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I.C. 
COST, 

�~� 

MODIFYING 
CONTROL #1 (COUNTER)--7 ANALOG 

u SOLUTION OF 
SERIAL MEMORY �>�-�-�~�O�<�}�-�-�~�(�x�>�-�-�=�-�.�.�.� TRAJECTORY STATE 

EQUATIONS VALUE, 

'" + CONTROL 
IMPULSE 

CONTROL 
IMPULSE 

I 
I 

#2 
(START) 

---- DOTTED LINES REPRESENT 
LOGIC SIGNALS SHOWN IN 
FIGURE 4 

Figure 3. Hybrid computer flow diagram. 

The L / D time history was stored in 64 word serial 
delay line memories with a resolution of 13 bits. 
The access time of the serial memory was 128 jJ-sec. 
To permit a complete solution of the trajectory equa
tions within the 128 .jJ-sec, the analog computer was 
time-scaled at 3750 to 1. 

The mechanization of this problem on the hybrid 
computer is illustrated in Figs. 3 and 4: Figure 3 is 
the problem flow chart, and Fig. 4 illustrates the 
logic used in controlling the problem. The serial 
memory unit is continuously driven by counter pulses 
(Logic No.1). The output of the serial memory is 
the nominal control time history with n points. This 
time history is used, together with the appropriate 
control impulse, to solve the trajectory equations. 
These equations are started at the specified initial 
conditions with Logic No.2, and stopped with Logic 
No.3 when the trajectory reaches the specified end 
condition on altitude. The final values of the cost 
quantity (heat) and the state quantity (range) are 
stored at the end of each run as indicated by Logic 
Nos. 4 and 5. The positive or negative control im
pulse is added to the nominal control input with 
Logic Nos. 6 and 7, respectively. Logic No.8 inserts 
the modifying control (Kcp flrp(t) + KtJ; ,flo/(t) into 
the serial memory. This procedure runs in essentially 
a continuous manner, that is, one point out of the 

n points in the nominal control history is updated 
after each two repetitive computations. After 2n 
repetitive computations (one iteration), every point 
in storage has been modified and the process is re
peated. For each iteration, gains Kcp and KtJ; are held 
constant. As previously mentioned, gain Kcp deter
mines the relative speed and stability of the con
vergence onto the optimum. The corresponding value 
of KtJ; to be used with each new iteration is calculated 
by Eq. (3) as a function of the terminal error from 
each previous �i�t�e�r�a�~�i�o�n� (o/a - tf;) and the �f�o�l�l�o�w�j�n�~� 

#1 
(COUNTER) 

#2 
(START) 

#3 
(STOP) 

#4 
(STORE) 

#5 
(STORE) 

#6 
+(CONTROL) 

IMPULSE 
#7 

_(CONTROL) 
IMPULSE 

#8 
(MODIFY) 

�~�~�~�I�I�I�I�I�I�I�I�I�I�I�I�I�I�I�I�I�I�I�I�I�I�I�I�I�I�I�I�I�I�I�I�I�I�I�I�I�I�I�I� 

�~� n n �~� 

I SOLUTION I 

TIME n ..... ___ --'n n rL 

n n 

n 

I 2n+1 I 
---fl n 

�~�n� I 2n+1 
n L-__________ �~� 

I 2n+1 I 
---1l n 

Figure 4. Hybrid computer program logic. 
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two integrated quantities from each previous itera
tion: 

and 

1tf fllf;2(t)dt 

to 

(4) 

(5) 

Time to was represented by a logic signal at the 
first repetitive computation in an iteration cycle and 
time tf was represented by a logic signal at the last 
computation in an iteration cycle. It should be noted 
that during those parts of the trajectory when the 
control was at a constraint limit, no further optimi
zation was possible and the integration of Eqs. (4) 
and (5) was not carried out-during those times. 

Hybrid Computer Results 

The results obtained from the hybrid simulation 
are illustrated in Figs. 5 and 6. Figure 5 shows a 
portion of one iteration, while Fig. 6 shows the 
convergence to the optimum control LID. 

In the upper trace of Fig. 5, the control impulses 
are superimposed upon the initial nominal control. 
Each control impulse had a magnitude of LID = 
+0.25 and a time increment of one clock pulse 
(0.002 sec). This control impulse was chosen be
cause it gave variation in the final range and heat 
load on the order of + 5 percent. The integrated heat 
loads along each of the repetitive trajectories are pre
sented in the next trace. The difference between the 
final quantities for each pair of subsequent runs is 
fl<p, and represents the heat load impulse response. 

In Fig. 6, the first few iterations of the converging 
optimization procedure are illustrated together with 

CONTROL IMPULSE 

I/NOMINAL CONTROL 

~.5 = ~ I 
~ _ ~--------,r----------JII~~--------,r-----.... z -
8 0-

IMPULSE 
RESPONSE, 

~ ~~ 

!~::I/\71/l.f 
~ I I .1 sec OF COMPUTER TIME 

Figure 5. Hybrid repetitive computations. 

ITERATION I-- I +-2 -+-- 3 --+- 4 --+- 5 ---l 
o .5-
'
..J 
..J o 
~ .... 
z 
8 0-

~ -.2-
'-.1-
~ 0 
:! .1-
-&- .2-

:l£ 1---+ 10 sec OF COMPUTER TIME 

Figure 6. Hybrid computation of the optimal control. 

the thirtieth iteration. In the upper trace the nominal 
control is recorded as it is read out of serial memory 
every 128 + 1 counter pulse (with Logic No.8). 
This gives a convenient time history to show the 
manner in which the control has been modified dur
ing each iteration. Notice that the control is limited 
within 0 ~ LID ~ 0.5. This was achieved by simply 
limiting the output of the serial memory to these 
values. The modifying control shown in the lower 
trace of Fig. 6 is the sum, Krp fl<p(t) + Ktf! .fllf;(t). 
For this series of runs, a constant K<p = ·-2.5X 10-31 
Btu/ft2 permitted fairly rapid convergence while pro
gram stability was maintained. The value of Ktf! was 
calculated for each iteration by Eq. (3) to be that 
value which kept the final value of range near 1,000 
miles. 

As can be seen in Fig. 6, the optimum control 
variation for this particular example was a bang-bang 
control. With the steepest descent method, it was 
found that near-optimum control could be achieved 
in the first few iterations, but to "square up the 
corner" and achieve fun optimum control required 
more iterations (20 to 30). 

Digital Computer Mechanization 

The major elements of the digital computer sys
tem consisted of: ( 1) a digital computer to solve 
the trajectory equations, perform the logical control 
of the program, and store the control LID time his
tories; (2) a line printer to print hard copies of the 
results; and (3) D-A converters and a strip chart 
recorder for fast observation of trends. 

The digital program was written in floating point 
symbolic language. Since the optimization technique 
requires repetitive computation of the trajectory, the 
choice of an integration routine was very important. 
A fast, stable, and fairly accurate routine was 
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needed. 1bese requirements conflict to some ex
tent;8,9 however, the fourth-order Adams-Bashford 
integration algorithm gave satisfactory results at a 
step size of 5 seconds, provided a satisfactory starter 
was used. The starter used the lower order Adams
Bashford algorithms with a step size of 1 second. 

The program flow is as follows (see Fig. 7): (1) 
A nominal control time history is used 0 to calculate 
the nominal trajectory; (2) this trajectory is stored 
for use as the initial conditions for the repetitive 
computations of the trajectory; (3) at the initial 
point along the nominal trajectory, the control is 
perturbed with a positive pulse, and a new trajectory 
is calculated; (4) at this same point on the trajec
tory, the control is perturbed with a negative pulse 
and another new trajectory calculated; (5) from 
these two repetitive computations of the trajectory 
the heat impulse response, .b.rp, and the range impulse 
response, D.lj;, are calculated; (6) the program is then 
advanced to new initial conditions along the nominal 
trajectory by the length of the integration step size; 
(7) steps (3) through ( 6 ) are repeated until the 

initial altitude reaches the stopping condition (100,-
000 ft); (8) at this time, a new nominal control 
time history is computed using Eqs. (2) and (3); 
(9) steps (1) through (8) are repeated. This itera
tive computation continues until an optimum trajec
tory is reached. 

Digital Computer Results 

The first five iterations and the twentieth iteration 
of the digital simulation are illustrated in Fig. 8. 
The upper trace of Fig. 8 shows the control LID 
time history. During the first iteration, the control 
LID was a constant 0.25; at the end of this itera
tion it was modified by Eqs. (2) and (3). By the 
fifth iteration the control LID was approaching bang
bang and by the twentieth iteration it was essentially 
bang-bang. The pulse used to perturb the trajectory 
had a height of 0.25 LID and a width equal to one 
integration step size. For this pulse, a constant value 
of Krp =-7.5 Xl 0-2/Btu/ft 2 permitted a fairly rapid 
convergence and the computation remained quite 
stable. 

STORE u(i) 

CALCULATION OF 
NOMINAL TRAJECTORY 

CALCULATE NEW u(i) 

CALCULATION OF 
PERTURBED TRAJECTORY 

STORE INITIAL CONDITIONS 

PERFORM CALCULATION CYCLE 
INCREMENT TIME STORE VARIABLES 

ILiMIT-i, i-O 
CALCULATE INITIAL CONDITIONS 

PERFORM CALCULATION CYCLE 
fNCREMENT TIME 

> 

Figure 7. Digital computer flow chart. 

i- i + I 

i =j + I 
CALCULATE ~" ~ 
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ITERATION I. I 2 .1. 3 .50 f-----o~---+-O----:'------~-___+_ __ '--_I I .. 20 ., 

Jl CONTROL 25 --"-_---, LID . ~ 

0-

24-

cp, 23-

10
3 

Btu/ft2 22 -

21 -
f-----I 10 sec OF COMPUTER TIME 

Figure 8. Digital computation of the optimal control. 

The second trace of Fig. 8 shows the variation in 
heat from one iteration to the next. The heat, which 
is the cost in this example, decreases markedly dur
ing the first five iterations and nearly reaches its final 
value by the end of the fifth iteration. Tables I, II, 
and III give the results in tabular form. The range 
is shown to remain near 1,000 miles while the heat 
is reduced from 23,491 Btu/ft2, at the end of itera
tion 1, to 21,517 BtU/ft2 at the end of iteration 5. 
The major change during iterations 5 through 20 
was to "square up" the L/D control and achieve the 
full optimum control. At the end of iteration 20, the 
final range achieved was 999.9 miles and the heat 
20,966 BtU/ft2. During the optimization procedure 
the range varied slightly about the desired value of 
1,000 miles and the heat load was reduced about 
10 percent. 

Discussion O'f Hybrid and Digital Results 

It was interesting to observe that both the hybrid 
and the digital simulations required approximately 

Table I.-Altitude Time Histories 

Altitude, 103 ft 

Time, Iteration 
sec 2 10 20 

0 250 250 250 250 
60 207 206 197 197 

120 180 184 160 160 
180 182 184 212 209 
240 158 165 196 195 
300 125 132 142 142 
360 127 127 
400 104 110 

Table II.-Control Time Histories 

Control L/D 

Time, Iteration 
""' ... ! 2 10 20 

0 0.250 0.212 0 0 
60 .250 .192 0 0 

120 .250 .291 .500 .500 
180 .250 .290 .500 .500 
240 .250 .294 .447 .500 
300 .250 .294 .500 .500 
360 .250 .347 .475 
400 .254 .277 

the same amount of computer time, approximately 
2 minutes to obtain near optimum trajectories and 
approximately 5 minutes to obtain full optimum 
trajectories. However, it should be pointed out that 
no real attempt was made to minimize either of these 
computing times. There are several methods for 
reducing the computer time required to obtain opti
mum trajectories. One method would be to select the 
gain Krp automatically for each iteration instead of 
using a constant value for the entire computing run. 
This would cause the solution to converge to an 
optimum in fewer iterations at the expense of com
plicating the computer program. Another method of 
decreasing the computation time would be to de
crease the number of points used to store the control 
time history which would decrease the number of 
repetitive computations required for each iteration. 

The results obtained by both the hybrid and the 
digital computer appear satisfactory for engineering 
purposes. The final values of range and heat com
puted by the two simulations agree to within ap
proximately one percent and both simulations arrived 
at the same bang-bang control time histories. 

Table ilL-Terminal Conditions 

Iteration 
1 2 5 10 20 

Time, sec 344 358 389 407 414 

Altitude, 
103 ft 99.3 99.9 99.8 99.5 98.8 

Range, miles 997.7 1001.5 1003.7 1002.8 999.9 

Heat, 
Btu/ft2 23491 23197 21517 21025 20966 
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One excellent feature of the digital simulation was 
the program documentation obtained by using the 
on-line typewriter and line printer. The typewriter 
documented every change made during the time the 
program was in the computer, and the line printer 
permitted the analysis of each variable at specific 
points along the trajectory. Equally valuable was 
the strip chart recording normally obtained in hybrid 
computation. It was obtained in the digital program 
by D-A conversion of the digital variables. This 
"quick look" capability made it possible to observe 
trends not readily apparent in numerical printouts. 

The result of this test example was no surprise. 
In simulations that require complicated logic control 
of the program and a moderate amount of storage, 
there is a distinct advantage to using a digital com
puter. It proved reasonable to use a digital computer 
in this simulation because there was only a moderate 
number of simplified equations to be solved. If the 
number of equations were increased, the time to 
solve them on the digital computer would, of course, 
also increase. 

COMPARISON WITH ADJOINT 
STEEPEST DESCENT 

A current reentry optimization study at Ames 
Research Center is using both the impUlse response 
method of this report and the standard adjoint steep
est descent computing method. This study is of inter
est because the two methods have been programmed 
on the same computer (IBM 7094) and their ability 
to solve several identical problems has been com
pared. 

Representative solutions obtained from the two 
methods are illustrated in Fig. 9. This particular 
example is for the same reentry vehicle and initial 
flight conditions used in the previous example of this 
report. However, the cost function is of the form: 

1tf 
If = [Heat rate) + (Drag) 2] dt 

to 

and there is no terminal constraint. This was chosen 
in order to illustrate a problem formulation that does 
not represent a bang-bang optimal control result. 

The results of the twentieth iteration are shown 
in Fig. 9. The upper curve shows that the control 
solutions are almost identical. In the lower curve the 
impulse response function Acp ( t) has been normal
ized 3 for comparison with the corresponding results 
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Figure 9. Comparison of the impulse response and adjoint 
steepest descent methods. 

obtained by the adjoint solutions. Figure 9 demon
strates that the two methods arrive at essentially the 
same final solution. 

For reentry problems similar to the one presented 
herein, it has been found that the computing time 
required with the adjoint method is about one order 
of magnitude less than that required by the impulse 
response method. Because the adjoint method uses 
less computer time, it has been the more desirable 
method for production runs that require a large 
number of optimized trajectories. However, because 
the impulse method is straightforward to program 
and because the engineer is able to retain an intuitive 
understanding of the optimization procedure, the 
impulse method has been the more desirable method 
for initial problem mechanization. Furthermore, ad
joint equations require linearization and, therefore, 
cannot be used in some problem formulations. For 
example, in reentry problem formulations with com
plicated heat-balance equations,lO rather than the 
simple· heating expression shown in appendix B, 
the heat rate cannot be linearized. In this type of 
formulation, the impulse response method has pro
vided the only practical solution. * 

* Dynamic programming was also tried for this problem 
but the computer time was found to be excessive, one to 
two orders of magnitude greater than that required with 
the impulse response method. 
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CONCLUSIONS 

This paper has described reentry trajectory op
timization using the impulse response method. The 
method requires that the computer perform a large 
number of fast-time repetitive computations in sol'1-
ing the state equations and in determining impulse 
response functions. These repetitive computations are 
readily performed by both hybrid and digital com
puters. 

The mechanization of the impulse response 
method on both hybrid and digital computers was 
found to be straightforward. Near optimum reentry 
trajectories were obtained in approximately 2 minutes 
and full optimum reentry trajectories in approxi
mately 5 minutes of computer time. The solutions 
obtained from either mechanization agreed to within 
approximately one percent. 

The impulse response method has been compared 
with the adjoint steepest descent method. The solu
tions obtained by either method were essentially 
identical. The adjoint method requires less computer 
time; however, the impulse response method does not 
require familiarization with or use of an auxiliary set 
of linear adjoint equations. Furthermore, for problem 
formulations that are not amenable to linearization, 
the impulse response method may be the only prac
tical method. 

APPENDIX A 

DERIVATION OF EQUATION FOR Ktf! 

Along a normal trajectory, small changes, otf;, in 
the terminal state due to small changes, ou(t), in 
control can be approximated by: 

1 1tf otf; = ou(t)iltf;(t)dt 
2 AU ilt to 

(AI) 

where flu is the height of each control impulse and 
ill is the time interval of each control impulse. Sub
stituting Kcp il<p(t) + Ktf! iltf;(t) from Eq. (1) for 
ou(t), we have: 

1 1tf otf; = [Kcp il<p(t)iltf;(t) + Ktf! fltf;2(t)]dt 
2 ,ilu ilt to (A2) 

Solving for Ktf! and letting -otf; = tf;d - tf; (the 
previous terminal error), we obtain: 

~~ 
Steepest descent 

optimization term 

-K<p X 

+ 2 ilu ilt __ tf;_d __ tf; __ 

rtf .". 
J D..tf;;:UJat 

to 
~~ 

Teminal error 
correction term 

(A3) 

APPENDIX B 

REENTRY TRAJECTORY EQUATIONS 

The following simplified equations derived for 
flight within the atmosphere were used for the ex
ample problem herein. The primary assumptions in
clude a spherical nonrotating earth, small flight-path 
angles, and a constant gravity term. The derivation 
of these equations and their applicability have been 
considered in a number of reports.ll 

.. V2 ( C DA ) 1 ( L h ) h = -g + - + -- - pV2 - --
r m 2 D V 

I
tf 

<p = 1.7X 10-8 ypV3 dt 
to 

where 

CDA 

m 
g 

h 
L 
D 
r 
V 
p 

drag loading, 2.0 ft2 I slug 

local gravitational acceleration, 32.2 ftl 
sec2 

altitude, ft 

control value of lift-drag ratio 

radius from earth center, 21.1 X 106 ft 
horizontal velocity, fps 
atmosphere density, 0.00237 e-h

/ 23 ,500 

slug/ft2 
total heat input, Btu/ft2 
final range, ft 
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APPENDIX C 

DESCRIPTION OF COMPUTER SYSTEMS 

In order to make meaningful a comparison of the 
results obtained from the analog and digital simula
tions, it is necessary to very briefly describe the com
puter systems used. 

The analog computer was an EAI 231R-V 
equipped with electronic mode control of the ampli
fiers. The logic element of the hybrid simulation was 
an EAI DOS 350. The DOS 350 has a patchboard 
which permits one to combine logical elements, such 
as AND gates, flip-flops, shift registers, counters, 
etc., into complicated logic systems. It also has sev
eral delay line memories of various lengths as well 
as A-D and D-A converters for communicating be
tween the DOS 350 and the analog computers. 

The digital computer was an EAI 8400 mode 0 
computer which had a 2fJ-sec memory access time, 
an average floating point add time of approximately 
13 ,fJ-sec, an average floating point multiply time of 
approximately 15 fJ-sec, and a floating point word 
size of 32 bits. 
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