

BESYS-6

The intent of the so-called BESYS-6 system was to organize
the 8K system area of memory so that it consisted of a static
nucleus of minimal size and a dynamic area into which relo­
catable portions of the system would be dynamically loaded as
dictated by a job's processing. There was never any doubt that
this was an ambitious approach that had a certain aesthetic
appeal. That the associated effort would ever produce a
production quality system, however, was in doubt.

Several practical factors were working against this ap­
proach. Foremost was performance. BESYS-5 had set a de
facto performance level that would be difficult to beat. The
overlay scheme was reasonably thought out and was designed
to be optimal with respect to the way jobs normally used the
system. The dynamic approach inherently had a higher over­
head having to deal with module relocation and core
fragmentation.

There would be no pending hardware upgrades to boost
performance that could be traded for the increased overhead,
and there was no hardware assist that could be used to reduce
the overhead. The handwriting was on the wall for the 709X
machines; attention had already shifted to the next generation
of machines.

Finally, the promised upgrades for the disk support were
ready and in demand. They would be offered in an edition of
BESYS called BESYS-7.

BESYS-7

BESYS-7 was put into service in May, 1964. It delivered the
promised additional disk storage support, support for private
libraries, a user facility for input source switching, and some
rudimentary terminal support.

User Disk Storage

When BESYS-5 was introduced, disk storage space was
divided into three categories: permanent, semi-permanent,
and temporary. The permanent space was used for system
residence, and the temporary space was available for use by
users for scratch files. With BESYS-7, provision was made to
allocate semi-permanent space to users. Space from the semi­
permanent category, called a key area, was allocated to a user
on application to the computer center, and a name, called a
key, was assigned to access it.

A facility called REVISE enabled users to manage their key
areas and to dynamically create, name, and allocate the space
to files. Such files could be opened using their key and file
names and accessed using any system I/O routine.

As rudimentary as this file system was, it proved to be
immensely popular. And surprisingly for a random access
facility, it was primarily used to store many modest-sized se­
quential files. Development groups that used specialized sets
of tools found the file system particularly effective because it
permitted the tools to be centralized, made readily available
to their users, and easy to maintain.

BESYS . Revisited 813

Source Switching and Private Libraries

Two system facilities added to the effectiveness of the disk
file system. The first was a standard source switching capabil­
ity, and the second was the ability to maintain and use private
libraries of relocatable subroutines. Source switching could be
performed at the control card or program level. It enabled
users to redirect the system's standard input to any file. Al­
most overnight, drawers of job decks quietly slipped into the
file system and suddenly cards took a step towards obsoles­
cence. Private libraries that could be searched by the system's
loader abetted this shift and made the life of developers of
specialized tools even easier.

Experimental Terminals

In 1964, an experimental PB-250-based intelligent graphics
terminal, developed by E. N. Pinson, and several typewriter­
like terminals with local buffer storage were linked to the
709X systems and made to "interact" with the system at the
job level. Although they showed that users could interact
directly with the system, the job processing nature of the
system precluded the type of interaction taken for granted
today.

The End of The Line

BESYS-7 was the last of the systems we produced for the
709X machines. With the next generation hardware waiting in
the wings, the pace of system development dwindled. Atten­
tion turned to the development of Multics and developments
in the TSS/360 and OS/360 world. Optimistically, it was be­
lieved that one or the other of these systems would assume the
work load being handled by BESYS.

By 1967, this optimism faded as it became clear that such a
step would not be cost-effective. The investment in existing
software was too great, and the conversion costs were too high
for a flash cut to work. Instead a proposal by the author to
emulate BESYS-7 on the Systeml360 as a means of smoothing
the transition to the next generation machines and spreading
out the conversion costs, gained favor.14

BE90 EMULATOR FOR BESYS-7

In 1967, the proposal to emulate BESYS-7 turned to action.
A team led by the author and including F. T. Grampp and
eventually G. J. Hansen was formed to act on it.

IBM had already produced an emulator for the 709X
machines, called EM90. However, it did not support disk
storage devices and, therefore, was not suitable for BESYS-7
emulation. Our approach was to develop an emulator, called
BE90, by combining EM90's CPU emulation modules with
new routines designed to meet BESYS-Ts I/O requirements.
In addition, direct interfaces to BESYS-7 and ASP were de­
veloped so that a mixture of BESYS and OS jobs could be
processed within the same OS/360-ASP environment.

BESYS-7 itself was streamlined slightly, dropping most of
the code supporting the Tape Control System in favor of set

814 National Computer Conference, 1987

up information supplied by ASP. All other BESYS functions
were supported and no user job needed modification.

BE90 was put into service in March, 1968, and within a
month the plug was pulled on two 7094s. The last of the 709X
machines would be retired from Bell Labs in March, 1969, and
BESYS would continue to be used under emulation until
February, 1971.

THE LAST CURTAIN CALL

One of the last programs that BESYS would ever run involved
a humanitarian effort to help a boy being treated for Hodg­
kin's disease. K. Knowlton, a Bell Labs pioneer in computer
graphics, had helped develop a technique for generating
movies visualizing the treatment of deep body cancer by radi­
ation. Since the computer programs for that purpose only ran
under BESYS at the time, the system was fired up one more
time under BE90 to process the patient's data. The results
produced would determine the proper radiation doses and
what vital organs and other parts of the body should get the
radiation. 15

One couldn't have asked for a more fitting end to BESYS's
long and distinguished record of service.

CONCLUDING REMARKS

BESYS contributions are hard to quantify. Certainly it helped
thousands of scientists and engineers gain more insight into
their work as well as provide them the means to obtain the
results they required. The author is pleased to have been a
principal contributor to the development of BESYS-3 through
BESYS-7.

Unlike IBM's IBSYS and OS, it didn't attempt to be all
things to all people. Instead, it took a series of machines that
had potential but were complex and difficult to use and pro­
vided a system that transformed them into efficient and effec­
tive tools.

Some like to say that BESYS influenced UNIX; but in
practice, no more than L1 and L2 influenced BESYS. For
their time, they are all good systems that marched off at right
angles to one another sharing only the common bond and
spirit of the people that work in the environment established
by Bell Labs.

REFERENCES

1. Encyclopedia of Computer Science and Technology, Vol. 3, New York:
Marcel Dekker, p. 210.

2. Holbrook, Bernard D. and W. Stanley Brown. "A History of Computing
Research at Bell Laboratories (1937-1975)." Computing Science Technical
Report No. 99, Bell Laboratories, 1982, p. 15.

3. Wolontis, V. M. Bell Laboratories Record, 52 (1974) 1, p. 18.
4. Wolontis, V. M. "A Complete Floating-Decimal Interpretive System for

the IBM 650 Magnetic Drum Calculator." IBM Technical Newsletter, No.
11, March 1956.

5. Hamming, R. W. and R. A. Weiss, "General Purpose System." unpub­
lished internal memorandum, Bell Laboratories, September 14, 1956.

6. McLaughlin, Richard A. "The IBM 704: 36-Bit FLoating-Point Money
Maker." Datamation, 21 (1975) 8, p. 45.

7. Mealy, G. H. "704 Input-Output System: BE SYS 1." unpublished internal
memorandum, Bell Laboratories, October 16, 1957.

8. Mealy, G. H. "704 Input-Output System-BE SYS 1 and 2." unpublished
internal memorandum, Bell Laboratories, February 13, 1958.

9. Hansen, G. J., W. L. Mammel, and G. H. Mealy. "704 Input-Output and
Monitor system-BE SYS 2." unpublished internal memorandum, Bell
Laboratories, May 22, 1959.

10. Holbrook, B. D. and W. S. Brown. "Bell Laboratories and the Computer
from the Late 30's to the Middle 60's." unpublished internal memorandum,
Bell Laboratories, June 25, 1975, p. 54.

11. Eastwood, D. E. and M. D. McIlroy. "Macro Compiler Modification of
SAP." unpublished internal memorandum, Bell Laboratories, September,
1959.

12. Drummond, R. E. and G. J. Hansen. "BE-SYS-4 Release Description."
unpublished internal information bulletin, Bell Laboratories, February,
1962.

13. Cutler, M. R. "General Description of BESYS5." unpublished internal
memorandum, Bell Laboratories, February 18, 1964.

14. Drummond, R. E. "Emulation of BESYS-7 on The SYSTEMJ360, Model
65." unpublished internal memorandum, Bell Laboratories, April 3, 1967.

15. "Movies Help Radiation Treatment." Bell Labs News. May 21,1971.

FMS: The IBM FORTRAN Monitor System

by RAY A. LARNER
IBM Corporation
Boulder, Colorado

ABSTRACT

This paper is a short history of the IBM FORTRAN Monitor System (FMS) and its
follow-ons, which provided a popular early "work horse" operating system for the
IBM 704/9/90 computer systems FORTRAN users beginning at the end of 1959.

The events and environment leading up to this sytem are explored. This system
was developed through an ad hoc cooperative effort by members of the user group
SHARE, and the IBM FORTRAN compiler group, as an interim operating system
solution pending a more general planned and funded system. While there was
controversy about the wisdom of distributing the system, it became widely used, and
contributed to an evolutionary set of operating environments.

Fueled by dramatic growth in the popularity of FORTRAN, and some useful
features of FORTRAN inter-program linkage, the system, and descendants of it,
became standard for most IBM 704/9/90 series accounts throughout the 1960s.

815

BACKGROUND ... 1956-1959

The Introduction of FORTRAN

In 1957, IBM's John Backus and his small FORTRAN
group made available the first FORTRAN compiler, for the
IBM 704 computer system. They had devised both the lan­
guage and the compiler, and the reception by the user commu­
nity was extremely positive. For the first time, there was a
capability for "non programmers" to program these machines
in a practical way. The language's emphasis was on engi­
neering and scientific usage, and much sophistication had
been put into producing object programs that were efficient
for these applications.

In 1958, the same group produced FORTRAN II, which
extended the original system's capabilities by allowing sepa­
rately compiled FORTRAN programs to be linked together
at load time, with symbolic linkage and data sharing. This
extension was, in the author's opinion, a cornerstone to the
practical acceptance of FORTRAN, and led to the expansion
of the FORTRAN system into an early operating system.

FORTRAN Operation

At this time, there was no generally available operating
system for FORTRAN users. It was the norm for a specific
job to have uncontested control of the computer system,
starting from a machine reset state, and ending with a pro­
gram halt. The FORTRAN compiler behaved in this fashion,
as did a FORTRAN object program. A FORTRAN object
program could be composed of mUltiple program segments,
each the result of an independent compilation. To run a
FORTRAN object program job, a special loader (the BSS
loader, for Binary Symbolic Segment loader) furnished with
the FORTRAN system, was boot-strapped into the computer.
The BSS loader loaded multiple relocatable segments into
computer memory, assigning locations as it did so, both for
programs and data. Hence, the BSS loader was acting as a
main memory manager for that job. After loading the pro­
grams, it passed control to one of them (called the Main
Program). When the program completed, the machine came
to a halt, and the machine operator would reset the machine
to run whatever the next job happened to be.

SHARE/IBM Operating System Strategy

Within SHARE (the user group for this line of computers)
there was a cooperative effort among several of the more
experienced members, and IBM, to define and implement a
standard operating system called SOS (SHARE Operating

FMS: The IBM FORTRAN Monitor System 817

System). SOS was meant to provide a machine control system
to automatically sequence jobs without operator intervention,
and to provide comprehensive development and debugging
tools. This effort, however, was begun in parallel with the
development and acceptance of FORTRAN, and there were
some incompatibilities, both in concept and in detail, between
SOS and FORTRAN.

Increasing Customer Usage of FORTRAN

Meanwhile, FORTRAN usage by many SHARE users be­
gan to increase dramatically. This was especially true with
companies that were new users of these computers, and had
little or no invested inventory of application software. It was
claimed that development of engineering simulation and data
reduction applications could be completed an order of mag­
nitude faster than with conventional machine language (or
symbolic machine language) approaches. FORTRAN con­
tributed to the emergence of the "open shop," wherein en­
gineers from outside the computer shop were allowed to write
their own FORTRAN programs to solve their own engineer­
ing problems. Typically, these programmers were not trained
in machine language programming, which was restricted to
"closed shop" personnel.

Some of these heavy FORTRAN users began to devise
machine room procedures around FORTRAN, and some
revised the FORTRAN system provided by IBM to provide
more efficient job-to-job transitions. Jobs were "stacked"
onto an input tape using off-line peripheral equipment, and by
local rules, the data written as output by jobs was written
sequentially onto preassigned output tapes for subsequent off
line printing and card punching. Some wrote "monitors," that
provided transition from job to job without machine halts.
These were, of course, practical solutions designed around the
FORTRAN system, usually without regard to the concepts
under development for SOS.

The North American 709 FORTRAN Load and Go System

One of these users was North American Aviation. Their
Rocketdyne division computer center had devised such a
monitor system known as the North American Load and Go
system. This system allowed a single job to consist of one or
more compilations, followed by immediate execution of the
compiled job, and then automatic sequencing to the next job.
Any or all of the job could have been compiled earlier, in
which case the object program (in BSS form) was included
with the input. North American Rocketdyne had made a
number of revisions to the compiler and to the BSS loader to
make this system.

818 National Computer Conference, 1987

In addition, they added a loading and execution time con­
cept that was not in FORTRAN. This was a concept of "chain
links." Multiple FORTRAN programs, each of which was a
full memory load, could be successively executed, in any or­
der, with the programs sharing data in memory. When one
chain link completed, it invoked another chain link. The mon­
itor would load the next chain link into memory (overlaying
the previous one, except for common data variables) and pass
control to it. Any chain link could be invoked an arbitrary
number of times. This was an important function, because in
those days main memory was very limited (a maximum of 32K
words), and many engineering applications required much
more than was available. Chain links were a much more effi­
cient way to overcome this problem than dividing the applica­
tion into multiple independent jobs.

The SHARE Subcommittee Report

In March of 1959, a special subcommittee of the SHARE
FORTRAN Standards and Evaluation Committee met in
New York with members of the IBM FORTRAN group. The
subcommittee was chaired by James Fishman of General Mo­
tors Research Laboratories. Charles (Chuck) Bortek repre­
sented North American, who had proposed to the committee
in February to make the North American 709 FORTRAN
Load and Go System available to SHARE, assuming IBM
would generalize, distribute, and maintain the system. The
purpose of the subcommittee was to evaluate that system, and
to make recommendations to the parent committee "concern­
ing whether IBM should be directed to distribute and main­
tain this system for all 709 FORTRAN users."

The subcommittee, in a report to the SHARE FORTRAN
Committee dated April 10, 1959, published the following con­
clusions:

"1) There is an immediate need and a future need for a
709 Fortran operating system

2) This immediate need may be met by the distribution
and maintenance of the North American Load and
Go System, * NA 308.9, but containing the modifica­
tions listed in the addendum to this report, as a part
of 709 Fortran

3) The question of operating Fortran within the SOS
System should be reviewed by Share and IBM.

* This name is North American's, and not that of the
subcommittee. "

The addendum listed 12 areas for which there were to
be modifications made by IBM. These were not detailed
specifications, but rather suggested an "approach that will
insure no additional difficulty for installations whose prior
experience or new plans makes use of the North American
System without modification unacceptable, and should allow
future expansion in the direction of a single overall operator."
(The term "operator" was used to mean operating system, or
monitor; that is, a computer program taking over some of the
traditional tasks of the computer operator.)

The report went on to express puzzlement over "the

proper place of SOS in relation to Fortran," and concern over
whether "SOS will be efficient for Fortran users, since much
of the design philosophy of SOS was based upon need for
the correcting of coding errors, which Fortran does not pro­
duce " Additional concerns about SOS/FORTRAN con­
vergence were expressed, and a requirement was given for an
assembler to produce relocatable output, "since relocatable
information is implicitly a present adjunct to the operation
of Fortran II." This was a reference to the ability, with
FORTRAN, to independently compile relocatable sub­
routines that could subsequently be included in different
FORTRAN program executions, by means of the BSS loader.

The author's records are somewhat blurred with respect to
official SHARE acceptance, or lack thereof, of this recom­
mendation. They do include a few long and thoughtful letters,
pro and con. On the con side, some thought that each instal­
lation had its own unique requirements, and that standard­
izing would be counterproductive, and would divert IBM's
FORTRAN system programming resources from other im­
portant requirements. Of course, the fact that this system
would be parochial to FORTRAN, and not usable for other
application, was a major concern. SOS boosters, of course,
wanted FORTRAN to run as a part of SOS.

For IBM's part, they expressed willingness to proceed with
the work, but on a very limited basis. IBM did have, after all,
a department developing SOS, which was still the recognized
SHARE operating system, and it was not considered the
mission of the FORTRAN group to develop operating sys­
tems. In fact, the assignment to accomplish this was given
to the author, as a short-term, part-time task. The "IBM 709
FORTRAN Monitor System" was distributed to SHARE
members around Christmas, 1959.

FMS HISTORY ... 1960-1962

The IBM 709 FORTRAN Monitor System initially distrib­
uted to SHARE members was extended beyond the North
American system, in that an assembler, called FAP (for
FORTRAN Assembly Program) was included with the sys­
tem. This assembler was provided to IBM for this purpose by
the Western Data Processing Center (University of California
in Los Angeles), along with an excellent manual. This FAP
was based, to the author's recollection, on an assembler de­
veloped earlier by Bell Laboratories, as a part of their own
monitor, BESYS. FAP produced relocatable output in BSS
format, so FAP program segments (subroutines) could be
easily mixed and matched with those produced by the FOR­
TRAN compiler.

In addition, modifications that North American had made
to the compiler itself were removed, and the necessary mon­
itor functions were isolated in monitor modules themselves,
so that the compiler could be used in a conventional mode
(non monitored) by customers who desired to do so. Monitor
functions were isolated and documented with a view toward
installation customizing, or incorporation into their own mon­
itor. Areas were made available in monitor modules for instal­
lations to install their own extensions, primarily for account-

ing purposes. Various enhancements in usability and flex­
ibility, as requested in the subcommittee report, were made.
Apart from the inclusion of FAP, however, the major func­
tions were essentially those of the North American System.

Monitor Operation

Because main memory was so limited, the monitor modules
were not present during compilations, assemblies, and object
program execution. (An exception was that certain monitor
linkage functions were packaged as optional library sub­
routines loaded with object programs.) The compiler and
assembler were essentially "unaware" of the presence of the
monitor. At the completion of a compilation or assembly, the
compiler or assembler simply passed control to the next pro­
gram (record) on the system tape. This was done in the same
manner that control was passed between phases within com­
pilation or assembly-via a tiny program in lower memory
called "1 to CS." This program was only a few instructions
long; it simply loaded the system program at the current
system tape position into memory and passed control to it. In
addition, a few words of memory with "1 to CS" were re­
served by the monitor for job status, and for use by individual
installations for accounting information.

Thus, the monitor modules were strategically placed on the
system tape, to be brought in only on transition between job
steps.

Job definition was controlled by control card images on the
input tape. At the beginning of each job there was a "sign-on"
card. Installations could customize the information on the sign
on card, and could add logic to the monitor module that
processed it, to perform accounting functions (e.g., billing by
department for machine usage).

After the sign-on card were all the input data for the job,
separated by appropriate control cards interpreted by the
monitor. This could include FORTRAN source programs,
FAP source programs, object programs (in BSS relocatable
format), and input data for the execution phase of the object
program. Execution phases were optional; that is, the job
could consist of all compilations and assemblies. Similarly, the
job could be execution only, or could be a mixture of com­
pilations and/or assemblies followed by an execution phase.

When all compilations and assemblies (if any) for a job
were completed, the monitor would load the (relocatable)
segments of the job, load all library routines required by the
job, and pass control to the main program of the job. When
the program completed, the monitor would regain control and
process the next job.

If the job was a "chain" job, the monitor would "load" each
chain link, resolving all relocatable references, and write the
"loaded" chain link to tape, with proper identification, and
begin processing the next chain link within the job. Each chain
link was like a "job" in itself, in that it could contain a mixture
of compilations and/or assemblies and relocatable object code
segments.

During an execution phase, selective or complete dumping
of program and/or data areas could be performed via monitor
library routines.

FMS: The IBM FORTRAN Monitor System 819

Source Language Debugging

In 1961, source language debugging capability was added to
the monitor. This work was done by a select group of SHARE
members, headed by Bill Heffner, then of General Electric,
and integrated into the system by IBM. Source language de­
bugging was a natural outgrowth of the BSS architecture.
Adding symbol tables to BSS "decks" for internal variables,
as well as already existing symbol tables for external names,
was done in the compiler assembly phase, on option. This
provided a platform for run-time monitor routines that
performed snapshots of requested variables, (using source
program symbols and indices). This feature had been long
demanded by users and was a welcome addition.

Acceptance by SHARE

Up to the time the initial distribution of FMS was made,
there was considerable reluctance within SHARE to formally
endorse it (it was never officially endorsed, to the author's
knowledge). At the February, 1960 SHARE meeting, it was
duly noted that the distribution had occurred, but there had
been such little experience with the system at that time that
there was little discussion of it (or at least within the author's
records). By the time of the next semiannual meeting, how­
ever, correspondence and minutes indicate that FMS was a
"taken for granted" standard part of the FORTRAN environ­
ment, and polls indicated that FMS was almost universally in
use. Lobbying for enhancements to the monitor became as
commonplace as lobbying for compiler enhancements.

In 1961, a resolution was passed to remove the capability
for non-monitored operation. User questionnaires indicated
that a vast majority of overall 709 and 7090 usage was in
FORTRAN, and that 76 percent of the installations used the
FORTRAN Monitor System distributed by IBM. A few of the
more progressive installations had made the FORTRAN
monitor system a subsystem under the control of a "master
monitor ," that could also invoke other monitors for non­
FORTRAN applications.

Incremental performance and functional improvements
were made to FMS, including its integration into "IBSYS"
(an IBM "master monitor") in 1962.

FMS INTEGRATION AND EVOLUTION ... 1962 ON

IBSYS

Once FMS was in wide usage, IBM realized that it must de­
velop and generalize operating systems including FMS func­
tions. In 1962, IBM introduced a "master monitor" (IBSYS)
that included FMS as a subsystem, along with Commercial
Translator (IBM's entry into Business Oriented Languages),
a buffered Input/Output Control System (7090 IOCS), and
additional applications, such as tape sort and report gener­
ation. Additional subsystems were added over time. Provi­
sions were made for optional FORTRAN usage of IOCS, to
trade main memory for increased Input/Output performance.

820 National Computer Conference, 1987

IBSYS provided a number of services, including centralized
110, dynamic device and channel allocation, centralized ac­
counting, and uninterrupted flow between the various "sub­
systems." In this environment, FMS still performed basically
the same functions as before, but could coexist more easily
with other software packages. In addition, by channeling 110
through IBSYS, the support of disk storage (the IBM 1301)
and new magnetic tape architecture was readily accomplished.

[BlOB

In 1963, IBM made FORTRAN IV (a new FORTRAN
compiler) available. A new Monitor System, called IBJOB,
was used with FORTRAN IV. In IBJOB, more software
systems, including non-FORTAN languages and shared
common run-time linkage and relocation architecture, and a
more generalized program overlay structure, organized along
tree structure concepts was available across this spectrum.
IBJOB in tum ran under IBSYS, and so could coexist with the
FORTRAN II FMS subsystem at that level, along with other
subsystems. FORTRAN IV, and the IBJOB monitor, in ac­
cordance with agreements between IBM and SHARE, sacri­
ficed compatibility with FORTRAN II and FMS, in exchange
for language and operational improvements. FORTRAN II
FMS continued to be distributed and maintained, therefore,
to support existing FORTRAN II and FMS applications.
Many SHARE members who purchased IBM's S/360 systems
in the late 1960s continued to run these new systems in 7000
series emulation mode for several years, continuing to operate
with FMS, IBJOB, IBSYS, and/or their own monitor systems
and subsystems.

RETROSPECT

The FORTRAN Monitor System, together with its follow-on,
IBJOB, and complementary system, IBSYS, served practical
roles as "workhorse" systems for IBM's 704/9/90 series
FORTRAN users throughout the 1960s decade. Their fea­
tures (some of which were derived from FORTRAN II link­
age concepts) laid foundations for the incorporation of similar
features (now taken for granted) in subsequent operating sys­
tems. For example:

1. The Binary Symbolic Segment relocatable object pro­
gram architecture concepts are still used in modern oper­
ating systems, as are the source language debugging aids
built on them; the IBJOB extensions to this for auto­
matic overlays during execution (replacing the FMS
chain link concept) were carried into IBM Systeml360
operating systems until the advent of virtual memory
hardware/software systems.

2. The concatenation of batch job steps in FMS has been
carried forward and refined in all major modem oper­
ating systems.

3. The concepts of 110 resource allocation and control in­
troduced by IBSYS are still present in modem operating
systems.

These were important steps in the evolution of operating
systems, and helped provide a productive application environ­
ment for emerging large system computer users in this period.
The major impetus in the growth of these systems came from
the users, through the good communication of the SHARE
organization. The author is glad to have been a part of this
early segment of operating systems history.

SMALL BUSINESS DAY
SHELDON GOLDBERG

S. Goldberg and Associates
Morton Grove, Dlinois

The Small Business Day sessions offer a complete automation seminar for small business
owners or managers contemplating installation or upgrade of a computer system. Learn what
a computer can do for your business and how to maximize return on investment for your
computer system. You need to know about automation as a solution for your business
problems if you want to stay in business. The Small Business seminar tells you why you should
automate, helps you decide what to automate, and explains how to proceed so you can begin
immediately.

The first session features practical advice on how to find the resources you need as you
define your automation needs. It also explains how to get financial assistance for funding
computer hardware, software, and consulting services. Other sessions arm you with the facts
you need to be an informed buyer. The sessions strip computer automation of its technical
armor by describing it in practical small business user terms. Learn what steps to take and
how to proceed in a manner that keeps you in control.

The final session addresses specific needs for specific industries, focusing on requirements
for real estate offices, medical and dental practices, restaurants, hotel/motel operations,
distributors, and small manufacturers. The session provides advice on how to get the com­
petitive edge in your industry and how to avoid the pitfalls that have left many small business
owners wondering where they went wrong. The complete four-session seminar provides
scores of practical tips for getting the most from your automation plans, streamlining your
computerization, and reducing your automation costs.

1987 NATIONAL COMPUTER CONFERENCE
COMMITTEES

Chair
Margaret K. Butler
Argonne National Laboratory
Argonne,IL

Vice Chair
Alan Hirsch
Amoco Corporation
Chicago,IL

Administrative Assistant
Joan Murphy
Cass Junior High School
Darien,IL

Robert L. Ashenhurst
The University of Chicago
Chicago,IL

Martin L. Bariff
Illinois Institute of Technology
Chicago,IL

Richard Barnier
Digital Equipment Corporation
Rolling Meadows, IL

Judy Bennett
IBM Corporation
Chicago,IL

Hal Berghel
University of Arkansas
Fayetteville, AR

Barbara Campbell
Governor's Commission on Science

and Technology
Chicago,IL

Carl K. Chang
University of Illinois at Chicago
Chicago,IL

PROGRAM COMMITIEE

Robert Clark
Boeing Computer Services
Seattle, WA

Joseph E. Collins
Data Processing Management

Association
Park Ridge, IL

Charles Curran
Allan-Bradley
Milwaukee, WI

Jack Dongarra
Argonne National Laboratory
Argonne,IL

S. Krishna Dronamraju
AT&T Information Systems
Naperville, IL

Martha Evens
Illinois Institute of Technology
Chicago,IL

David Foster
LaSalle National Bank
Chicago,IL

Sheldon Goldberg
S. Goldberg & Associates
Morton Grove, IL

Scott Humphrey
Britton Lee, Inc.
Los Gatos, CA

Julie Hurd
The University of Chicago
Chicago,IL

Jie-Yong Juang
Northwestern University
Evanston, IL

823

Evelyn Marsh
Sears
Chicago,IL

Jorge Nocedal
Northwestern University
Evanston,IL

Eugene Norris
George Mason University
Fairfax, VA

Sandra Reed
Northern Illinois University
DeKalb,IL

George Ryckman
General Motors, Retired
Grosse Pointe, MI

Alan Sobel
Lucitron, Inc.
Northbrook, IL

Sandra Taylor
Britton Lee, Inc.
Los Gatos, CA

George B. Trubow
John Marshall Law School
Chicago,IL

Robert Vonderohe
The University of Chicago
Chicago,IL

David Weber
Argonne National Laboratory
Argonne,IL

Conrad Weisert
Information Disciplines
Chicago,IL

1987 NATIONAL COMPUTER CONFERENCE STEERING COMMITTEE

General Chair
John Brown
AT&T Information Systems
Naperville, IL

Vice Chair
Richard B. Wise
Sargent & Lundy Engineers
Chicago,IL

Program Chair
Margaret K. Butler
Argonne National Laboratory
Argonne,IL

Professional Development Seminars
Chair

C. Robert Carlson
Illinois Institute of Technology
Chicago,IL

Pioneer Day Chair
George Ryckman
General Motors, Retired
Grosse Pointe, MI

Promotions Chair
Roger Halligan
Halligan & Associates, Inc.
Chicago,IL

Finance Chair
Marjorie Benson
University of Chicago
Chicago,IL

Operations Chair
Mary W. Owen
SPSS Inc.
Chicago,IL

Human Services
Shirley A. Baird
Milestone Systems, Inc.
Downers Grove, IL

Special Activities
M. Mildred Wyatt
Wyatt Communications
Chicago,IL

Secretary
David Jacobsohn
Chicago,IL

Advisor
Rolland B. Arndt
Lakeland, MN

Advisor
Albert K. Hawkes
Sargent & Lundy Engineers
Chicago,IL

Micro Mouse Chair
Susan Rosenbaum
Strategic Planning and

Mechanization Specialist
Plainfield, NJ

NATIONAL COMPUTER CONFERENCE BOARD/AFIPS CONFERENCE BOARD

Chairman and DPMA
Representative

Carroll Lewis
Commercial Data Corporation
Memphis, TN

Treasurer and AFIPS Representative
Seymour Wolfson
Wayne State University
Detroit, MI

Secretary and AFIPS Representative
Robert E. Blue
E COMP-COMM
Indialantic, FL

AFIPS Representative
Rolland B. Arndt
Lakeland, MN

AFIPS Representative
Jack Moshman
Moshman Associates, Inc.
Bethesda, MD

ACM Representative
Bertram Herzog
Boulder, CO

IEEE-CS Representative
Stanley Winkler
Bethesda, MD

SCS Representative
Carl W. Malstrom
North Carolina State University
Raleigh, NC

Ex Officio Members

ACM President
Paul W. Abrahams
Deerfield, MA

DPMA President
Robert A. Hoadley
City of Raleigh
Raleigh, NC

824

IEEE-CS President
Roy Russo
IBM Corporation
Yorktown Heights, NY

SCS President
Ralph Huntsinger
California State University
Chico, CA

AFIPS Executive Director
John Gilbert
AFIPS
Reston, VA

AMERICAN FEDERATION OF INFORMATION
PROCESSING SOCIETIES, INC. (AFIPS)

President
Jack Moshman
Moshman Associates, Inc.
Bethesda, MD

AFIPS Immediate Past President
Stephen S. Yau
Northwestern University
Evanston, IL

Association of Computational
Linguistics (ACL)

Norman K. Sondheimer
USC Information Sciences Institute
Marina del Rey, CA

Association for Computing
Machinery (ACM)

Paul W. Abrahams
Deerfield, MA

David R. Kniefel
Deloitte, Haskins & Sells
Princeton, NJ

Robert Aiken
Temple University
Philadelphia, P A

Association for Educational Data
Systems (AEDS)

Sylvia Charp
Upper Darby, PA

OFFICERS

Vice President
Rolland B. Arndt
Lakeland, MN

Treasurer
Seymour Wolfson
Wayne State University
Detroit, MI

BOARD OF DIRECTORS

American Statistical Association
(ASA)

James E. Gentle
IMSL, Inc.
Houston, TX

American Society for Information
Science (ASIS)

James M. Crestos
Merrell Dow Pharmaceuticals, Inc.
Cincinnati,OH

Data Processing Management
Association (DPMA)

Eddie M. Ashmore
Southern Baptist Theological

Seminary
Louisville, KY

J. Ralph Leatherman
Hughes Tool Company
Houston, TX

Carroll Lewis
Commercial Data Corporation
Memphis, TN

IEEE Computer Society
Edward A. Parrish, Jr.
Vanderbilt University
Nashville, TN

825

Secretary
Arthur C. Lumb
The Procter & Gamble Company
Cincinnati, OH

Executive Director
John Gilbert
AFIPS
Reston, VA

Dick B. Simmons
Texas A&M University
College Station, TX

Stanley Winkler
Bethesda, MD

Instrument Society of America (ISA)
Robert E. Blue
ECOMP-COMM
Indialantic, FL

Society for Computer Simulation
(SCS)

Walter J. Karplus
University of California
Los Angeles, CA

Society for Industrial and Applied
Mathematics (SIAM)

Shmuel Winograd
IBM Research Center
Yorktown Heights, NY

Society for Information Display
(SID)

Howard L. Funk
IBM Corporation
Thornwood, NY

Adams, Charles W., 785
Amer, Paul D., 437
Amori, Richard D., 19
Annaratone, Marco, 133, 149
Aoyama, Mikio, 477
Arnould, E., 133
Arrathoon, Raymond, 245
Ashenhurst, Robert L., 167

Bal, Henri, 499
Bariff, Martin L., 285
Barnier, Richard, 285, 381
Bauer, Michael, 359
Beard, David V., 725
Berghel, Hal, 1, 27, 315, 329
Bernstein, Jared, 37
Bitz, Francois, 149
Bivens, Mary P., 665
Blanning, Robert W., 13
Bolter, Jay D., 725
Boswell, Sandra, 205
Bourbakis, N.G., 247
Bowyer, John, 3
Brooks, Gary D., 205
Brown, John M., iii
Bruegge, B., 141
Butler, Margaret K., v

Carter, Jr., James A., 341
Cashion, Richard, 453
Chang, C.H., 141
Chang, Carl K., 457, 477
Chang, Shi-Kuo, 77
Chapin, Ned, 517
Charp, Sylvia, 169
Cheng, Daniel, 87
Chiang, John e., 475
Chu, Man B., 253
Clark, Robert K., 709
Clement, John, 451
Clemons, Eric K., 701
Cohn, R., 133, 141
Collins, Joseph E., 449
Collofello, James S., 539, 675
Connell, John, 523
Cook, Peter, 49
Couger, J. Daniel, 293
Cousins, Larry, 539
Czejdo, Bogdan, 615

DeBusschere, Daniel G., 397
Desai, Bipin e., 49, 53
Deutch, Jeff, 149
Diaz-Herrera, Jorge L., 67
Don Carlos, Barbara J., 423
Dongarra, Jack, 107, 235

AUTHOR INDEX
Dronamraju, S. Krishna, 709
Drummond, R.E., 805

Edmead, Mark T., 281
Eichmann, George, 237
Ellis, Clarence A., 49
Elmasri, Ramez, 615
Embley, David W., 615
Evens, Martha, 1, 711

Ferguson, Gordon J., 725
Foster, David, 285
Fotakis, D.K., 247
Frasson, Claude, 49

Gallanis, Peter, 283
Ghalwash, A.Z., 257
Gjertsen, Bruce, 317
Goerner, Alan A., 109
Goldberg, Sheldon, 821
Grim, Daniel, 437
Gross, T., 133, 141
Gunn, Howard J., 383
Gustafson, David A., 693

Hagamen, W.D., 97
Harney, Leonard, 149
Harr, Henry, 711
Hawthorn, Paula, 507
Hecht-Nielsen, Robert, 239
Henshaw, John, 359
Hill, Howard, 7, 199
Hoffmann, R.F., 399
Hogan, Douglas L., 43
Hokuf, Bronson, 437
Hurd, Julie, 709
Hursin, Ali R., 119

Irani, Erach, 769
Ivey, Elmo, 563

Jakobson, Gabriel, 611
Jiang, Tsang Ming, 477
Johnson, William S., 737
Juang, Jie-Yong, 87, 107

Karat, John, 183
Kelsch, Robert, 401
Ko, Dave J., 591
Koffler, Richard P., 175
Kumar, Vijay, 485
Kung, H.T., 133, 149
Kushner, Doreen L., 179

La.."Il, M., 133, 141
Lanchbury, Mary Lou, 693

826

Landy, L.D., 385
Lansman, Marcy, 725
Larner, Ray A., 815
Larsen, Mark G., 417
Latoza, Kenneth e., 511
Lee, Daniel T., 683
Lefkon, Richard G., 473
Leiss, Ernst L., 591
Li, Eldon Y., 531
Lieu, P., 141
Ligomenides, P.A., 257
Liu, Sying-Syang, 553
Long, John M., 769
Lu, Hongjun, 583
Lu, Huizhu, 645

Maginnis, P. Tobin, 321
Markowitz, Judith, 3
Marsh, Evelyn, 381
Maryanski, Fred, 367
Matts, John, 769
Maulik, P.e., 149
McClure, Carma L., 459
McManus, John, 53
McNamara, Donald M., 467
Meads, Jon, 233
Mealy, George H., 779
Melton, Austin, 693
Menzilcioglu, 0., 133
Mikkilineni, Krishna, 583
Miller, Donald F., 321
Miller, L.L., 637
Mitchell, Richard F., 287
Mock, Owen R., 791
Modell, Martin, 655
Morgan, Michael L., 301
Morita, Shuzo, 469
Motzkin, Dalia, 563
Mylopoulos, John, 49

Naffah, Najah, 49
Neuman, Michael, 215
Newcomb, R.W., 257
Newell, J.A., 385
Noaman, A., 141
Nocedal, Jorge, 107, 235
Norris, Eugene, 107, 235
Nussbaum, M., 265

O'Connell, Larry, 745
Osman, Mohamed Gagaie Sayed,

711
Owrang, Mehdi, 637

Paller, Allan, 311
Palmer, Janet, 719

Palvia, Prashant, 573
Pan, Shuhshen, 625
Patrick, Robert L., 797
Peterson, Cornelius, 431
Pick, Richard, 471
Place, Jerry P., 109
POSCH Group, The, 769
Pretty, Cecil, 317

Qadah, G.Z., 265

Ramanathan, Jayashree, 545
Rankin, Richard, 27
Reed, Sandra, 315
Reyes, Tom C., 657
Rickert, Joseph B., 403
Rine, David c., 59
Rothbard, Robert, 193
Ruhland, Michael, 349
Rusinkiewicz, Marek, 615
Ryckman, George, 777

Sahin, Kenan E., 761
Salton, Gerald, 613
Sarocky, K., 133
Sawyer, Robert., 761
Schaefer, David H., 253
Schonbach, Avi, 359
Schultz, Alan c., 73

'Senko, J., 133
Shafer, Linda, 523
Sharma, Ravi Sha..'1kar, 601
Sherer, Susan A., 701
Sherwood, . Betty, 185
Shirazi, Behrooz, 119
Slagle, James R., 769
Slonim, Jacob, 359
Smith, F.J., 375
Smith, John B., 725
Smith, Stephen, 159
Soffa, Mary Lou, 665
Spiro, Bruce E., 455
Sprowl, James, 711
Stanfill, Craig, 159
Stefanek, George, 77
Stock, Darrell, 367
Stork, Carl., 279
Straka, Ray, 653
Sullivan, Sarah L., 199

Tanenbaum, Andrew S., 499
Taylor, Sandra, 1, 457
Thau, Robert, 159
Thuraisingham, Bhavani, 583
Toliver, David E., 609
Trubow, George, 449
Tseng, P.S., 149

827

van Renesse, Robbert, 499
Vennergrund, D.A., 675
Venugopal, Vasudevan, 545
Verma, Vinit, 645
Vincent, Philip J., 53
Vonderohe, Robert, 381

Waltz, David, 159
Waters, Michael A., 751
Webb, Jon A., 133, 149
Weber, John C., 97
Weisert, Conrad, 457
Weiss, Bonnie M., 409
Weiss, Stephen F., 725
Wells, Connie E., 309
Wholeben, Brent Edward, 205, 223
Wick, Michael, 769
Wohl, Amy D., 289
Wolf, Gail D., 301
Won, Hee, 127

Yam, D., 141
Yang, Sheausong, 553
Yau, Stephen S., 553
Yusko, Jay, 3

Zawacki, Robert A., 173

