
EDP ANALYZER
© 1981 by Canning Publications, Inc.

OCTOBER, 1981
VOL. 19, NO. 10

APPLICATION SYSTEM DESIGN AIDS

Automated design aids have been commercially availa
ble since the early 1970s. New ones are appearing and
older ones are being enhanced and strengthened. This
month we look at user experiences with two design aids
that are being used successfully for the development of
complex application systems. One supports design activi
ties for both batch and on-line systems, while the other
uses simulation for designing on-line systems. Also included
is a brief discussion of designing distributed systems. And
the new Commentary section presents the views of a con
sulting firm on the prototyping process, based on a recent
survey they made.

The government of the Province of
Ontario, Canada, with its headquarters in
Toronto, has 22 ministries. Data process
ing is performed at three data centers, ad
ministered by the Ministry of Government
Services, which employs multiple IBM
3033s, as well as at private service bureaus
and on local mini-computers. Each of the
ministries has its own development staff
for computerized systems, and consultants
are used extensively to augment this staff.
For instance, the development staff in the
Ministry of Consumer and Commercial
Relations totals about 25 people.

In 1975, people in the Ministry of Con
sumer and Commercial Relations (MCCR)
were looking for a better method of appli
cation system development. They read
about PRIDE, developed by M. Bryce and

Associates, Inc. of Cincinnati, Ohio, and
decided to investigate it. At the time, none
of their application systems were well doc
umented and, because of this, maintenance
was a problem. One of PRIDE's benefits
was (and is) the extensive system documen
tation that is produced. MCCR investi
gated, liked what they saw, and acquired
PRIDE.

PRIDE divides the system design and de
velopment process· into nine structured
phases, with each phase having well-de
fined 'deliverables.' These nine phases are
based on a design process, not a project
management process. As long as any of
these deliverables have not been com
pleted, the phase is not complete. We first
discussed PRIDE in our December 1974 is
sue (which is where the MCCR J?eople tell
us they first learned about PRIDE).

ISSN 0012-7523. Multiple copy prices listed on last page. Photocopying this report for personal use is permit
ted, providing payment of $2.50 Tee per copy of report is made to Copyright Clearance Center, Inc., 21 Congress
Street, Salem, MA 01970; please include identifying fee code 0012-7523/811100001-14$2.50.

At first, MCCR considered PRIDE primarily as
a documentation tool. But in 1977, they began
using it as a system development methodology.
And in 1978, they acquired the systems and data
dictionary I directory feature for PRIDE, which
had been introduced in 197 4, called 'Logik.'
When they ordered Logik, they planned to use it
on a trial basis for 60 days-but after two weeks
of use, they decided that it was 'indispensible.'
(We discussed Logik in our January 1978 and
February 1979 issues). Finally, in late 1979,
MCCR obtained the latest enhancement to
PRIDE-the automated design facility (ADF). All
three products are integrated into one product
called PRIDE/ ASDM, (for automated system de
sign methodology).

The automated design facility. As indicated
earlier, PRIDE/ ASDM divides system development
into nine phases, beginning with the initial sys
tem study and ending with the audit of the in
stalled system, computerized or not. Logik (now
called the 'information resource manager') pro
vides an automated dictionary I directory func- ·
tion, for storing the definitions of systems, sub
systems, organizational entities, data, proce
dures, programs, outputs, and so on. It provides
system designers with design diagnostics and
documentation. The design method is based on
the concept of chronological decomposition
grouping outputs by the time cycles in which
they must be produced.

In the automated design process, as an analyst
performs the initial system study and begins to
see what the users want from the new system,
he/she enters the user's first ideas on what out
puts-both scheduled and on-request-are de
sired. Each of these outputs is defined in terms
of its cycle (such as daily, weekly, etc.), offset
within a cycle, and response time requirements.
The ADF analyzes all data flows back to their
sources, plus other checking, that is usually very
tedious to do manually. In addition, each output
is defined in terms of the data fields that are ex
pected to be included in it, grouped into logical
records, and each data field can have up to 38
logical and 13 physical attributes.

As its first step ADF creates a rough logical de
sign, or model, of the overall system. It uses the
definitions just mentioned-data, cycle, offset,

2

and response time-to group the outputs into
compatible sub-systems. It attempts to use exist
ing data files and sub-systems as much as possi
ble. ADF can do a pretty good job of matching
the new system data to existing data, we were
told. Where a new logical record almost
matches an existing one, ADF points this out and
indicates what it thinks is needed in order to
achieve a complete match.

This information-the grouping of logical rec
ords into logical files, and the indication of
matches and almost-matches of logical files to
physical files already in Logik-is printed out for
study by the analyst. If changes or corrections
are needed, the relevant outputs can be re-de
fined or some run-time parameters can be
changed.

When the design looks satisfactory, the ana
lyst proceeds to use ADF to perform the func
tions of phases 2 and 3-that is, dividing the
overall system into sub-systems and then per
forming the more detailed design of each sub
system. Note that this is still rough design, based
on the analyst's preliminary ideas of what the
user wants. Each sub-system (that is, each logical
grouping of outputs within a specified time
frame) is defined in terms of its stored data and
necessary input data.

For each sub-system, ADF determines the ad
ministrative (manual) procedures that will be
needed for supplying input and the computer
procedures that will be needed for producing the
desired outputs. The outputs are not shown in
report format, but rather are indicated by listing
the data fields that each will have.

The point of all of this is to show the analyst
the implications of the design decisions. For in
stance, ADF sets up a logical file based on how
the data is used (not on how it is stored). A logi
cal file is created unless ADF can find a matching
file in Logik. But the analyst may see that there
are just too many logical files, indicating not
enough common use of data. Or it may be ap
parent that the administrative procedures for
supplying some data item may be impractical at
that point in time. In any case, it is a relatively
simple matter to go back to phase 2 and re-de
fine some of the outputs, to improve on the de
sign.

EDP ANALYZER, OCTOBER, 1981

•·

In practice, the analyst may go through this
process-phases 2 and 3 for all sub-systems-to
see what the implications are. After correcting
any glaring problems, the system design is dis
cussed with the user, using ADF design printouts
(input, output, and record definitions, sub-system
flowcharts, etc.). The designer may show the
user some alternative designs at this point, to see
which best fits the user's needs.

Typically, at this time the user begins to see
changes that are desired. As mentioned, it is no
big matter for the analyst to go back to phase 2
and add, delete, or change outputs. By going
back to phase 2, this means that ADF files will al
ways be up-to-date with the latest changes.

After, say, two or three such iterations, gener
ally the user's needs will appear to have been
met and more of the details of each sub-system
will have been entered into ADF.

And, as indicated earlier, the information re
source manager (Logik) portion of the overall
methodology performs system design diagnos
tics-showing any outputs that are not supported
by inputs, or inputs that are never used, and so
on. So, at this point in time, the documentation
which the programmers will use has been devel
oped. The users will have signed off on the sys
tem design (ADF produces the necessary sign-off
sheets!) and the gaps and overlaps in design have
been corrected. Program design can then begin.
For more information on PRIDE/ ASDM, see Ref
erence 1.

Usefulness of the automated tools. With their
use of PRIDE, Logik, and ADF, which together
make up PRIDE/ ASDM, MCCR feels that they are
in a position to evaluate what these tools can do
for them, in aiding productivity in system devel
opment. For systems developed under a rigorous
adherence to PRIDE and Logik, actual develop
ment times and costs are nearly always within
10% of the estimates. Also significant is the fact
that the subsequent corrective maintenance re
quirements for these systems are negligible.

On one of their systems, for instance, in which
they. used PRIDE and Logik, they found no bugs
and had no maintenance needs during the first
five months of its operation. They see the overall
maintenance efforts of PRIDE/ ASDM-developed
systems as being only a small fraction of the ef-

EDP ANALYZER, OCTOBER, 1981

fort required with conventionally developed sys
tems.

As far as the use of ADF is concerned, the 're
porter' portion produces the design manual, user
manual, operations manual, glossary of terms,
and flow charts. They find this documentation to
be excellent. Moreover, they maintain the docu
mentation of current systems on the computer,
including flow charts and linkage definitions
among system components, as support for sys
tem maintenance.

The 'designer' portion of ADF has proved to
be more of a challenge. It produces useful, satis
factory designs for batch systems (which still
constitute the bulk of the new system develop
ment at many organizations) and MCCR is using
it for the batch portions of their systems. For on
line portions (which occur in all of their sys
tems), the "jury is still out," as they said to us.
However, ADF is undergoing continuing im
provement and MCCR hopes that the enhance
ments they have been receiving will result in de
monstrable savings in the area of on-line system
design.

Software design aids
Software design aids are tools for improving

the quality, maintainability, and cost effective
ness of custom software. These tools are· becom
ing more and more visible as they become more
widely used by data processing departments. In
past reports we have discussed a number· of such
software design aids. One of the products dis
cussed this month, PRIDE, plus others such as
data flow analysis, PSL/PSA, and LCS, were dis
cussed in the February 1979 issue. In addition,
SADT and IA, which deal more with the system
analysis stage of application development, were
discussed in the January 1979 issue. This month,
we discuss the types of functions that newer de
sign aids are able to perform.

The goal of software design, and hence of
software design aids, is to produce systems
which perform satisfactorily for users, and, at
the same time, minimize a system's total life cy
cle costs. User satisfaction is affected by the de
gree to which the user can particpate in the de
sign as well as comprehend it. It is also affected
by the flexibility of the system during design and

3

after implementation. Flexibility includes the
ease of responding to changes in user or system
requirements. Life cycle costs are all costs from
the time the system is conceived until the time it
is retired (which might be decades later).

Software design can be thought of as having
two components: clerical and logical. The cleri
cal tasks in design include consistency checking,
organizing, summarizing, and formatting. All
manual and automated design methodologies ad
dress clerical functions, fo one degree or an
other. The early automated aids were aimed only
at taking over many of the clerical tasks. Partic
ularly on large projects, removing some of the
clerical load from designers has improved the
efficiency and effectiveness of the design task.

The other aspect of design is application
logic. In this context, logic refers to the system
aspects which derive outputs from inputs. This
part of design is obviously much harder to au
tomate than the clerical functions. Even so, sim
ple logic functions such as validation-matching
inputs to outputs- have been performed by de
sign aids for some time. We expect more logical
functions to be automated in the future.

A very significant portion of the life cycle
costs of software is consumed in doing things
over. During development, uncovering and cor
recting design errors is common; the further
along in development that they are detected, the
more costly it is to correct them. After the sys
tem has been implemented, the cost of software
maintenance can easily exceed the cost of the
original development project (in fact, by several
times), over the system's life-time. Therefore, it
makes sense to expend more effort in the design
phase, in order to reduce both rework and main
tenance.

From a designer's point of view, software
maintenance falls into three categories: errors,
functionality, and user learning.

Correcting errors, often called 'corrective
maintenance,' includes correcting a program
that does things wrong, as well as meeting any
unfulfilled requirements of the system, whether
implicity or explicitly stated. Many errors are
uncovered when nonsense outputs appear during
production use. Or when the system is interfaced

4

with other systems, errors commonly occur in
the communication between the systems.

The second maintenance category-functional
ity (sometimes called adaptive maintenance)-re
fers to the degree to which the system actually
supports the area of activity for which it was de
signed. There are three major reasons why a sys
tem may have functionality problems. First, the
area of activity may have changed. Or, second, it
may not have been well understood by the de
signers. And, third, the system, in its current
form, may not be well accepted by the users. All
changes in functionality will require system de
sign modifications.

Changes based on user learning-usually called
enhancement maintenance-constitute an area of
maintenance which is often overlooked by de
signers. Users frequently change their needs once
they begin to use an automated system. Last
month we described how developing systems by
prototyping tries to anticipate this tendency by
giving users the opportunity to experiment with
a prototype of the system early in the develop
ment process. Then changes can be made during
design, rather than during development, or
worse yet, after installation.

General problems of designers

There are a number of problems which all de
signers face, and which design tools can help to
improve. These are:

Inadequate specifications. Since it has not been
the responsibility of software designers to be
come experts in the business area under study,
they must rely upon users to supply this exper
tise.

However, users (to their surprise) typically do
not have a clear idea of their needs. Until actual
cases arise that help the users clarify the applica
tion logic they need, designers may get an incor
rect understanding of all of the system's compo
nents. Hence user requirements typically are not
well specified, and users generally (always?) end
up supplying inaccurate and incomplete require
ments information-which leads to incomplete
and inaccurate system specifications.

Changes in design. System design studies may
motivate users to think more critically about

EDP ANALYZER, OCTOBER, 1981

•

•

both the functions that they are performing and
their manner of operation. So even projects in
tended to automate a current manual system end
up performing significantly different work. Users'
desires tend to change over time, and day-to-day
activities often bring to light relevant proce
dures that were overlooked in the requirements
study. For projects extending over many months,
numerous desired changes come to light and
these must somehow be incorporated into the
design. So change is continually being intro
duced in the design, making it very difficult to
freeze design requirements.

Consistency. System design can involve many
people and long periods of time. In these cases,
personal preferences, as well as the memories of
the designers, can lead to the introduction and
propagation of inconsistencies. For example,
different identifiers can be given to functionally
equivalent portions of the system. And just the
opposite is also common-the same name can be
assigned to different functions. Such problems
are compounded when the system is changed.
These types of clerical problems can consume a
good deal of a designer's time, as well as add
frustration to the design effort.

Documentation. The whole area of documenta
tion, from design through program maintenance,
has been an industry problem. Without good
documentation, a system ranges from difficult to
nearly impossible to understand, correct, and
modify. The quality of documentation depends
heavily upon the skills and interests of the de
signers. And generally, documentation is not
viewed as a creative exercise, so designers have
little enthusiasm for it. Also, the skills needed to
write good documentation are different from
those needed for design or programming.

Data entry. There are three common areas of
concern associated with data entry: data entry
errors, data entry routines, and data entry con
ventions.

Designers need to consider errors of omission
and commission, by helping users detect input
errors and provide the capabilities within the
system for voiding and/ or correcting incorrect
entries. The system should prevent users from
mistakenly changing or deleting data by allowing

EDP ANALYZER, OCTOBER, 1981

such actions to be reversible. In other words, the
system should be 'forgiving.'

As users become familiar with a system, the
nature and frequency of their mistakes will
change. For example, users will need less guid
ance from the system after they once learn how
to use it. The design should reflect this learning
by the users. To be efficient, data entry and vali
dation routines should change to reflect user
needs.

Also, conventions for data codes and data
names should be established to avoid confusion.
Avoid codes that are 'cryptic'· strings of charac
ters; they are highly error-prone. Conventions
should be established for operating with missing
data, so that the input rejection rate is not un
necessarily high. Output from the input valida
tion routines can be used to communicate back
to the users, to indicate the nature of missing or
incorrect data.

Breakdowns. Computer technology has im
proved, so hardware and software breakdowns
generally are no longer common everyday occur
rences. However, such breakdowns do occur. In
addition, breakdowns may result from electrical
problems, data communication interruptions,
and other causes, such as fires and floods. De
signing the system to store data in preparation
for an unforeseen breakdown is a responsibility
of designers. So they need to consider the effects
of all types of breakdowns at every point in the
operation. Often certain types of breakdowns are
overlooked. Also, designers need to include pro
cedures to bring the system back to the state it
was in just before the failure. The design should
minimize the amount of either automated or
manual effort necessary for complete recovery.

Operation schedules. Designers also need. to
consider peak load periods as well as how the
manual and automated procedures will 'mesh'
with each other. To this end, the design effort
should include documenting the order of activi
ties that must occur around the system (both be
fore and after) so that scheduling conflicts can
be resolved before the new system is imple
mented.

User training. The manner and order with
which users perform required functions is de-

5

fined in the user interface. Many designers ne
glect to consider carefully the discipline the new
system will require of users. The most easily ac
cepted user procedures are those that are con
sistent with company or department standards.
User training must be designed into the system,
and implemetation strategy should be approved
by the using department before the design phase
is complete. User training is often overlooked by
designers until implementation appears immi
nent.

Preliminary user manuals. In order to enable
users to fully understand a system, user manuals
should be developed and updated as part of the
design process. Companies that write user manu
als during design have told us that this documen
tation helps users detect and correct design er
rors and gives them an appreciation for the
amount of user interaction and preparation that
will be required by the system. Unfortunately,
creating user manuals during design is often
overlooked.

Concern for maintenance. Organizing data into
tables improves the readability of program code
and simplifies the task of updating a system.
Changing business conditions often require that
systems be changed. Designers must assume that
parameters, such as constants and rates, will
change. Using tables to store parameters is one
method used by designers who are concerned
with system maintenance. Future maintainability
is often overlooked during design.

The value of automated aids

Automated system develorment aids, such as
PRIDE/ ASDM (including ADF can ease the prob
lems just discussed. For example, the structure
and detail required by such aids in themselves
help to improve the adequacy of the system
specifications. Also, the automated categoriza
tion and linking of design details allow designers
to introduce changes easily and with considera
bly less human effort. The changes can be intro
duced at any time, as the need for them becomes
apparent.

The ease of introducing and evaluating
changes, in itself, helps reduce the problems that
arise from incomplete and inaGcurate require-

6

ments statements and specifications. So errors of
omission are reduced.

Also, aids which sort data elements into logi
cal groups and provide a data dictionary func
tion can help designers spot inconsistencies more
easily. Hence, errors of commission are also re
duced.

Finally, the structure and detail required by
the aids leave less discretion to the designers
about documentation details. The aids may pro
duce much of the needed documentation auto
matically.

SIMULATION AS A DESIGN AID
Application systems can be conceived and ini

tiated either from within or from outside the us
ing department. The place of system birth can
be an important factor in determining whether
or not the system will be a success. In the design
and implementation phases, acceptance by and
co-operation of the users are very important; the
system can have only limited value without
them.

Those application systems conceived by users
have a headstart in gaining their co-operation.
Since the users are seeking assistance in imple
menting their ideas, they are likely to receive
personal satisfaction and company recognition
for completing the system. The users are more
likely to channel their energies toward support
ing such systems, instead of working against the
designers.

Also, in user-conceived systems, the users have
formalized-to some extent, at least-ideas on
desired characteristics of the system before they
approach the designer. The designer's job be
comes one of helping these users complete the
system conception and document the system in a
clear manner.

Application systems can also be conceived
outside the using department-from, say, corpo
rate executives, from employees interfacing with
the using department, or from the data process
ing department. Systems initiated from the out
side are often viewed as a threat or annoyance
by the using department. Therefore, the design
ers have an additional job of selling the system
concept to the users in order to gain their co-op
eration. Often selling is done simultaneously

EDP ANALYZER, OCTOBER, 1981

'-

·.i

'.

with the early design stages of information gath
ering and analysis. Before users will co-operate
with such a design effort, they want to find out
what benefits they will receive from the system.

Integrated systems, which are commonly con
ceived from the outside, particularly need in
volvement and co-operation from all of the af
fected departments. Designers often encounter a
lack of user enthusiasm for these systems. In the
eyes of the users, the benefits may not be appar
ent, while the troubles and 'hassles' may appear
imposing.

So gaining user support, for integrated systems
especially, is an added burden for designers.

In addition, as mentioned earlier there is the
problem of getting users to specify the applica
tion logic with anything approaching accuracy
and completeness. It is difficult for any user, in a
series of interviews, to specify the complete
range of situations that will arise and how each
should be handled. Often overlooked are infre
quent or non-periodic procedures or events.

Designers must therefore interpret or extend
the users' specifications in order to complete the
design. These actions by designers can lead to er
rors in application logic, which may not surface
until after the system is implemented and the
cases are encountered in practice.

Exception cases-where generally established
conventions do not apply- are often a major
portion of a system. Users think of their systems
and procedures more in terms of generally estab
lished conventions. However, exception cases of
ten require a greater portion of the design effort
than do the standard logic flow. Improper han
dling of non-standard cases can severely limit the
usefulness of a system.

So how can system developers gain user sup
port for the new systems, as well as obtain a bet
ter understanding of the application logic re
quired?

One approach to getting this user co-opera
tion and feedback early in design is by 'simula
tion' of the new system. This can stimulate dis
cussion and bring to light some of the aforemen
tioned overlooked details. The term 'simulation'
may seem ambiguous, especially since we used
the term 'prototyping' last month in much this
same context.

EDP ANALYZER, OCTOBER, 1981

What is the difference between simulation and
prototyping, you may ask?

By simulation we mean using an automated
design tool that lets users see how the system
would look from their viewpoint. A simulated
system is not a full-blown prototype because it
generally does not 'work.' With prototypes, as
we have used the term, a workable system is cre
ated, into which users enter data and from which
they can obtain useful outputs. A simulated sys
tem, on the other hand, cannot be used by peo
ple to perform work, because it generally con
sists of program 'stubs,' which return pre-deter
mined answers, rather than full-blown modules
that produce useful outputs. The purpose of sim
ulation is to show users examples of the required
inputs, the flow of the system, and the desired
outputs. So simulation can be viewed as a first
step toward a prototype. In fact, that is just how
one company, the Bank of Nova Scotia, has used
a design simulation tool called ACT/ I.

Bank of Nova Scotia
The Bank of Nova Scotia is a federally char

tered Canadian bank with 1,000 branches across
Canada and in other countries. It is one of the
five largest banks in Canada with assets over $40
billion (Canadian dollars). With headquarters in
Toronto, the bank provides services to both con
sumers and industry.

Data processing work for the bank is handled
at two large centers in Toronto, where they have
three IBM 3033s, a 3031, a 370/ 168, and an
Amdahl V7. Ten regional centers perform
mostly remote job entry, via the bank's data net
work, and some local processing, such as check
processing.

In 1979 the data processing department de
cided that it needed to create an integrated code
library system to keep track of the some 15,000
software modules, computer programs, IBM job
control language procedures, and screen defini
tions they had accumulated at their computer
centers. The library system was envisioned to
perform seven functions: (1) track code changes
and keep a history of the changes; (2) maintain
code libraries, such as a test library, production
library, and development library; (3) promote
code from, say, created status to tested status, or

7

demote code from, say, from production status
when creating a new version; (4) release code,
which requires linking all current modules with
new modules and giving the entire system a new
release number; (5) provide administration func
tions, such as creating reports of activity for pro
ject leaders; (6) maintain descriptive documenta
tion of all items in the library system; and (7)
provide backup and security for the library sys
tem.

The bank decided to use three outside pack
ages to perform some of the functions, rather
than write these programs in-house. One pack
age is Librarian, from Applied Data Research. It
would be used to maintain the source code in
the library system. The second package is Data
manager, from MSP. This data dictionary pro
duct would be used to define and maintain the
documentation of the modules, programs, etc.,
as well as the relationships among them. And the
third package is ACF 2, from Cambridge Systems.
It would be used to restrict access to sensitive
items in the library system, where desired, as
well as to provide data security functions.

The system was to operate in an on-line mode
under IBM's time-sharing option (Tso). The
question was, how could the bank most effec
tively design this large library system to best
meet user needs and to incorporate the three
packages? They wanted to be able to test the de
sign as early in the development process as pos
sible to be sure that users' needs would be satis
fied and that the packages would indeed work
together. In mid-1979, about the time that the
requirements for the system had been com
pleted, the bank learned about ACT I I, from Art
Benjamin and Associates, of Willowdale, On
tario.

ACT! 1 is an on-line development system for
designing and running on-line applications. It
has two parts-a design aid and a production sys
tem.

The design aid allows a designer to sit down
at an IBM 3270 CRT terminal (or its equivalent)
and: (1) create input and output screen formats
('screens'), (2) create user dialogs and menus, and
(3) specify the logic flow among these compo
nents. Some 'screens' can be used to represent
the output of subroutines that will be written in

8

the final system. ACT I I keeps track of all compo
nents and flags discrepancies, such as screens or
routines that have been identified but not devel~
oped.

By entering some sample data, the designer
can move through the application and simulate
its operation on-line. The people at Art Benja
min and Associates call each simulation a 'sce
nario.' During a simulation, logic flow and
screen formats can be changed. Also, comments
made by users or other designers can be attached
to specific screens of the application, using an
on-line NOTE facility. Notes can be used for sev
eral purposes, such as to identify and describe
needed audit and control features, planned en
hancements, programming specifications for
needed subroutines, and documentation in gen
eral. Users can operate the scenarios themselves
for verification or training purposes.

The production system allows an application
that is created using the design aid function to
be run in a production mode, once the necessary
subroutines have been coded.

ACT I 1 performs the mainline logic-generat
ing the screen formats that have been defined,
interpreting user responses, invoking appropri
ate routines, editing and reformatting data, con
trolling the application logic, and passing data
between the various components. Coded subrou
tines only need to be written to access the data
base (or files) and perform calculations. These
routines may be coded in COBOL or PL/I.

ACTll requires a System/370 instruction set
and IBM 3270 display terminals (or equivalent).
It interfaces with TSO, CICS, or INTERCOMM, op
erating under OSIVS2, MYS, CICSIVS, (under DOSI

VS(E)), or VM/CMS and is compatible with the
leading database management systems that run
on IBM equipment. For more information on
ACT!l, see Reference 2.

The bank's system development cycle. Use of
ACT/l's production system (which includes the
design aid) allowed the Bank of Nova Scotia to
have a highly unusual, yet very effective, appli
cation development cycle for their integrated li
brary system.
· Based on the system requirements that had
been already drawn up, the bank used ACT /1 to
create four successively more powerful versions

EDP ANALYZER, OCTOBER, 1981

,,
1 ,

t

of the library system, within an eighteen month
time period. The process began in late August
1979 when the team of five programmers and
analysts created their first 'scenario' of a 'version
zero' system. As described above, the scenario
was a simulation of how the system would oper
ate; it was created entirely on-line using the
ACT I 1 design aid function. The purpose of this
scenario of the version zero library system was
to show the eventual users-programmers and
operations people within the bank's program
change control groups-how the system would
operate from their point of view. As it turned
out, the scenario was a very important design
tool, because these users were able to visualize
how they would use the system-and before sig
nificant time and money were spent. They de
tected a number of missing functions that the
version zero system should perform. If these
functions had not been included in the version
zero system, it would not have been accepted
for production purposes by the users.

After the simulation (or scenario) had been re
fined and was satisfactory to the users, the devel
opment team added the necessary subroutines to
make version zero a working prototype of the
final system. The subroutines they wrote linked
the various purchased packages to the system
and performed the functions not provided by the
packages.

For coding the subroutines, the bank used
MetaCOBOL, from Applied Data Research, in or
der to increase their COBOL coding productivity.
Both MetaCOBOL's structured programming fa
cilities and a bank-written MetaCOBOL interface
to ACT 11 were used.

The purposes of the version zero effort were
to study the internal design of the system-to
create a design where all of the parts would fit
together-and to demonstrate the utility of the
library system for the intended users. Four
months after they starting using ACT I I, in De
cember, the version zero 'prototype' had been
tested by some users and was ready for use as a
temporary production system.

Up to this point, requirements definition had
taken two work years of effort, and building the
prototype had taken one work year, as compared
with the original estimates of eighteen work

EDP ANALYZER, OCTOBER, 1981

years to develop and implement the system. The
prototype was not considered to be the 'final'
system, but it solved the users' basic needs and
could be used for the time being in a production
mode for a few development projects. Two new
development projects, plus a maintenance pro
ject and the library development project itself,
were chosen to use the prototype to maintain
the code on their projects.

During December, the department was given
approval to create a full production version of
the system. Again using ACT I I, and "now know
ing how we should have done it the first time,"
the team followed the same development cycle
to create the production version. The team de
veloped a scenario and then gradually added the
subroutines to create the production version.
From their experience in building the first proto
type, the team was able to develop the version
one production system within five months time,
by May 1980. This version also ran under the
ACT/I production system, with the code that was
not generated by ACT I 1 or supplied by the other
packages again being hand-coded in MetaCobol,
using structured programming conventions. The
version one system had about 20,000 lines of
code.

Within the first five months of use of the ver
sion one production system, only four coding er
rors were found and no design errors were un
covered. Gradually, all users of the prototype
were converted to the first production version
and the remainder of the implementation ef
fort-to get all 15,000 modules, programs, JCL
procedures, etc. under the system-began in ear
nest.

But even this production version was not the
final one; it did not perform all of the functions
originally planned. During the remainder of
1980 and first quarter of this year, the system
was revised two more times. Each time the de
signers used ACT I 1 to go through the whole de
velopment cycle-from scenario to production
version-and built upon their past experiences.
Each time the resulting system performed more
of the desired functions. The second production
version was implemented in November 1980,
and the third and final version was completed in
March of this year. The final system now per-

9

forms all of the functions envisioned at the out
set of the project.

The project took a total of 3, 700 work days to
complete, which was very close to the original
estimate of eighteen work years. In all, the bank
is pleased that ACT I 1 has allowed them to create
this large (now 60,000 lines of code) system
within schedule, within budget, with very few
errors, and that meets users' needs.

How automated aids can help

Design aids can be useful in most application
system development efforts, and certainly for the
larger, more complex systems. Batch, on-line,
and distributed systems are categories of appli
cations that have been addressed by developers
of design aids. For each of these general types of
systems, the design aids provide specific assist
ance for the designer.

Some design problems, which were discussed
earlier in this report, are either reduced or
solved by the use of design aids. The current
state of the art in application system engineering
enables these aids to provide a great deal of as
sistance, particularly in the clerical functions of

·design.
So far, however, only limited logical functions

have been addressed by these aids. For instance,
simulation helps to audit and refine the logical
flow of control in an application. But it is the
user of the simulation package, not the package
itself, who is evaluating the correctness of the
logic.

The main reasons for using design aids are to
build better systems (which meet user needs bet
ter) and to reduce system life cycle costs. Not
only should development costs be reduced but,
perhaps even more importantly, maintenance
costs should be greatly reduced. These mainte
nance costs include corrective, adaptive, and en
hancement maintenance.

As the science of information system engineer
ing advances, the quality of the design aids will
continue to improve. The aids will become even
more user-friendly and will require less effort on
the part of the designer and the end user. Also,
the aids probably will be enhanced in their abil
ity to assist in the logical aspects of the design.

10

Application design is still an art. Several im
portant aspects of design cannot be automated
effectively. One of these aspects is that of selling
the system to the users; another is helping the
users in the transition from the old system to the
new. Also, automated design aids are very lim
ited in their ability to make good decisions as to
the optimized use of resources.

Then, too, the responsibility of marrying the
technology and the automated tools to the hu
man aspects of a user department cannot be au
tomated. Success of a new system is almost al
ways measured in terms of its acceptance by its
users, and its ability to perform required and de
sired functions for the users. The new system
must be integrated into the operations of the
user department, and it is hard to visualize this
function being automated.

Even so, automated design techniques can
greatly improve the technical soundness of an in
stallation. They provide capabilities not availa
ble to designers using manual methods. These
capabilities help to reduce the life cycle costs of
the system. They allow the designer to give users
some previews of how the system will operate,
at various stages of development. They often al
low the user to interact with a prototype of the
system, to provide feedback to the designer on
how the system should operate. And they allow
the designer to make changes to the system de
sign with a great deal less effort than if the
changes had to be made manually. Automated
aids help the designer to catch errors of a care
less nature, as well as oversights and consistency
violations. Finally, they produce up-to-date doc
umentation rapidly, including versions of users
manuals that are available during the develop
ment process.

The discipline and the structure required by
design aids have been successful in helping de
signers to create more complete and maintain
able systems. But their chief value may well be
in the area of reducing life cycle costs, and par
ticularly the maintenance costs, of a system. We
can safely say that, if a well designed aid is prop
erly used on a project of appropriate size, it will
help achieve a reduction in system life cycle
costs-and probably a substantial reduction, at
that.

EDP ANALYZER, OCTOBER, 1981

'•

DESIGNING DISTRIBUTED
SYSTEMS

For the design of a distributed system, most of
the good design principles are the same as they
are for a centralized system. But there are some
things that are different, which a designer must
keep in mind when laying out the structure of a
distributed system.

This point comes through clearly in a new
book by Robert L. Patrick, Application Design
Handbook for Distributed Systems (Reference 3).
Patrick gives a good coverage of the design prin
ciples that can be used for both centralized and
distributed systems.

We will point out some of the principles that
Patrick presents that seem most relevant for dis
tributed systems.

A distributed system, in a broad sense, can be
defined as a network of two or more computers
which communicate and share resources. Three
types of distributed systems are emerging: (1) hi
erarchical systems, (2) networks of co-operating
processors or work-stations, and (3) stand-alone
departmental systems which can communicate
with each other and/ or with central processors.

At the top of a hierarchical system are one or
more computers with complete, overall respon
sibility. They often receive communications on
transactions from all computers in the system;
sometimes, however, only summaries of transac
tions are received. At the bottom are computers
with very limited responsibilities. In between are
computers with varying degrees of responsibil
ity.

In a network of co-operating processors or
work-stations, the processors are all at the same
level; there is no higher or lower level. These
processors can draw on each other for data or
processes, in the performance of their work.
Each processor has some unique data or process
modules.

Stand-alone departmental systems are not a
throw-back to the days of the 1960s, when
things got out of control with a multitude of
small computer centers. Instead, today's depart
mental systems must meet some corporate stan
dards and must be able to communicate with

EDP ANALYZER, OCTOBER, 1981

each other and with the company's central com
puters.

We have selected five design principles from
Patrick's book which illustrate, we think, some
considerations that apply particularly to distrib
uted systems. Specifically, these considerations
apply to those cases where portions of the appli
cation may exist on more than one computer,
and where co-ordination among the computers is
necessary.

Portable processing modules. In order to
achieve flexibility and back-up within a distrib
uted system, the processing modules should be
portable, says P~trick. The design of each mod
ule should consider hardware and software char
acteristics of the entire system, so that the mod
ules can be used at multiple nodes.

Should a node's hardware fail or be destroyed,
that node's workload can be taken over by other
nodes. Also, as the total workload increases, new
processors can be added to take on some of the
work. So designers need to consider company
wide requirements when designing an applica
tion to run on a distributed system. And one of
the most critical components of portability, that
must be considered, is uniform and consistent
data definitions.

Output distribution analysis. In designing a
distributed system, Patrick says, a careful analy
sis of the output requirements is needed. The
reason it is needed is because some outputs may
be required at locations other than where the
data is processed. So both the points of origin
and the points of destination for output data
must be identified.

This analysis should include all sites that are
expected to use the outputs individually, as well
as the composite need for outputs for the system
as a whole. It may turn out, for example, that
the same inputs, processing, and/ or reports are
required at multiple locations. The volume of
activity may point out the most appropriate
node(s) where the data should be stored and the
processing performed.

Global processing controls. For transaction
processing in distributed systems, not only might
transaction sequence numbers and item counts
be required but also the point of origin of the

11

transactions needs to be recorded. The need for
such controls may not be apparent, because the
source documents themselves do not move from
department to department, as they do in manual
systems. While this lack of movement reduces
the chance of loss of documents, it does not re
duce the chance of error.

Also, when the same data and/ or processing
modules exist at more than one node, controls
are needed to ensure consistency, priorities, and
the ability to track errors and changes to data
and programs.

Security controls. As access to a system in
creases, as is the case with distributed systems,
security measures are needed to protect the in
tegrity and privacy of data and programs, says
Patrick. Controls and audit trails provide the in
formation needed to detect unauthorized ac
cesses. All users should be required to pass
through one security module, in order to use
programs and data.

Controls such as these cost money. These
costs must be weighed against the loss that
might result without the controls.

Internal program structure. Distributed sys
tems should be designed for maintainability, be
cause they generally are more tightly coupled to
a population of users than are many centralized
systems. The effects of computer down-time and
program errors can be felt by these users very
quickly. So programs should be designed in a
straight-forward manner and the number of in
ter-module connections should be minimized.

The reader will find a wealth of practical de
sign principles such as these in Patrick's book.

REFERENCES

1. For more information on PRIDE/ ASDM, and ADF,
write M. Bryce and Associates, Inc., 1248 Springfield
Pike, Cincinnati, Ohio 45215.

2. For more information on ACT/ l, write ABA Software
Industries, 250 Consumer Road, Willowdale, Ontario
M2J 4V6, Canada.

3. Patrick, Robert L., Application Design Handbook for Dis
tributed Systems, CBI Publishing Company (51 Sleeper
Street, Boston, Mass. 02210), 1980, price $18.95.

Local computer networks have been receiving increasing attention in both
large and small firms (some with only two dozen employees). But most firms
will soon be finding that their new within-building communication needs will
be much broader than are generally envisaged today. Next month, we will
discuss a new integrated approach to within-building communications that will
meet the needs of data processing, voice telephone, security, life safety, and
many other new needs. If you are considering a local computer network, or
planning to rewire your building, get acquainted with this approach.

12

Then, in December, we will discuss a question associated with the rapidly
growing use of minis, 'personal' micros, and work-stations in business. The
question relates to the state-of-the-art of software portability for these
machines. We'll discuss both horizontal (between different brands of
machines) and vertical (to more powerful machines) portability. If small
computers are spreading in your organization, there are some things you can
do to promote software portability.

EDP ANALYZER, OCTOBER, 1981

COMMENTARY

PROTOTYPING-A METHOD NOT TO BE MISSED

By E. K. Somogyi, Butler Cox and Partners, London, U.K.

(Because of the clearly growing importance of prototyping, which we dis
cussed last month, we asked Butler Cox and Partners if they would prepare
this Commentary. Ms. Somogyi has been surveying users of alternative sys
tem development methods in the U.K., Western Europe, and U.S., for a near
future report of the Butler Cox Foundation. This Commentary draws upon
some findings of that survey.-Editor)

In recent years, system development methods and approaches have re
ceived much attention. Among the various new methods, one in particular
stands out-a method that is quick, iterative and in many ways the opposite
of what has been practiced ever since methods were invented to develop sys
tems. It is called 'prototyping.'

Several advanced facilities available on large and small machines make it
possible to perform prototyping and to develop systems faster than before
provided the basic requirements of the new system are understood reason
ably well. These facilities include databases and their management systems,
data dictionaries, report generators, high-level non-procedural languages,
screen formatters, and the like. With them, system modifications are also
easy to make, so that iterative enhancement of the system is possible.

DP prototypes exhibit some essential features of completed systems. A
prototype is not a static image; it can be used and exercised. It can give an
early visualization of the system, and users can experiment with it. Using a
prototype in this mode helps to clarify requirements and to finalise the user
interface of the system. The likely future effects of a new or modified system
are also easy to detect. Designers may gain a better understanding of the fu
ture system, so prototyping with the user helps to create better systems. Also,
a prototype occasionally becomes the final system.

In short, prototyping as a method offers possibilities that no other method
provides: speed, easy modification, and quick delivery of new systems.

Before adopting the prototyping process, however, it is wise to consider
some of the shortcomings and problem areas that are associated with the
process. Because prototypes often are not 'designed,' but rather are 'put to
gether,' their internal technical arrangements may be haphazard and ineffi
cient. They may not be resilient nor very efficient when used with large
amounts of data or large numbers of users. Their documentation is usually
sketchy. They often are best described as experimental systems.

For example, we have come across an undocumented prototype that was
released into production. Since this organization did not have the necessary
funds available to develop full documentation, it now must rely on a single
individual (the one who developed the system and thus knows it) to maintain

EDP ANALYZER, OCTOBER, 1981 13

the system. Another prototype was documented at some expense and the sys
tem was installed in an interactive multi-site environment. However, it had
to be withdrawn rather soon, as response time and general performance 'hit
the bottom' when large numbers of users started using it.

Uncontrolled, endless iterations may also create unsatisfactory results. It is
simple, easy and very impressive to 'knock together' programs, files, and sim
ple data entry routines and then hand the system over to the user for experi
mentation. It is less impressive when, after several modifications, nothing
works, file contents cannot be relied upon, or several routines have been ac
cidentally deleted. Then, too, the iterative process becomes boring and inef
fective when constant change is the norm and no permanent result is pro
duced.

It is wise, therefore, to separate the process of trying out the prototype
from making major modifications to it. This allows time for both designer
and user to reflect on the experiment and may prevent unnecessary changes.
It is also wise to set a deadline for developing, modifying, and experimenting
with the prototype.

Prototyping is only possible when some of the basic tools listed earlier are
available. Prototyping acquired its tools 'second hand,' since they were origi
nally designed for other purposes. This makes them in some sense inefficient
for the prototyping process. Specifically, the tools provide very little infor
mation about the characteristics of the system that is being prototyped; for
example, it is not easy to experiment with different response times. The
tools, as yet, do not provide the designer with an easy way to record the es
sential features of the prototype that must be built into the final system. Nei
ther do they provide facilities for tuning and measurement. These analytical
features would be most helpful in creating more humanly-engineered and
efficient systems.

With the possibility of so many things going wrong or being inefficient,
the question must be asked: why use prototyping at all? Past experiences in
dicate that systems more often go wrong for reasons of inadequate specifica
tion than for bad technical engineering. As long as the requirements are
those of humans, the method of 'getting the requirements right' must allow
for iteration, for the presentation of visual images, and for the use of exam
ples. Further, the method must promote a rapid, two-way communication
process between designers and users.

Prototyping, with all of its shortcomings, is the only genuine iterative
method available to us to meet these needs.

EDP ANALYZER is published monthly and copyright© 1981 by Canning Publications, Inc., 925 Anza Avenue, Vista,
California 92083. All rights reserved. Photocopying this report for personal use is permitted under the conditions stated at the
bottom of the first page. Also, see Declaration of Principles on page 15.

14 EDP ANALYZER, OCTOBER, 1981

•·

SUBJECTS COVERED BY EDP ANALYZER IN PRIOR YEARS

1978 (Volume 18)
Number Coverage

I. Installing a Data Dictionary G
2. Progess in Software Engineering: Part I H
3. Progress in Software Engineering: Part 2 H
4. The Debate on Trans-border Data Flows L
5. Planning for DBMS Conversions G
6. "Personal" Computers in Business B
7. Planning to Use Public Packet Networks F
8. The Challenges of Distributed Systems E,B
9. The Automated Office: Part I A

IO. The Automated Office: Part 2 A,D
11. Get Ready for Major Changes K
12. Data Encryption: Is It for You? L

1979 (Volume 17)
Number Coverage

I. The Analysis of User Needs H
2. The Production of Better Software H
3. Program Design Techniques H
4. How to Prepare for the Coming Changes K
5. Computer Support for Managers C,A,D
6. What Information Do Managers Need? C,H
7. The Security of Managers' Information L,C,A
8. Tools for Building an EIS C
9. How to Use Advanced Technology K,B,D

IO. Programming Work-Stations H,B
11. Stand-alone Programming Work-Stations H,B
12. Progress Toward System Integrity L,H

Coverage code:

1980 (Volume 18)

Number Coverage

I. Managing the Computer Workload I
2. How Companies are Preparing for Change K
3. Introducing Advanced Technology K
4. Risk Assessment for Distributed Systems .. L,E,A
5. An Update on Corporate EFT M
6. In Your Future: Local Computer Networks .. F.B
7. Quantitative Methods for Capacity Planning I
8. Finding Qualified EDP Personnel J
9. Various Paths to Electronic Mail D.M

10. Tools for Building Distributed Systems E.B.F
11. Educating Executives on New Technology K
12. Get Ready for Managerial Work-Stations ... C,A,B

1981 (Volume 19)

Number Coverage

I. The Coming Impact of New Technology ... K,A,B
2. Energy Management Systems M
3. DBMS for Mini-Computers G,B
4. The Challenge of "Increased Productivity" .. J,K,A
5. "Programming" by End Users C,H,B,G
6. Supporting End User Programming C,H,B,K
7. A New View of Data Dictionaries G,B.
8. Easing the Software Maintenance Burden . H.B.G.
9. Developing Systems by Prototyping H,B,G

10. Application System Design Aids H

A Office automation E Distributed systems
I Computer operations
J Personnel

B Using minis & micros F Data.communications K Introducing new technology
L Security, privacy, integrity

M New application areas
C Managerial uses of computers
D Computer message systems

G
H

Data management and database
Analysis, design, programming

(List of subjects prior to 1978 sent upon request)

Prices: For a one-year subscription, the U.S. price is $60. For
Canada and Mexico, the price is $60 in U.S. dollars, for surface
delivery, and $67 for air mail delivery. For all other countries,
the price is $72, including AIR MAIL delivery.

Back issue prices: $7 per copy for the U.S., Canada, and Mexico;
$8 per copy for all other countries. Back issues are sent via AIR
MAIL. Because of the continuing demand, most back issues are
available.

Editorial: Richard G. Canning, Editor and Publisher; Barbara
McNurlin, Associate Editor. While the contents of this report are
based on the best information available to us, we cannot guarantee
them.

Missing Issues: Please report the non-receipt of an issue within one
month of normal receiving date; missing issues requested after this
time will be supplied at the regular back-issue price.

Copying: Photocopying this report for personal use is permitted
under the conditions stated at the bottom of the first page. Other
than that, no part of this report may be reprinted, or reproduced or
utilized in any form or by any electronic, mechanical, or other
means, now known or hereafter invented, including photocopying
and recording, or in any information storage and retrieval system,
without permission in writing from the Publisher.

Reduced prices are in effect for multiple copy subscriptions,
multiple year subscriptions, and for larger quantities of a back
issue. Write for details.

Please include payment with order. For payments from outside
the U.S., in order to obtain the above prices, use only an
international money order or pay in U.S. dollars drawn on a hank
in the U.S. For checks drawn on banks outside of the U.S., please
use the current rate of exchange and add $5 for bank charges.

Address: Canning Publications, Inc., 925 Anza Avenue, Vista,
California 92083. Phone: (714) 724-3233, 724-5900.

Microfilm: EDP Analyzer is available in microform, from
University Microfilms International, Dept. P.R., (I) 300 North
Zeeb Road, Ann Arbor, Mich. 48106, or (2) 30-32 Mortimer
Street, London WIN 7RA, U.K.

Declaration of Principles: This publication is designed to provide
accurate and authoritative information in regard to the subject
matter covered. It is sold with the understanding that the publisher
is not engaged in rendering legal, accounting, or other professional
service. If legal advice or other expert assistance is required, the
services of a competent professional person should be sought. -
- From a Declaration of Principles jointly adopted hy a
Commiuee of the American Bar Association and a Cammi/lee of
Publishers.

15

