

There have been changes to insert files at SR10.

Location

At SR10, all system insert files reside in the directory Isyslins. The C
function prototypes reside in the directory lusr/includeiapoUo.

C Insert Files

At SRIO, we provide two sets of include files for the C language, the
current Isyslins/* .ins.c files and the new lusr/include/apoUo/*.h files (for
example, ios.h, gpr.h).

The *.h include files take advantage of the new prototyping and reference
variable features of Domain C. Together, these features simplify cross
language communication and make the std _ $call convention obsolete.
We recommend that you use the new include files in all new C programs.

The include file lusr/include/apoUo_$std.h is currently supported for use
with the Icomlcc C compiler. Future releases of the C compiler may not
include this file.

Implications for Programmers 4-S

Implications of Obsolete System Types

Before SRIO, if you did not specify a SYSTYPE at compile time (or
inside the C program itself), or if no SYSTYPE environment variable
existed, the C compiler stamped the object module with a SYSTYPE of
sys3. This means, for example, that many applications compiled with
Icom/cc before SRIO are stamped sys3.

The SYSTYPEs bsd4.1 and sys3 are obsolete at SRIO, and the SRIO
loader does not load programs marked with these SYSTYPEs. In the case
of C programs given a SYSTYPE of sys3 by Icom/cc, you can either
recompile, checking to make sure the programs are upward compatible, or
you can rebind with a new SYSTYPE.

The SYSTYPE "any" continues to be valid. However, applications
marked with a SYSTYPE of "any" must be compiled with that SYS
TYPE explicitly. This was true before SRIO and is true now.

Transition from Obsolete System Types

As stated in the previous section, programs with SYSTYPEs of either
sys3 or bsd4.1 will not run at SRIO. If your site does not have access to
the source code for these programs, you may try rebinding the programs
with a new SYSTYPE (either sys5 or bsd4.2, as appropriate). The pro
grams may run without other changes in the new environment; we can
offer no guarantees. You cannot rebind to SYSTYPEs of bsd4.3 or
sys5.3 because of changes made at SRIO, most notably changes made to
the stat structures.

The ios _$ Interface

As a side effect of work on the UNIX I/O system calls, ios $ calls have
become interruptible. This is different behavior from SR9.7. You are
most likely to encounter this difference with the ios _ $get and ios _ $put
calls.

The pad _$ Interface

We've added a new call, pad_$isa_dmyad, which tells you whether a
stream is a Display Manager pad. See the online help pages for
Domain/OS system calls for details.

4-6 Implications for Programmers

The mkdir(2) System Call

We've made changes to the mkdir system call to alter the way a directory
inherits protections. When you use mkdir in a program to create a tree
now, the new directory inherits its initial file and directory ACLs from its
parent directory; that is, mkdir operates the way the crd command would.
This change in the mkdir system call enables directories to propagate
protection semantics to their subdirectories.

Options to the chacl command allow you to force a particular directory to
have UNIX inheritance characteristics. See the online manual page for
chacl for details.

The open(2) System Call

At SR9.7, the O_CREAT flag to an open call implied write access to the
file opened. This behavior conflicted with the SVID, and has been
changed at SRlO. You should always include one of O_RDONL Y,
O_WRONLY, orO_RDWR whenyouperfonn an open in a program.

The fst Command

The fst command, which prints fault status infonnation, works only if the
INPROCESS environment variable is set and all commands are run in
process. For the nonnal SRlO environment (that is, not in-process), use
tb to get the infonnation that fst used to produce.

Case Sensitivity

At SRIO, the kernel and libraries are fully case sensitive. Programs that
depend on (or petpetuate) old, case-insensitive behavior do not work at
SRIO, unless you use the temporary transition aids we have supplied.

In this section, we supply a few simple rules that, when applied to your
programs, ensure that they behave properly in the case-sensitive world of
SRIO. (Individual programming languages, of course, have their own
naming rules; we have not changed any of these.)

Implications/or Programmers 4--7

Pathnames

Don't manipulate case in patbnames. Assume that patbnames, whether
supplied by users, programs, or system calls are supplied case correct. A
request to open "/myDIR/MYfile," whether it comes from a user or
another program, must not be changed into a request to open
"/MYDIR/MYFILE" or "/mydir/myfile." The corollary to this is that
programs that emit pathnames (to users or to other programs) must never
emit a pathname that is not case correct. At SRlO, attempts to open
"/SYS/NODE_DATA/FOO" are guaranteed to fail, unless the user has
set DOWNCASE to true.

Programs that use the %ua or %la case conversion options in the control
string of vfmt calls that print out patbnames should be changed to use the
%a option instead.

Be sure to express all constant patbnames embedded in source in the
correct case. Typically, this means lowercase (for existing non
Domain/IX software), although it is not uncommon for UNIX program
mers to use mixed-case leaf names (for example, /usr/lib/getNAME,
/usr/lib/font/ftR) and even to create names that are identical in all ways
except case. Programs containing embedded patbnames that are not case
sensitive must be modified to work at SRIO. For example, a program that
contains the definition

CONST my..file = '/SYSIMY_FILE';

doesn't work at SRIO because the /sys directory is named Isys, not ISYS.
The definition

CONST my..file = '/sys/myJde';

does work at SRIO (assuming, of course, that the file name was my_file,
and not MY_FILE.

Calls that Return Names

All calls that return names should return them case correct. The following
case-correct calls are obsolete:

4-8 Implications for Programmers

name _ $get_ ndir _ cc();

name $read dir ceO;
name = $get yath = cc();

Read the working directory of the
calling process in the correct case.
Read the naming directory of the
calling process in the correct case.
Read directory entries in the correct case.
Find the FULL pathname of the specified
object in the correct case.

These have been replaced by calls that support both long names and
case-sensitive behavior.

All name_$create calls return "name_$alreadY3xists" if the name
exists. This semantic is unchanged at SRIO.

The name $delete calls do not reliably return "name_$nocfound." A
call may return "status_$ok," even if the name did not previously exist.
Therefore, you cannot assume that the object did exist if you delete it and
get "status_$ok." You will get "name_$nocfound" reliably for local
objects. See "New Interfaces" under the section on long path and com
ponent names later in this section.

Symbol Names

At SRIO, the C compiler emits case-correct symbol names. The Pascal
and FORTRAN compilers emit lowercase names. If you need to share
data between C and Pascal or between C and FORTRAN, be certain that
global variables are declared in all lowercase letters in the C routines.

Transition Aids

The following subsections summarize transition aids that we supply to
help users adapt to a case-sensitive environment at SRIO.

Downcase Mode

Downcase mode affects the way the naming server interprets pathnames
that are presented to it. Users control downcase mode by means of a per
process environment variable called DOWNCASE. If DOWNCASE is
true, then a process runs in downcase mode.

Implications for Programmers 4-9

We do not recommend relying on the DOWNCASE environment variable
or any other means of running in downcase mode after SRIO. It is a tran
sition aid, and support will be removed in a future release.

When a process is running in downcase mode, the naming server's
behavior changes in two ways:

• It forces to lowercase all patbnames presented to it as input
before it tries to resolve them.

• It treats the set of characters

as syntax, rather than as constituent characters of a name. (This
is compatible with the pre-SRIO default setting of the
NAMECHARS environment variable. Any attempt by the user
to set NAMECHARS is ignored at SRIO.)

Files with mixed-case names are inaccessible to programs running in
downcase mode, although the DM escape mechanism of delimiting
mixed-case names with single quotes continues to work.

When a program is not in downcase mode (the default at SRIO), the nam
ing server treats all characters in patbnames as constituents, with the
exception of the following:

" The tic (backquote) in the name 'node_data remains
unchanged from previous releases.

The tilde is now a reserved file name which the naming
server always expands into the name of the current naming
directory. We no longer support the notation

-foo

as a shorthand for "namin!Ldir/foo". Instead, the notation
is now

4-10 Implications/or Programmers

$(name) We have retained the variable link mechanism. When the
naming server sees the dollar-sign open-parenthesis string,
it treats everything between the open parenthesis and the
next closing parenthesis as a variable name, expanding it to
the current value of that variable name.

The backslash and dot characters have different syntactic meanings in the
default SRIO environment, unless a process is running in downcase mode.
Backslash no longer represents the parent directory. Dot, dot-dot, and
tilde all worlc as before when followed by a slash. Otherwise, they are
interpreted as literal characters in the name.

The following table summarizes changed interpretations of dot, dot-dot,
backslash, and tilde.

Name Meaning
Pre-SR1O atSR10

\foo name "foo" in name "\foo" in
the parent of this this directory
directory

. ./foo name "foo" in no change
the parent of this
directory

.foo name "foo" in name " .foo" in
this directory this directory

./foo name "foo" in no change
this directory

-foo name "foo" in name "-foo" in
naming directory this directory

-/foo name "foo" in no change
naming directory

Implications/or Programmers 4-11

At SRIO, the notation

\foo

refers to the name \foo in the current directory, rather than to the name
foo in the parent of the current directory. To specify the name foo in the
parent, you need to say

.. /foo

You can also no longer use a file's pathname as the root of a patbname
with backslashes. For example, in an Aegis shell script, the following
construction is not valid, while the backslash equivalent was valid at
SR9.7:

AO/ •• /programl

where programl is another file in the same directory as the script. In
addition to changes in the backslash notation, the notation

.foo

refers to the name .foo, rather than to the name foo, in the current direc
tory. To refer to a foo in the current directory, you have to say

foo
or

./foo

These changes in syntactic rules are in effect for all programs not running
in downcase mode. Programs running in downcase mode can use the
current interpretations of backslash and dot.

The case Command

The Display Manager (OM) command case allows you to change the case
of letters in a selected range of text. You can use this command to change
uppercase letters in source code or shell scripts to lowercase. See the on
line manual pages for additional information.

4-12 Implications for Programmers

Summary of Incompatibilities

The SRIO move to case sensitivity introduces the following incompatibili
ties for pre-SRIO programs and shell scripts:

• Programs that alter patbnames supplied by users, system calls,
or other programs may not be able to access the objects to
which those patbnames refer.

• Programs that do not use case-correct name-returning calls may
not be able to access the objects to which patbnames returned
by those calls refer.

• Programs and shell scripts that contain case-incorrect embedded
constant patbnames cannot access the objects to which those
patbnames refer.

• Shell scripts that use any of the following notations behave dif
ferently:

-name
. name
\name

• Programs that store colon-mapped file names in files cannot find
those names in an SRIO file system.

In order to wolk: correctly in the new environment,

• Programs must not arbitrarily alter the case of patbnames.

• Programs must not contain case-incorrect embedded pathnames.

• Programs must not depend on the pre-SRIO interpretations of
dot, backslash, and tilde when these characters appear as the
first character of a patbname.

We provide downcase mode as a compatibility mechanism at SRIO.
However, programs that run in downcase mode cannot resolve mixed
case pathnames and may exhibit other behavioral anomalies. We plan to
support downcase mode for no more than one major release of system
software.

Implications/or Programmers 4-13

Invoking Programs

At SRI0, all shells invoke new programs as new processes so as to sup
port absolute, or non-relocatable, code (code compiled to load at a fixed
address in memory). As a compatibility mechanism, an environment vari
able (INPROCESS) can cause the system to invoke programs in the same
process (in the Aegis /cornlsh). When we refer to in-process invocation,
we mean the pre-SRI0 mechanism of invoking a new program at a new
program level within the same process. (This mechanism requires pro
gram code to be position independent.)

When we refer to extraprocess invocation, we mean the UNIX mechan
ism of invoking a new program as a new process.

In addition, we have maintained support for the mark-release mechanisms
that clean up resource usage at each in-process program level (unmapping
files, freeing storage) However, the mark-release support will be removed
at the next major software release.

In-process invocation will continue to be available, but will not be sup
ported by the mark-release mechanism. Therefore, only carefully written
programs will find in-process invocation useful after SRI0. We strongly
urge programmers to move to the single-program-per-process model.

Clean-Up Handlers

At SRI0, a program's clean-up handlers must be released at each program
level. The pfm_$c1eanup call does not automatically release the clean-up
handler at the end of normal execution. If your program issues a
pfm_$cleanup call, it must also issue a pfm_$rls_c1eanup call at the end
of normal execution.

Number of Streams (File Descriptors) Open

Before SRI0, the standard environment for Aegis programs included four
file descriptors that were open when a program started executing. These
descriptors, 0, 1, 2, and 3, were named standard input (stdin), standard
output (stdout), error in (errin), and error out (errout), respectively. UNIX
programs, on the other hand, expect three open file descriptors, 0, 1, and
2, named standard input, standard output, and standard error, respectively.

4-14 Implications/or Programmers

Prior to SRlO, both Aegis and Domain/IX programs were invoked with
four standard file descriptors, which occasionally caused Domain/lX pro
grams to fail.

At SRlO, both Aegis and UNIX programs are invoked with three file
descriptors, or streams, open; that is, COFF objects are invoked with three
streams open. Obj objects (pre-SRIO format) are still invoked with four
streams. The rules are summarized as follows:

• When a COFF object invokes another COFF object, or an obj
object invokes another obj object, the pgm _ $invoke or exec
call passes through all the streams specified by the caller (3 for
COFF, 4 for obj).

• If a COFF object is invoked by an obj program and passed four
streams, the invoking process will close stream 2 (errin) and
move stream 3 (errout) to stream 2.

• If an obj object is invoked by a COFF program and passed only
three streams, the pgm _ $invoke or exec call copies stream 2
(standard error) onto stream 3, assuming that stream 3 is not
already open.

Some commands in the /com directory are in obj format at SRIO, so that
shell scripts will continue to work correctly. The Aegis shell, /cornlsh, is
an obj format object and therefore receives four streams. It also passes
four streams in all cases but one: if errin is redirected for the command
that /cornlsh is invoking, and if the command being invoked is a COFF
object, an error is returned.

At SRIO, the calls ios $errin and stream $errin are undefined. Your
programs should moveto the three-streams model. This means that refer
ences to errin in your programs should be purged. Below are two ways to
remove these references:

• Many programs have used errin in the past to ensure that a
program is reading from the keyboard. A more reliable
way to do this at SRlO is to have the program open
Idev/tty.

• For other uses of errin, you can change references to errin
in the program to read from ios_$stderr.

Implications/or Programmers 4-15

Relocatable and Absolute Code

By default, the SRIO compilers generate absolute code, which the loader
loads at Ox8000. Most Apollo commands use the absolute code. How
ever, the compilers retain the ability to generate position-independent
code. You must produce position-independent code for all routines
placed in a global or dynamically loadable library.

Program Invocation Semantics

The default semantic of pgm_$invoke [pgm_$waitJ changes from in
process to extraprocess invocation unless the INPROCESS environment
variable is set. The table below shows the relationship of the mode argu
ment of pgm _ $invoke to the value of INPROCESS.

Mode INPROCESS What Happens

"" (empty) set invokes extraprocess, continues

'''' (empty) unset invokes extraprocess, continues

pgm_$wait set invokes in-process, waits

pgm_$wait unset invokes extraprocess, waits

UNIX shells use fork or vfork. The following table shows the effect of
INPROCESS on pre-SRI 0 (specifically SR9.5) and SRIO mechanisms for
program invocation.

4-16 Implications/or Programmers

Shell at SR9.S at SRI0

/bin/sh pgm_$invoke[pgm_$wait] forkO/execO
(implicitly in-process)

/bin/csh pgm_$invoke[pgm_$wait] vforkO/exec()
(inprocess (implicitly in-process)
set)

/bin/csh vforkO/execO vforkO/execO
(inprocess
unset)

Icom/sh pgm_$invoke[pgm_$wait] pgm_$invoke[pgm_$wait]
(inprocess (implicitly in-process) (implicitly in-process)
set)

Icom/sh pgm_$invoke[pgm_$wait] pgm_$invoke[pgm_$wait]
(inprocess (implicitly in-process) (implicitly extra-process)
unset)

Inheritance Rules

Most pre-SRIO, parent-to-child inheritance rules still apply. A child pro
cess automatically inherits its parent's real and effective SID, environ
ment list, and list of pending and blocked signals.

If a program is invoked in-process, a child process inherits streams
opened in the parent program even if the parent does not include any code
that explicitly passes the open streams to the child. Programs that rely on
this behavior will not work at SRIO unless the INPROCESS variable is
set to true. The INPROCESS transition aid with mark-release will be
supported for one major release of system software.

Implications/or Programmers 4-17

Programs Affected

We expect the following types of programs to require changes in order to
work properly in a single-program-per-process world:

• Programs that expect to be able to share address space, in any
direction, across program invocation levels

• Programs that expect to share any open streams with their chil
dren and do not make explicit arrangements to do so

Transition Aids

If the environment variable INPROCESS is set, programs are invoked in
process. This transition aid is supported with the mark-release cleanup
for SRIO only.

Object Module Format

All SRIO Apollo compilers generate a new object format which is an
extended version of the AT&T COFF (Common Object File Format) stan
dard. The loader retains knowledge of how to load old (Apollo pre
COFF) objects; however, it is not possible to bind old and new modules
together. In addition, library files use UNIX ar format.

Be aware that COFF object files only run on SRIO nodes. For example, if
you have COFF files in your -'com directory and you are logged in on an
SR9.7 node, you will not be able to run them successfully.

The crtyobj command, which creates an object module to be bound with
a type manager, only creates COFF modules. If you need to create pre
SRIO format object modules for type managers, use an SR9.7 version of
the crtyobj command.

Many of the programming tools released at SRIO, including dbx, Id, and
ar, do not understand the "obj" format. Although you will be able to
execute obj format files on SRIO nodes, you do not have the same level of
access to these files that you have to COFF files. It is not possible to bind
old (obj) files to new (COFF) files.

4-18 Implications/or Programmers

All programs that read object modules must be endowed with the ability
to read COFF objects as well as (or instead of) old Apollo objects.

Transition Aids

We have provided the conversion programs obj2cotJ, which converts old
Apollo object files to COFF, and Ibr2ar, which converts old Apollo
libraries to ar format. Both of these programs reside in the
lusr/apoDoIbin directory. These programs should postpone, if not elim
inate, the need to recompile.

Converting obj Modules to COFF

The obj2cotJ tool converts a binary file from obj format to COFF. See
the online manual pages for further details.

Converting Library Files to ar Format

The Ibr2ar command converts pre-SRIO lbr libraries that contain obj
object modules into ar-style archives that contain COFF object files. The
Ibr2ar command invokes obj2cotJ and expects to find it in the
lusr/apollolbin directory. The lbrlar supports one option, which allows
the user to specify an altemate directory where obj2cotJ resides.

The command syntax is as follows:

Ibr2ar [-Y Ixxlyy] lbr .Jile ar .Jile

In the example above, instead of calling lusr/apollolbin/obj2cotJ, Ibr2ar
would call Ixxlyy/obj2coff. See the online manual pages for further
details.

Mixed Networks and COFF Modules

If you create a COFF module on an SR9.7 node and place it on an SR9.7
or SRIO volume, the COFF file will appear to be an AScn readable file,
and the Display Manager (SR9.7 or SRIO), upon request, attempts to open
a pad on it. This is also true for a COFF file that you deposit on an SR9.7
volume from an SRIO node.

Implications/or Programmers 4-19

We have also included in SRIO a command that can modify a COFF
module so that the DM will not open a pad on it. The command is
make bin, and it is found in the directory called
Isr9.7=compatibility/compat_with_sr9.7/com.

Long Path and Component Names

At SRIO, we increased the maximum length of a component (leaf) name
from the old limit of 32 characters to a new limit of 255 characters, and
increased the maximum length of a patbname from the old limit of 256
characters to a new limit of 1023 characters. Prior to SRI0, variable
names were unique through the first 32 characters. At SRIO, variable
names are unique through 4096 characters.

We made these changes along with implementing a new, more robust,
higher-capacity directory structure. Any program that uses Aegis system
calls that expect or return names may be affected.

Summary of Changes

To support long names, we created the data types name _ $lonL name _ t
and name_$loDgJname_t and a series of calls with the suffix _Ic (long
case-correct) that use these data types in place of the pre-SRIO
name_$name_t and name_$pname_t.

New Data Types

The following new data types are available at SRI0 in support of long
names:

Type Size Defined in
name_$lon8-name_t 256 bytes base.ins.*
name_$lon8-pname_t 1024 bytes base.ins.*

Since every name is null terminated, actual maximum lengths are 255
characters for a leaf name and 1023 characters for a patbname .

. 4-20 Implications for Programmers

New Interfaces

The following new interfaces were released at SRIO:

name _ $get _ wdir _Ie
name _ $get_ ndir_1e
name _ $get yath _Ie
name $read diru Ie
name - $read -link Ie
name = $extract _data_Ie

The following unreleased calls are not available to all customers; they are
also new at SRlO:

name $read dir Ie
name = $gpatii_1e -
name $get entryu Ie
name-$strlP leaf fc
name - $read -Iinku Ie
name - $find uid Ie
name = $resolve _ afaye ~e
name _ $in'L dir _Ie

These interfaces are functionally identical to pre-SRIO interfaces with
similar names (but without the Ie suffix). The differences are that the
new interfaces do the following: -

• Return name _ $Iong_ name _ t instead of name _ $name _ t, and/or
name _ $Iongyname _t instead of name _ $pname _ t.

• Expect the caller to specify an output buffer length (the max
imum size of the name the caller expects to get back) and return
an error if the size of the returned name exceeds that length.

Transition Aids

We have provided a tool, fetclshow_le, that examines an object module
and lists any calls the module makes that may be affected by the move tc
long names.

Programmers must audit their own code for procedures in which a dat~
type has been defined as a name _ $name _tor a name _ $pname _ t.

Implications/or Programmers 4-2]

Summary of Incompatibilities

At SRIO, it is possible to create longer path and component names than
with previous releases. Programs using interfaces from previous releases
return an error when attempting to read the longer names.

We have released new versions of name-returning interfaces, along with a
tool that examines object modules for references to old name-returning
interfaces.

In order to support long names, customers must use the tool to examine
any object module (of their own creation) that they suspect returns a
name, change their source code to use the new interfaces, and recompile.

Although such modifications are not a requirement, unmodified programs
return an error when they attempt to read a long name.

Long Symbol Names in Libraries

The obj format supports symbol names up to 32 characters long, but
COFF supports longer names. When the obj C compiler encounters a
name longer than 32 characters, it gives a warning message and truncates
the name. The obj Pascal compiler truncates without providing a warn
ing. This can become an issue when programs and the libraries they
access are in different object file formats. For example, a COFF program
would try to call a procedure with its complete long name, but the
procedure's name in an obj format library would be truncated to 32 char
acters, and the call would fail.

At SRIO, we've solved this incompatibility by doing two things. First,
any libraries that may be affected by this problem are shipped as COFF
objects. This ensures that COFF programs run correctly. In addition,
we've provide 32-character stub names in these libraries (for example,
gm _ $viewport _set_background _ valu is used to substitute for
gm_$viewport_set_background_value) so that obj programs are able to
access the symbols too.

4-22 Implications for Programmers

ACLs

At SRIO, user and system interfaces to the Access Control List (ACL)
manager interface have changed in ways that introduce some incompati
bilities for both programs and users.

We made these changes to allow full support for the UNIX protection
model and all its semantics. Accordingly, we have limited the number of
rights we support to the UNIX rwx (read, write, execute) set, along with
two extensions: p (the right to change protection), and k (keep; do not
delete or change the name ofthe object).

Summary of Changes

At SRIO, we require every object in the file system to carry rights
specifications for owner, group, and world rights (the UNIX model), as
well as for organization (from Aegis). These required rights are main·
tained as part of every file. Additional protection specifications, iJ
needed, are stored in an "extended ACL" that is essentially like the ACl
ofpre-SRIO releases.

New and Changed Rights

Mapping between pre-SRIO and SRIO rights is discussed completely it
Chapters 2 and 3.

The keep (k) right, which is new at SRIO, provides a way to protect aI

object from deletion even though it is cataloged in a writable directory
Attempts to unlink(2) an object with the k attribute return EACCESS, jus
as though the containing directoty had no write pennission.

In addition to being undeletable, an object with the k bit set has its name
protected from change. Before SRIO, it was not possible to protect a sin
gle object in a directory in this fashion, without protecting all objects iJ
the directory from name changes.

Implications/or Programmers 4-2

Attempts to delete an object by using the following Aegis system calls

name $delete file
name = $delete = fileu

succeed only if the containing directory is writable and the file does not
have a k attribute.

The Aegis system calls

name $delete file force
name = $delete = filen _ fwu

forcibly delete an object with the k attribute if the caller has p rights to
that object.

Summary of Incompatibilities

The SRIO changes in the ACL manager introduce several incompatibili
ties for programs. These incompatibilities are most pronounced in mixed
networlcs of SRIO and SR9.x systems.

Incompatible System Interfaces

The incompatibilities engendered by changes in the ACL manager are
small, limited in general to programs that examine individual rights bits.

At SRIO, passing in old (supported at SR9.x but not at SRIO) rights does
not generate an error. But programs that examine rights bits need to be
modified if they expect to see any bits from the set gndcale or do not
expect to see k rights.

The acl and edacl commands support a different set of rights
specifications. Shell scripts that examine the output of these commands
may need to be modified.

As stated in earlier sections of this guide, it is not possible to modify any
subset of cale rights on an SRIO directory. If, for example, an SR9.x
node attempts to set cI rights on an SRIO directory, no rights are changed.
Only programs that modify all or none of the cafe set get exactly what
they ask for.

4-24 Implications for Programmers

When SR9.x tries to access an SRIO directory, it is allowed either all
modify operations on that directory (the SRIO ACL includes w, which
SR9.x sees as we), or no modify operations (SRIO ACL has no w, so
SR9.x sees none of we). If the k right is set on an SRIO ACL, no d right
is seen by an SR9.x node.

Recommendations for Data Alignment

Since current and future hardware and software releases penalize pro
grams that make use of data structures in which data is not naturally
aligned, we urge programmers to use "naturally" aligned data structures
in their programs.

The following recommendations regarding data alignment are intended
for programmers who are developing new applications, or who want to be
sure their existing applications take full advantage of future hardware and
software technology. Any programs intended to run on Apollo's Serie!
10000 machines should employ natural alignment.

Natural Alignment

A value that begins at an address that is a multiple of its size in bytes i:
said to be "naturally" aligned. For example, a 2-byte value is naturall~
aligned if it starts on a 2-byte address boundary. Similarly, an 8-byt4
value is naturally aligned when it begins on an 8-byte boundary.

Natural alignment trades a possible inefficiency in memory usage for III

assured increase in processing speed. Many modem processors, such a
the MC68020, are designed to transfer data most efficiently if the data i
naturally aligned.

We expect future Apollo products to show a significant loss in perfO!
mance when operating on data that is not naturally aligned. While SRI
versions of the Domain compilers allocate scalar variables on natun
alignment boundaries where possible, the way in which you define stru(
tured data types such as records and arrays of records affects the aligt
ment of data within the structure.

Implications/or Programmers 4-~

Padding Structured Data

By default, current and future Domain compilers only enforce the align
ment of data within structures on byte or wold boundaries; double-wold
and quad-word quantities are only wold aligned. As a result, data within
structured types will not always be naturally aligned unless you design the
structure with such alignment in mind or you change the default align
ment setting.

For example, the following Pascal TYPE declaration specifies a recold
that consists of a 2-byte integer followed by a double-precision f1oating
point number:

TYPE myrec = RECORD
fieldl: INTEGER16;
field2: DOUBLE;
END;

In this structure, a floating-point number (DOUBLE) immediately follows
an integer (INTEGER I 6), which means that the DOUBLE ends up
aligned unnaturally (at an address that is a multiple of 2, rather than 8).
The following figure shows how this structure is written into memory:

In a simple structure like this one, you can get natural alignment by sim
ply changing the older of the fields, so that the larger field is first, as
shown:

TYPE myrec_new = RECORD
fieldl: DOUBLE;
field2: INTEGER16;

END;

4--26 Implications/or Programmers

The structure now looks like this:

DOUBLE INTEGER

#11##1###1#1###1#1#11##1###1#1#11##1#11##1###1# ####1#11##
011121314151617 8 1 9

You can always get natural alignment in a structure that contains only
unstructured types by arranging the record in order of decreasing field
size, as we have done in the myrec _new example.

Such a strategy cannot always work with more complex data structures
(that is, structures that include other structures). For example, rearrange
ment of fields does not work with an array of myrec or myrec _new
records. An array of myrec _new looks like this:

DOUBLE INTEGER DOUBLE INTEGER

1 # .. # 1 #### ###1#1#### # .. # 1 #11## 1 #### ####1#11##
0 I 1 .. 6 I 7 8 I 9 A J B .. l0 1 11 12 1 13

Here, myrec new[2].field2 starts on address A, which is not an 8-byte
multiple. Because the myrec_new record is not an even multiple of eight
bytes, many of the fieldl fields in the array will not be naturally aligned

In this case, you need to pad the record out until it becomes a multiple of
eight bytes (the size of an INTEGERI6), as shown below:

TYPE myrec for array = RECORD
fieldl:- DOUBLE;
field2: INTEGER16;
pad: array[1 .. 3] of INTEGER16;

END;

As a general rule, you can get natural alignment in an array of structured
types by padding the structured type to the size (or a multiple of the size)
of the largest unstructured type. Similar techniques work with records
that contain structures and other complex structured types.

Implicationsfor Programmers 4-27

Summary of Recommendations

We recommend that programmers take the following steps to ensure the
best performance for their programs:

• Make sure that all new data structures follow natural alignment
rules.

• Make sure routines that retum pointers to storage (for example,
free storage allocators) point to naturally aligned storage.

The SRIO version of the Domain Pascal compiler provides additional
techniques for enforcing natural alignment through the use of attribute
extensions. Since these extensions will not be supported on other sys
tems, developers interested in portability may wish to design data struc
tures that achieve natural alignment through padding.

Dot and Dot-Dot

At SRIO, we extended our support for the hard links "dot" (this direc
tory) and "dot-dot" (the parent of this directory). These directory entries
cannot be deleted.

Summary of Changes

At SRlO, the hard links "." (dot) and " .. " (dot-dot) appear as the first two
entries in any SRIO directory opened by using the "dir" calls (see
"Changed Interfaces" next). In addition, the following new calls see
these entries:

name $read diru Ie
ios _ dlr _ $readdir -

Programs must tolerate both the absence or presence of dot and dot-dot,
and not assume that they are the first two entries in a directory.

4-28 Implications for Programmers

Changed Interfaces

At SRI0, the following UNIX system calls now return dot and dot-dot as
the first two entries in a directory:

opendir
readdir
scandir
seekdir
telldir

The behavior of these interfaces remains othetwise unchanged.

At SRI0, the bsd4.3 version of Is(l) returns the names "." and " .. "
when invoked with the ·a option, as does the Aegis Icomlld command
invoked with the ·h option.

New Interfaces

The following new Aegis interfaces all return dot and dot-dot as the first
two entries in a directory.

Reads the contents of a directory.
First two entries in SRIO directories
are always "." and " .. ". Names are
returned in the correct case. Direc
tory is specified by pathname.

Reads the contents of a directory.
First two entries in SRI0 directories
are always "." and " .. ". Names are
returned in the correct case. Direc
tory is specified by UID.

Reads the contents of a directory.
Fust two entries in SRI0 directories
are always "." and " .. ". Names are
returned in the correct case. Direc
tory is specified by ios_id.

All Apollo programs that read directories have been modified to use these
new interfaces.

Implications/or Programmers 4-29

Summary of Incompatibilities

We do not expect the appearance of dot and dot-dot to cause problems for
any pre-SRIO software. In general, UNIX programs expect these entries
and do not attempt to delete them.

Any program that opens a directory by using one of the "Changed Inter
faces" previously listed and that does not recognize dot and dot-dot as
required contents of every directory (that is, a program that attempts to
delete these entries, or does not consider a directory empty when it con
tains only dot and dot-dot) fails at SRIO.

It is not enough to have a program ignore the first two directory entries,
since dot and dot-dot were not returned by pre-SRIO releases, and the first
two entries would be something else in an SR9.x directory or in a foreign
file system. Nor, for the same reasons, is it correct to assume that any
directory that only shows two entries is, in fact, empty.

Changes to Data Structures

At SRlO, we've merged the bsd4.3 and sys5.3 versions of certain data
structures and increased them in size to allow for future extensions. The
data structures affected are

• The structure returned by the stat, Istat, and fstat system calis
(declared in <syslstat.h»

• The structures returned by the opendir, readdir, getdents sys
tem calls (declared in <sys/dir.h> for bsd4.3 and in <dirent.h>
and <sysldirent.h> for sys5.3

The implications of this change are twofold. If you have programs that
contain your own declarations of these structures, the programs probably
will not work any longer. Also, you'll have to recompile a program to
change its SYSTYPE from bsd4.2 to bsd4.3 (or from sys5 to sys5.3).

4-30 Implications for Programmers

SYSTYPEs

SRIO provides no compile-time or run-time support for 4.1BSD
(SYSTYPE=bsd4.1) or AT&T System ill (SYSTYFE=sys3). Programs
that explicitly declare a SYSTYFE of sys3 or bsd4.1 are rejected by the
loader. The following error appears when an object module has the SYS
TYPE of sys3:

object module systype sys3 obsolete;

see srlO release notes (process manager/loader)

Any bsd4.1 modules generate the following error:

object module requires unsupported systype

(process manager/loader)

Type Managers and SYSTYPEs

A type manager runs with the system type of the program that invokes it.
At SRlO, possible SYSTYFEs include bsd4.3, sys5.3, bsd4.2, and sys5.
If you have written type managers that use UNIX system calls, you should
verify that none of these calls is SYSTYFE-dependent. If you are not
sure, we recommend that you test the type manager with all the possible
SYSTYFEs.

Incompatibilities between System V Release 2
and 3

Incompatibilities between Release 2 and Release 3 are documented in the
standard documentation for AT&T System V Release 3.

Implications for Programmers 4-31

Incompatibilities between 4.2BSD and 4.3BSD

Incompatibilities and changes between 4.2BSD and 4.3BSD are docu
mented in the 4.3BSD System Manager's Manual, Chapters 12 and 13.

Some New Features of the Domain C Compiler

The following sections highlight some of the features available with the
SRlO Domain/C Compiler. Consult the Domain C Language Reference
(order number 002093) for more information about these and other
compiler-related features.

Function Prototypes

Function prototypes allow function declarations to include data type infor
mation about arguments and are the default at SRlO. If you compile a
source program that contains an old-style declaration or invokes a func
tion before the prototype, compile the program with the .ntype option.

By default, the compiler is silent about old-style declarations. However.
if you use the ·info option when you compile. the compiler prints infor
mational messages.

Informational Messages

The Domain/C compiler can now issue informational messages in addi
tion to warning and error messages. Information messages identify por
tions of the source file that, if rewritten, could be more efficient or port
able. The new ·info option instructs the compiler to produce informa
tional messages; without it, the compiler produces only warning and error
messages.

Run-Time Version Specification

With the .runtype systype option, you can compile a C program that con
tains one SYSTYPE setting (such as 8Y85.3 or b8d4.3 and then run the
program in another environment.

4-32 Implications for Programmers

The Section Specifier

The Icornlcc command creates a named section in an object file for every
global variable declared; on the other hand, Ibinlcc puts all initialized glo
bal variables in one section, and all uninitialized global declarations in
another. To make /bin/cc behave like Icornlcc, you can now use section
specifiers to create named sections. Section specifiers are especially use
ful for interacting with FORTRAN programs that use common blocks.

Reference Variables

Reference variables are variables that refer to other objects. Whenever a
reference variable appears in an expression, the referenced object is
accessed instead. With a reference variable, you can create an alias for a
variable, transform a constant into a form of variable, and provide a clean
syntax for passing function arguments by reference.

Built-In Function

Domain/C supports built-in functions for all routines declared in
<ftoat.h>, <string.h>, and <strings.h>. To use a built-in function, which
can significantly increase execution speed, you must include the
<builtins.h> header file in your program.

Disk Storage: mallocO and rws _ $alloc

In order to guarantee that backing store is available for the virtual
memory allocated, the calls mallocO and rws _ $alloc now attempt to
reserve the specified amount of disk space. If the requested amount of
disk space isn't available, then the calls fail. This means that free disk
space is reserved to programs that malloc large areas even if the area is
never used. Disk space is freed when the program exits, or if the space is
explicitly released with freeO or rws _ $release _heap.

Implications/or Programmers 4-33

Disk Storage and Static Arrays

Before SRIO, a program could declare a large static array and the disk
space would only be consumed as the array filled it in. At SRIO, all of the
disk space that an array requires is reserved when the program is loaded.
This fact may cause a program to require more disk space to run than it
did before.

Some New Features of the Pascal Compiler

The Domain Pascal compiler generates COFF object modules. If you
need to compile into the pre-SRIO obj format, use the SR9.7 compiler.

Preprocessor Variable

A new preprocessor variable, J3FMT_COFF, is available; it is both
defined and enabled. With this variable, you can determine whether the
compiler you are using is a COFF compiler.

Syntax for Specifying Size and Alignment

Domain Pascal has a new syntax for specifying size and alignment of
objects. See the Domain Pascal lAnguage Reference (order number
000792) for details.

Routine Signatures

In the past, if a routine was declared FORWARD or EXTERN and the
body of the routine was declared later in a source file, it was illegal to
respecify the routine's parameter and routine option lists. The compiler
now accepts a redeclaration and issues an error if the declarations are not
equivalent.

4-34 Implications for Programmers

Signature Comparison Standards

Standards for procedure signature comparison when assigning the address
of an actual routine to a procedure or function pointer are more stringent
at SRI0. Previously, parameters were only required to be assignment
compatible. At SRI0, parameters must be name compatible. Under the
old rules, it was possible to have radically different declarations that were
considered compatible. (For example, the unsigned subrange 0 .. 65535
was considered compatible with the signed range, IN1EGER.)

Some New Features of the FORTRAN Compiler

The following headings highlight some of the features available with the
SRI0 Domain FORTRAN Compiler. Consult the Domain FORTRAN
Language Reference (order number 000530) for more information about
these and other compiler-related features.

• Compatibility with UNIX Formatted Binary-File Format

• Strings Delimited by Single n and Double (") Quotes

• Comma (,) Now Available as Input Delimiter

Data Type COMPLEX*16

At SRlO, we have added a double-precision version of the COMPLEX
data type called COMPLEX * 16. You can declare variables by using the
COMPLEX*16 command or the DOUBLE COMPLEX command.

New functions have been added to the FORTRAN library to support the
COMPLEX*16 type.

I/O to Streams

You can now attach a stream opened with the ios _ $open system call to a
FORTRAN unit and perform I/O to that stream.

Implications for Programmers 4-35

INCLUDE Syntax of UNIX f77 Compiler

You can now use the same syntax as the UNIX f77 compiler to
INCLUDE external source files. For example, the statement INCLUDE
'mysource.ins.ftn' includes the same file as %INCLUDE
'mysource.ins.ftn'. The new syntax, however, must comply with the
same restrictions that apply to any other Domain FORTRAN statement.

Compiler Options

The -uc (UNIX Compatibility) option controls the following features.
The option's default is OFF.

Appended Underscore C)

Default File Names

UNIX special characters

Uppercase Option: -u

This feature adds an underscore () to
the names of SUBROUTINE, FUNC
TION, or COMMON block names
which do not begin or end with an
underscore () and which lack a dollar
sign in their names.

This feature automatically names the
file fort.<unit_number> if you don't
provide a FILE= specifier in the
OPEN statement. If the -uc option is
OFF, the file takes the name
for<unit_ number>.dat.

At SRIO, the compiler recognizes
UNIX special characters (for exam
ple, 'n) when you compile a program
with the -uc option.

The -u option leaves the case of characters in identifiers as entered; by
default, the compiler converts the characters in identifiers to lowercase
characters.

4-36 Implications for Programmers

Free Format Option: -If

Tabs

Unit 0

The ·tT option allows source lines to be a maximum of 1024 characters
long; an ampersand (&) in column 1 specifies a continuation line. The
option's default is OFF.

A tab character in any of the first six columns causes a skip to column 7.
In all other columns, it's treated like a space character.

By default, UNIT 0 connects directly to ·stderr.

Flexnames

Prior to SRI0, variable names were only unique through the first 32 char
acters. That is, the compilers interpreted the following two strings as the
same identifier because the first 32 characters are the same.

this_is_a_verLlonlLand_annoying_name
this _is_ a_very _lonlL and _ annoyinlLidentifier

At SRI0, these strings are interpreted as distinct identifiers. Identifier
names can now be up to 4096 characters in length.

Support for 177 Commands and Options

Domain systems now support the f77 command, which enables you to
invoke the Domain FORTRAN compiler with UNIX command options.
Note that if you invoke Domain FORTRAN with f77, the compiler
employs f77 semantics. If you compile with the ftn command. the com
piler provides Aegis semantics.

Implications/or Programmers 4-37

New Debugger

SRIO replaces the Icom/debug command with a new high-level language
debugger, Domain/DDE, which can debug both obj objects produced by
SR9.5 and higher release compilers and COFF fonnat objects produced
by SRlO compilers. It is installed as part of the base software. The dde
command resides in the lusr/apolloibin directory. Extensive online help
is provided, as well.

Domain/DDE provides many new features, including a graphic, menu
driven interface with language-sensitive expression evaluation, multipro
cess debugging, and cross-node debugging. The new debugger also has
macros to provide command-line syntax compatibility with old debug and
dbx commands. Domain/DDE cannot debug programs built before
SR9.5.

Compatibility with Domain/Debug (/com/debug)

As a transition aid, we have included macros to simulate Domain/Debug
syntax in the directory Isys/debug/old_debug_macros. You can copy the
macros to your own startup file (.dderc) and modify them, or load them
directly by typing the following:

input -from Isysldebug/old _ debuL macros

For equivalents to Domain/Debug debugger variables (that is, set
, <debugger_variable> = <value», see the • 'property" commands.

Precautions for Mixed Networks

Some additional precautions are necessary for programming and running
programs in mixed networks.

4-38 Implications/or Programmers

Links

Be careful when creating links from nodes running pre-SRIO software to
those running SRIO (COFF) software. Even though such links may have
worked fine in the past. nodes running pre-SRIO software cannot execute
SRIO object files.

Command Search Rules (PATH)

Similarly, command search rules often specify your current working
directory in the first position. Problems therefore arise if you set your
working directory to an SRIO directory containing executable files. For
example, if you are working on an SR9.x node and you try to change
working directory to an SRIO node directory that contains binaries, and
you attempt to execute one of them, the attempt fails since you cannot
execute COFF objects on pre-SRI 0 nodes.

Type Managers·

Do not compile type managers as COFF objects, since type managers
sometimes get passed between nodes and may therefore find their way to
pre-SRIO nodes. Should this happen, objects of the affected type(s) would
not function on the pre-SRIO nodes.

The C CompHer

Note that, even though you can delete an SRIO COFF file from an SR9.x
node, invoking the C compiler on the pre-SRIO node does not delete an
existing binary file. This is because the SR9.x compiler only operates on
obj format files. If you were able to do this, you would be replacing a
COFF file with an obj file, which is unlikely to be what you intended

SRIO and the Domain Software Engineering
Environment

If you are a DSEE user, there are several important considerations that
you must take into account in making the transition to SRIO. We outline
them here. For further details on the issues discussed in this section,

Implications for Programmers 4-39

please see the release documents for OSEE Version 3.3 (the SRlO
compatible version of the software) and OSEE Version 3.2 (the SR9.7-
compatible version of the software that can share OSEE objects with
OSEE Version 3.3). Each of these documents is online in the
fmstaUldoclapollo directory of the OSEE software shipment.

Colons in Element Names

As a consequence of the case sensitivity introduced in SRIO, you must
rename existing elements whose names contain colons if these elements
are to reside on SRIO nodes. Renaming is necessary because the element
names themselves are interpreted as containing uppercase characters (for
example, :a is interpreted as A), while the OSEE library database still
retains the colons in its interpretations of the element names. As a result,
it is impossible to access history on the elements and, perhaps, even the
elements themselves.

We recommend that you do this renaming belore you install SRIO on a
node. Below is a simple procedure that you can run to rename elements
with colons in their names. 00 this for each library on the node that will
runSRIO.

OSEE> sho ele 1*:1* -format "ren ele %ele %ale" > colon.dsae
f Edit the colon.dsae file to remove colon(s) from new name
f (the name on the ri9ht)
OSEE> <colon.dsee

Once you've installed both SRIO and OSEE Version 3.3 on the node, you
can rename the elements again, putting colons or uppercase characters in
the names, as you wish. (Note, however, that colons are interpreted dif
ferently on SR10 nodes and SR9.7 nodes. If you give elements residing
on SRIO nodes names that contain colons, you will be unable to access
those elements from OSEE Version 3.2. See the OSEE Version 3.3
Release Document for more infonnation.)

If you don't rename the elements before you install SRIO and OSEE Ver
sion 3.3, you have to perfonn two other steps before you can rename the
elements whose names contain colons. Below is an example of these
steps:

4-40 Implications lor Programmers

I Delete the stub files that the DSEE history manager uses
I (You must be an administrator of the library to do this)
$ dlf //srlO_node/dsee_3.3_lib/?* -f
I From within the DSEE environment, recover the library
DSEE> recover library -full

Once the library has been recovered, those DSEE elements whose names
contained colons prior to SRIO will still have colons in their names, and
the naming will be consistent between element names and the library
database. You can rename the elements with uppercase characters in the
name, if you choose.

Bound Configuration Threads (BCTs)

Because of a bug fixed in the way the configuration manager stored BCfs
in pools, pool-stored BCfs generated with versions of DSEE software
prior to Version 3.2 (or with beta test versions of either DSEE Version 3.2
or DSEE Version 3.3) cannot be reused with this release of DSEE Version
3.2 or DSEE Version 3.3.

BCfs stored in release areas, however, are reusable. If you have one or
more existing component builds whose BCfs you want to reuse, we
recommend that you place the BCfs in release areas before you install
this release of DSEE on your node.

Copying DSEE Objects with cp and cpt

Because installing SRIO requires that you invol your disk, you will want
to make copies of all your DSEE objects, either on tape, on another
medium, or on another node's disk, prior to using invol.

If you choose to use either the BSD and SysV command cp or the
Aegis command cpt to copy DSEE objects to another node, you must
ensure that copying preselVes subsystem seals. When using cp,
include the -P option and the -0 option on the command line. The cpt
command preselVes subsystem seals by default; do not override this
behavior by issuing the command with either the -nsubs option or the
-dad option.

Implications for Programmers 4-41

Case Sensitivity and DSEE

Once you have installed SRlO and OSEE Version 3.3 on a node, you must
ensure that all references to patbnames in system models and source code
are case sensitive. Please see the OSEE Version 3.3 Release Oocument
for more details.

Running in a Mixed Environment

If you run OSEE software in a network that contains nodes running more
than one release of the operating system, you must give attention to the
items described in the following subsections.

Sharing DSEE objects

Unlike prior releases of OSEE software, OSEE Version 3.3, the SRIO
compatible version of the software, will not be able to share OSEE objects
in a mixed network of pre-SRIO nodes running earlier releases of OSEE
software. The one exception to this rule, of course, is OSEE Version 3.2,
a version of the software that runs on SR9.7 nodes, which was built to be
compatible with OSEE Version 3.3. Except under the conditions
described later in this section, OSEE Versions 3.2 and 3.3, and compatible
subsequent releases of OSEE software, can access the same libraries, ele
ments, and systems.

Distributed Building in a Mixed Network

The OSEE set builder command enables you to execute component
builds on one or more remote nodes. OSEE Version 3.2 and Version 3.3
both can invoke builds on nodes running SR9.7 and SRIO. However,
some portions of your translation rules may be operating-system-release
dependent: commands that are executable on an SR9.7 node may not be
executable on an SRlO node, and commands that are executable on an
SRIO may not be executable on an SR9.7 node.

The most important factor in determining the success or failure of a trans
lation rule in a mixed network is the set of translators resident on the
reference node (identified in the -reference option to the set buDder com
mand). If you are using a mixed set of SR9.7 and SRIO nodes as build
servers, it's generally best to use a node running SR9.7 as your reference
node; SR9.7 programs are more likely executable on both SR9.7 and
SRIO nodes than are SRIO programs. (If it's important that you use SRIO

4-42 Implications for Programmers

translators to build your system, we advise that you use only nodes run
ning SRIO as builder nodes and that you identify an SRIO node as the
reference node.)

The following table lists some translators and shells and their ability to be
executed on SR9.7 nodes. This list is not complete.

Program SRIOruns SR9.7runs
onSR9.7? onSRlO?

Aegis sheD
Icom/sh yes yes
bsd4.2/3 sheDs
Ibinlsh no (COFF object) yes (obj object)
Ibinlcsh no (COFF object) yes (obj object)
#sys5sheUs
Ibinlsh no (COFF object) yes (obj object)
Ibinlcsh no (COFF object) yes (obj object)
Ibinlksh no (COFF object) nJa (no SR9.7)
Apollo Compilers .
Icom/pas (obj output) yes yes
Icom/pas.cotf (COFF output) no nJa (no SR9.7)
Icom/ftn (obj output) yes yes
Icom/ftn.cotf (COFF output) no nJa (no SR9.7)
Icom/cc (obj output) yes yes
Icom/cc.cotf (COFF output) no nfa (no SR9.7)
Icom/asm (COFF output) yes nJa (no SR9.7)
Apollo Binder
Icomlbind (COFF input only) no n/a (no SR9.7)
Icomlbind (obj input only) yes yes
UNIX Compilers, linker
Ibinlcc no (COFF object) yes

(with fusrllibfcc,
fusrlliblbind)

lbinlId no (COFF object) yes
Ibinlar no (COFF object) yes
Others
fusrlbinlIex no (COFF object) yes
fusrlbinJyacc no (COFF object) yes
lusrlbinlm4 no (COFF object) yes

Implications/or Programmers 4-43

Try executing the program to detennine if a particular program not listed
here can be executed by a remote node running SR9.7 or SRIO. (Execut
able code is shipped in obj fonnat except where noted.)

Note also that type managers may change from release to release, and that
they are always loaded via the reference path. For example, if the refer
ence path points to an SR9.7 node and OSEE is building on an SRlO
node, then unexpected errors may occur.

Note to Pascal Users

If your OSEE system models employ the make_visible declaration, then
you should use the SR9.7-compatibility mode Pascal compiler. Previous
versions of this compiler had a bug that would cause objects referenced
by make_visible to be lost.

Case Sensitivity in a Mixed Environment

OSEE Version 3.3 with SRIO and later releases is case sensitive; how
ever, because SR9.7 is case insensitive, once you start using mixed-case
or uppercase letters in the names of OSEE objects residing on SRlO
nodes, you will be unable to access those objects from an SR9.7 node
(either running OSEE Version 3.2 or acting as a build server). SR9.7
nodes using OSEE to attempt to resolve patbnames containing uppercase
letters for any OSEE objects (for example, system directories, elements,
etc.) will fail. (This would also be true for SRIO nodes and OSEE Ver
sion 3.3 if you set the OOWNCASE environment variable to true.)

DSEE Object Names with Hyphens and Plus Signs

With DSEE Version 3.3, you can assign na!nes cQnt~in1'lg plus signs (+)
or hyphens (-) to libraries, elements, branches, versions, and logical pools.
However, if you do, you will be unable to access those objects from
OSEE Version 3.2.

BOOding COFF vs. obj.Derived Objects

You may want to write your system model in such a way that it can gen
erate either COFF fonnat derived objects or obj fonnat derived objects.
This is easy to do, particularly if you use the alias declaration in your sys
tem model to define aliases for translators, and make the definitions

4-44 Implications for Programmers

conditional upon -target predicates identified in your model thread.
Please see the DSEE Version 3.3 Release Document for an example of
system model code that would produce either COFF-derived or obj
derived objects.

----88----

Implications/or Programmers 4-45

Appendix A

Protection and ACLs

TIle Managing System Software manuals provide a detailed view of pro
tection and Access Control lists (ACLs) at SRIO, and several sections in
this manual describe changes made to ACLs and protections. This appen
dix describes the differences between the SRIO protection model and both
the standard UNIX software model and the pre-SRIO models, as well as
their implications for users conver1ing to SRIO.

TIle following sections discuss the SRIO protection model in the context
of both UNIX software and pre-SRIO Domain software, and describe
some of the tnmsition issues. See the Managing System Software manuals
for a detailed description of protections and ACLs at SRIO, and the tools
that you use to manage them. Also see Installing Software with Apollo's
Release and Installation Tools, and particularly Chapter 6 of that book,
for infonnation on how to manage protection when you install SRIO
based software.

Overall Network Protection Model

The Apollo system protection model allows each installation to detennine
the best way to organize the protection of files and directories for that ins
tallation. TIle model supports the full range of protection choices, from
totally open to tighdy protected, and anywhere in between.

Some installations give node owners full control over their nodes, includ
ing the system software. In an open network, all the files on a node's disk

Protection and ACLs A-I

"belong" to the owner of the node, who is free to protect; delete, or move
the files at his discretion. (There are exceptions, of course. Certain sys
tem files must not be deleted or moved, or else the system will not operate
correctly or will be open to intrusions. In the UNIX environments, certain
directories must be controlled, since many procedures that run as root use
programs from these directories, and the susceptibility to some security
problems is great.) However, within this framework, the node owner in
an open network may tailor his node to meet his needs.

On other networks, nodes are considered a group resource, and are admin
istered by a central group and tightly controlled. In a protected network,
all system files on a node's disk "belong" to the system administrator and
are protected against modification by users of the node. Protections are
maintained so that only the system administrator can alter files not
specifically private to a user.

At SRIO, software on such nodes is owned and generally controlled by
root (locksmith), rather than by sys_admin as in previous releases. Pro
tected installations, especially those that run in the Aegis environment,
may want to migrate their protections from control by sys _ ad min
accounts to control by root accounts.

The UNIX Protection Model

The UNIX system protects objects with three rights: read, write and exe
cute (rwx). For a directory, the execute right is the right to search
through the directory to resolve pathnames. The UNIX system recognizes
three subject classes for protection: user, group, and "other" (Aegis ter
minology refers to "user" as owner and "other" as world). Rights are
granted to the owner of the object, a group associated with the object (and
therefore people with accounts in t..~at group), and the rest of the world.
These rights are generally represented as rwxrwxrwx, with the leftmost
rwx referring to the user rights, the middle rwx referring to the group
rights, and the rightmost rwx referring to the "other" rights.

Protection for newly created objects is derived as follows: The user iden
tity is obtained from the user-name identity of the creating process. The
group identity is obtained from the group-name identity of the creating
process (for SysV) or the group associated with the containing directory
(for BSD). The object's initial protection is derived from the set of rights
specified by the creating program and a mask, known as the umask, that is
associated with the creating process.

A-2 Protection and ACLs

The umask is a 9-bit mask in the standard "rwxrwxrwx" fODD that
specifies rights that are to be automatically subtracted from all newly
created files and directories. For example, if a file is created with rights of
"rw-rw-rw-" and the umask is "----w--w-", the file will get rights of
"rw-r--r--." A typical use of the umask might be to deny certain rights to
"other" so that files that are created by applications running on behalf of
the user will not, by default, be writable by all others. The value of the
umask is set by the umask command.

SRIO Extensions to the UNIX Model

The SRIO protection implementation extends the UNIX model byena
bling you to specify additional rights, organizational divisions, and subject
categories. The following sections describe these extensions in detail.

Extended Access Rights

We have extended the rights from rwx to prwxk, where p specifies com
plete control over the object (that is, the right to modify its protections),
and k specifies that an object may not be deleted, even in an otherwise
writable directory.

Extended Organizational Divisions

We have extended the number of recognized organizational divisions
from two (person and group) to three (person, group, and organization).
This more closely matches the real world divisions that occur in large
organizations and large networks. As a result, we have expanded the
number of subject categories that can be specified for protection purposes
from three (user, group, and other) to include an organization entry.
However, we have provided a mechanism for marking an object so that
the organization identifier is ignored during access checking, so that the
pure UNIX behavior can be maintained Note that the registry can use the
organization identifier as a basis for control over user accounts. When
you make the transition to SRIO, and if you want to have a pure UNIX
environment, you should make sure that the registry also does not use
organizations.

Protection and ACLs A-3

Extended Subject Categories

We have extended the number of subject categories for protection to
allow you to specify additional subjects in an ACL. Each subject so
named is referred to by a triplet Subject Identifier (SID), consisting of a
person, group and organization. SID's are specifiable exactly or with
wildcards for any of the three fields (for example, joe.os.r _ d or
%. %.mktg). The ACL also contains the rights granted or denied to the
SIDs named in the list

Benefits of Extensions

These extensions

• Allow groups of people to exercise joint control over sets of
files, since several people may have p rights to the files

• Allow selected objects in a directory to be protected, through
the k right, without restricting the protection of other objects
coresident in the directory

• Allow different access rights for specific listed subjects than for
the rest of the world, including increased or lessened privileges

Protection Inheritance Enhancements

Protection inheritance has also been enhanced. In addition to supporting
the System V and BSD semantics for protecting newly created objects,
every Domain/OS directory has two initial default ACLs, one for files and
one for directories, in addition to the ACL that protects the directory
itself. At the user's discretion, t..'lese initial default £A .. CLs, raLlter than LlJe
UNIX inheritance rules, can be used to control the initial protection
values for files and directories created within the directory.

The inheritance that can be specified in an initial default ACL is very
flexible. The user can independently specify whether the user, the user
rights, the group, the group rights, the organization, the organization
rights, or the "other" rights get inherited from the initial ACL or from the
creating process. Extended ACLs are also supported for initial default
ACLs.

A-4 Protection and ACLs

The UNIX umask is also supported in the Aegis enviromnent, and a
umask command is provided for the Aegis shell. This is a UNIX system
compatible command, so that only rwx rights for person, group, and
other, but not organization, can be specified. (Note that files created by
some other process on behalf of the first process, for example by the
Display Manager, do not get the benefit of the first process' umask.)

Interactions of UNIX Protection and ACLs

The standard UNIX system calls and commands used for setting or inter
rogating protection capabilities are not extensible and cannot support the
additional information in an ACL. However, when one of these system
calls or commands is used, its behavior may, nevertheless, affect or be
affected by the extended protection information. This section describes
the interactions between UNIX protection and ACLs.

Extended Entry Rights Mask

To control this interaction, each file's ACL has an extended entry rights
mask, whose bits correspond to prwxk. When rights are granted by an
extended ACL entry, the rights in the ACL entry are first ANDed with the
extended entry rights mask before they are used for access determination.
Thus, if the extended entry rights mask specified "-r---," only read rights
are granted via an extended ACL. The use of a mask to limit permissions
is required so that UNIX system calls and commands perfonn as
expected, regardless of the presence of an extended ACL.

Initially, the extended entry rights mask is the OR of all the rights in the
extended entries in the ACL, thus allowing an extended ACL to grant all
rights it contains. The subsequent value of the mask is determined by the
chmodO system call.

The Effects on the Mask by the chmodO System Call

At SRIO.O and after, when a chmodO system call is issued

• The "other" rights specified in that call becomes the new value
of the extended entry rights mask.

Protection and ACLs A-5

• Any p and k rights are turned off in the group and world entries
and in the extended entry rights mask.

• Any k rights are turned off in the user entry.

• The organization entry is marked as ignored.

Thus when chmodO sets a value for "other" rights, it is in effect saying
that the maximum rights to be granted to anyone other than user or group
are the "other" rights. If a given SID matches an extended ACL entry,
the only possible effect of the extended ACL entry is to reduce that SID's
rights to less than those that would be granted via "other" rights.

At the same time, the chmodO call removes the effects of the other
Domain/OS extensions to the UNIX protection mechanism; that is, the
special granting of p and k rights and the organization entry.

The Effects on the Mask by the chmod Command

The UNIX chmod command, which uses the chmodO system call, sup
ports two distinct forms. The first form sets the access rights to an abso
lute value; the second adds or removes specific parts of the existing access
rights. The effect of these two forms on the extended entry rights mask is
as follows.

Form 1: The first form, illustrated by chmod 664, sets the "other"
rights. In this case "4" (or bits "100"), is used as the middle three bits
(rwx) of the extended entry rights mask. Also, as described previously,
chmod always sets the p and k bits, which are not supported by the UNIX
system, to O. So in this example, even if the mask was initially' 'prwxk,"
it is now "-r---." Note that the extended ACL entries are not discarded,
even if you speer; c..h ncd xxO. The list of ent..ti.es is maintained but is
rendered ineffective.

Form 2: The second form, illustrated by chmod g-r or chmod g+r, is
used to change rights based on current protection values (rwx). For
example, chmod g-r specifies that the read rights are to be removed from
the group entry. As described in the previous section, this form of the
chmod command also sets the p and k bits to O.And the rwx rights in the
extended entry rights mask are changed (even if the rights were not
specified by the command).

A-6 Protection and ACLs

Implications for the statO System Call

Similar considerations apply to reporting the protections in effect for a
file. The statO system call is the standard way for a UNIX program to
determine the access rights that apply to a file. Because this system call is
well established, it cannot be changed to report the extended ACL rights.
However, it is important that the system never underrepresent the rights
that are in effect for a given file. Therefore, the value of "other" rights
reported by the statO system call includes the ORing of the following:

• The actual world rights

• The organization rights, if they are not marked as ignored

• The extended entry rights mask

For example, if

• The actual world rights are "-r---"

• The organization rights are "---x-"

• The extended entry rights mask was "-tw--"

the value reported by the statO system call would be (ignoring P and k
which are not returned):

'r--' OR ,--x' OR 'rw-'
, rwx'

NOTE: If any Domain/OS extensions to UNIX protections are
in effect for a particular object, an Is -I command will
show a plus sign (+) identifier at the end of the rights
string; for example, "-rwxr-x--x+."

Apollo's Extended UNIX Commands

Although the standard UNIX commands do reasonable things to extended
ACLs, you can only get the full benefit of the extended protection features
in a UNIX environment, if you use the extended UNIX commands pro
vided by Apollo (chacl, Isacl, and cpacl). The standard UNIX commands
cannot be coerced into retaining all aspects of the new protection

Protection and ACLs A-7

semantics. Also, note that UNIX applications that use the chmodO sys
tem call will affect the extended protection on any files or directories to
which they apply chmodO. The effect may be to limit the rights granted,
or it may disable the extended ACL or organization rights altogether. It
will, however, never grant more rights to an entry listed in an ACL than is
specified in "other" rights.

ACL Search Order

This section describes the matching rules that are used for access check
ing. In the description, a percent sign (%) is the wildcard specifier in an
ACL entry and [xxxx] indicates all possible values for that field, including
the wildcard.

To understand how the system determines access rights, you must under
stand the search order within an ACL. ACL entries are always searched
from the most specific to the least. For example, entries with a person
name are always searched before entries with a wildcard (%) in the per
son field. Entries of the form person.group. % are searched before entries
of the form person. %. % since the allowed group is exactly specified.

1. The "user" entry is checked first. If there is a match and the
rights are not to be "ignored," that entry is used.

2. Extended ACL entries of the form person.[xxxx].[xxxx] are
searched for an exact match in the person field and any other
non-wildcarded fields. If a match is found, that entry is used
after application of the extended entry rights mask.

3. The "group" entry is checked next. If there is a match, the
rights are not to be "ignored," that entry is used.

4. Extended ACL entries of the form %.group.[xxxx] are
searched for an exact match in the group field and any non
wildcarded organization field. If a match is found, that entry is
used after application of the extended entry rights mask.

A-8 Protection and ACLs

NOTE: In steps 3 and 4, if project lists are enabled,
then each entry from the user's project list is
substituted for his current project to folUl a
SID. Each SID is then checked against the
"group" entry (step 3) or against all extended
ACL entries of the form %.project.[xxxx]
(step 4). That is, the checks in steps 3 and 4
are repeated for each possible SID, including
the effective SID. The rights from each
match, if any, are concatenated (ORed) and
used to determine access. (The project list is
only created if either the PROJLIST environ
ment variable is true or the SYSTYPE
environment variable value is BSDXU' (for
example, BSD4.3) at login.)

5. The "organization" entry is checked next. If there is a match
and the rights are not to be "ignored," that entry is used

6. Extended ACL entries of the folUl %. %.org are searched for an
exact match in the organization field. If a match is found, that
entry is used, after application of the extended entry rights
mask.

7. The" other" entry is used if no previous match was found.

Changes in Protections Between SR9.7 and SRIO

The following subsections discuss changes that have been made in the
way ACLs worked in SR9.7 and the way protection works in SRIO. They
also discuss some of the implications of these changes.

Identifiers

The node ID has been eliminated from the SID and from ACLs. As a
result, you cannot control access by node ID, and SRIO nodes ignore any
node ID values specified in pre-SRIO ACLs. However, we have added
several mechanisms to limit access to local objects. These are discussed
in the "Additional New Protection Capabilities" subsection at the end of
this Appendix.

Protection and ACLs A-9

Required Entries and Ownership

At SRIO, four protections entries are always present: user, group, organi
zation, and other. These correspond to the standard UNIX protections,
with the organization extension. As part of these entries, each object now
has a user (owner) and is associated with a specific group and organiza
tion. Any member of the group or organization will be granted, at a
minimum, the rights specified in the organization or group field.

When you copy a file from a pre-SRIO node to an SRIO system by using
cpt -sael to preserve the protections, the required entries are given the
user, group, or organization ID of "none." The protection rights are
marked "Ignore." Any rights specified for %. %. % are converted into
the "other" required entry. The remaining SR9.7 ACL entries are simply
converted into extended ACL entries. For example, a file ACL might
look as follows on an SR9.7 node:

$ acl/misc/mail_names
Acl for /misc/mail_names:

bill. % . %. %
%.backup.%.%
%.%.r d.%
%.%.%.%

pgndwrx
----wr-
----wrx
-----rx

If you use the cpt -sael (on the SR 10 node) to copy the file, you will then
see the following protections for the new file:

$ cpt /lhImisclmail_oames test2 -sael
$ ael test2
Acl for test2:
Required entries

none.%.%
%.none.%
%.%.none
%.%.%
Extended entry rights mask:

Extended entries
bill. % .%
%.backup.%
%.%.r d

[ignored]
[ignored]
[ignored)
-r-x
prwx-

prwx
-rw--
-rwx-

You can use a -coov[ert] option to the SR1O.l (but not SRIO.O or pre
SRIO) cpt, cpt, and ael commands to convert the SR9.7 ACL to SRIO

A-tO Protection and ACLs

required protections. This option sets the user entry in the target from the
first person.%.% entry in the source with p rights. The first %.group.%
entry in the source becomes the group entry in the target, and the first
%.%.org entry in the source becomes the organization entry in the target.
For example:

$ cpf //hImisc/mail_names test3 -sad-conv
$ ad test3
Acl for test3:
Required entries
bill.%.%
%.backup.%
%.%.r d
%.%.%
Extended entry rights mask:

prwx
-rw--
-rwx-
-r-x-

Note that rbak does not have a -convert option. However, if you use
rbak to restore a tape that was generated by a pre-SRIO wbak onto an
SRIO node, the -convert style conversion will be done automatically.

We have also provided a mechanism that enables SRIO protections to
mimic pre-SRI 0 Aegis protections. You can mark any combination of the
person, group, and organization required entries to be ignored. If you
mark all three of the required entries this way, the protection extended
ACLs behave in the pre-SRIO Aegis manner. You cannot mark the
"other" entry (or extended ACLs) to be ignored

You should also note the changes that we made for full UNIX compatibil
ity, such as the extended entry rights mask, that are discussed in the previ
ous section.

Inheritance Mechanism

Before SRlO, Domain/IX allowed you to use UNIX right inheritance by
having special initial directory and file ACLs. In this case both the "iden
tities" and the permissions for new files and directories were inherited
from the process (with BSD, the group ID was inherited from the contain
ing directory). At SRIO, this mechanism has been removed; the mode of
protection inheritance is now coded directly in the initial file and initial
directory ACL required entries. You can specify any possible combina
tion of identity inheritance and rights inheritance for the required entries.
(However, you cannot mark the extended ACL entries to inherit rights
from the process.) For example, you could specify that all files created in

Protection and ACLs A-ll

Rights

directory obtained their user, group, and organization identities and pro
tections from the process, with an additional extended ACL entry that
gives you pwrx. rights.

In this case, ael-if would show something like:

$ ael test_ dr -if
Initia1 Cde~ault) aol ~or filas created under tast_dr

Required entries For the currant process:

[from process] [specified by process] bill.... [specified by proc.ss]

[fram proceso] [specified by proces.] •• none.. [specified by process]

[from process] [specified by process] •• r_d.. [specified by process]

...... [sp.cif.ied by process]

Extended entry rights mask. prwx

Extended entries

bill prwx-

At SRIO we have changed and simplified the protection rights as follows:

• We have eliminated II and n rights.

• We have combined the c, a, 1, and e rights into a single direc
tory wright

• We have replaced the d with the k right The k right is approxi
mately the logical negation of the d right. An object with a k
right cannot be deleted unless you are root or have p rights and
use the dlf -f or dlt -f command. You can delete any object
that does not have k rights if you have w rights for the directory.

• We have changed the s right identifier to x.

When accessing files or listing Aa.s, SR9.7 automatically convert rights
from SRIO format. SRIO nodes can convert protection rights from pre
SRIO format to SRIO format. A section in Chapter 3 of this manual,
called "Protection Incompatibilities in Mixed Networks," describes how
an SRIO node will see protections on SR9.7 nodes and vice versa.

A-12 Protection and ACLs

NOTE: When you use the cpf -sacl command to copy from an
SR9.7 node to an SRIO node, the exact results will
differ depending upon whether you use the SR9.7 or
SRIO version of the command. If you enter the cpf
command on the SR9.7 node, k rights are set on the
SRIO entries if the corresponding SR9.7 ACL entry did
not have d rights set. If you enter the cpr command on
the SRIO node, k rights are never set, independent of
the status of the SR9.7 d right.

Tools for Manipulating Protections on Objects

In the Aegis environment, the tools are

edacl

acl

Id-r

Used to edit the protections of a specified object

Used to display the protections on one or more objects
and to copy protections from one object to one or more
objects

Used to display the current process' rights to listed
objects

In the UNIX environments, the tools are

chmod

chown

chown

Isacl

chacl

cpacl

Standard tool for specifying protections on objects

Standard tool for modifying the owner of objects

Standard tool for modifying the group of objects

Extended tool for listing protections of objects

Extended tool for changing protections of an object

Extended tool for copying protections from one object
to one or more objects

Protection and ACLs A-13

Is-I Used to display the access rights to listed objects

Additional New Protection Capabilities

Domain/OS now provides additional features that enable system adminis
trators and users to limit access to node resources. The features include
the "local access only" attribute, the Iproteet, and node owners' con
trols.

Local Access Only (LAO)

The local-access-only attribute may be used to deny all remote requests to
an object. If this attribute is specified in an object's ACL, only local
processes will be granted access to the object. This feature is supported
only between SRIO nodes; SR9.7 will not respect the LAO attribute of an
SRIO object. The edad or chad commands may be used to set or reset
this attribute.

The Iprotect Command

When a process runs as root, the system automatically grants that process
full rights to any object, regardless of the access rights that have been
assigned to the object. In a network of distributed nodes, the owner of
one node may be suspicious of processes on other nodes that claim to be
root. The lprotect command is used to specify whether remote processes
running as root should be granted this special treatment, and if so, the
extent of the special treatment they should be granted. Specifically, Ipro
teet can specify that requests from remote root processes be treated as
follows:

• Do not grant any special rights to a remote requester that is
root; treat it as if it were "other" or user.none.none.

• Grant read rights to a remote requester that is root, in addition
to any rights applicable to "other" or user.none.none.

• Grant all rights to a remote root requester.

The following additional restrictions are enforced when Iprotect is used
to limit root rights:

A-14 Protection and ACLs

• The server process manager (SPM) will not allow processes to
be created as root unless an active login is done, whereby the
user specifies the proper password for the root account (that is,
crp -me as root will not be honored).

• Invocations of remote setuid-to-root programs are not allowed.

• Remote requests to setuid-to-root on a local object are disal
lowed.

You should note that operations on a node configured with links to remote
setuid-to-root programs cannot work in this mode. That is, if you use
Iprotect on your node, and you have a link from your node to some
setuid-to-root program on another node, you cannot use that program,
even though you have an entry for it in a local directory.

The Iprotect command only applies to the node on which it is issued. It
may only be issued by root or by users who have been designated as node
owners (see below).

Node Owners

It is often desirable for one or more users to have special privileges on a
given node, so that certain operations may only be performed by root or
by users who have been designated as node owners. The system inter
prets the ACL on the file 'node_datalnode_owners as specifying which
users are to be considered as "owners" of the node; all users with p
rights to this file are treated as node owners. To prevent subversion of
this mechanism, the file 'node data/node owners must itself be owned
by root. --

Currently, the operations controlled by 'node_data/node_owners are the
following:

Iprotect

sigp

The ability to deny protection overrides to requests by
remote roots

The ability to signal any process running on this node,
rather than just processes with the same SID

-------BB-------

Protection andACLs A-IS

Index

Ibin/Id contents of, 1-7
purpose of, 1-7 changes to, 4-4

Icom directory, 1-4, 2-8
letc directory, 1-6

contents of, 2-7
letc/environ file, 2-12, 2-13
letc/group file, 2-27
letc/Iprotect, 2-24

'node _ data/daemons directory
purpose of, 2-13

'node_data/etc directory, 2-7
'node data/node owners file,

2=-24 -
2DGMR

letc/org file, 2-27
letc/passwd file, 2-27
fetc/rc file, 2-13
letc/rc.user file, 2-13
fetc/server, 1-8

changes at SRlO, 1-11
4.3BSD,2-2

A

fsr9.7_compatibility/compat_with_sr9 absolute code, 4-14, 4-16
directory, 1-3 Access Control List
contents of, 1-3 See also ACL, 1-13

Isr9.7 _compatibility/sr9.7 _executables, access rights
3-22 and project lists, 1-19

fsr9.7 _compatibility/sr9.7 _executables keep, 1-13
directory, 1-3 accounting
contents of, 1-3 UNIX system, 1-8

Isys/dmltr font, 1-9 ACL, 1-13
Isys5.3Ibin-directory, 2-2 inheritance, 1-13
lusr/apollo directory, 2-8 new access rights, 1-13

contents of, 2-8, 2-9 search order, A-8
lusr/apollolbin directory, 1-6, ACLs, A-I, 2-19

1-10 access rights, 2-20, 2-21

Index 1

2 Index

and backups, 3-3
and UNIX protection, A-5
available in UNIX

environments, 2-19
canned, 1-13
extended entry rights

mask,A-5
implications for SRlO, A-I
in programming environ

ment,4-23
mechanism in SR9.7 and

SRI0,A-9
Aegis, 2-2
Aegis environment

protection tools, A-13
Apollo Product Reporting

(APR) system
using, v

aqdev
changes to, 1-15

ar,4-18
archiving files, 1-9
audience

for this manual, iii
Authorized Areas, 1-4, 1-6,3-5

B

backup
of user files, 3-2

backup lists, 3-4
backups, 3-25

in mixed networks, 3-25
backups and protections

in mixed networks, 3-25
bind

changes to, 4-3
binder

changes to, 4-3
BSD,2-2

c
Clanguage

built-ins, 4-33
compiler changes, 4-32
function prototypes, 4-32
messages, 4-32
reference variables in,

4-33
run-time version

specification, 4-32
section specifiers in, 4-33
function prototypes, 4-5
insert files, 4-5

case, 4-12
case sensitivity

and DSEE, 4-42, 4-44
and os_helper, 2-15
transition to, 2-18

chacl,4-7
chmodO system call, A-5, A-6
clean-up handlers, 4-14
COFF, 3-29, 4-15

defined, 1-3
see Common Object File

Format, 1-3
COFF modules, 1-4
colon-characters

converting, 3-21
colons

and case sensitivity, 2-15
command search rules

in mixed networks, 3-30
commands

guaranteed on all nodes,
2-2

commands, protection-related
acl,A-13
chacl, A-13, 2-20, 2-23
chmod,A-13
chown,A-13
cpacl, A-13, 2-20
crpasswd, 2-30
cvtname, 2-15,3-3
cvtrgy, 3-6, 3-8, 3-12

dbad, 2-20
edacct, 3-8
edad, 2-22, A-13
edppo, 3-8
edrgy, 1-14,2-15,2-26,

3-8,3-12
edsd,2-14
fppmask, 1-17
importJ)asswd, 1-13,3-7
invol,3-1
ld, A-13
lopstr, 2-10
lprotect, 1-13,2-24
Is, A-14
Isad, A-13, 2-20
protection-related, 2-25
scrattr, 1-17
scrch,I-17
syncids, 3-7

commands
to manipulate ACLs, 1-13

Common Object File Fonnat
defined, 1-3

compatibility,I-3
disk volwnes, 1-4
layered products, 1-4
with all pre-SRI0, 1-3
with pre-SR9.5 systems,

1-4
with previous releases, 1-2
with SR9.7, 1-2, 1-3

cpio, 1-9
crddf

changes to, 1-16
crp

and mixed networks, 3-30
crpasswd,2-30

and registry, 3-15
and registry conversion,

3-14
running after registry

conversion, 3-12
crtyobj

creating COFF objects,
4-18

cvtname, 3-3,3-21
cvtrgy,3-6,3-8,3-12

and Domain/lX, 3-13
and passwd and group

files, 3-12, 3-15
perfonnance implications,

3-9

D

daemon See also glbd
See also 11bd
registry,2-27

data alignment, 4-25, 4-28
data structures

changes to, 4-30
databases

os_helper, 1-6
dde, 4-38

compatibility with debug,
4-38

debugger, 4-38
devices

mounting, 1-8
directories

entries in, 1-12
disk space

needed to boot, 3-2
disk volwnes

SRI0 fonnat, 1-4
documentation

symbolic conventions in
this manual, v

DOCUMENTERS WORK
BENCH,I-10

documents
related documents, iv

Domain Software Engineering
Environment
3, 3-See also DSEE

Domain/lX, 1-1
and cvtrgy, 3-13

dot and dot-dot, 1-12,2-19,4-
28,4-30

DOWNCASE

Index 3

4 Index

effect on special charac
ters, 2-17

See also environment vari
ables,

See also transition aids,
OPSS/Mail, 2-14, 2-30, 3-7

gateway to UNIX mail and
uucp, 1-10

OSEE
and BCfs, 4-41
and case sensitivity, 4-42
and mixed environments,

4-42
and SRI0, 3-2, 4-39, 4-40
building COFF objects in,

4-44
building obj objects in,

4-44
case sensitivity and, 4-44
colons in element names,

4-40
copying objects in, 4-41
files, 3-3
object names and compati

bility, 4-44
sharing objects in, 4-42

edacct, 3-8
edppo, 3-8

E

edrgy, 1-14, 1-18,2-15,2-26,
3-8,3-12
legal names for, 2-26

edsd, 1-10,2-14,2-29
emt

in mixed networks, 3-31
environment

node, 2-1
operating system, 2-2

environment variables
OOWNCASE,2-16
INPROCESS, 4-14
NAMECHARS, 2-17
node, 2-12

PROJUST, 1-19
SYSTYPE,2-14

environments
operating system, 2-2

execute-only files, 2-21

F

file descriptors
number open, 4-14

file names
number of characters in,

4-20
pre-SRI0, 2-15, 2-16

file system
case sensitivity in, 2-15
changes at SRI0, 1-12
changes to, 2-15
incompatibilities in mixed

networks,3-29
file type

compatibility,I-12
SRlO default, 1-12

files
/etc/passwd and

/etc/group, 1-14
passwd, 1-13
passwd and group, 1-18

fonts
8-bit format, 1-9
in mixed networks, 1-10
international, 1-10

FORTRAN
features, 4-35
I/O to stream, 4-35
INCLUDE syntax, 4-36
new compiler options,

4-36
new data type, 4-35
support for (17,4-37

fppmask, 1-17
fst, 4-7

G

glbd, 2-26, 3-6, 3-16
GPIO

changes at SRI0, 1-14
SCSI system calls, 1-15

graphics
see 2D GMR, 1-11

importJasswd, 3-7
inheritance semantics, A-4

BSD and SysV, A-4
enhancements, A-4

init process, 1-7, 2-11
initialization

first SRIO node, 3-2
node, 1-6, 1-7,2-11,2-12

inprocess
setting, 2-10

insert files, 4-5
C language, 4-5
changes to, 4-5

installation
new tools, 1-11
SRIO, 3-2

Installing Software with
Apollo's Release and Ins
tallation Tools, 3-2, 3-5

Installing Software with Apol-
los Release and Installa
tion Tools, 3-5

interfaces
new, 4-21

Interleaf, 3-4
internet

considerations with SRlO,
1-5

router nodes, 1-6
internets

and UNIX identifiers, 1-18
invol,3-1

before installing SRlO, 3-5
SRIO version, 1-4, 1-5

ios $ interface
- changes to, 4-6

K

key definitions, 2-4
and SYSTYPE, 2-4
new available at SRIO, 2-5
standard, 2-6, 2-7

Known Global Table (KGT)

L

Ibr
changes to, 4-3

librarian utility
changes to, 4-3

libraries
changes to, 4-4
prftib,4-5
shared,4-2
SRIO model for, 4-2
swtlib,I-3
swtulib, 1-3
symbol names in, 4-22
to run SRIO programs on

SR9.7,4-4
links

at SRI0, 1-12
symbolic, 2-18

llbd, 2-26, 3-6, 3-13, 3-14,
3-16

loader
changes to, 4-4

local-access-only attribute, A-
14

log-in sequence
changes to, 2-12

logging in, 2-12
lopstr, 2-10
Iprotect command, A-14

Index 5

6 Index

M

machine types
unsupported, 1-5

Making the Transition
organization of, 1-2

Managing System Software
manuals, 1-2

manual
documentation conven

tions,v
related manuals, iv

mark-release, 4-14
mixed environments

and DSEE, 4-42
mixed networks

and emt, 3-31
backups in, 3-25
command search rules,

3-30
compatibility in, 3-22
creating remote processes

in,3-30
crp and, 3-30
file system incompatibili-

ties in, 3-29
layered products in, 3-31
name resolution in, 3-30
NLS in, 3-31
object file formats in, 3-29
programming environment

in, 4-38, 4-39
protections and backups,

3-25
protections in, 3-23, 3-25
rbak and wbak, 3-26
setuid and setgid pro-

grams in, 3-25
type managers in, 3-29
uucp in, 3-27
variant links in, 3-30

mkdir
and protection inheritance,

4-7
mknod,I-8

monitoring
login, 1-8

name calls

N

obsolete, 4-8
name conversion, 3-21
name resolution

in mixed networks, 3-30
NAMECHARS, 2-17
names

leaf,2-18
length of, 1-12,2-18
null terminated, 2-18
path,2-18

natural alignment
of data, 4-25, 4-28

NCS, 3-6
administration, 3-18
as registry base, 1-14
new versions of SR9.7

programs, 3-16
Network Computing Architec

ture,2-26
Network File System (NFS)
Network License Server (NLS)

nodes
cataloging, 3-21

ns_helper
and case sensitivity, 2-15
and SRI0, 1-5
databases and SRI0, 3-4,

3-5
see Naming Server Helper,

1-5

o
obj,4-15
obj file format, 3-29
obj format

defined, 1-4
obj modules, 1-4

obj type<imodules, 1-3
object file fonnat

COFF, 3-29, 4-18, 4-19
in mixed networks, 3-29
obj,3-29

obsolete machine types, 1-5
open, 4-7
organization

of this manual, iii
other documents, iv

p

pad_$isa_ dm.J)ad,4-6
Pascal, 4-34

new syntax, 4-34
preprocessor variable, 4-34
routine signatures, 4-34
signature comparison, 4-35

passwd and group files, 1-14,
1-18
and cvtrgy, 3-12,3-15

passwd file, 1-13
password

default, 3-12
encryption, 3-16
encryption of, 1-14,3-15

passwords
converting, 3-15

pathnames
length of, 2-18
length of components,

1-12
numberofcruuacte~in,

4-20
position-independent code,

4-16
prflib,4-5
printing

at SRI0, 1-7,2-9
in mixed environments,

2-9
UNIXlp andlpr, 1-7,2-9

problems
reporting, v

program invocation, 4-14
program libraries

changes to, 4-4
programming environment

ACLs in, 4-23
and names, 4-20
case in pathnames in, 4-8
case sensitivity in, 4-7,

4-13
changes to, 4-1
compatibility, 4-1
disk storage and,4-33
dot and dot-dot in, 4-28,

4-30
in mixed networks, 4-38,

4-39
inheritance in, 4-17
maUoc, 4-33
names in, 4-21
new debugger in, 4-38
protections in, 4-23
SYSTYPEs,4-31
transition aids, 4-9, 4-10,

4-12
programs

debugging, 4-38
natural alignment of data

in, 4-25, 4-28
project list

defined, 1-18
project lists

and access rights, 1-19
at SRI0, 2-3
before SRIO, 2-3
in UNIX systems, 1-18

PROJUST, 1-19
protected subsystems, 2-20
protection, 2-19, 2-20

controlling access via spm,
2-24

from remote root
processes, 2-24

in programming environ
ment, 4-23, 4-24

inheritance of, 2-19, 2-22,

Index 7

8 Index

2-23
inheritance via mkdir, 4-7
local-access-only attribute,

2-23
obsolete commands, 2-25
SRIO, 1-13

protection changes
extended UNIX system

protection, A-7
how ACLs work in SR9.7

and SRIO, A-9, A-IO,
A-H, A-12

implications of, 1-3
limiting access, A-14

protection models, A-I
extensiom to UNIX sys

tem,A-3
extensiom to UNIX, A-4
UNIX extensions, A-2

protection modes
UNIX,2-19

protection tools, A-13
protections and backups

in mixed networks, 3-25

questiom
reporting,v

rbak,l-9

a

R

rbak and wbak, 3-25
in mixed networks, 3-3,

3-26
registry

administration, 2-27
and DPSS/Mail field, 3-27
as NCS application, 2-25
at SRI0, 2-25
converting, 3-6,3-8,3-12
converting from pre-SRI0

to SRI0, 2-27
converting from SRI0 to

SR9.7,3-14
converting from SR9.7 to

SRI0, 3-13
g1bd,2-26
in mixed networks, 2-26,

3-7,3-23
llbd,2-26
local, 2-25, 2-27, 3-20
merging, 3-20
obsolete commands, 2-26,

2-30
ownership in, 1-14
replica, 3-6, 3-20
required accounts, 2-28
reserved identifiers, 2-28
running without servers,

3-21
servers, 3-17, 3-18, 3-19
setting up, 3-6
site node consideratiom,

3-16
SRI0,1-14
structure of, 2-25, 2-26
UNIX commands and,

2-26
registry administration

with rgy_admin, 3-17
registry data

canned accounts, 3-11
canned entries, 3-10, 3-15
converting to SRI0, 3-9,

3-12
predefined entries, 3-15

registry database
editing the, 2-26
member relatiomhips in,

2-29
registry server, 2-27
related manuals, iv
Release Document

SRI0,1-4
remote login, 1-8
remote process creation

in mixed networks, 3-30
reporting

documentation problems, v
software problems, v

rgyd, 2-27, 3-6, 3-13, 3-14,
3-16
starting first, 3-12

rgy_admin,3-17
rgy_create, 3-20

scrattr, 1-17
scrch, 1-17

s

SCSI device support, 1-15
search order

for ACLs, A-8
security

login, 1-8
sendmail,2-14
Server Process Manager

(spm)
servers

order of starting, 3-17
starting, 1-8

setuid and setgid programs
in mixed networks, 3-25

shell
default for log-in accounts,

2-12
Korn, 1-9

SID
single-program-per-process

model, 4-14, 4-18
transition aids, 4-18

SIO lines, 1-8, 2-9
siologin, 1-8
siomonit, 1-8
spm
spmio, 3-30
spm_control~e,2-24

SRIO
first installation of, 1-6
installing, 3-2
library model, 4-2
memory prerequisites, 1-5

SRI0 installation, 1-1

SRI0 systems
copying ~es to and from,

1-3
SR9.7 programs

new versions in SRlO, 1-3
stat structures

changes to, 4-30
statO system call, A-7
std $call

-obsolete, 4-5
STREAMS

defined, 1-11
streams

number open, 4-14
Subject Identifier (SID)
suggestions

reporting, v
SVID (System V Interface

Definition), 1-1
swtlib,I-3
swtulib

defined, 1-3
symbol names

case sensitivity in, 4-9
symbolic links, 2-18
syncids, 3-7, 3-12
sys.conf~e, 4-2
system administration

and SRI0, 3-1
system administrator

installation duties, 2-2
system calls

new, 4-21
obsolete, 4-8

System V Release 3, 2-2
SYSTYPE

in programs, 4-6
See also environment vari

ables, 2-14
SYSTYPEs

obsolete, 4-6
rebinding to new, 4-6

SysV, 2-2

Index 9

T

tabs
setting display, 2-10

tar,I-9
tb,4-7
TCP/IP,3-4

changes at SRI0, 1-11
TI (Transport Interface
transition aids

cvtname, 2-1S
DM case command, 2-18
DOWNCASE,2-16

type managers
as COFF objects, 3-29
in mixed networlcs, 3-29

u
uasc file type, 1-12
Unique Identifier (UID)
UNIX system

tetclpasswd and
tetclgroup files, 1-18

UNIX

10 Index

account information files,
2-27

AT&T,2-2
Berlreley,2-2
concepts for Aegis users,

1-17
data structures, 4-30
dot and dot-dot, 2-19
extended protection

features, A-7
identifiers, 1-18,3-7,3-12
links,2-18
passwd and group files,

1-14
password encryption, 1-14
printing, 1-7
process accounting, 1-8
protection, 1-13
protection model, A-2
protection modes, 2-19

UNIX environment
protection tools, A-13

UNIX IDs
in registry, 2-28

unstruct file type, 1-12
user files

backing up, 3-2, 3-3
uucp

gateway from DPSS/Mail,
1-10

HoneyDanBer, 1-11
in mixed networlcs, 3-27
pre-SRI0 versions, 1-11
SR9.7 HoneyDanBer, 3-27

v
variant links

in mixed networlcs, 3-30
vipw,2-27

w
wbak,I-9
write-only files, 2-21

x
X Windows, 1-8

Reader's Response

Please take a few minutes to send us the information we need to revise and improve our
manuals from your point of view.

Document Title: Making the Transition to SRlO Operating System Releases
Order No.011435-A02

Your Name Date

Organization

Street Address

City State Zip

Telephone number (---)----------------

When you use the Apollo system, what job(s) do you perform?

o Programming
o Hardware Engineering

o Application End User
o System Administration o Other (describe) ____________ _

How many years of experience do you have in using the Apollo system:

What programming languages do you use with the Apollo system?

How would you evaluate this book?

Excellent Average Poor

Completeness 1 2 3 4 5

Accuracy
1 2 3 4 5

Usability
1 2 3 4 5

Additional Comments:

No postage necessary if mailed in the U.S.

fold

fold

IIIIII
BUSINESS REPLY MAIL

FIRST CLASS MAIL PERMIT NO. 78 CHELMSFORD, MA 01824

POSTAGE WILL BE PAID BY ADDRESSEE

APOLLO COMPUTER INC.
Technical Publications
P.O. Box 451
Chelmsford, MA 01824

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

Reader's Response

Please take a few minutes to send us the information we need to revise and improve our
manuals from your point of view.

Document Title: Making the Transition to SRlO Operating System Releases
Order No.01l435-A02

Your Name Date

Organization

Street Address

City State Zip

Telephone number (--.J _______ _

When you use the Apollo system. what jobes) do you perform?

D Programming
D Hardware Engineering

D Application End User
D System Administration

D Other (describe) ___________ _

How many years of experience do you have in using the Apollo system:

What programming languages do you use with the Apollo system?

How would you evaluate this book?

Excellent Average Poor

~ompleteness 1 2 3 4 5

~ccuracy
1 2 3 4 5

Jsability
1 2 3 4 5

I..dditional Comments:

No postage necessary if mailed in the U. S.

fold

fold

IIIIII
BUSINESS REPLY MAIL

FIRST CLASS MAIL PERMIT NO. 78 CHELMSFORD, MA 01824

POSTAGE WILL BE PAID BY ADDRESSEE

APOLLO COMPUTER INC.
Technical Publications
P.O. Box 451
Chelmsford, MA 01824

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

o
D o
o

1111111111111111111111 iilii 111II iill iiiii!! Ilillilii 111i iiil
lD11435-,t\D2J

