
, '

EDP ANALYZER
© 1979 by Canning Publications, Inc.

DECEMBER, 1979
VOL. 17, NO. 12

PROGRESS TOWARD SYSTEM INTEGRITY

In the computer field context, the term 'system integrity' can
be defined as the behavior of a hardware/ software system that
"does the right things and only the right things; moreover, the
system does those things right and does them when they are
needed to be done." System integrity is a goal to aim at, and one
that can never be fully realized. But it is an important goal, even
in a business data processing environment. Imperfections. in to
day's computerized systems all too often lead to frustrations, an
noyances, or even harm. Some pioneering work in secure operat
ing systems may be pointing the way for, achieving a higher de
gree of system integrity in business applications.

In 1973, SRI International (formerly
Stanford Research Institute), of Menlo Park,
California, received a contract from the U.S.
Department of Defense that had two main
goals. One goal was to design a highly secure
operating system. The second goal was to be
able to prove that this system was secure. In
order to permit formal (mathematical) verifi
cation of system properties, such as its secur
ity, SRI developed a rigorous methodology for
system dev~lopment.

The problem that SRI was tackling, as de
scribed by Neumann (Reference 3a), was: how
should one design, implement, debug, operate,
modify, and maintain a large, complex com
puter system that includes both the hardware
and the operating system? Further-and this
was a critical part of the methodology-they
wanted to be able to formally verify that the

system actually would do what its specifica
tions say that it should do, for such things as
performance, security, reliable operation, and
recovery from faults.

As we have indicated in previous reports (for
instance, May 1970, July 1977, February and
March 1978, and January and February 1979),
developing systems that do what they are sup
posed to, and only what they are supposed to,
poses very challenging problems. It is difficult
to determine requirements, then to develop
specifications for the new system that meet
those requirements, and then to build the new
system to meet the specifications. Once the sys
tem is built, the problem does not end; it must
be maintained and' modified without destroying
its desired characteristics.

The SRI work has drawn on the results of a
number of other projects attacking this. prob-

ISSN 0012-7523. Multiple copy prices listed on last page. Photocopying this report for personal use is permitted, providing
payment of $2.00 fee per copy of report is made to Copyright Clearance Center, P.O. Box 765, Schnectady, N.Y. 12301;
please include identifying fee code 0012-7523179/120001-13$02.00.

lem area, including work done at Ford Aero
space, the MITRE Corporation, and the Univer
sity of California at Los Angeles. In addition,
similar work has been going on in other coun
tries. Most of this work is not classified from a
military security standpoint. The SRI people
have had a lot of information interchange with
these other projects, particularly with the
MITRE project. Even though each project has
followed a different approach to the problem,
the SRI people have benefitted from this inter
change.

The major results of the project to date are
as follows, as described in Reference 1:

Hierarchical development methodology (HDM).
This is the methodology for developing sys
tems that supports formal verification of sys
tem operation, in accordance with the specifi
cations. It, in turn, is made up of several com
ponents.

Concepts. The methodology uses hierarchi
cal decomposition for attacking a complex
problem. It also uses abstraction-isolating a
few properties of an object that are appropri
ate for explaining or understanding that object,
at the particular level of the hierarchy under
consideration. It uses modularity which sub-di
vides the system into . easily replacable parts
that have well-defined external interfaces. It
uses formal specification via a somewhat-math
ematical specification language. Unlike natural
language, this specification language is unam
biguous-each statement has one and only one
meaning. The method employs design verifica
tion, to prove that specifications are consistent
with formal requirements. It also uses program
verification for determining the consistency be
tween a program and its specifications.

Procedures. HDM divides the development
cycle into eight stages, starting with conceptu
alization and an informal statement of the
problem, and ending with the production of
verified code. It is being extended to cover sub
sequent incremental changes for improvements
and maintenance. Note that conventional pro
gram testing and debugging is greatly reduced;
the formal verification process performs the
same function much more effectively.

Languages. HDM uses three specification
languages. SPECIAL is used for specifying and

EDP ANALYZER, DECEMBER, 1979

representing modules. The operations that the
module must perform are specified indepen
dently of how they will be performed in the
implementation. Also, HSL is a language for de
scribing levels and hierarchies of levels. Fi
nally, ILPL is an intermediate level program
ming language, used for describing abstract
programs. Alternatively, a modern program
ming language such as Ada, Modula, or Euclid,
may be used directly.

Tools. The people at SRI have developed
prototype tools for several of the development
stages. These tools include a module checker, a
representation checker, an interface checker,
and a hierarchy checker. Several other tools
are either in development or have been pro
posed.

HDM has been used on a number of projects
dealing with complex systems. These include
three projects on secure operating systems, one
on a highly reliable flight control system, and
one on a family of real-time operating systems.

As an example of the use of HDM, we will
briefly describe one of the secure operating
system projects.

Provably secure operating system (PSOS). At a
session of the IEEE Computer Society Comp
ean Spring 79 conference, E. L. Burke of the
MITRE Corporation, gave his views on the cur
rent status of secure operating systems (Refer
ence 2). The first generation of such systems
has been characterized by the adoption of
sound engineering principles to the develop
ment of software, he said. The approach in
cludes top-down design, the use of design and
implementation tools, and the use of a 'some
what simple' formal model of the security
problem. But first generation technology had
to limit the scope of the problems that were
tackled, he added. For instance, non-security
aspects-such as denial of service-were
skipped. Also, the formal model did not in
clude the hardware, allowing the possibility for
hardware maintenance people to gain access to
the security system. And the tools used were
relatively independent and stand-alone, rather
than being an integrated set of tools for design
and implementation.

The second generation of secure operating
systems is just beginning to appear, said Burke.

2

Some of the shortcomings of the first genera
tion are being overcome. And one example of
a second generation secure operating system is
PSOS.

As discussed by DeLashmutt (Reference 2)
and Feiertag and Neumann (Reference 3b),
PSOS has been designed to be a secure operat
ing system that is independent of specific hard
ware/ software boundaries and of specific hard
ware. However, the hardware must be able to
support the concept of capabilities, to be dis
cussed shortly. The capability concept can be
used equally well as the protection mechanism
for user programs, application sub-systems, and
system software. No special protection is
needed for system software.

Further, PSOS is designed to provide multi
user, multi-security-level service. As an exam
ple of one of the first generation shortcomings
that it has overcome, it protects against one
user getting into the domain of another. And it
protects against a user being able to see resi
dues in memory left by previous users of the
memory resource. Psos has many other similar
features.

Feiertag and Neumann report that the de
sign of PSOS has been formally specified, using
SPECIAL. The specifications define PSOS as a
collection of about 20 modules, organized in a
hierarchical structure. The design has been
completed to the point where the features of
PSOS can be compared with those of other se
cure operating systems.

Psos has not yet been implemented. One
reason is that no single, commonly-available
computer has all of the features needed for im
plementing PSOS efficiently, although all of the
required features do exist in some hardware.

As an example of a hardware support feature
needed by PSOS, consider the concept of a ca
pability, as used in PSOS. In order to gain ac
cess to an object (such as data or another pro
gram) that is controlled under PSOS, a user pro
gram must present an appropriate capability to
the module that is responsible for that object.
A capability is a token (a string of bits) that in
cludes (I) a tag, (2) a unique identifier, and (3)
a set of access rights, telling what operations
the user program may perform on the object.
The tag is critical; it distinguishes a capability
item from, say, a data item. The hardware

EDP ANALYZER, DECEMBER, 1979

must make the tag field inaccessible to pro
grams, so that capabilities cannot be forged or
altered by user programs.

The formal techniques used in the PSOS de
sign both make implementation straight-for
ward and make the formal verification of cor
rect operation possible. So the PSOS design
should lead to much more secure and reliable
operating systems than are now commercially
available, say the authors.

In short, they see HDM as providing a way to
build software that does everything its specifi
cations say it should do, and nothing it should
not do.

The problem of system integrity is pervasive
in computer-based systems. It appears to us
that projects such as this one at SRI may be
charting a path that many system developers
can eventually use. In order to build highly se
cure operating systems, they must find a way to
develop software (to operate in a specific hard
ware environment) that does exactly what it is
supposed to, and nothing else. In most business
applications, the requirements will not be as
severe. But the principles for achieving soft
ware integrity will still apply.

The need for system integrity
Definitions of the word 'integrity' in dictio

naries usually include something like "the con
dition of behaving justly, properly, and hon
estly, according to standards of good behavior"
and give as an illustration the phrase a man of
integrity. In the computer field, the term seems
to be quite widely used but with several dif
ferent connotations. 'Data integrity' generally
means the "the condition of being whole, com
plete, accurate, and timely," for instance. And
the term has been applied also to both pro
grams and systems.

Our use of the term 'system integrity' will
mean what we indicated at the beginning of
the report-namely, the behavior of a hard
ware/ software system that does the right
things and only the right things; further, it does
these things right and does them when they are
needed to be done. We should note, however,
that not only is this term not widely used in
this manner but also that there is some contro
versy about it. The controversy centers on
whether this is a valid use of 'integrity.' But we

3

feel that a system can exhibit integrity in much
the same way that a person can, so that 'system
integrity' is a valid concept.

Neumann, in Reference 3a, uses the term
'system defensiveness' to denote a part of what
we include in 'system integrity' -namely, the
non-existence of inappropriate behavior, as
much as possible. He says that the components
of defensiveness include security, reliability,
availability, recoverability, and auditability.

System integrity is particularly important for
systems with severe operating constraints.
Some of these include air traffic control, the
control of nuclear power generation, vote
counting, and certain law enforcement systems,
where errors of operation can have very seri
ous consequences. Similarly, the security of
classified military information is very impor
tant; when such information is stored in com
puter systems, the need for secure hardware/
software is evident.

The business data processing environment
has a need for system integrity, but usually not
as extreme as the cases just cited. The need for
data security is becoming recognized, and will
become even more significant as countries pass
privacy laws that control the transfer and dis
closure of information about persons. And, of
course, as organizations begin to store sensitive
information such as company plans, trade se
crets, etc. on computers, and control the trans
fer of their funds by computers, security will
be essential.

But even in more mundane applications,
such as billing, system integrity is needed. And
the history of computerized billing systems
certainly indicates that their integrity has not
been as high as might be desired. Systems that
continue to send erroneous bills (and adding
more penalties each time), or dunning for zero
balances, have undermined some of the pub
lic's respect for computers.

One might then ask: What is so difficult
about getting systems with an adequate level
of integrity?

Some of the problems

In our previous issues on this general sub
ject, listed earlier in this report, we have given
some idea of why it is so difficult to achieve

EDP ANALYZER, DECEMBER, 1979

system integrity. We will briefly review some
of the causes.

The life cycle of a system has the following
main components: (1) a new system begins by
considering the mission of the activity that the
system is supposed to serve-what really should
the system do, and why; (2) then comes the re
quirements for the new system; ideally, the re
quirements define what the system must do, in
support of the mission; (3) the specifications
for the new system follow; these are (formal)
statements of what the new system must do,
based on the requirements; (4) next is the de
sign of the new system, which should be in har
mony with the specifications; (5) the imple
mentation of the new system follows; it should
be in harmony with the design; (6) next is the
test of the new system, to assure the develop
ers and users that it does what (the mission?
the requirements? the specifications?) say it
should; (7) then there is the maintenance of the
new system, to remove detected errors; and fi
nally there is (8) the enhancements and changes
made to the new system, during its life.

Studies have shown (as we reported in the
previous reports) that many of the problems
with new systems can be traced to errors in the
requirements statements. The errors include in
correct requirements statements, missing or in
complete statements, unclear or ambiguous
statements, and inconsistent or incompatible
statements.

So a part of the problem of obtaining system
integrity has to do with the inadequacy of
methods for determining and stating require
ments. We discussed some improved methods
for doing this in our January and February is
sues of this year.

Requirements errors often are not detected
until the new system has been built and is be
ing tested. It would be much easier and less
costly to correct them had they been found by
the specification or design stages.

Another part of the problem comes from
moving from one stage to the next. In going
from requirements to specifications, some addi
tional errors may be injected. The same is true
in going from specifications to design, and so
on through the whole life cycle.

In short, almost regardless of how talented
or experienced the development staff is, errors

4

will creep in. These are errors both of omission
and commission. Methods are needed to flush
out the errors as soon as possible.

Also, the problem of shortcomings in system
integrity can apply to just about all computer
ized systems, from quite small to large. One
relatively small interactive system that we
have studied, for instance, required about five
man-months to design, construct, and debug.
The user has been quite happy with the result
ing system, which has been in daily use for
over two years. But, in actuality, the system
has had some integrity faults. There are a num
ber of functions that the user requested which
the system does not do. And in a few instances,
the system does things that it is not supposed
to do. Some of the shortcomings were due to
an inadequate statement of requirements, ac
cording to the user. But the types just men
tioned-system not doing what it should and
doing things it should not-probably were
caused by the use of an inadequate methodol
ogy.

The methodology used, in this case, con
sisted of the user supplying the implementer
with a fair amount of informal documentation
on requirements, followed by a greater amount
of verbal communication. No formal require
ments statements were developed, nor were
specifications developed. Design and program
ming drew on the requirements documents and
verbal communications.

This approach is not untypical today, we
suspect. Some larger users are attempting to
put more formality in the development
process, as we have discussed in other reports.
But many of the medium size and even larger
size organizations are still using an approach
similar to the one just described. And as the
use of micro-computers spreads through
smaller organizations, the same type of thing
will happen-again and again.

At the other end of the size and complexity
spectrum, Neumann (Reference 3a) discusses
some types of system design and construction
practices that have been found to cause secur
ity flaws in operating systems. Some examples
are: a poor choice of security system bounda
ries, thus allowing users to get at security-criti
cal functions; users allowed to use absolute in
put-output addresses; operating systems that

EDP ANALYZER, DECEMBER, 1979

assign two different names to the same object,
or the same name to two different objects; and
a lack of validation of critical conditions and
operands, such as outside-of-bounds input val
ues.

These and similar problems can be traced to
deficiencies in the development methodologies
used, says Neumann. Such deficiencies include
the lack of formally stated requirements, for
mally stated specifications, formal proof of cor
respondence between specifications and re
quirements, and so on. So even though operat
ing systems have usually been developed by
very capable people, the same general types of
shortcomings mentioned above for a small sys
tem are found to occur. in many large operat
ing systems.

Neumann compares two of today's operating
systems, MULTICS and UNIX, for security fea
tures. MULTICS . was designed (in the mid-
1960s) to provide strong security features;
UNIX was designed in the early 1970s for use in
a benign environment and makes little pretense
at being secure. (Neumann said he ignored the
conventional commercial operating systems in
his evaluation because they are, for the most
part, intrinsically insecure.) He concludes that
MULTICS is relatively secure, but points out
some areas of possible weakness. UNIX, on the
other hand, is not secure-apart from a basic
set of read/write protect bits. This is not a
criticism of UNIX, he says, because it was not
designed to be secure. Rather, he simply wants
to show how insecure an operating system can
be in the absence of a real concern for security
during its development.

Neumann made the point to us that security
is only one aspect of what we have called sys
tem integrity. Some aspects of integrity will be
imporant in every system; security may or may
not be an important aspect in a particular case.

In general, it appears that any desired aspect
of system integrity-performance, reliability,
security, availability, etc.-must be actively
sought by the developers. It will not happen as
a matter of course or by assuming that "since
we are using only top-notch people on this
project, we won't have to worry about system
integrity." System integrity is a generic prob
lem that applies to all systems, from small to

5

large, and from relatively simple to horribly
complex.

Elements of system integrity
About two years ago, a committee of the

American Federation of Information Process
ing Societies (AFIPS) organized a by-invitation
only workshop to explore the subject of system
integrity. As the ultimate objective, AFIPS ho
ped to have a 'best practices' manual on sys
tem integrity developed to their specifications,
along the lines of the AFIPS Security Manual.
The workshop was asked to explore the ques
tion, consider whether such a manual was do
able, indicate the type of coverage that might
be expected, and suggest how an author search
might be conducted.

While additional work was done after the
workshop was held, for a number of reasons
the project has been put into a 'hold' condi
tion. Hopefully, the project will be re-acti
vated; we think such a manual is both impor
tant and needed.

For discussing the elements of system integ
rity, we will draw upon the (unpublished) re
port of that workshop. We should mention at
the outset that the workshop participants saw
two primary audiences for the proposed man
ual: application system designers, and manag
ers (both of data processing and of user depart
ments). Also, included among the participants
were several people from the business data
processing field, so common DP applications,
such as billing, were within the subject area
that was discussed.

The workshop participants viewed system
integrity as consisting of a number of factors or
elements. A system should be available, ready
to serve users when the users want to use it.
The system should be appropriate, in that it
does the right things, and bounded, in that it
does only what it is supposed to. And the sys
tem should be correct-what it does, it does
right. The system should be predictable by al
ways doing things the same way, and should be
timely by doing things at the right time and
delivering results when needed. The system
must be maintainable and not lose integrity in
the process of being fixed or enhanced. And it
should be auditable, so that auditors can verify
the integrity of the system. The workshop

EDP ANALYZER, DECEMBER, 1979

pointed out that these factors seemed to cover
such concepts as reliability, security, recovery,
change control, and so on. Further, the factors
are inter-related, so that trade-offs often will
have to be made among them.

These factors perhaps indicate the 'ideal' in
system integrity. But the workshop participants
felt that levels of system integrity may have to
be considered, from a practical viewpoint.

Levels of integrity

Intuition says that the concept of levels of
system integrity is a valid one; system integrity
is not an all-or-nothing matter. For example,
an on-line word processing system serving, say,
ten user stations does not need the same degree
of availability, correctness, predictability, and
timeliness as does a control system for a space
probe.

So levels of system integrity are determined
not only by which of the elements listed above
must be emphasized but also by the degree of
emphasis given each one. For a control system
with high reliability requirements, not only
should availability be emphasized, it probably
should be considered a critical factor, and the
cost of providing it probably should not be
given the same weight.

The workshop participants felt that the lev
els of system integrity might be partially deter
mined by the tightness of coupling between
the system and its end users. For instance,
some batch systems can be down for hours
without end users being aware of the problem.
But if an on-line sales order entry system goes
down, terminal operators are aware of it im
mediately.

Another aspect that would seem to influence
the levels of system integrity is important so
cial values. Computers are being put into sys
tems where faulty performance is intolerabl.e.
Examples are air traffic control and the control
of nuclear power plants. But even within the
business data processing environment, social
values must be considered. As indicated earlier
in this report, the designers of a good many of
the computerized billing systems did not ade
quately consider social values-the frustrations,
the annoyances, and even the actual harm that
their systems have caused-when they designed
the systems.

6

In fact, end user satisfaction or dissatisfac
tion with a computerized system is really a so
cial value. In this sense, the designers of all
computer-based systems should be concerned
with social values, such as the threshhold
where user procedures cease to be acceptable
and become frustrating. System software often
provides examples of disregard for social val
ues-the frustration users get from supplying
input to some operating systems is exceeded
only by their frustration trying to decipher out
put error messages.

Higher levels of system integrity cost larger
amounts of money to accomplish. So system
developers must determine the appropriate
level for a new system. And this does not ap
pear to be easy to do, especially since humans
are involved in all systems and the human ele
ment makes system integrity less predictable
and controllable.

End user involvement. In order for system in
tegrity to be maintained, there are some things
that end users must perform. They must know
system limitations and not try to force the sys
tem beyond its limits. (Hopefully, of course,
system designers should check all user interac
tions for outside-of-bounds values and protect
against any such.) But even more important,
they must understand their role in the overall
system and its relationship to system integrity.

During system development, it is essential
that the developers obtain end user participa
tion for determining what the system should do
and what it should not do. For this, they need
contact with the real users, not intermediaries.
Obtaining this type and amount of end user
support is not always easy.

In short, end users have an important role to
play in achieving an appropriate level of sys
tem integrity, both during the design and con
struction of the system as well as during its op
erating life.

Life cycle considerations. Application systems
change and evolve through time; they do not
remain static. We have been told of studies
that report about 80% of development staff
costs, on the average, are spent on mainte
nance and enhancements of application sys
tems. The original development represents
only 20% of the total. Further, other studies

EDP ANALYZER, DECEMBER, 1979

have pointed out that the original structure of
a system tends to be destroyed by changes and
enhancements.

What this means is that system integrity can
not be considered just during system develop
ment and then put aside. The desired level of
system integrity must be maintained during the
whole life cycle of that system.

It appears to us that the concept of levels of
system integrity is valid. Designers must select
the appropriate level for any given system. The
appropriate level is a function of the tightness
of coupling between the system and its end
users, as well as of the social values held by the
users. The effects of the behavior of both users
and maintainers on system integrity must be
considered. And in determining the appropri
ate level of integrity, the cost of both provid
ing and maintaining that level over the life cy
cle of the system must be determined. These
are not easy things to accomplish.

A project, such as the one contemplated by
the AFIPS committee, might be able to locate
practical methods for accomplishing these
things. It would be very useful, we believe, to
have such methods collected and published.

But computer-based systems are being built,
and in rapidly increasing numbers. Their de
signers typically would like to meet the (prob
ably poorly stated) integrity goals. In the face
of all of the above factors, how might system
developers achieve a desired level of system in
tegrity? A part of the answer is: use formal
methods.

Use of formalism

Formal methods become more and more im
portant as the severity of constraints on the
system increases. At the least, formal methods
require written documentation, formal review
techniques, and standard approaches. The stan
dard approaches, in tum, involve standard pro
ject phases, standard documentation for each
phase, and standard procedures to make sure
that all detected errors have been properly cor
rected.

As the discussion of HDM has indicated, for
mal methods move into the realm of mathe
matics as the severity of the constraints passes
some threshhold. That is, the design of a highly
secure operating system (probably) cannot be

7

accomplished without the precision of mathe
matical tools.

Many system designers in the business world
are not too proficient in mathematical meth
ods, we suspect. So mathematical formalism,
of the type used in HDM, say, will have to be
'translated' into a form more appropriate for
such designers. That has yet to be done. Be
cause the need exists and the rewards for ac
complishment will be substantial, we believe
that it will be done. In the meantime, those
system developers who can handle the mathe
matical procedures of HDM (or other such
methodologies) may well decide to begin using
them.

Before outlining some of the components of
formalism, it would be well to mention a cou
ple of problems related to it. One problem is
the apparent delay formal methods seem to
cause-the 'huge' increase of time spent in the
requirements, specifications, and design stages
of a project. It is not unusual for some people
to finally say, "Let's cut out all this foolishness
and begin writing some code." (Neumann
points out that implementation and mainte
nance time savings more than offset this delay.)

Another problem area is that formalism can
become bureaucratic, especially if the people
do not understand the basic concepts but only
know the procedures to be used. Then the con
cern is more with form than with substance.

It seems to us that both of these problems,
and other similar ones that might arise with
the use of formal methods, can be adequately
dealt with by an interested and concerned man
agement. But this means that management
must understand what the formal methods are
attempting to do, and why. This is a problem
area in itself.

With this background, let us now look at
some of the components of formal methods, as
identified in the workshop.

Needs assessment. Formal methods already
exist for determining what the new system
must do. For instance, we discussed SADT and
IA in our January issue of this year. Both of
these are graphical languages, and have the ad
vantage of communicating well with end users
without the use of jargon or mathematics. Hav
ing determined requirements and documented
them with such a language, it might then be

EDP ANALYZER, DECEMBER, 1979

desirable to state the requirements in a mathe
matical-type language, for later proving corre
spondence between requirements and specifi
cations.

Another need exists at this level-that is, a
method is needed by which the appropriate
level of system integrity can be determined. To
our knowledge, this question has not been ad
dressed by any of the methodologies we have
encountered. The problem is either ignored (in
most cases), or else maximum integrity is
sought.

Formal specifications. We gather, from our
discussions in the field, that many of the short
comings that have occurred in computer-based
systems could have been avoided through the
use of formal specifications. These specifica
tions state, from the designer's point of view,
what the new system must perform. They rep
resent the designer's understanding of the
user's requirements.

HDM provides a specification language, SPE
CIAL. By using this language for stating both
the requirements and the specifications, it is
possible (claim the developers) to prove the
correspondence between the requirements and
the specifications. It seems to us that this facil
ity provides a big step forward for system in
tegrity.

Modes of failure analysis. In addition to tel
ling what the system should do, the specifica
tions should also fully describe what it should
not do. In other words, the system analysts and
system designers should make a thorough anal
ysis of the ways that the system might (a) not
do what it is supposed to and (b) do what it is
not supposed to. The specifications should then
specify actions to guard against these possibili
ties.

Formal design documentation. Correspon
dence between specifications and design must
be established, in much the same manner as
between requirements and specifications. For
mal design documentation will help to accom
plish this.

Hardware/ software selection. In order to
meet the appropriate level of system integrity,
the hardware, operating system, and purchased
software must be considered. A manual, such
as the one contemplated by AFIPS, might pro
vide a checklist of things to look for, plus

8

some 'good practices' that might be followed
when selecting hardware and software.

In many (most?) instances, of course, appli
cation system developers will have little or no
say about the hardware or operating system
that is to be used. But, at least, if the deficien
cies of the hardware/ software are known, this
would reduce the chance of unrealistic expec
tations about the overall system integrity. It
would also indicate what hardware difficulties
the software should attempt to overcome.

Test plans and quality assurance. A method
for verifying that the completed system agrees
with its specifications is essential. The most
widely used method for this, by far, is testing
that is, provide a variety of types of input and
see that the proper outputs are produced.

During the design and construction stages,
this testing can be simulated by means of de
sign reviews and code inspections. The devel
opers can 'walk through' a variety of input
types, for a small group of reviewers, and indi
cate what outputs will be produced. This is a
slow process, and can be used for only the ma
jor input types, we gather.

The formal verification methods used in
HDM, however, apparently bypass much of this
conventional testing. By logically demonstrat
ing that a program does exactly what it is sup
posed to, and nothing else, the need for testing
that program is greatly reduced. Formal veri
fication methods are very new, require an abil
ity with mathematics, and are rather difficult to
apply. Where the need exists for a high level
of system integrity, however, the use of formal
verification may be essential.

Formal training. Since human behavior can
have such an effect on system integrity, the
users of the system should be trained in what
to do and what not to do. They should under
stand what the system limits are and should be
encouraged not to try to force the system to
operate beyond those limits.

The training program is needed not only at
the outset, when the new system is being in
stalled, but also must be repeated as new peo
ple join the organization.

Formal turnover. As the level of needed sys
tem integrity increases, so does the need for a
formal procedure to move the system from de
velopment to production status. There would

EDP ANALYZER, DECEMBER, 1979

be a number of things that the production peo
ple would want to check before accepting the
system. Further, this formal turnover should
insure that no changes are made to the system
that have not gone through formal change con
trol.

Failure analysis. Achieving and maintaining
a high level of system integrity requires that all
system failures be recorded, analyzed, and cor
rected. Formal procedures are required for
this, as well as for making sure that the correc
tions have been made, made correctly, and in
stalled.

Auditing. Financial audit procedures tend to
be formal in nature, in that well-defined proce
dures are used. However, audits for security,
privacy, and integrity features are not yet as
well defined; a definition of their audit proce
dures is needed.

It also should be mentioned that the integ
rity features should be auditable, to make sure
that they have not been compromised. Ideally,
this means that there should be some way of
verifying that the object programs being used
are faithful translations of the source programs
and that the source programs correspond with
their formally verified designs, and so on back
to requirements.

Change control. There is probably no aspect
of system integrity that is more important than
change control. As indicated earlier, some 80%
of staff time goes into maintaining and enhanc
ing existing systems, over the life of these sys
tems, and only 20% goes into the original de
velopment. When changes are made, errors
can creep in (or can be implanted), which com
promise system integrity.

So formal change control procedures should
be used, for reviewing, approving, making, and
verifying all system changes.

The change control procedures should apply
to hardware (CPUs, memory, peripherals, com
munication equipment, etc.), software (operat
ing system, utilities, application programs, and
so on), programming languages used, as well as
the procedures used for developing, maintain
ing, and operating the systems.

It should be recognized that this need for
change may be caused by changes in the oper
ating environment. These include new applica
tions, growth or decline in business volume,

9

mergers or acquisitions, restructuring of an or
ganization, change in company goals, markets,
or operating policies, and so on.

Here, then, are at least some of the types of
formal methods that could be used for achiev
ing a desired level of system integrity. In a
sense, one can feel discouraged by all that is
needed in order to achieve system integrity.
However, we suspect that the various compo
nents will be packaged and sold commercially
not too many years hence, with a good number
of automated support tools included.

Even from our brief summary, it should be
apparent that not all of the needed formal
methods yet exist. But a good start has been
made toward developing these formal meth
ods. To illustrate this, let us now look more
closely at HOM. It may be the forerunner of the
'high integrity' development methodologies we
anticipate.

HDM
As mentioned above, HOM was conceived for

developing large, complex software systems
where a very high degree of system integrity is
required. An example of such a software sys
tem is a multi-user, multi-security-level operat
ing system. But the methodology can also be
applied for the development of smaller and/ or
less stringent systems.

HOM is a sophisticated methodology that is
based on scientific principles-principles which
include the concept of data abstraction and the
mathematical basis of programming.

Our discussion here draws upon a report by
Levitt, Neumann, and Robinson (Reference 4)
on the use of HOM for developing software.
The language used and the example that is de
scribed in that report are appropriate for the
intended audience-namely, designers and im
plementers of large, complex software systems
such as operating systems. People who are in
volved in the development of business applica
tion software may find the report a bit difficult
to translate into familiar terms.

Following are some of the principles upon
which HOM is based.

Hierarchy of levels. HOM uses hierarchy for
handling complexity. It calls for the decompo
sition of the design of a new system into a se
ries of levels. The top level is the user inter-

EDP ANALYZER, DECEMBER, 1979

face. The bottom level (generally) may be the
hardware upon which the system will run or
the programming language in which it will be
written.

Abstract machines. The methodology views
the new system as made up of one or more 'ab
stract machines' at each level of the hierarchy.
The term 'abstract' is used to indicate that only
those details that are appropriate for a particu
lar level will be considered; all others will be
hidden at that level. The term 'machine' im
plies that, in theory, a mechanism could be
conceived that performs at that level. For ex
ample, one might conceive of a hardware/soft
ware complex that had to be told only to "run
payroll," and it would be able to determine ev
erything that had to be done. We are not refer
ring to the case where the whole payroll sys
tem has been programmed in the conventional
manner; we are postulating the case where the
hardware/software figures out what has to be
done. The lower level abstract machines spec
ify the 'what has to be done.'

At the top of the hierarchy, the abstract ma
chine deals with what is supplied by the user
and, in turn, what must be delivered to the
user. At the bottom level, the abstract ma
chines deal with how those user services will
be provided by the computer.

Modules. Each abstract machine consists of
one or more modules, where a module is a pro
gramming unit that is independently imple
mented. That is, the internal details of a mod
ule are hidden from everything outside of the
module. A module can call on a lower level
module for service.

Stages. HOM consists of eight stages, divided
into three main categories. The first three
stages make up design, the next two make up
representation, and the final three are imple
mentation. Generally, the stages are performed
in order, in the sense that all design decisions
are made before moving on to the representa
tion and implementation decisions. However,
backtracking can (and probably will) occur.

The authors point out that HOM does not re
quire top-down development. For instance,
when considering a particular abstract ma
chine, the designer might well also be consid
ering the lower level abstract machines that
will be needed to implement that machine.

10

Also, it is quite possible, they say, to do top
down design and bottom-up implementation.

Before discussing the HOM stages in more de
tail, several comments are in order. As men
tioned earlier in this report, today's 'conven
tional' development methodologies typically
use stages that are named: problem definition
(or determining requirements), system specifi
cations, system design, program design, coding,
test, installation, and maintenance. The HOM

stages are similar, but they do differ from these
in important ways, as we will discuss. Testing
is still used, but the need for it is reduced, and
HOM is being extended into the maintenance
area. Secondly, HOM uses the SPECIAL language
for the design and representation stages, and
ILPL (intermediate level programming lan
guage), or another programming language, for
the implementation stages. Thirdly, correctness
verification is distributed across stages 1, 4,
and 7 of HOM, and is not just limited to a sin
gle stage of the project. And finally, the prob
lem definition step (requirements determina
tion) is not covered by the authors, other than
the re-statement of the requirements in the for
mal language SPECIAL.

The design stages. The first three stages of
HOM are concerned with design.

Conceptualization. In this stage, the intent
of the new system is described in natural lan
guage. The services of the top-level module
(the user interface) and the components of the
lowest level module(s) are indicated. This con
ceptualization indicates that the design of the
new system is beginning to take shape in the
designer's mind. However, later stages may
show the need to re-think this conceptualiza
tion.

Decomposition of the top and bottom levels
into modules. It is possible that the top-level
abstract machine, and/ or the bottom level
one(s), may only require one module each. In
complex systems, multiple modules are more
likely. As indicated earlier, each module is de
fined to be a 'stand-alone' programming unit,
in the sense that its internal details are hidden
from everything outside the module.

Intermediate level definition comes next. All
of the levels between the top and the bottom

EDP ANALYZER, DECEMBER, 1979

levels are defined and decomposed into mod
ules.

Stages 1 to 3 are particularly important, say
the authors, for three main reasons. For one
thing, the results of these stages define what
'correctness' means for the system-what the
system must do. It is against this definition that
the later stages will be verified for correctness.
Also, the documentation of these stages pro
vides an early, understandable explanation of
the system-and a good opportunity for detect
ing design flaws. Finally, if these stages are
done properly (that is, if they result in a good
choice of abstract machines and modules), then
the following stages will probably tum out to
be simple, even for complex systems, according
to the authors.

The representation stages. Representation
consists of two stages which probably repre
sent the 'technical heart' of the methodology.

Module specification is reasonably complex.
We will be able to treat only a few of the
highlights.

The HOM specifictions have been designed to
have three significant properties, say the au
thors. They can be read and understood by a
diverse group of people, to aid in inspections
and critiques. They are machine processable,
so as to provide for automatic checking for
syntax and other types of errors. And, finally,
they need not be compilable; rather, they de
scribe the functional behavior of a collection
of programs that implement a module.

Types of expressions. There are five main
types of expressions through which the func
tions of a module are described. One, of
course, is arithmetic and another is conditional
('if ... then .. .'). Then there is a simple boolean
type of expression, the values of which are ei
ther true or false. Next, a relational expression
may be constructed from two simple boolean
expressions, such that if one is true, then the
other must be true. The final type of expression
is 'quantified,' to express properties relating to
a large number of values. An example of a
quantified expression is, "For all values of X

such that P(X) is true, then Q(X) is also true."
Functions. The functions that a module per

forms are of three basic types: (a) one type re
turns a value to a requesting function, but does

11

not change the state of anything within the
module, (b) another type changes the state of
something within the module but does not re
turn a value, and (c) in the third type, both
things occur-a value is returned and a state is
changed.

An example of the first type, where a value
is returned but no state is changed, is the an
swer to the question, "What is the next availa
ble buffer location?" Nothing within the buffer
is changed, and the answer can be the location
or can be 'none,' if the buffer is full.

The other two types of functions involve a
change in the state of something within the
module. Since state-changing is critical, this is
where the 'modes of failure' analysis plays a
key role. All exceptions should be identified
and the consequent actions to be taken defined.
In HDM, each exception is named and is given
a boolean definition of the condition under
which it is true.

A state-changing operation (of a module)
thus either performs the requested state chang
ing and returns the 'normal' value, if appropri
ate, or else it returns one of the exceptions.
Each type of exception is checked, in turn, to
see if it is true. If an exception is true, the op
eration returns the value of that exception
(such as 'buffer full'). If none of the exceptions
are true, then the normal value is returned,
such as filling the next buffer location and pro
viding the pointer for that location.

It bears repeating that SRI developed the
SPECIAL language for specifying modules in
these terms.

Data representation. Somewhat in parallel
with the development of the specifictions for
the modules of an abstract machine, the data
structures that will be used by that abstract
machine must be defined. These definitions are
made in terms of the data structure of the next
lower level machine, say the authors.

As we see it, an example might be the fol
lowing. Consider a payroll application where
one level of abstract machine might be titled
'compute pay.' This abstract machine might
consist of two modules-'compute gross pay'
and 'compute net pay.' At the next lower level,
'compute gross pay' would be considered to be
an abstract machine that might consist of four
modules for computing regular pay, overtime

EDP ANALYZER, DECEMBER, 1979

pay, sick pay, and vacation pay. At the higher
level abstract machine ('compute pay'), the
data might be specified only as 'gross pay data
segment,' without giving attention to what
makes up that segment. But at the lower level
('compute gross pay'), it becomes clear to the
designer that data will be needed for regular
hours worked, overtime hours, sick time, and
vacation time.

These, then-module specification and data
representation-are the stages that make up
the representation phase of the development
project. The next stages are implementation.

Implementation stages. It is in the implemen
tation stages that the use of SPECIAL ceases. In
stead, a form of pseudo-coding is first used, af
ter which the programming language in which
the modules are to be written is used.

Abstract implementation (of the operations
of each module within an abstract machine) is
performed by writing an abstract program for
each module within the abstract machine.
Each program 'calls' on lower level modules,
as appropriate.

SRI has developed ILPL (intermediate level
programming language) for writing this level
of code. While other languages could be used
for this purpose, ILPL has the advantage of be
ing compatible with the syntax, type checking,
and other parts of HDM, say the authors.

In use, we gather, the programmer first
writes an 'informal' set of code for a module,
using natural language sentences-an informal
pseudo-code. Statement types include 're
trieve,' 'modify,' and 'if,' and describe what the
module is to do. When this has been done to
the programmer's satisfaction, it is converted
to ILPL, a formal pseudo-code.

The ILPL code is amenable to a variety of
types of automated checking, for detecting er
rors. The reason for using ILPL is, we gather,
that it is very easy to write from the informal
pseudo-code, since the two involve the same
level of detail. But once in ILPL, the code can
be automatically checked, for flushing out er
rors, before the regular coding begins.

Coding. When the tools are available, the
ILPL code can be automatically converted into
regular code of the programming language
that is being used. In the absence of such trans-

12

lation tools, this code conversion can be done
manually. Since the module design has been es
tablished and most of the errors removed, this
coding tends to proceed very rapidly, we are
told.

Verification. As mentioned earlier, formal
verification under HDM takes place during the
conceptualization, module specification, and
coding stages. At SRI, they have performed
such verification at all three stages. For in
stance, they have performed the design proof,
are engaged in doing module code proofs for
selected modules, and have a module verfica
tion system in operation, for the KSOS operat
ing system. They also are starting on proofs of
Pascal code for a high reliability airplane con
trol system, for which some design proofs have
been done. So verification methods are at least
available for experimental approaches to 'real
world' systems.

This, then, is a. brief overview of HDM. It has
been designed to support the creation of hard
ware/ software systems that exhibit very high
integrity. As we have attempted to point out in
this report, higher levels of system integrity are
needed than are found in many of today's busi
ness data processing applications. System de
velopment methodologies of the future are al
most sure to stress this need and their ways of
meeting it. HDM provides a glimpse of how fu
ture methodologies will approach high integ
rity.

But a word of caution is in order. HDM is
still under development; it is not yet ready for
everyday use. When it is ready for the market-

place, chances are that learning to use it will
be a real challenge for many system analysts
and designers. Of course, it may spawn less de
manding methodologies that can be used when
less-than-extreme levels of system integrity ap
ply.

If you hear complaints that "new computer
systems still do not do what they are supposed
to," HDM illustrates how difficult it really is to
achieve good system integrity.

REFERENCES
1. Reports by SRI International (333 Ravenswood Ave

nue, Menlo Park, Calif. 94025), prepared by the SRI
Computer Science Laboratory:
a) Robinson, L., "HDM-Command and staff over

view," Technical Report CSL-49, February 1978.
b) Roubine, 0. and L. Robinson, "SPECIAL refer

ence manual," Technical Report CSG-45, January
1977.

2. Compean Spring 79, Digest of Papers, IEEE Com
puter Society (5855 Naples Plaza, Suite 301, Long
Beach, Calif. 90803), a series of papers on "the state
of the art in computer security technology," pages 29-
43; price $20.

3. Proceedings of the National Computer Conference,
AFIPS Press 1815 North Lynn Street, Arlington, Vir
ginia 22209; price $60 each:
a) Neumann, P., "Computer system security evalua

tion," 1978 Proceedings, p. 1087-1095.
b) Feiertag, R. J. and P. Neumann, "The founda

tions of a provably secure operating system
(PSOS)," 1979 Proceedings, p. 115-120.

4. Levitt, K. N., P. G. Neumann, and L. Robinson, The
SRI Hierarchical Development Methodology (HDM)
and its application to the development of secure soft
ware. This report is being published by the U.S. Na
tional Bureau of Standards "in late 1979." For infor
mation on ordering, write Systems and Software Divi
sion, NBS, Washington, D. C. 20234.

EDP ANALYZER is published monthly and copyright© 1979 by Canning Publications, Inc., 925 Anza Avenue, Vista, Calif.
92083. All rights reserved. While the contents of each report are based on the best information available to us, we cannot
guarantee them. Photocopying this report for personal use is permitted under the conditions stated at the bottom of the
first page. Prices of subscriptions and back issues listed on last page. Missing issues: please report non-receipt of an issue
within one month of normal receiving date: missing issues requested after this time will be supplied at regular rate.

EDP ANALYZER, DECEMBER, 1979 13

SUBJECTS COVERED BY EDP ANALYZER IN PRIOR YEARS

1976 (Volume 14)

Number
1. Planning for Multi-national Data Processing
2. Staff Training on the Multi-national Scene
3. Professionalism: Coming or Not?
4. Integrity and Security of Personal Data
5. APL and Decision Support Systems
6. Distributed Data Systems
7. Network Structures for Distributed Systems
8. Bringing Women into Computing Management
9. Project Management Systems

10. Distributed Systems and the End User
11. Recovery in Data Base Systems
12. Toward the Better Management of Data

1977 (Volume 15)

Number
1. The Arrival of Common Systems
2. Word Processing: Part 1
3. Word Processing: Part 2
4. Computer Message Systems
5. Computer Services for Small Sites
6. The Importance of EDP Audit and Control
7. Getting the Require men ts Right
8. Managing Staff Retention and Turnover
9. Making Use of Remote Computing Services

10. The Impact of Corporate EFT
ll. Using Some New Programming Techniques
12. Progress in Project Management

1978 (Volume 16)

Number
1. Installing a Data Dictionary
2. Progress in Software Engineering: Part 1
3. Progress in Software Engineering: Part 2
4. The Debate on Trans-border Data Flows
5. Planning for DBMS Conversions
6. "Personal" Computers in Business
7. Planning to Use Public Packet Networks
8. The Challenges of Distributed Systems
9. The Automated Office: Part 1

10. The Automated Office: Part 2
11. Get Ready for Major Changeli
12. Data Encryption: Is It for You?

1979 (Volume 17)

Number
1. The Analysis of User Needs
2. The Production of Better Software
3. Program Design Techniques
4. How to Prepare for the Coming Changes
5. Computer Support for Managers
6. What Information Do Managers Need?
7. The Security of Managers' Information
8. Tools for Building an EIS
9. How to Use Advanced Technology

10. Programming Work-Station Tools
11. Stand-alone Programming Work-Stations
12. Progress Toward System Integrity

(List of subjects prior to 1976 sent upon request)

PRICE SCHEDULE Call prices in u.s. dollars)

Subscriptions (see notes 1,2,4,5)

1 year
2 years
3 years

Back issues (see notes 1,2,3)
First copy
Additional copies

Binders, each (see notes 2,5,6)
(in California

NOTES

U.S., Canada, Mexico
(surface delivery)

$48
88

120

$6
5

$6.25
6.63, including tax)

Other countries
l via air mail)

$60
112
156

$7
6

$9.75

1. Reduced prices are in effect for multiple copy subscriptions and for larger quantities of a back issue. Write for
details.

2. Subscription agency orders are limited to single copy subscriptions for one-, two-, and three-years only.
3. Because of the continuing demand for back issues, all previous reports are available. All back issues, at above

prices, are sent air mail.

4. Optional air mail delivery is available for Canada and Mexico.
5. We strongly recommend AIR MAIL delivery to "other countries" of the world, and have included the added cost

in these prices.
6. The attractive binders, for holding 12 issues of EDP ANALYZER, require no punching or special equipment.

Send your order and check to:
EDP ANALYZER
Subscription Office
925 Anza Avenue
Vista, California 92083
Phone: (714) 724-3233

Company

Send editorial correspondence to:
EDP ANALYZER
Editorial Office
925 Anza A venue
Vista, California 92083
Phone: (714) 724-5900

Address ___ _

City, State, ZIP Code __________ ~---------------------------

