
EDP ANALYZER 
© 1981 by Canning Publications, Inc. 

SEPTEMBER, 1981 
VOL. 19, NO. 9 

DEVELOPING SYSTEMS BY PROTOTYPING 

In data processing, unlike in other fields such as engi
neering, the first working version of a program often be
comes the final operational version. We have heard people 
in the field lament that the computer field really should 
become more like the other fields and make software pro
totypes first-and then develop operational systems from 
these. One benefit of this approach is that such systems 
would probably require much less maintenance, because 
there would be fewer design errors and oversights. The 
good news is that software prototyping is now feasible and 
cost effective, due to some fairly new tools. 

American Warranty Company is a 
vehicle service contract administrator. The 
company handles the papeiwork, co-ordi
nating functions, and actuarial studies re
lating to extended warranty contracts on 
new cars and trucks, thus relieving both 
the automobile dealers and the insurance 
companies of this work. 

American Warranty has regional offices 
in Georgia, Minnesota, Washington D.C., 
and Illinois; headquarters are in Los Ange
les. American Warranty is servicing some 
750,000 contracts (and they are adding 
roughly 180,000 a year) with about 40,000 
claims a year against these contracts. All 
data processing work for handling the con
tracts and claims is performed at head
quarters. 

In mid-1979 American Warranty de
cided to bring their headquarters data 
processing work in-house. Previously they 
had been using a service bureau that had 
an IBM 360/50; their application pro
grams were written in COBOL. After quite 
a bit of searching, they settled on a Wang 
vs 2200 system. This is a small business 
computer system, using a 16-bit mini-com
puter, with 512k bytes of memory. 

With their new system, American War
ranty obtained almost one billion bytes of 
on-line storage, 26 user work-stations, and 
five printers. Two of the printers are for 
word processsing and they produce type
writer-quality print. The data processing 
department has four people, all of whom 
are programmers with previous COBOL ex
perience. 

ISSN 0012-7523. Multiple copy prices listed on last page. Photocopying this report for personal use is permit
ted, providing payment of $2.50 Iee per copy of report is made to Copyright Clearance Center, Inc., 21 Congress 
Street, Salem, MA 01970; please include identifying fee code 0012-7523/81/090001-14$2.50. 



One reason American Warranty chose the 
Wang system was because they could move their 
application programs and their data files from 
the IBM system to the Wang easily. Wang pro
vides an IBM-to-Wang COBOL source code con
verter and an EBCDIC-to-ASCII data code con
verter for file conversion. Since the company 
was moving from a batch environment to an on
line environment, they chose to convert about 
one-third of their programs and re-write the 
other two-thirds. 

The second main reason American Warranty 
chose Wang was because of its versatility and 
power. Wang provides a program generator for 
creating COBOL, Basic, or assembly language 
programs, plus a screen editor, a data dictionary 
(which Wang calls a control file), a report gener
ator, a menu generator, and several other utili
ties. Each of the utilities creates COBOL source 
code which can be modified or, more typically, 
enhanced with manually written subroutines. 
The company finds that for most of their appli
cations, they need to manually write code only 
for complex data validation and mathematical 
calculations. 

American Warranty is using these utilities to 
create applications through an iterative, proto
type-like approach to development, with a lot of 
end user participation. For example, when their 
purchasing system was being developed, the pur
chasing manager was interested in being in
volved in the design and development. With the 
Wang system, the data processing department 
was able to get him actively involved. They be
gan by asking him to design some output reports 
that his department would need-first on paper 
and then on the Wang. It took a data processing 
staff member about one hour to show the man
ager how to use the Wang screen editor to de
sign his reports. After several iterations, the 
manager was satisfied with these report formats. 
Then a programmer created the necessary de
tailed data definitions and their validation crite
ria using the Wang data dictionary. At this point 
they had some purchasing report formats and a 
database with which to run the reports. This 
phase of the development process took two 
weeks. 

2 

Next, some work-stations were installed in the 
purchasing department and the employees were 
shown how to generate these reports. They were 
encouraged to study the information provided by 
the system and recommend any changes they felt 
were needed. The data processing department 
used these comments to create several improved 
versions of the reports and the database, again 
using the Wang facilities. 

Meanwhile, data processing began work on 
extending the system by creating some inquiry 
and retrieval programs for use by management 
and employees in other departments. When this 
phase was completed, these users were also 
taught how to use the system and encouraged to 
experiment with it. Their recommendations 
were also used to created improved versions of 
the prototype. 

In this way, the purchasing system was devel
oped-modularly and with a great deal of user 
evaluation. And although the data processing de
partment made it clear that each version was not 
the final production system, these prototypes 
were not taken away from the users-each was 
used as if it were the production version. When 
the system appeared to be complete, that final 
prototype did become the production version; 
no re-coding was necessary. This final prototype 
contains some 13,000 lines of code, most of 
which was produced by the generator, and the 
entire process took six weeks to complete. 

In all, American Warranty is pleased with the 
Wang system. Its several programming aids has 
made it possible for them to develop systems in 
an evolutionary manner, with much end user in
volvement in design and evaluation. 

RCA Corporation 

RCA Corporation is a multi-national organiza
tion comprised of seventeen independent operat
ing companies. These are leading companies in 
the television, broadcasting, vehicle rental, floor 
coverings, record, video disk, and other fields. 
RCA, with headquarters in New York City, is 
ranked as the thirty-sixth largest industrial cor
poration in the U.S. by Fortune magazine. In 
1980 they had sales of over $8 billion, and em
ployed some 133,000 people worldwide. 

EDP ANALYZER, SEPTEMBER, 1981 



Each of the operating companies has its own 
data processing function. In addition, corporate 
data processing has some multi-division 
systems-payroll, finance, and personnel. The his
tory of the corporate-wide personnel system is of 
interest to us here. 

In 1974 top management decided that it was 
time to implement a corporate-wide personnel 
system. As Paul Berger and Franz Edelman de
scribe in Reference 1, the corporate operations 
research group was consulted about creating an 
end user 'front-end' to such a system. The front
end would allow non-data processing people to 
query the system directly and generate reports 
from the database. Several of the corporate 
planners had used RAMIS through a time-sharing 
service, and they decided that such a front-end 
could be created for the personnel system using 
RAMIS. 

RAMIS, from Mathematica Products Group in 
Princeton, New Jersey, is a database-oriented 
system that allows 'end user programming.' It 
provides data management functions, such as a 
report generator, interactive query facility, non
procedural language, data dictionary, restart and 
recovery features, plus select and sort features. 
RAMIS allowed the corporate planners to create 
applications for their own use without the need 
for professional data processing help. 

The front-end project was to have two phases: 
a prototyping phase and a development phase. 
Development of the full system would begin 
only after management had seen the prototype 
of the front-end in use, and then approved the 
rest of the project. 

Design of the prototype began in February 
and took five months to complete. The design 
team consisted of one experienced RAMIS user 
and two industrial relations managers, all of 
whom worked part-time on the project during 
this period. The front-end was developed on an 
outside time-sharing service using RAMIS. The 
process was iterative-the designers would cre
ate a prototype, let the users try it out, and then 
modify it based upon the users' suggestions. 
Each version was closer to the originally envi
sioned system. The final prototype consisted of 
the various data entry and inquiry 'screens' (what 
the user sees on the CRT screen) and the logic to 

EDP ANALYZER, SEPTEMBER, 1981 

link them together. And it contained a number 
of standard reports which users could easily re
quest. Since RAMIS provided the data manage
ment functions, the designers only needed to de
fine the contents of the files and the updating 
criteria. Actual operational data was supplied by 
one of the operating units. 

The prototype was then demonstrated to 
RCA's top industrial relations executives. The 
executives were asked to bring to the meeting 
one real-life question they had encountered in 
their work the day before. One at a time, these 
queries were entered into the prototype system 
and the answers displayed for the executives to 
see. The system was not able to answer all of the 
queries, but it answered enough of them to con
vince the executives that the prototype repre
sented a viable and useful user front-end system. 
Approval was granted to develop the full sys
tem. 

Several important decisions were then made 
in mid-1974 about the final system. One was that 
the system should be modular, so that new func
tions could be created (via RAMIS on a prototype 
basis), then tested by users, and finally integrated 
with the rest of the system. The designers fore
saw that the personnel system would require nu
merous enhancements over the years in order to 
comply with the increasing number of govern
ment regulations in the personnel area. They 
saw, too, that it would eventually handle all 
matters related to personnel information. And 
such has been the case. 

Another decision was to divide the system into 
two parts-an interactive front-end portion and a 
batch updating portion (which they call the 
'back-office'). The front-end would remain in RA
MIS. Here again, the choice was made based on 
expected future changes. The designers believed 
that it would be much easier to modify the 
front-end using RAMIS than if it were program
med in a standard programming language, such 
as COBOL. 

The batch portion, however, would be written 
in COBOL to increase execution efficiency; in this 
portion, the logic was expected not to change 
much. The updating of the database would oc
cur during night-time batch updating runs. 

3 



Five months later, in December, 1974, the 
batch processing portion of the system was suf
ficiently complete to allow loading and begin 
maintaining the first division's database, for 
about 7500 employees. That division began us
ing the system on a regular basis in April of 
1975. Within the next twelve months, the sys
tem was moved from the time-sharing service to 
an in-house IBM 3701168 to operate under VM/ 
CMS. During this period, four large RCA operat
ing companies were added to the system, bring
ing the total database to 28,000 employee rec
ords. 

A number of major sub-systems have been 
added to the system since its implementation in 
1975. The company has added several benefit 
plans and an option for employees who choose 
to use a health maintenance organization rather 
than the company medical plan. A compensation 
budgeting and planning module and a quarterly 
EEO (equal employment opportunity) reporting 
capability have been added, and so on. So proto
typing for new capabilities such as these is a 
continuing process with the personnel system. 

By 1977 the system contained records for 55,-
000 employees, and it was handling close to one 
million transactions a year. As each new division 
was added to the system, the designers were con
cerned that the system might become over
loaded and response times would deteriorate. 
But it handled the 1977 load just fine. The de
signers had feared that they might have to re
write major portions of the system front-end in 
COBOL, to improve operating efficiency or user 
response time. However, this need has not mate
rialized. 

RCA currently has about 100 non-data 
processing employees accessing the system using 
RAMIS. The system has grown to two million 
transactions a year, with a database of over 130,-
000 employee records being maintained. New 
capabilities are still prototyped before being 
added to the production system. No major re
programming has been necessary. And mainte
nance of the batch processing portion is handled 
by just one person. Following this successful ex
perience, prototyping has become a common de
velopment methodology at RCA. 

4 

General Electric Company 

General Electric Company is a multi-national 
corporation ranked as the thirteenth largest U.S. 
corporation by Forbes magazine, with sales of 
about $25 billion. The company manufactures a 
wide range of consumer and industrial products, 
with emphasis on electrical products, as well as 
data processing and data communication pro
ducts. They employ over 405,000 people world
wide. 

At the 1980 APL Conference, sponsored by 
1.P. Sharp Associates Ltd. of Toronto, Canada, 
Hassan Gomaa of General Electric and Douglas 
Scott of 1.P. Sharp (Reference 2) described how 
a development team used the 1.P. Sharp APL 

time-sharing service to perform software proto
typing. The objective of the project was to more 
fully understand the diverse end user require
ments for an automated system that the employ
ees of a semi-conductor research and develop
ment laboratory would use. The development 
team believed that a working prototype would 
describe the user requirements better than writ
ten specifications could. 

The development team designed the system 
for three types of end users-process engineers, 
equipment operators, and managers-each with 
quite different requirements. Process engineers, 
who design and refine the semiconductor pro
duction processes, would use the system to de
termine, through experimentation, the set of 
process steps that would provide the best pro
duction yield. They would enter the fabrication 
processes into the system through a dialog with 
the system. 

The equipment operators in the various 
processing areas would use the system to receive 
the processing instructions for each batch of sili
con wafers they were working on. They would 
also record the work they completed and the re
sults of tests they performed. The instructions 
for each operator consist of ten to fifteen opera
tions. Performing these operations may take 
from one-half hour to eight hours. A batch, or 
lot, of wafers passes through 60 to 100 such 
steps in the integrated circuit production 
process. Being a development facility, each lot 
of 25 to 50 wafers would require slightly differ-

EDP ANALYZER, SEPTEMBER, 1981 

" 



ent processing instructions, so the entire opera
tion is very complex. Finally, management 
would use the system to obtain results of pro
duct testing and to monitor the manufacturing 
operation. 

Due to the complexity of the project, two 
people from General Electric and one from I.P. 
Sharp first wrote a preliminary set of specifica
tions. From this I.P. Sharp began developing the 
prototype, using the I.P. Sharp APL time-sharing 
service, which is accessed by means of the I.P. 
Sharp network. 

Several facilities on the APL service and net
work helped them to quickly create a prototype 
of the entire system. (I) APL allowed them to de
fine the logic in the system fairly quickly. (2) The 
I.P. Sharp file system and its accompanying re
port generator made the creation and modifica
tion of files and reports fast and easy. (3) The LP. 
Sharp system provided backup and recovery pro
cedures so the team did not need to develop 
these programs. (4) The network service allowed 
managers to use and comment on the prototype 
at their convenience. The team created an on
line comment mechanism with which users 
could enter their comments, as well as review 
comments made by others, while they were us
ing the prototype. These evaluators were located 
in New York State, Connecticut, California, and 
Toronto, Canada. Some of them even experi
mented with the prototype from terminals in 
their homes, by means of the time-sharing ser
vice. (5) The I.P. Sharp electronic mail system 
allowed the members of the development team 
to stay in daily contact with each other and re
solve issues as they arose. The team members, 
being from two different companies, often were 
not at the same location. And (6) the time-shar
ing service allowed the team to develop the pro
totype even though the hardware that the system 
was designed to run on would not be available 
until nine months after the prototype was com
pleted. 

Once the initial prototype was created, all of 
the users were given a two-hour explanation and 
demonstration on how to use the system. The 
English-like query language and dialog proce
dures were explained. Then these users were 
given two weeks to experiment with the system. 

EDP ANALYZER, SEPTEMBER, 1981 

During this time, mis-understandings surfaced, 
ambiguities and inconsistencies were uncovered, 
and omissions were found. In some cases the 
users spotted features where they were not given 
all the information they needed, or the instruc
tions were difficult or confusing to use. Also, the 
users even identified a few missing or incorrect 
requirements. 

Based on the numerous comments made by 
the process engineers, operators, and managers, 
the team substantially revised the original speci
fications document and the prototype. From 
their experience they not only developed more 
true-to-life system specifications but they also 
learned how the final system, its files, and its 
data should be structured and which algorithms 
should be used. 

The total prototype phase took seven work
months- six percent of their total estimated ten 
work-year development time. And the prototype 
cost less than ten percent of the estimated devel
opment costs (including the cost of the time
sharing service used in the prototyping process). 

The main purpose of this particular prototype 
was to better understand how users would use 
the system, so the team concentrated on proto
typing the interactive 'front-end' portion of the 
system that the users would see. They did not 
prototype the system's interfaces with other 
computers, for example, because they felt these 
requirements were more clearly defined. 

What are software prototypes? 

According to Webster's 20th Century Diction
ary, the term 'prototype' has three possible 
meanings: (I) It is an original or model after 
which anything is formed. (2) It is the first thing 
or being of its kind. And (3) it is a pattern, an ex
emplar, or an archetype. 

A. Milton Jenkins and J. David Naumann (Ref
erence 3), in a paper on software prototyping, 
believe the second definition best fits the proto
types used in data processing because such pro
totypes are a first attempt at a design which gen
erally is then extended and enhanced. Franz 
Edelman, in conversations with us, describes the 
process of software prototyping as "a quick and 
inexpensive process of developing and testing a 

5 



trial balloon." These two interpretations contain 
several important points. 

First, the software prototype is a live, working 
system; it is not just an idea on paper. There
fore, it can be evaluated by the designer and/ or 
the eventual end users through its use in an op
erational mode. It performs actual work; it does 
not just simulate that work. 

Second, the prototype may become the actual 
production system, or it may be replaced by a 
conventionally-coded production system. Thus, 
the prototype may or may not be discarded. 

Third, its purpose it to test out assiumptions, 
about users' requirements, and/ or a system de
sign architecture, and/ or perhaps even the logic 
of a program. 

Fourth, it is a ·software system that is created 
quickly-often within hours, days, or· weeks
rather than months or years. In the pa,st, many 
people felt that software prototyping was im
practical because it could not be performed 
quickly. With only conventional programming 
methods available, companies would not accept 
developing two versions of a system. So data 
processing departments had to create their pro
duction systems 'right' the first time around. But 
now some programmers are making innovative 
use of various types of software tools to get pro
totypes up and running quickly-tools such as 
the data management systems (DMS) that we 
have been describing for the past few months. 
(DMS generally involve the use of a database 
management system, plus retrieval facilities for 
queries and reports, selection and sorting fea
tures, and so on.) We will discuss several other 
types of tools later in this report, all of which 
can speed up the development process. 

Fifth, the prototype is relatively inexpensive 
to build-meaning less expensive than coding in 
a conventional high level language. The reason 
the software tools make prototyping less expen
sive is that they create most, if not all, of the 
code. 

Sixth, prototyping is an iterative process. It 
begins with a simple prototype that performs 
only a few of the basic functions in question. It 
is not required that these functions be performed 
elegantly or efficiently. But it is expected that, 
through use of the prototype, system designers 

6 

or end users will discover new requirements and 
refinements which will then be incorporated in 
the next version. So it is a trial and error 
process-build a version of the prototype, use it, 
evaluate it, then revise it or start over on a new 
version, and so on. Each version performs more 
of the desired functions and in an increasingly 
efficient manner. 

Uses of software prototyping 
In our research for this issue, we found three 

uses of software prototypes: (I) to clarify user 
requirements, (2) to verify the feasibility of de
sign, and (3) to create a final system. 

To clarify user requirements 

Using a software prototype to clarify user re
quirements is the most interesting, and most in
novative, use we found. Daniel McCracken (Ref
erence 4) points out that traditional, written 
specifications attempt to bridge the communica
tion gap between the user and the designer. 
However, they do not serve this purpose well, 
because they are incomplete, they take a static 
view of requirements, and are often confusing. 
In addition, it is hard for an end user to visualize 
the eventual system from the specifications. 
Also, most users can not fully describe their cur
rent requirements-although they know what 
would be useful if they saw it-and even fewer 
users can identify their future needs, particularly 
for such things as tax law changes that have not 
yet been passed. 

In place of the traditional process of deter
mining user requirements, McCracken recom
mends creating a prototype to clarify the user's 
needs. First, the designer talks with the user 
about the needs that can be identified. Based on 
these discussions, and using (say) a DMS, the de
signer quickly creates a system that performs 
some functions that the user has requested. 

Then, perhaps using a CRT terminal, the de
signer demonstrates the input screen formats and 
report formats the user would be using. And he 
shows the user the flow between the various ele
ments in the proposed system: "If you select Op
tion A on this menu, the system will respond 
with the following screen format." By creating a 
small file of data, the user can then use the sys-

EDP ANALYZER, SEPTEMBER, 1981 



tern to see how closely it fits the needs. Based on 
this actual use, most users will re-define and ex
pand their requirements. Through several itera
tions of this process, the system comes closer 
and closer to what the end user wants. When the 
user is satisfied, the final version of the prototype 
can be used as the production system. Or it can 
be used to write the specification document, 
from which a production version can be devel
oped using conventional development tech
niques and languages. 

This process may seem longer than the tradi
tional method of determining user requirements, 
but it is not. For small applications, the original 
prototype can be created in days-and then used 
and enhanced over the following few weeks. Ob
taining the final system usually takes less than a 
month. For large, more complex, systems, this 
process might take a few months. We have 
heard estimates that prototypes for defining end 
user requirements require anywhere from 10% to 
20% of the total estimated development time. 

McCracken points out that the prototyping 
approach provides numerous benefits, particu
larly for the end user. For one thing, the specifi
cations are more complete, because users can 
evaluate a prototype better than they can evalu
ate written specifications. Why? Because a pro
totype quickly brings users face-to-face with the 
types of problems they will face when operating 
the new system. For instance, an input or query 
screen format may look just fine on paper, but 
when used interactively the user may discover 
that it requires the entry of too much unneces
sary information. 

Prototyping also allows-and even encour
ages-users to change their minds about what 
they want, until they find a system that is truly 
useful to them. Numerous authors and people 
we talked with point out that when end users 
operate an automated system, it always changes 
their perception about what they really want. 
Prototyping allows this to occur early in the de
velopment cycle, when changes are cheaper and 
easier to make. 

Traditional methods do not have a compara
ble experimentation phase; up until the end, the 
system is only a paper system in the eyes of the 
users. This point becomes even more important 

EDP ANALYZER, SEPTEMBER, 1981 

for large systems with many different types of 
users. With a working prototype, each user can 
evaluate the system from his own point of view 
and spot missing or mis-understood require
ments. 

The prototyping process thus eliminates the 
surprises that end users normally encounter at 
the end of the traditional development process, 
when they finally get to operate the system. Pro
totyping introduces that end-use step much ear
lier in the development cycle. 

Prototyping appears to have benefits for the 
data processing department as well. Many pro
ponents believe that prototyping end user re
quirements shortens the development cycle, be
cause it eliminates mo~t design errors-which are 
a major cause of missed deadlines and corrective 
maintenance work. 

In fact, even enhancement maintenance can 
be reduced. Some of it is moved from the pro
duction stage of system use into the prototyping 
stage, in the form of iterations of the prototype. 
Also, if the prototype is saved, it can be used to 
test out future enhancements, .to obtain more ac
curate user specifications on a continuing basis. 

So prototypes are being used to clarify user 
requirements. 

To verify the feasibility of a design 

We have just described how prototyping can 
be used to better define the external design of a 
system-what the end user sees. Prototyping can 
also be used to verify the internal design of a 
system. 

The most interesting use of prototyping the 
internal design that we have encountered was 
where a company wanted to integrate three pur
chased packages into one system. Prototyping al
lowed them to experiment with different ways of 
linking the packages. With the expected increase 
in the use of purchased packages, prototyping 
may become more widely used for this purpose. 

In this instance, the designers first identified 
the functions that needed to be performed and 
where each function might be performed-in an 
in-house module or in one of the packages. A 
prototype was developed which showed the end 
users how the new system would operate (the ex
ternal design). The prototype was then extended 

7 



to perform some of the linking of the packages 
(the internal design). While the efficiency of the 
prototype was not very good, it did allow both 
designers and users a chance to use the new sys
tem. Based on their reactions, a second proto
type was developed, where efficiency was impor
tant. The prototype eventually evolved into the 
production system. 

Another interesting use of prototyping we 
heard about occurred at an insurance company, 
where end users did the prototyping. In this in
stance, the actuaries used APL to create proto
types of the processing and calculation modules 
required for some new types of insurance. They 
created several iterations of the prototype, and 
when they were satisfied, they passed the pro
gram on to data processing to use to create the 
production system. When the production system 
was complete, the actuaries used their original 
prototype to verify the results produced by the 
production system. 

A third example of prototyping to verify the 
feasibility of internal design involves creating a 
software prototype on a machine other than the 
final production machine. It may be that the 
production machine will not be available for 
some time, or the in-house machine is too busy 
to accommodate new development work. In any 
case, the designers can create a prototype on a 
different machine to verify the system design, 
and then create the final system on the pro
duction machine, when it becomes available. 

Thus prototypes can be used to test the feasi
bility of design. 

To create a final system 

Think of prototyping as an evolutionary de
sign methodology. It then follows that part (or 
all) of the final version of the prototype may be
come part of the production version. 

For example, DMS are often used to prototype 
the interactive user portion of an application 
system. By the time the users are satisfied with 
the system, there may be no reason to re-write 
this portion for a production version; the DMS

based system may work efficiently enough. Jen
kins and Naumann (Reference 3) point out that 
the only reason such a prototype should be re
programmed is for economic reasons-where the 

8 

expected savings in computer resources will be 
greater than the cost of re-programming. (How
ever, these savings often cannot be actually 
achieved.) 

Another consideration is that making changes 
to DMS applications is considerably easier than 
making comparable changes to applications pro
grammed in a high level language such as CO
BOL. If the system is expected to change very 
much-and most systems do change considerably 
over time-then it might be wiser to leave some 
or all of the system in the DMS structure so that 
future maintenance will be easier. 

A personnel system is a good example. Here, 
government regulations relating to company 
personnel policies have been changing continu
ally in many countries. New regulations have re
quired companies to offer additional health and 
retirement benefits and options, new types of re
porting on hiring and employee safety practices, 
and so on. A personnel system must be changed 
quite often. 

Data processing departments may worry that 
DMS applications will not make efficient use of 
computer resources. If this is really a problem, 
the most crucial modules can be tuned; DMS ex
perts tell us they can often cut processing time 
appreciably by just re-designing the most heavily 
used portions. If the DMS routines still use more 
resources than desired, another way to increase 
efficiency is to re-code certain portions in COBOL 
or assembler. A good number of the DMS allow 
subroutines written in other languages to be 
called upon by the DMS applications. 

So, for on-line, interactive applications partic
ularly, some of the prototype system can become 
part of the final system. 

How prototype development differs 
The application development cycle using pro

totyping does differ from the conventional 
process. It differs in three ways-in the tools 
used, in the skills needed, and in the procedures 
followed. 

Different tools 

Prototyping requires software tools that allow 
designers or programmers to create a working 
system in a very short time. We found the fol-

EDP ANALYZER, SEPTEMBER, 1981 

.. 
) 

.. 
( 
I · .. 



.. 

i 
I 

'• 

lowing types of tools in use: (1) DMS with an ac
companying non-procedural language, (2) appli
cation development systems with an accompany
ing procedural language, (3) application genera
tors, and (4) libraries of re-usable code. 

Data management systems (DMS). As we de
scribed in the May 1981 report, a DMS allows 
the user to specify what needs to be done rather 
than how the work must be performed. A non
procedural language provides this user interface. 
Additionally, a DMS can have many useful func
tions already coded; the user need only specify 
the parameters of the operation and the files to 
be used. So numerous functions can be per
formed quickly and easily to set up a working 
prototype. These functions include allocating 
storage space for the data, creating data defini
tions, select and sort, retrieving answers to que
ries, and report generation. Some DMS also pro
vide facilities for defining formats for data entry 
on a CRT screen. The designer need only enter 
the appropriate titles in the location where they 
should appear on the screen, and then indicate 
data entry field locations, field lengths, and field 
validation criteria. 

DMS also have either DBMS or file manage
ment facilities so that updating the files is done 
easily, usually without writing any code. The 
DBMS may also take care of the security and re
covery aspects of the database. So the program
mer is left with more time to concentrate on the 
design of the prototype, rather than coding rou
tine functions. 

Products we would include in this area are 
RAMIS, from Mathematica Products Group; FO
CUS, from Information Builders; NOMAD, from 
National CSS; INFO, from Henco Inc.; and many 
others. For a listing of these and other DMS pro
ducts, see Reference 6. 

Application development systems. The term 'ap
plication development system' can be confusing 
because it is used to refer to different types of 
tools. We think of application development sys
tems as tools designed for programmers-tools 
that would rarely be employed by typical end 
users because they require a procedural lan
guage, such as COBOL. A DMS, on the other 
hand, is designed so that it can be used by end 

EDP ANALYZER, SEPTEMBER, 1981 

users. However, a DMS can also be, and often is, 
used by programmers as well. 

Application development systems can provide 
many of the same facilities as the DMS. As we 
say, though, use of a procedural language is gen
erally required. Products we would include here 
are Automated Development Facility (ADF) from 
IBM, ACT I 1 from Art Benjamin and Associates, 
and PRIDE/ ASDM from M. Bryce and Associates, 
Inc. Again, see Reference 6. 

Application generators. Program generators 
have been around for some years; in fact, numer
ous user companies have written their own. 
Also, we discussed the use of an early version of 
the GEN ASYS application generator in our Sep
tember 1975 issue; an application generator has 
a broader scope than a program generator. Many 
of the vendors have enhanced their products to 
include: a data dictionary, on-line interactive 
use, screen format generator, and other DMS-like 
facilities for developing on-line applications. 
Generators were originally designed for data 
processing professionals, but some have been en
hanced to the point where end users can now 
use them. 

These generators produce procedural lan
guage source code; unlike the DMS, the resulting 
application does not run under them. Using the 
David R. Black Generator, for example, the pro
grammer selects from a menu what type of mod
ule he wishes to create. The system then initiates 
a question-and-answer dialog, in which the pro
grammer supplies the variable information. 
When this form of 'coding' is complete, the gen
erator produces the actual source code. It can 
generate 100% of the code for standard file entry 
and update programs, including formatted input 
screens and output reports. For more specialized 
application logic, source code can be hand
coded and added to the generator's code. So gen
erators can also provide a means for creating a 
prototype quickly. 

Libraries of re-usable code. One of the points 
that stood out in our research for the October 
and November 1979 reports on programmer 
work-stations was that these products encourage 
the use of re-usable code. Modules can be 
quickly retrieved from storage, changed if neces-

9 



sary, and then used in a new program. By creat
ing an on-line library of such modules, program
mers can more rapidly create a working system. 
Jenkins pointed out to us that such libraries are 
also being used for prototyping purposes. 

Different skills 

The prototyping environment does require 
different skills for the data processing profes
sional. Jenkins and Naumann note that, with 
prototyping, interviewing skills are not as impor
tant as they are with conventional methods. This 
is because user specifications are no longer based 
on how well the analyst interprets the users' spo
ken requirements; instead, the specifications are 
based on the demonstrated, working prototype. 
Further, the analyst does not need to uncover all 
requirements at the beginning; .each version of 
the prototype helps the user to successively re
fine his requirements and to identify missing 
ones. 

Prototyping also requires the data processing 
professional to spend more time with users and 
less time coding-hence the professional must be 
more people-oriented. Programmers who prefer 
the 'art' of programming might not particularly 
enjoy this new environment. There is still some 
coding to be done, but far less than in conven
tional development, especially if part of the pro
totype is used in the production system. 

On the users' side, Jenkins and Naumann 
point out that prototyping requires the most 
knowledgeable users-generally the managers
to work on the system design, because they must 
be able to define the entire problem and choose 
among alternative solutions. One former data 
processing manager, now a consultant, pointed 
out to us that, on projects at his former em
ployer, prototyping has required a lot more of 
these users' time than had been expected. Such 
time commitments need to be considered at the 
outset. 

Different procedures 

Prototyping definitely requires different proce
dures from the conventional development cycle. 
Peters (Reference 5) points out that this differ
ence is fundamental. In the conventional cycle, 
user requirements are defined in a specification 

10 

document, which is approved and signed by the 
user. Only after that phase is completed does the 
design of the system begin. In prototyping, Pe
ters sees requirements and design evolving to
g~ther. The development of the prototype deals 
with both-the requirements from the users' 
view and the design from the designers' view. 
Even when the prototype is used to create writ
ten specifications, design aspects are considered 
as well. 

Jenkins and Naumann identify four steps in 
the prototype development process which pre
cede the development of a production version of 
a system. We found that these steps depict quite 
well what we learned at the user companies we 
visited. 

Step 1: Identify users' basic requirements. The 
first step involves uncovering only the users' 
most basic and evident requirements. The size of 
the project determines the amount of time spent 
on this. step. For smaller projects, the designer 
generally talks with a few users for a short time 
to find out what the problem is and what they 
expect the system to do. Together they may de
fine the information to appear on certain reports 
and data input screens. The designer might also 
want to get some statistics about the expected 
volumes of the various types of transactions the 
system will process. This initial requirements 
study can be informal and need not involve any 
written specifications. For larger systems, a de
sign team may need to spend a few weeks pre
paring a first-effort requirements document, in 
order to get a better idea of the numerous func
tions the system will need to perform. 

Step 2: Develop a working prototype. The im
portant point in prototyping is that the designer 
takes the notes developed in the user discussions 
and quickly creates a working system. For exam
ple, when using a DMS, the designer can use the 
default values in the report generator to create 
standard report formats, rather than define the 
layouts of each report. Also, the prototype need 
only perform the most important, identified 
functions. The designer creates a relatively small 
file of data, enough so that users can experiment 
with the system. Within a few days, for a small 

EDP ANALYZER, SEPTEMBER, 1981 



system, or a few weeks, for a larger system, the 
designer can develop the first prototype. 

Step 3: Use the prototype. This step begins with 
the designer demonstrating how the prototype 
works to a small group of users. During the pre
sentation, the users may request some changes. 
Some of these may be made right then-others 
can be reserved for later. If the system is not re
ally what these users need, the designer may dis
card the prototype and start over again. If the 
system meets some of the users' requirements, 
and is usable, then the designer may teach them 
how to use the system so that they can experi
ment with it and evaluate it more fully. Gener
ally this experimentation lasts for some specified 
time period, such as a couple of weeks. During 
this time the users make notes of all the changes 
they would like made. 

Step 4: Re.fine prototype. Next the designer and 
users discuss the desired changes, and decide 
which ones should be included in the next ver
sion of the prototype. The designer then creates 
that versfon-either by starting over again or by 
extending the current version. After the changes 
have been made, the cycle returns to Step 3-the 
designer demonstrates the new version, instructs 
the users on its operation, and lets them use it 
for awhile. Steps 3 and 4 are repeated until the 
system fully achieves the requirements of this 
small group of users. 

At this point, two alternatives are available. 
One is for the designer to introduce the proto
type to a much larger group of users for their 
experimental use, to see if additional require
ments come to light. The other alternative is, if 
enough users are satisfied with the prototype, it 
can be demonstrated to management to gain ap
proval for the production version. 

The point was made to us that the best way to 
demonstrate the prototype's usefulness to man
agement is to have the managers bring to the 
demonstration questions they would like the sys
tem to be able to answer. But rather than have 
them operate the system themselves, the de
signer should enter their queries. 

One possibility at this point, of course, is to 
continue to use the prototype as the production 
system. This is often a viable alternative, partic-

EDP ANALYZER, SEPTEMBER, 1981 

ularly on small projects which do not have a 
high volume of transactions. Unless the econom
ics of running the prototype are too severe, we 
suspect that many companies will chose not to 
re-code it. For one thing, maintenance of the 

· prototype probably will be much easier and less 
costly than maintenance of a re-coded pro
duction system. 

However, if a production version is desired, 
after the approval for it has been obtained, the 
designers have three options. If the prototype is 
created by assembling modules of re-usable 
code, the final prototype may be close to the 
production version, with only some additional 
work needed to complete it. 

Second, some parts of the prototype may be 
re-coded to operate more efficiently. We have 
seen this approach taken on a system that had 
batch updating programs; these programs were 
re-coded to increase efficiency. For medium size 
and larger prototypes developed using a DMS, 
this alternative seems to be the one most bften 
chosen. The designers leave the portions that are 
most likely to change in the DMS, and they re
code the most heavily used-but at the same 
time, less dynamic-modules. 

The third option is to re-code the entire sys
tem. If, for example, the DMS is available on the 
development machine but is not available on the 
production machine, this option may be neces
sary. Or perhaps the system is to run under a 
DBMS that does not provide many DMS facilities. 

One case we are familiar with, where an· en
tire prototype was re-coded, was where the end 
users created the prototype in order to present 
their requirements concisely. The prototype did 
not represent an entire system, however. The 
data processing department then re-coded this 
prototype and embedded it in a production sys
tem. 

How many resources does prototyping use? 
From our talks with companies, the prototyping 
of end user requirements appears to take about 
10% to 20% of the development time for large 
systems (the developers of large systems being 
the only ones we found who kept track of this 
kind of information). These users felt that proto
typing did not shorten this phase of the develop
ment cycle. However, it can shorten the remain-

11 



der of the development cycle, and it definitely 
does ease maintenance. In support of this last 
point, the RCA personnel system discussed 
above is maintained by just one person, because 
it was well designed through prototyping and 
because the most dynamic portions have been 
left in the DMS form. 

Of course, if the final prototype becomes the 
production version, then development time is 
shorter-and maybe dramatically shorter-as 
compared with conventional development meth
ods. 

When are prototypes appropriate? 

A number of authors believe that prototyping 
should be tried for all systems, because the ap
proach presents a better and earlier view of the 
worthiness of the project and its design. It en
courages heavy user involvement in the require
ments and design phases, and in so doing, it ac
commodates change. McCracken feels this is the 
major benefit of prototyping-systems must be 
expected to change because automation of any 
system leads to change. Prototyping takes this 
into account. It is especially useful where user 
requirements can not be clearly defined until af
ter much study, or where the needs are expected 
to change quite often. 

Further, numerous authorities believe that 
prototyping is ideal for developing decision sup
port systems, because users of these systems
typically managers and their immediate staff 
members-cannot foresee how they will use the 
systems. 

12 

With growing experience in prototyping and 
an increasing number of tools to aid designers 
create software prototypes, the time appears 
ripe to consider this approach to application sys
tem development. 

REFERENCES 
1. Berger, Paul and Franz Edelman, "IRIS: A transac

tions-based DSS for human resources management," 
Data Base, A Quarterly Newsletter of ACM's Special In
terest Group on Business Data Processing, Association 
for Computing Machinery (1133 Avenue of the Ameri
cas, New York, New York 10036), Winter 1977, pp. 
22-29; price $3.50. 

2. Gomaa, Hassan and Douglas Scott, "An APL proto
type of a management and control system for a semi
conductor fabrication facility," Proceedings of 1980 APL 
Users Meeting, October 6-8, 1980, Toronto, Canada, J.P. 
Sharp Associates Ltd. (156 Front St. West, Toronto, 
Canada), pp. 73-83; price $15. 

3. Jenkins, A. Milton and J. David Naumann, "The proto
type model as a MIS design technique," Discussion Pa
per No. 163, Graduate School of Business, Indiana 
University (Bloomington Indiana 47405), September 
1980, 30 pages; price: free. 

4. McCracken, D. D., "Software in the 80s: Perils and 
promises," Computerworld Extra! (375 Cochituate Road, 
Framingham, Mass. 01701), Sept. 17, 1980, pp. 5-10; 
price $1.25. 

5. Peters, Lawrence, "Users requirements and software 
specifications," Session No. 27 at 1980 National Com
puter Conference, May 19-22, 1980, Anaheim, Califor
nia. A cassette tape of this session can be obtained 
from On-the-Spot Duplicators, Inc., 7224 Valjean Ave
nue, Van Nuys, California 91406; price: $8.00 includ
ing shipp.ing and handling. No paper of the session is 
included in the published proceedings. 

6. For a free listing of tools useful for prototyping, in
cluding the ones mentioned in this issue, write to EDP 
ANALYZER, 925 Anza Ave., Vista, California 92083. 

Prepared by: 
Barbara C. McNurlin 
Associate Editor 

EDP ANALYZER, SEPTEMBER, 1981 



COMMENTARY 

PROBLEMS WITH PROTOTYPING 

A consultant friend of ours, during a discussion about this issue, asked, 
"What are the problems with prototyping? How can data processing man
agement control its use and keep it within bounds?" These are fair questions, 
so we thought that we would devote this Commentary to answering them. 

One problem with prototyping was reported to us by Mattel Toys, as dis
cussed in our July 1977 issue. In this instance, prototyping was used to 
quickly give a manager a new system he requested. He used the system for 
awhile, but then his use slowed and finally stopped. The systems department, 
in analyzing this experience, came to the conclusion that the system only 
solved a symptom and not the basic problem that the manager had faced. "It 
cured the itch, not the disease," they told us. 

So one possible problem with prototyping is that it may encourage the 
glossing over of the system analysis portion of a project. Hence the basic 
problem, for which the system is desired, may not be identified. 

Jenkins and Naumann's four-step approach to prototyping, discussed ear
lier, begins by identifying the user's basic requirements. So this step need not 
be glossed over. 

In our July 1977 issue, we discussed one problem with prototyping put 
forward by big-system developers. It often is not clear just how a big system 
can be divided, in order to build a prototype one part at a time, until a thor
ough requirements study has been made. It is hard to see at the outset how 
the multiple parts will impact one another. 

A subscriber in a multi-location organization wrote us about a problem he 
faces in the use of prototyping. People in his systems department resist the 
use of prototyping for large application systems that serve multiple user 
sites, on the grounds that it would be too expensive to have users at each site 
operate the prototype. The argument has validity, but it seems to us that the 
'conventional' approach to this problem would be one practical solution for 
many such organizations. With this conventional approach, management ap
points a group of users to represent all users. It is then up to the group to 
see that they adequately represent the others. 

In addition, two of the user experiences discussed in this issue relate to this 
point. The RCA personnel system was converted one division at a time; 
changes could be made as the need for them became apparent. Also, the 
G.E. prototype was available over a time-sharing network, thus allowing 
users at various sites to test it. 

Joseph L. Podolsky, Division Controller of the Hewlett Packard Micro
wave Semiconductor Division in San Jose, California, wrote an article which 
appeared in the November 1977 issue of Datamation ("Horace builds a cy
cle"). In the article, he describes both the advantages and possible problems 

EDP ANALYZER, SEPTEMBER, 1981 13 



•. j 

i 
!'I 

with prototyping (which he called 'recursive development'), both from the 
users' viewpoint and from the systems department's viewpoint. We con
tacted him to learn his current views on these problems. 

In practice, he told us, the users' problems have proved to be minimal. 
Users enjoy their role in the use, testing, and refining of the new application 
systems. They are grateful for the support they get from even a less-than-per
fect prototype. 

One danger, though, is that users can become so happy with the prototype 
that they want the systems people to start working on something else, rather 
than cleaning up what is, in the minds of the designers, an 'early version' of 
the prototype. 

The systems department's problems with prototyping are more serious, he 
said. One problem involves the acceptance of the method by the systems 
people. Prototyping is so different from the conventional, accepted method 
of system development that its use is often resisted. The skeptics take some 
convincing. One way to do this, he says, is to point out to the skeptics that 
prototyping is, in effect, an extension of the modelling process used in con
ventional design methods-by block diagrams, flow charts, and so on. 

In his article, Podolsky listed five concerns about the effect of prototyping 
on the systems department. Very briefly, these were: difficulty in resource 
planning, difficulty in making a good decision on whether to enhance an old 
system or build a new version, the boredom that the Nth iteration of a sys
tem may bring to the developers, and problems associated with keeping the 
systems staff abreast of each system and of testing one iteration after another. 
These concerns have, in fact, proved to be valid ones, he says. 

In addition, prototyping seems to bring about a reduction in the discipline 
that is needed for proper documentation and testing of a new system, he said. 
The system is so easily changed that keeping documentation up to date is a 
problem; as is often the case, it is treated too casually. Also, the systems de
partment tends to assume that the users will do the testing of the new sys
tem. It is expected that any gaps or oversights in this testing by the users can 
be found and corrected 'later.' So testing may not be as thorough as desired. 

Even with these concerns, Podolsky is an enthusaistic supporter of proto
typing. The joint user-designer involvement allows for incredibly productive 
working relationships, he says. In fact, he believes that as users learn more 
about it, prototyping may well become inevitable. So it behooves all data 
processing executives to learn to use this powerful tool creatively and to 
manage it effectively, he says. 

These, then, are the problems with prototyping that we have come across. 
None seem particularly troublesome. The advantages of prototyping, as dis
cussed in this issue, would appear to greatly outweigh the problems. 

EDP ANALYZER is published monthly and copyright© 1981 by Canning Publications, Inc., 925 Anza Avenue, Vista, 
California 92083. All rights reserved. Photocopying this report for personal use is permitted under the conditions stated at the 
bottom of the first page. Also, see Declaration of Principles on page 15. 

14 EDP ANALYZER, SEPTEMBER, 1981 



SUBJECTS COVERED BY EDP ANALYZER IN PRIOR YEARS 

1978 (Volume 16) 

Number Coverage 

I. Installing a Data Dictionary .................. G 
2. Progess in Software Engineering: Part I ....... H 
3. Progress in Software Engineering: Part 2 ...... H 
4. The Debate on Trans-border Data Flows ...... L 
5. Planning for DBMS Conversions ............. G 
6. "Personal" Computers in Business ............. B 
7. Planning to Use Public Packet Networks ...... F 
8. The Challenges of Distributed Systems ...... E,B 
9. The Automated Office: Part I ................ A 

10. The Automated Office: Part 2 .............. A,D 
11. Get Ready for Major Changes ................ K 
12. Data Encryption: Is It for You? .............. L 

1979 (Volume 17) 

Number Coverage 

I. The Analysis of User Needs .................. H 
2. The Production of Better Software ............ H 
3. Program Design Techniques .................. H 
4. How to Prepare for the Coming Changes ...... K 
5. Computer Support for Managers ......... C,A,D 
6. What Information Do Managers Need? ........ C 
7. The Security of Managers' Information .... C,A,L 
8. Tools for Building an EIS ................... C 
9. How to Use Advanced Technology ........ K,B,D 

10. Programming Work-Stations ............... H,B 
11. Stand-alone Programming Work-Stations .... H,B 
12. Progress Toward System Integrity .......... L,H 

Coverage code: 

1980 (Volume 18) 

Number Coverage 

I. Managing the Computer Workload ............ I 
2. How Companies are Preparing for Change ..... K 
3. Introducing Advanced Technology ............ K 
4. Risk Assessment for Distributed Systems .. L.E.A 
5. An Update on Corporate EFT ................ M 
6. In Your Future: Local Computer Networks .. F.B 
7. Quantitative Methods for Capacity Planning .... I 
8. Finding Qualified EDP Personnel .............. J 
9. Various Paths to Electronic Mail ............. D 

10. Tools for Building Distributed Systems .... E.B.F 
11. Educating Executives on New Technology ..... K 
12. Get Ready for Managerial Work-Stations .... A.B 

1981 (Volume 19) 

Number Coverage 

I. The Coming Impact of New Technology ....... K 
2. Energy Management Systems ................. M 
3. DBMS for Mini-Computers ................ G,B 
4. The Challenge of "Increased Productivity" ... J,K 
5. "Programming" by End Users .......... H.G.B.C 
6. Supporting End User Programming ..... H,G,B,K 
7. A New View of Data Dictionaries ........... G.B. 
8. Easing the Software Maintenance Burden . H.B.G. 
9. Developing Systems by Prototyping ....... G.B.H 

A Office automation E Distributed systems 
I Computer operations 
J Personnel 

B Using minis & micros F Data communications K Introducing new technology 
L Security, privacy, integrity 

M New application areas 
C Managerial uses of computers 
D Computer message systems 

G Data management and database 
H Analysis, design, programming 

(List of subjects prior to 1978 sent upon request) 

Prices: For a one-year subscription, the U.S. price is $60. For 
Canada and Mexico, the price is $60 in U.S. dollars, for surface 
delivery, and $67 for air mail delivery. For all other countries, 
the price is $72, including AIR MAIL delivery. 

Back issue prices: $7 per copy for the U.S., Canada, and Mexico; 
$8 per copy for all other countries. Back issues are sent via AIR 
MAIL. Because of the continuing demand, most back issues are 
available. 

Editorial: Richard G. Canning, Editor and Publisher; Barbara 
McNurlin, Associate Editor. While the contents of this report are 
based on the best information available to us, we cannot guarantee 
them. 

Missing Issues: Please report the non-receipt of an issue within one 
month of normal receiving date; missing issues requested after this 
time will be supplied at the regular back-issue price. 

Copying: Photocopying this report for personal use is permitted 
under the conditions stated at the bottom of the first page. Other 
than that, no part of this report may be reprinted, or reproduced or 
utilized in any form or by any electronic, mechanical, or other 
means, now known or hereafter invented, including photocopying 
and recording, or in any information storage and retrieval system, 
without permission in writing from the Publisher. 

Reduced prices are in effect for multiple copy subscriptions. 
multiple year subscriptions, and for larger quantities of a back 
issue. Write for details. 

Please include payment with order. For payments from outside 
the U.S., in order to obtain the above prices, use only an 
international money order or pay in U.S. dollars drawn on a hank 
in the U.S. For checks drawn on banks outside of the U.S., please 
use the current rate of exchange and add $5 for bank charges. 

Address: Canning Publications, Inc., 925 Anza Avenue, Vista, 
California 92083. Phone: (714) 724-3233, 724-5900. 

Microfilm: EDP Analyzer is available in microform. from 
University Microfilms International, Dept. P.R., (I) 300 North 
Zeeb Road, Ann Arbor, Mich. 48106, or (2) 30-32 Mortimer 
Street, London WIN 7RA, U.K. 

Declaration of Principles: This publication is designed to provide 
accurate and authoritative information in regard to the subject 
matter covered. It is sold with the understanding that the publisher 
is not engaged in rendering legal, accounting, or other professional 
service. If legal advice or other expert assistance is required, the 
services of a competent professional person should be sought. -
- From a Declaration of Principles jointly adopted by a 
Committee of the American Bar Association and a Committee of 
Publishers. 

• 

15 


